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1 Introduction

“Three great forces rule the world: stupidity, fear, and greed.”

Albert Einstein

Having been pronounced dead by researchers a decade ago (see, e.g., Davis, 2009),

retail investing has recently experienced a remarkable comeback. Relying on an

estimate from Bloomberg Intelligence, the Wall Street Journal reports that retail

investing was responsible for 20% of the total trading volume in U.S. equity markets

in 2020, compared to only 10% in 2010. Strikingly, more than half of this surge

occurred solely in 2020.1 Other sources report an even sharper rise. According to

Citadel Securities, retail investing’s share of the U.S. total trading volume in that

year added up to approximately 25%.2 In light of this immense growth, U.S. online

broker Charles Schwab labels the group of retail traders that has started to invest

since 2020 as “Generation Investor” or “Generation I.”3

Evidence of the emergence of Generation I can also be found in other parts of the

world. According to the data of Deutsches Aktieninstitut, approximately 2.7 million

Germans started to invest in stocks in 2020, which constituted by far the largest

increase in the last 20 years.4 In South Korea, retail investing’s share of the total

trading volume in stock markets rose from 48% in 2019 to 65% in 2020.5

There are several converging reasons that facilitated the appearance of Generation

I. Due to a lack of investment alternatives caused by the ongoing low-interest phase in

most industrialized countries, private households have begun to turn their attention

to stock markets in search of returns on their savings. The decline in trading

commissions, accompanied by the rise of stock message boards and of easy-to-use

trading applications for mobile devices, which have led to the “gamification” of

investing, has additionally contributed to the surge in retail trading. Perhaps the

most important factor is the COVID-19 pandemic. The sharp fall in equity prices at

the beginning of the pandemic in March 2020 along with the stay-at-home orders

provided new market participants with attractive entry opportunities as well as

with the extra time necessary to start investing. Alluding to the pandemic-induced

trend of investing from home, the financial press has labeled the trading activity of

Generation I as “kitchen table trading.”6

1



1 Introduction

Figure 1.1: Share of total trading volume reported to FINRA TRFs

Source: Own calculations based on data from Cboe Global Markets.

Further numerical evidence of the increasing influence of retail investing in the

U.S., albeit of a suggestive nature, can be found by inspecting the evolution of the

share of total U.S. equity trading volume that is reported to a so-called “Trade

Reporting Facility” (TRF). Transactions that are not executed on official exchanges

such as NASDAQ and NYSE must be reported to one of the TRFs to enhance

market transparency. The TRFs are operated by the Financial Industry Regulatory

Authority (FINRA). Since brokers and market makers execute a considerable amount

of retail traders’ orders in off-exchange trading, a rise in the share of total trading

volume reported to the FINRA TRFs can be seen as equivalent to a rise in retail

trading.7 Figure 1.1 depicts the evolution of the FINRA TRF percentage volume

from 2010 to 2021. While oscillating around a value of 36% between 2010 and 2019,

the share of total equity trading volume reported to the FINRA TRFs exceeded

40% in 2020 and further climbed to more than 43% in 2021, representing the rising

impact of retail investing. Notably, a new monthly high of 47.18% was reached in

January 2021.

The emergence of Generation I has, moreover, contributed to unprecedented growth

in the number of retail accounts administered by the U.S. online brokerage sector.

New players such as the often-debated fintech company Robinhood, which went

public in July 2021, compete with established online brokers such as TD Ameritrade,

Charles Schwab, Fidelty Investments, and E*TRADE - often referred to as the “Big

Four brokerages” - for the growing mass of customers. As shown in Figure 1.2, the

number of retail trading accounts at the Big Four brokerages and their aspiring

competitor Robinhood has increased in every year since 2016, with the surge since

2020 being particularly pronounced. In 2020 alone, the five displayed online brokers

gained approximately 13 million new retail clients. This trend further intensified in

2



1 Introduction

Figure 1.2: Number of retail investor accounts administered by selected U.S. online
brokers (in millions)

Source: Data on TD Ameritrade are from its 2019 annual form 10-K and its 2018 annual
report; data on Charles Schwab are from its 2020 annual report and its Q3 2021 earnings
report; data on Fidelity Investments are from its 2018 shareholder update, its 2020 highlights
report, and its Q3 2021 business update; collected data on Robinhood are taken from
Statista9; data on E*TRADE are from its report on the full year 2016 results, its 2019
annual form 10-K, and The Wall Street Journal.10

Note: The data for 2021 are as of September 30.

Note: Charles Schwab took over TD Ameritrade in October 2020. The numbers of Charles
Schwab in 2020 and 2021 also comprise the former accounts of TD Ameritrade.

2021, when more than 17 million new retail investors opened a brokerage account at

the five named companies during the first nine months of the year.

The recent global influx of retail traders has also brought forward new competitors

in the European online brokerage sector, which aim at imitating the business model

of their U.S. counterparts. The German start-up company and online broker Trade

Republic, for example, which is also called the “European Robinhood”, tries to attract

private investors by jumping on the bandwagon of commission-free trading. As of

May 2021, Trade Republic has more than one million clients.8 Overall, there is a

remarkable amount of evidence that retail investing has become significantly more

important in financial markets in recent years.

Dumb money and non-fundamental information. When trying to classify

investors who participate in financial markets, financial experts typically distinguish

between so-called “smart money” and so-called “dumb money.” Smart money refers to

3



1 Introduction

the investment of sophisticated, experienced, and rational traders whose professions

are linked to financial business. Institutional investors such as mutual funds, hedge

funds, pension funds, banks, and insurance companies, which dispose of a wide range

of analysts and financial data, are often assumed to invest smart money. The central

characteristic attributed to smart-money investors is that they possess valuable

information related to the fundamental value of an asset. In finance, the fundamental

or intrinsic value of an asset is usually defined as the net present value of all future

cash flows linked to the asset, such as dividends. Based on their fundamental

information, smart-money investors evaluate the existing mispricing in the market

and adequately choose their investment position to counteract the mispricing and

profit from it.

In contrast, “dumb money” represents investments of unsophisticated, inexperi-

enced, and irrational traders whose professions are not linked to financial business.

These market participants invest on the basis of emotions, heuristics, and wrong

beliefs rather than on the basis of robust fundamental information. Borrowing from

Albert Einstein’s quote at the beginning of this Introductory Chapter, one could

alternatively say that dumb-money investors are guided by “stupidity, fear, and

greed.” The greatest source of dumb money comes from retail investing.

In line with the importance of retail investors or dumb money in financial markets,

smart-money investors no longer exclusively focus on gleaning fundamental inform-

ation. More particularly, there is a remarkable amount of evidence that a second

type of information has attracted smart-money investors’ attention, even before the

emergence of Generation I: so-called non-fundamental information. Generally, if

professional investors collect non-fundamental information, they aim to determine

how dumb-money investors behave in the market and what their demand is.

Anecdotal evidence of non-fundamental information can be found in the financial

press. In an article titled “The Smart Way to Follow ‘Dumb Money’”, the Wall Street

Journal reports that “analysts try to draw smart conclusions from watching so-called

‘dumb money’ slosh around the market.”11 Farboodi and Veldkamp (2020) provide

more specific suggestive evidence by relying on numbers from the Lipper TASS

Database between 1995 and 2015. They find that hedge funds are shifting away from

fundamental analysis, whereas other strategies that include non-fundamental analysis

are gaining in importance. More specifically, the assets under management per

fund that rely on fundamental analysis have decreased by approximately 50% since

2000. In contrast, the assets under management per fund that focus on quantitative

or mixed analysis have nearly quadrupled within the same period. As of 2015,

quantitative and mixed analysis have become as important as fundamental analysis

to hedge funds. Farboodi and Veldkamp (2020) provide additional suggestive evidence

of the importance of non-fundamental analysis by inspecting Google search data

4



1 Introduction

between 2004 and 2016. They show that the total search volume for “fundamental

analysis” fell by approximately 50% within the given period. In strong contrast,

the total search volume involving “order flow” nearly tripled, surpassing that of

“fundamental analysis” as of 2016.

Since the recent boom in retail investing, additional pieces of evidence undoubtedly

show that the interest of the financial world in non-fundamental information has

surged even more. In an article from March 2021, the Financial Times emphasizes

that

“[h]aving demonstrated an ability to move markets, retail traders are now a

community of market participants that savvy investors want to understand

and plug in to their own trading models. The flows are now large enough to

count.”12

This quote underscores that data on retail investing or dumb money have become

increasingly popular with smart-money investors. In light of the increased demand

for non-fundamental information, the financial research company Vanda Research

has developed a method to track retail investors’ net purchases of U.S. stocks on

a daily basis and sells these data to professional traders such as hedge funds and

banks.13

Apart from purchasing aggregated data on retail trading from specialized firms,

there are several other ways of obtaining non-fundamental information. Some

sophisticated investors rely on so-called technical analysis, which entails analyzing

price trends and shifts in trading volume to detect uninformed trades. Anecdotal

evidence of this technique is provided by Shleifer and Summers (1990, p. 26), who

state that “[m]arket professionals spend considerable resources tracking price trends,

volume, short interest, odd lot volume, [...] and numerous other gauges of demand

for equities.” More importantly, the recent rise in retail trading has led to the

manifestation of two sources of non-fundamental information in financial markets

that deserve special attention: social sentiment and payment for order flow.

Social sentiment. The establishment of social media platforms in everyday life

has resulted in the emergence of new sources of large amounts of unstructured

data, labeled as “big data.” Big data linked to the financial world stem, e.g., from

finance blogs, search queries, and stock message boards. Stock message boards,

in particular, have become a common tool mainly used by the growing mass of

retail investors to share opinions, emotions, and concrete investment positions. The

temporarily sharp increase in the value of the GameStop stock from $20 to $480

in January 2021 is perhaps the most famous example of the importance of stock

message boards for financial market movements. At the beginning of 2021, retail

investors coordinated their buy orders for GameStop stocks via stock message boards

5



1 Introduction

such as WallStreetBets, deliberately inflicting severe loses on hedge funds that had

speculated on falling prices by going short in the GameStop stock.14

Remarkably, the happenings around GameStop gave rise to a new class of stocks,

so-called “meme stocks.” Meme stocks are characterized by going viral online among

retail investors, followed by a significant rise in prices. Further important examples

of meme stocks are AMC Entertainment and Blackberry, which experienced notable

growth rates in mid-2021 after drawing retail investors’ attention on stock message

boards.15 Under the impression of such new developments, Goldstein et al. (2021)

consider big data and its consequences for financial markets to be a major area for

future research in the field of financial economics.

The immense volatility of the GameStop stock also aroused attention in the

political world. In 2021, the U.S. House Committee on Financial Services held

several virtual hearings on the topic “Game Stopped? Who Wins and Loses When

Short Sellers, Social Media, and Retail Investors Collide”, in which persons involved,

financial experts, and officials were invited to give a statement on the occurrences

and outline possible implications for financial markets and policy measures.

When analyzing the increased popularity of stock message boards in more detail,

the forum WallStreetBets, which has experienced immense growth in user statistics

since the appearance of meme stocks, stands out. Having counted fewer than 800,000

users in 2019, WallStreetBets had approximately 1.75 million registered users in 2020.

Even more strikingly, it added more than 8.5 million new users to a total of 10.6

million users in 2021, representing an increase of more than 500% year over year.16

The increased impact of WallStreetBets becomes even more visible when looking at

Figure 1.3, which depicts the average daily number of comments and posts made on

the platform from 2019 to 2021 on a quarterly basis. Ever since the emergence of

Generation I, the average daily user contributions on WallStreetBets significantly

surpass those from 2019. Due to the GameStop episode in January 2021, a temporary

high of more than 80,000 average daily user contributions was reached in the first

quarter of 2021. Other stock message boards such as StockTwits also registered a

sharp increase in activity as a consequence of the retail trading boom. In 2021, the

platform counted with more than five million users and more than seven million

monthly messages, compared to two million users and four million monthly messages

in 2019.17,18

Having recognized the growing influence of social media on financial markets,

financial analysts and professional investors have started to make use of advances

in artificial intelligence technology such as text analytics and machine learning

to elaborate the big data contained in stock message boards and other related

sources (see also OECD, Business and Finance Outlook 202119). The resulting social

sentiment indicators, which try to capture social media users’ contemporaneous

6
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Figure 1.3: Number of average daily user contributions on WallStreetBets

Source: Own calculations based on data from Subreddit Stats.

mood or sentiment, serve as a new source of non-fundamental information. As a

consequence, a new trading strategy called social sentiment investing has emerged.

As the term suggests, social sentiment investing aims at evaluating and capitalizing

on the sentiment contained in social media platforms.

A recent comment of Alexis Goldstein, Senior Policy Analyst at Americans for

Financial Reform, from her testimony before the U.S. House Committee on Financial

Services from March 17, 2021, highlights the importance of social sentiment investing

among professional investors:

“My time on Wall Street [...] showed me that major institutional players guard

information about their own positions, while simultaneously spending large

sums of time and resources trying to glean the positions of their competitors

[...]. Thousands of users of the WallStreetBets subreddit posting their positions

and their future plans for those positions is a source of data that major Wall

Street players will mine for information. Many will likely have created software

to extract and analyze the content of the posts, and made, trading decisions

based on it.”20

This statement is backed by several other pieces of evidence that verify the significance

of social sentiment investing in financial markets. The business news channel CNBC

reports that hedge funds purchase data on social sentiment from specialized firms

and include it in their investment strategies.21 For instance, the companies Quiver

Quantitative and ExtractAlpha track social sentiment from stock message boards

and finance blogs and sell their information to hedge funds.22 Remarkably, there

are also ways for retail investors themselves to profit from social sentiment. The

company Social Market Analytics offers so-called “S-scores” to retail investors, which

7
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try to numerically characterize the current social sentiment regarding a stock.23

The investment management company VanEck provides retail investors (and also

professional investors) with another possibility for engaging in social sentiment

investing. In March 2021, it launched the first social sentiment ETF, labeled

“BUZZ”, which selects its portfolio composition on the basis of sentiment from several

social media platforms.24

Payment for order flow. The second source of non-fundamental information,

which deserves special attention, is related to the recent structural change in the

U.S. online brokerage sector toward commission-free trading. The rapid growth of

Robinhood along with its offer of zero trading fees has forced the Big Four brokerages,

viz., Fidelity Investments, Charles Schwab, TD Ameritrade, and E*TRADE, into

intense price competition, which resulted in the successive elimination of their trading

fees for private investors by the end of 2019.25,26

This development has obliged U.S. online brokers to find new ways to generate

revenue. Currently, customers of commission-free online brokers pay with data rather

than money. Robinhood and other online brokers generate revenue by routing their

customer orders to third parties in the market, mainly to large high-frequency traders

or electronic market makers such as Citadel Securities and Virtu Americas, which

are also referred to as “wholesalers.” This practice is known as “payment for order

flow” (PFOF). The wholesalers then match and execute the received orders and try

to profit from the bid-ask spread.

While PFOF has been present in U.S. financial markets since the 1980s (see Parlour

and Rajan, 2003), it did not receive much public attention before the recent boom

in retail trading. Since then, PFOF has been intensely and controversially debated,

as critics of this practice doubt that wholesalers execute retail investors’ orders at

the best available price for them. This is why the U.S. Securities and Exchange

Commission (SEC) has put regulating PFOF on the top of its agenda.27

Notably, there is a second important way that wholesalers profit from engaging

in PFOF. In his testimony before the U.S. House Committee on Financial Services

from May 6, 2021, SEC chairman Gary Gensler emphasized that

”[i]n addition, the wholesalers get valuable information from this order flow

that other market participants get with a delay, if at all. In many aspects of

the economy, from social media to search engines, access to data is a growing

competitive advantage. Our capital markets are no different.”28

Thus, apart from simply matching and executing retail investors’ orders, wholesalers

can additionally profit from information about retail traders’ order flow when they

trade on their own account. Since retail trading represents a significant share of the

total trading volume, such information is undoubtedly valuable in financial markets.

8
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Figure 1.4: Net payments received through payment for order flow by selected U.S.
online brokers (in million USD)

Source: Own calculations based on data from the online brokers’ company 606 reports.

Except for Fidelity Investments, all members of the Big Four brokerages raise money

by engaging in PFOF.29 Since the beginning of 2020, the SEC has obliged online

brokers to disclose their net payments generated by PFOF on a quarterly basis.

Figure 1.4 illustrates the evolution of the amount of money raised through PFOF

by Robinhood, Charles Schwab, TD Ameritrade, and E*TRADE in 2020 and 2021.

Following a sharp increase of more than 60% from the first to the second quarter of

2020, the joint PFOF-related revenue of the four listed U.S. online brokers reached a

temporary plateau of approximately $700 million. In the first quarter of 2021, the

figures climbed to an all-time high of nearly $1 billion. Since then, joint revenue has

declined from its record value, but still remains at a much higher level than in the

pre-2020 era.

The boom in PFOF becomes even more visible by comparing the numbers in

Figure 1.4 to estimations for 2019. Based on an approximation from Alphacution,

Yahoo! Finance reports that the joint PFOF-related revenue of the four listed online

brokers added up to less than $900 million in all of 2019, which falls short of the

amount generated in the first quarter of 2021 alone.30 Thus, one can state that the

boom in retail investing and online brokerage has also resulted in a boom in the

availability of non-fundamental information in financial markets, caused by PFOF.

Thesis goal and structure. As indicated in this Introductory Chapter, due to the

recent surge in retail investing, non-fundamental information has gained enormous

importance among professional investors in financial markets. In particular, the

9



1 Introduction

two latest and most striking examples of the increasing availability and usage of

non-fundamental information, social sentiment and PFOF, should draw economists’

attention.

Retail traders that coordinate their stock market activity on social media are

capable of generating bubbles in financial markets, as was impressively witnessed

during the GameStop episode. One important question that naturally arises in this

context is how professional investors’ trading behavior that tries to capitalize on

social sentiment affects the stock price bubbles induced by retail trading. That is,

does social sentiment investing tend to counteract or amplify such bubbles? Put

differently, does social sentiment investing generally drive prices closer toward their

fundamental value, thereby raising their efficiency, or does the opposite hold true?

Considering PFOF, we have seen that the growing popularity of this practice

has significantly increased the availability of information about retail order flow in

financial markets. More specifically, as a consequence of PFOF, financial markets

are populated by several wholesalers that observe different retail traders’ order flows.

This fact gives rise to several questions: how do wholesalers use their non-fundamental

information when trading in financial markets, and how do the different wholesalers

interact? What effect does their trading behavior exert on important properties of

financial markets such as price efficiency and adverse selection?

The aim of this thesis is to contribute to the theoretical literature on non-

fundamental information by investigating the listed research questions. The the-

oretical framework for the ensuing analyses follows the competitive noisy rational

expectations equilibrium (REE) framework in the spirit of Grossman and Stiglitz

(1980) (henceforth: GS 1980), Hellwig (1980), and others.

The remainder of this thesis is structured as follows: Chapter 2 provides a literature

review, which is divided into two parts. First, to highlight the importance of

non-fundamental information from an academic perspective, the literature review

describes the intense debate on the determinants of asset prices in the field of

financial economics. Second, it briefly outlines the origins of the competitive noisy

REE framework and reviews the existing theoretical literature on non-fundamental

information. Chapter 3 turns to the phenomenon of social sentiment investing

and explores the effect of this new trading strategy on price efficiency. Chapter

4 investigates the strategic interactions between different professional traders that

glean non-fundamental information by engaging in PFOF. Building on the theoretical

results, some implications regarding the effects of PFOF are derived. Chapter 5

summarizes the main results and points to possible directions for future research.

Model proofs and additional technical material are presented in the Appendix.

10



2 Literature Review

“As economics began to stress mathematical models, economists found that the simplest

models to solve were those that assumed everyone in the economy was rational. This

is similar to doing physics without bothering with the messy bits caused by friction.”

Richard Thaler, 2009

All the anecdotal and empirical evidence listed in the Introductory Chapter under-

scores the (increasing) importance of non-fundamental information in real financial

markets. When trying to understand its importance from an academic point of view,

it is indispensable to precisely review the academic debate over what factors drive

asset prices, starting with the “efficient market hypothesis” (EMH). This task is

carried out in Section 2.1. To set the stage for the theoretical analyses in Chapters 3

and 4, Section 2.2 sketches the origins of the competitive noisy REE framework and

gives a detailed overview of the existing theoretical contributions on non-fundamental

information.

2.1 From Efficient Markets to Noise Trading

In the 1970s, the EMH, mainly shaped by the work of financial economist Eugene F.

Fama, constituted the dominant view among researchers in the field of asset pricing

theory. Fama (1965b, p. 56) describes an efficient market as follows:

“An ‘efficient’ market is defined as a market where there are large numbers

of rational, profit-maximizers actively competing, with each trying to predict

future market values of individual securities [...].

In an efficient market, competition among the many intelligent participants

leads to a situation where, at any point in time, actual prices of individual

securities already reflect the effects of information based both on events that

have already occurred and on events which, as of now, the market expects to

take place in the future. In other words, in an efficient market at any point

in time the actual price of a security will be a good estimate of its intrinsic

value.”
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According to Fama’s (1965b) definition, an efficient market is characterized by a large

number of rational, sophisticated market participants competing with each other.

As a consequence of this competition, all available payoff-relevant information is

incorporated into asset prices, which makes them reflect their intrinsic or fundamental

value at all times. Fama (1965b) further states that due to an efficient market, asset

prices follow a random walk, i.e., changes in asset prices are unpredictable, which

implies that past price changes do not reveal any information about future price

movements. Since rational investors’ trading behavior leads prices to reflect their

fundamental value “at any point in time”, prices only change when new information

arrives in the market. As the arrival of new information is unpredictable, changes in

asset prices are unpredictable as well (see also Malkiel, 2003).

The EMH is thus based on three central elements: (i) rational market participants in

competition, (ii) reflection of fundamentals in asset prices, and (iii), as a consequence

of (ii), unpredictable asset price movements.

In related contributions, Fama provides explicit evidence of his EMH. Fama (1965a)

shows that the correlations of price changes in stocks belonging to the Dow Jones

Industrial Average between 1957 and 1962 do not significantly differ from zero, which

implies unpredictable asset price movements. Furthermore, Fama (1970) offers a

comprehensive survey of the existing theoretical and empirical literature on the

randomness of asset price fluctuations, such as Bachelier (1900), Samuelson (1965),

Mandelbrot (1966), and Jensen (1968). Due to the notable amount of evidence of

the random walk behavior of asset prices, the EMH developed into the dominant

paradigm among financial economists. A comment made by Jensen (1978, p. 96)

perhaps best illustrates the general attitude of the academic community toward the

EMH during that time:

“[i]n the literature of finance, accounting, and the economics of uncertainty,

the Efficient Market Hypothesis is accepted as a fact of life, and a scholar who

purports to model behavior in a manner which violates it faces a difficult task

of justification.”

Challenges to the EMH. After its development in the 1960s and its rise to become

the dominant view within the field of asset pricing theory in the 1970s, an era of

increasing criticism of the EMH dawned. One central element of the EMH that

has been heavily criticized ever since is the assumed rationality of individuals. In

this context, the pioneering work of behavioral economists Daniel Kahneman and

Amos Tversky is often mentioned.1 Although their studies did not initially aim at

attacking the EMH, they are often cited by financial economists who doubt the full

rationality of individuals (see, e.g., Shleifer, 2000, and Barberis and Thaler, 2003).

In the 1970s, during the dominant era of the EMH, Kahneman and Tversky provided
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extensive evidence of the irrational behavior of individuals when making decisions or

judgments under uncertainty. Tversky and Kahneman (1971) and Kahneman and

Tversky (1972) show that individuals view small samples drawn from a population

as more representative than standard probability theory would predict. Kahneman

and Tversky label this judgment bias the “law of small numbers.” Further empirical

evidence shows that individuals rely on personal experiences and other instantly

available connections in their memories when assessing the probability of a state or an

event, which can lead to estimation biases (see Tversky and Kahneman, 1973). People

additionally draw on other heuristics, such as anchoring (see Tversky and Kahneman,

1974). Perhaps most importantly to the field of financial economics, Kahneman

and Tversky (1973) prove that people sometimes ignore prior probabilities and the

accuracy of new information when updating their expectations about uncertain

outcomes. In other words, when forming conditional expectations, people tend

to make errors that are irreconcilable with Bayes’ rule. The work of Kahneman

and Tversky, thus, leads financial researchers to suggest that (some) individuals’

investment decisions lack full rationality.

A second important point of critique relates to the evidence that is used to

confirm the EMH. Notably, the early evidence of the EMH focuses exclusively on the

unpredictability of asset price movements and not on the reflection of fundamentals in

prices. Nevertheless, some contributions, such as Fama (1965a), infer from evidence

of random asset price fluctuations that prices indeed reflect their fundamental value.

Shiller (1984, p. 459), however, calls this conclusion “one of the most remarkable

errors in the history of economic thought.” He emphasizes that empirical evidence

of asset prices varying randomly does not necessarily imply that prices reflect their

fundamental value.

Following this critique, the relevant literature stresses two different components of

the EMH, viz., “no free lunch” and “prices are right” (see, e.g., Barberis and Thaler,

2003). According to the no-free-lunch principle of the EMH, efficient markets are

viewed as those where price changes are unpredictable and, thus, any investment

strategy is as good as all other ones. The prices-are-right aspect of the EMH implies

that in an efficient market, asset prices reflect their intrinsic or fundamental value

at any time. Hence, according to this distinction, prices can be “wrong” in the

sense that they do not reflect fundamentals, but they can still be unpredictable.

Interestingly, the two different versions of market efficiency, as widely used currently

in academia, contrast with the initial definition of an efficient market elaborated by

Fama (1965b), which inseparably linked the unpredictability of price movements to

the reflection of fundamentals in prices.

Following Fama’s (1965a) evidence on uncorrelated price movements, the EMH

in the spirit of “no free lunch” continues to receive broad support from empirical
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researchers. There is extensive evidence that professional fund managers are incapable

of beating the market, which is interpreted as a result of the unpredictability of price

movements. The first comprehensive study in this field dates back to Jensen (1968),

who assesses the profitability of 115 selected actively managed U.S. mutual funds

between 1945 and 1964 and shows that none of them was able to beat the market.

Other more recent examples of the underperformance of mutual funds with respect to

passive market portfolios can be found in Rubinstein (2001), Malkiel (2005), French

(2008), and Busse et al. (2014). Pástor and Vorsatz (2020) provide recent evidence

of approximately 4,000 actively managed U.S. equity mutual funds that perform

significantly worse than the S&P 500 index during the COVID-19 crisis.

In contrast, the EMH in the spirit of “prices are right” has been exposed to sharp

critique from empirical researchers since the 1980s. Pioneering work in this field

goes back to Shiller (1981) and LeRoy and Porter (1981). Shiller (1981) calculates

the fundamental value, defined as the present value of all future expected dividends,

of the S&P 500 index between 1871 and 1979 and of the Dow Jones Industrial

Average index between 1928 and 1979. He shows that the two indices are much more

volatile than their underlying fundamental values in the given periods, which clearly

contradicts the prices-are-right aspect of the EMH. Mankiw et al. (1985) and West

(1988) confirm Shiller’s (1981) results by applying different volatility tests to the

data set he initially used.

Along similar lines, LeRoy and Porter (1981) prove for the period between 1955

and 1973 that the real value of the S&P 500 index contrasts with the present value

relation (i.e., the efficient market model). Like Shiller (1981), LeRoy and Porter

(1981) conclude that real stock prices vary much more than the efficient market

model would predict, which yields another piece of empirical evidence of the excess

volatility of stock prices.

Roll (1988) measures the explanatory power of factors that shape a stock’s funda-

mentals, such as macroeconomic news and public firm-related news, for stock returns.

Even after including returns on similar stocks as an additional explanatory variable,

he finds that such factors only account for approximately 35% on average in monthly

price variations of stocks that were traded on the New York Stock Exchange and on

the American Stock Exchange between 1982 and 1987. When looking at the daily

returns, the results are even more striking. The expounded factors only explain, on

average, approximately 20% of total stock price variations between 1982 and 1986.

Cutler et al. (1989) provide another empirical study that suggests that stock prices

are not exclusively driven by fundamentals. The authors estimate that macroeconomic

news explain less than one-fifth of the total monthly variation in aggregated U.S.

equity prices between 1926 and 1985. Excess volatility can also be found in markets

for other securities, such as options (see, e.g., Stein, 1989).
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GS 1980 develop an important theoretical challenge to the prices-are-right component

of the EMH. In their seminal work, they prove that in a competitive market, prices

cannot fully reflect all available fundamental information at any time whenever

gleaning fundamental information is linked to (physical) costs. In an efficient market,

traders are unable to receive any compensation for gathering costly fundamental

information, as there is no mispricing that could be profited from. This absence of

profit opportunities eliminates any incentive to collect costly information. Instead,

in a competitive and efficient market, investors prefer to free-ride on the public

market price because all available fundamental information can be costlessly inferred

from it. Thus, if the price fully reflects fundamentals, no trader gleans costly

information. In this situation, however, the price cannot reflect any fundamental

information because there is no one collecting information and bringing it into the

price. As a consequence, it is impossible for a fully efficient price to prevail if

gathering fundamental information is costly. This famous result is known as the

Grossman-Stiglitz paradox.

Investor sentiment and noise trading. The empirical and theoretical challenges

to market efficiency in the sense of “prices are right” presented above suggest that

there must be other determinants apart from fundamentals that shape asset prices.

As already outlined, empirical evidence unequivocally states that individuals behave

irrationally when making judgments or decisions under uncertainty. Building on this

important observation, the theory of investor sentiment has emerged as a response

to the detected anomalies in financial markets. Shleifer (2000, p. 24) describes it as

“the theory of how real-world investors actually form their beliefs and valuations, and

more generally their demands for securities.” Put differently, the theory of investor

sentiment aims to include empirically observed irrational behavioral patterns in

traders’ investment decisions in financial markets.

As a consequence of this approach, microfounded asset pricing models began to

distinguish between two classes of investors: rational, utility-maximizing traders

(i.e., smart money or professional investors) and less sophisticated traders exposed

to wrong or biased beliefs, maximization errors, and other forms of irrationality

(i.e., dumb money or retail investors). These irrational traders are often called

noise traders. The relevant literature lists many different characterizations and

behavioral patterns of noise traders. Glosten and Milgrom (1985, p. 77) view noise

traders as investors who trade for exogenous liquidity needs, which “may arise from

predictable life cycle needs or from less predictable events such as job promotions or

unemployment, deaths or disabilities, or myriad other causes.” Black (1986, p. 531)

describes noise trading as “trading on noise as if it were information.”

A remarkable amount of the theoretical asset pricing literature models noise

trader demand as an exogenously given, random component that is independent of
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fundamentals (e.g., Kyle, 1985; Danthine and Moresi, 1993; Han and Yang, 2013;

Easley et al., 2016; Arnold and Zelzner, 2020; Banerjee et al., 2021; Xue and Zheng,

2021). Another strand models noise traders as investors who naively extrapolate past

price trends, so-called “positive feedback traders.” Pioneering work in this field dates

back to Cutler et al. (1990) and De Long et al. (1990b). More recent contributions

include Barberis and Shleifer (2003), Arnold and Brunner (2015), and Barberis et al.

(2015, 2018).2

In De Long et al. (1990a), noise traders correctly maximize their expected utility,

but form biased beliefs about future prices. More specifically, they misperceive

the expected return by a random error term. Similar approaches can be found in

Hirshleifer (2006), Yan (2010), and Yang and Li (2013). Noise traders in Mendel

and Shleifer (2012) and Banerjee and Green (2015) differ from those in De Long et

al. (1990a) in the way that they form completely wrong beliefs about future prices

rather than only biased beliefs. The boundedly rational traders in Mondria et al.

(2021) misinterpret the market price’s information about fundamentals.

By pointing to the importance of irrational behavior in financial markets, investor

sentiment or noise trading can contribute to giving an explanation for the listed

challenges to the prices-are-right component of the EMH. The irrational behavior of

some investors could indeed (partially) solve the excess-volatility puzzle proposed by

Shiller (1981) and LeRoy and Porter (1981). The existence of noise traders can also

provide a solution for the Grossman-Stiglitz paradox: inefficient prices resulting from

noise trading generate profit opportunities for rational investors, which can incentivize

them to gather costly fundamental information. Noise trading makes prices partially

rather than fully reflect fundamental information. Thus, it is impossible for rational,

uninformed traders to infer all available fundamental information from observing

the market price. In fact, noise trading can establish a competitive equilibrium with

costly fundamental information and a positive number of informed, rational investors

(see GS 1980).

Limits of arbitrage. Notably, the advocates of efficient or “right” prices do not per

se deny that irrational investors exist. Instead, they argue that this type of trader

cannot have a persistent influence on asset prices. Fama (1965a) states that rational

investors would immediately and fully exploit the profit opportunities generated

by irrational investors and, by that, keep prices efficient. This argument is in line

with Friedman’s (1953) early argument that rational traders or “speculators” act as

stabilizers by buying low and selling high.

Thus, investor sentiment or noise trading alone cannot provide a reason for why

prices should be inefficient in the presence of rational market participants. Instead,

there is a second important foundation needed to explain inefficient prices: limits

of arbitrage. According to the standard textbook definition given by Sharpe and
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Gordon (1990, p. 795), arbitrage is characterized as the “simultaneous purchase

and sale of the same, or essentially similar, security in two different markets for

advantageously different prices.” In a more practical manner, Shleifer and Summers

(1990, p. 20) describe arbitrage “as trading by fully rational investors not subject

to [...] sentiment.” As suggested by the former definition, arbitrage is costless and

without any risk from a theoretical point of view. Under such conditions, rational

traders or “arbitrageurs” are able to offset any influence stemming from noise traders

and keep prices efficient. In reality, however, there are several factors that make

arbitrage costly and risky and, therefore, limited.

Arbitrageurs can be exposed to fundamental risk. This type of risk encompasses

any uncertainty associated with the fundamental value of an asset. Fundamentals

can be shaped by future news that is unpredictable today, thereby creating risk. This

risk, however, is not problematic if perfect substitutes for an asset exist, which can be

used to hedge. In the absence of such substitutes, arbitrageurs face real fundamental

risk. If rational traders are additionally risk-averse, their limited risk-bearing capacity

constrains their trading position, and prices turn out to be inefficient in the presence

of noise trading (see Barberis and Thaler, 2003). The combination of fundamental

risk, unavailable substitutes, and risk aversion leads to inefficient prices in, e.g., GS

1980 and Campbell and Kyle (1993).

Another important source of risk that can pave the way for inefficient prices comes

from noise traders themselves. Irrational traders can worsen existing mispricing

in the short run and, thus, generate temporary losses for arbitrageurs. As shown

by De Long et al. (1990a), noise trader risk flanked by risk aversion and short

trading horizons of arbitrageurs can make prices inefficient, even in the absence of

fundamental risk.

In another pioneering article, Shleifer and Vishny (1997) identify capital constraints

as a further reason for limits of arbitrage. They point to the fact that many real-world

arbitrageurs depend on the capital of other, less sophisticated investors that evaluate

arbitrageurs’ performance on the basis of short-term gains and losses. Arbitrageurs

exposed to noise trader risk can be most constrained in correcting existing mispricing

exactly when prices sharply deviate from fundamentals. If arbitrageurs invest their

clients’ money in an underpriced asset and noise traders become even more “bearish”

about the asset, external investors may interpret arbitrageurs’ short-term losses as

an expression of their lack of expertise. As a result, they withdraw their capital,

which leaves arbitrageurs with the smallest financial resources when their profit

opportunities are highest. Interestingly, Shleifer and Vishny (1997) provide an

incomplete theoretical characterization of their seminal model. Arnold (2009) carries

out the full theoretical analysis.

Building on Shleifer and Vishny (1997), the subsequent literature identifies some
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further reasons that can limit arbitrageurs’ capital or trading position. In Gromb

and Vayanos (2002, 2018), arbitrageurs need to collateralize their investment, which

restricts the capital they can deploy. In Dow et al. (2021), arbitrageurs can only

trade a limited amount of shares. Another strand of the theoretical literature imposes

direct costs on arbitrageurs if they wish to trade. These costs include a fixed market

entry cost as in Allen and Gale (1994) or costs that are proportional to the number

of traded shares as in Isaenko (2015) and to the transaction price as in Buss and

Dumas (2019).

Abreu and Brunnermeier (2002, 2003) identify a possible synchronization risk,

which can limit arbitrage. They assume that arbitrageurs sequentially, rather than

simultaneously, realize mispricing in the market and need to coordinate the timing of

their investment decision to successfully counteract it. A lack of synchronization can

make deviations from fundamentals persistent even if rational traders could deploy

sufficient capital.

The large theoretical literature on limits of arbitrage is backed by abundant

empirical evidence (see, e.g., Barberis and Thaler, 2003, and Gromb and Vayanos,

2010, for comprehensive overviews). One famous example is given by Froot and

Dabora (1999), who investigate the relative pricing of the stocks of Royal Dutch

and Shell Transport. In 1907, the two companies agreed to merge and to distribute

future earnings on a 60:40 basis without giving up their legal entity. If both stocks

were correctly priced in line with this type of merge, the stock price of Royal Dutch

should be 1.5 times the stock price of Shell Transport. Froot and Dabora (1999),

however, show that the relative mispricing of Royal Dutch varied from 10% to 40%

between 1980 and 1994, which provides a clear piece of evidence of limited arbitrage.

Another frequently mentioned instance is index inclusion. Shleifer (1986) finds

abnormal returns on average of approximately 3% for stocks between 1976 and 1983

after announcing that they would be included in the S&P 500 index. Notably, these

abnormal returns did not vanish during the following trading days. Other empirical

studies that identify an index inclusion effect are provided by Harris and Gurel (1986)

and Beneish and Whaley (1996), among others. Wurgler and Zhuravskaya (2002)

show that the price jump after index inclusion is highest for stocks that do not have

any close substitutes and are, hence, characterized by high arbitrage risk.

Brunnermeier and Nagel (2004) and Griffin et al. (2011) provide empirical evidence

of the model of Abreu and Brunnermeier (2002, 2003). They show that most hedge

funds were reluctant to bet against the tech bubble in the NASDAQ index between

January 1997 and March 2000, until a joint selling effort of theirs made the bubble

eventually burst.

Behavioral finance and measuring noise trading. As illustrated, the two

central foundations “investor sentiment” and “limits of arbitrage” can jointly explain
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why prices persistently deviate from fundamentals. Shleifer (2000, p. 24) stresses

the indispensable connection between the two concepts to justify inefficient prices:

“If arbitrage is unlimited, then arbitrageurs accommodate the uninformed shifts

in demand as well as make sure that news is incorporated into prices quickly

and correctly. Markets then remain efficient even when many investors are

irrational. Without investor sentiment, there are no disturbances to efficient

prices in the first place, so prices do not deviate from efficiency.”

The field that draws on investor sentiment and the limits of arbitrage to show that

prices can be inefficient is called behavioral finance. After its development in the

early 1990s, behavioral finance quickly became the dominant approach in financial

economics. Ever since the emergence of behavioral finance, there has been little doubt

among financial researchers that some traders in financial markets act irrationally

and contribute to inefficient prices. Due to the persistent influence of noise trading

on prices, non-fundamental information is unequivocally helpful for rational traders

to better understand market movements. Interestingly, there is an intense debate in

the academic community about how one can actually gauge investor sentiment or

noise trading and obtain non-fundamental information.

The relevant empirical literature distinguishes between three types of measurement:

two traditional ones and one more modern approach. The first traditional type

relies on direct market data. Classical work in this field dates back to Lee et al.

(1991), who try to gauge investor sentiment through closed-end fund discounts. In a

comprehensive and influential study, Baker and Wurgler (2006) construct a sentiment

index based on six market indicators, including trading volume, closed-end fund

discount, and dividend premium. Others proxy for noise trading with mutual fund

flows (e.g., Frazzini and Lamont, 2008; Lou, 2012; Akbas et al., 2015).

More importantly for this thesis, noise trading is also measured by directly drawing

on retail investor transaction data from brokers (e.g., Kumar and Lee, 2006; Barber

et al., 2009; Foucault et al., 2011; Peress and Schmidt, 2019, 2021). In light of recent

developments, Barber et al. (2021), Eaton et al. (2021), and Ozik et al. (2021) rely

on data from the online broker Robinhood and show that the trading platform mostly

attracts inexperienced investors.

The second traditional method, which is less relevant for this thesis, takes on data

from surveys. Early works by Fisher and Statman (2003), Charoenrook (2005), and

Lemmon and Portniaguina (2006) draw on the “University of Michigan Consumer

Sentiment Index” and the “Conference Board Consumer Confidence Index”, which

evaluate household surveys, to proxy for investor sentiment. Qiu and Welch (2006)

make use of the “Survey of Investor Sentiment” by UBS/Gallup. Amromin and

Sharpe (2014), Greenwood and Shleifer (2014), and Banchit et al. (2020) constitute
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other, more recent examples that rely on indices based on survey data.

However, the two traditional types of measurements of investor sentiment or noise

trading are exposed to criticism that questions their validity. Da et al. (2015, p. 2)

state that measures based on aggregate market data “have the disadvantage of being

the equilibrium outcome of many economic forces other than investor sentiment.”

Considering survey measures, Zhou (2018, p. 248) emphasizes that participants of

such surveys “may not respond, and those who respond may not have an incentive

to tell the truth.” The third, non-traditional type of measuring investor sentiment,

which gained enormous popularity among empirical researchers in the last decade,

takes data from publicly available media content such as internet search results, blogs,

and stock message boards. By that, it is closely related to the concept of social

sentiment. When assessing the validity of these measurements, Zhou (2018, p. 250)

notes that “[i]n comparison with market- and survey-based measures, [...] measures

based on textual analysis perform better by far.”

Pioneering work in this area dates back to Wysocki (1998), who shows that the

cumulative stock message posting volume on Yahoo! Finance predicts shifts in

next-day stock returns and trading volume. Similarly, Antweiler and Frank (2004)

and Das and Chen (2007) prove that the sentiment derived from Yahoo! Finance

is linked to volatility and trading volume in financial markets. Karabulut (2013)

and Siganos et al. (2014) show that a rise in Facebook ’s Gross National Happiness

Index is positively correlated with changes in the next day’s stock market returns

and future trading volume.

Da et al. (2011) identify a positive correlation between Google’s search volume

index (SVI) and stock returns during the next two weeks. In an extension of their

previous work, Da et al. (2015) measure investor sentiment with the so-called

Financial and Economics Attitudes Revealed by Search (FEARS) index, which is

based on the SVI. The authors show that changes in the FEARS index predict stock

market returns in the next two days. More recently, Desagre and D’Hondt (2021)

uncover a positive relationship between the SVI and retail investors’ trading activity.

The social media platform Twitter along its stock message board StockTwits

constitutes another often used source to proxy for investor sentiment. Sul et al.

(2017) derive that the contemporaneous sentiment contained in the tweets from

StockTwits predicts future prices. Along similar lines, Duz and Tas (2020) conclude

that the content of StockTwits has predictive power for short-term price movements

and shifts in trading volume. Ngo and Nguyen (2021) show that the public sentiment

contained in tweets was related to the V-shaped behavior of asset prices at the

beginning of the COVID-19 pandemic.3
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2.2 The Competitive Noisy REE Framework

Having highlighted the importance of non-fundamental information from an academic

perspective, the second part of the literature review addresses the competitive noisy

REE framework, which forms the basis for the subsequent theoretical analyses in

Chapters 3 and 4. The competitive noisy REE framework builds upon five main

assumptions: (i) stochastic asset payoffs, (ii) a fully competitive economy, (iii) some

source of “noise” in the market, (iv) exponential utility with constant absolute

risk aversion (CARA), and (v) random variables that follow a multivariate normal

distribution. The foundations of the framework date back to the seminal contribution

of GS 1980.4 According to Google Scholar, as of November 2021, it was cited more

than 10,000 times, thereby making it one of the most influential papers ever published

in the American Economic Review.

In the setup of GS 1980, a discrete mass of rational agents characterized by CARA

utility functions trades one riskless and one risky asset in a static, competitive

financial market. The risky asset pays off its unknown fundamental value, which

consists of two independent random components, one period ahead. Rational traders

can acquire unbiased information about the first fundamental component at a fixed

cost. Through trading, their private information is factored into the price. The

portion of rational traders that remains uninformed tries to infer informed agents’

fundamental information from observing the market price. To prevent the price

from being fully revealing, the authors assume the supply of the risky asset to

be random. The randomness of supply injects noise into the market price, which

confronts uninformed traders with a signal extraction problem: they do not know

whether a high price is due to high fundamentals or to low supply. Thus, noise

in the asset price can incentivize (some) rational traders to acquire fundamental

information. Without noise, a competitive equilibrium with a positive portion of

informed traders would not exist. This result leads to the formulation of the famous

Grossman-Stiglitz paradox, which states that in a competitive economy, prices cannot

fully reflect fundamentals if gathering fundamental information is costly.

GS 1980 further assume that all random variables in their model are jointly

normally distributed. The combination of CARA utility and normal random variables

delivers an analytically tractable setting, which has become known as the CARA-

normal framework in the literature. The equilibrium that GS 1980 derive from

this setting is an REE. This implies that rational agents’ conjecture about the

behavior of the asset price is self-fulfilling, i.e., the price function conjectured by

agents needs to coincide with the “real” function in the economy that results from

market clearing. This makes agents’ expectations rational. GS 1980 show that

equilibrium is unique and characterized by strategic substitutability in acquiring
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fundamental information. The reason for this result lies in the positive correlation

between the mass of informed traders and the degree of price efficiency. As more

agents with fundamental information enter the market, the price more accurately

reflects fundamentals. This, in return, lowers the incentive for uninformed traders to

acquire costly information and makes them prefer to free-ride on the public market

price instead.

Although playing a pioneering role in financial economics, the seminal model of GS

1980 is not free of criticism. Hellwig (1980, p. 478) identifies a conceptual weakness

that leads him to call the rational agents in GS 1980 “slightly schizophrenic.” Since

the number of traders in GS 1980 is finite, a single trader’s behavior indeed influences

the market price. However, GS 1980 neglect this phenomenon in their setup, as all

agents are assumed to take the price as given. Hellwig (1980) resolves this issue by

assuming a “large market” with a continuum of agents. In such an economy, each

trader is infinitesimally “small” and price-taking behavior is optimal.

Diamond and Verrecchia (1981) deliver another important contribution to the

field. Similar to Hellwig (1980), they model the risky asset’s fundamental payoff

as a single random component rather than as two independent components, as

in GS 1980. Each rational trader is assumed to observe a private, noisy signal

about fundamentals. In this model, contrary to GS 1980, informed traders glean

fundamental information from observing the market price. Since their own private

information is not perfectly precise, informed agents have an incentive to infer further

information about fundamentals from the price, which aggregates traders’ private

fundamental information. The authors show that the resulting REE is unique with

the same characteristics as in GS 1980. Verrecchia (1982) extends the model of

Diamond and Verrecchia (1981) by introducing an information acquisition stage.

As opposed to GS 1980 and Hellwig (1980), Diamond and Verrecchia (1981) and

Verrecchia (1982) provide an explicit economic interpretation for the noisiness of

asset supply. They relate it to random shocks to agents’ individual asset endowments,

which jointly determine aggregate supply. Since individual endowments are random,

total asset supply is also random.

Subsequent work in the field develops a different interpretation for the randomness

of asset supply by linking it to the concept of liquidity traders or noise traders. Allen

(1984), who conducts a welfare analysis in the framework of GS 1980, explicitly

attributes the random fluctuations in asset supply to the behavior of liquidity traders.5

Similarly, Admati (1985, p. 632), who considers a multi-asset economy, states that

movements in asset supply might “be caused by some trade of a nonspeculative

nature (such as for life-cycle or liquidity reasons), or by some traders lacking perfect

knowledge of the market structure.” Since then, noise trading has become a common

explanation for random fluctuations in asset supply in the competitive noisy REE
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framework (see also Vives, 2008, Chapter 4).

Singleton (1986), Brown and Jennings (1989), and Grundy and McNichols (1989)

deliver other pioneering contributions by transferring the originally static setup into

a dynamic setup. In such a setting, the risky asset is traded multiple times before it

pays off its fundamental value. Thus, agents are concerned with predicting future

prices rather than fundamentals only. Traders are modeled either as short-lived

agents in terms of overlapping generations (OLG) or as long-lived agents (LLA). In

the former case, there are different generations of agents, each of which trades at

one date only. The LLA variant implies that the same agents trade at all dates.

Literature on non-fundamental information. As previously shown, there exist

two alternative interpretations for random fluctuations in asset supply in the compet-

itive noisy REE framework: random shocks to agents’ individual asset endowments

and noise trading. Following the field of behavioral finance outlined in Section 2.1,

we adopt the noise trader interpretation in this thesis.6 When analyzing the effect of

non-fundamental information, this is without loss of generality. Using information

about aggregate supply contained in random asset endowments delivers very similar

results to making use of information about noise trader demand (see, e.g., Ganguli

and Yang, 2009, and Manzano and Vives, 2011). Because of this similarity, the

literature dealing with random asset endowments and with information about noise

trading in the competitive noisy REE framework is reviewed in the rest of this chapter.

For the sake of simplicity, both types of information are labeled “non-fundamental

information” in the following discussion.

There exists a small but growing body of literature that explores the effects

of non-fundamental information in the competitive noisy REE framework.7 In an

early contribution, Gennotte and Leland (1990) assume that a fixed portion of

rational traders observes a part of the noisy asset supply, which is driven by liquidity

traders. The authors focus on explaining stock market crashes that can occur due to

unobserved shifts in supply. Following an unperceived increase in supply, uninformed

traders might misinterpret the ensuing fall in prices as bad fundamental news received

by informed traders, which makes them reduce their demand as a consequence. This

exacerbates even more the initial fall in prices and can lead to a stock market crash.

Ganguli and Yang (2009) build on Diamond and Verrecchia (1981) and consider

a static economy where rational traders are endowed with a random amount of

the model’s risky asset. Each endowment is characterized by a common and an

idiosyncratic component. Thus, an agent’s individual endowment yields valuable

information about the unknown aggregate supply in the economy. The existence of

private non-fundamental information can lead to two self-fulfilling equilibria in the

financial market.8 The two equilibria differ in the effect that a rise in the mass of

fundamentally informed traders exerts on price efficiency. In the first equilibrium,
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which Ganguli and Yang (2009) label SUB-REE, a rise in the mass of fundamentally

informed traders increases price efficiency, as in the unique equilibrium of GS 1980

and Diamond and Verrecchia (1981). In the second equilibrium, which the authors

label COM-REE, more fundamentally informed traders decrease price efficiency.

However, price efficiency is always higher in both equilibria than in the respective

economy without non-fundamental information.

The fact that more informed trading can reduce price efficiency paves the way

for complementarities in fundamental information acquisition. Ganguli and Yang

(2009) show that acquiring fundamental information is always a complement in

the COM-REE. Contrary to GS 1980 and Diamond and Verrecchia (1981), a rise

in the mass of fundamentally informed traders makes price efficiency decrease in

this equilibrium. Therefore, as more traders acquire fundamental information, the

incentive for others to do so increases due to a less efficient price.

Another striking difference compared to GS 1980 and Diamond and Verrecchia

(1981) is that too much informed trading can lead to a market breakdown. If

information is too precise or the mass of informed traders is too large, trading stops,

and the two equilibria vanish. The reason for this is intensifying adverse selection in

the financial market induced by increasing information asymmetry. This phenomenon

will be reviewed in more detail in Chapter 4. Ganguli and Yang (2009) extend the

basic model by attributing random changes in asset supply to the behavior of noise

traders and by allowing for the simultaneous acquisition of private fundamental and

private non-fundamental information. The authors show that acquiring both types of

information simultaneously can be a complement in the two equilibria of the model.

Manzano and Vives (2011) build on the model of Ganguli and Yang (2009) by

introducing correlations among the error terms in agents’ private fundamental signals.

In this scenario, the existence of an equilibrium is always guaranteed, and there

are up to three equilibria possible. Multiple equilibria arise if an increase in price

efficiency makes traders rely more on their private information. The authors show

that acquiring fundamental information is a strategic substitute (resp., a strategic

complement) at the two extreme equilibria (resp., at the intermediate equilibrium).

Manzano and Vives (2011) also analyze the stability of the equilibria, which is highly

controversial in a static setup. They find that the equilibrium that is characterized by

strategic complementarity in information acquisition is unstable, whereas the other

two equilibria with strategic substitutability are stable. Using a similar argument,

Manzano and Vives (2011) consider the COM-REE of Ganguli and Yang (2009) to

be unstable.

Zeng et al. (2018) modify the setup of Ganguli and Yang (2009) by modeling

fundamentally and non-fundamentally informed investors as separate groups. At

the information acquisition stage, they show that the equilibrium mass of non-
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fundamentally informed traders is negatively correlated with that of fundamentally

informed investors (holding the costs of acquiring information constant).

Marmora and Rytchkov (2018) investigate the effects of non-fundamental inform-

ation on price efficiency in more detail. In an economy where agents are endowed

with diverse prior information about the asset’s fundamental value, the authors

assign a fixed information processing capacity to rational traders that they can use

to produce private fundamental and private non-fundamental information. Marmora

and Rytchkov (2018) derive that agents tend to specialize in information acquisition.

Those with precise prior information about fundamentals focus on the acquisition of

fundamental information. Those with imprecise prior information switch to acquiring

non-fundamental information. Marmora and Rytchkov (2018) prove that acquiring

non-fundamental information unequivocally benefits price efficiency. This result is not

trivial in their setup as the introduction of non-fundamental information acquisition

exerts two counteracting effects. On the one hand, it makes some investors reallocate

their fixed information processing capacity and produce less private fundamental

information, which harms price efficiency. On the other hand, non-fundamental in-

formation allows rational traders to partly offset the influence of noise trader demand

on the market price, thereby increasing price efficiency. Marmora and Rytchkov

(2018) show that the latter, positive effect unambiguously dominates in their model.

There also exist some models that explore the effects of non-fundamental inform-

ation in a dynamic financial market. Spiegel (1998) analyzes an infinite-horizon

OLG economy with multiple risky assets in which agents are endowed with uncertain

amounts of these assets. The coordination among short-lived traders can lead to

two self-fulfilling equilibria with different levels of price volatility. Watanabe (2008)

extends Spiegel’s (1998) model to the case of private fundamental information with

heterogeneous precision.

Farboodi and Veldkamp (2020) also consider an infinite-horizon OLG economy

and analyze the effects coming from information about contemporaneous noise trader

demand. Similar to Marmora and Rytchkov (2018), they assign a data constraint to

traders to process current private fundamental and current private non-fundamental

information. There is technological progress over time, i.e., agents can process

more information as time advances. Farboodi and Veldkamp (2020) show that non-

fundamental information increases price efficiency in a dynamic context, although it

crowds out fundamental information under a data constraint.

Implementing dynamic frameworks additionally allows an analysis of the effects

coming from information about future noise shocks. Traders who try to predict

future prices clearly have an incentive to gather information about future noise

trading (since it affects future prices). Cespa and Vives (2012, 2015) follow up on

this idea by exploring the impact of persistent noise trader demand in three-period
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LLA and OLG models, respectively. If noise shocks across periods are correlated,

rational traders can use the current price to infer information about the current noise

shock, which then yields information about the next period’s noise shock. Thus, in a

dynamic context, the market price can also be used to infer valuable information

about noise given that noise shocks are correlated across periods. In this sense, the

market price plays a dual role: it conveys fundamental as well as non-fundamental

information. Cespa and Vives (2012, 2015) show that persistent noise trading can

generate multiple equilibria in financial markets and identify an equilibrium that

is characterized by high price efficiency. Concerning the model variant with OLG

of investors, this finding challenges the widespread view that short-term trading

contributes to inefficient prices.

In a three-period LLA model, Avdis (2016) explores the consequences of correl-

ated noise shocks at the information acquisition stage. He shows that acquiring

fundamental information can be a complement in such a setting. The reason for

this is that more fundamentally informed trading makes the price more informative

about fundamentals and thus less informative about noise. Hence, more funda-

mentally informed trading makes it more difficult for uninformed traders to infer

non-fundamental information from the price. As a consequence, the incentive for

uninformed traders to acquire fundamental information can increase since it helps to

more accurately extract information about noise from the market price.
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3 Social Sentiment Investing and

Price Efficiency

“Developments in machine learning, data analytics, and natural language processing

have allowed sophisticated investors to monitor various forms of public communication

to see relationships between words and prices. This practice, called sentiment analysis,

has picked up steam in the last couple of years, and it has grown to include online

communities.”

SEC chairman Gary Gensler, May 2021

This chapter is based on Arnold and Russ (2021). It deals with the first source of

non-fundamental information that has experienced increased importance in financial

markets: social sentiment. The rising popularity of social media platforms and,

in particular, stock message boards such as WallStreetBets has opened up new

possibilities for retail traders to coordinate their stock market activity and move

prices. The GameStop episode in January 2021 gave rise to the emergence of a

new class of stocks that attracts retail investors’ attention on social media, known

as meme stocks. Advances in artificial intelligence technology allow professional

investors to capitalize on information contained in stock message boards by engaging

in social sentiment investing, i.e., by forming investment strategies on the basis of

social sentiment derived from stock message boards, which yields information about

retail traders’ behavior in financial markets.

The aim of this chapter is to investigate the ensuing impact of social sentiment

investing on one of the central metrics of financial markets: price efficiency. Does

social sentiment investing generally drive stock prices closer to fundamentals and

make them more efficient, thereby counteracting the bubbles induced by retail trading,

or does the opposite hold true?

In the spirit of behavioral finance, we interpret retail traders as noise traders.

Because of the remarkable validity of sentiment measures stemming from textual ana-

lysis (see Zhou, 2018, Subsection 4.3), social sentiment indeed provides a reasonable

proxy for retail or noise trading. Importantly, as outlined in Section 2.1, empirical

researchers identify a positive link between sentiment derived from social media
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platforms and future prices. Thus, due to this predictive power, social sentiment

serves not only as a measure for current but also for future noise trader behavior,

which affects future prices. Since the big data used to gauge social sentiment stem

from the same publicly available internet sources, we assume that social sentiment

yields noisy, public signals about current and future noise trader demand.

We integrate these signals into the canonical dynamic REE framework in the

spirit of Singleton (1986) and Brown and Jennings (1989) and assess the impact of

information about future noise trading on contemporaneous price efficiency. The

ensuing dynamic analysis distinguishes between the three-period OLG and LLA

setups. The two models have a unique equilibrium that can be computed in closed

form. We show that introducing public information about future noise trader demand

potentially harms current price efficiency, both in the OLG and LLA models. Thus,

current price efficiency tends to be higher if public information about future noise

trader demand is absent, implying a potentially negative effect of social sentiment

investing on price efficiency. This finding is consistent with Goldstein et al.’s (2021, p.

3222) conjecture that “although big data provides more information for sophisticated

players such as institutional investors and firms, the impact of big data may not

always be positive.”

Moreover, our result sharply contrasts with the outcomes of three related parts

of the theoretical literature that explore the effects induced by information about

contemporaneous noise in static setups (see Ganguli and Yang, 2009; Manzano and

Vives, 2011; Marmora and Rytchkov, 2018; Zeng et al., 2018), by information about

contemporaneous noise in a dynamic model (see Farboodi and Veldkamp, 2020),

and by public information about fundamentals in a dynamic setup (see Gao, 2008).

In all cited contributions, any level of precision unequivocally delivers higher price

efficiency than zero precision. Hence, price efficiency is unambiguously higher in the

presence than in the absence of the respective type of information. In the models of

this chapter, by contrast, price efficiency can be lower in the presence of a public

signal about future noise trader demand.

The driving force behind our result is an additional mechanism in the dynamic

models that is not present in the respective static benchmark. In the static economy,

by gauging social sentiment, agents can only glean public information about contem-

poraneous noise trader demand. Thus, price efficiency is shaped by two components.

First, it is affected by current noise trader demand, whose influence is mitigated if

rational agents trade more aggressively on private fundamental information or more

aggressively against the public signal about current noise trading. Second, price

efficiency is influenced by the common error term inherent in the public signal about

current noise trading. More aggressive trading against the public signal amplifies

the negative impact of this common error term on price efficiency.
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If the precision of the public signal about current noise trader demand increases,

price efficiency is affected in two opposite ways. For one thing, a more precise

signal about current noise means that rational agents offset more of the noise trader

demand, which reduces its influence on the market price relative to fundamentals.

For another, a higher precision amplifies the detrimental impact of the public signal’s

common error term on price efficiency. In the static model version, the former effect

unequivocally dominates, which makes public information about current noise raise

price efficiency.

In the dynamic setup, by gauging social sentiment, rational traders can additionally

glean information about future noise trader demand. Hence, price efficiency at the

early date is influenced by the same two components as in the static version and

by a third component, which represents the impact of the signal about future noise

trading. Since this signal is uncorrelated with fundamentals and current noise trading,

its introduction injects a new source of noise into the price, moving it away from

fundamentals.

In the LLA model, if public information about current noise is absent, any

level of precision of the signal about future noise unequivocally yields lower price

efficiency than zero precision. If information about current noise is unavailable, the

two components that are also present in the static setting are independent of the

precision of the signal about future noise. Hence, changes in signal precision only

affect the component that determines the influence of the public signal about future

noise on price efficiency. Zero precision yields maximum price efficiency since this is

the only finite value for which traders ignore the signal.

Moreover, a perfectly precise signal generally leads to lower price efficiency than a

completely imprecise signal. The component exclusive to the dynamic model drops

out in both limiting cases so that price efficiency is determined by the same two

components as in the static version. The result is driven by the fact that agents trade

more aggressively against their public signal about current noise if the precision

of the signal about future noise switches from infinity to zero. As in the static

version, the stabilizing impact coming from offsetting more current noise dominates

the destabilizing effect induced by amplifying the impact of the common error term

of the public signal about contemporaneous noise. Strikingly, parameterizations of

the model even exist such that price efficiency is monotonically decreasing in the

precision of the public signal about future noise trader demand.

In the OLG model, price efficiency is generally lower than in the LLA variant

(with identical model parameters). Nevertheless, public information about future

noise is less likely to harm price efficiency. Allen et al. (2006) show that in short-

trading economies, prices are driven by higher-order expectations about fundamentals

rather than by actual expectations about fundamentals. Allen et al. (2006) label
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this phenomenon the “Keynesian beauty contest” (KBC) in financial markets.1

Additionally, the authors show that rational agents underweight private fundamental

information when exhibiting a short trading horizon. However, in the OLG model

of this chapter, short-lived agents trade more aggressively on private fundamental

information as the signal about future noise gains in precision. A more precise

public signal about future noise trader demand makes date-2 rational traders offset

more of the date-2 noise trader demand, thereby driving the date-2 price closer

to fundamentals. This leads date-1 rational traders to trade more aggressively on

private fundamental information, which boosts price efficiency. Nevertheless, public

information about future noise can still be detrimental to price efficiency. As in the

LLA model, it can even happen that price efficiency is a monotonically decreasing

function of signal precision.

Our findings contribute to two strands of the theoretical literature. First, they

add to the field that explores the impact of related types of information on price

efficiency in the competitive noisy REE framework. As shown in Section 2.2, several

papers investigate the effects of information about contemporaneous noise in static

models. The common result is that more precise information about current noise is

conducive to price efficiency in a stable equilibrium. More precise non-fundamental

information can lead to a fall in price efficiency in unstable equilibria. However, price

efficiency is unequivocally higher in all equilibria in the presence than in the absence

of non-fundamental information (see Ganguli and Yang, 2009; Manzano and Vives,

2011; Marmora and Rytchkov, 2018; Zeng et al. 2018). In the models of this chapter,

by contrast, price efficiency can be lower in the presence of information about future

noise in the unique equilibrium.

Building on Allen et al. (2006), Gao (2008) investigates the influence of public

information about fundamentals in an OLG economy. He shows that more precise

public fundamental information unambiguously raises price efficiency, even though

the KBC intensifies. Our analysis shows that the same does not hold true for public

non-fundamental information. Farboodi and Veldkamp (2020) turn their attention to

private information about contemporaneous noise in a dynamic model populated by

OLG of investors. Similar to Marmora and Rytchkov (2018), traders can process a

limited amount of private fundamental and non-fundamental information. Farboodi

and Veldkamp (2020) show that non-fundamental information unequivocally raises

price efficiency, although it can crowd out fundamental information. Again, this

contrasts with our finding that the effect of non-fundamental information can be

detrimental to price efficiency.

Second, our results relate to the strand of the theoretical literature concerned

with rational destabilization of prices. In a pioneering contribution, De Long et

al. (1990b) show that rational traders can drive prices away from fundamentals if
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noise traders are modeled as trend-chasing positive feedback traders (Arnold and

Brunner, 2015, however, show that the scope for destabilizing rational speculation

shrinks as the number of trading dates increases). In a setup à la Kyle (1985), which

entails risk-neutral investors and strategic behavior, Madrigal (1996) and Yang and

Zhu (2017) show that the existence of a non-fundamental speculator can harm price

efficiency. Abreu and Brunnermeier (2002, 2003) develop a model in which rational

investors temporarily contribute to the growth of a bubble until coordinated selling

pressure eventually makes it burst. In a recent paper, using the Kyle (1985) setup,

Sadzik and Woolnough (2021) show that a rational trader with information about

a persistent component of noise trader demand can act destabilizing by amplifying

noise traders’ impact on prices. Our outcomes add to this field by demonstrating that

rational traders can destabilize prices by trading on non-fundamental information in

a dynamic competitive economy.

The remainder of this chapter is structured as follows: as a benchmark for the

subsequent dynamic analysis, Section 3.1 analyzes the static setup with a public

signal about noise. Sections 3.2 and 3.3 turn to the dynamic OLG and LLA models,

respectively. Section 3.4 provides a brief comparison of the two dynamic model

variants.

3.1 The Static Model

To set the stage for the following dynamic analysis, this section develops a static

benchmark with a public signal about current noise trading. In line with the common

result in the literature, we show that non-fundamental information is unambiguously

conducive to price efficiency in a static setting.

3.1.1 Model Assumptions

Consider a financial market in which a riskless asset and a risky asset are traded.

The riskless asset (i.e., a bond) can be traded without any supply restrictions and

serves as a numeraire in the market. For the sake of simplicity, its safe return is

normalized to zero. The risky asset (i.e., a stock) is in zero net supply and trades at

market price P at date 1, which will be endogenized below. At date 2, the risky asset

pays off its fundamental value given by θ ∼ N(0, τ−1θ ). The parameter τθ measures

the prior precision of θ, which is the inverse of its variance.

There exists a continuum of rational investors indexed by the interval [0, 1] in

the financial market. Without loss of generality, agents’ initial wealth is normalized

to zero. The terminal wealth of agent i is given by πi = (θ − P )Di, where Di

represents agent i’s demand for the risky asset. A rational agent derives utility from
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consuming her final wealth. More specifically, each rational trader is characterized

by the utility function U(πi) = − exp(− δ−1πi). The parameter δ (> 0) measures

agents’ identical degree of risk tolerance, the inverse of which corresponds to their

degree of risk aversion. Moreover, there exist noise traders in the market, whose

demand for the risky asset is given by s ∼ N(0, τ−1s ). Since we do not explicitly

model a feedback effect from social sentiment to noise trader demand (see Semenova

and Winkler, 2021), we assume that the exogenous demand s already involves such

possible interactions.

Rational agent i is endowed with a noisy private signal about θ given by xi = θ+εi,

where εi ∼ i.i.d. N(0, τ−1ε ). Since the signal xi results from the sum of two normally

distributed random variables, it is normally distributed too (see Appendix B.1.2).

As the economy is assumed to be competitive, all rational traders are price takers

and, thus, observe the market price P . What distinguishes the model from standard

competitive noisy REE models in the spirit of GS 1980, Hellwig (1980), and Diamond

and Verrecchia (1981) is that rational traders additionally glean a public signal

related to noise trader demand, which stems from gauging social sentiment:

Y = s+ η, η ∼ N(0, τ−1η ).

Consequently, the normally distributed signal Y opens up the possibility of social

sentiment investing, where η stands for the common error term inherent in the signal.

The random variables θ, εi, s, and η are assumed to be jointly normal and pairwise

independent for all i ∈ [0, 1].

3.1.2 Equilibrium Determination

The equilibrium we derive in this subsection is a linear REE. Since the linear REE

constitutes the central equilibrium concept in this thesis, we provide an extensive

step-by-step derivation below. The price function that prevails in the linear REE is

obtained via a conjecture-and-verify approach. That is, we first conjecture a specific

function of P and verify later on that P is indeed determined by this function in

equilibrium. Assume that all rational agents conjecture the price to be linear in θ, s,

and Y :

P = a θ + b s− c Y, (3.1)

for constants a, b, and c. The coefficients in (3.1) are assumed to be common

knowledge across all rational traders. Since P is determined by sums of and differences

between linear transformations of independent normal random variables (recall that

Y can be decomposed in s and η), it is also normally distributed (see Appendix B.1

32



3 Social Sentiment Investing and Price Efficiency

for a formal proof). Let Ii = (xi, P, Y ) further denote the vector representing agent

i’s information set.

Definition (linear REE): Price function (3.1) and asset demands Di, i ∈ [0, 1],

are a linear REE if

(i) Di maximizes expected utility E [U(πi) | Ii] for all i ∈ [0, 1],

(ii) and the market for the risky asset clears, i.e.,
∫ 1

0
Di di+ s = 0.

We derive the linear REE by making use of a four-step procedure based on Brunner-

meier (2001, Chapter 3).

Step 1: updating an agent’s beliefs about θ. A rational agent uses her gathered

information to update her prior beliefs about the fundamental asset value θ. A central

feature of competitive noisy REE models is that traders also use the market price to

glean information about θ. Since the market price aggregates all private and public

information that investors dispose of, it serves rational traders as a (noisy) transmitter

of aggregate fundamental information. Recall that Ii = (P, xi, Y ). The first two

conditional moments of θ are then given by E (θ |P, xi, Y ) and Var (θ |P, xi, Y ).

Conditional on the normal random variables P , xi, and Y , the fundamental asset

value θ is still normally distributed. This conclusion can be drawn from the projection

theorem, which determines the distribution of normal random variables conditional

on other normal variables. A formal derivation of this theorem can be found in

Appendix B.2.1.

Since the signal Y is uncorrelated with fundamentals but correlated with the

non-fundamental components in price function (3.1), it can be combined with P to

form a single signal about θ. More precisely, the signals P and Y can be united as

follows:

P ∗ ≡ P + c Y

a
− 1

ρ
E (s |Y ) = θ +

1

ρ
[s− E (s |Y )] , (3.2)

where ρ ≡ a/b. As agents know Y , they can extract all of its direct influence on

P from function (3.1). Since Y is correlated with noise trader demand, rational

agents can further use it to extract noise from the price stemming from s. Formally,

the decomposition method used in (3.2) follows from the projection theorem (see

Appendix B.2.2 for a derivation).

Note that the variance of the noise term in P ∗ (i.e., Var (P ∗ | θ)) is given by

Var (P ∗ | θ) = Var

{
1

ρ
[s− E (s |Y )]

}

=
1

ρ2
Var

(
s− τη

τs + τη
Y

)
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=
1

ρ2
Var

[(
1− τη

τs + τη

)
s− τη

τs + τη
η

]

=
1

ρ2

[
τ 2s

(τs + τη)2
1

τs
+

τ 2η
(τs + τη)2

1

τη

]

=
1

ρ2(τs + τη)
, (3.3)

where E (s |Y ) = τηY/(τs+τη) also follows from the projection theorem (see Appendix

B.2). Equation (3.3) shows that the non-fundamental signal Y reduces the variance of

the noise term in P ∗ compared to the case where the signal is absent (i.e., τη = 0). A

rational agent uses her public non-fundamental information to extract noise inherent

in the market price, making the price a more precise signal about θ than in the

absence of Y .

As illustrated, each rational trader possesses two signals (i.e., xi and P ∗) to update

her prior beliefs about θ. Since the noise terms in xi and P ∗ are uncorrelated, the

first two conditional moments of θ are

E (θ |xi, P ∗) =
τε xi + ρ2(τs + τη)P

∗

τθ + τε + ρ2(τs + τη)
,

Var (θ |xi, P ∗) =
1

τθ + τε + ρ2(τs + τη)
.

These formulas can also be deduced from the projection theorem. A derivation can

be found in Appendix B.2.2. An agent’s updated expectation about the unknown

fundamental asset value is a weighted sum of all signals that belong to her information

set (as the prior mean of θ is normalized to zero, an agent does not put any explicit

weight on it). The weights are given by the precision of a particular signal in relation

to the sum of the precisions of all signals and the prior precision of the fundamental

asset value. As the precision of the private signal xi or the price signal P ∗ rises, a

trader puts more weight on this signal relative to the other one when forming her

updated expectations about θ.

The conditional variance of θ is determined by the inverse of the sum of its prior

precision and the precisions of the observed signals. The higher the sum of the three

precisions, the lower the residual uncertainty about θ an agent faces.

Step 2: determining the demand for the risky asset. A rational trader chooses

her demand for the risky asset Di by maximizing conditional expected utility. Since

an agent’s final wealth πi = (θ − P )Di results from the difference between linear

transformations of normal random variables (taking Di as given), it is also normally

distributed. Conditional on an agent’s information set Ii, final wealth is still normally
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distributed. Thus, conditional expected utility becomes

E
[
−exp

(
−πi
δ

) ∣∣Ii] = − exp

{
−1

δ

[
E (πi | Ii)−

1

2δ
Var (πi | Ii)

]}
. (3.4)

The proof can be found in Appendix B.3.1. The conditional moments of πi can be

further developed as follows:

E (πi | Ii) = [E (θ | Ii)− P ]Di, (3.5)

Var (πi | Ii) = Var (θ | Ii)D2
i . (3.6)

Plugging (3.5) and (3.6) into (3.4) delivers

E
[
−exp

(
−πi
δ

) ∣∣Ii] = − exp

(
−1

δ

{
[E (θ | Ii)− P ]Di −

1

2δ
Var (θ | Ii)D2

i

})
. (3.7)

Note that the term in curly brackets in (3.7) stands for the conditional certainty

equivalent of an agent’s risky final wealth, CEIi say. It is well known that an

agent assigns to the certainty equivalent the same utility level as she expects to

achieve through her risky final wealth. Conditional on her information set, this yields

U(CEIi) = E [U(πi) | Ii]. Recalling an agent’s exponential utility function, we obtain

− exp

(
−CEIi

δ

)
= E

[
−exp

(
−πi
δ

) ∣∣Ii]
= − exp

(
−1

δ

{
[E (θ | Ii)− P ]Di −

1

2δ
Var (θ | Ii)D2

i

})
.

Consequently, as indicated above, the conditional certainty equivalent is

CEIi = [E (θ | Ii)− P ]Di −
1

2δ
Var (θ | Ii)D2

i . (3.8)

Since

∂

∂Di

E
[
−exp

(
−πi
δ

) ∣∣Ii] ∝ ∂ CEIi
∂Di

,

maximizing an agent’s conditional expected utility is equivalent to maximizing the

respective conditional certainty equivalent CEIi . The first-order condition of (3.8) in

Di is

∂ CEIi
∂Di

= E (θ | Ii)− P −
1

δ
Var (θ | Ii)Di = 0. (3.9)
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Rearranging terms in (3.9) delivers an agent’s optimal demand for the risky asset:

Di = δ
E (θ | Ii)− P

Var (θ | Ii)
. (3.10)

Inspecting (3.9) shows that the condition for a maximum is met (i.e., ∂2CEIi/∂D
2
i <

0). According to (3.10), an agent takes a long (resp., short) position in the risky asset

if her updated expectations about θ exceed (resp., are inferior to) the market price.

As agents are assumed to be risk-averse, demand is constrained by the conditional

variance of fundamentals. A higher (resp., lower) residual uncertainty about θ leads

to lower (resp., higher) demand in absolute terms. Lower (resp., higher) risk tolerance

indicated by a smaller (resp., larger) δ exerts the same influence.

Since E (θ | Ii) is a linear function of xi and P ∗ and Var (θ | Ii) is non-random, an

agent’s demand is linear in xi, P
∗, and P . The exact demand for the risky asset

depends on the concrete realisations of the random variables. By (3.2), P ∗ is a linear

function of θ, s, and Y . Thus, agent i’s demand can be written as a linear function

of xi, θ, s, Y , and P :

Di = δ
E (θ | Ii)− P

Var (θ | Ii)

= δτε xi + δρ2(τs + τη)P
∗ − δ[τθ + τε + ρ2(τs + τη)]P

= δτε xi + δρ2(τs + τη)

[
θ +

1

ρ

(
s− τη

τs + τη
Y

)]
− δ[τθ + τε + ρ2(τs + τη)]P

= δτε xi + δρ2(τs + τη)θ + δρ(τs + τη)s− δρτηY − δ[τθ + τε + ρ2(τs + τη)]P.

(3.11)

By (3.11), a rational agent trades against the public non-fundamental signal Y

(i.e., ∂Di/∂Y < 0). Recall that a rational trader uses Y to extract noise from the

market price (see (3.2)). Hence, holding the market price constant, a higher value

of Y predicts lower fundamentals by indicating stronger noise trading. This, in

return, makes the agent reduce her demand. Inversely, a decline in the value of Y

implies weaker noise trading and, assuming an unchanged price, higher fundamentals.

Consequently, the agent raises her demand. In other words, a rational trader follows

a contrarian strategy with regard to non-fundamental information.

Step 3: imposing market clearing. Marketing clearing implies that the aggregated

demand for the risky asset coming from rational agents and noise traders equals the

asset’s zero net supply. This endogenously determines the market price. Formally,∫ 1

0

Di di+ s = 0. (3.12)
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Using (3.11), rational agents’ aggregated demand becomes∫ 1

0

Di di =

∫ 1

0

{δτε xi + δρ2(τs + τη)θ + δρ(τs + τη)s− δρτηY

− δ[τθ + τε + ρ2(τs + τη)]P}di

= δτε

∫ 1

0

xi di+ δρ2(τs + τη)θ + δρ(τs + τη)s− δρτηY

− δ[τθ + τε + ρ2(τs + τη)]P.

(3.13)

The integral in (3.13) can be solved as follows:∫ 1

0

xi di =

∫ 1

0

(θ + εi) di = θ +

∫ 1

0

εi di. (3.14)

By the strong law of large numbers, the value of the integral converges almost surely

to the mean of the random variable εi (see Vives, 2008, Technical Appendix):2∫ 1

0

εi di → E (εi) = 0. (3.15)

By (3.14) and (3.15), (3.13) becomes∫ 1

0

Di di = [δτε + δρ2(τs + τη)]θ + δρ(τs + τη)s− δρτηY − δ[τθ + τε + ρ2(τs + τη)]P.

(3.16)

Plugging (3.16) into (3.12) and solving for P gives

[δτε + δρ2(τs + τη)]θ + δρ(τs + τη)s− δρτηY − δ[τθ + τε + ρ2(τs + τη)]P + s = 0

⇔ P =
τε + ρ2(τs + τη)

τθ + τε + ρ2(τs + τη)
θ +

1 + δρ(τs + τη)

δ[τθ + τε + ρ2(τs + τη)]
s− ρτη

τθ + τε + ρ2(τs + τη)
Y.

(3.17)

According to (3.17), the market price can indeed be represented by a linear function

of θ, s, and Y , as conjectured in (3.1).

Step 4: invoking rational expectations. One of the central characteristics of an

REE is that the coefficients in the agents’ conjectured price function coincide with

those in the market-clearing price function. This makes agents’ expectations rational.

Comparing the coefficients in (3.1) with those in (3.17) immediately yields

a =
τε + ρ2(τs + τη)

τθ + τε + ρ2(τs + τη)
,
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b =
1 + δρ(τs + τη)

δ[τθ + τε + ρ2(τs + τη)]
,

c =
ρτη

τθ + τε + ρ2(τs + τη)
.

Recall that ρ ≡ a/b. By (3.17), we obtain

ρ =
δτε + δρ2(τs + τη)

1 + δρ(τs + τη)

⇔ ρ[1 + δρ(τs + τη)] = δτε + δρ2(τs + τη)

⇔ ρ = δτε.

Proposition 3.1. There exists a unique linear REE, in which

a =
τε + ρ2(τs + τη)

τθ + τε + ρ2(τs + τη)
,

b =
1 + δρ(τs + τη)

δ[τθ + τε + ρ2(τs + τη)]
,

c =
ρ τη

τθ + τε + ρ2(τs + τη)
,

ρ = δτε.

The unique linear REE provides a simple closed-form solution for the coefficients a,

b, and c. Furthermore, from (3.11), we can conclude that∫ 1

0

∂Di

∂xi
di = δτε = ρ,

which implies that ρ indicates how aggressively agents trade on their private fun-

damental signals (i.e., ρ measures rational traders’ aggregate trading intensity on

private fundamental information). This result can also be obtained in a different way.

By (3.16), agents’ aggregate demand is a linear function of θ, s, Y , and P . Thus, in

general form,

D̄ ≡
∫ 1

0

Di di =
∂D̄

∂θ
θ +

∂D̄

∂s
s−

∣∣∣∣∂D̄∂Y
∣∣∣∣ Y − ∣∣∣∣∂D̄∂P

∣∣∣∣ P.
Imposing market clearing and solving for P delivers

∂D̄

∂θ
θ +

∂D̄

∂s
s−

∣∣∣∣∂D̄∂Y
∣∣∣∣ Y − ∣∣∣∣∂D̄∂P

∣∣∣∣ P + s = 0
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⇔ P =
∂D̄/∂θ

|∂D̄/∂P |︸ ︷︷ ︸
a

θ +
1 + ∂D̄/∂s

|∂D̄/∂P |︸ ︷︷ ︸
b

s− |∂D̄/∂Y |
|∂D̄/∂P |︸ ︷︷ ︸

c

Y. (3.18)

Hence,

ρ ≡ a

b
=

∂D̄/∂θ

1 + ∂D̄/∂s
.

By (3.11) and (3.16), we can express the two trading intensities ∂D̄/∂θ and ∂D̄/∂s

as

∂D̄

∂θ
=

∫ 1

0

∂Di

∂xi
di+

∫ 1

0

∂Di

∂θ
di =

∫ 1

0

∂Di

∂xi
di+ δρ2(τs + τη),

∂D̄

∂s
=

∫ 1

0

∂Di

∂s
di = δρ(τs + τη).

This gives

ρ =

∫ 1

0
(∂Di/∂xi) di+ δρ2(τs + τη)

1 + δρ(τs + τη)
,

which, after solving for ρ, also shows that ρ =
∫ 1

0
(∂Di/∂xi) di = δτε.

3.1.3 Price Efficiency

Having derived the linear REE, we turn to our main object of interest: price

efficiency. Price efficiency indicates how accurately the market price reflects the

asset’s underlying fundamental value. Following Hayek’s (1945) early argument that

prices aggregate the dispersed private information of market participants, high price

efficiency is often considered to be desirable. In this view, an accurate market price

provides agents inside and also outside of financial markets with valuable information

that they can use to make more informed investment or policy decisions (see, e.g.,

Fama and Miller, 1972, Chapter 8). Consequently, higher price efficiency in financial

markets is assumed to translate into higher real efficiency in the economy. Formally,

we denote

price efficiency ≡ 1

Var (θ |P )
,

which, according to Goldstein and Yang (2017, Subsubsection 2.3.2), represents the

common definition of price efficiency in the literature. A rise in Var−1(θ |P ) means

that the market price becomes a more precise signal about the fundamental asset

value, corresponding with higher price efficiency. By that, high price efficiency is
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also closely related to the prices-are-right formulation of the EMH (see Section 2.1).

Remarkably, a recent strand of the theoretical literature shows that the nexus

between price efficiency and real efficiency is not as close as originally supposed (for a

survey of the literature see Bond et al., 2012, and Goldstein and Yang, 2017, Section

4). The relevant contributions explicitly model real decision-makers, such as firm

managers, capital providers, and governments, that rely on information conveyed by

asset prices. By endogenizing the real decision-makers’ investment or policy decisions,

these models show that higher price efficiency does not per se translate into higher

real efficiency. Nevertheless, since our model focuses on a financial market only, we

consider price efficiency to be the relevant efficiency measure (as, e.g., in Gao, 2008).

Additionally, one can motivate our analysis of price efficiency by adding a set of

measure zero of rational investors to the model with no signal except the asset price

(as in reality it is unlikely that each trader possesses valuable information about the

sentiment contained in social media platforms). Then, higher price efficiency allows

these traders to make more informed investment decisions. By continuity, our results

on price efficiency carry over to the model variant that encompasses a positive but

sufficiently small mass of such investors.

Note that observing P is informationally equivalent to observing

P ∗∗ ≡ P

a
= θ +

1

ρ
s− c

a
Y. (3.19)

The variance of the noise term in (3.19) is given by

Var (P ∗∗ | θ) = Var

(
1

ρ
s− c

a
Y

)

= Var

[(
1

ρ
− c

a

)
s

]
+ Var

(
− c
a
η
)

=

(
1

ρ
− c

a

)2
1

τs
+
( c
a

)2 1

τη
.

Using the bivariate case of the projection theorem, we eventually obtain our measure

of price efficiency:

Var (θ |P ∗∗) =
1

τθ + Var−1(P ∗∗ | θ)

⇔ Var−1(θ |P ∗∗) = τθ +

[(
1

ρ
− c

a

)2
1

τs
+
( c
a

)2 1

τη

]−1
. (3.20)

The first term in square brackets in (3.20) measures the impact of noise trader
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demand on price efficiency. We call it the “CON (COntemporaneous Noise trading)”

effect in what follows. The impact of demand volatility (i.e., 1/τs) is attenuated when

rational agents trade more aggressively on private fundamental information (i.e., ρ

rises) or when the ratio c/a increases. According to (3.18), c/a stands for rational

agents’ trading intensity against the public non-fundamental signal Y relative to

their trading intensity on fundamentals θ. The higher c/a, the more aggressively

rational traders trade against the non-fundamental signal (relative to trading on

fundamentals), mitigating the impact of noise trader demand.

The second term in square brackets in (3.20) captures the impact of the common

error component η, which is inherent in agents’ public non-fundamental information,

on price efficiency. We label this term as the “COMESCON (COMmon Error in

the Signal about COntemporaneous Noise trading)” effect. More aggressive trading

against public non-fundamental information plays a double-edged role with regard to

price efficiency. For one thing, by the CON effect, the impact of noise trader demand

is alleviated, which boosts price efficiency. For another, by the COMESCON effect,

the impact of the common error term in the signal Y is amplified. This harms price

efficiency. Thus, at first glance, the ensuing influence of Y on price efficiency seems

ambiguous.

Recalling the results contained in Proposition 3.1, further computations yield

Var−1(θ |P ∗∗) = τθ +

{[
1

ρ
− δτη

1 + δρ(τs + τη)

]2
1

τs
+

[
δτη

1 + δρ(τs + τη)

]2
1

τη

}−1

= τθ +

{
(1 + δρτs)

2

ρ2[1 + δρ(τs + τη)]2τs
+

δ2τη
[1 + δρ(τs + τη)]2

}−1

= τθ +

{
1 + δ2ρ2τ 2s + 2δρτs + δ2ρ2τητs

ρ2[1 + δρ(τs + τη)]2τs

}−1

= τθ +
A2ρ2τs

1 + δρτs(A + 1)
, (3.21)

where A ≡ 1 + δρ(τs + τη). Comparative-statics analysis of (3.21) with respect to τη

gives

∂
[
Var−1(θ |P ∗∗)

]
∂ τη

=
2Aδρ3τs[1 + δρτs(A + 1)]− A2δ2ρτ 2s

[1 + δρτs(A + 1)]2

=
Aδρ3τs[2 + δρτs(A + 2)]

[1 + δρτs(A + 1)]2
> 0. (3.22)

Equation (3.22) unequivocally demonstrates that public non-fundamental information

is conducive to price efficiency in a static setup. Thus, even though the common
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error term η injects an additional source of noise into the price, the public signal

Y raises price efficiency by counteracting noise trader demand. This result adds to

the findings of Ganguli and Yang (2009), Manzano and Vives (2011), and Zeng et al.

(2018).

3.2 Dynamic Setup - Overlapping Generations

The following sections leave the common static setup and incorporate public inform-

ation about contemporaneous and future noise trader demand into the canonical

dynamic REE model in the spirit of Singleton (1986) and Brown and Jennings (1989).

In this section, we analyze the model variant with OLG of investors, before we turn

to the version with LLA in Section 3.3. The dynamic models show that the precision

of a non-fundamental signal loses the unequivocally positive role for price efficiency

it plays in the static version. In particular, we show that more information about

future noise trader demand can move the current price away from fundamentals,

implying a potentially negative effect of social sentiment investing on price efficiency.

In the OLG setup, the impact of public information about future noise trader

demand is two-edged. For one thing, the public information injects an additional

source of noise into the current price, which reduces its efficiency. For another, public

information about date-2 noise trading drives the date-2 price toward fundamentals,

allowing date-1 agents to trade more aggressively on private fundamental information.

This boosts date-1 price efficiency. Due to the latter effect, public information about

future noise trader demand is less likely to harm price efficiency in the OLG setup

than in the LLA model.

In the absence of information about current noise trader demand, price efficiency

in the OLG variant is higher with a perfectly precise signal about future noise

trader demand than with no signal at all. Nevertheless, public information about

future noise trader demand can reduce price efficiency in this case if it is sufficiently

imprecise. In the presence of information about contemporaneous noise trader

demand, price efficiency can be lower with a perfectly precise signal about future

noise trader demand than with no signal. More strikingly, the relationship between

signal precision and price efficiency can be even monotonically decreasing. Thus, on

the basis of the results of the OLG model, public information about future noise

trader demand can indeed harm price efficiency. This in turn indicates a potentially

negative effect of social sentiment investing on price efficiency.
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3.2.1 Model Assumptions

The financial market consists of a riskless asset and a risky asset that show almost

the same characteristics as in the static version (see Subsection 3.1.1). The only

difference is that the risky asset now pays off its random fundamental value θ at

date 3. This turns date 2 into an additional trading date. The risky asset is traded

at price P1 at date 1 and at price P2 at date 2. At each of the two trading dates, a

continuum of rational traders indexed by the interval [0, 1] is born. Each generation

is assumed to live for one period only. The first generation enters the market at date

1 and unwinds its position at date 2, thereby exhibiting a short trading horizon. The

second generation enters the market at date 2 and lives till date 3.

The final wealth of agent i belonging to the first generation is π1i = (P2 − P1)D1i.

D1i stands for agent i’s demand for the risky asset at date 1. Analogously, the final

wealth of a second-generation rational trader is given by π2i = (θ − P2)D2i, where

D2i represents agent i’s demand for the risky asset at date 2. Each rational trader

is characterized by the utility function U(πti) = − exp(− δ−1πti), for t = 1, 2. The

parameter δ (> 0) measures agents’ identical degree of risk tolerance.

Noise trader demand is exogenous and given by s1 ∼ N(0, τ−1s1
) at date 1 and by

s2 ∼ N(0, τ−1s2
) at date 2. As, e.g., in Allen et al. (2006), Gao (2008), Farboodi and

Veldkamp (2020), and Farboodi et al. (2021), we model noise trading as transient.

That is, s1 and s2 are assumed to be independent of each other.3

Each rational investor is endowed with a noisy private fundamental signal xti =

θ + εti, where εti ∼ i.i.d. N(0, τ−1ε ), for t = 1, 2. Rational agents are able to observe

current and past prices. The first generation observes P1, the second generation

knows P1 and P2. Additionally, all rational traders glean public signals related to

date-1 and date-2 noise trader demand:

Yt = st + ηt, t = 1, 2,

with ηt ∼ N(0, τ−1ηt ). By gauging social sentiment at date 1, rational traders gain

valuable information about current and also future noise trading. Consequently,

social sentiment allows rational traders to form an investment strategy based on

information about how noise traders will act in the near future. This assumption

is motivated by and consistent with the strong predictive power of social sentiment

for future prices and stock returns (see the relevant literature cited in Section 2.1).

Thus, agent i’s information set at date 1 is I1i = (x1i, P1, Y1, Y2). At date 2, we have

I2i = (x2i, P1, P2, Y1, Y2). The random variables θ, εti, st, and ηt are assumed to be

jointly normal and pairwise independent for t = 1, 2 and for all i ∈ [0, 1].
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3.2.2 Equilibrium Determination

Analogous to the static version, assume that rational agents conjecture the following

linear price functions:

P1 = a1θ + b1s1 − c11Y1 + c12Y2, (3.23)

P2 = a2θ + b2s2 − c21Y1 − c22Y2 + d2P1, (3.24)

for constants at, bt, ct1, ct2 (t = 1, 2), and d2. Since P1 and P2 are determined by

sums of and differences between linear transformations of normal random variables,

they are (jointly) normally distributed.

Definition (linear dynamic REE with OLG of investors): Price functions

(3.23) and (3.24) and asset demands Dti (t = 1, 2, i ∈ [0, 1]) are a linear dynamic

REE with OLG of investors if

(i) Dti maximizes date-t expected utility E[U(πti) | Iti] (t = 1, 2) for all i ∈ [0, 1],

(ii) and the market for the risky asset clears at both trading dates, i.e.,∫ 1

0
Dti di+ st = 0 (t = 1, 2).

The utility-maximizing demand functions in the OLG economy are

D2i = δ
E(θ | I2i)− P2

Var(θ | I2i)
, (3.25)

D1i = δ
E(P2 | I1i)− P1

Var(P2 | I1i)
. (3.26)

Since a date-2 agent’s utility and wealth functions follow the same form as in the

static model (cf. Subsections 3.1.1 and 3.2.1), maximizing date-2 expected utility

in the OLG setup works analogously to maximizing expected utility in the static

benchmark. This immediately yields date-2 demand function (3.25). At date 1,

investors are concerned with predicting the date-2 price rather than fundamentals,

as they will unwind their position at the beginning of date 2. Given that P2 and P1

are jointly normally distributed, a date-1 investor’s final wealth π1i = (P2 − P1)D1i

follows a normal distribution too. Thus, maximizing date-1 expected utility again

works analogously to maximizing expected utility in the static model, which gives

date-1 demand function (3.26).

According to (3.25), a rational trader goes long (resp., short) in the risky asset at

date 2 if her expectations about the fundamental asset value exceed (resp., are inferior

to) the date-2 price. Her demand is constrained by the residual uncertainty about

fundamentals, represented by the conditional variance of θ. Analogously, a date-1

investor takes a long (resp., short) position whenever her expectations about the
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date-2 price exceed (resp., are inferior to) the date-1 price. The residual uncertainty

about P2 limits her demand.

The general form of asset prices. Before deriving the specific price functions in

the linear dynamic REE, we propose a general determination of P1 and P2, which is

similar to that of Cespa and Vives (2015), to clearly identify what factors influence

asset prices under short-term trading. Using the date-2 market-clearing condition,

P2 can be expressed in general form as∫ 1

0

D2i di+ s2 = 0

⇔
∫ 1

0

δ[E(θ | I2i)− P2]

Var(θ | I2i)
di+ s2 = 0

⇔ P2 = Ē2(θ) +
Var(θ | I2i)

δ
s2, (3.27)

with Ē2(θ) ≡
∫ 1

0
E(θ | I2i) di. According to (3.27), the date-2 price is a function

of date-2 investors’ average expectations about the fundamental asset value and

date-2 noise trader demand, whose influence is adjusted by rational agents’ residual

uncertainty about fundamentals. Since agents are assumed to be risk-averse, the

residual uncertainty about θ prevents them from fully absorbing noise trader demand.

As long as the fundamental asset value entails risk, noise traders influence the date-2

price in equilibrium. By imposing market clearing at date 1 and recalling (3.27), P1

can be written as∫ 1

0

D1i di+ s1 = 0

⇔
∫ 1

0

δ[E(P2 | I1i)− P1]

Var(P2 | I1i)
di+ s1 = 0

⇔ P1 = Ē1(P2) +
Var(P2 | I1i)

δ
s1

⇔ P1 = Ē1

[
Ē2(θ) +

Var(θ | I2i)
δ

s2

]
+

Var (P2 | I1i)
δ

s1

⇔ P1 = Ē1

[
Ē2(θ)

]︸ ︷︷ ︸
Keynesian beauty

contest

+
Var(θ | I2i)

δ
Ē1 (s2)︸ ︷︷ ︸
forecasting

noise

+
Var(P2 | I1i)

δ
s1, (3.28)

with Ē1(P2) ≡
∫ 1

0
E(P2 | I1i) di. By (3.28), the date-1 price is influenced by date-1

investors’ average expectations about the date-2 price and date-1 noise trader demand.

As P2 is a function of date-2 investors’ average expectations about the fundamental
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asset value, forecasting the date-2 price entails forecasting date-2 investors’ average

expectations about fundamentals. This fact describes the KBC in financial markets,

as date-1 agents need to form higher-order expectations about fundamentals when

predicting P2. Allen et al. (2006) show that the law of iterated expectations does not

hold for average expectations and that prices characterized by a KBC overweight pub-

lic information (and underweight average private fundamental information) relative

to investors’ average expectations about fundamentals. Since date-1 agents know that

date-2 agents will observe the same public information as they do, public information

is extraordinarily helpful for predicting date-2 traders’ average expectations about

fundamentals. As a consequence, date-1 traders’ average expectations about date-2

traders’ average expectations about fundamentals put excessive weight on public

information compared to date-1 traders’ average expectations about fundamentals.

This makes the date-1 price put excessive weight on public information too, further

implying that the date-1 price is systematically farther away from fundamentals than

date-1 investors’ average expectations about fundamentals.

However, according to (3.28), the date-1 price is also influenced by date-1 investors’

average expectations about date-2 noise trader demand, as long as date-2 rational

traders face uncertainty about the asset’s fundamentals (i.e., Var(θ | I2i) 6= 0). In

Allen et al. (2006), noise trading is transient with mean zero (as in our model) and

date-1 rational traders do not glean any signal related to s2. Thus, in the setup of

Allen et al. (2006), average expectations about date-2 noise trader demand do not

influence P1.

Cespa and Vives (2015) show that Allen et al.’s (2006) seminal result does not

have to hold true if noise trading is correlated across periods. In this case, the

date-1 price is also determined by investors’ average expectations about future

noise trading. In Cespa and Vives (2015), date-1 rational traders infer information

about contemporaneous noise trading from the date-1 price that can be used to

predict future noise trading. This additional usage of information contained in the

date-1 price can reverse the outcome of Allen et al. (2006), and the date-1 price in

equilibrium may underweight public information, which moves it systematically closer

to fundamentals than date-1 investors’ average expectations about fundamentals.

In contrast to Allen et al. (2006) and Cespa and Vives (2015), we focus on how well

the date-1 price reflects fundamentals as a whole, and not in comparison to investors’

average expectations about fundamentals. This means that the effect of any noise on

the price needs to be explicitly taken into account. In our setup with transient noise

trading, as we will see below, date-1 rational traders’ average expectations about s2

are influenced by public information about future noise trading only (and not by

information contained in the date-1 price). As opposed to Cespa and Vives (2015),

investors’ average expectations about s2 add a component to the date-1 price that
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represents pure noise. This is the main driver of the results of our model, which will

be presented in Subsection 3.2.3.

The specific form of asset prices. Having outlined the general form of asset prices,

we now derive the specific expressions of the coefficients in price functions (3.23)

and (3.24). Recall that I1i = (x1i, P1, Y1, Y2) and I2i = (x2i, P1, P2, Y1, Y2). Thus, all

rational agents of both generations can disentangle the information contained in the

date-1 price, given by (3.23), as follows:

P ∗1 ≡
P1 + c11Y1 − c12Y2

a1
− 1

ρ1
E(s1 |Y1) = θ +

1

ρ1
[s1 − E(s1 |Y1)]

= θ +
1

ρ1

(
s1 −

τη1
τs1 + τη1

Y1

)
,

with ρ1 ≡ a1/b1. The way the signal Y1 is used to extract noise inherent in P1 follows

the method that has already been applied in equation (3.2) of the static setup (see

Appendix B.2.2 for a formal derivation). Note that rational traders cannot make

use of Y2 to extract noise from the market price induced by s1, because Y2 and

s1 are uncorrelated. Thus, P ∗1 is a signal about θ with precision ρ21(τs1 + τη1) (i.e.,

Var−1(P ∗1 | θ) = ρ21(τs1 + τη1)). Since the computations to obtain Var−1(P ∗1 | θ) are

carried out analogously to those of the static version (see Subsection 3.1.2), they

are omitted at this point. Moreover, we see that P1 does not provide any additional

information about future noise trader demand s2 that goes beyond the information

conveyed by the public signal Y2. This justifies why agents do not rely on information

contained in the date-1 price when predicting future noise trading.

Using all available information, the date-2 market price, given in (3.24), turns into

the following signal about fundamentals for the date-2 investors:

P ∗2 ≡
P2 + c21Y1 + c22Y2 − d2P1

a2
− 1

ρ2
E(s2 |Y2) = θ +

1

ρ2
[s2 − E(s2 |Y2)]

= θ +
1

ρ2

(
s2 −

τη2
τs2 + τη2

Y2

)
,

with ρ2 ≡ a2/b2. At date 2, the non-fundamental signal Y2 is indeed correlated with

the noise trader shock that affects the market price. Hence, rational agents use Y2 to

extract noise from the date-2 price injected by s2. Since date-2 agents are concerned

with predicting θ only, they exclusively use Y2 to counteract noise coming from s2.

Thus, P ∗2 is a signal about θ with precision ρ22(τs2 + τη2).

Using P ∗2 , P ∗1 , and x2i, we can determine agent i’s updated beliefs about fun-

damentals at date 2, which are plugged into demand function (3.25). Then, we

impose market clearing at date 2 and solve for the equilibrium function of P2, whose
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coefficients are matched with those in (3.24). By updating date-1 beliefs about fun-

damentals using P ∗1 and x1i and about future noise trading using Y2, we obtain agent

i’s conditional beliefs about the date-2 price function (3.24), which are substituted

into demand function (3.26). Imposing market clearing at date 1 and solving for P1

delivers the date-1 price function in equilibrium, whose coefficients are matched with

those in (3.23). This yields:

Proposition 3.2. There exists a unique linear dynamic REE with OLG of investors,

in which

a1 =
ρ21(τs1 + τη1)(∆ + τε) + τε [τε + ρ22(τs2 + τη2)]

∆ [τθ + τε + ρ21(τs1 + τη1)]
,

b1 =
a1
ρ1
,

c11 =
(∆ + τε)ρ1τη1

∆[τθ + τε + ρ21(τs1 + τη1)]
,

c12 =
τη2

δ∆(τs2 + τη2)
,

a2 =
τε + ρ22(τs2 + τη2)

∆
,

b2 =
1 + δρ2(τs2 + τη2)

δ∆
,

c21 =
−ρ21(τs1 + τη1)

c11
a1

+ ρ1τη1

∆
,

c22 =
ρ2τη2 + ρ21(τs1 + τη1)

c12
a1

∆
,

d2 =
ρ21(τs1 + τη1)

a1∆
,

∆ ≡ τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2),

ρ1 ≡
a1
b1

=
δ3τ 2ε (τs2 + τη2)

1 + δ2τε(τs2 + τη2)
,

ρ2 ≡
a2
b2

= δτε.

The proof can be found in Appendix A. Analogous to the static model of Section

3.1, the linear dynamic REE with OLG of investors is unique and given in closed

form. We see that P1 reacts positively to changes in the non-fundamental signal Y2

(i.e., c12 > 0). This is due to the fact that date-1 agents raise their demand if they
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observe a higher Y2. A higher Y2 indicates higher noise trader demand at date 2 and,

thus, a higher price at date 2. Hence, rational traders front-run the higher date-2

noise trader demand by purchasing more shares of the risky asset at date 1.

In a static context, agents are exclusively concerned with predicting the risky

fundamental asset value. As a consequence, any non-fundamental information is

used to extract noise inherent in the market price, and rational traders follow a

contrarian strategy with respect to non-fundamental information (see (3.11)). A

higher non-fundamental signal ceteris paribus indicates more noise in the price and,

thus, a lower fundamental asset value. This leads agents to demand less shares of the

risky asset. In a static setup, it is only rational to trade against noise. In a dynamic

setup, by contrast, agents also have to predict the next trading date’s noise trader

demand. For them, it can be completely rational to trade on noise.

As date-2 agents are concerned with predicting the fundamental asset value only,

they clearly trade against noise coming from s2. This leads to a negative impact of

Y2 on P2 (i.e., c22 > 0, which, by (3.24), implies a negative correlation between Y2

and P2). The non-fundamental signal Y2 enables date-2 rational traders to extract

noise inherent in P2 and get a more precise signal about θ. Thus, date-1 and date-2

rational traders use the public signal Y2 in diametrically opposite ways.

Additionally, both generations of rational investors trade against the public signal

Y1. Similar to the static context, all rational agents use Y1 to extract noise from

P1 and predict fundamentals more accurately. It is rational for both generations to

trade against Y1. This leads to a negative effect of Y1 on P1 and P2.

Furthermore, from E(θ | I1i), given in Appendix A, and P ∗1 , we can compute date-1

rational investors’ average expectations about fundamentals:

Ē1(θ) =

τε
∫ 1

0
x1i di+ ρ21(τs1 + τη1)

[
θ +

1

ρ1

(
s1 −

τη1
τs1 + τη1

Y1

)]
τθ + τε + ρ21(τs1 + τη1)

=
[τε + ρ21(τs1 + τη1)]θ + ρ1(τs1 + τη1)s1 − ρ1τη1Y1

τθ + τε + ρ21(τs1 + τη1)
,

where
∫ 1

0
x1i di = θ follows from the strong law of large numbers. Recall that noise

trading is transient and date-1 rational agents’ average expectations about s2 are a

function of the public signal about future noise trading only (see also the proof of

Proposition 3.2 in Appendix A). Thus, in line with Allen et al. (2006), the date-1

price puts excessive weight on public information Y1 compared to investors’ average

expectations about fundamentals:

c11 =
(∆ + τε)ρ1τη1

∆[τθ + τε + ρ21(τs1 + τη1)]
> weight to Y1 in Ē1(θ) =

ρ1τη1
τθ + τε + ρ21(τs1 + τη1)

.
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As opposed to Y1, date-1 and date-2 agents use the public signal Y2 in different ways.

At date 2, Y2 helps investors to extract noise from the date-2 price and forecast

fundamentals more precisely. At date 1, by contrast, traders use Y2 to predict

future noise, and not fundamentals. As a consequence, date-1 investors’ average

expectations about fundamentals are independent of the public signal Y2. This

leads to the conclusion that Allen et al.’s (2006) result cannot be applied to public

information about future noise trading in our setup.

Furthermore, the coefficients of the price functions in the linear REE are influenced

by ρ1 and ρ2, which measure, analogous to the static model, rational agents’ trading

intensity on private fundamental information at dates 1 and 2. It can be clearly seen

that ρ1 < ρ2, i.e., in an OLG economy with transient noise trading, date-1 agents

underweight private fundamental information relative to date-2 agents (see also Allen

et al., 2006). Along the proof of Proposition 3.2 in Appendix A, we show that an

agent’s demand function at dates 1 and 2 can be expressed as

D2i = δτε x2i + δρ21(τs1 + τη1)P
∗
1 + δρ22(τs2 + τη2)P

∗
2 −

δ

Var(θ | I2i)
P2, (3.29)

D1i =
a2Var(θ | I1i)
Var(P2 | I1i)

[
δτε x1i + δρ21(τs1 + τη1)P

∗
1

]
+

δ

Var(P2 | I1i)
[b2 E(s2 |Y2)− c21Y1 − c22Y2 + d2P1]−

δ

Var(P2 | I1i)
P1.

(3.30)

At date 2, an agent possesses three signals to predict fundamentals (i.e., x2i, P
∗
1 ,

P ∗2 ). The more precise a signal, the more aggressively the agent trades on it (see

(3.29)). The first summand of a date-1 agent’s demand function in (3.30) comprises

the two signals used to predict fundamentals at date 1 (i.e., x1i and P ∗1 ). Recalling

the expression of ρ1 from Proposition 3.2 and that ρ1 =
∫ 1

0
(∂D1i/∂x1i) di, we can

conclude that

a2Var(θ | I1i)
Var(P2 | I1i)

=
δ2τε(τs2 + τη2)

1 + δ2τε(τs2 + τη2)
< 1.

Hence, due to her short trading horizon, a date-1 agent trades less aggressively

than a date-2 agent not only on private fundamental information, but also on the

price signal P ∗1 (which contains Y1). The second summand in (3.30) represents an

agent’s prediction regarding the other components that shape the date-2 price apart

from the fundamental asset value. The first term in square brackets stands for a

date-1 agent’s incentive to forecast future noise trader demand and front-run it. The

other three terms are linked to forecasting date-2 agents’ average expectations about

fundamentals, as date-2 agents use the signals Y1, Y2, and P1 to predict fundamentals.
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Furthermore, note that

∂ρ1
∂τη2

=
δ3τ 2ε

[1 + δ2τε(τs2 + τη2)]
2
> 0.

Thus, a more precise public signal about date-2 noise trader demand s2 makes date-1

agents trade more aggressively on private fundamental information. The reason for

this is the following: as Y2 becomes more precise, date-2 rational agents trade more

aggressively against the signal and offset more of the date-2 noise trader demand.

This drives the date-2 price toward fundamentals. Put differently, as Y2 gains in

precision, forecasting P2 comes closer to forecasting θ only. This alleviates the

impact of date-1 rational agents’ short trading horizon and makes them trade more

aggressively on private fundamental information.

Table 3.1: Coefficients of price functions as τη2 →∞

ρ1 δτε

ρ2 δτε

a1
τε + δ2τ 2ε (τs1 + τη1)

τθ + τε + δ2τ 2ε (τs1 + τη1)

b1
1 + δ2τε(τs1 + τη1)

δ[τθ + τε + δ2τ 2ε (τs1 + τη1)]

c11
δτετη1

τθ + τε + δ2τ 2ε (τs1 + τη1)

c12 0

a2 1

b2
1

δτε

c21 0

c22
1

δτε

d2 0

For the sake of illustrating how the signal Y2 influences the financial market, we

additionally analyze the limiting case where Y2 is perfectly precise (i.e., τη2 →
∞). Table 3.1 displays the coefficients of price functions (3.23) and (3.24) in this

extreme scenario. The respective values follow straightforwardly from the results

in Proposition 3.2. As τη2 →∞, ρ1 approaches ρ2. This means that date-1 agents

trade as aggressively as date-2 agents on private fundamental information. If Y2
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reveals s2, date-2 rational traders can perfectly infer θ from the signal P ∗2 (i.e., the

precision of the signal P ∗2 diverges to infinity). This allows date-2 rational agents to

fully absorb date-2 noise trader demand (i.e., b2 = c22 = 1/δτε). In this case, date-2

noise traders have no influence on P2. Moreover, Y1 and P1 have no influence on P2

either (i.e., c21 = d2 = 0). Since the signal P ∗2 is already perfectly precise, date-2

rational traders do not put any weight on the signal P ∗1 (which contains Y1) when

forming expectations about θ. Thus, as τη2 → ∞, P2 constitutes a fully efficient

price in the spirit of the prices-are-right formulation of the EMH (see Section 2.1),

and predicting P2 equals predicting θ. As a consequence, date-1 agents trade with

the same intensity as date-2 agents on private fundamental information.

From Table 3.1, we also see that Y2 turns out to be useless for date-1 rational

traders in the limiting case (i.e., c12 = 0). As Y2 becomes perfectly precise, noise

trading s2 exerts no impact on P2. Thus, as of date 1, any information related to

date-2 noise trader demand is redundant. The results contained in Table 3.1 are,

furthermore, useful when investigating the impact of Y2 on price efficiency. This task

will be carried out in the next subsection.

3.2.3 Price Efficiency

In the static setup of Section 3.1, we have analyzed the effect of public information

about contemporaneous noise trader demand on price efficiency. In line with the

results of the existing literature on non-fundamental information in static models,

public information about current noise trading unequivocally benefits price efficiency.

The dynamic model, by contrast, allows us to assess the effect of public information

about future noise trader demand on price efficiency. As seen in Subsection 3.2.2, the

date-1 price only is influenced by average expectations about future noise trading.

At date 2, rational traders have to forecast fundamentals, since the risky asset pays

off its fundamental value at date 3. As of date 2, there is no future noise trading.

Therefore, the date-2 price is not influenced by average expectations about future

noise trading. This motivates why we focus on the efficiency of the date-1 price in

the following analysis. Indeed, public information about future noise trading can

move the date-1 price away from fundamentals. That is, there are scenarios in which

the date-1 asset price would be closer to fundamentals if public information about

future noise trader demand did not exist. Recalling price function (3.23), observing

P1 is informationally equivalent to observing

P ∗∗1 ≡
P1

a1
= θ +

1

ρ1
s1 −

c11
a1
Y1 +

c12
a1
Y2

= θ +

(
1

ρ1
− c11
a1

)
s1 −

c11
a1
η1 +

c12
a1

(s2 + η2). (3.31)
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Thus, by using the projection theorem, date-1 price efficiency is given by

Var−1(θ |P ∗∗1 ) = τθ +

[(
1

ρ1
− c11
a1

)2
1

τs1
+

(
c11
a1

)2
1

τη1
+

(
c12
a1

)2(
1

τs2
+

1

τη2

)]−1
.

(3.32)

According to (3.32), date-1 price efficiency is determined by the interplay of three

terms. The first two terms in square brackets correspond to the CON and COMESCON

effects, which have already been identified in the static model (cf. (3.20)). They

capture the effects of current noise trading and the common error term of the public

signal Y1. The third term in square brackets in (3.32) is unique to the dynamic

model. It expresses the impact of public information about future noise trader

demand on current price efficiency. Due to date-1 agents’ incentive to front-run

date-2 noise trading, this term adds a new source of noise to the date-1 price. We

call this component the “COMSFUN (COMmon Signal about FUture Noise trading)”

effect. The detrimental impact of the COMSFUN effect is greater when date-1 agents’

aggregate trading intensity on the public signal Y2 rises relative to their trading

intensity on fundamentals θ (i.e., c12/a1 increases).

In what follows, we assess how introducing public information about future noise

trader demand influences price efficiency. In particular, we aim to show that P1

can be less efficient in the presence than in the absence of the signal Y2. We first

compare the cases where Y2 is completely imprecise (i.e., τη2 = 0) and perfectly

precise (i.e., τη2 →∞), given that information about contemporaneous noise trading

is available (i.e., τη1 > 0) or unavailable (i.e., τη1 = 0). The results are summarized

in the following proposition (with the proof delegated to Appendix A):

Proposition 3.3.

(a) Let τη1 = 0.

Then, Var−1(θ |P ∗∗1 ) is smaller for τη2 = 0 than as τη2 →∞.

(b) Let τη1 > 0.

Then, Var−1(θ |P ∗∗1 ) can be greater or smaller for τη2 = 0 than as τη2 →∞.

Part (a) in Proposition 3.3 considers the special case where noise traders’ activity

on social media does not yield any valuable or processable information about their

contemporaneous behavior (i.e., τη1 = 0). In this situation, the COMESCON effect

vanishes and the CON effect boils down to 1/(ρ21τs1) (see the proof of Proposition

3.3 in Appendix A). Thus, price efficiency becomes

Var−1(θ |P ∗∗1 ) = τθ +

[
1

ρ21τs1
+

(
c12
a1

)2(
1

τs2
+

1

τη2

)]−1
.
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If τη2 = 0, the signal about future noise trading is useless for predicting future noise.

This leads to c12/a1 = 0, and the COMSFUN effect disappears. As a consequence,

the CON effect only determines price efficiency. For τη2 = 0, the CON effect is most

pronounced, as agents trade weakly on private fundamental information in this case

(i.e., ρ1 is relatively small). As τη2 →∞, agents perfectly know s2 by observing Y2.

Nevertheless, the COMSFUN effect vanishes in this situation too. If Y2 perfectly

reveals s2, date-2 rational traders offset all noise inherent in the date-2 price. P2

equals θ and noise trading does not shape the date-2 price anymore. This makes Y2

useless for forecasting P2 as of date 1. Hence, date-1 price efficiency is again solely

shaped by the CON effect, which is least pronounced as τη2 →∞. This justifies why

date-1 price efficiency is higher as τη2 →∞ than for τη2 = 0.

Part (b) in Proposition 3.3 shows that the relationship in part (a) can be reversed

if information about contemporaneous noise is available. Whenever τη1 > 0, price

efficiency can indeed be higher if information about future noise is absent. As before,

the COMSFUN effect disappears in both limiting cases. Thus, price efficiency is

shaped by the CON and COMESCON effects only:

Var−1(θ |P ∗∗1 ) = τθ +

[(
1

ρ1
− c11
a1

)2
1

τs1
+

(
c11
a1

)2
1

τη1

]−1
.

As τη2 → ∞, ρ1 is still greater than for τη2 = 0, which weakens the CON effect.

Nevertheless, the CON effect can be more pronounced as τη2 → ∞ (see the proof

of Proposition 3.3 in Appendix A). If τη1 > 0, the CON effect is also influenced by

rational agents’ trading intensity against the signal about current noise trading Y1

(through the ratio c11/a1). Similar to the static model, agents’ aggregate demand at

date 1 can be expressed as a linear function of θ, s1, Y1, Y2, and P1 (cf. also (3.30)).

Denote D1 ≡
∫ 1

0
D1i di. Then, in general form,

c11
a1

=
|∂D1/∂Y1|
∂D1/∂θ

,

which indicates rational agents’ trading intensity against the public signal Y1 relative

to their trading intensity on fundamentals. By inspecting a date-1 agent’s demand

function in (3.30) and recalling that P ∗1 is a linear function of θ, s1, and Y1, we obtain∣∣∣∣∂D1

∂Y1

∣∣∣∣ =
a2Var(θ | I1i)
Var(P2 | I1i)

δρ1τη1 +
δ

Var(P2 | I1i)
c21, (3.33)

∂D1

∂θ
=
a2Var(θ | I1i)
Var(P2 | I1i)

[δτε + δρ21(τs1 + τη1)]. (3.34)

According to (3.33), date-1 agents use Y1 in two different ways. For one thing, they

use Y1 together with P1 to predict fundamentals, represented by the first term in
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(3.33). For another, date-1 agents know that date-2 traders also observe the public

signal Y1 and use it to extract noise from P1. Thus, predicting P2 entails predicting

Y1. This is represented by the second term in (3.33).

As τη2 → ∞, there are two competing effects. On the one hand, as indicated

by the first summand in (3.33), agents trade more aggressively on P ∗1 and, thus,

more aggressively against Y1 than for τη2 = 0 (recall that a2Var(θ | I1i)/Var(P2 | I1i)
is increasing in τη2). On the other hand, date-2 agents do not rely on the signal Y1

anymore when forecasting fundamentals (i.e., c21 = 0), and the second summand in

(3.33) vanishes. This makes date-1 agents trade less aggressively against Y1. It is

ambiguous which effect dominates and, thus, if agents trade more or less aggressively

against Y1 as τη2 →∞ than for τη2 = 0 (see the proof of Proposition 3.3 in Appendix

A).

According to (3.34), rational agents unequivocally trade more aggressively on

fundamentals as τη2 →∞ than for τη2 = 0. Hence, it can happen that date-1 agents

offset less contemporaneous noise as τη2 →∞ than for τη2 = 0 (i.e., |∂D1/∂Y1| falls)

and c11/a1 decreases. Then, the CON effect intensifies (resp., is mitigated) exactly if

the fall in c11/a1 is stronger (resp., weaker) than the rise in ρ1 in absolute terms.

Analogously, the COMESCON effect can also be greater or smaller as τη2 →∞
than for τη2 = 0 (depending on whether c11/a1 increases or decreases). In total, it

can happen that the sum of the CON and COMESCON effects rises as τη2 switches

from zero to infinity, which explains why price efficiency can be lower as τη2 →∞
than for τη2 = 0.

Next, we once again turn to the special case where information about current noise

trading is unavailable (i.e., τη1 = 0). As stated in Proposition 3.3, a perfectly precise

signal about future noise trading boosts price efficiency compared to a completely

imprecise signal. Nevertheless, sufficiently small values of precision can be detrimental

to price efficiency:

Proposition 3.4. Let τη1 = 0. ∂[Var−1(θ |P ∗∗1 )]/∂τη2 < 0 for τη2 = 0 exactly if

2

δτ 2ε ρ10τs1
<

(τθ + τε + ρ210τs1)
2

[ρ210τs1(τθ + τε + ρ210τs1) + (ρ210τs1 + τε)(τε + ρ22τs2)]
2
,

where

ρ10 =
δ3τ 2ε τs2

1 + δ2τετs2
.

The proof can be found in Appendix A. Note that the above inequality could be solved

for a unique τθ. Suppose τη2 rises, starting from zero. The term on the left-hand side

of the inequality measures the ensuing change in the CON effect, which is induced

by the increase in ρ1. More aggressive trading on private fundamental information
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Figure 3.1: Date-1 price efficiency in the OLG model (1)

Parameters: τη1 = 3.5, τs1 = 2, τs2 = 3, τε = 0.01, τθ = 0.8, δ = 4

Figure 3.2: Date-1 price efficiency in the OLG model (2)

Parameters: τη1 = 2.5, τs1 = 0.01, τs2 = 3.5, τε = 0.8, τθ = 4, δ = 2

mitigates the influence of current noise on the price relative to fundamentals. This

benefits price efficiency through a fall in the CON effect. The term on the right-hand

side represents the impact on the COMSFUN effect. The change is positive, which

means that the COMSFUN effect intensifies. This harms price efficiency. The

condition in the proposition is satisfied if the destabilizing impact coming from the

rise in the COMSFUN effect dominates the stabilizing impact resulting from the fall

in the CON effect. In this case, for sufficiently small values of τη2 , the date-1 price

would be more efficient if information about future noise did not exist.

The fact that public information about future noise trader demand can reduce

price efficiency for small values of precision carries over to the case with information

about current noise trading (i.e., τη1 > 0). The numerical example in Figure 3.1
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shows that the signal about future noise harms price efficiency in the presence of

information about current noise as long as it is sufficiently imprecise. More strikingly,

the numerical example plotted in Figure 3.2 illustrates that combinations of the

exogenous model parameters exist for which the relationship between signal precision

and price efficiency is even monotonically decreasing. In total, the propositions and

figures of this subsection demonstrate that public information about future noise

trader demand can indeed reduce price efficiency.

Joint price efficiency. As outlined, the novel insights of our model are related

to the impact of information about future noise trader demand, expressed by the

signal Y2. Nevertheless, since Y2 is public, it can also be observed at date 2 and,

consequently, affects date-2 price efficiency. However, analogous to the static model,

date-2 agents use Y2 to counteract rather than to predict noise trading, which benefits

date-2 price efficiency. To account for the different usage of the public signal Y2 at

dates 1 and 2, we additionally investigate its impact on the joint efficiency of P1 and

P2. This allows us to assess whether the potentially detrimental impact of Y2 on

date-1 price efficiency carries over to the case of the joint efficiency of both prices.

From price function (3.24), conditional on P1, observing P2 is informationally

equivalent to observing

P ∗∗2 ≡
P2 − d2P1

a2
= θ +

1

ρ2
s2 −

c21
a2
Y1 −

c22
a2
Y2

= θ +

(
1

ρ2
− c22
a2

)
s2 −

c22
a2
η2 −

c21
a2

(s1 + η1). (3.35)

Then, by (3.31) and (3.35), we can determine the joint efficiency of P1 and P2. It is

stated in the next proposition (with the proof delegated to Appendix A):

Proposition 3.5. Joint price efficiency is given by

Var−1(θ |P ∗∗1 , P ∗∗2 ) =

{
τ−1θ − τ

−2
θ

Var (P ∗∗1 ) + Var (P ∗∗2 )− 2 Cov (P ∗∗1 , P ∗∗2 )

Var (P ∗∗1 ) Var (P ∗∗2 )− [Cov(P ∗∗1 , P ∗∗2 )]2

}−1
.

The characterizations of Var (P ∗∗1 ), Var (P ∗∗2 ), and Cov (P ∗∗1 , P ∗∗2 ) can also be found

in the proof in Appendix A. We can immediately conclude that joint price efficiency

diverges to infinity as τη2 → ∞. This follows from the fact that the date-2 price

is fully efficient (i.e., is equal to θ) if the signal Y2 is perfectly precise (see also the

coefficients of the price functions displayed in Table 3.1). Thus, in the limiting

case, one can infer the undistorted value of θ from observing the date-2 price. This

is equivalent to joint price efficiency diverging to infinity. The complexity of the

expression of joint price efficiency precludes the derivation of further analytical

results. Therefore, we draw on a numerical example to show that introducing the
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Figure 3.3: Joint price efficiency in the OLG model

Parameters: τη1 = 3.5, τs1 = 2, τs2 = 3, τε = 0.01, τθ = 0.8, δ = 4

signal Y2 can harm the joint efficiency of P1 and P2 as long as its precision is low

enough. As can be seen in Figure 3.3, joint price efficiency is decreasing in the

precision of the signal about date-2 noise trader demand for sufficiently small values

of precision. This proves that the potentially harmful effect of Y2 also applies, albeit

to a lesser extent, to the case of joint price efficiency.

3.3 Dynamic Setup - Long-Lived Agents

This section relaxes the OLG assumption and models rational traders as LLA, i.e., as

agents who trade at both trading dates. In the LLA model, public information about

future noise and, thus, social sentiment investing are more likely to reduce price

efficiency than in the model with OLG of investors. This is mainly due to the fact

that, contrary to the OLG model, agents’ trading intensity on private fundamental

information at date 1 does not depend on the precision of the signal about date-2

noise. The possibility of trading again at date 2 allows agents to partially hedge

against unfavorable price movements between dates 1 and 2. In equilibrium, this

reduces risk and, as opposed to the OLG model, traders do not underweight private

fundamental information at date 1. Thus, higher signal precision does not make

agents trade more aggressively on private fundamental information. The absence of

this stabilizing effect raises the probability of public information about future noise

harming price efficiency. In particular, there are two important differences in the

LLA model compared to the outcomes of the OLG model. First, if information about

current noise is absent, zero precision implies maximum price efficiency. Second,

in the presence of information about contemporaneous noise, price efficiency is

unequivocally lower if the signal is perfectly precise than if it is completely imprecise.
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Additionally, the relationship between signal precision and price efficiency can even

be monotonically decreasing, as in the OLG variant.

3.3.1 Model Assumptions

Consider a dynamic financial market with one riskless and one risky asset that exhibit

the same properties as in the OLG model of Section 3.2. The financial market is

populated by a continuum of long-lived, rational agents indexed by the interval [0, 1]

and noise traders. Each rational agent i ∈ [0, 1] now trades at both trading dates.

Her final wealth is πi = (θ−P2)D2i+(P2−P1)D1i and she is again characterized by a

CARA utility function of the form U(πi) = − exp(− δ−1πi), where δ (> 0) measures

agents’ identical degree of risk tolerance. Noise trading is transient and given by the

random variable st at date t, for t = 1, 2.

At date 1, each rational investor observes three signals: a private fundamental

signal xi = θ+ εi and two public signals related to contemporaneous and future noise

trader demand Yt = st + ηt, for t = 1, 2, which stem from gauging social sentiment.

Additionally, rational traders observe P1 at date 1 and P1 as well as P2 at date 2.

This gives I1i = (xi, P1, Y1, Y2) and I2i = (xi, P1, P2, Y1, Y2). The exogenous random

variables are again jointly normally distributed and pairwise independent with zero

means and the notation for variances already used in the OLG model (see Subsection

3.2.1).

3.3.2 Equilibrium Determination

Long-lived agents conjecture the same linear price functions (3.23) and (3.24) as

in the model with OLG of investors, which means that P1 and P2 are again jointly

normally distributed. Equilibrium further entails maximizing expected utility and

market clearing at both trading dates:

Definition (linear dynamic REE with LLA): Price functions (3.23) and (3.24)

and asset demands Dti (t = 1, 2, i ∈ [0, 1]) are a linear dynamic REE with LLA if

(i) D2i maximizes date-2 expected utility E[U(πi) | I2i] for all i ∈ [0, 1],

(ii) D1i maximizes date-1 expected utility E[U(πi) | I1i] given D2i for all i ∈ [0, 1],

(iii) and the market for the risky asset clears at both trading dates, i.e.,∫ 1

0
Dti di+ st = 0, t = 1, 2.

The following proposition states a rational agent’s utility-maximizing demand func-

tions (with the proof delegated to Appendix A):
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Proposition 3.6. A rational agent’s demand functions in the LLA model are

D2i = δ
E(θ | I2i)− P2

Var(θ | I2i)
, (3.36)

D1i = δ
E(P2 | I1i)− P1

Var(P2 | I1i)(1− Corr2)
− δh E(θ − P2 | I1i)

Var(P2 | I1i)(1− Corr2)
, (3.37)

where

h ≡ Cov(P2, θ − P2 | I1i)
Var(θ − P2 | I1i)

,

Corr =
Cov(P2, θ − P2 | I1i)√

Var(P2 | I1i) Var(θ − P2 | I1i)
.

The general form of an agent’s date-2 demand function, given by (3.36), equals that

of the OLG setup (see (3.25)), as the risky asset pays off its fundamental value θ

in both models at date 3. However, date-1 demand in the LLA model differs from

that of the OLG model. The first term in (3.37) represents an agent’s incentive to

speculate on short-term returns. The sign of this term depends on the sign of the

expected myopic return at date 2. If agents expect prices to rise (resp., to fall), this

component is positive (resp., negative). Since agents are long-lived, they trade again

at date 2. This fact is taken into account when forming demand at date 1. Trading

at date 2 partially serves as a hedge against unfavorable price movements between

dates 1 and 2, which already creates hedging demand at date 1. This is represented

by the second term in (3.37). The sign of the hedging component depends on the

interplay of two terms: the conditional covariance of the date-2 price and the date-3

return (i.e., Cov(P2, θ − P2 | I1i)) and the expected date-3 return conditional on

date-1 information (i.e., E(θ − P2 | I1i)). The conditional covariance is positive if the

date-2 price is mainly driven by fundamentals rather than by (partly) unknown noise

coming from s2. In this situation, a high P2 is linked with a high return at date 3

(i.e., a high θ − P2) by indicating strong fundamentals. Inversely, the conditional

covariance is negative if P2 is strongly shaped by unknown noise. In this case, a high

P2 implies a low return at date 3 (i.e., a low θ − P2) by indicating high noise trader

demand.

If the conditional covariance is positive (i.e., h > 0) and the expected date-3

return E(θ − P2 | I1i) is positive (resp., negative), hedging demand is negative (resp.,

positive). A rise (resp., a fall) in prices between dates 1 and 2 then predicts a higher

(resp., lower) date-3 return. Since the date-3 return is expected to be positive (resp.,

negative) as of date 1, a rise (resp., a fall) in prices predicts an even more positive

(resp., even more negative) date-3 return. Thus, traders can profit by taking a long
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(resp., short) position at date 2. The opportunity to benefit from rising (resp., falling)

prices by taking a long (resp., short) position at date 2 compensates traders for not

having benefited from date-1 asset purchases (resp., sells). This justifies the negative

(resp., positive) hedging demand at date 1.

Analogously, assume the conditional covariance to be negative (i.e., h < 0) and the

expected date-3 return E(θ−P2 | I1i) to be positive (resp., negative). This leads to a

positive (resp., negative) hedging demand. A fall (resp., a rise) in prices between

dates 1 and 2 then predicts a rise (resp., a fall) in the date-3 return. As the date-3

return is expected to be positive (resp., negative) as of date 1, a fall (resp., a rise) in

prices predicts an even more positive (resp., even more negative) return at date 3

and traders can profit by going long (resp., short) at date 2. The opportunity to

benefit from falling (resp., rising) prices by taking a long (resp., short) position at

date 2 compensates traders for not having benefited from date-1 asset sells (resp.,

purchases). This justifies the positive (resp., negative) date-1 hedging demand.

Agents’ ability to hedge reduces risk in equilibrium. The uncertainty rational

traders face at date 1, expressed by the denominator in (3.37), is clearly smaller than

the residual uncertainty about the date-2 price, Var(P2 |I1i), and depends negatively

on the squared correlation between P2 and the date-3 return θ − P2 conditional on

date-1 information. The higher the squared correlation, i.e., the stronger the link

between P2 and the date-3 return θ − P2, the more effectively agents can hedge by

trading again at date 2. This results in higher risk reduction at date 1.

The general form of asset prices. As in the OLG model, we expound a general

determination of asset prices before considering the specific price functions in the

linear dynamic REE. Since the general form of the date-2 demand function in (3.36)

does not differ from that of the OLG model, given in (3.25), imposing market clearing

at date 2 and solving for the date-2 price delivers

P2 = Ē2(θ) +
Var(θ | I2i)

δ
s2.

The date-2 price in the LLA model is still a function of rational investors’ date-

2 average expectations about fundamentals and date-2 noise trader demand. By

imposing market clearing at date 1, P1 can be written as∫ 1

0

D1i di+ s1 = 0

⇔
∫ 1

0

δ
E(P2 | I1i)− P1

Var(P2 | I1i)(1− Corr2)
− δh E(θ − P2 | I1i)

Var(P2 | I1i)(1− Corr2)
di+ s1 = 0

⇔ P1 = (1 + h) Ē1(P2)− h Ē1(θ) +
Var(P2 | I1i)(1− Corr2)

δ
s1
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⇔ P1 = (1 + h) Ē1

[
Ē2(θ) +

Var(θ|I2i)
δ

s2

]
− h Ē1(θ) +

Var(P2 | I1i)(1− Corr2)
δ

s1

⇔ P1 = (1 + h) Ē1

[
Ē2(θ)

]
− h Ē1(θ) + (1 + h)

Var(θ | I2i)
δ

Ē1(s2)

+
Var(P2 | I1i)(1− Corr2)

δ
s1.

(3.38)

The first term in (3.38) shows that in the LLA model, the date-1 price is also

characterized by a KBC. Notably, since agents directly forecast fundamentals at date

1 when forming their hedging demand, the date-1 price is also shaped by investors’

date-1 average expectations about fundamentals. This is represented by the second

term in (3.38). Nevertheless, Cespa and Vives (2012) demonstrate that in an LLA

model with transient noise trading, the date-1 price overweights public information

and is systematically farther away from fundamentals than investors’ date-1 average

expectations about fundamentals. However, the authors prove that the inverse result

can hold true if noise trading has a persistent element. When looking at our LLA

setup, rational traders’ date-1 average expectations about future noise trading s2 are

again influenced by the signal Y2 only. As in the OLG model, agents’ incentive to

front-run date-2 noise trader demand injects additional noise into the date-1 price,

which moves it away from fundamentals.

The specific form of asset prices. Now, we derive the specific solutions for the

coefficients in price functions (3.23) and (3.24). Recall that I1i = (xi, P1, Y1, Y2) and

I2i = (xi, P1, P2, Y1, Y2). Thus, analogous to the OLG model, (P ∗1 , xi) and (P ∗1 , P
∗
2 , xi)

convey the same information about fundamentals as I1i and I2i (cf. Subsection

3.2.2). After updating agent i’s date-2 beliefs about fundamentals, plugging them

into demand function (3.36), and imposing market clearing at date 2, we obtain the

function of P2 in equilibrium. The resulting coefficients are, then, matched with

those in (3.24). Using agent i’s date-1 information set, we can determine her updated

beliefs about fundamentals and future noise trading, which enter demand function

(3.37). We proceed to impose market clearing at date 1, allowing us to determine

the equilibrium function of P1. Again, we match the resulting coefficients with those

in (3.23). This yields:

Proposition 3.7. There exists a unique linear dynamic REE with LLA, in which

a1 =
[τε + ρ21(τs1 + τη1)] Γ1Γ2∆b

2
2 + (1− a2)Γ1ρ

2
1(τs1 + τη1)

∆[(1− a2)2Γ1 + b22Γ2]
,

b1 =
a1
ρ1
,
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c11 = a1

ρ1τη1

(
1 +

1− a2
∆b22Γ2

)
τε + ρ21(τs1 + τη1)

(
1 +

1− a2
∆b22Γ2

) ,

c12 = a1

δτη2 [τθ + ρ21(τs1 + τη1)]

[1 + δρ2(τs2 + τη2)]
2

τε + ρ21(τs1 + τη1)

(
1 +

1− a2
b22Γ2∆

) ,

a2 =
τε + ρ22(τs2 + τη2)

∆
,

b2 =
1 + δρ2(τs2 + τη2)

δ∆
,

c21 =
−ρ21(τs1 + τη1)

c11
a1

+ ρ1τη1

∆
,

c22 =
ρ21(τs1 + τη1)

c12
a1

+ ρ2τη2

∆
,

d2 =
ρ21(τs1 + τη1)

a1∆
,

Γ1 ≡
[
τθ + τε + ρ21(τs1 + τη1)

]−1
,

Γ2 ≡ (τs2 + τη2)
−1,

∆ ≡ τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2),

ρ2 ≡
a2
b2

= δτε,

ρ1 ≡
a1
b1

= δτε.

The proof is contained in Appendix A. Although more complex than in the OLG

model, the coefficients in the price functions (3.23) and (3.24) can also be determined

in closed form in the LLA setup. P1 still reacts positively to changes in Y2 and

negatively to changes in Y1. P2 is again negatively related to both public signals

about noise trading. The most striking difference compared to the equilibrium in

the OLG model is the endogenous value of ρ1, which measures how aggressively

agents trade on private fundamental information at date 1. In the variant with

OLG of investors, agents underweight private fundamental information at date 1

relative to date 2 (i.e., ρ1 < ρ2). If agents are long-lived, by contrast, ρ1 equals

ρ2. This implies that agents trade with the same intensity on private fundamental

information at both trading dates (which is also independent of the precision of the
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signal about date-2 noise). The reason for this lies in the hedging possibilities that

date-2 trading provides to rational investors. As outlined, in equilibrium, the ability

to hedge reduces risk, allowing agents at date 1 to trade as aggressively on private

fundamental information as at date 2.

Along the proof of Proposition 3.7 in Appendix A, we show that an agent’s demand

function at dates 1 and 2 can be written as

D2i = δτε xi + δρ21(τs1 + τη1)P
∗
1 + δρ22(τs2 + τη2)P

∗
2 −

δ

Var(θ | I2i)
P2, (3.39)

D1i = δτε xi + δρ21(τs1 + τη1)P
∗
1 +

δ(1− a2)
b22Γ2

[b2 E(s2 |Y2)− c21Y1 − c22Y2 + d2P1]

− δ

Var(P2 | I1i)(1− Corr2)
P1. (3.40)

An agent’s demand for the risky asset at date 2 is given in (3.39). It has the same

form as in the OLG model (cf. (3.29)). In strong contrast to the OLG setup, the

demand function in (3.40) shows that at date 1, an agent trades as aggressively on

her two signals used to predict fundamentals (i.e., xi and P ∗1 ) as at date 2. This is

due to her ability to hedge. The third summand in (3.40) is linked to an agent’s

engagement in short-term speculation.

Moreover, we can conclude without any further calculations that the LLA and

OLG models coincide as τη2 → ∞. In the limiting case, the signal P ∗2 is perfectly

precise and rational traders can observe the unbiased value of θ at date 2, making

them fully absorb date-2 noise trader demand. This leads P2 to equal θ. In this

situation, as in the OLG model, agents are concerned with predicting fundamentals

only at date 1. Since rational agents’ date-1 information sets are identical in the

OLG and LLA variants, the two models are equal as τη2 →∞ (see Table 3.1 for the

exact coefficients of the price functions).

3.3.3 Price Efficiency

In this subsection, we explore the impact of public information about future noise

trading on price efficiency in the LLA model and demonstrate that the potentially

detrimental effect is more likely to occur than in the OLG model. Analogous to the

OLG setup, the efficiency of P1 is given by

Var−1(θ |P ∗∗1 ) = τθ +

[(
1

ρ1
− c11
a1

)2
1

τs1
+

(
c11
a1

)2
1

τη1
+

(
c12
a1

)2(
1

τs2
+

1

τη2

)]−1
,
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where P ∗∗1 ≡ P1/a1 (see (3.31)) and ρ1, a1, c11, and c12 are now taken from Proposition

3.7 instead of Proposition 3.2. In the LLA model, the known CON, COMESCON,

and COMSFUN effects still determine date-1 price efficiency.

First, we assess the impact of information about future noise in the special

case where valuable information about contemporaneous noise trader demand is

unavailable to rational traders (i.e., τη1 = 0). In this reduced setting, zero precision

yields maximum price efficiency:

Proposition 3.8. Let τη1 = 0. Then,

(a) Var−1(θ |P ∗∗1 ) is greater for τη2 = 0 than for any finite τη2 > 0.

(b) Var−1(θ |P ∗∗1 ) is U-shaped in τη2.

The proof can be found in Appendix A. If τη1 = 0, we have c11/a1 = 0 (see Proposition

3.7) so that the COMESCON effect vanishes and the CON effect reduces to 1/(ρ21τs1).

Consequently, price efficiency is given by

Var−1(θ |P ∗∗1 ) = τθ +

[
1

ρ21τs1
+

(
c12
a1

)2(
1

τs2
+

1

τη2

)]−1
.

In strong contrast to the OLG model, ρ1 and, therefore, the CON effect are inde-

pendent of τη2 in the LLA variant. Moreover, we know that c12/a1 = 0 for τη2 = 0

and as τη2 →∞ (see Proposition 3.7 and Table 3.1), meaning that the COMSFUN

effect vanishes in both limiting cases. P1 is, thus, equally efficient for τη2 = 0 and

as τη2 →∞. Since the COMSFUN effect is positive for any τη2 > 0, Var−1(θ |P ∗∗1 )

is greater for τη2 = 0 than for any τη2 > 0. Hence, according to part (a) in Pro-

position 3.8, any level of precision unequivocally yields lower price efficiency than

zero precision. This outcome is diametrically opposed to related findings on the

effects of information about contemporaneous noise in static and dynamic setups

(e.g., Ganguli and Yang, 2009; Manzano and Vives, 2011; Farboodi and Veldkamp,

2020) and of public information about fundamentals in a dynamic setup (see Gao,

2008).

More specifically, as stated in part (b) in Proposition 3.8, the relationship between

date-1 price efficiency and τη2 is U-shaped (see also Figure 3.4). As τη2 rises, the

weight traders put on the signal about future noise relative to fundamentals, expressed

by the ratio c12/a1, is influenced by two counteracting effects. For one thing, as Y2

predicts future noise trader demand more precisely, agents trade more aggressively

on the signal when forming their demand. For another, a more precise Y2 implies

that at date 2, rational traders offset more of the date-2 noise trader demand. This

reduces the noise in the date-2 price, making Y2 less useful for predicting P2 at date

1 (cf. also (3.40)).
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Figure 3.4: Date-1 price efficiency for τη1 = 0 in the LLA model

When the signal is imprecise (i.e., τη2 is small), the destabilizing effect dominates

and agents trade more aggressively on the signal Y2 relative to fundamentals as τη2

increases. Consequently, price efficiency falls. However, there exists a point where

the stabilizing effect takes over and agents trade less aggressively on Y2 at date 1 as

the signal gains further in precision. In the limit, if the signal about date-2 noise

trading is perfectly precise, rational traders offset all noise inherent in the date-2

price. As a consequence, Y2 is useless for forecasting P2. In this situation, P1 is not

influenced by Y2 (i.e., c12 = 0) and is, thus, as efficient as when the signal about

future noise is completely imprecise.

Next, we turn to the general case with valuable information about current noise

trading (i.e., τη1 > 0). Recall from Proposition 3.3 that in the OLG variant, price

efficiency can be higher or lower for τη2 = 0 than as τη2 → ∞. In the LLA model,

by contrast, price efficiency is unequivocally lower if the signal about future noise is

perfectly precise:

Proposition 3.9. Var−1(θ |P ∗∗1 ) is greater for τη2 = 0 than as τη2 →∞.

The proof is delegated to Appendix A. As already known, the COMSFUN effect

disappears in both limiting scenarios and price efficiency is shaped by the CON and

COMESCON effects only:

Var−1(θ |P ∗∗1 ) = τθ +

[(
1

ρ1
− c11
a1

)2
1

τs1
+

(
c11
a1

)2
1

τη1

]−1
.

From Proposition 3.7, we know that ρ1 is independent of τη2 . Thus, the result in

Proposition 3.9 is driven by the ratio c11/a1, which indicates rational agents’ trading

intensity against the public signal about contemporaneous noise trading relative to
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their trading intensity on fundamentals (i.e., |∂D1/∂Y1|/(∂D1/∂θ)). By (3.40), we

obtain∣∣∣∣∂D1

∂Y1

∣∣∣∣ = δρ1τη1 +
δ(1− a2)
b22Γ2

c21, (3.41)

∂D1

∂θ
= δτε + δρ21(τs1 + τη1). (3.42)

Along the proof of Proposition 3.9 in Appendix A, we show that c11/a1 is greater

for τη2 = 0 than as τη2 → ∞. This implies that agents trade more aggressively

against contemporaneous noise compared to trading on fundamentals when the signal

about future noise is completely imprecise. The explanation is the following: in

sharp contrast to the OLG setup, long-lived agents do not underweight the two

signals xi and P ∗1 , which are used to predict fundamentals at date 1 (cf. (3.30) and

(3.40)). Thus, as illustrated in (3.42), agents’ aggregate response to fundamentals is

independent of τη2 . Hence, changes in c11/a1 are driven by changes in |∂D1/∂Y1|.
Analogous to the OLG model, long-lived traders use the signal about current noise

Y1 in two ways. On the one hand, Y1 is contained in P ∗1 and used to extract noise

inherent in the date-1 market price. In the OLG setup, as τη2 switches from zero to

infinity, agents trade more aggressively on P ∗1 and, thus, more aggressively against

Y1 (see (3.33)). In the LLA model, by contrast, this effect is absent, as τη2 does not

influence how aggressively agents trade on P ∗1 (see the first term in (3.41)). On the

other hand, since the public signal Y1 is also observable at date 2, forecasting P2

entails forecasting Y1. Thus, Y1 directly helps to predict P2, which is represented

by the second term in (3.41). If Y2 is perfectly precise (i.e., τη2 → ∞), θ can be

observed at date 2 by disentangling the information conveyed by P2. Consequently,

rational traders at date 2 do not use Y1 to predict fundamentals (i.e., c21 = 0). As

of date 1, this makes Y1 less useful for predicting P2 and traders put less weight on

the signal when forming date-1 demand than for τη2 = 0 (i.e., the second term in

(3.41) vanishes). This explains why |∂D1/∂Y1| and c11/a1 are unequivocally larger

for τη2 = 0 than as τη2 →∞.

The fact that c11/a1 is greater in the absence of information about future noise

trading implies that the CON effect is less pronounced for τη2 = 0 than as τη2 →
∞, raising price efficiency. The COMESCON effect, by contrast, is clearly more

pronounced for τη2 = 0, which harms price efficiency. Thus, as τη2 switches from

infinity to zero, the impact of more aggressive trading against Y1 on price efficiency

is two-edged. Nevertheless, the result in Proposition 3.9 shows that the stabilizing

impact coming from the reduction in the CON effect dominates the destabilizing

impact generated by the increase in the COMESCON effect.

Thus, information about future noise unambiguously harms price efficiency for
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sufficiently high values of precision. Lastly, we prove that it can reduce price efficiency

also for low values of precision:

Proposition 3.10. ∂[Var−1(θ |P ∗∗1 )]/∂τη2 < 0 for τη2 = 0 exactly if

2τη1τ
2
ε (1− δρ2τs2)

τs1 [τε + ρ21(τs1 + τη1)(1 + φ02)]
<
τθ + ρ21(τs1 + τη1)

1 + δρ2τs2
,

where

φ02 ≡
δ2τs2 [τθ + ρ21(τs1 + τη1)]

(1 + δρ2τs2)
2

.

The proof can be found in Appendix A. The term on the right-hand side of the

inequality in Proposition 3.10 measures the change in the COMSFUN effect induced

by the rise in τη2 , starting from τη2 = 0. Since the change is positive, the COMSFUN

effect intensifies and the ensuing impact on price efficiency is negative. The expression

on the left-hand side stands for the combined impact on the CON and COMESCON

effects. Along the proof of the proposition in Appendix A, we show that agents’

aggregate response to changes in the signal about contemporaneous noise trader

demand Y1 becomes less pronounced (i.e., c11/a1 decreases) when δρ2τs2 exceeds

unity. In this case, the increase in the CON effect exceeds the reduction in the

COMESCON effect in absolute terms. Consequently, the ensuing impact on the CON

and COMESCON effects also harms price efficiency and the condition in Proposition

3.10 is certainly satisfied.

If δρ2τs2 < 1, agents trade more aggressively against Y1 as τη2 rises, starting from

zero (i.e., c11/a1 increases). As the stabilizing impact due to the reduction in the

CON effect is more pronounced than the destabilizing impact linked to the increase

in the COMESCON effect, more aggressive trading against Y1 is conducive to price

efficiency. In this scenario, date-1 price efficiency falls exactly if the destabilizing

impact coming from the rise in the COMSFUN effect is stronger than the stabilizing

impact resulting from the combination of the CON and COMESCON effects.

Joint price efficiency. Having pointed out a potentially negative effect of informa-

tion about future noise trading on current price efficiency, we eventually consider

the joint efficiency of both prices. In particular, we show that the public signal Y2

can harm the joint efficiency of P1 and P2 in the LLA model as well. Following

the identical general form of the equilibrium price functions in the LLA and OLG

models, joint price efficiency in the LLA setup is given by the same expression as in

the OLG variant (see Proposition 3.5):

Var−1 (θ |P ∗∗1 , P ∗∗2 ) =

{
τ−1θ − τ

−2
θ

Var (P ∗∗1 ) + Var (P ∗∗2 )− 2 Cov (P ∗∗1 , P ∗∗2 )

Var (P ∗∗1 ) Var (P ∗∗2 )− [Cov(P ∗∗1 , P ∗∗2 )]2

}−1
.
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3 Social Sentiment Investing and Price Efficiency

Figure 3.5: Joint price efficiency in the LLA model

Parameters: τη1 = 3.5, τs1 = 2, τs2 = 3, τε = 0.01, τθ = 0.8, δ = 4

The coefficients determining Var (P ∗∗1 ), Var (P ∗∗2 ), and Cov (P ∗∗1 , P ∗∗2 ) are now taken

from Proposition 3.7 instead of Proposition 3.2. As in the OLG model, joint price

efficiency diverges to infinity as τη2 →∞, since P2 is fully efficient in this case. The

numerical example depicted in Figure 3.5, furthermore, proves that introducing the

signal Y2 can reduce the joint efficiency of P1 and P2 for sufficiently small values

of precision. That is, there can exist values of τη2 for which joint price efficiency is

lower than for τη2 = 0. This confirms the potentially negative impact of information

about date-2 noise trader demand on price efficiency in the LLA setup.

3.4 Model Comparison

Subsections 3.2.3 and 3.3.3 investigate the influence of public information about date-

2 noise trader demand on price efficiency in the OLG and LLA models, respectively.

In this section, we conduct a brief, direct comparison of price efficiency in both

setups. Numerical analysis shows that date-1 price efficiency is generally lower in

the OLG model than in the LLA variant (with identical model parameters). Since

both models are equal as τη2 → ∞ (see Subsection 3.3.2), the marginal impact of

increases in signal precision is more positive in the OLG setup.

The numerical example in Figure 3.6 compares date-1 price efficiency in the two

models for the special case where τη1 = 0. In this situation, a perfectly precise signal

about future noise yields higher price efficiency than no signal at all in the OLG

variant (see Proposition 3.3). An increase in signal precision drives the date-2 price

closer to fundamentals and alleviates the impact of date-1 agents’ short trading

horizon, making them trade more aggressively on private fundamental information

(i.e., ρ1 rises). This benefits price efficiency. Nevertheless, price efficiency can be
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Figure 3.6: Date-1 price efficiency in the LLA and OLG models (1)

Parameters: τη1 = 0, τs1 = 2, τs2 = 3, τε = 0.01, τθ = 0.8, δ = 4.

Note: The solid (resp., dashed) curve corresponds to the LLA (resp., OLG) model.

harmed for sufficiently small values of precision (see Proposition 3.4). In the LLA

model, in strong contrast, ρ1 is independent of τη2 and zero precision unequivocally

yields maximum price efficiency (see Proposition 3.8).

Figure 3.7: Date-1 price efficiency in the LLA and OLG models (2)

Parameters: τη1 = 3.5, τs1 = 2, τs2 = 3, τε = 0.01, τθ = 0.8, δ = 4.

Note: The solid (resp., dashed) curve corresponds to the LLA (resp., OLG) model.

If information about current noise is available (i.e., τη1 > 0), price efficiency can be

lower for a perfectly precise signal about future noise than for no signal at all in the

OLG model (see Proposition 3.3). Again, information about future noise trading

can harm current price efficiency for small values of precision (see Figure 3.7). In

the LLA setup, date-1 price efficiency is unambiguously lower as τη2 →∞ than for

τη2 = 0 (see Proposition 3.9). In fact, Figure 3.7 shows that in the LLA model, zero
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Figure 3.8: Date-1 price efficiency in the LLA and OLG models (3)

Parameters: τη1 = 2.5, τs1 = 0.01, τs2 = 3.5, τε = 0.8, τθ = 4, δ = 2.

Note: The solid (resp., dashed) curve corresponds to the LLA (resp., OLG) model.

precision can also yield maximum price efficiency in the presence of information

about current noise. Even more strikingly, the example in Figure 3.8 demonstrates

that parameter values exist such that price efficiency is monotonically decreasing in

signal precision in both models.

The numerical illustrations in Figures 3.3 and 3.5, moreover, prove that the signal

Y2 can reduce the joint efficiency of P1 and P2 in both model variants. As in the

case of date-1 price efficiency alone, the potentially negative impact of Y2 is more

pronounced in the LLA model (i.e., joint price efficiency falls for a larger value range

of τη2 in Figure 3.5 than in Figure 3.3).

To sum up, based on the results derived in this chapter, public information

about future noise trading, obtained from gauging social sentiment, may harm

price efficiency in both the LLA and OLG models. Our findings challenge the

conventional wisdom that non-fundamental information is unequivocally conducive

to the efficiency of prices. The fact that the detrimental impact is more likely to

occur in the LLA setup should put additional emphasis on the possible negative

effect of social sentiment investing on price efficiency. Due to the high frequency of

trading in financial markets, the LLA model seems to be more relevant than the

OLG setup.
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Multidimensional Noise

“How can a broker, charged with the duty of getting its clients the best available prices,

possibly do so by selling that client’s orders to amazingly sophisticated high-frequency

trading firms, who in turn will make billions of dollars trading against these orders?”

Sal Arnuk, co-founder of agency broker Themis Trading, 2021

The following chapter is based on Russ (2022). It focuses on the second recent

observation related to the rising importance of non-fundamental information in

financial markets: PFOF. As outlined in the Introductory Chapter, the surge in retail

investing has significantly contributed to a boom in the U.S. online brokerage sector.

Increased competition between the major online brokers, moreover, resulted in the

successive elimination of trading fees for private investors. In search of alternative

sources of revenue, Robinhood, Charles Schwab, TD Ameritrade, E*TRADE, and

others amplified the use of PFOF. As seen in Figure 1.4, the joint PFOF-related

revenue of the four named online brokers grew immensely in 2020 and 2021, also

compared to the year before. Thus, the recent boom in retail investing has led not

only to significant growth in the online brokerage sector, but also to an increase

in available information about retail order flow in financial markets (see also SEC

chairman Gary Gensler’s quote on p. 8 in the Introductory Chapter).

In particular, due to PFOF, financial markets are populated by different profes-

sional traders who observe different components of the whole order flow linked to

retail investing in the market. The aim of this chapter is to analyze the interactions

that emerge among these diversely informed traders and the ensuing consequences

for important properties of financial markets such as price efficiency and adverse

selection.

Interpreting retail investors as noise traders makes the competitive noisy REE

framework a suitable framework for the analysis of the expounded research task.

Nevertheless, there is one important modification that we need to make to the

standard framework in order to investigate the interactions between the different

professional traders engaged in PFOF. The vast majority of the existing literature
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assumes noise to be one-dimensional. The demand coming from noise traders

is summed up in a single random variable (see also Chapter 3). This common

assumption, however, does not account for the fact that there can exist sophisticated

traders in the market who possess unbiased knowledge of a part of the whole demand

stemming from noise traders. That is, rather than gleaning information about the

whole order flow linked to noise trading, these investors precisely know the demand

of some noise traders in the market. Of course, there exist other noise traders, whose

orders they do not observe. Thus, we need to extend the competitive noisy REE

framework to the case where noise is not one- but multidimensional. This means

that the market price is affected by more than one noise factor in equilibrium.

This chapter analyzes the cases with two- and three-dimensional noise. The model

with two-dimensional noise and two different groups of noise-informed traders reveals

several types of complementarities in traders’ interactions that cannot be studied

in the classical one-dimensional setup in the spirit of Ganguli and Yang (2009).

Additionally, it highlights several important differences compared to a setup with

two-dimensional fundamentals à la Goldstein and Yang (2015) (henceforth: GY 2015).

At the trading stage, an inference augmentation effect leads to complementarities

in trading against different types of noise. In GY 2015, in sharp contrast, a similar

effect favors strategic substitutabilities in trading on different fundamentals. At the

information acquisition stage, acquiring information about the same noise component

can be a complement, whereas acquiring information about the same fundamental

is unequivocally a substitute, even if fundamentals are multidimensional (see GY

2015). The two-dimensional noise setup further allows us to analyze the strategic

interactions in the acquisition of information about different noise components. Thus,

multidimensionality of noise permits to assess whether cross-complementarities or

cross-substitutabilities in non-fundamental information acquisition exist, which is

particularly interesting in the light of PFOF. As we show, this new type of interaction

can also be characterized by complementarities.

The newly identified strong complementarity in trading against different types of

noise can lead to multiple equilibria in the financial market, which exhibit, if noise is

two-dimensional, similar properties to those of Ganguli and Yang (2009). If noise

is three-dimensional, by contrast, some new equilibrium properties arise that have

not been recognized by the literature so far. Additionally, the three-dimensional

noise model uncovers a complementarity in non-fundamental information acquisition

that can exist even if equilibrium is unique. If noise is three-dimensional but non-

fundamental information only two-dimensional, equilibrium is unique. Nevertheless,

acquiring information about different noise components can still be a complement.

This insight sheds new light on the relationship between non-fundamental information

and multiple equilibria in generating complementarities. It shows that complement-
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arities in the acquisition of specific types of non-fundamental information can also

exist in the absence of multiple equilibria.

Perhaps most importantly, the three-dimensional noise model uncovers a negative

correlation between the dimensionality of noise and the severity of adverse selection

in financial markets. In Ganguli and Yang (2009) and also in the two-dimensional

noise setup, strong informed trading intensifies the adverse selection problem in

financial markets, which can lead to a market breakdown. Interestingly, in the

three-dimensional noise case, a market breakdown is less likely to occur than in

the two-dimensional case. The higher the dimensionality of noise, the smaller the

informational advantage obtained from observing a single noise component. Thus,

adverse selection is weaker if noise is characterized by a high dimensionality. This

mitigates the possibility of a market breakdown.

As in GS 1980 and Diamond and Verrecchia (1981), we consider a static competitive

economy. In such an environment, agents use non-fundamental information to extract

noise from the market price and gain a more precise signal about fundamentals out

of it. Whenever non-fundamentally informed traders observe a high noise trader

demand, they expect the price to be noisy and, thus, fundamentals to be low, making

them reduce their demand. If they observe low noise trader demand, fundamentals

are expected to be high, and they raise their demand. Hence, rational agents follow a

contrarian strategy with respect to non-fundamental information. They trade against

noise traders and, therefore, mitigate noise traders’ influence on the price relative to

fundamentals. This is why non-fundamental information unambiguously raises price

efficiency in a static setup (see also Chapter 3).

At the trading stage, more aggressive trading against noise by one group encourages

other groups to do the same. This is due to an inference augmentation effect. More

aggressive trading against one type of noise makes the market price react less strongly

to it relative to fundamentals. Hence, all rational traders that do not observe this

specific type of noise benefit from a more informative price signal. As a consequence,

they trade more aggressively on this signal. Since all noise-informed agents use their

non-fundamental information jointly with the market price to infer information about

fundamentals, more aggressive trading on their price signals implies more aggressive

trading against the types of noise they observe.

The results on complementarities at the information acquisition stage are driven

by the fact that a rise in the mass of one noise-informed group affects not only how

this group but also how other non-fundamentally informed groups trade against the

types of noise that they know. Thus, more non-fundamentally informed traders

change not only price efficiency as a whole but also the residual uncertainty about

fundamentals each specific noise-informed group faces (which crucially depends on

how aggressively other noise-informed groups trade against the observed types of
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noise).

The theoretical results yield three implications for the usage of non-fundamental

information obtained through PFOF in financial markets. First, since noise-informed

agents trade against noise and their interactions are characterized by complement-

arities, PFOF should be conducive to price efficiency. Second, complementarities

in acquiring information about different noise components predict an increase in

the amount of non-fundamental information obtained through PFOF in the market.

Third, as higher dimensionality of noise weakens adverse selection and mitigates the

possibility of a market breakdown, information about retail investor demand gained

by engaging in PFOF should be sufficiently dispersed among professional traders.

These three implications will be discussed in more detail in Section 4.6.

Our model results relate to three strands of the theoretical literature. The first

strand deals with the effects of non-fundamental information in the competitive noisy

REE framework. In the relevant contributions, noise is either one-dimensional (e.g.,

Ganguli and Yang, 2009; Manzano and Vives, 2011; Marmora and Rytchkov, 2018;

Farboodi and Veldkamp, 2020) or two-dimensional (e.g., Gennotte and Leland, 1990,

Cespa and Vives, 2012, 2015; Avdis, 2016), whereas non-fundamental information is

always one-dimensional. This chapter, by contrast, considers the case where both

noise and non-fundamental information are multidimensional. As already outlined,

this yields several new insights that cannot be obtained in a one-dimensional setup.

Second, this chapter contributes to the strand of the theoretical literature that

deals with adverse selection in financial markets and potential market breakdown.

A common result in the relevant settings is that precise fundamental information

obtained by insiders can lead to a market collapse (e.g., Bhattacharya and Spiegel,

1991; Spiegel and Subrahmanyam, 1992; Bhattacharya et al., 1995; Vayanos and

Wang, 2009). In Medrano and Vives (2004), the probability of a market breakdown

additionally rises as informed investors become more risk-tolerant. Similar to the

cited literature, adverse selection intensifies in the models of this chapter as informed

trading becomes more pronounced, which can produce a market failure. The novel

contribution lies in uncovering the negative relationship between the intensity of

adverse selection and the dimensionality of noise. This points to the important

fact that the severity of adverse selection and, thus, the probability of a market

breakdown are significantly reduced as the dimensionality of noise rises.

Third, our results relate to the literature on complementarities in traders’ inter-

actions in a competitive market environment. Complementarities in fundamental

information acquisition can, e.g., occur when (i) some traders receive information

earlier than other ones (Hirshleifer et al., 1994), (ii) information costs are endogenous

(Veldkamp, 2006), (iii) traders derive utility from comparing their wealth to the

average wealth in the economy (Garcia and Strobl, 2011), (iv) agents’ investment
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opportunities differ (Goldstein et al., 2014), (v) the noisy asset supply is correlated

across periods (Avdis, 2016), or (vi) traders are characterized by different private

evaluations regarding the value of an asset (Rahi and Zigrand, 2018).

In a setup closely related to ours, Ganguli and Yang (2009) show in an environment

characterized by one-dimensional noise that the existence of private non-fundamental

information can lead to complementarities in the acquisition of fundamental in-

formation. The reason for this is that in the presence of private non-fundamental,

information more fundamentally informed trading can make the price less informat-

ive about fundamentals, increasing the incentive for others to acquire fundamental

information. Moreover, the authors demonstrate that acquiring a fixed bundle of

private fundamental and private non-fundamental information can be a complement.

As already pointed out, the models of the present chapter identify new types of

complementarities that cannot be analyzed in the setup of Ganguli and Yang (2009),

viz., complementarities in trading against different types of noise and in acquiring

information about different noise components. Additionally, the three-dimensional

noise setup points to new equilibrium properties. In Ganguli and Yang (2009), a rise

in the mass of informed traders unequivocally increases efficiency in one equilibrium,

while decreasing efficiency in the other one. In the three-dimensional noise model, by

contrast, more informed traders can raise efficiency in both equilibria of the model.

Furthermore, acquiring information about different noise components can still be a

complement even if equilibrium is unique. In Ganguli and Yang (2009) as well as in

Manzano and Vives (2011), complementarities in information acquisition and multiple

equilibria are closely linked with each other. The three-dimensional noise model, by

contrast, points to a type of non-fundamental information whose acquisition can be

characterized by complementarities even in the absence of equilibrium multiplicity.

In another related paper, GY 2015 extend the seminal setup of GS 1980 by

modeling different rational traders that are informed about different fundamentals,

which jointly determine the “fair” value of a stock. The authors show that different

agents’ trades on different fundamentals can be complements due to an uncertainty

reduction effect. GY 2015 additionally identify an inference augmentation effect,

which favors strategic substitutability in trading on different fundamentals. The two

effects will be explained in more detail in Section 4.3.

When concerning multidimensional non-fundamental information, we also identify

an inference augmentation effect that, however, works in the opposite direction and

induces complementarities in trading against different types of noise. While the

inference augmentation effect prevents equilibrium multiplicity in GY 2015 by favoring

substitutabilities in trading, it is responsible for generating multiple equilibria in our

models. Moreover, although fundamental information is multidimensional, acquiring

information about the same fundamental is always a substitute in GY 2015. However,
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the authors prove that acquiring information about different fundamentals can be a

complement. As already mentioned, both acquiring information about the same and

about different noise components can be characterized by complementarities.

The remainder of this chapter is organized as follows: Section 4.1 describes the

model with two-dimensional noise. Section 4.2 derives its equilibrium in the financial

market. Section 4.3 focuses on traders’ interactions at the trading stage. In Section

4.4, we derive the equilibrium at the information acquisition stage and explore the

respective interactions. Section 4.5 analyzes the model with three-dimensional noise.

On the basis of the theoretical results, Section 4.6 discusses some implications for

the increased usage of PFOF in financial markets.

4.1 Model Assumptions

The financial market consists of one riskless asset and one risky asset. The riskless

asset (i.e., a bond) is in unlimited supply and serves as a numeraire in the market. Its

safe return is normalized to zero. The risky asset (i.e., a stock) is in zero net supply

and is traded at market price P at date 1. At date 2, it pays off its fundamental

value θ ∼ N(0, τ−1θ ). There are six different types of traders in the financial market,

two of which stand for noise traders with exogenous demands x1 ∼ N(0, τ−1x ) and

x2 ∼ N(0, τ−1x ), respectively.1 Moreover, there exist two sets of non-fundamentally

informed agents indexed by the intervals [0, λ1] and [0, λ2]. Each trader n1 ∈ [0, λ1]

observes x1. Each trader n2 ∈ [0, λ2] knows x2. Additionally, there is a continuum of

fundamentally informed traders indexed by the interval [0, 1].2 Each trader f ∈ [0, 1]

observes a private signal sf = θ + εf , where εf ∼ i.i.d. N(0, τ−1ε ). There is also a

continuum of uninformed but rational traders indexed by the interval [0, λu]. Each

trader u ∈ [0, λu] gathers neither fundamental nor non-fundamental information.

Since the market is competitive, all rational agents are price takers and, therefore,

(additionally) observe the market price.

For k = n1, n2, f, u, agent k’s final wealth is given by πk = (θ − P )Dk, where

Dk stands for agent k’s demand for the risky asset. Without loss of generality, we

normalize agents’ initial wealth to zero. All rational traders are characterized by

a CARA utility function, U(πk) = − exp(−γπk). The parameter γ (> 0) measures

agents’ common degree of risk aversion. The random variables θ, x1, x2, and εf are

jointly normally distributed and pairwise independent for all f ∈ [0, 1].
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4.2 Equilibrium Determination

The market price is assumed to be linear in θ, x1, and x2:

P = aθ θ + a1 x1 + a2 x2, (4.1)

for constants aθ, a1, and a2. Analogous to Chapter 3, price function (4.1) and rational

traders’ asset demands Dk (k = n1, n2, f, u;n1 ∈ [0, λ1], n2 ∈ [0, λ2], f ∈ [0, 1], u ∈
[0, λu]) are a linear REE if Dk maximizes agent k’s conditional expected utility and

the asset market clears. From the results of Section 3.1, we can immediately infer

that maximizing agent k’s CARA utility function yields

Dk =
E(θ | Fk)− P
γVar(θ | Fk)

, (4.2)

where Fk stands for agent k’s information set. It follows that Fn1 = (P, x1), Fn2 =

(P, x2), Ff = (P, sf ), and Fu = (P ). A non-fundamentally informed agent uses her

knowledge about noise trader demand to generate a more precise signal about the

fundamental asset value out of the market price. Conditional on xi, price function

(4.1) turns into the following signal about θ, which an xi-informed trader uses to

update her prior beliefs:

P ∗ni ≡
P − ai xi

aθ
= θ +

aj
aθ
xj, for i, j = 1, 2, i 6= j. (4.3)

Define β1 ≡ aθ/a1 and β2 ≡ aθ/a2. Then, for the xi-informed trader, the market

price is a signal about θ with precision β2
j τx (i.e., Var−1(P ∗ni | θ) = β2

j τx). From

(4.3), we can deduce that a rise in xi reduces an xi-informed trader’s demand. As a

noise-informed agent uses her knowledge about noise trader demand to gain a more

precise signal about θ out of the market price, the signal P ∗ni ceteris paribus indicates

a lower value of the risky fundamental asset value if xi increases. Due to a lower

expected fundamental value, a noise-informed agent decreases her demand. Thus,

as in the static model of Section 3.1, a rational trader follows a contrarian strategy

with respect to her information about noise.

For fundamentally informed and uninformed, rational agents, observing the price

is informationally equivalent to observing

P ∗f/u ≡
P

aθ
= θ +

a1 x1 + a2 x2
aθ

. (4.4)

Hence, P ∗f/u is a signal about θ with precision τx/(1/β
2
1 + 1/β2

2). Without non-

fundamental information, the signal about θ generated by disentangling the informa-

tion contained in the market price clearly has a lower precision.
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Using (4.3), (4.4), and agents’ private fundamental signals, the first two conditional

moments of θ can be determined for all types of rational traders by using the

projection theorem. Then, the price P is derived by clearing the asset market:∫ 1

0

Df df +

∫ λ1

0

Dn1 dn1 +

∫ λ2

0

Dn2 dn2 +

∫ λu

0

Du du+ x1 + x2 = 0. (4.5)

By plugging rational agents’ demand functions from (4.2) into (4.5), we can solve

for P and show that it is indeed determined by a linear function of θ, x1, and x2, as

conjectured in (4.1). After invoking rational expectations, we obtain the coefficients

of price function (4.1) in the linear REE:

Proposition 4.1. If ∆βi < 0 (resp., ∆βi = 0), there exist(s) two (resp., one) linear

REE, in which

aθ =
β4
1λ2τx + β2

2 (τε + λ1β
2
2τx) + β2

1 (τε + β2
2τx ω)

β4
1λ2τx + β2

2 (τε + λ1β2
2τx + τθ ω) + β2

1 [τε + (β2
2τx + τθ)ω]

,

ai = (1/βi) aθ, for i = 1, 2,

where

ω ≡ 1 + λ1 + λ2 + λu,

and βi is given by

βi =
τε + λiβ

2
j τx

γ
, for i, j,= 1, 2, j 6= i.

The proof and the definition of ∆βi can be found in Appendix A. According to

Proposition 4.1, there are, apart from one combination of the exogenous model

parameters that yields ∆βi = 0, two linear REE if an equilibrium exists. The number

of equilibria is pinned down by the number of solutions for β1 and β2. The two

symmetric equations in Proposition 4.1 that determine β1 and β2 can be further

developed as follows (see the proof of Proposition 4.1 in Appendix A):

βi = f(βi) ≡
λiλ

2
jτ

3
xβ

4
i + 2λiλjτ

2
xτεβ

2
i + τε(λiτxτε + γ2)

γ3
, for i, j = 1, 2, i 6= j. (4.6)

The equations contained in (4.6) stand for the fixed-point problems that solve for

β1 and β2 in equilibrium. Since their solutions are hardly analytically tractable,

we illustrate them by using a numerical example. Figure 4.1 numerically depicts

the mapping of f(β1) with β1 and f(β2) with β2. The intersections of the solid

curves with the dashed 45◦-line represent the equilibrium values of β1 and β2. From
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Figure 4.1: Equilibrium with two-dimensional noise

Parameters: γ = 2, τε = 0.5, τx = 1, λ1 = 1.2, λ2 = 1.8

β1 ≡ aθ/a1 and β2 ≡ aθ/a2, we can conclude that β1 and β1 measure how strongly

the market price reacts to changes in the fundamental asset value relative to changes

in the respective noise shock. Since high (resp., low) values of β1 and β2 imply that

the market price is mainly driven by fundamentals (resp., by noise), we refer to the

first intersection in the two graphs in Figure 4.1 as the low information equilibrium

(LIE) and to the second intersection as the high information equilibrium (HIE).

Since the numerical example assumes that λ1 < λ2, it follows that β1 < β2 in both

equilibria.

4.3 Interactions at the Trading Stage

Having derived the linear REE, this section turns to the diversely noise-informed

groups’ interactions at the trading stage. We are particularly interested in how their

trades against the two different noise trader demands are connected. Moreover, we

analyze the impact of their interactions on price efficiency and assess what effects a

rise in the mass of non-fundamentally informed traders exerts on the equilibria of

the model.

4.3.1 Trading Intensities Against Noise

Analogous to Chapter 3, the trading intensities against noise indicate the degree

of aggressiveness with which the noise-informed traders trade against the observed

noise trader demand. Hence, they measure how much noise the rational, non-

fundamentally informed agents actually counteract. Since there are two different

groups of noise-informed traders, there are two trading intensities against noise. From
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a noise-informed agent’s demand function (see (A17) in Appendix A), we obtain

Ixi ≡
∫ λi

0

∣∣∣∣∂Dni

∂xi

∣∣∣∣ dni = λi
β2
j τx

γβi
, for i, j = 1, 2, i 6= j. (4.7)

Note that both trading intensities are a function of agents’ conjectured values of β1

and β2, as rational traders use price function (4.1) to update their beliefs about θ

(which then influence their demand for the risky asset). By rewriting rational traders’

aggregate demand functions in a general way, we are able to find a connection between

the implied values of β1 and β2, which follow from invoking rational expectations,

and the trading intensities Ix1 and Ix2 :∫ 1

0

Df df = If θ + IP,f P,

∫ λi

0

Dni dni = IP,ni P − Ixi xi, for i = 1, 2,

∫ λu

0

Du du = IP,u P,

where If ≡
∫ 1

0
(∂Df/∂sf) df , IP,f ≡

∫ 1

0
(∂Df/∂P ) df , IP,ni ≡

∫ λi
0

(∂Dni/∂P ) dni, and

IP,u ≡
∫ λu
0

(∂Du/∂P ) du. From (A18), it follows that If = τε/γ. Thus, by using

market-clearing condition (4.5), the implied values of the three coefficients in price

function (4.1) can be written as

aθ =
τε

−γ(IP,f + IP,n1 + IP,n2 + IP,u)
,

ai =
1− Ixi

−(IP,f + IP,n1 + IP,n2 + IP,u)
, for i = 1, 2.

Hence, the implied value of βi (≡ aθ/ai) is

βi =
τε

γ (1− Ixi)
, for i = 1, 2. (4.8)

By (4.8), we see that the trading intensities against noise are positively connected

to the implied values of the coefficient ratios β1 and β2. This is intuitive, as more

aggressive trading against noise makes the price react less strongly to noise relative

to fundamentals, which is equivalent to a rise in β1 and β2. From (4.8), we can

further conclude that Ixi ∈ [0, 1). This value range is deduced from the fact that β1

and β2 are always positive whenever a linear REE exists (see Proposition 4.1).
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4.3.2 Complementarities in Trading

One central question of Section 4.3 is how the two groups of non-fundamentally

informed investors interact in the financial market. That is, we are interested in how

the trading intensities against noise are related. From (4.7), we already know that

Ixi = λi
β2
j τx

γβi
, for i, j = 1, 2, j 6= i.

Substituting for β1 and β2 from (4.8) and rearranging terms yields

Ixi = λiτx

[
τε

γ (1− Ixj)

]2
γ

τε
γ (1− Ixi)

=
λiτxτε (1− Ixi)
γ2(1− Ixj)2

⇔ Ixi
[
γ2(1− Ixj)2 + λiτxτε

]
= λiτxτε

⇔ Ixi =
λiτxτε

γ2(1− Ixj)2 + λiτxτε
, for i, j = 1, 2, j 6= i. (4.9)

By inspecting (4.9), the next proposition immediately follows.

Proposition 4.2. Trading against xi is a complement to trading against xj (i.e.,

∂Ixi/∂Ixj > 0).

The clear complementarity occurs due to an inference augmentation effect. A higher

Ixj means that more noise coming from the xj-noise traders is offset. This benefits

rational traders that do not know xj, as they are now able to obtain a more precise

signal about θ from disentangling the information contained in the market price. As

a consequence, they trade more aggressively on the signal about θ generated out of

the market price. Since the xi-informed traders exclusively use their non-fundamental

information to extract noise from the market price, more aggressive trading on their

obtained price signal entails more aggressive trading against xi (i.e., a higher Ixi).

The identified inference augmentation effect works in the opposite direction com-

pared to GY 2015, who deal with multidimensional fundamental information. In

their model with two independent fundamental components, rational traders use

their non-noisy information about one of the two fundamental components in two

opposite ways. For one thing, they use it directly to predict fundamentals. For

another, they use it together with the price to infer information about the other,

unknown fundamental component. The latter function is similar to that of our model,

in which agents use their non-fundamental information jointly with the price to infer

information about fundamentals. The former function finds no counterpart in our

model.
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In GY 2015, as agents observe a higher value of the fundamental component they

know, their demand for the risky asset is affected in two ways. On the one hand, a

higher fundamental component predicts a higher fundamental value in total, thereby

leading to an increase in demand. On the other hand, holding the price constant,

a higher fundamental component predicts a lower value of the second, unknown

fundamental component, which makes agents reduce their demand for the risky asset.

In our model, by contrast, noise-informed traders’ demand is affected in one clear

way when the observed noise trader demand rises. Higher noise trader demand ceteris

paribus predicts lower fundamentals, which makes noise-informed agents decrease

their demand for the risky asset.

In the setup of GY 2015, as the trading intensity of one group rises, the two

competing effects intensify. More aggressive trading on a fundamental component

reduces the residual uncertainty about fundamentals the other group faces. This

makes the other group trade more aggressively on their fundamental information

too. GY 2015 call this the “uncertainty reduction effect,” which favors strategic

complementarity in trading. Such an effect cannot be found in our model, as

non-fundamentally informed agents’ trading intensities are not directly affected

by the residual uncertainty about fundamentals (cf. (A17) in Appendix A and

also equation (4.7)).3 Additionally, since more aggressive trading on a fundamental

component raises the informativeness of the market price about this component,

the other group trades more aggressively on the signal gained from observing the

market price. However, more aggressive trading on the price signal implies more

aggressive trading against the fundamental component the other group knows. This

inference augmentation effect contrasts with the uncertainty reduction effect and

favors strategic substitutability in trading on different fundamentals. The resulting

type of interaction is ambiguous in the setup of GY 2015 (see GY 2015, Subsection

II.B).

In the present model, as Ixj rises, xi-informed traders’ price signal predicts funda-

mentals more accurately. This makes them trade more aggressively on this signal,

which entails more aggressive trading against xi. This inference augmentation effect,

in strong contrast to GY 2015, favors strategic complementarity in trading. Since this

is the only effect present, trading against different types of noise is unambiguously a

complement.

4.3.3 An Explanation for Equilibrium Multiplicity

The derived complementarity in trading against different types of noise is, moreover,

the driving mechanism that gives rise to equilibrium multiplicity. In REE setups,

equilibrium multiplicity depends crucially on rational agents’ conjecture about the
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coefficients of the price function. If agents conjecture high or low coefficients and

these different conjectures are verified in a respective equilibrium, multiple equilibria

are possible. Put differently, whenever a change in agents’ conjecture triggers a

self-fulfilling prophecy, more than one REE can exist (see, e.g., Ganguli and Yang,

2009).

Since agents’ conjecture about the values of β1 and β2 influences how well the

market price reflects the fundamental asset value, it also affects how aggressively

agents trade against noise. Thus, the conjectured values of β1 and β2 shape the

trading intensities, as shown in (4.7). If rational agents, e.g., conjecture a high β1,

the market price becomes a precise signal about θ for the x2-informed traders. This

makes them trade aggressively against noise (i.e., Ix2 is high). Recalling the results

contained in Proposition 4.1, Ix2 can be expressed in terms of the conjectured value

of β1 as follows:

Ix2 =
λ2β

2
1τx

γβ2
=

λ2β
2
1τx

γ
τε + λ2β

2
1τx

γ

=
λ2β

2
1τx

τε + λ2β2
1τx

.

Thus,

∂Ix2
∂β1

=
(τε + λ2β

2
1τx)2λ2β1τx − 2λ22β

3
1τ

2
x

(τε + λ2β2
1τx)

2
=

2λ2β1τxτε
(τε + λ2β2

1τx)
2
> 0.

Hence, a high conjectured value of β1 clearly translates into a high Ix2 . By (4.9),

a high Ix2 leads to a high Ix1 , due to the explained complementarity. A high Ix1 ,

eventually, translates into a high implied value of β1 (see (4.8)). Hence, rational

agents’ initial conjecture is verified in equilibrium, thereby leading to the existence

of the HIE. The symmetric argument applies to the conjecture about a high β2 and

its verification. By contrast, the conjecture about low values of β1 and β2 and their

verification justify the existence of the LIE. Without the clear complementarity in

trading against different types of noise, it would be unclear whether agents’ initial

conjecture about high or low values of β1 and β2 could be verified in equilibrium. In

other words, as one group of noise-informed traders vanishes, equilibrium multiplicity

vanishes too. Formally, this can be seen by inspecting (4.6). If λ1 = 0 or λ2 = 0, the

solutions for β1 and β2 are unique. Multidimensional non-fundamental information

(i.e., λ1 > 0, λ2 > 0) is, thus, a necessary condition for equilibrium multiplicity.

4.3.4 Price Efficiency

Next, we analyze the impact of noise-informed traders’ interactions on price efficiency.

As already outlined, β1 and β2 can be seen as proxies for the efficiency of the market

price. In equilibrium, the information that βi conveys can be split up into two parts
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as follows (see Proposition 4.1):

βi =
τε
γ︸︷︷︸

fundamental
information

+
λi β

2
j τx

γ
,︸ ︷︷ ︸

non−fundamental
information

for i, j = 1, 2, i 6= j.

The first component of βi represents rational traders’ trading intensity on private

fundamental information and indicates how much direct fundamental information βi

conveys (note also the analogy to ρ from Section 3.1). If fundamentally informed

agents trade more aggressively on the private signals about fundamentals, more

fundamental information is factored into the market price. This has a positive

effect on βi. In standard static REE models in the spirit of GS 1980, fundamentally

informed traders’ trading intensity fully determines the value of the equivalent of

βi (see, e.g., GS 1980, p. 397). In the present model, however, there is a second

component that does not appear in the standard models. This component pins down

how much additional information about fundamentals βi conveys due to the existence

of non-fundamental information. It also shows the crucial connection between the

coefficient ratios β1 and β2, and, hence, the crucial connection between the two

trading intensities Ix1 and Ix2 . The coefficient ratios β1 and β2 are clearly positively

connected. Thus, the amount of information β1 contains depends positively on the

amount of information that β2 contains and vice versa. The positive link between

the coefficient ratios gives rise to the explained complementarity in trading against

different types of noise.

Consequently, noise-informed agents’ interaction at the trading stage benefits price

efficiency. As in Chapter 3, we define price efficiency as the inverse of the variance of

the fundamental asset value conditional on the market price. Using (4.4) and (4.8),

we get

1

Var(θ |P )
= τθ +

τx
1

β2
1

+
1

β2
2

= τθ +
τxτ

2
ε

γ2[(1− Ix1)2 + (1− Ix2)2]
. (4.10)

Hence, the total effect of a rise in Ixi on price efficiency is

d[Var−1(θ |P )]

dIxi
=
∂[Var−1(θ |P )]

∂Ixi︸ ︷︷ ︸
direct effect

+
∂[Var−1(θ |P )]

∂Ixj

dIxj
dIxi

,︸ ︷︷ ︸
complementarity

effect

for i, j = 1, 2, i 6= j.

(4.11)
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By inspecting (4.9) and (4.10), one immediately sees that all derivatives in (4.11) are

positive. According to (4.11), the total effect of an increase in Ixi can be split up into

two parts. First, as Ixi rises, the xi-informed agents counteract more noise induced

by the xi-noise traders, raising the quality of the market price as an adequate signal

about the fundamental asset value. This fact is represented by the first summand

in (4.11). Second, a higher Ixi triggers the derived complementarity in trading

against different types of noise. If more noise generated by the xi-noise traders is

counteracted, the xj-informed traders increase their own trading intensity. A rise

in Ixi , thus, leads to a rise in Ixj , which further improves price efficiency. This

connection is described by the second summand in (4.11). Hence, a higher trading

intensity against noise increases price efficiency through two channels. Due to this

positive relationship, price efficiency is, of course, higher in the HIE than in the LIE.

4.3.5 Consequences of a Rise in λi in Equilibrium

Lastly, we examine the effects of an increase in the mass of noise-informed traders

in equilibrium. On the one hand, we are interested in the influence on the trading

intensities. On the other hand, we explore the impact on existence and multiplicity

of equilibria in the model. The results are summarized in the next proposition (with

the proof given in Appendix A):

Proposition 4.3.

(a) The total effect of a rise in λi on the trading intensities is given by

dIxi
dλi

= Γ−1 × ∂Ixi
∂λi

, (4.12)

dIxj
dλi

= Γ−1 ×
∂Ixj
∂Ixi

∂Ixi
∂λi

, (4.13)

where

Γ ≡ 1− 4IxiIxj .

(b) In the LIE (resp., HIE), it holds that Γ > 0 (resp., Γ < 0).

(c) If λi = λ̃i (see (A32) in Appendix A), then

βi = β̃i ≡
2λjτετx +

√
λjτετx(4λjτετx + 3γ2)

3γλjτx
, for i, j = 1, 2, i 6= j. (4.14)

(d) If λi > λ̃i, there is no equilibrium. If λi < λ̃i, there are two equilibria.
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Since all partial derivatives in (4.12) and (4.13) are clearly positive (see also the

proof of Proposition 4.3 in Appendix A), part (a) in Proposition 4.3 states that a rise

in λi decreases both trading intensities in equilibrium if Γ < 0. Part (b) shows that

this always happens in the HIE, whereas the opposite effect holds true in the LIE.

In other words, the direction of influence on the trading intensities is pinned down

by the equilibrium rational traders coordinate on. The obtained result is in line with

the existing literature on non-fundamental information and equilibrium multiplicity.

Ganguli and Yang (2009) derive comparable results. In their specification, a rise in

the mass of informed agents increases efficiency in one equilibrium, while decreasing

it in the other equilibrium. We identify this feature in the two-dimensional noise

model as well.

Part (c) in Proposition 4.3 shows that a critical value of λi exists that leads to a

unique REE. In this special case, the solutions for β1 and β2 can be determined in

closed form (see (4.14)). According to part (d), there are two equilibria (the LIE

and the HIE) if the mass of noise-informed traders is sufficiently small. If the overall

mass of noise-informed traders is too large, an equilibrium fails to exist.

Figure 4.2 shows the mapping of f(βi) from (4.6) with βi for different values of

λi. For λi = λ̃i, f(βi) possesses a touch point with the dashed 45◦-line at βi = β̃i.

Consequently, β̃i is the unique solution of the fixed-point problem. For λi < λ̃i, f(βi)

has a smaller intercept and a smaller slope than for λi = λ̃i. The LIE and the HIE

arise. If λi > λ̃i, there is no equilibrium. By carefully inspecting the expression of

f(βi) in (4.6), we see that non-existence of equilibrium also occurs for sufficiently

large values of λj, τε, and τx and for sufficiently small values of γ.

Strong informed trading expressed by a large mass of noise-informed agents (i.e., a

high λ1 or λ2) or precise private fundamental signals (i.e., a high τε) exacerbates the

adverse selection problem in financial markets. Aggressive trading expressed by low

risk aversion (i.e., a low γ) has the same effect. The adverse selection problem in

financial markets refers to the state that traders are exposed to the risk of potentially

trading against other market participants that possess information superior to their

own (see, e.g., Medrano and Vives, 2004). If adverse selection happens to be very

intense, agents might refrain from participating in the market, thereby producing a

market breakdown.

The fact that too much informed trading leads to a market breakdown due to

severe adverse selection can also be found in other models related to non-fundamental

information (see Ganguli and Yang, 2009; Marmora and Rytchkov, 2018). The

novelty in the two-dimensional noise setup compared to Ganguli and Yang (2009)

and Marmora and Rytchkov (2018) is that the precision of noise trading (i.e., τx)

also influences the existence of an equilibrium. This result can be directly linked

to the adverse selection problem in financial markets as well. Highly volatile noise
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Figure 4.2: Mapping f(βi) with βi - case distinction

trading (i.e., a low τx) alleviates adverse selection. If the impact of noise traders

increases, the risk of trading against a better informed agent is mitigated. Instead,

it becomes more likely to trade against an uninformed noise trader (see also Vives,

2008, Chapter 4).

4.4 Costly Signals and Information Acquisition

Thus far, observing x1 and x2 has not been linked to any cost. In the following, we

relax this assumption and turn x1 and x2 into costly signals. This allows us to derive

an equilibrium at the information acquisition stage with endogenous values of λ1 and

λ2 (for a given mass of fundamentally informed traders). We additionally analyze

the strategic interactions in acquiring non-fundamental information and compare

our obtained results to the outcomes of the relevant literature.

4.4.1 Information Acquisition Equilibrium

Information about x1 and x2 can now be acquired at costs c1 > 0 and c2 > 0,

respectively. For the sake of tractability, each fundamentally uninformed, rational

trader is only able to acquire one of the two signals. Throughout the analysis, we

assume, similar to GY 2015, that there are always some rational traders that decide

to stay uninformed in equilibrium (i.e., λu > 0). This assumption allows us to omit

the analysis of corner solutions in which all fundamentally uninformed, rational

agents acquire information about x1 or x2.
4 As already pointed out by GY (2015,
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p. 1740), “[t]he case of λu > 0 is of course empirically relevant, since in reality it is

unlikely that every trader is informed.” As a consequence, we are interested in the

following four outcomes in equilibrium: (λ1 = λ2 = 0), (λ1 > 0, λ2 = 0), (λ1 = 0,

λ2 > 0), and (λ1 > 0, λ2 > 0).

By comparing the ex-ante expected utility of a noise-informed trader with that

of an uninformed, rational trader, we can derive the value of non-fundamental

information, which is given in the next proposition (with the proof in Appendix A).

Proposition 4.4. The value of information about noise is given by

φxi(β1, β2) =
1

2γ
log

[
Var(θ |P )

Var(θ |P, xi)

]
, for i = 1, 2. (4.15)

According to (4.15), the value of non-fundamental information is determined by

the ratio between the residual uncertainty about fundamentals that traders face

when they only observe the market price and the residual uncertainty when they

additionally know xi. The higher the reduction in residual uncertainty compared

to just observing the market price, the higher the value of information about xi.

If information about noise only marginally reduces the uncertainty traders are

confronted with, its value is rather small. Note that φxi depends indirectly on λ1

and λ2 via β1 and β2. From Proposition 4.1, we know that λi = 0 leads to βi = τε/γ

(for i = 1, 2). Therefore, if λi > 0, it holds that βi > τε/γ.

Definition (information acquisition equilibrium): Let (λ∗1, λ
∗
2) ∈ R2

+ be an

information acquisition equilibrium. Then,

(i) λ∗1 = λ∗2 = 0 if φx1(τε/γ, τε/γ) ≤ c1, φx2(τε/γ, τε/γ) ≤ c2,

(ii) λ∗1 > 0, λ∗2 = 0 if φx1(β1, τε/γ) = c1, φx2(β1, τε/γ) ≤ c2, with β1 > τε/γ,

(iii) λ∗1 = 0, λ∗2 > 0 if φx1(τε/γ, β2) ≤ c1, φx2(τε/γ, β2) = c2, with β2 > τε/γ,

(iv) λ∗1 > 0, λ∗2 > 0 if φx1(β1, β2) = c1, φx2(β1, β2) = c2, with β1 > τε/γ, β2 > τε/γ.

In general, a rational agent is willing to acquire information about noise if its cost is

not greater than its value. If its cost exactly equals its value, an agent is indifferent

between becoming noise-informed and staying uninformed. Since we suppose that

there are always some rational agents that decide to remain uninformed, the cost

of observing xi must be equal to its value whenever there are xi-informed traders

in equilibrium. An equilibrium without xi-informed traders exists if the cost of

acquiring information about xi is equal to or exceeds its value in the situation where

no rational trader in the market possesses information about xi.

The following proposition describes the information acquisition equilibrium in
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dependence of the cost parameters (with the proof and the exact characterization of

g(c1) given in Appendix A):

Proposition 4.5. Let

c̄ ≡ 1

2γ
log

[
2(γ2τθ + τ 2ε τx)

2γ2τθ + τ 2ε τx

]
,

f(c1) =
1

2γ
log

{
e2γc1 [(e2γc1 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc1 − 1) (γ2τθ + τ 2ε τx)
2

}
,

g(c1) = f−1(c1) for c1 ≤
1

2γ
log

(
1 +

τ 2ε τx
γ2τθ

)
,

i(c1) =
1

2γ
log

(
e2γc1

e2γc1 − 1

)
.

Then

(a) λ∗1 = λ∗2 = 0 holds true if c1 ≥ c̄ and c2 ≥ c̄.

(b) λ∗1 > 0, λ∗2 = 0 holds true if c1 < c̄ and c2 ≥ f(c1).

(c) λ∗1 = 0, λ∗2 > 0 holds true if c1 > c̄ and c̄ > c2 ≥ g(c1).

(d) λ∗1 > 0, λ∗2 > 0 holds true if

(i) c1 ≤ c̄ and i(c1) > c2 > f(c1);

(ii) c1 > c̄ and i(c1) > c2 > g(c1).

(e) There is no information acquisition equilibrium if

(i) c1 ≤ c̄ and c2 < f(c1);

(ii) c1 > c̄ and c2 < g(c1).

The conditions in Proposition 4.5 specify the value range of c2 in dependence of

c1 for the respective types of equilibrium. Building on these value ranges, Figure

4.3 illustrates all possible information acquisition equilibria in the space of (c1, c2),

where ¯̄c is the unique solution of c̄ = i(c1). As depicted, there are seven different

areas with the following outcomes in equilibrium:

(1) λ∗1 = λ∗2 = 0: c1 ≥ c̄ and c2 ≥ max{c̄, i(c1)},

(2) λ∗1 > 0, λ∗2 = 0: c1 < c̄ and c2 ≥ i(c1),

(3) λ∗1 > 0, λ∗2 > 0; λ∗1 > 0, λ∗2 = 0: c1 < c̄ and i(c1) > c2 > f(c1),
5

(4) λ∗1 > 0, λ∗2 > 0; λ∗1 = λ∗2 = 0: c1 = c̄ and i(c1) > c2 > c̄; ¯̄c > c1 > c̄ and i(c1) > c2 ≥ c̄,6
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(5) λ∗1 > 0, λ∗2 > 0; λ∗1 = 0, λ∗2 > 0: c1 > c̄ and min{c̄, i(c1)} > c2 > g(c1),
7

(6) λ∗1 = 0, λ∗2 > 0: c1 > ¯̄c and c̄ > c2 ≥ i(c1),

(7) no equilibrium: c1 ≤ c̄ and c2 < f(c1); c1 > c̄ and c2 < g(c1).

Figure 4.3: Information acquisition equilibrium with two-dimensional noise

In area (1), costs are too high and all agents refrain from acquiring non-fundamental

information (i.e., λ∗1 = λ∗2 = 0). In area (2), agents only acquire information about x1

(i.e., λ∗1 > 0, λ∗2 = 0). Areas (3), (4), and (5) define a channel that supports multiple

information acquisition equilibria. In these three areas, an equilibrium with both

groups of noise-informed traders (i.e., λ∗1 > 0, λ∗2 > 0) is always possible. Additionally,

there is a second equilibrium, whose type depends on the exact combination of c1 and

c2. Area (3) (resp., area (5)) also supports an equilibrium of the form λ∗1 > 0, λ∗2 = 0

(resp., λ∗1 = 0, λ∗2 > 0). In area (4), an equilibrium without non-fundamentally

informed traders (i.e., λ∗1 = λ∗2 = 0) is possible. In area (6), equilibrium is unique

and of the form λ∗1 = 0, λ∗2 > 0.

Surprisingly, an information acquisition equilibrium fails to exist for sufficiently

small costs (see area (7)). Intuitively, one would expect an equilibrium with both

groups of noise-informed traders in this situation. The explanation for non-existence

is the following: in a potential equilibrium of the form λ∗1 > 0, λ∗2 > 0, low costs are

associated with low values of information about noise. Low values of information

about noise, in return, are linked to low values of β1 and β2. This is intuitive, as

low values of β1 and β2 imply an uninformative price. Thus, knowing one of the

two noise shocks does not significantly improve the predictive power of the market
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price with respect to the fundamental asset value. The price still remains a rather

noisy signal about θ and the reduction in residual uncertainty about fundamentals

is small. As a consequence, the value of information about noise is low. However,

if β1 and β2 are smaller than τε/γ, i.e., if they are smaller than fundamentally

informed agents’ trading intensity, an equilibrium with λ1 > 0, λ2 > 0 cannot exist

(see also Proposition 4.1). In other words, both β1 and β2 can only be influenced

by non-fundamental information if they convey more information than potentially

contributed by the fundamentally informed traders. For sufficiently small values of

c1 and c2 and, hence, for sufficiently low values of information about noise, this is

not the case, and an information acquisition equilibrium with a positive mass of

non-fundamentally informed traders fails to exist.8

4.4.2 Interactions at the Information Acquisition Stage

Having derived the information acquisition equilibrium, we turn to the strategic

interactions in acquiring non-fundamental information. More specifically, we analyze

whether acquiring information about the same noise component and about different

noise components is a strategic complement or substitute. If a rise in λi increases

(resp., decreases) φxi , acquiring information about the same noise component is said

to be a complement (resp., a substitute). In other words, as more traders with

information about xi enter the market, the incentive for other agents to acquire

information about xi rises (resp., shrinks), which is expressed by a higher (resp., lower)

value of information about noise. Whenever a rise in λj increases (resp., decreases)

φxi , acquiring information about different noise components is a complement (resp.,

a substitute). That is, as more traders with information about xj enter the market,

the incentive for other traders to acquire information about xi rises (resp., decreases).

Analogous to GY 2015, the value of information about noise, given in (4.15), can

be split up as follows:

φxi =
1

2γ
log

[
Var(θ |P )

Var(θ |P, xi)

]

=
1

2γ
log

{[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]
Var(θ |P )

}

=
1

2γ
log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]
︸ ︷︷ ︸

inverse of
residual uncertainty

− 1

2γ
log

[
1

Var(θ |P )

]
︸ ︷︷ ︸
price efficiency

. (4.16)

According to (4.16), a change in λi or λj affects φxi in two ways. On the one hand, it

influences the residual uncertainty about fundamentals an xi-informed trader faces.
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Since an xi-informed trader’s residual uncertainty about fundamentals depends on

how aggressively the xj-informed traders trade against the observed noise trader

demand, λi and λj affect this residual uncertainty by influencing Ixj . A(n) decrease

(resp., increase) in the residual uncertainty raises (resp., reduces) the incentive to

acquire information about xi. On the other hand, a rise in the mass of noise-informed

agents affects overall price efficiency. The more efficient the market price, the lower

the incentive to acquire costly non-fundamental information. Whenever an increase

in λi or λj raises (resp., decreases) price efficiency, agents’ incentive to free-ride on

the price increases (resp., shrinks).

In the LIE, a rise in the mass of noise-informed traders increases both trading

intensities (see Proposition 4.3). Thus, both components in (4.16) rise and, at first

glance, the resulting effect on the value of information about noise is ambiguous.

In the HIE, a rise in the mass of non-fundamentally informed agents leads to a fall

in both trading intensities. Hence, the inverse of the residual uncertainty about

fundamentals and overall price efficiency decrease, which again has opposite effects.

The next proposition summarizes the results concerning agents’ interactions at the

information acquisition stage (with the proof delegated to Appendix A):

Proposition 4.6. (a) If λj = 0, acquiring information about the same noise

component is always a substitute (i.e., dφxi/dλi < 0). (b) If λj > 0, acquiring

information about the same noise component can be a complement in the LIE and

in the HIE (i.e., dφxi/dλi > 0). (c) Acquiring information about different noise

components can be a complement in the LIE and in the HIE (i.e., dφxi/dλj > 0).

The exact conditions that ensure the complementarities mentioned in parts (b) and

(c) can also be found in Appendix A. Part (a) in Proposition 4.6 states that a rise

in λi always reduces the value of information about xi (i.e., dφxi/dλi < 0) if non-

fundamental information is one-dimensional (i.e., λj = 0). In other words, acquiring

information about the same noise component is unambiguously a substitute whenever

there is only one non-fundamentally informed group present. If non-fundamental

information is one-dimensional, there are no complementarities in trading against

different types of noise and, thus, there is no equilibrium multiplicity. In this reduced

setting, a higher λi always translates into a higher Ixi (see the proof of Proposition

4.6 in Appendix A). If Ixi rises, price efficiency increases. However, since there is

no second group of noise-informed traders present, a rise in Ixi does not induce

any complementarity in trading, thereby leaving an xi-informed trader’s residual

uncertainty about fundamentals unchanged. In total, this reduces the incentive to

acquire information about xi.

Part (b) in the proposition shows that acquiring information about the same noise

component can be a complement in both equilibria if noise and non-fundamental
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Figure 4.4: Interactions in information acquisition with two-dimensional noise

Parameters: τε = 0.5, τx = 1, γ = 2, τθ = 1.5, λ2 = 1.8

information are two-dimensional. If λj > 0, a rise in the mass of traders with

information about xi affects not only overall price efficiency, but also an xi-informed

trader’s residual uncertainty about fundamentals (through changing Ixj ). In the LIE

(resp., in the HIE), the positive effect on the value of information about noise generated

by reducing the residual uncertainty (resp., by decreasing overall price efficiency)

can outweigh the negative effect induced by increasing overall price efficiency (resp.,

by raising the residual uncertainty). This, then, leads to complementarities in the

acquisition of information about the same noise component. Part (c) shows that the

same holds true for the acquisition of information about different noise components.

Both in the LIE and in the HIE, acquiring information about xi can be a complement

to acquiring information about xj.

For the sake of illustrating the analytical results, Figure 4.4 plots the value of

information about x1 and x2 in dependence of λ1 for a given set of parameters. In the

numerical example, both acquiring information about the same noise component and

about different noise components are a complement in the LIE (i.e., φx1 and φx2 are

increasing in λ1). In the HIE, acquiring information about the same noise component

is a substitute, whereas acquiring information about different noise components is a

complement for sufficiently small values of λ1.

Comparison with GS 1980 and GY 2015. Table 4.1 compares the results on the

strategic interactions in acquiring non-fundamental information with the relevant out-

comes of GS 1980 and GY 2015, who respectively deal with one- and two-dimensional

fundamental information in a setting with two-dimensional fundamentals. The third

and the fourth row in Table 4.1 display the results contained in Proposition 4.6. In

the seminal GS 1980 model, agents only have access to information about one of the
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Table 4.1: Comparison of interactions in information acquisition

Same component Different components

GS 1980 substitute /

GY 2015 substitute substitute or complement

λi > 0, λj = 0 substitute /

λi > 0, λj > 0 substitute or complement substitute or complement

two risky fundamental components that jointly determine the fair value of the asset.

In their setup, acquiring information about this fundamental is always a substitute.

In the extension of GY 2015, which entails two groups of rational traders that possess

information about one of the two fundamentals each, acquiring information about

the same fundamental component is a substitute too. Hence, although fundamental

information is two-dimensional, acquiring information about the same fundamental

is always a substitute. In GY 2015, as the mass of fundamentally informed traders

rises, the increase in overall price efficiency is always greater than the rise in the

inverse of the residual uncertainty about fundamentals. Consequently, the incentive

for others to acquire information about the same fundamental shrinks.

Considering non-fundamental information, in contrast to GY 2015, the change in

the inverse of the residual uncertainty about fundamentals can indeed be more positive

than the change in overall price efficiency. If noise and non-fundamental information

are two-dimensional, acquiring information about the same noise component can be

a complement in both equilibria of the model.

When noise is two-dimensional and non-fundamental information is only one-

dimensional, acquiring information about the same noise component is unequivocally

a substitute. This finding relates to the result on fundamental information ac-

quisition obtained by GS 1980. GY 2015 uncover a possible complementarity in

acquiring information about different fundamental components. Considering two-

dimensional noise and non-fundamental information, the analogous complementarity

can occur. Acquiring non-fundamental information can be characterized by cross-

complementarities in both the LIE and the HIE.

Comparison with Ganguli and Yang (2009). The one-dimensional noise model

proposed by Ganguli and Yang (2009) shows that acquiring private fundamental

information can be a complement when traders additionally possess private non-

fundamental information. Moreover, the authors prove that the simultaneous ac-

quisition of private fundamental and private non-fundamental information can be a

complement. Our model, by contrast, reveals complementarities in the acquisition of

non-fundamental information only. Although not carried out, the case of acquiring

96



4 Payment for Order Flow and Multidimensional Noise

information about the same noise component could also be analyzed in the model of

Ganguli and Yang (2009). However, our model additionally points to the important

fact that acquiring information about different noise components can be a comple-

ment. This kind of complementarity cannot be uncovered using the setup of Ganguli

and Yang (2009).

Furthermore, our model shows that the existence of non-fundamental information

does not necessarily lead to complementarities in acquiring information. Part (a) in

Proposition 4.6 states that acquiring information about the same noise component is

unambiguously a substitute if information about the other noise component is absent.

Consequently, for complementarities in the acquisition of information about the same

noise component to be possible, the dimensionality of non-fundamental information

has to be equal to the dimensionality of noise. In Ganguli and Yang (2009), private

information about the single noise component makes complementarities in information

acquisition possible. In our setup, by contrast, private information about one of the

two noise components does not generate complementarities. It is indispensable that

information about both noise components is available. This important dependency

can only be demonstrated in a multidimensional-noise setup.

To sum up, the two-dimensional noise case uncovers new kinds of complementarities

in information acquisition (and also at the trading stage) that go beyond the model

of Ganguli and Yang (2009). Furthermore, it sheds additional light on when non-

fundamental information can generate complementarities in information acquisition

and when not. The three-dimensional noise case, which will be analyzed in the next

section, reveals further important differences compared to Ganguli and Yang (2009).

4.5 Three-Dimensional Noise

This section extends the model to the case of three-dimensional noise and a third

group of noise-informed traders. While the three-dimensional model confirms the

central results of the two-dimensional version regarding complementarities at the

trading and the information acquisition stage, it additionally yields new insights

and new properties that have not been recognized by the relevant literature on

non-fundamental information and equilibrium multiplicity so far.

First, the three-dimensional model underscores the importance of a sufficiently high

dimensionality of non-fundamental information in generating equilibrium multiplicity.

Complementarities in trading are only strong enough to generate multiple equilibria

if information about all three noise shocks is available to traders. As one of the

three groups of non-fundamentally informed traders vanishes, equilibrium turns

out to be unique, although complementarities in trading still exist. So, even if

non-fundamental information is multidimensional, equilibrium can be unique, given
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that the dimensionality of noise is sufficiently high. The higher the dimensionality

of noise, the higher the dimensionality of non-fundamental information needs to be

in order for multiplicity of equilibria to arise. This is a new insight that cannot be

gained in a setup with one-dimensional noise à la Ganguli and Yang (2009).

Second, the properties of the equilibria of the model with three-dimensional noise

differ in an important way from the two-dimensional case. It can happen that an

increase in λi leads to an increase in Ixi (and βi) in both the LIE and the HIE. This

result also contrasts with Ganguli and Yang (2009), where a rise in the mass of

informed traders unambiguously increases the equivalent of βi in one equilibrium,

while unequivocally decreasing it in the other equilibrium.

Third, the model reveals a complementarity in the acquisition of non-fundamental

information that can prevail although equilibrium is unique. While acquiring in-

formation about the same noise component is always a substitute in the absence of

equilibrium multiplicity, acquiring information about different noise components can

still be a complement. This result clarifies that non-fundamental information and

multiple equilibria are not inextricably linked with each other when assessing the

possibility of complementarities in information acquisition.

Fourth, and perhaps most interestingly, numerical simulation shows that a market

breakdown is less likely to happen in the three-dimensional noise case. If noise is three-

dimensional, the adverse selection problem is less severe than in the two-dimensional

case. The higher the dimensionality of noise, the smaller the informational advantage

obtained from observing a single noise component. In the three-dimensional case,

scenarios exist in which the market does not break down, even though the mass

of noise-informed traders becomes arbitrarily large.9 This leads to the conclusion

that the dimensionality of noise and the intensity of adverse selection are negatively

correlated: the higher the dimensionality of noise, the weaker adverse selection, and

the lower the likelihood of a market breakdown.10

4.5.1 Model Assumptions and Equilibrium Determination

The model is the same as in Section 4.1 except that there is a third, independent

component linked to noise trader demand, x3 ∼ N(0, τ−1x ), and an additional con-

tinuum of rational, noise-informed agents indexed by the interval [0, λ3]. Each trader

n3 ∈ [0, λ3] observes x3 and is characterized by the same CARA utility function as

before. The determination of the linear REE closely follows the steps applied in

Section 4.2. Traders conjecture the asset price to be linear in θ, x1, x2, and x3:

P = aθ θ + a1 x1 + a2 x2 + a3 x3, (4.17)
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for constants aθ and ai (for i = 1, 2, 3). A rational trader’s demand function is still

given by (4.2). Using her non-fundamental information, an xi-informed agent can

disentangle the information conveyed by the market price as follows:

P ∗ni ≡
P − ai xi

aθ
= θ +

aj xj + al xl
aθ

, for i, j, l = 1, 2, 3, j 6= i 6= l. (4.18)

Define βi ≡ aθ/ai (for i = 1, 2, 3). Then, according to (4.18), the market price is

a signal about θ with precision τx/(1/β
2
j + 1/β2

l ) for the xi-informed trader (i.e.,

Var−1(P ∗ni | θ) = τx/(1/β
2
j + 1/β2

l )). Equivalently, the fundamentally informed and

the uninformed, rational traders observe

P ∗f/u ≡
P

aθ
= θ +

a1 x1 + a2 x2 + a3 x3
aθ

. (4.19)

Thus, the price is a signal about θ with precision τx/(1/β
2
1 + 1/β2

2 + 1/β2
3) for the

fundamentally informed and the uninformed, rational traders (i.e., Var−1(P ∗f/u| θ) =

τx/(1/β
2
1 + 1/β2

2 + 1/β2
3)). The precision of P ∗f/u is clearly smaller than that of P ∗ni .

By using (4.18), (4.19), and fundamentally informed traders’ private signals, we can

compute the first two conditional moments of θ for all types of rational traders via

the projection theorem. They are, then, used to compute rational agents’ demand

functions, which are plugged into the market-clearing condition:∫ 1

0

Df df +

∫ λ1

0

Dn1 dn1 +

∫ λ2

0

Dn2 dn2

+

∫ λ3

0

Dn3 dn3 +

∫ λu

0

Du du+ x1 + x2 + x3 = 0.

(4.20)

Solving (4.20) for P shows that it is linear in θ, x1, x2, and x3, in line with (4.17).

Eventually, invoking rational expectations delivers the coefficients of the price function

in equilibrium (with the proof delegated to Appendix A):

Proposition 4.7. In the linear REE, it holds that

aθ =

τε +

[
(1 + λu)Var−1(P ∗f/u| θ) + λ1Var−1(P ∗n1

| θ)
+λ2Var−1(P ∗n2

| θ) + λ3Var−1(P ∗n3
| θ)

]

τε + ωτθ +

[
(1 + λu)Var−1(P ∗f/u| θ) + λ1Var−1(P ∗n1

| θ)
+λ2Var−1(P ∗n2

| θ) + λ3Var−1(P ∗n3
| θ)

] ,

ai = (1/βi) aθ, for i = 1, 2, 3,
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where

ω ≡ 1 + λu + λ1 + λ2 + λ3,

and βi is given by

βi =
τε
γ

+
λiβ

2
jβ

2
l τx

γ(β2
j + β2

l )
, for i, j, l = 1, 2, 3, j 6= i 6= l. (4.21)

The three-equation system contained in (4.21) pins down the number of linear REE.

The high non-linearity of the system, however, prevents an analytical characterization

of the number of equilibria. Nevertheless, numerical analysis shows that, as in the

two-dimensional noise model, equilibrium is either multiple in form of the LIE and

the HIE, unique (in a special case), or non-existent. For a given set of parameter

values, Figure 4.5 provides a graphical solution of the resulting fixed-point problems

that determine the number of linear REE. As depicted in Figure 4.5, there are

still two equilibria present, the LIE and the HIE (further numerical simulations are

given in Subsection 4.5.3). Thus, increasing the dimensionality of noise does not

change the possible number of equilibria. Since the numerical example assumes that

λ1 < λ2 < λ3, it holds that β1,LIE < β2,LIE < β3,LIE and β1,HIE < β2,HIE < β3,HIE

in Figure 4.5.

In the two-dimensional noise model, multidimensionality of non-fundamental

information is crucial for multiple equilibria to arise. The three-dimensional noise

case points to the important fact that multidimensionality of non-fundamental

information does not necessarily lead to equilibrium multiplicity. Instead, it is

essential that the dimensionality of non-fundamental information is sufficiently high.

As one group of noise-informed traders vanishes, equilibrium is unique, as described

in the following proposition:

Proposition 4.8. Let λi = 0. Then, equilibrium is unique although non-fundamental

information is multidimensional (i.e., λj > 0, λl > 0).

The proof can be found in Appendix A. If noise is three-dimensional, information

about all three components needs to be available to rational traders for multiple

equilibria to show up. If not, equilibrium is unequivocally unique. This is a new insight

that cannot be obtained in a setup with one-dimensional noise in the spirit of Ganguli

and Yang (2009). The result in the proposition highlights that multidimensionality

of non-fundamental information does not necessarily lead to multiple equilibria.

Instead, it is crucial that the dimensionality of non-fundamental information equals

the dimensionality of noise.
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Figure 4.5: Equilibrium with three-dimensional noise

Parameters: τε = τx = 1, γ = 2, λ1 = 1.2, λ2 = 1.8, λ3 = 2

4.5.2 Interactions at the Trading Stage

Analogous to the two-dimensional setup, by inspecting (A56), we can express xi-

informed traders’ trading intensity as a function of the conjectured values of the

three coefficient ratios as follows:

Ixi ≡
∫ λi

0

∣∣∣∣∂Dni

∂xi

∣∣∣∣ dni = λi
τx

γβi

(
1

β2
j

+
1

β2
l

) , for i, j, l = 1, 2, 3, j 6= i 6= l. (4.22)

Then, by using the same argument as in Subsection 4.3.1 with three instead of two

noise-informed groups, we can show that the relationship between the implied value

of βi and trading intensity Ixi is still given by

βi =
τε

γ(1− Ixi)
, for i = 1, 2, 3. (4.23)

By plugging β1, β2, and β3 from (4.23) into (4.22), we obtain

Ixi =
λiτx

τε
1− Ixi

{
γ2[(1− Ixj)2 + (1− Ixl)2]

τ 2ε

}
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=
λiτxτε(1− Ixi)

γ2[(1− Ixj)2 + (1− Ixl)2]

⇔ Ixi =
λiτxτε

γ2[(1− Ixj)2 + (1− Ixl)2] + λiτxτε
, for i, j, l = 1, 2, 3, i 6= j 6= l. (4.24)

By (4.24), we clearly see that trading against different types of noise is a complement

in the three-dimensional model too. This is due to the same inference augmentation

effect explained in Subsection 4.3.2. If λl = 0 and, hence, Ixl = 0, trading against

xi is still a complement to trading against xj (i.e., ∂Ixi/∂Ixj > 0). Nevertheless, as

stated in Proposition 4.8, equilibrium is unique in this case. Thus, complementarities

in trading against different types of noise are only strong enough to generate multiple

equilibria if information about all three noise components is available to traders.

4.5.3 Consequences of a Rise in λi in Equilibrium

Next, we are interested in the impact that a rise in λi exerts on the three trading

intensities. Formally, we have:

Proposition 4.9. The total effect of a rise in λi on the trading intensities is

dIxi
dλi

= Γ−11 × (1− Γ2)
∂Ixi
∂λi

, (4.25)

dIxj
dλi

= Γ−11 ×
(
∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

)
∂Ixi
∂λi

, (4.26)

dIxl
dλi

= Γ−11 ×
(
∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

)
∂Ixi
∂λi

, (4.27)

where

Γ1 ≡ 1−
[
Γ2 +

∂Ixi
∂Ixj

(
∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

)
+
∂Ixi
∂Ixl

(
∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

)]
,

Γ2 ≡
∂Ixj
∂Ixl

∂Ixl
∂Ixj

.

The proof can be found in Appendix A. By carefully inspecting equations (4.25) to

(4.27), a crucial difference between the two- and the three-dimensional noise setup

becomes visible. Recall from Proposition 4.3 that if noise is two-dimensional, an

increase in λi unambiguously raises both trading intensities (and both coefficient

ratios) in the LIE, while decreasing them in the HIE. The analogous result holds

true for the setup of Ganguli and Yang (2009). In the three-dimensional case, the

sign of Γ1 pins down the sign of dIxj/dλi and dIxl/dλi (all partial derivatives are

clearly positive, as in the two-dimensional case). However, the sign of Γ1 does not
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alone determine the sign of dIxi/dλi. The sign of dIxi/dλi is additionally influenced

by the sign of 1− Γ2. Note that if 1− Γ2 < 0, it also holds that Γ1 < 0. Thus, it can

happen that a rise in λi leads to an increase in Ixi , even though Γ1 < 0. However, if

Γ1 > 0, we have 1− Γ2 > 0.

Although the exact relationship between the sign of Γ1 and the equilibrium traders

coordinate on cannot be analytically derived, the following numerical simulations

indicate that Γ1 > 0 (resp., Γ1 < 0) is true in the LIE (resp., in the HIE), similar to

the two-dimensional setup. Tables 4.2, 4.3, and 4.4 depict the equilibrium values of

the coefficient ratios β1, β2, and β3 in the two- and three-dimensional models for γ = 1,

τx = 0.5, λ2 = 0.5, λ3 = 0.4, τε ∈ {0.3, 0.8, 1.5}, and λ1 ∈ {0.1, 1, 10, 100, 200}.
The first number in each bracket refers to the value in the LIE. The second one refers

to the respective value in the HIE.

The results of the two-dimensional case show the known pattern that an increase

in the mass of noise-informed traders unequivocally raises β1 and β2 in the LIE

and decreases them in the HIE. When looking at the three-dimensional case, in

strong contrast, a rise in λ1 can lead to an increase in β1 in the HIE (e.g., when

λ1 increases from 1 to 10 in Tables 4.2 and 4.3). This is a new property linked to

equilibria generated by non-fundamental information that has not been identified in

the relevant literature so far.

Table 4.2: Comparison of models with two- and three-dimensional noise (1)

Two-dimensional noise Three-dimensional noise

β1 β2 β1 β2 β3

λ1 = 0.1 (0.31, 6.62) (0.32, 11.24) (0.30, 10.75) (0.31, 22.22) (0.31, 19.04)
λ1 = 1 (0.35, 2.77) (0.33, 2.22) (0.32, 9.33) (0.31, 6.30) (0.31, 5.76)
λ1 = 10 (−−, −−) (−−, −−) (0.55, 44.06) (0.32, 4.34) (0.32, 4.04)
λ1 = 100 (−−, −−) (−−, −−) (2.91, 429.51) (0.33, 4.30) (0.32, 4.00)
λ1 = 200 (−−, −−) (−−, −−) (5.52, 858.59) (0.33, 4.30) (0.32, 4.00)

Parameters: τε = 0.3, γ = 1, τx = 0.5, λ2 = 0.5, λ3 = 0.4

Moreover, the simulations outlined in Tables 4.2 - 4.4 demonstrate that a rise in λ1

increases (resp., decreases) β2 and β3 in the LIE (resp., in the HIE). By recalling

(4.26) and (4.27), this leads to the conclusion that Γ1 > 0 holds in the LIE and

Γ1 < 0 in the HIE. Since 1− Γ2 > 0 if Γ1 > 0, a rise in λi cannot lead to a decrease

in Ixi in the LIE (as in the model with two-dimensional noise).

The numerical results contain another interesting point. It is well known from

Ganguli and Yang (2009) and the two-dimensional noise model of Section 4.1 that

a large mass of informed traders makes the two equilibria vanish (see part (d) in

Proposition 4.3). If noise is three-dimensional, however, such a market breakdown is
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Table 4.3: Comparison of models with two- and three-dimensional noise (2)

Two-dimensional noise Three-dimensional noise

β1 β2 β1 β2 β3

λ1 = 0.1 (0.85, 6.19) (0.98, 10.38) (0.82, 10.41) (0.89, 21.26) (0.87, 18.29)
λ1 = 1 (−−, −−) (−−, −−) (1.00, 8.31) (0.91, 5.74) (0.89, 5.26)
λ1 = 10 (−−, −−) (−−, −−) (3.35, 31.17) (1.03, 3.61) (0.99, 3.37)
λ1 = 100 (−−, −−) (−−, −−) (28.02, 293.95) (1.06, 3.55) (1.03, 3.31)
λ1 = 200 (−−, −−) (−−, −−) (55.30, 586.92) (1.06, 3.55) (1.03, 3.31)

Parameters: τε = 0.8, γ = 1, τx = 0.5, λ2 = 0.5, λ3 = 0.4

Table 4.4: Comparison of models with two- and three-dimensional noise (3)

Two-dimensional noise Three-dimensional noise

β1 β2 β1 β2 β3

λ1 = 0.1 (1.76, 5.43) (2.27, 8.86) (1.58, 9.87) (1.85, 19.78) (1.79, 17.11)
λ1 = 1 (−−, −−) (−−, −−) (2.60, 6.26) (2.15, 4.54) (2.05, 4.20)
λ1 = 10 (−−, −−) (−−, −−) (−−, −−) (−−, −−) (−−, −−)
λ1 = 100 (−−, −−) (−−, −−) (−−, −−) (−−, −−) (−−, −−)
λ1 = 200 (−−, −−) (−−, −−) (−−, −−) (−−, −−) (−−, −−)

Parameters: τε = 1.5, γ = 1, τx = 0.5, λ2 = 0.5, λ3 = 0.4

less likely to happen than in the two-dimensional case. In Table 4.2, a market failure

already occurs for a value of λ1 between 1 and 10 in the version with two-dimensional

noise. In the three-dimensional version, by contrast, a market breakdown does not

take place even if λ1 = 200. In Tables 4.3 and 4.4, τε is increased from 0.3 to 0.8 and

1.5, respectively, raising the likelihood of a market breakdown. Although the LIE

and the HIE eventually disappear in the three-dimensional case for some value of λ1

between 1 and 10 in Table 4.4, they vanish “later” (i.e., for a higher λ1) than in the

two-dimensional case.

Exactly the same pattern can be identified when gradually increasing τx or gradually

decreasing γ and varying λ1. In all scenarios, a market breakdown is less likely to

happen in the model with three-dimensional noise. As the mass of traders with

information about the third noise component (i.e., λ3) increases, the advantage of

the three-dimensional over the two-dimensional case shrinks and a market breakdown

occurs for smaller values of λ1 than in the simulations contained in Tables 4.2,

4.3, and 4.4. Nevertheless, a market failure is still less likely to happen in the

three-dimensional model, no matter which value λ3 actually takes.

The fact that the LIE and the HIE are less likely to vanish in the three-dimensional

setup can be economically motivated as follows: When noise is three-dimensional,
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adverse selection is less intense than in the two-dimensional setup. The higher

the dimensionality of noise, the smaller the informational advantage obtained from

knowing a single noise component. Thus, even if the mass of noise-informed traders

becomes large, it can happen that adverse selection is not severe enough to produce

a market breakdown. This leads to the conclusion that a high dimensionality of

noise is beneficial for the functioning of financial markets with diversely informed

traders, as it weakens adverse selection.

4.5.4 Interactions at the Information Acquisition Stage

Finally, we explore agents’ strategic interactions in the acquisition of non-fundamental

information.11 The value of knowing xi is still given by (4.15) in Proposition 4.4 (see

Appendix A for the proof):

φxi =
1

2γ
log

[
Var(θ |P )

Var(θ |P, xi)

]
, for i = 1, 2, 3,

which can be written as

φxi =
1

2γ
log

[
τθ + τx/(β

−2
j + β−2l )

τθ + τx/(β
−2
i + β−2j + β−2l )

]
, for i, j, l = 1, 2, 3, i 6= j 6= l. (4.28)

As in the two-dimensional noise model, the value of information about xi is positively

correlated with the inverse of an xi-informed trader’s residual uncertainty about

fundamentals, represented by the numerator in (4.28). By contrast, the value of

information about noise shrinks when overall price efficiency, represented by the

denominator in (4.28), rises. The graph on the left-hand side in Figure 4.6 plots

the LIE values of φx1 , φx2 , and φx3 in dependence of λ1 for a given set of parameter

values. In the numerical example, φx1 is increasing in λ1 for sufficiently large values

of λ1, which confirms that acquiring information about the same noise component

can be a complement in the three-dimensional model as well. The same holds true

for acquiring information about different noise components, as both φx2 and φx3 are

strictly increasing in λ1 in the given example.

If λ3 = 0, numerical simulation shows that acquiring information about the same

noise component is always a substitute (i.e., φxi is monotonically decreasing in λi,

for i = 1, 2). More interestingly, the graph on the right-hand side in Figure 4.6

shows that φx2 can be increasing in λ1, although there is no third noise-informed

group (i.e., λ3 = 0). Thus, complementarities in acquiring information about

different noise components can exist even if one noise-informed group is absent.

Since Ganguli and Yang (2009) and Manzano and Vives (2011), complementarities

in information acquisition and equilibrium multiplicity are closely tied together
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Figure 4.6: Interactions in information acquisition with three-dimensional noise

Note: parameters for the graph on the left-hand side are τε = τx = 1, γ = 2, τθ = 1.5,
λ2 = 1.8, λ3 = 2. Parameters for the graph on the right-hand side are τε = τx = 1, γ = 2,
τθ = 1.5, λ2 = 1.8, λ3 = 0.

when considering the effects of non-fundamental information, i.e., non-fundamental

information only generates complementarities in information acquisition if it leads to

multiple equilibria. This relationship is confirmed when considering the acquisition

of information about the same noise component. Recall from Subsection 4.4.2 that

equilibrium is unique and acquiring information about the same noise component

is unequivocally a substitute if there is only one group of noise-informed traders

present. In the three-dimensional noise setup, if one noise-informed group is absent,

equilibrium is unique and acquiring information about the same noise component is a

substitute too. Nevertheless, acquiring information about different noise components

can still be a complement, as seen in the graph on the right-hand side in Figure 4.6

(i.e., φx2 increases with λ1). Thus, the three-dimensional noise model uncovers a

complementarity in the acquisition of non-fundamental information that can show

up, although equilibrium is unique. Acquiring information about different noise

components can be a complement even if non-fundamental information does not

make multiple equilibria arise. This new insight clarifies that multiple equilibria

are a necessary and sufficient condition for the possibility of complementarities in

the acquisition of information about the same noise component. However, multiple

equilibria are only a sufficient but not a necessary condition when considering under

what circumstances acquiring information about different noise components can be

a complement.
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4.6 Implications for the Effects of PFOF

The models of Sections 4.1 and 4.5 explore diversely noise-informed traders’ inter-

actions theoretically in an environment characterized by multidimensional noise.

Additionally, they investigate the resulting effects on price efficiency and the intensity

of adverse selection. The model setup was motivated by the increased availability of

non-fundamental information in financial markets due to the rise in PFOF. Following

up on this observation, this section uses the theoretical model results to derive some

implications regarding the effects of PFOF in real financial markets.

A first implication derived from the model is that the surge in PFOF is conducive to

price efficiency. As shown in Subsection 4.3.4, traders’ usage of their multidimensional

non-fundamental information, expressed by the relevant trading intensities, benefits

the efficiency of the market price. In the model, rational agents use their information

about noise trading to infer information about fundamentals from the price, which

makes them trade against non-fundamental information. This mitigates the influence

of noise trader demand on the price relative to fundamentals. In reality, of course, it

is unlikely that wholesalers engaged in PFOF use non-fundamental information to

extract noise from the price and forecast fundamentals more accurately. Nevertheless,

Farboodi et al. (2021, p. 16) state that this technique “is functionally equivalent

to trading against dumb money, a common practice for sophisticated traders with

access to retail order flow.” Hence, the model property that wholesalers engaged in

PFOF trade against retail trader demand closely resembles what happens in real

financial markets (see also Sal Arnuk’s quote on p. 73).

Moreover, as trading against different types of noise is unambiguously a complement

(see Proposition 4.2), the resulting interaction of the different market participants

engaged in PFOF additionally drives prices closer to fundamentals. As one wholesaler

engaged in PFOF trades more aggressively against the observed retail trader demand,

other wholesalers with information about other components linked to retail trading

trade more aggressively too. Thus, rational traders’ usage of their multidimensional

non-fundamental information and the resulting complementarities in trading indicate

a positive impact of PFOF on price efficiency.

Secondly, the model points to the fact that complementarities in acquiring inform-

ation about different noise components can exist (see Proposition 4.6 and Subsection

4.5.4). This suggests that the incentive to acquire non-fundamental information

by engaging in PFOF can increase even further as a consequence of more non-

fundamental information being acquired through PFOF. Thus, if the theoretically

derived complementarities manifest themselves in financial markets, the total amount

of non-fundamental information obtained through PFOF should increase or at least

maintain its contemporaneous level. Although this amount seems to be difficult to
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gauge, one can take a look at the major U.S. online brokers’ PFOF-related revenue

to tentatively evaluate whether complementarities in acquiring non-fundamental

information manifest themselves in financial markets. The major online brokers’

PFOF-related revenue can serve as a proxy for the amount of non-fundamental in-

formation in the market that is obtained through PFOF: the more non-fundamental

information acquired through PFOF, the higher the major online brokers’ revenue

linked to PFOF (assuming a constant payment per routed order, of course).

As outlined in the Introductory Chapter, the PFOF-related revenue of four major

U.S. online brokers, viz., Robinhood, Charles Schwab, E*TRADE, and TD Ameritrade,

jointly rose from $900 million in 2019 to roughly $2.5 billion in 2020. In 2021, as

of September 30, it already adds up to $2.4 billion (see also Figure 1.4). Of course,

the majority of this immense growth in revenue is related to the recent boom in

retail investing and the trend toward commission-free trading, which has forced

online brokers to find new sources of revenue. Nevertheless, this sharp increase

can tentatively be seen as a first hint at the manifestation of complementarities

in acquiring information about different components of retail order flow. It will

certainly be interesting to see how the revenue generated by PFOF will develop over

the next few years. Based on the model results, one would expect the total amount

of non-fundamental information in the market obtained through PFOF to increase.

This should be reflected in a rise in online brokers’ PFOF-related revenue or at least

in a conservation of its current high level.

Finally, the model has an important implication for the intensity of adverse selection

in financial markets due to the presence of PFOF. As seen in Subsection 4.5.3, a higher

dimensionality of noise weakens adverse selection and makes a market breakdown

less likely to occur. Hence, PFOF should not contribute significantly to exacerbating

the adverse selection problem as long as the non-fundamental information obtained

through PFOF is sufficiently dispersed among professional traders. The higher

the dimensionality of noise and, thus, the higher the number of different market

participants engaged in PFOF, the less severe adverse selection should be. According

to the model results, PFOF is not or only weakly conducive to adverse selection if

there are enough different traders engaged in PFOF. This furthermore implies that

possible market concentrations in the field of PFOF should be prevented.

Notably, the SEC requires U.S. online brokers’ company 606 reports, which disclose

the net payments received through PFOF, to be listed by customers. Thus, these

reports are a useful indicator of how many active wholesalers exist in the field of

PFOF. Additionally, each wholesaler’s net payments can serve as a proxy to evaluate

the possessed amount of non-fundamental information, also in relation to other

wholesalers. These figures should be used in the future to assess the severity of

adverse selection in financial markets generated by PFOF.
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The recent global surge in retail investing has shacked up the financial landscape and

significantly fostered the role of non-fundamental information in financial markets,

with two important developments that stand out. First, the rising mass of retail

traders has contributed to a boom in the user statistics of stock message boards

such as WallStreetBets and StockTwits. These forums have become a common

place for private investors to share opinions and to systematically coordinate market

activities, as was strikingly observed during the Gamestop episode in January

2021. Advances in processing the big data contained in the stock message boards

enable professional traders to gauge so-called social sentiment, which they include

in their trading decisions. Second, the online brokerage sector experienced an

immense influx of new customers, which was accompanied by a structural change

toward commission-free trading. In search of new sources of revenue, major U.S.

online brokers such as Robinhood and Charles Schwab began raising more money

through PFOF arrangements with wholesalers, resulting in a perhaps unprecedented

availability of non-fundamental information in financial markets.

Modeling retail investors as noise traders, this thesis adds to the theoretical

literature on non-fundamental information by investigating the impact of social

sentiment investing and PFOF within the competitive noisy REE framework. The

results of Chapter 3 indicate that social sentiment investing potentially moves prices

away from fundamentals. This outcome sharply contrasts with the conventional

wisdom that using non-fundamental information unambiguously raises price efficiency.

In the dynamic models of Chapter 3, professional traders capitalize on social sentiment

derived from stock message boards by front-running retail investors’ stock market

activity. Rather than trading against retail investors, professional investors ride the

bubble induced by retail trading, which possibly drives the market price even further

away from fundamentals.

Chapter 4 investigates the strategic interactions between different wholesalers

that glean non-fundamental information through PFOF arrangements. The ensuing

analysis uncovers new types of complementarities in trading and information acquis-

ition that have been absent in the relevant literature. Perhaps most interestingly,

the model reveals that a high dimensionality of noise mitigates the possibility of a

market breakdown by weakening adverse selection. The theoretical results are used
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to derive some implications regarding the real effects of PFOF: (i) PFOF enhances

price efficiency, (ii) complementarities in acquiring information about different noise

components predict an increase in the amount of non-fundamental information

obtained through PFOF, and (iii) non-fundamental information obtained through

PFOF should be sufficiently dispersed among wholesalers to weaken adverse selection.

Although this thesis points out some important consequences of social sentiment

investing and PFOF for financial markets, several open issues remain that future

research should address. Notably, the outcomes of Chapters 3 and 4 yield potentially

contrary results regarding the effects of social sentiment investing and PFOF on price

efficiency. Thus, one could think of setting up a “unified” framework encompassing

both social sentiment investing and PFOF to better assess the overall impact of

these sources of non-fundamental information on price efficiency. The dynamic

setups of Chapter 3 could, moreover, be extended by adding several feedback effects.

On the one hand, one could introduce a feedback loop between social sentiment

and noise trader demand, as not only professional investors’ but also retail traders’

demand is likely to be influenced by social sentiment. On the other hand, one could

implement a feedback effect from the financial market to the real economy (e.g.,

by modeling a firm manager or a capital provider) and explore the effects of social

sentiment investing on real efficiency. While the results of Chapter 3 emphasize a

potentially negative impact of social sentiment investing on price efficiency, they

do not consider the ensuing influence on real efficiency. However, given the static

nature of existing REE models with real decision-makers, analyzing real efficiency in

a dynamic framework seems to be quite challenging.

The model of Chapter 4 could also be modified in at least two reasonable ways.

First, one could try to investigate the general n-dimensional noise case and evaluate

whether the results derived in the two- and three-dimensional noise models are robust.

However, it might also be difficult to obtain analytical results at this point. Second,

Chapter 4 focuses on how professional traders with PFOF arrangements profit from

non-fundamental information when trading on their own account. Nevertheless,

matching and executing retail investors’ orders constitute the dominant activity

of wholesalers engaged in PFOF. Thus, one should also take into account the

consequences of this practice when assessing the overall effects of PFOF. These and

other aspects related to the special role that non-fundamental information has played

in financial markets since the beginning of this decade certainly merit additional

research.

110



A Model Proofs

Proof of Proposition 3.2. We solve for the linear dynamic REE with OLG of investors

by using backward induction. That is, we first derive the equilibrium function of P2.

Predicting θ at date 2. A date-2 agent possesses three signals to predict the

fundamental asset value (i.e., P ∗1 , P ∗2 , and x2i). Since the signals’ error terms are

pairwise uncorrelated, the first two conditional moments of θ are

E(θ | I2i) =
τε x2i + ρ21(τs1 + τη1)P

∗
1 + ρ22(τs2 + τη2)P

∗
2

τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2)
,

Var(θ | I2i) =
1

τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2)
.

Determining the equilibrium function of P2. Recalling (3.25), agent i’s date-2 demand

for the risky asset becomes

D2i = δ
E(θ | I2i)− P2

Var(θ | I2i)

= δτε x2i + δρ21(τs1 + τη1)P
∗
1 + δρ22(τs2 + τη2)P

∗
2 −

δ

Var(θ | I2i)
P2,

which is equal to (3.29) in the main text. Further computations yield

δτε x2i + δρ21(τs1 + τη1)P
∗
1 + δρ22(τs2 + τη2)P

∗
2 −

δ

Var(θ | I2i)
P2

= δτε x2i + δρ21(τs1 + τη1)

(
P1 + c11Y1 − c12Y2

a1
− 1

ρ1

τη1
τs1 + τη1

Y1

)

+ δρ22(τs2 + τη2)

[
θ +

1

ρ2

(
s2 −

τη2
τs2 + τη2

Y2

)]
− δ

Var(θ | I2i)
P2

= δτε x2i + δρ22(τs2 + τη2) θ + δρ2(τs2 + τη2) s2 −
δ

Var(θ | I2i)
P2 +

δρ21(τs1 + τη1)

a1
P1

− δ
[
−ρ21(τs1 + τη1)

c11
a1

+ ρ1τη1

]
Y1 − δ

[
ρ21(τs1 + τη1)

c12
a1

+ ρ2τη2

]
Y2.
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Market clearing at date 2 implies that∫ 1

0

D2i di+ s2 = 0,

which is equivalent to

δτε

∫ 1

0

x2i di+ δρ22(τs2 + τη2) θ + δρ2(τs2 + τη2) s2 −
δ

Var(θ | I2i)
P2

+ δ
ρ21(τs1 + τη1)

a1
P1 − δ

[
−ρ21(τs1 + τη1)

c11
a1

+ ρ1τη1

]
Y1

− δ
[
ρ21(τs1 + τη1)

c12
a1

+ ρ2τη2

]
Y2 + s2 = 0.

(A1)

Making use of the strong law of large numbers as in the static context (see Subsection

3.1.2), the error term in x2i vanishes when integrating (i.e.,
∫ 1

0
x2i di = θ). Solving

(A1) for P2 delivers

P2 =
τε + ρ22(τs2 + τη2)

∆
θ +

1 + δρ2(τs2 + τη2)

δ∆
s2 −

ρ1τη1 − ρ21(τs1 + τη1)
c11
a1

∆
Y1

−
ρ2τη + ρ21(τs1 + τη1)

c12
a1

∆
Y2 +

ρ21(τs1 + τη1)

a1∆
P1,

where ∆ ≡ τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2). Invoking rational expectations

immediately yields:

a2 =
τε + ρ22(τs2 + τη2)

∆
,

b2 =
1 + δρ2(τs2 + τη2)

δ∆
,

c21 =
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

∆
,

c22 =
ρ2τη2 + ρ21(τs1 + τη1)

c12
a1

∆
,

d2 =
ρ21(τs1 + τη1)

a1∆
.

Predicting θ at date 1. Recall that I1i = (P1, x1i, Y1, Y2). At date 1, an agent uses

her private signal about the fundamental asset value and the information contained

in P ∗1 to update her prior beliefs about θ. As the error terms of the signals x1i and
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P ∗1 are uncorrelated, we get

E(θ | I1i) =
τε x1i + ρ21(τs1 + τη1)P

∗
1

τθ + τε + ρ21(τs1 + τη1)
,

Var(θ | I1i) =
1

τθ + τε + ρ21(τs1 + τη1)
.

Predicting s2 at date 1. Since date-1 agents are concerned with forecasting the date-2

price, they need to predict date-2 noise trader demand too. Inspecting date-1 price

function (3.23), we see that P1 does not convey any information about s2 that goes

beyond the information already contained in Y2. Thus, date-1 rational traders only

use Y2 to predict s2. Using the bivariate case of the projection theorem, we get

E(s2 |Y2) =
τη2Y2

τs2 + τη2
,

Var(s2 |Y2) =
1

τs2 + τη2
.

Determining the equilibrium function of P1. From (3.26), we have

D1i = δ
E(P2 | I1i)− P1

Var(P2 | I1i)
.

Denote Γ1 ≡ Var(θ | I1i) and Γ2 ≡ Var(s2 | I1i). Then, the first two conditional

moments of P2 are

E(P2 | I1i) = a2 E(θ | I1i) + b2 E(s2 | I1i) − c21Y1 − c22Y2 + d2P1

= a2Γ1

[
τε x1i + ρ21(τs1 + τη1)P

∗
1

]
+ b2Γ2τη2Y2 − c21Y1 − c22Y2 + d2P1,

Var(P2 | I1i) = a22Γ1 + b22Γ2.

Thus, agent i’s demand for the risky asset at date 1 can be written as

D1i =
a2Γ1

a22Γ1 + b22Γ2

[
δτε x1i + δρ21(τs1 + τη1)P

∗
1

]
+

δ

a22Γ1 + b22Γ2

(b2Γ2τη2Y2 − c21Y1 − c22Y2 + d2P1)−
δ

a22Γ1 + b22Γ2

P1,

which is equal to (3.30) in the main text. Market clearing at date 1 implies:

0 =

∫ 1

0

D1i di+ s1
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= a2Γ1τε

∫ 1

0

x1i di+ a2Γ1ρ
2
1(τs1 + τη1)

(
P1 + c11Y1 − c12Y2

a1
− 1

ρ1

τη1
τs1 + τη1

Y1

)

+ b2Γ2τη2Y2 − c21Y1 − c22Y2 + d2P1 − P1 +
a22Γ1 + b22Γ2

δ
s1

= a2Γ1τε

∫ 1

0

x1i di+
a22Γ1 + b22Γ2

δ
s1 −

{
a2Γ1

[
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

]
+ c21

}
Y1

+

[
−a2Γ1ρ

2
1(τs1 + τη1)

c12
a1

+ b2τη2Γ2 − c22
]
Y2

−
[
1− d2 −

a2Γ1ρ
2
1(τs1 + τη1)

a1

]
P1.

(A2)

Again, by the strong law of large numbers, we obtain
∫ 1

0
x1i di = θ. Solving (A2) for

P1 gives

P1 =
1

1− d2 −
a2Γ1ρ

2
1(τs1 + τη1)

a1

(
a2Γ1τε θ +

a22Γ1 + b22Γ2

δ
s1

−
{
a2Γ1

[
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

]
+ c21

}
Y1

+

[
− a2Γ1ρ

2
1(τs1 + τη1)

c12
a1

+ b2τη2Γ2 − c22
]
Y2

)
.

By invoking rational expectations, we obtain

a1 =
a2Γ1τε

1− d2 −
a2Γ1ρ

2
1(τs1 + τη1)

a1

=
a2Γ1τε

1− ρ21(τs1 + τη1)

a1∆
− a2Γ1ρ

2
1(τs1 + τη1)

a1

=
a2Γ1τε

1− ρ21(τs1 + τη1)(1 + a2Γ1∆)

a1∆

.

Solving for a1 gives

a1 = a2Γ1τε +
ρ21(τs1 + τη1)(1 + a2Γ1∆)

∆

114



A Model Proofs

=
a2Γ1∆ [τε + ρ21(τs1 + τη1)] + ρ21(τs1 + τη1)

∆

=

τε + ρ22(τs2 + τη2)

∆

∆

τθ + τε + ρ21(τs1 + τη1)
[τε + ρ21(τs1 + τη1)] + ρ21(τs1 + τη1)

∆

=
[τε + ρ22(τs2 + τη2)][τε + ρ21(τs1 + τη1)] + ρ21(τs1 + τη1)[τθ + τε + ρ21(τs1 + τη1)]

∆[τθ + τε + ρ21(τs1 + τη1)]

=
ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

∆[τθ + τε + ρ21(τs1 + τη1)]
.

From the definition of ρ1, it immediately follows that

b1 =
a1
ρ1
.

Furthermore,

c11 =
a2Γ1

[
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

]
+ c21

1− d2 −
a2Γ1ρ

2
1(τs1 + τη1)

a1

=
a2Γ1

[
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

]
+
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

∆

1− ρ21(τs1 + τη1)(1 + a2Γ1∆)

a1∆

=
a2Γ1a1∆

[
ρ1τη1 − ρ21(τs1 + τη1)

c11
a1

]
+ a1ρ1τη1 − ρ21(τs1 + τη1)c11

a1∆− ρ21(τs1 + τη1)(1 + a2Γ1∆)

=
a1ρ1τη1(1 + a2Γ1∆)− c11ρ21(τs1 + τη1)(1 + a2Γ∆)

a1∆− ρ21(τs1 + τη1)(1 + a2Γ1∆)
.

Solving for c11 yields

c11 =
ρ1τη1(1 + a2Γ1∆)

∆

=

ρ1τη1

[
1 +

τε + ρ22(τs2 + τη2)

τθ + τε + ρ21(τs1 + τη1)

]
∆

=
ρ1τη1(∆ + τε)

∆[τθ + τε + ρ21(τs1 + τη1)]
.
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Moreover,

c12 =
− a2Γ1ρ

2
1(τs1 + τη1)

c12
a1

+ b2τη2Γ2 − c22

1− d2 −
a2Γ1ρ

2
1(τs1 + τη1)

a1

=
− a2Γ1ρ

2
1(τs1 + τη1)

c12
a1

+ b2τη2Γ2 −
ρ2τη2 + ρ21(τs1 + τη1)

c12
a1

∆

1− ρ21(τs1 + τη1)(1 + a2Γ1∆)

a1∆

=
−ρ21(τs1 + τη1)(1 + a2Γ1∆)c12 + a1τη2(b2Γ2∆− ρ2)

a1∆− ρ21(τs1 + τη1)(1 + a2Γ1∆)
.

After solving for c12, we obtain

c12 =
τη2(b2Γ2∆− ρ2)

∆

=
τη2
∆

{
[1 + δρ2(τs2 + τη2)]∆

δ∆(τs2 + τη2)
− ρ2

}
=

τη2
δ∆(τs2 + τη2)

.

Determining ρ1 and ρ2. Recall that ρ2 ≡ a2/b2 and ρ1 ≡ a1/b1. This delivers

ρ2 =
δ[τε + ρ22(τs2 + τη2)]

1 + δρ2(τs2 + τη2)

⇔ ρ2[1 + δρ2(τs2 + τη2)] = δ[τε + ρ22(τs2 + τη2)]

⇔ ρ2 = δτε,

which, by (3.29), is equal to
∫ 1

0
(∂D2i/∂x2i) di. Furthermore,

ρ1 =
a2Γ1

a22Γ1 + b22Γ2

δτε,

which equals
∫ 1

0
(∂D1i/∂x1i) di (see (3.30)). Direct computations yield

ρ1 =

τε + ρ22(τs2 + τη2)

∆[τθ + τε + ρ21(τs1 + τη1)]
δτε

[τε + ρ22(τs2 + τη2)]
2

∆2[τθ + τε + ρ21(τs1 + τη1)]
+

[1 + δρ2(τs2 + τη2)]
2

δ2∆2(τs2 + τη2)
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=

τε + ρ22(τs2 + τη2)

∆[τθ + τε + ρ21(τs1 + τη1)]
δτε

δ2(τs2 + τη2)[τε + ρ22(τs2 + τη2)]
2 + [1 + δρ2(τs2 + τη2)]

2[τθ + τε + ρ21(τs1 + τη1)]

δ2∆2[τθ + τε + ρ21(τs1 + τη1)](τs2 + τη2)

=
δ3τε∆[τε + ρ22(τs2 + τη2)](τs2 + τη2)

ρ22(τs2 + τη2)[1 + δρ2(τs2 + τη2)]
2 + [1 + δρ2(τs2 + τη2)]

2[τθ + τε + ρ21(τs1 + τη1)]

=
δ3τ 2ε ∆[1 + δρ2(τs2 + τη2)](τs2 + τη2)

ρ22(τs2 + τη2)[1 + δρ2(τs2 + τη2)]
2 + [1 + δρ2(τs2 + τη2)]

2[τθ + τε + ρ21(τs1 + τη1)]

=
δ3τ 2ε (τs2 + τη2)∆

[1 + δρ2(τs2 + τη2)][τθ + τε + ρ21(τs1 + τη1) + ρ22(τs2 + τη2)]

=
δ3τ 2ε (τs2 + τη2)

1 + δ2τε(τs2 + τη2)
.

Since ρ1 and ρ2 can be expressed in closed form, the derived solution for the coefficients

(a1, b1, c11, c12, a2, b2, c21, c22, d2) is given in closed form too. Furthermore, the

linear REE is unique, as the expressions of ρ1 and ρ2 are unique. �

Proof of Proposition 3.3. Denote

B1 ≡
(

1

ρ1
− c11
a1

)2
1

τs1
,

B2 ≡
(
c11
a1

)2
1

τη1
,

B3 ≡
(
c12
a1

)2(
1

τs2
+

1

τη2

)
so that Var−1(θ |P ∗∗1 ) = τθ + (B1 +B2 +B3)

−1. Recalling the coefficients contained

in Proposition 3.2, direct computations yield

B1 =

{
1

ρ1
− ρ1τη1(∆ + τε)

ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

}2
1

τs1

=

(
ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]− ρ21τη1(∆ + τε)

ρ1{ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2
1

τs1

=

{
ρ21τs1(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

}2
1

ρ21τs1
.

Moreover,

B2 =

{
ρ1τη1(∆ + τε)

ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

}2
1

τη1
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= τη1

{
ρ1(∆ + τε)

ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]

}2

and

B3 =

(
τη2 [τθ + τε + ρ21(τs1 + τη1)]

δ(τs2 + τη2){ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2(
1

τs2
+

1

τη2

)

=
τη2

τs2(τη2 + τs2)

(
τθ + τε + ρ21(τs1 + τη1)

δ{ρ21(τs1 + τη1)(∆ + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2

.

For τη1 = 0, we obtain

B1 =
1

ρ21τs1
,

B2 = 0,

B3 =
τη2

τs2(τη2 + τs2)

(
τθ + τε + ρ21τs1

δ{ρ21τs1(∆01 + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2

,

where ∆01 ≡ τθ + τε + ρ21τs1 + ρ22(τs2 + τη2). From Proposition 3.2 and Table 3.1,

ρ10 ≡ ρ1|τη2=0 =
δ3τ 2ε τs2

1 + δ2τετs2
,

lim
τη2→∞

ρ1 = δτε,

which gives

B1|τη2=0 =
1

ρ210τs1
,

lim
τη2→∞

B1 =
1

δ2τ 2ε τs1
.

Thus, B1 is smaller as τη2 →∞ than for τη2 = 0, which means that the CON effect

is more pronounced for τη2 = 0. Turning to the COMSFUN effect, we obtain

B3|τη2=0 = 0

and

lim
τη2→∞

B3 = lim
τη2→∞

τη2
τs2(τη2 + τs2)

(
τθ + τε + ρ21τs1

δ{ρ21τs1(∆01 + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2

= 0,
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which proves part (a) in the proposition. For τη1 > 0, direct computations yield

B1|τη2=0 =

[
ρ210τs1(∆02 + τε) + τε(τε + ρ22τs2)

ρ210(τs1 + τη1)(∆02 + τε) + τε(τε + ρ22τs2)

]2
1

ρ210τs1

=
(ρ210τs1 + τεC)2

ρ210τs1 [ρ
2
10(τs1 + τη1) + τεC]2

, (A3)

where

∆02 ≡ τθ + τε + ρ210(τs1 + τη1) + ρ22τs2 ,

C ≡ τε + ρ22τs2
∆02 + τε

< 1.

Moreover,

B2|τη2=0 = τη1

[
ρ10(∆02 + τε)

ρ210(τs1 + τη1)(∆02 + τε) + τε[τε + ρ22τs2 ]

]2

=
ρ210τη1

[ρ210(τs1 + τη1) + τεC]2
. (A4)

Combining (A3) and (A4) delivers

B1|τη2=0 + B2|τη2=0 =
(ρ210τs1 + τεC)2

ρ210τs1 [ρ
2
10(τs1 + τη1) + τεC]2

+
ρ210τη1

[ρ210(τs1 + τη1) + τεC]2

=
(ρ210τs1 + τεC)2 + ρ410τs1τη1
ρ210τs1 [ρ

2
10(τs1 + τη1) + τεC]2

. (A5)

Turning to the case of τη2 →∞, we obtain

lim
τη2→∞

B1 =

(
lim

τη2→∞

1

ρ1
− lim

τη2→∞

c11
a1

)2
1

τs1
.

By Table 3.1, we get

lim
τη2→∞

B1 =

[
1

δτε
− δτετη1
τε + δ2τ 2ε (τs1 + τη1)

]2
1

τs1
=

(τε + δ2τ 2ε τs1)
2

δ2τ 2ε τs1 [τε + δ2τ 2ε (τs1 + τη1)]
2
. (A6)

It is easily checked that (A6) can be greater or smaller than (A3). Furthermore,

lim
τη2→∞

B2 =

(
lim

τη2→∞

c11
a1

)2
1

τη1
=

δ2τ 2ε τη1
[τε + δ2τ 2ε (τs1 + τη1)]

2
. (A7)
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Again, it is easily checked that (A7) can be greater or smaller than (A4). Thus,

lim
τη2→∞

B1 + lim
τη2→∞

B2 =
(τε + δ2τ 2ε τs1)

2

δ2τ 2ε τs1 [τε + δ2τ 2ε (τs1 + τη1)]
2

+
δ2τ 2ε τη1

[τε + δ2τ 2ε (τs1 + τη1)]
2

=
(τε + δ2τ 2ε τs1)

2 + δ4τ 4ε τη1τs1
δ2τ 2ε τs1 [τε + δ2τ 2ε (τs1 + τη1)]

2
, (A8)

which can be greater or smaller than (A5). This proves part (b) in the proposition.

As a supplement to the proof of Proposition 3.3, we show that date-1 agents can

trade more or less aggressively against Y1 for τη2 = 0 than as τη2 →∞ (as stated on

p. 55 in the main text). We know that

c11
a1

=
|∂D1/∂Y1|
∂D1/∂θ

⇔
∣∣∣∣∂D1

∂Y1

∣∣∣∣ =
∂D1

∂θ

c11
a1
.

For τη2 = 0, by Proposition 3.2 and (3.34), we obtain∣∣∣∣∂D1

∂Y1

∣∣∣∣ =
ρ10
δτε

[δτε + δρ210(τs1 + τη1)]
ρ10τη1(∆02 + τε)

ρ210(τs1 + τη1)(∆02 + τε) + τε(τε + ρ22τs2)

=
ρ210τη1(∆02 + τε)[τε + ρ210(τs1 + τη1)]

τε[ρ210(τs1 + τη1)(∆02 + τε) + τε(τε + ρ22τs2)]

= δ2τετη1
z2(∆02 + τε)[τε + ρ210(τs1 + τη1)]

ρ210(τs1 + τη1)(∆02 + τε) + τε(τε + ρ22τs2)
, (A9)

where

z ≡ δ2τετs2
1 + δ2τετs2

.

Analogously, as τη2 →∞, we get

lim
τη2→∞

∣∣∣∣∂D1

∂Y1

∣∣∣∣ = lim
τη2→∞

∂D1

∂θ
lim

τη2→∞

c11
a1

= [δτε + δ3τ 2ε (τs1 + τη1)]
δτετη1

τε + δ2τ 2ε (τs1 + τη1)

= δ2τετη1 . (A10)

Note that (A10) can be smaller or greater than (A9), depending on whether the

fraction in (A9) is greater or smaller than unity. �
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Proof of Proposition 3.4. If τη1 = 0, we already know that

B1 =
1

ρ21τs1
,

B2 = 0,

B3 =
τη2

τs2(τη2 + τs2)

(
τθ + τε + ρ21τs1

δ{ρ21τs1(∆01 + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2

.

Thus,

∂B1

∂τη2
= − 2

ρ31τs1

∂ρ1
∂τη2

= − 2

ρ31τs1

δ3τ 2ε
[1 + δ2τε(τs2 + τη2)]

2
.

For τη2 = 0, we obtain

∂B1

∂τη2

∣∣∣∣
τη2 = 0

= − 2

ρ310τs1

δ3τ 2ε
(1 + δ2τετs2)

2
.

Furthermore, note that

δ3τ 2ε
(1 + δ2τετs2)

2
=

(
δ3τ 2ε τs2

1 + δ2τετs2

)2
1

δ3τ 2ε τ
2
s2

=
ρ210

δ3τ 2ε τ
2
s2

.

This eventually delivers

∂B1

∂τη2

∣∣∣∣
τη2 = 0

= − 2

δ3ρ10τ 2ε τs1τ
2
s2

.

The impact on the COMSFUN effect is given by

∂B3

∂τη2
=

1

(τs2 + τη2)
2

(
τθ + τε + ρ21τs1

δ{ρ21τs1(∆01 + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2

+
τη2

τs2(τs2 + τη2)

∂

∂τη2

[(
τθ + τε + ρ21τs1

δ{ρ21τs1(∆01 + τε) + τε[τε + ρ22(τs2 + τη2)]}

)2
]
.

For τη2 = 0, the second summand drops out (note that the denominator in the above

fraction is bounded away from zero). This gives

∂B3

∂τη2

∣∣∣∣
τη2 = 0

=
1

τ 2s2

{
τθ + τε + ρ210τs1

δ[ρ210τs1(τθ + 2τε + ρ210τs1 + ρ22τs2) + τε(τε + ρ22τs2)]

}2

.
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Thus,

∂[Var−1(θ |P ∗∗1 )]

∂τη2

∣∣∣∣
τη2 = 0

< 0 exactly if

− 2

δ3ρ10τ 2ε τs1τ
2
s2

+
1

τ 2s2

{
τθ + τε + ρ210τs1

δ[ρ210τs1(τθ + 2τε + ρ210τs1 + ρ22τs2) + τε(τε + ρ22τs2)]

}2

> 0,

which can be written as

2

δρ10τ 2ε τs1
<

[
τθ + τε + ρ210τs1

ρ210τs1(τθ + 2τε + ρ210τs1 + ρ22τs2) + τε(τε + ρ22τs2)

]2
. �

Proof of Proposition 3.5. Note that the error terms in (3.31) and (3.35) are correlated.

This requires the application of the classical projection theorem, given in Appendix

B.2, to determine joint price efficiency. Direct computations yield

Var (θ |P ∗∗1 , P ∗∗2 )

= Var (θ)−
(

Cov (θ, P ∗∗1 ) Cov (θ, P ∗∗2 )

)

×

 Var (P ∗∗1 ) Cov (P ∗∗1 , P ∗∗2 )

Cov (P ∗∗1 , P ∗∗2 ) Var (P ∗∗2 )


−1Cov (θ, P ∗∗1 )

Cov (θ, P ∗∗2 )


= τ−1θ −

1

Var (P ∗∗1 ) Var (P ∗∗2 )− [Cov(P ∗∗1 , P ∗∗2 )]2

(
τ−1θ τ−1θ

)

×

 Var (P ∗∗2 ) −Cov (P ∗∗1 , P ∗∗2 )

−Cov (P ∗∗1 , P ∗∗2 ) Var (P ∗∗1 )


τ−1θ

τ−1θ


= τ−1θ −

τ−1θ

Var (P ∗∗1 ) Var (P ∗∗2 )− [Cov(P ∗∗1 , P ∗∗2 )]2

×
(

Var (P ∗∗2 )− Cov (P ∗∗1 , P ∗∗2 ) Var (P ∗∗1 )− Cov (P ∗∗1 , P ∗∗2 )

)τ−1θ

τ−1θ


= τ−1θ − τ

−2
θ

Var (P ∗∗1 ) + Var (P ∗∗2 )− 2 Cov (P ∗∗1 , P ∗∗2 )

Var (P ∗∗1 ) Var (P ∗∗2 )− [Cov(P ∗∗1 , P ∗∗2 )]2
.
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Thus,

Var−1 (θ |P ∗∗1 , P ∗∗2 ) =

{
τ−1θ − τ

−2
θ

Var (P ∗∗1 ) + Var (P ∗∗2 )− 2 Cov (P ∗∗1 , P ∗∗2 )

Var (P ∗∗1 ) Var (P ∗∗2 )− [Cov(P ∗∗1 , P ∗∗2 )]2

}−1
,

where

Var (P ∗∗1 ) = τ−1θ +

(
1

ρ1
− c11
a1

)2
1

τs1
+

(
c11
a1

)2
1

τη1
+

(
c12
a1

)2(
1

τs2
+

1

τη2

)
,

Var (P ∗∗2 ) = τ−1θ +

(
1

ρ2
− c22
a2

)2
1

τs2
+

(
c22
a2

)2
1

τη2
+

(
c21
a2

)2(
1

τs1
+

1

τη1

)
,

Cov (P ∗∗1 , P ∗∗2 ) = τ−1θ −
(

1

ρ1
− c11
a1

)
c21
a2

1

τs1
+
c12
a1

(
1

ρ2
− c22
a2

)
1

τs2

+
c11
a1

c21
a2

1

τη1
− c12
a1

c22
a2

1

τη2
. �

Proof of Proposition 3.6. Along the proof, we will make use of three laws:

1. Law of iterated expectations. Let X and Z be two sets of random variables and Y

a single random variable. Then, if X ⊆ Z, it holds that E[E(Y |Z) |X] = E(Y |X).

2. Law of total conditional variance. Let X, Y , and Z be three random variables.

The law of total conditional variance states that

Var(Y |X) = E[Var(Y |Z,X) |X] + Var[E(Y |X,Z) |X].

If X, Y , and Z are normal, we have

Var(Y |X) = Var(Y |Z,X) + Var[E(Y |X,Z) |X],

as Var(Y |Z,X) is non-random in this case.

3. Law of total covariance. Let X, Y , and Z be three random variables. The law of

total covariance states that

Cov(Y, Z) = E[Cov(Y, Z |X)] + Cov[E(Y |X),E(Z |X)].

If X, Y , and Z are normal, we have

Cov(Y, Z) = Cov(Y, Z |X) + Cov[E(Y |X),E(Z |X)],

as Cov(Y, Z |X) is non-random in this case.

Following Avdis (2016, Appendix B), the optimization problem of agent i can be

written as follows:

V (πi) = max
D1i

E

[
max
D2i

E

(
−e−δ

−1πi
∣∣I2i) ∣∣I1i]
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= −min
D1i

[
E

(
e−δ

−1(P2 − P1)D1i min
D2i

{
E

[
e−δ

−1(θ − P2)D2i
∣∣I2i]} ∣∣∣∣I1i)] .

(A11)

Recalling the results contained in Appendix B.3.1, the innermost optimization

problem in (A11) becomes

min
D2i

{
E

[
e−δ

−1(θ − P2)D2i
∣∣I2i]}

= min
D2i

[
exp

(
−1

δ

{
[E(θ | I2i)− P2]D2i −

1

2δ
Var(θ | I2i)D2

2i

})]
. (A12)

As before, the first-order condition of the above objective function in D2i immediately

gives

D2i =
δ[E(θ | I2i)− P2]

Var (θ | I2i)
.

Plugging the optimal date-2 demand function back into (A12) yields

exp

[
− 1

δ

(
[E(θ | I2i)− P2]

δ[E(θ | I2i)− P2]

Var(θ | I2i)

− 1

2δ
Var(θ | I2i)

{
δ[E(θ | I2i)− P2]

Var(θ | I2i)

}2
)]

= exp

{
− [E(θ − P2 | I2i)]2

2Var(θ | I2i)

}
. (A13)

By plugging (A13) into (A11), the value function becomes

V (πi) = −min
D1i

[
E

(
exp

{
−δ−1(P2 − P1)D1i −

[E(θ − P2|I2i)]2

2Var(θ | I2i)

} ∣∣∣∣I1i)] .
In Appendix B.4, we prove that

E
[
exp(x− y2)

]
=

exp

{
E(X) +

1

2
Var(X)− [E(Y ) + Cov(X, Y )]2

1 + 2Var(Y )

}
√

1 + 2Var(Y )
,

where X and Y are two jointly normal random variables. Setting X = −δ−1(P2 −
P1)D1i and Y = E(θ − P2 | I2i)/

√
2Var(θ | I2i), conditional on I1i, we obtain

E(X | I1i) = −δ−1[E(P2 | I1i)− P1]D1i,
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Var(X | I1i) = δ−2 Var(P2 | I1i)D2
1i.

Furthermore, by the law of iterated expectations,

E(Y | I1i) =
E [E(θ − P2 | I2i) | I1i]√

2Var(θ | I2i)
=

E(θ − P2 | I1i)√
2Var(θ | I2i)

.

Applying the law of total conditional variance delivers

1 + 2Var(Y | I1i) = 1 +
Var [E(θ − P2 | I2i) | I1i]

Var [θ|I2i]

= 1 +
Var (θ − P2 | I1i)− E [Var (θ − P2 | I2i) | I1i]

Var(θ | I2i)

= 1 +
Var (θ − P2 | I1i)− Var (θ − P2 | I2i)

Var(θ | I2i)

=
Var (θ − P2 | I1i)

Var(θ | I2i)
.

Moreover,

Cov(X, Y | I1i) = − D1i

δ
√

2Var(θ | I2i)
Cov[P2 − P1,E(θ − P2 | I2i) | I1i].

Note that

Cov[P2 − P1,E(θ − P2 | I2i) | I1i] = Cov [E(P2 − P1 | I2i),E(θ − P2 | I2i) | I1i] .

Then, by the law of total covariance and the law of iterated expectations, we have

Cov [E(P2 − P1 | I2i),E(θ − P2 | I2i) | I1i]

= Cov [E(P2 − P1 | I2i),E(θ − P2 | I2i)]

− Cov{E [E(P2 − P1 | I2i) | I1i] ,E [E(θ − P2 | I2i) | I1i]}

= Cov [E(P2 − P1 | I2i),E(θ − P2 | I2i)]− Cov [E(P2 − P1 | I1i),E(θ − P2 | I1i)] .

Again applying the law of total covariance to both above terms delivers

Cov [E(P2 − P1 | I2i),E(θ − P2 | I2i)]− Cov [E(P2 − P1 | I1i),E(θ − P2 | I1i)]

= Cov(P2 − P1, θ − P2)− Cov(P2 − P1, θ − P2 | I2i)− Cov(P2 − P1, θ − P2)

+ Cov(P2 − P1, θ − P2 | I1i)
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= Cov(P2, θ − P2 | I1i),

where the last equation follows from the fact that Cov(P2 − P1, θ − P2 | I2i) = 0, as

P2 − P1 is non-random conditional on I2i. Thus,

Cov(X, Y | I1i) = − D1i

δ
√

2Var(θ | I2i)
Cov(P2, θ − P2 | I1i).

Further computations yield

[E(Y | I1i) + Cov(X, Y | I1i)]2

=

[
E(θ − P2 | I1i)√

2Var(θ | I2i)
− D1i

δ
√

2Var(θ | I2i)
Cov(P2, θ − P2 | I1i)

]2

=
1

2Var(θ | I2i)

[
E(θ − P2 | I1i)−

1

δ
D1i Cov(P2, θ − P2 | I1i)

]2
.

This delivers

[E(Y | I1i) + Cov(X, Y | I1i)]2

1 + 2Var(Y | I1i)

=
1

2Var(θ − P2 | I1i)

[
E(θ − P2 | I1i)−

1

δ
D1i Cov(P2, θ − P2 | I1i)

]2
.

The value function becomes

V (πi)

= − min
D1i

(√
Var (θ | I2i)

Var (θ − P2 | I1i)
exp

{
− δ−1[E(P2 | I1i)− P1]D1i

+
1

2δ2
Var(P2 | I1i)D2

1i −

[
E(θ − P2 | I1i)−

1

δ
D1i Cov(P2, θ − P2 | I1i)

]2
2Var(θ − P2 | I1i)

})
.

Then, the first-order condition of the objective function in D1i is

− δ−1[E(P2 | I1i)− P1] +
1

δ2
Var(P2 | I1i)D1i +

Cov(P2, θ − P2 | I1i)
δVar(θ − P2 | I1i)

×
[
E(θ − P2 | I1i)−

1

δ
D1i Cov(P2, θ − P2 | I1i)

]
= 0.
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Solving for D1i eventually yields the optimal demand at date 1:

D1i

{
1

δ
Var(P2 | I1i)−

[Cov(P2, θ − P2 | I1i)]2

δVar(θ − P2 | I1i)

}

= E(P2 − P1 | I1i)−
Cov(P2, θ − P2 | I1i)

Var(θ − P2 | I1i)
E(θ − P2 | I1i)

⇔D1i = δ
E[P2 − h(θ − P2) | I1i]− P1

Var(P2 | I1i)− hCov(P2, θ − P2 | I1i)
,

where h ≡ Cov(P2, θ − P2 | I1i)
Var(θ − P2 | I1i)

.

The given demand function can be further developed as follows:

D1i = δ
E[P2 − h(θ − P2) | I1i]− P1

Var(P2 | I1i)
{

1− [Cov(P2, θ − P2 | I1i)]2

Var(P2 | I1i) Var(θ − P2 | I1i)

}

= δ
E[P2 − h(θ − P2) | I1i]− P1

Var(P2 | I1i)(1− Corr2)

= δ
E(P2 | I1i)− P1

Var(P2 | I1i)(1− Corr2)
− δh E(θ − P2 | I1i)

Var(P2 | I1i)(1− Corr2)
,

which equals equation (3.37) in the main text. �

Proof of Proposition 3.7. As in the OLG model, we obtain the equilibrium price

functions in the LLA model by using backward induction. A long-lived agent’s date-2

demand function shows the same general form as that of an agent in the OLG model

(cf. (3.25) and (3.36)). Furthermore, the date-2 information sets are identical in both

models. They consist of one private fundamental signal, two public non-fundamental

signals, and both prices. Thus, the derivation of the equilibrium function of P2 in

the LLA model follows exactly the same steps as in the OLG model. Without any

further computations, we can conclude that

a2 =
τε + ρ22(τs2 + τη2)

∆
, b2 =

1 + δρ2(τs2 + τη2)

δ∆
, c21 =

ρ1τη1 − ρ21(τs1 + τη1)
c11
a1

∆
,

c22 =
ρ2τη2 + ρ21(τs1 + τη1)

c12
a1

∆
, d2 =

ρ21(τs1 + τη1)

a1∆
, ρ2 ≡

a2
b2

= δτε,

where ∆ ≡ τθ+τε+ρ
2
1(τs1 +τη1)+ρ22(τs2 +τη2). We know from the proof of Proposition

3.6 that a long-lived agent’s date-1 demand function can be written as

D1i = δ
E[P2 − h(θ − P2) | I1i]− P1

Var(P2 | I1i)− hCov(P2, θ − P2 | I1i)
,
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where h ≡ Cov(P2, θ − P2 | I1i)
Var(θ − P2 | I1i)

.

Recall that I1i = (xi, P1, Y1, Y2). Then,

Cov(θ − P2, P2 | I1i) = Cov(θ, P2 | I1i) + Cov(−P2, P2 | I1i)

= Cov(θ, a2 θ + b2s2 − c21Y1 − c22Y2 + d2P1 | I1i)− Var(P2 | I1i)

= a2Var(θ | I1i) + Cov(θ, s2 | I1i)− Var(P2 | I1i)

= a2Var(θ | I1i)− Var(a2 θ + b2s2 − c21Y1 − c22Y2 + d2P1 | I1i)

+ Cov(θ, s2 | I1i)

= a2(1− a2)Var(θ | I1i)− b22Var(s2 | I1i) + Cov(θ, s2 | I1i).

By the law of total covariance, we obtain

Cov(θ, s2 | I1i) = Cov(θ, s2)− Cov[E(θ | I1i),E(s2 | I1i)]

= −Cov[E(θ | I1i),E(s2 | I1i)].

We know that

E(θ | I1i) =
τε xi + ρ21(τs1 + τη1)P

∗
1

τθ + τε + ρ21(τs1 + τη1)
,

E(s2 | I1i) =
τη2Y2

τs2 + τη2
,

and that P ∗1 is a linear function of θ, s1, and η1 (see Subsection 3.2.2). Thus, E(θ | I1i)
can be expressed as a linear function of θ, εi, s1, and η1 and E(s2 | I1i) as a linear

function of s2 and η2. Since the respective random variables are pairwise uncorrelated,

Cov(θ, s2 | I1i) = −Cov[E(θ | I1i),E(s2 | I1i)] = 0.

This yields:

Cov(θ − P2, P2 | I1i) = a2(1− a2)Var(θ | I1i)− b22Var(s2 | I1i).

Moreover,

Var(θ − P2 | I1i) = Var(θ − a2 θ − b2s2 + c21Y1 + c22Y2 − d2P1 | I1i)
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= Var[(1− a2) θ − b2s2 | I1i]

= (1− a2)2 Var(θ | I1i) + b22 Var(s2 | I1i).

Denote Γ1 ≡ Var(θ | I1i) and Γ2 ≡ Var(s2 | I1i). Then,

h =
Cov(P2, θ − P2 | I1i)

Var(θ − P2 | I1i)
=
a2(1− a2)Γ1 − b22Γ2

(1− a2)2Γ1 + b22Γ2

.

Furthermore,

E[P2 − h(θ − P2) | I1i]

= (1 + h)E(a2 θ + b2s2 − c21Y1 − c22Y2 + d2P1 | I1i)− hE(θ | I1i)

= [(1 + h)a2 − h] E(θ | I1i) + (1 + h) [b2E(s2 | I1i)− c21Y1 − c22Y2 + d2P1]

and

Var(P2|I1i)− hCov(P2, θ − P2 | I1i)

= a22Γ1 + b22Γ2 −
[a2(1− a2)Γ1 − b22Γ2]

2

(1− a2)2Γ1 + b22Γ2

=
a22(1− a2)2Γ2

1 + b42Γ2 + [a22b
2
2 + b22(1− a2)2]Γ1Γ2

(1− a2)2Γ1 + b22Γ2

− a22(1− a2)2Γ2
1 + b42Γ

2
2 − 2a2(1− a2)b22Γ1Γ2

(1− a2)2Γ1 + b22Γ2

=
b22Γ1Γ2[a

2
2 + (1− a2)2 − 2a2(1− a2)]
(1− a2)2Γ1 + b22Γ2

=
b22Γ1Γ2

(1− a2)2Γ1 + b22Γ2

.

By E(θ | I1i) = Γ1[τε xi+ρ
2
1(τs1 +τη1)P

∗
1 ] and E(s2 | I1i) = τη2Γ2Y2, the date-1 demand

function becomes

D1i

δ
=

[(1 + h)a2 − h]Γ1[τε xi + ρ21(τs1 + τη1)P
∗
1 ]

b22Γ1Γ2

(1− a2)2Γ1 + b22Γ2

+
(1 + h)[b2τη2Γ2Y2 − c21Y1 − c22Y2 + d2P1]

b22Γ1Γ2

(1− a2)2Γ1 + b22Γ2

− (1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

P1.
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Note that

1 + h = 1 +
a2(1− a2)Γ1 − b22Γ2

(1− a2)2Γ1 + b22Γ2

=
Γ1 + a22Γ1 − 2a2Γ1 + a2(1− a2)Γ1

(1− a2)2Γ1 + b22Γ2

=
(1− a2)Γ1

(1− a2)2Γ1 + b22Γ2

and, thus,

(1 + h)a2 − h =
a2(1− a2)Γ1

(1− a2)2Γ1 + b22Γ2

− a2(1− a2)Γ1 − b22Γ2

(1− a2)2Γ1 + b22Γ2

=
b22Γ2

(1− a2)2Γ1 + b22Γ2

.

With all this in hand, the date-1 demand function boils down to

D1i = δτε xi + δρ21 (τs1 + τη1)P
∗
1 +

δ(1− a2)
b22Γ2

(
b2

τη2
τs2 + τη2

Y2 − c21Y1 − c22Y2 + d2P1

)

− δ (1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

P1,

which is equal to (3.40) in the main text. Then, market clearing at date 1 implies:

0 =
s1
δ

+

∫ 1

0

D1i

δ
di

=
s1
δ

+ τε θ + ρ21 (τs1 + τη1)P
∗
1 +

1− a2
b22Γ2

(
b2

τη2
τs2 + τη2

Y2 − c21Y1 − c22Y2 + d2P1

)

− (1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

P1

=
s1
δ

+ τε θ + ρ21 (τs1 + τη1)

[
P1 + c11Y1 − c12Y2

a1
− τη1
ρ1(τs1 + τη1)

Y1

]

+
1− a2
b22Γ2

(
b2

τη2
τs2 + τη2

Y2 − c21Y1 − c22Y2 + d2P1

)
− (1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

P1

= τε θ +
s1
δ
−
[
ρ1τη1 − ρ21 (τs1 + τη1)

c11
a1

+
1− a2
b22Γ2

c21

]
Y1

+

[
1− a2
b22Γ2

(
b2

τη2
τs2 + τη2

− c22
)
− ρ21 (τs1 + τη1)

c12
a1

]
Y2
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−
[

(1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

− 1− a2
b22Γ2

d2 −
ρ21(τs1 + τη1)

a1

]
P1,

where
∫ 1

0
xi di = θ again follows from the strong law of large numbers. Solving for P1

gives

P1 =

[
(1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

− 1− a2
b22Γ2

d2 −
ρ21(τs1 + τη1)

a1

]{
τε θ +

s1
δ

−
[
ρ1τη1 − ρ21 (τs1 + τη1)

c11
a1

+
1− a2
b22Γ2

c21

]
Y1

+

[
1− a2
b22Γ2

(
b2

τη2
τs2 + τη2

− c22
)
− ρ21 (τs1 + τη1)

c12
a1

]
Y2

}
.

(A14)

By invoking rational expectations, we obtain

a1 =
τε

(1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

− 1− a2
b22Γ2

d2 −
ρ21(τs1 + τη1)

a1

⇔ τε
a1

=
(1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

− 1− a2
b22Γ2

d2 −
ρ21 (τs1 + τη1)

a1

=
(1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

− 1− a2
b22Γ2

ρ21 (τs1 + τη1)

a1∆
− ρ21 (τs1 + τη1)

a1

⇔ a1 =

τε +
1− a2
b22Γ2

ρ21 (τs1 + τη1)

∆
+ ρ21 (τs1 + τη1)

(1− a2)2Γ1 + b22Γ2

b22Γ1Γ2

=
[τε + ρ21(τs1 + τη1)] Γ1Γ2∆b

2
2 + (1− a2)Γ1ρ

2
1(τs1 + τη1)

∆[(1− a2)2Γ1 + b22Γ2]
.

Furthermore,

c11
a1

=

ρ1τη1 − ρ21 (τs1 + τη1)
c11
a1

+
1− a2
b22Γ2

c21

τε

=

ρ1τη1 − ρ21 (τs1 + τη1)
c11
a1

+
1− a2
b22Γ2

ρ1τη1 − ρ21 (τs1 + τη1)
c11
a1

∆

τε
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=

ρ1τη1

(
1 +

1− a2
∆b22Γ2

)
− ρ21 (τs1 + τη1)

(
1 +

1− a2
∆b22Γ2

)
c11
a1

τε

⇔ c11
a1

=

ρ1τη1

(
1 +

1− a2
∆b22Γ2

)
τε + ρ21 (τs1 + τη1)

(
1 +

1− a2
∆b22Γ2

)

⇔ c11 = a1

ρ1τη1

(
1 +

1− a2
∆b22Γ2

)
τε + ρ21 (τs1 + τη1)

(
1 +

1− a2
∆b22Γ2

)
and

c12
a1

=

1− a2
b22Γ2

(
b2

τη2
τs2 + τη2

− c22
)
− ρ21 (τs1 + τη1)

c12
a1

τε

=

1− a2
b22Γ2

b2 τη2
τs2 + τη2

−
ρ2τη2 + ρ21 (τs1 + τη1)

c12
a1

∆

− ρ21 (τs1 + τη1)
c12
a1

τε

=

1− a2
b2

τη2

(
1− ρ2

∆b2Γ2

)
− ρ21 (τs1 + τη1)

(
1 +

1− a2
∆b22Γ2

)
c12
a1

τε

⇔ c12
a1

=

1− a2
b2

τη2

(
1− ρ2

∆b2Γ2

)
τε + ρ21 (τs1 + τη1)

(
1 +

1− a2
∆b22Γ2

)

⇔ c12 = a1

δ[τθ + ρ21(τs1 + τη1)]

1 + δρ2(τs2 + τη2)
τη2

[
1− δρ2(τs2 + τη2)

1 + δρ2(τs2 + τη2)

]
τε + ρ21 (τs1 + τη1)

(
1 +

1− a2
∆b22Γ2

)

= a1

δτη2 [τθ + ρ21(τs1 + τη1)]

[1 + δρ2(τs2 + τη2)]
2

τε + ρ21(τs1 + τη1)

(
1 +

1− a2
b22Γ2∆

) .
Eventually, by (A14), it immediately follows that

ρ1 ≡
a1
b1

= δτε.
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Since the values of ρ1 and ρ2 are unique and determined in closed form, the linear

dynamic REE with LLA is also unique and given in closed form. �

Proof of Proposition 3.8. As in the proof of Proposition 3.3, define

B1 ≡
(

1

ρ1
− c11
a1

)2
1

τs1
,

B2 ≡
(
c11
a1

)2
1

τη1
,

B3 ≡
(
c12
a1

)2(
1

τs2
+

1

τη2

)
so that Var−1(θ |P ∗∗1 ) = τθ + (B1 + B2 + B3)

−1. Inspecting the coefficients in

Proposition 3.7, the CON effect can be written as

B1 =

[
1

ρ1
− ρ1τη1(1 + φ)

τε + ρ21(τs1 + τη1)(1 + φ)

]2
1

τs1

=

{
τε + ρ21(τs1 + τη1)(1 + φ)− ρ21τη1(1 + φ)

ρ1[τε + ρ21(τs1 + τη1)(1 + φ)]

}2
1

τs1

=

{
τε + ρ21τs1(1 + φ)

ρ1[τε + ρ21(τs1 + τη1)(1 + φ)]

}2
1

τs1
,

where

φ ≡ 1− a2
b22Γ2∆

=
1− [τε + ρ22(τs2 + τη2)]

∆
[1 + δρ2(τs2 + τη2)]

2∆

δ2∆2(τs2 + τη2)

=
δ2[τθ + ρ21(τs1 + τη1)](τs2 + τη2)

[1 + δρ2(τs2 + τη2)]
2

.

The COMESCON effect is given by

B2 = τη1

[
ρ1(1 + φ)

τε + ρ21(τs1 + τη1)(1 + φ)

]2
.

Analogously, the COMSFUN effect can be expressed as

B3 =


δτη2 [τθ + ρ21(τs1 + τη1)]

[1 + δρ2(τs2 + τη2)]
2

τε + ρ21(τs1 + τη1) (1 + φ)


2(

1

τs2
+

1

τη2

)

=
δ2τ 2η2 [τθ + ρ21(τs1 + τη1)]

2

[1 + δρ2(τs2 + τη2)]
4[τε + ρ21(τs1 + τη1) (1 + φ)]2

τs2 + τη2
τs2τη2
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= τη2
δ2[τθ + ρ21(τs1 + τη1)]

2(τs2 + τη2)

τs2 [1 + δρ2(τs2 + τη2)]
4[τε + ρ21(τs1 + τη1) (1 + φ)]2

.

For τη1 = 0, we obtain

B1 =
1

ρ21τs1
,

B2 = 0,

B3 = τη2
δ2(τθ + ρ21τs1)

2(τs2 + τη2)

τs2 [1 + δρ2(τs2 + τη2)]
4[τε + ρ21τs1 (1 + φ01)]2

,

where φ01 ≡
δ2(τθ + ρ21τs1)(τs2 + τη2)

[1 + δρ2(τs2 + τη2)]
2

.

Since ρ1 is independent of τη2 (see Proposition 3.7), the CON effect is independent

of τη2 for τη1 = 0. The fact that price efficiency is maximum for τη2 = 0 follows from

the fact that B3 = 0 for τη2 = 0 and B3 > 0 for τη2 > 0.

To prove part (b) in the proposition, we first rewrite the COMSFUN effect. Denote

k1 ≡ τθ + ρ21τs1 ,

k2 ≡ 1 + δρ2(τs2 + τη2),

k3 ≡ k22τε + ρ21τs1 [k
2
2 + δ2(τs2 + τη2)k1].

Then,

B3 = τη2
δ2k21(τs2 + τη2)

τs2k
4
2

{
τε + ρ21τs1

[
1 +

δ2k1(τs2 + τη2)

k22

]}2

= τη2
δ2k21(τs2 + τη2)

τs2{k22τε + ρ21τs1 [k
2
2 + δ2(τs2 + τη2)k1]}2

= τη2
δ2k21(τs2 + τη2)

τs2k
2
3

.

Differentiating with respect to τη2 yields

∂B3

∂τη2
=
δ2k21(τs2 + τη2)

τs2k
2
3

+ τη2
τs2k

2
3δ

2k21 − δ2k21(τs2 + τη2)τs22k3(∂k3/∂τη2)

τ 2s2k
4
3

=
δ2k21 [k3(τs2 + 2τη2)− 2(τs2 + τη2)τη2(∂k3/∂τη2)]

τs2k
3
3

,
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where

∂k3
∂τη2

= 2k2τεδρ2 + ρ21τs1(2k2δρ2 + δ2k1).

Next, we focus on the term in square brackets in the numerator of the derivative

∂B3/∂τη2 . By recalling the definition of k3, this term can be written as

{k22τε + ρ21τs1 [k
2
2 + δ2(τs2 + τη2)k1]}(τs2 + 2τη2)

− 2(τs2 + τη2)τη2 [2k2τεδρ2 + ρ21τs1(2k2δρ2 + δ2k1)]

= [k22(τε + ρ21τs1) + ρ21τs1δ
2(τs2 + τη2)k1](τs2 + 2τη2)

− 2(τs2 + τη2)
[
2δρ2k2(τε + ρ21τs1) + ρ21τs1δ

2k1
]

= {[1 + δρ2(τs2 + τη2)]
2(τε + ρ21τs1) + ρ21τs1δ

2(τs2 + τη2)(τθ + ρ21τs1)}(τs2 + 2τη2)

− 2(τs2 + τη2)
{

2δρ2[1 + δρ2(τs2 + τη2)](τε + ρ21τs1) + ρ21τs1δ
2(τθ + ρ21τs1)

}
= − 2δ2ρ22(τε + ρ21τs1) τ

3
η2
− 3δ2ρ22τs2(τε + ρ21τs1) τ

2
η2

+
[
2(1 + δρ2τs2)(τε + ρ21τs1) + ρ21τs1δ(τθ + ρ21τs1)τs2

]
τη2

+ τs2 [(1 + δρ2τs2)
2(τε + ρ21τs1) + ρ21τs1δ(τθ + ρ21τs1)τs2 ].

Thus,

∂B3

∂τη2
=
δ2k21

(
−b3τ 3η2 − b2τ

2
η2

+ b1τη2 + b0
)

τs2k
3
3

,

where

b3 ≡ 2δ2ρ22(τε + ρ21τs1),

b2 ≡ 3δ2ρ22τs2(τε + ρ21τs1),

b1 ≡ 2(1 + δρ2τs2)(τε + ρ21τs1) + ρ21τs1δ(τθ + ρ21τs1)τs2 ,

b0 ≡ τs2 [(1 + δρ2τs2)
2(τε + ρ21τs1) + ρ21τs1δ(τθ + ρ21τs1)τs2 ].

Note that the term in brackets in the numerator of the derivative is a cubic polynomial

in τη2 . To determine the number of positive real roots, we use Descartes’ rule of signs.

This rule states that the number of positive real roots of a polynomial is either equal

to the number of its sign changes or a number that is smaller by an even integer
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than the actual number of sign changes (see, e.g., Struik, 1986, Chapter 2).

It can be clearly seen that the cubic exhibits one sign change, which means that

it possesses exactly one positive real root, τ̄η2 say. This, in return, implies that

the unique extremum of B3 lies at τη2 = τ̄η2 . Since ∂B3/∂τη2 > 0 for τη2 = 0

and ∂B3/∂τη2 < 0 for sufficiently large values of τη2 , B3 has a global maximum at

τη2 = τ̄η2 . Consequently, the global minimum of Var−1(θ |P ∗∗1 ) lies at this point.

Thus, Var−1(θ |P ∗∗1 ) is decreasing (resp., increasing) in τη2 for τη2 ≶ τ̄η2 . �

Proof of Proposition 3.9. Inspecting the coefficients in Proposition 3.7, for τη2 = 0,

we get

c11
a1

=
ρ1τη1(1 + φ02)

τε + ρ21(τs1 + τη1)(1 + φ02)
=

ρ1τη1
Dτε + ρ21(τs1 + τη1)

, (A15)

where

φ02 ≡ δ2τs2
τθ + ρ21(τs1 + τη1)

(1 + δρ2τs2)
2

,

D ≡ (1 + φ02)
−1 =

[
1 + δ2τs2

τθ + ρ21(τs1 + τη1)

(1 + δρ2τs2)
2

]−1
< 1.

Hence,

B1|τη2=0 =

[
1

ρ1
− ρ1τη1
Dτε + ρ21(τs1 + τη1)

]2
1

τs1
=

1

ρ21τs1

[
Dτε + ρ21τs1

Dτε + ρ21(τs1 + τη1)

]2
,

B2|τη2=0 =
1

ρ21τη1

[
ρ21τη1

Dτε + ρ21(τs1 + τη1)

]2
,

B3|τη2=0 = 0.

By Table 3.1, we can conclude that

lim
τη2→∞

c11
a1

=
ρ1τη1

τε + ρ21(τs1 + τη1)
. (A16)

Note that (A16) is unequivocally smaller than (A15), as D < 1. Thus,

lim
τη2→∞

B1 =

[
1

ρ1
− ρ1τη1
τε + ρ21(τs1 + τη1)

]2
1

τs1
=

1

ρ21τs1

[
τε + ρ21τs1

τε + ρ21(τs1 + τη1)

]2
,

lim
τη2→∞

B2 =
1

ρ21τη1

[
ρ21τη1

τε + ρ21(τs1 + τη1)

]2
,

lim
τη2→∞

B3 = 0.
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Consequently,

Var−1(θ |P ∗∗1 )
∣∣
τη2=0

> lim
τη2→∞

Var−1(θ |P ∗∗1 ) exactly if

1

ρ21τs1

[
Dτε + ρ21τs1

Dτε + ρ21(τs1 + τη1)

]2
+

1

ρ21τη1

[
ρ21τη1

Dτε + ρ21(τs1 + τη1)

]2

<
1

ρ21τs1

[
τε + ρ21τs1

τε + ρ21(τs1 + τη1)

]2
+

1

ρ21τη1

[
ρ21τη1

τε + ρ21(τs1 + τη1)

]2
.

Note that both sides of the above inequality would be identical if D equaled unity.

Since D < 1, the validity of the inequality is proven if the term on the left-hand side

is strictly increasing in D. Comparative-statics analysis yields

∂

∂D

{
1

ρ21τs1

[
Dτε + ρ21τs1

Dτε + ρ21(τs1 + τη1)

]2
+

1

ρ21τη1

[
ρ21τη1

Dτε + ρ21(τs1 + τη1)

]2}

=
2

ρ21τs1

Dτε + ρ21τs1
Dτε + ρ21(τs1 + τη1)

τε[Dτε + ρ21(τs1 + τη1)]− τε(Dτε + ρ21τs1)

[Dτε + ρ21(τs1 + τη1)]
2

− 2

ρ21τη1

ρ21τη1
Dτε + ρ21(τs1 + τη1)

ρ21τη1τε
[Dτε + ρ21(τs1 + τη1)]

2

=
2τερ

2
1τη1(Dτε + ρ21τs1)

ρ21τs1 [Dτε + ρ21(τs1 + τη1)]
3
−

2ρ41τ
2
η1
τε

ρ21τη1 [Dτε + ρ21(τs1 + τη1)]
3

=
2τ 2ε τη1D

τs1 [Dτε + ρ21(τs1 + τη1)]
3
> 0.

This proves that price efficiency is higher for τη2 = 0 than as τη2 →∞. �

Proof of Proposition 3.10. From the proof of Proposition 3.8, we know that

B1 =

{
τε + ρ21τs1(1 + φ)

ρ1[τε + ρ21(τs1 + τη1)(1 + φ)]

}2
1

τs1
.

Differentiating with respect to τη2 yields

∂B1

∂τη2
=

2

τs1

τε + ρ21τs1(1 + φ)

ρ1[τε + ρ21(τs1 + τη1)(1 + φ)]

{
ρ31τs1 [τε + ρ21(τs1 + τη1)(1 + φ)](∂φ/∂τη2)

ρ21[τε + ρ21(τs1 + τη1)(1 + φ)]2

− ρ31(τs1 + τη1)[τε + ρ21τs1(1 + φ)](∂φ/∂τη2)

ρ21[τε + ρ21(τs1 + τη1)(1 + φ)]2

}

=
2

τs1

τε + ρ21τs1(1 + φ)

ρ1[τε + ρ21(τs1 + τη1)(1 + φ)]

−ρ31τη1τε(∂φ/∂τη2)
ρ21[τε + ρ21(τs1 + τη1)(1 + φ)]2
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= − 2τη1τε(∂φ/∂τη2)[τε + ρ21τs1(1 + φ)]

τs1 [τε + ρ21(τs1 + τη1)(1 + φ)]3
.

Note that sign(∂B1/∂τη2) = −sign(∂φ/∂τη2). If ∂φ/∂τη2 > 0, we have ∂(c11/a1)/∂τη2 >

0, and the CON effect is weakened. The COMESCON effect is given by

B2 = τη1

[
ρ1(1 + φ)

τε + ρ21(τs1 + τη1)(1 + φ)

]2
.

Thus,

∂B2

∂τη2
=

2ρ1τη1(1 + φ)

τε + ρ21(τs1 + τη1)(1 + φ)

× ρ1(∂φ/∂τη2)[τε + ρ21(τs1 + τη1)(1 + φ)]− ρ31(τs1 + τη1)(1 + φ)(∂φ/∂τη2)

[τε + ρ21(τs1 + τη1)(1 + φ)]2

=
2ρ1τη1(1 + φ)

τε + ρ21(τs1 + τη1)(1 + φ)

ρ1τη1τε(∂φ/∂τη2)

[τε + ρ21(τs1 + τη1)(1 + φ)]2

=
2ρ22τη1τε(1 + φ)(∂φ/∂τη2)

[τε + ρ21(τs1 + τη1)(1 + φ)]3
.

Analogously, sign(∂B2/∂τη2) = sign(∂φ/∂τη2). Combining the separate terms gives

∂B1

∂τη2
+
∂B2

∂τη2

= − 2τη1τε(∂φ/∂τη2)[τε + ρ21τs1(1 + φ)]

τs1 [τε + ρ21(τs1 + τη1)(1 + φ)]3
+

2ρ22τη1τε(1 + φ)(∂φ/∂τη2)

[τε + ρ21(τs1 + τη1)(1 + φ)]3

=
−2τη1τε(∂φ/∂τη2)[τε + ρ21τs1(1 + φ)] + 2ρ22τs1τη1τε(1 + φ)(∂φ/∂τη2)

τs1 [τε + ρ21(τs1 + τη1)(1 + φ)]3

=
−2τη1τ

2
ε (∂φ/∂τη2)

τs1 [τε + ρ21(τs1 + τη1)(1 + φ)]3
.

As sign(∂B1/∂τη2 + ∂B2/∂τη2) = sign(∂B1/∂τη2) = −sign(∂φ/∂τη2), the impact on

the CON effect dominates that on the COMESCON effect. Moreover,

∂φ

∂τη2
=
δ2[1 + δρ2(τs2 + τη2)]

2[τθ + ρ21(τs1 + τη1)]

[1 + δρ2(τs2 + τη2)]
4

− −2δ3ρ2(τs2 + τη2)[τθ + ρ21(τs1 + τη1)][1 + δρ2(τs2 + τη2)]

[1 + δρ2(τs2 + τη2)]
4

=
[δ2 + δ3ρ2(τs2 + τη2)][τθ + ρ21(τs1 + τη1)]

[1 + δρ2(τs2 + τη2)]
3
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− −2δ3ρ2(τs2 + τη2)[τθ + ρ21(τs1 + τη1)]

[1 + δρ2(τs2 + τη2)]
3

=
δ2[1− δρ2(τs2 + τη2)][τθ + ρ21(τs1 + τη1)]

[1 + δρ2(τs2 + τη2)]
3

.

Consequently, φ and, thus, c11/a1 are increasing in τη2 if 1 > δρ2(τs2 + τη2). Further

computations give

∂B1

∂τη2
+
∂B2

∂τη2
=
−2δ2τη1τ

2
ε [1− δρ2(τs2 + τη2)][τθ + ρ21(τs1 + τη1)]

τs1 [τε + ρ21(τs1 + τη1)(1 + φ1)]3[1 + δρ2(τs2 + τη2)]
3
.

For τη2 = 0, we obtain(
∂B1

∂τη2
+
∂B2

∂τη2

)∣∣∣∣
τη2 = 0

=
−2δ2τη1τ

2
ε (1− δρ2τs2)[τθ + ρ21(τs1 + τη1)]

τs1 [τε + ρ21(τs1 + τη1)(1 + φ02)]3(1 + δρ2τs2)
3
.

Recall from the proof of Proposition 3.8 that the COMSFUN effect is given by

B3 = τη2
δ2[τθ + ρ21(τs1 + τη1)]

2(τs2 + τη2)

τs2 [1 + δρ2(τs2 + τη2)]
4[τε + ρ21(τs1 + τη1) (1 + φ)]2

.

Thus,

∂B3

∂τη2
=

δ2[τθ + ρ21(τs1 + τη1)]
2(τs2 + τη2)

τs2 [1 + δρ2(τs2 + τη2)]
4[τε + ρ21(τs1 + τη1) (1 + φ)]2

+ τη2
∂

∂τη2

{
δ2[τθ + ρ21(τs1 + τη1)]

2(τs2 + τη2)

τs2 [1 + δρ2(τs2 + τη2)]
4[τε + ρ21(τs1 + τη1) (1 + φ)]2

}
.

For τη2 = 0, the second summand in the above derivative drops out (note that the

denominator of the above fraction is bounded away from zero). This gives

∂B3

∂τη2

∣∣∣∣
τη2 = 0

=
δ2[τθ + ρ21(τs1 + τη1)]

2

(1 + δρ2τs2)
4[τε + ρ21(τs1 + τη1) (1 + φ02)]2

.

Putting all obtained results together yields:

∂[Var−1(θ |P ∗∗1 )]

∂τη2

∣∣∣∣
τη2 = 0

< 0 exactly if

−2δ2τη1τ
2
ε (1− δρ2τs2)[τθ + ρ21(τs1 + τη1)]

τs1 [τε + ρ21(τs1 + τη1)(1 + φ02)]3(1 + δρ2τs2)
3

+
δ2[τθ + ρ21(τs1 + τη1)]

2

(1 + δρ2τs2)
4[τε + ρ21(τs1 + τη1) (1 + φ02)]2

> 0,
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⇔ τθ + ρ21(τs1 + τη1)

1 + δρ2τs2
>

2τη1τ
2
ε (1− δρ2τs2)

τs1 [τε + ρ21(τs1 + τη1)(1 + φ02)]
,

which is equal to the inequality in the proposition. �

Proof of Proposition 4.1. Using (4.3), a non-fundamentally informed agent’s condi-

tional moments are given by

E(θ |P ∗ni) =

β2
j τx

(
P

aθ
− 1

βi
xi

)
τθ + β2

j τx
,

Var(θ |P ∗ni) =
1

τθ + β2
j τx

, for i, j = 1, 2, i 6= j.

Recalling (4.2), the demand function of an xi-informed trader becomes

Dni =

β2
j τx

(
P

aθ
− 1

βi
xi

)
− P

(
τθ + β2

j τx
)

γ
, for i, j = 1, 2, i 6= j. (A17)

Concerning a fundamentally informed trader, as the error terms in sf and P ∗f/u are

uncorrelated, we obtain

E
(
θ | sf , P ∗f/u

)
=

τε sf +
τx

1/β2
1 + 1/β2

2

P

aθ

τθ + τε +
τx

1/β2
1 + 1/β2

2

,

Var
(
θ | sf , P ∗f/u

)
=

1

τθ + τε +
τx

1/β2
1 + 1/β2

2

.

Thus,

Df =

τε sf +
τx

1/β2
1 + 1/β2

2

P

aθ
− P

(
τθ + τε +

τx
1/β2

1 + 1/β2
2

)
γ

. (A18)

Analogously, the conditional moments of an uninformed, rational agent are

E
(
θ |P ∗f/u

)
=

τx
1/β2

1 + 1/β2
2

P

aθ

τθ +
τx

1/β2
1 + 1/β2

2

,

Var
(
θ |P ∗f/u

)
=

1

τθ +
τx

1/β2
1 + 1/β2

2

,
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which yields

Du =

τx
1/β2

1 + 1/β2
2

P

aθ
− P

(
τθ +

τx
1/β2

1 + 1/β2
2

)
γ

. (A19)

Using (A17), (A18), and (A19), the market-clearing condition in (4.5) can be

developed as follows:

τε θ +
τx

1/β2
1 + 1/β2

2

P

aθ
− P

(
τθ + τε +

τx
1/β2

1 + 1/β2
2

)
γ

+ λ1

β2
2τx

(
P

aθ
− 1

β1
x1

)
− P (τθ + β2

2 τx)

γ
+ λ2

β2
1τx

(
P

aθ
− 1

β2
x2

)
− P (τθ + β2

1 τx)

γ

+ x1 + x2 + λu

τx
1/β2

1 + 1/β2
2

P

aθ
− P

(
τθ +

τx
1/β2

1 + 1/β2
2

)
γ

= 0.

As in Chapter 3, by the strong law of large numbers, the error term in sf vanishes

when integrating (i.e.,
∫ 1

0
sf df = θ). Collecting terms gives

P

[
(1 + λu)

τx
1/β2

1 + 1/β2
2

(a−1θ − 1) + λ1β
2
2τx(a

−1
θ − 1) + λ2β

2
1τx(a

−1
θ − 1)

− τθ(1 + λ1 + λ2 + λu)− τε

]
+ τε θ + γ x1 −

λ1β
2
2τx
β1

x1 + γ x2 −
λ2β

2
1τx
β2

x2 = 0.

Further simplifications deliver

P

[
τx (1− a−1θ )

(
1 + λu

1/β2
1 + 1/β2

2

+ λ1β
2
2 + λ2β

2
1

)
+ τθ (1 + λ1 + λ2 + λu) + τε

]

= τε θ +

(
γ − λ1β

2
2τx
β1

)
x1 +

(
γ − λ2β

2
1τx
β2

)
x2.

(A20)

By comparing (A20) with (4.1), we obtain

aθ =
τε

τx (1− a−1θ )

 1 + λu
1

β2
1

+
1

β2
2

+ λ1β
2
2 + λ2β

2
1

+ τθ (1 + λ1 + λ2 + λu) + τε
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⇔ aθ

τx (1− a−1θ )

 1 + λu
β2
1 + β2

2

β2
1β

2
2

+ λ1β
2
2 + λ2β

2
1

+ τθ (1 + λ1 + λ2 + λu) + τε

 = τε

⇔ τx (aθ − 1)

[
(1 + λu)β

2
1β

2
2

β2
1 + β2

2

+ λ1β
2
2 + λ2β

2
1

]
+ aθτθ (1 + λ1 + λ2 + λu) + aθτε = τε

⇔ aθτx

[
(1 + λu)β

2
1β

2
2

β2
1 + β2

2

+ λ1β
2
2 + λ2β

2
1

]
+ aθτθ (1 + λ1 + λ2 + λu) + aθτε = τε

+ τx

[
(1 + λu)β

2
1β

2
2

β2
1 + β2

2

+ λ1β
2
2 + λ2β

2
1

]

⇔ aθ

{
τx

[
(1 + λu)β

2
1β

2
2

β2
1 + β2

2

+ λ1β
2
2 + λ2β

2
1

]
+ τθ (1 + λ1 + λ2 + λu) + τε

}
= τε

+ τx

[
(1 + λu)β

2
1β

2
2

β2
1 + β2

2

+ λ1β
2
2 + λ2β

2
1

]

⇔ aθ =

τε + τx

[
(1 + λu)β

2
1β

2
2

β2
1 + β2

2

+ λ1β
2
2 + λ2β

2
1

]
τx

[
(1 + λu)β

2
1β

2
2

β2
1 + β2

2

+ λ1β
2
2 + λ2β

2
1

]
+ τθ (1 + λ1 + λ2 + λu) + τε

.

After defining ω ≡ 1 + λ1 + λ2 + λu, we get

aθ =

(β2
1 + β2

2)(τε + λ1β
2
2τx + λ2β

2
1τx) + τx(1 + λu)β

2
1β

2
2

β2
1 + β2

2

(β2
1 + β2

2)(τε + τθ ω + λ1β
2
2τx + λ2β

2
1τx) + τx(1 + λu)β

2
1β

2
2

β2
1 + β2

2

=
β4
1λ2τx + β2

2(τε + λ1β
2
2τx) + β2

1 [τε + β2
2τx(1 + λ1 + λ2 + λu)]

β4
1λ2τx + β2

2(τε + τθ ω + λ1β2
2τx) + β2

1 [τε + τθ ω + β2
2τx(1 + λ1 + λ2 + λu)]

=
β4
1λ2τx + β2

2 (τε + λ1β
2
2τx) + β2

1 (τε + β2
2τx ω)

β4
1λ2τx + β2

2 (τε + τθ ω + λ1β2
2τx) + β2

1 [τε + (β2
2τx + τθ)ω]

.

From the definitions of β1 and β2, it immediately follows that

a1 =
1

β1
aθ and a2 =

1

β2
aθ.

Furthermore, by imposing rational expectations, the implied values of β1 and β2 are

given by

βi =
τε

γ −
λiβ

2
j τx

βi
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⇔ βi

(
γ −

λiβ
2
j τx

βi

)
= τε

⇔ βi γ − λiβ2
j τx = τε

⇔ βi =
τε + λiβ

2
j τx

γ
, for i, j = 1, 2, i 6= j. (A21)

By further developing the two-equation system contained in (A21), we can find the

fixed-point equations that determine the solutions for β1 and β2:

βi =
τε + λiβ

2
j τx

γ

⇔ βi =

τε + λiτx

(
τε + λjβ

2
i τx

γ

)2

γ

⇔ βi = f(βi) ≡
λiλ

2
jβ

4
i τ

3
x + 2λiλjβ

2
i τ

2
xτε + τε(λiτxτε + γ2)

γ3
, for i, j = 1, 2, i 6= j.

(A22)

Rearranging terms in (A22) delivers

λiλ
2
jτ

3
xβ

4
i + 2λiλjτ

2
xτεβ

2
i − γ3βi + τε(λiτxτε + γ2) = 0. (A23)

The solutions for βi are obtained by determining the roots of the quartic in (A23).

To find the number of solutions, we make use of Descartes’ rule of signs (see the

proof of Proposition 3.8 for an explanation). From (A23), we see that the quartic

incorporates two sign changes. This means that there are either two or zero positive

real roots. Thus, the existence of a linear REE can be ensured if and only if the

solution of (A23) delivers two positive real roots. In the present case, this occurs

whenever the discriminant of (A23), ∆βi say, is non-positive. If it is negative, there

are two distinct positive real roots. A discriminant equal to zero means that there

are two identical positive roots (see Dickson, 1914, Chapter 4). Denote

b4 ≡ λiλ
2
jτ

3
x , b2 ≡ 2λiλjτ

2
xτε, b1 ≡ −γ3, b0 ≡ τε (λiτxτε + γ2)

so that the quartic in (A23) can be written as

b4β
4
i + b2β

2
i + b1βi + b0 = 0.
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Following Dickson (1914, p. 41), the discriminant of a quartic function is given by

∆ = −4Y 3 − 27Q2, (A24)

where

Y = b3b1 − 4b4b0 −
1

3
b22 and Q = −b23 b0 +

1

3
b3b2b1 +

8

3
b4b2b0 − b4b21 −

2

27
b32.

Note that b3 = 0 in the present case. Hence,

Y = −4λiλ
2
jτ

3
xτε (λiτxτε + γ2)− 1

3
(2λjλiτ

2
xτε)

2

= −16

3
λ2jλ

2
i τ

4
xτ

2
ε − 4λ2jλiτ

3
xτεγ

2

= −4

3
λ2jλiτ

3
xτε (4λiτxτε + 3γ2) (A25)

and

Q =
8

3
λ2jλiτ

3
x2λjλiτ

2
xτετε (λiτxτε + γ2)− λ2jλiτ 3x(−γ3)2 − 2

27
(2λjλiτ

2
xτε)

3

=
16

3
λ3jλ

3
i τ

6
xτ

3
ε +

16

3
λ3jλ

2
i τ

5
xτ

2
ε γ

2 − λ2jλiτ 3xγ6 −
16

27
λ3jλ

3
i τ

6
xτ

3
ε

=
1

27
λ2jλiτ

3
x (128λjλ

2
i τ

3
xτ

3
ε + 144λjλiτ

2
xτ

2
ε γ

2 − 27γ6). (A26)

By plugging (A25) and (A26) into (A24), we eventually get the discriminant ∆βi of

the quartic in (A23):

∆βi =− 4

[
−4

3
λ2jλiτ

3
xτε
(
4λiτxτε + 3γ2

)]3

− 27

[
1

27
λ2jλiτ

3
x

(
128λjλ

2
i τ

3
xτ

3
ε + 144λjλiτ

2
xτ

2
ε γ

2 − 27γ6
)]2

=
256

27
λ6jλ

3
i τ

9
xτ

3
ε (4λiτxτε + 3γ2)3

− 1

27
λ4jλ

2
i τ

6
x(128λjλ

2
i τ

3
xτ

3
ε + 144λjλiτ

2
xτ

2
ε γ

2 − 27γ6)2.

Whenever ∆βi < 0 (resp., ∆βi = 0), there exist(s) two (resp., one) linear REE. �

144



A Model Proofs

Proof of Proposition 4.3. By (4.9), the total effect of a rise in λi on Ixi and Ixj is

given by

dIxi
dλi

=
∂Ixi
∂λi

+
∂Ixi
∂Ixj

dIxj
dλi

and
dIxj
dλi

=
∂Ixj
∂Ixi

dIxi
dλi

.

First, we solve for the total effect on Ixi :

dIxi
dλi

=
∂Ixi
∂λi

+
∂Ixi
∂Ixj

∂Ixj
∂Ixi

dIxi
dλi

⇔ dIxi
dλi

=

∂Ixi
∂λi

1− ∂Ixi
∂Ixj

∂Ixj
∂Ixi

. (A27)

The total impact on Ixj is

dIxj
dλi

=
∂Ixj
∂Ixi

(
∂Ixi
∂λi

+
∂Ixi
∂Ixj

dIxj
dλi

)

⇔
dIxj
dλi

=

∂Ixj
∂Ixi

∂Ixi
∂λi

1− ∂Ixi
∂Ixj

∂Ixj
∂Ixi

. (A28)

Making use of (4.9), further computations yield

∂Ixi
∂λi

=
[γ2(1− Ixj)2 + λiτxτε]τxτε − λiτ 2xτ 2ε

[γ2(1− Ixj)2 + λiτxτε]2
=

γ2(1− Ixj)2τxτε
[γ2(1− Ixj)2 + λiτxτε]2

> 0.

The partial ∂Ixj/∂Ixi in (A28) is clearly positive due to the derived complementarity

in trading against different types of noise. As a consequence, the identical denominator

in (A27) and (A28) pins down the sign of dIxi/dλi and dIxj/dλi. By (4.9),

∂Ixi
∂Ixj

=
2γ2(1− Ixj)λiτxτε

[γ2(1− Ixj)2 + λiτxτε]2
.

Next, we eliminate λi in the above derivative. Solving (4.9) for λi yields

λiτxτε
γ2(1− Ixj)2 + λiτxτε

= Ixi

⇔ Ixi
[
γ2(1− Ixj)2 + λiτxτε

]
= λiτxτε

⇔ (Ixi − 1)λiτxτε = − γ2Ixi(1− Ixj)2
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⇔ λi =
γ2Ixi(1− Ixj)2

(1− Ixi)τxτε
. (A29)

This delivers

∂Ixi
∂Ixj

=

2γ4Ixi(1− Ixj)3

1− Ixi[
γ2(1− Ixj)2 +

γ2Ixi(1− Ixj)2

1− Ixi

]2

=

2γ4Ixi(1− Ixj)3

1− Ixi[
γ2(1− Ixj)2

1− Ixi

]2

=
2Ixi(1− Ixi)

1− Ixj
.

By symmetry,

∂Ixj
∂Ixi

=
2Ixj(1− Ixj)

1− Ixi
.

With all this in hand, we can explicitly calculate the denominator in (A27) and

(A28):

Γ ≡ 1− ∂Ixi
∂Ixj

∂Ixj
∂Ixi

= 1− 2Ixi(1− Ixi)
1− Ixj

2Ixj(1− Ixj)
1− Ixi

= 1− 4IxiIxj ,

which proves part (a) of the proposition. Recalling (A29), further computations

deliver

dIxi
dλi

=
γ2(1− Ixj)2τxτε

(1− 4IxiIxj)[γ
2(1− Ixj)2 + λiτxτε]2

=
γ2(1− Ixj)2τxτε

(1− 4IxiIxj)

{
γ2(1− Ixj)2 +

[
γ2Ixi(1− Ixj)2

(1− Ixi)τxτε

]
τxτε

}2

=
τετx(1− Ixi)2

γ2(1− Ixj)2(1− 4IxiIxj)
(A30)
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and

dIxj
dλi

=
1

(1− 4IxiIxj)

2Ixj(1− Ixj)
1− Ixi

τετx(1− Ixi)2

γ2(1− Ixj)2

=
2τετx(1− Ixi)Ixj

γ2(1− Ixj)(1− 4IxiIxj)
. (A31)

To prove part (b) in Proposition 4.3, it suffices to explore the effect of an increase in

λi on βi and βj in equilibrium, as the two coefficient ratios are positively connected

to the trading intensities (see (4.8)). According to (A22), in equilibrium, it must

hold that βi − f(βi) = 0. Implicit differentiation with respect to λi delivers

∂βi
∂βi

dβi
dλi
−
[
∂f(βi)

∂λi
+ f ′(βi)

dβi
dλi

]
= 0

⇔ dβi
dλi

=

∂f(βi)

∂λi
1− f ′(βi)

.

Since f(βi) is strictly increasing in λi (see (A22)), it follows that sign(dβi/dλi) =

sign[1− f ′(βi)]. As f(βi) is a strictly increasing and convex function in βi with a

positive intercept (i.e., f ′(βi) > 0, f ′′(βi) > 0, and f(0) > 0), it can be concluded

that f ′(βi,LIE) < 1 and f ′(βi,HIE) > 1 (see also Figure 4.2). Hence, dβi/dλi > 0

holds in the LIE and dβi/dλi < 0 is true in the HIE. The analogous result holds for

βj,LIE and βj,HIE. The positive link between the coefficient ratios and the trading

intensities proves that Γ > 0 (resp., Γ < 0) is true in the LIE (resp., HIE).

To derive part (c) in the proposition, we assume Ixi = 0.25 I−1xj so that Γ = 0,

and examine the consequences in equilibrium. At this point, the effect of a change

in λi on both trading intensities is undefined. Then, by (4.8), the value of βi in

equilibrium in terms of βj is

βi =
τε

γ(1− Ixi)

=
τε

γ
(

1− 0.25 I−1xj

)
=

τε

γ
[
1− 0.25 (1− τε/γβj)−1

]
=

τε

γ

(
1− γβj

4γβj − 4τε

)
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=
τε

γ
3γβj − 4τε
4γβj − 4τε

=
4τε(γβj − τε)
γ(3γβj − 4τε)

.

Equating the above term with (A21) and rearranging terms delivers

τε + λiβ
2
j τx

γ
=

4τε(γβj − τε)
γ(3γβj − 4τε)

⇔ (τε + λiβ
2
j τx)(3γβj − 4τε) = 4τε(γβj − τε)

⇔ 3γλiτxβ
3
j − 4λiτετxβ

2
j − γτεβj = 0.

The above cubic polynomial has three real roots. The trivial root βj,1 = 0, however,

violates the value range of βj. The two other roots are given by

βj,2/3 =
4λiτετx ±

√
16λ2i τ

2
ε τ

2
x + 12γ2λiτxτε

6γλiτx
.

Hence,

βj,2 =
4λiτετx −

√
16λ2i τ

2
ε τ

2
x + 12γ2λiτxτε

6γλiτx

=
2λiτετx −

√
4λ2i τ

2
ε τ

2
x + 3γ2λiτxτε

3γλiτx
.

By carefully checking the above root, one sees that βj,2 < 0. This again contradicts

the value range of βj. Therefore, the only positive real root is given by

βj,3 =
4λiτετx +

√
16λ2i τ

2
ε τ

2
x + 12γ2λiτxτε

6γλiτx

=
2λiτετx +

√
λiτετx(4λiτετx + 3γ2)

3γλiτx
.

By symmetry,

βi = β̃i ≡
2λjτετx +

√
λjτετx(4λjτετx + 3γ2)

3γλjτx
.

Whenever Γ = 0, the equilibrium values of β1 and β2 are given by β̃1 and β̃2, which are

unique and given in closed form. From Proposition 4.1, we know that the solutions

for β1 and β2 are unique if and only if the discriminant ∆βi belonging to (A23) equals

148



A Model Proofs

zero. Thus, Γ = 0 is associated with the special case where exactly one linear REE

exists.

By equating β̃i with (A21) and substituting for βj , we can derive the critical value

of λi that is linked to the existence of a unique linear REE:

β̃i =
τε + λiβ

2
j τx

γ

=

τε + λiτx
(τε + λjβ̃

2
i τx)

2

γ2

γ

⇔ λi =

γ3
(
β̃i −

τε
γ

)
τx(τε + λjβ̃2

i τx)
2

=

γ3

[
2λjτετx +

√
λjτετx(4λjτετx + 3γ2)

3γλjτx
− τε
γ

]
τx(τε + λjβ̃2

i τx)
2

=
γ2[
√
λjτετx(4λjτετx + 3γ2)− λjτετx]

3λjτ 2x(τε + λjβ̃2
i τx)

2

=
γ2[
√
λjτετx(4λjτετx + 3γ2)− λjτετx]

3λjτ 2x

{
τε + λj

[2λjτετx +
√
λjτετx(4λjτετx + 3γ2)]2

9γ2λ2jτ
2
x

τx

}2

=
27γ6λj[

√
λjτετx(4λjτετx + 3γ2)− λjτετx]

{9γ2λjτετx + [2λjτετx +
√
λjτετx(4λjτετx + 3γ2)]2}2

≡ λ̃i > 0. (A32)

Since f(βi) is increasing in λi (see (A22)), we can further conclude that λi < λ̃i is

a necessary and sufficient condition for the existence of the LIE and the HIE. If

λi > λ̃i, there is no solution to the underlying fixed-point equation in (A22) and a

linear REE fails to exist. This proves part (d) in the proposition. �

Proof of Proposition 4.4. By turning x1 and x2 into costly signals, the wealth function

of a noise-informed trader changes to πni = (θ − P )Dni − ci, for i = 1, 2. Since ci is

a constant, the wealth function still follows a normal distribution. By recalling the

results from Section 3.1, conditional expected utility becomes

E[U(πni) |xi, P ] = − exp
{
− γ

[
E(πni |xi, P )− γ

2
Var(πni |xi, P )

]}
.
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Inspecting the wealth function delivers

E[U(πni) |xi, P ] = − exp
(
− γ

{
[E(θ |xi, P )− P ]Dni − ci −

γ

2
Var(θ |xi, P )D2

ni

})
.

Since agents are characterized by constant absolute risk aversion, their demand for

the risky asset does not depend on their initial wealth (i.e., the cost of acquiring

non-fundamental information does not change their optimal demand). Plugging the

optimal demand for the risky asset from (4.2) into the expression of the conditional

expected utility yields

E[U(πni) |xi, P ] = − exp

(
− γ

{
[E(θ |xi, P )− P ]2

γVar(θ |xi, P )
− ci −

γ

2

[E(θ |xi, P )− P ]2

γ2Var(θ |xi, P )

})

= − exp (γci) exp

{
− [E(θ |xi, P )− P ]2

2Var(θ |xi, P )

}
.

Taking expectations conditional on P gives

E {E [U(πni) |xi, P ] |P}

= − exp (γci) E

(
exp

{
− [E(θ |xi, P )− P ]2

2 Var(θ |xi, P )

} ∣∣∣∣P)

= − exp (γci) E

(
exp

{
−Var [E (θ |xi, P ) |P ]

2 Var(θ |xi, P )

[E(θ |xi, P )− P ]2

Var[E(θ |xi, P )|P ]

} ∣∣∣∣P)

= − exp (γci) E

(
exp

{
−Var[E(θ |xi, P )|P ]

2 Var(θ |xi, P )
z2
} ∣∣∣∣P) ,

where z ≡ E(θ |xi, P )− P√
Var[E(θ |xi, P ) |P ]

.

As z is a sum of linear transformations of normal random variables, it is nor-

mally distributed too (note that Var[E(θ |xi, P ) |P ] is non-random). Conditional on

P, z still follows a normal distribution with mean

E

{
E(θ |xi, P )− P√
Var[E(θ |xi, P )|P ]

∣∣∣∣P
}

=
E
[
E(θ |xi, P )− P

∣∣P ]√
Var[E(θ |xi, P )|P ]

=
E(θ |P )− P√

Var[E(θ |xi, P )|P ]
,

where the last equation follows from the law of iterated expectations. The variance
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of z conditional on P is

Var

{
E(θ |xi, P )− P√
Var[E(θ |xi, P ) |P ]

∣∣∣∣P
}

=
Var[E(θ |xi, P )− P |P ]

Var[E(θ |xi, P )|P ]

=
Var[E(θ |xi, P )|P ]

Var[E(θ |xi, P )|P ]

= 1.

Since the variance of z conditional on P equals unity, z2 follows a noncentral chi-

square distribution conditional on P . In Appendix B.3.2, we prove that

E[exp(tz2) |P ] =
1√

1− 2t
exp

{
t [E(z |P )]2

1− 2t

}
, for t < 0.5.

By setting t = −Var[E(θ |xi, P ) |P ]

2 Var(θ |xi, P )
, we get

1√
1− 2t

=
1√

1 +
Var[E(θ |xi, P ) |P ]

Var(θ |xi, P )

.

Using the law of total conditional variance yields

Var(θ |P ) = E[Var(θ |xi, P ) |P ] + Var[E(θ |xi, P ) |P ]

⇔ Var[E(θ |xi, P ) |P ] = Var(θ |P )− E[Var(θ |xi, P ) |P ]

= Var(θ |P )− Var(θ |xi, P ),

where the last step follows from the fact that Var(θ |xi, P ) is non-random. Thus,

1√
1− 2t

=
1√

1 +
Var[E(θ |xi, P ) |P ]

Var(θ |xi, P )

=
1√

1 +
Var(θ |P )− Var(θ |xi, P )

Var(θ |xi, P )

=

√
Var(θ |xi, P )

Var(θ |P )
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and

exp

{
t [E(z |P )]2

1− 2t

}
= exp


−Var [E (θ|xi, P )|P ]

2 Var (θ|xi, P )

{
E (θ|P )− P√

Var [E (θ|xi, P )|P ]

}2

Var (θ|P )

Var (θ|xi, P )


= exp

{
− [E (θ|P )− P ]2

2 Var (θ|P )

}
.

Putting the obtained results together delivers

E

(
exp

{
−Var[E(θ |xi, P ) |P ]

2 Var(θ |xi, P )
z2
} ∣∣∣∣P)

=

√
Var(θ |xi, P )

Var(θ |P )
exp

{
− [E(θ |P )− P ]2

2Var(θ |P )

}
.

Again, making use of the law of iterated expectations, we get

E {E[U(πni) |xi, P ] |P} = − exp (γci)

√
Var(θ |xi, P )

Var(θ |P )
exp

{
− [E(θ |P )− P ]2

2 Var(θ |P )

}

⇔ E[U(πni) |P ] = − exp (γci)

√
Var(θ |xi, P )

Var(θ |P )
exp

{
− [E(θ |P )− P ]2

2 Var(θ |P )

}
.

Taking unconditional expectations and using the law of iterated expectations finally

yields

E{E[U(πni) |P ]} = − exp (γci)

√
Var(θ |xi, P )

Var(θ |P )
E

(
exp

{
− [E(θ |P )− P ]2

2 Var(θ |P )

})

⇔ E[U(πni)] = − exp (γci)

√
Var(θ |xi, P )

Var(θ |P )
E

(
exp

{
− [E(θ |P )− P ]2

2 Var(θ |P )

})
. (A33)

Analogously, the conditional expected utility of an uninformed, rational trader is

given by

E[U(πu) |P ] = − exp

{
− [E(θ |P )− P ]2

2 Var(θ |P )

}
.

Taking unconditional expectations and using the law of iterated expectations delivers

E [U(πu)] = −E

(
exp

{
− [E(θ |P )− P ]2

2 Var(θ |P )

})
. (A34)
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By comparing the ex-ante expected utility of a noise-informed trader in (A33)

with that of an uninformed, rational trader in (A34), we can derive the value of

non-fundamental information:

E [U(πni)] T E [U(πu)]

⇔ E [U(πni)]

E [U(πu)]
S 1

⇔ exp (γci)

√
Var(θ |xi, P )

Var(θ |P )
S 1

⇔ exp (γci) S

√
Var(θ |P )

Var(θ |xi, P )

⇔ ci S
1

2γ
log

[
Var(θ |P )

Var(θ |xi, P )

]
. (A35)

The left-hand (resp., right-hand) side in (A35) represents the cost (resp., the value)

of non-fundamental information. If its cost is inferior to (resp., exceeds) its value,

the ex-ante expected utility of a noise-informed agent exceeds (resp., falls short of)

that of an uninformed, rational agent. Whenever the cost of information about noise

exactly equals its value, both expected utilities are the same. �

Proof of Proposition 4.5. Direct computations yield

φx1(β1, β2) =
1

2γ
log

 τθ + β2
2τx

τθ +
τx

1/β2
1 + 1/β2

2

 =
1

2γ
log

[
(β2

1 + β2
2)(τθ + β2

2τx)

β2
2τθ + β2

1(τθ + β2
2τx)

]
, (A36)

φx2(β1, β2) =
1

2γ
log

 τθ + β2
1τx

τθ +
τx

1/β2
1 + 1/β2

2

 =
1

2γ
log

[
(β2

1 + β2
2)(τθ + β2

1τx)

β2
2τθ + β2

1(τθ + β2
2τx)

]
. (A37)

Case 1. First, we look at the case where no one acquires information about

noise (i.e., λ∗1 = λ∗2 = 0). In this situation, no agent finds it beneficial to acquire

information about noise, given that there is no single trader in the market possessing

non-fundamental information. In equilibrium, it follows that

c1 ≥ φx1 (τε/γ, τε/γ) and c2 ≥ φx2 (τε/γ, τε/γ).
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Due to symmetry of (A36) and (A37), we obtain

φx1 (τε/γ, τε/γ) = φx2 (τε/γ, τε/γ) =
1

2γ
log

τθ +
τ 2ε τx
γ2

τθ +
τ 2ε τx
2γ2



=
1

2γ
log


γ2τθ + τ 2ε τx

γ2

2γ2τθ + τ 2ε τx
2γ2


=

1

2γ
log

[
2 (γ2τθ + τ 2ε τx)

2γ2τθ + τ 2ε τx

]
≡ c̄.

Therefore, in an information acquisition equilibrium of the form λ∗1 = λ∗2 = 0, it holds

that

c1 ≥ c̄ and c2 ≥ c̄. (A38)

Case 2. In the second case, we turn to the situation where agents acquire information

about x1 only (i.e., λ∗1 > 0, λ∗2 = 0). Thus, in equilibrium,

φx1 (β1, τε/γ) = c1 and φx2 (β1, τε/γ) ≤ c2,

with β1 > τε/γ (see also (A21)). The value of β1 in equilibrium in terms of c1 is,

then, given by

c1 =
1

2γ
log


τθ +

τ 2ε τx
γ2

τθ +
τx

1

β2
1

+
γ2

τ 2ε



⇔ e2γc1 =

γ2τθ + τ 2ε τx
γ2

β2
1(τ 2ε τx + γ2τθ) + τθτ

2
ε

β2
1γ

2 + τ 2ε

⇔ e2γc1 =
(β2

1γ
2 + τ 2ε )(γ2τθ + τ 2ε τx)

γ2[β2
1(τ 2ε τx + γ2τθ) + τθτ 2ε ]

⇔ β2
1

[
γ2(e2γc1 − 1)(τ 2ε τx + γ2τθ)

]
= τ 2ε

[
τ 2ε τx − (e2γc1 − 1)γ2τθ

]
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⇔ β1 =
τε
√
τ 2ε τx − (e2γc1 − 1)γ2τθ

γ
√

(e2γc1 − 1)(τ 2ε τx + γ2τθ)
.

For λ∗1 > 0 to be true in equilibrium, it must hold that β1 > τε/γ, which is equivalent

to

τε
√
τ 2ε τx − (e2γc1 − 1)γ2τθ

γ
√

(e2γc1 − 1)(τ 2ε τx + γ2τθ)
− τε
γ
> 0

⇔ τ 2ε τx − (e2γc1 − 1)γ2τθ
(e2γc1 − 1)(τ 2ε τx + γ2τθ)

> 1

⇔ 2(γ2τθ + τ 2ε τx) > e2γc1(τ 2ε τx + 2γ2τθ)

⇔ c1 <
1

2γ
log

[
2 (γ2τθ + τ 2ε τx)

2γ2τθ + τ 2ε τx

]
= c̄.

Since β1 is decreasing in c1 and β1 = τε/γ for c1 = c̄, β1 ∈ R++ holds for sure for all

c1 < c̄. Furthermore, we can express the value of information about x2 in terms of c1

as

φx2 (β1, τε/γ) =
1

2γ
log


τθ +

τ 2ε [τ 2ε τx − (e2γc1 − 1)γ2τθ]

(e2γc1 − 1)γ2(τ 2ε τx + γ2τθ)
τx

τθ +
τx

(e2γc1 − 1)γ2(τ 2ε τx + γ2τθ)

τ 2ε [τ 2ε τx − (e2γc1 − 1)γ2τθ]
+
γ2

τ 2ε



=
1

2γ
log


τθ +

τ 2ε [τ 2ε τx − (e2γc1 − 1)γ2τθ]

(e2γc1 − 1)γ2(τ 2ε τx + γ2τθ)
τx

τθ +
τx

e2γc1γ2τx
τ 2ε τx − (e2γc1 − 1)γ2τθ



=
1

2γ
log


(e2γc1 − 1)γ4τ 2θ + τ 4ε τ

2
x

(e2γc1 − 1)γ2(γ2τθ + τ 2ε τx)

γ2τθ + τ 2ε τx
e2γc1γ2


=

1

2γ
log

{
e2γc1 [(e2γc1 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc1 − 1) (γ2τθ + τ 2ε τx)
2

}
≡ f(c1).

Therefore, in an equilibrium of the form λ∗1 > 0, λ∗2 = 0, it must hold that

c1 ∈ (0 , c̄) and c2 ≥ f(c1). (A39)
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By (A21), we can compute a unique λ∗1 > 0 by using the unique value of β1 and

β2 = τε/γ.

Case 3. The third case deals with the situation where no one possesses information

about x1 and some agents acquire information about x2 (i.e., λ∗1 = 0, λ∗2 > 0). This

case is symmetric to the second one. Hence, it can be concluded without any further

calculations that such an equilibrium requires

c1 ≥ f(c2) and c2 ∈ (0, c̄), (A40)

where

f(c2) ≡
1

2γ
log

{
e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc2 − 1) (γ2τθ + τ 2ε τx)
2

}
.

Analogously, by (A21), we can calculate a unique λ∗2 > 0 by using the unique value

of β2 and β1 = τε/γ.

Notably, the condition in (A40) expresses the value range of c1 as a function of c2.

The condition in (A39), by contrast, indicates the value range of c2 in terms of c1.

To make both conditions better comparable, we rewrite the condition in (A40) in

such a way that it expresses the value range of c2 in terms of c1, as the condition in

(A39) already does. To get there, we first analyze the monotonicity of f(c2):

f ′(c2)

=
2γe2γc2

2γ

(e2γc2 − 1) (γ2τθ + τ 2ε τx)
2

e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ
2
x ]

× (e2γc2 − 1)[(e2γc2 − 1)γ4τ 2θ + τ 4ε τ
2
x + γ4τ 2θ e

2γc2 ]− e2γc2 [(e2γc2 − 1)γ4τ 2θ + τ 4ε τ
2
x ]

(e2γc2 − 1)2(γ2τθ + τ 2ε τx)
2

=
(e2γc2 − 1) (γ2τθ + τ 2ε τx)

2

(e2γc2 − 1) γ4τ 2θ + τ 4ε τ
2
x

(e2γc2 − 1)2γ4τ 2θ − τ 4ε τ 2x
(e2γc2 − 1)2(γ2τθ + τ 2ε τx)

2

=
(e2γc2 − 1)2γ4τ 2θ − τ 4ε τ 2x

(e2γc2 − 1)[(e2γc2 − 1)γ4τ 2θ + τ 4ε τ
2
x ]
.

Hence,

f ′(c2) T 0⇔ (e2γc2 − 1)2γ4τ 2θ − τ 4ε τ 2x
(e2γc2 − 1)[(e2γc2 − 1)γ4τ 2θ + τ 4ε τ

2
x ]
T 0

⇔ c2 T
1

2γ
log

(
1 +

τ 2ε τx
γ2τθ

)
≡ c̃ > c̄.
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Furthermore,

f(c̃) =
1

2γ
log


(

1 +
τ 2ε τx
γ2τθ

)(
τ 2ε τx
γ2τθ

γ4τ 2θ + τ 4ε τ
2
x

)
τ 2ε τx
γ2τθ

(γ2τθ + τ 2ε τx)
2



=
1

2γ
log


γ2τθ + τ 2ε τx

γ2τθ
(τ 2ε τxγ

2τθ + τ 4ε τ
2
x)

τ 2ε τx
γ2τθ

(γ2τθ + τ 2ε τx)
2


=

1

2γ
log

[
τ 2ε τx(γ

2τθ + τ 2ε τx)
2

τ 2ε τx (γ2τθ + τ 2ε τx)
2

]
= 0.

Consequently, the point (c̃, 0) represents the global minimum of f(c2) (and f(c1)).

Moreover, since f(c2) is a quadratic function of c2, solving c1 = f(c2) for c2 delivers

two solutions. The first one, g(c1) say, is characterized by 0 < g(c1) < c̃ for c1 ∈ R++.

The second one, h(c1) say, is characterized by h(c1) > c̃ for c1 ∈ R++. Direct

computations yield

c1 = f(c2) ≡
1

2γ
log

{
e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(γ2τθ + τ 2ε τx)
2 (e2γc2 − 1)

}
⇔ e2γc1(e2γc2 − 1)

(
γ2τθ + τ 2ε τx

)2
= e2γc2

[(
e2γc2 − 1

)
γ4τ 2θ + τ 4ε τ

2
x

]
⇔ γ4τ 2θ e

4γc2 +
[
τ 4ε τ

2
x − γ4τ 2θ − (γ2τθ + τ 2ε τx)

2e2γc1
]
e2γc2 + (γ2τθ + τ 2ε τx)

2 e2γc1 = 0.

Hence,

g(c1) =
1

2γ
log

[
ψ1(c1)−

√
ψ2(c1)

2γ4τ 2θ

]
, (A41)

h(c1) =
1

2γ
log

[
ψ1(c1) +

√
ψ2(c1)

2γ4τ 2θ

]
, (A42)

where

ψ1(c1) = −τ 4ε τ 2x + γ4τ 2θ + (γ2τθ + τ 2ε τx)
2e2γc1 ,

ψ2(c1) = [τ 4ε τ
2
x − γ4τ 2θ − (γ2τθ + τ 2ε τx)

2e2γc1 ]2 − 4γ4τ 2θ (γ2τθ + τ 2ε τx)
2 e2γc1 .

Since f(c2) is decreasing in c2 for c2 < c̃, g(c1) is decreasing in c1 for c1 ∈ R++.
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Analogously, as f(c2) is increasing in c2 for c2 > c̃, h(c1) is increasing in c1 for

c1 ∈ R++. Thus, c1 ≥ f(c2) is equivalent to

h(c1) ≥ c2 ≥ g(c1).

Recall from (A40) that an equilibrium of the form λ∗1 = 0, λ∗2 > 0 requires c2 < c̄.

Since h(c1) > c̃ > c̄, the value range of c2 in terms of c1 is given by

c̄ > c2 ≥ g(c1).

Furthermore, due to symmetry of cases 2 and 3, we know that β2 = τε/γ for c2 = c̄.

Since φx1(τε/γ, β2)(≡ f(c2)) is decreasing in c2 for c2 < c̃ and φx1(τε/γ, τε/γ) = c̄,

c1 reaches its infimum at c̄. Therefore, the condition that supports an information

acquisition equilibrium of the form λ∗1 = 0, λ∗2 > 0, given in (A40), can be written as

c1 > c̄ and c̄ > c2 ≥ g(c1). (A43)

From f(c̄) = c̄, it follows that g(c̄) = c̄. Since g(c1) is decreasing in c1, we can

conclude that c̄ > g(c1) holds for all c1 > c̄. Figure A.1 illustrates the two possible

ways of expressing the value range of an equilibrium of the form λ∗1 = 0, λ∗2 > 0. The

graph on the left-hand side in Figure A.1 corresponds to the condition in (A40), the

one on the right-hand side to the condition in (A43).

Figure A.1: Two manners of depicting the equilibrium area of λ∗1 = 0, λ∗2 > 0
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Case 4. The fourth and last case implies that information about x1 and x2 is

acquired in equilibrium (i.e., λ∗1 > 0, λ∗2 > 0). Thus,

φx1 (β1, β2) = c1 and φx2 (β1, β2) = c2, (A44)

with β1 > τε/γ, β2 > τε/γ. We first derive how a change in c1 affects the equilibrium

values of β1 and β2. Implicit differentiation of the system in (A44) with respect to c1

yields
∂φx1
∂β1

dβ1
dc1

+
∂φx1
∂β2

dβ2
dc1

= 1,

∂φx2
∂β1

dβ1
dc1

+
∂φx2
∂β2

dβ2
dc1

= 0.

Thus,

dβ2
dc1

= −∂φx2/∂β1
∂φx2/∂β2

dβ1
dc1

.

This delivers

∂φx1
∂β1

dβ1
dc1
− ∂φx1

∂β2

∂φx2/∂β1
∂φx2/∂β2

dβ1
dc1

= 1

⇔ dβ1
dc1

=
∂φx2/∂β2

∂φx1
∂β1

∂φx2
∂β2

− ∂φx1
∂β2

∂φx2
∂β1

and, hence,

dβ2
dc1

= − ∂φx2/∂β1
∂φx1
∂β1

∂φx2
∂β2

− ∂φx1
∂β2

∂φx2
∂β1

.

Using (A36), we obtain

∂φx1
∂β1

=
1

2γ

β2
2τθ + β2

1(τθ + β2
2τx)

(β2
1 + β2

2)(τθ + β2
2τx)

{
2β1[β

2
2τθ + β2

1(τθ + β2
2τx)](τθ + β2

2τx)

−2β1(τθ + β2
2τx)(β

2
1 + β2

2)(τθ + β2
2τx)

}
[β2

2τθ + β2
1(τθ + β2

2τx)]
2

= − 1

2γ

β2
2τθ + β2

1(τθ + β2
2τx)

(β2
1 + β2

2)(τθ + β2
2τx)

2β1β
4
2τx(τθ + β2

2τx)

[β2
2τθ + β2

1(τθ + β2
2τx)]

2

= − β1β
4
2τx

γ(β2
1 + β2

2)[β2
2τθ + β2

1(τθ + β2
2τx)]
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and

∂φx1
∂β2

=
1

2γ

β2
2τθ + β2

1(τθ + β2
2τx)

(β2
1 + β2

2)(τθ + β2
2τx)

{
2β2[β

2
2τθ + β2

1(τθ + β2
2τx)][τθ + (β2

1 + 2β2
2)τx]

−2β2(τθ + β2
1τx)(β

2
1 + β2

2)(τθ + β2
2τx)

}
[β2

2τθ + β2
1(τθ + β2

2τx)]
2

=
1

2γ

β2
2τθ + β2

1(τθ + β2
2τx)

(β2
1 + β2

2)(τθ + β2
2τx)

2β3
2τx[β

2
2τθ + β2

1(2τθ + β2
2τx)]

[β2
2τθ + β2

1(τθ + β2
2τx)]

2

=
β3
2τx[β

2
2τθ + β2

1(2τθ + β2
2τx)]

γ(β2
1 + β2

2)(τθ + β2
2τx)[β

2
2τθ + β2

1(τθ + β2
2τx)]

.

Symmetry immediately delivers

∂φx2
∂β1

=
β3
1τx[β

2
1τθ + β2

2(2τθ + β2
1τx)]

γ(β2
1 + β2

2)(τθ + β2
1τx)[β

2
2τθ + β2

1(τθ + β2
2τx)]

and

∂φx2
∂β2

= − β4
1β2τx

γ(β2
1 + β2

2)[β2
2τθ + β2

1(τθ + β2
2τx)]

.

Thus,

∂φx1
∂β1

∂φx2
∂β2

− ∂φx1
∂β2

∂φx2
∂β1

=
β5
1β

5
2τ

2
x

γ2(β2
1 + β2

2)2(β2
2τθ + β2

1(τθ + β2
2τx))

2

− β3
1β

3
2τ

2
x(β2

1τθ + β2
2 [2τθ + β2

1τx)][β
2
2τθ + β2

1(2τθ + β2
2τx)]

γ2(β2
1 + β2

2)2(τθ + β2
1τx)(τθ + β2

2τx)[β
2
2τθ + β2

1(τθ + β2
2τx)]

2

=
β5
1β

5
2τ

2
x(τθ + β2

1τx)(τθ + β2
2τx)

γ2(β2
1 + β2

2)2(τθ + β2
1τx)(τθ + β2

2τx)[β
2
2τθ + β2

1(τθ + β2
2τx)]

2

− β5
1β

5
2τ

2
x(τθ + β2

1τx)(τθ + β2
2τx) + 2β3

1β
3
2τθτx(β

2
1 + β2

2)[β2
2τθ + β2

1(τθ + β2
2τx)]

γ2(β2
1 + β2

2)2(τθ + β2
1τx)(τθ + β2

2τx)[β
2
2τθ + β2

1(τθ + β2
2τx)]

2

= − 2β3
1β

3
2τθτ

2
x

γ2(β2
1 + β2

2)(τθ + β2
1τx)(τθ + β2

2τx)[β
2
2τθ + β2

1(τθ + β2
2τx)]

.

Eventually,

dβ1
dc1

=

β4
1β2τx

γ(β2
1 + β2

2)[β2
2τθ + β2

1(τθ + β2
2τx)]

2β3
1β

3
2τθτ

2
x

γ2(β2
1 + β2

2)(τθ + β2
1τx)(τθ + β2

2τx)[β
2
2τθ + β2

1(τθ + β2
2τx)]
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=
γβ1(τθ + β2

1τx)(τθ + β2
2τx)

2β2
2τθτx

> 0

and

dβ2
dc1

=

β3
1τx[β

2
1τθ + β2

2(2τθ + β2
1τx)]

γ(β2
1 + β2

2)(τθ + β2
1τx)[β

2
2τθ + β2

1(τθ + β2
2τx)]

2β3
1β

3
2τθτ

2
x

γ2(β2
1 + β2

2)(τθ + β2
1τx)(τθ + β2

2τx)[β
2
2τθ + β2

1(τθ + β2
2τx)]

=
γ(τθ + β2

2τx)[β
2
1τθ + β2

2(2τθ + β2
1τx)]

2β3
2τθτx

> 0.

Turning to the case of c2, one can immediately conclude due to symmetry that

dβ1
dc2

=
γ(τθ + β2

1τx)[β
2
2τθ + β2

1(2τθ + β2
2τx)]

2β3
1τθτx

> 0,

dβ2
dc2

=
γβ2(τθ + β2

1τx)(τθ + β2
2τx)

2β2
1τθτx

> 0.

Thus, both β1 and β2 are increasing in both cost parameters in equilibrium.

Next, we derive the explicit expressions of β1 and β2 in the information acquisition

equilibrium. Recalling the system in (A44), the values of β1 and β2 are obtained by

simultaneously solving

1

2γ
log


τθ + β2

2τx

τθ +
τx

1

β2
1

+
1

β2
2

 = c1 and
1

2γ
log


τθ + β2

1τx

τθ +
τx

1

β2
1

+
1

β2
2

 = c2.

Solving the first above equation for β1 yields

c1 =
1

2γ
log


τθ + β2

2τx

τθ +
τx

1

β2
1

+
1

β2
2


⇔ e2γc1 =

τθ + β2
2τx

τθ +
τx

β2
1 + β2

2

β2
1β

2
2
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⇔ e2γc1 =
τθ + β2

2τx
τθ(β

2
1 + β2

2) + τx β
2
1β

2
2

β2
1 + β2

2

⇔ e2γc1 [τθ(β
2
1 + β2

2) + τx β
2
1β

2
2 ]− (τθ + β2

2τx)(β
2
1 + β2

2) = 0

⇔ [(e2γc1 − 1)τθ + (e2γc1 − 1)τxβ
2
2 ]β2

1 − τxβ4
2 + (e2γc1 − 1)τθβ

2
2 = 0.

As β1 can only take positive values, it follows that

β1 =

√
β2
2 [β2

2τx − (e2γc1 − 1)τθ]

(e2γc1 − 1)(τθ + τxβ2
2)

.

Symmetry immediately yields

β2 =

√
β2
1 [β2

1τx − (e2γc2 − 1)τθ]

(e2γc2 − 1)(τθ + τxβ2
1)

.

Denote ξ1 ≡ e2γc1 − 1 and ξ2 = e2γc2 − 1. Then, we can further solve for β1:

β1

√
ξ1(τθ + τxβ2

2) =
√
β2
2(β2

2τx − ξ1τθ)

⇔ β2
1ξ1(τθ + τxβ

2
2) = β2

2(β2
2τx − ξ1τθ)

⇔ τθξ1β
2
1 + [(τxβ

2
1 + τθ)ξ1 − β2

2τx]β
2
2 = 0

⇔ τθξ1β
2
1 +

[
(τxβ

2
1 + τθ)ξ1 −

τxβ
2
1(β2

1τx − ξ2τθ)
ξ2(τθ + τxβ2

1)

]
β2
1(β2

1τx − ξ2τθ)
ξ2(τθ + τxβ2

1)
= 0

⇔ τθξ1β
2
1ξ

2
2(τθ + τxβ

2
1)2

+ [(τxβ
2
1 + τθ)

2ξ1ξ2 − τxβ2
1(τxβ

2
1 − ξ2τθ)]β2

1(τxβ
2
1 − ξ2τθ) = 0

⇔ (τxβ
2
1 + τθ)

2τxξ1ξ2β
4
1 − τxβ4

1(τxβ
2
1 − ξ2τθ)2 = 0.

Expanding yields

τ 3xξ1ξ2β
8
1 + τ 2θ τxξ1ξ2β

4
1 + 2τθτ

2
xξ1ξ2β

6
1 − τ 3xβ8

1 − τ 2θ τxξ22β4
1 + 2τθτ

2
xξ2β

6
1 = 0.

Collecting terms and simplifying gives

τ 3x(ξ1ξ2 − 1)β4
1 + 2τθτ

2
xξ2(ξ1 + 1)β2

1 + τ 2θ τxξ2(ξ1 − ξ2) = 0. (A45)
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Symmetry delivers

τ 3x(ξ1ξ2 − 1)β4
2 + 2τθτ

2
xξ1(ξ2 + 1)β2

2 + τ 2θ τxξ1(ξ2 − ξ1) = 0. (A46)

To determine the roots of the biquadratic equation in (A45), we introduce the

auxiliary variable z ≡ β2
1 . Hence, (A45) becomes

τ 3x(ξ1ξ2 − 1) z2 + 2τθτ
2
xξ2(ξ1 + 1) z + τ 2θ τxξ2(ξ1 − ξ2) = 0.

Consequently,

z1/2 =
−2τθτ

2
xξ2(ξ1 + 1)±

√
4τ 2θ τ

4
xξ

2
2(ξ1 + 1)2 − 4τ 2θ τ

4
xξ2(ξ1ξ2 − 1)(ξ1 − ξ2)

2τ 3x(ξ1ξ2 − 1)
.

Simplifying yields

z1 = − [ξ2(ξ1 + 1)−
√
ξ1ξ2(ξ2 + 1)]τθ

τx(ξ1ξ2 − 1)

and

z2 = − [ξ2(ξ1 + 1) +
√
ξ1ξ2(ξ2 + 1)]τθ

τx(ξ1ξ2 − 1)
.

Since β1 needs to be positive, the only possible roots of the biquadratic in (A45)

are
√

z1 and
√

z2. Using Descartes’ rule of signs, we see that (A45) possesses two

positive real roots if ξ1ξ2 < 1 and ξ1 < ξ2. In this case, (A46) has one positive real

root. Inversely, if ξ1ξ2 < 1 and ξ1 > ξ2, (A45) has one positive real root and (A46)

two. If ξ1ξ2 > 1 and ξ1 6= ξ2, either (A45) or (A46) exhibits one sign change and the

other polynomial none. If ξ1ξ2 > 1 and ξ1 = ξ2, neither (A45) nor (A46) shows a

single sign change. Thus, ξ1ξ2 < 1 is a necessary and sufficient condition for a unique

pair (β1, β2) ∈ R2
++.

Consequently, we need to identify the unique root that is always positive whenever

ξ1ξ2 < 1. Inspecting z1 and z2 shows that z2 exclusively fulfills this condition. Since

z ≡ β2
1 , we can conclude that

√
z2 is the unique root of the biquadratic in (A45) that

is consistent with (β1, β2) ∈ R2
++. Eventually,

β1 =

√
−τθ

ξ2(ξ1 + 1) +
√
ξ1ξ2(ξ2 + 1)

τx(ξ1ξ2 − 1)
.

Recalling the definitions of ξ1 and ξ2, we obtain

ξ1ξ2 − 1 ≡ (e2γc1 − 1)(e2γc2 − 1)− 1 = e2γ(c1+c2) − (e2γc1 + e2γc2)
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and

ξ2(ξ1 + 1) ≡ (e2γc2 − 1)[(e2γc1 − 1) + 1] = e2γ(c1+c2) − e2γc1 .

Thus,

β1 =

√
−τθ

e2γ(c1+c2) − e2γc1 +
√

(e2γc1 − 1)(e2γc2 − 1) e2γc2

τx[e2γ(c1+c2) − (e2γc1 + e2γc2)]
(A47)

and by symmetry

β2 =

√
−τθ

e2γ(c1+c2) − e2γc2 +
√

(e2γc1 − 1)(e2γc2 − 1) e2γc1

τx[e2γ(c1+c2) − (e2γc1 + e2γc2)]
. (A48)

By inspecting (A47) and (A48), we immediately see that (β1, β2) ∈ R2
++ requires

e2γ(c1+c2) − (e2γc1 + e2γc2) < 0

⇔ e2γc2(e2γc1 − 1) < e2γc1

⇔ c2 <
1

2γ
log

(
e2γc1

e2γc1 − 1

)
≡ i(c1).

Note that the above condition can also be expressed as

e2γ(c1+c2) − (e2γc1 + e2γc2) < 0

⇔ e2γc1(e2γc2 − 1) < e2γc2

⇔ c1 <
1

2γ
log

(
e2γc2

e2γc2 − 1

)
≡ i(c2).

An information acquisition equilibrium of the form λ∗1 > 0, λ∗2 > 0 further requires

γβ1 > τε and γβ2 > τε (see also (A21)). In what follows, we investigate the case

λ∗1 > 0 and derive the respective results for λ∗2 > 0 by symmetry. Note from (A47)

that for c1 = 0,

β1 =

√
(e2γc2 − 1)τθ

τx
.

Since β1 is increasing in c1, λ
∗
1 > 0 holds for all c1 ∈ (0, i(c2)) if

γ

√
(e2γc2 − 1)τθ

τx
− τε ≥ 0
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⇔ e2γc2 − 1 ≥ τ 2ε τx
γ2τθ

⇔ c2 ≥
1

2γ
log

(
1 +

τ 2ε τx
γ2τθ

)
= c̃.

Whenever c2 < c̃, using (A47), λ∗1 > 0 holds exactly if

γ

√
−τθ

e2γ(c1+c2) − e2γc1 +
√

(e2γc1 − 1)(e2γc2 − 1) e2γc2

τx[e2γ(c1+c2) − (e2γc1 + e2γc2)]
− τε > 0

⇔ −
e2γ(c1+c2) − e2γc1 +

√
(e2γc1 − 1)(e2γc2 − 1) e2γc2

e2γ(c1+c2) − (e2γc1 + e2γc2)
> E

⇔
√

(e2γc1 − 1)(e2γc2 − 1) e2γc2 > −E[e2γ(c1+c2) − (e2γc1 + e2γc2)]− e2γ(c1+c2) + e2γc1

⇔ (e2γc1 − 1)(e2γc2 − 1) e4γc2 >
[
−e2γc1e2γc2 (1 + E) + e2γc1 (1 + E) + Ee2γc2

]2
⇔ (e2γc1 − 1)(e2γc2 − 1) e4γc2 >

[
−e2γc1(1 + E)(e2γc2 − 1) + Ee2γc2

]2
⇔e2γc1(e2γc2 − 1) e4γc2 − (e2γc2 − 1) e4γc2 >

[
−e2γc1(1 + E)(e2γc2 − 1) + Ee2γc2

]2
⇔a e4γc1 + b e2γc1 + c > 0,

where

E ≡ τ 2ε τx/γ
2τθ,

a ≡ −(E + 1)2(e2γc2 − 1)2,

b ≡ e2γc2(e2γc2 − 1)[e2γc2 + 2E(E + 1)],

c ≡ −e4γc2(e2γc2 − 1 + E2).

The solutions of the respective quadratic equation are given by

c1,1/2 =
1

2γ
log

[
−b±

√
b2 − 4ac

2a

]
,

with

b2 − 4ac = e4γc2(e2γc2 − 1)2[e2γc2 + 2E(E + 1)]2

− 4(E + 1)2(e2γc2 − 1)2e4γc2(e2γc2 − 1 + E2)

= e4γc2(e2γc2 − 1)2(e2γc2 − 2E − 2)2.
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Thus,

c1,1 =
1

2γ
log


{
−e2γc2(e2γc2 − 1)[e2γc2 + 2E(E + 1)]

− e2γc2(e2γc2 − 1)(e2γc2 − 2E − 2)

}
−2(E + 1)2(e2γc2 − 1)2


=

1

2γ
log

[
2e2γc2(e2γc2 − 1)(e2γc2 + E2 − 1)

2(E + 1)2(e2γc2 − 1)2

]

=
1

2γ
log


e2γc2

(
e2γc2 +

τ 4ε τ
2
x

γ4τ 2θ
− 1

)
(
τ 2ε τx
γ2τθ

+ 1

)2

(e2γc2 − 1)


=

1

2γ
log

{
e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc2 − 1) (γ2τθ + τ 2ε τx)
2

}
= f(c2)

and

c1,2 =
1

2γ
log


{
−e2γc2(e2γc2 − 1)[e2γc2 + 2E(E + 1)]

+ e2γc2(e2γc2 − 1)(e2γc2 − 2E − 2)

}
−2(E + 1)2(e2γc2 − 1)2


=

1

2γ
log

[
2e2γc2(e2γc2 − 1)(1 + E)2

2(E + 1)2(e2γc2 − 1)2

]

=
1

2γ
log

(
e2γc2

e2γc2 − 1

)
= i(c2).

Comparing f(c2) and i(c2) yields

1

2γ
log

(
e2γc2

e2γc2 − 1

)
T

1

2γ
log

{
e2γc2 [(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x ]

(e2γc2 − 1) (γ2τθ + τ 2ε τx)
2

}

⇔ 1 T
(e2γc2 − 1) γ4τ 2θ + τ 4ε τ

2
x

(γ2τθ + τ 2ε τx)
2

⇔ e2γc2γ4τ 2θ S 2γ4τ 2θ + 2γ2τθτ
2
ε τx

⇔ c2 S
1

2γ
log

(
2 +

2τ 2ε τx
γ2τθ

)
≡ ĉ > c̃.

Thus, we can conclude that i(c2) > f(c2) for all c2 < c̃. Furthermore, we already

know that β1 /∈ R if c1 ≥ i(c2). Hence, given c2 < c̃, f(c2) is the unique value of c1
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that leads to β1 = τε/γ. Since β1 is increasing in c1, λ
∗
1 > 0 holds for{

i(c2) > c1 > f(c2) if c2 < c̃,

c1 ∈ (0, i(c2)) if c2 ≥ c̃.
(A49)

Recall that β2 is increasing in c2. Then, by symmetry, we can immediately conclude

that λ∗2 > 0 holds for{
i(c1) > c2 > f(c1) if c1 < c̃,

c2 ∈ (0, i(c1)) if c1 ≥ c̃.
(A50)

Next, we unite the conditions in (A49) and (A50) by deducing the value range of

c2 in dependence of c1 that simultaneously ensures λ∗1 > 0 and λ∗2 > 0. This will

also make the conditions in (A49) and (A50) better comparable to those in (A39)

and (A43). We already know that c2 < c̃ and c1 = f(c2) would lead to β1 = τε/γ.

Furthermore, we have shown that solving c1 = f(c2) for c2 delivers two solutions,

viz., g(c1) and h(c1) (see (A41) and (A42)). Since h(c1) > c̃ for c1 ∈ R++, c2 = h(c1)

cannot yield β1 = τε/γ. Thus, as g(c1) < c̃ for c1 ∈ R++, g(c1) is the unique value of

c2 that leads to β1 = τε/γ. Given that β1 is increasing in c2, c2 > g(c1) is a necessary

condition for λ∗1 > 0 to hold. As already derived, the supremum of c2 in terms of

c1 is i(c1). Since g(c1) ∈ (0, c̃) and c̃ < ĉ, i(c1) > g(c1) for all c1 ∈ R++. Hence, the

condition in (A49) can be written as

i(c1) > c2 > g(c1).

Furthermore, note that g(c1) is the inverse function of f(c1) for c1 ≤ c̃. The

relationship between the two functions is depicted in Figure A.2. As f(c̄) = c̄, lim
c1→ 0

f(c1) =∞, and lim
c1→ 0

g(c1) = c̃, f(c1) > g(c1) holds for c1 ∈ (0, c̄) and g(c1) > f(c1)

holds for sure for c1 ∈ (c̄, c̃). If c1 ≥ c̃, λ∗2 > 0 holds for all c2 ∈ (0, i(c1)) and the

condition c2 > f(c1) in (A50) becomes irrelevant. For λ∗1 > 0 to be true in this case,

i(c1) > c2 > g(c1) still needs to be valid.

Eventually, we can conclude that an information acquisition equilibrium of the

form λ∗1 > 0, λ∗2 > 0 requires{
i(c1) > c2 > f(c1) if c1 ∈ (0, c̄ ],

i(c1) > c2 > g(c1) if c1 > c̄.
(A51)

Using (A21), we can determine a unique pair (λ∗1, λ
∗
2) ∈ R2

++ through the unique

values of β1 and β2 from (A47) and (A48). Note also that the conditions in (A38),

(A39), (A43), and (A51) together yield the conditions in the proposition. �
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Figure A.2: The relationship between f(c1) and g(c1)

Proof of Proposition 4.6. By (4.9), if λj = 0, it holds that Ixj = 0. In this scenario,

a rise in λi does not affect the first term in (4.16). Thus,

dφxi
dλi

= − 1

2γ
Var(θ |P )

{
∂[Var−1(θ |P )]

∂Ixi

dIxi
dλi

}
.

Building on (4.10), we can immediately derive that

∂Var−1(θ |P )

∂Ixi
=

2τ 2ε τx(1− Ixi)
γ2
[
(1− Ixi)2 + (1− Ixj)2

]2 (A52)

and by symmetry

∂Var−1(θ P )

∂Ixj
=

2τ 2ε τx(1− Ixj)
γ2
[
(1− Ixi)2 + (1− Ixj)2

]2 . (A53)

If Ixj = 0, from (4.10),

Var(θ |P ) =
1

τθ +
τ 2ε τx

γ2[(1− Ixi)2 + 1]

,

and from (A52),

∂[Var−1(θ |P )]

∂Ixi
=

2τ 2ε τx(1− Ixi)
γ2[(1− Ixi)2 + 1]2

.
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By (4.9), we see that

Ixi =
λiτxτε

γ2 + λiτxτε
.

Hence,

dIxi
dλi

=
(γ2 + λiτxτε)τxτε − λiτ 2xτ 2ε

(γ2 + λiτxτε)2
=

γ2τxτε
(γ2 + λiτxτε)2

> 0.

From (A29), we know that

λi =
γ2Ixi

(1− Ixi)τxτε
.

Thus, we can further simplify:

dIxi
dλi

=
γ2τxτε[

γ2 +
γ2Ixi

(1− Ixi)

]2 =
(1− Ixi)2τxτε

γ2
.

Aggregating all those results delivers

dφxi
dλi

=− 1

2γ

1

τθ +
τ 2ε τx

γ2[(1− Ixi)2 + 1]

{
2τ 2ε τx(1− Ixi)

γ2[(1− Ixi)2 + 1]2
(1− Ixi)2τxτε

γ2

}

=− 1

2γ

1

γ2τθ[(1− Ixi)2 + 1] + τ 2ε τx
γ2[(1− Ixi)2 + 1]

2τ 3ε τ
2
x(1− Ixi)3

γ4[(1− Ixi)2 + 1]2

=− τ 3ε τ
2
x(1− Ixi)3

γ3[(1− Ixi)2 + 1]{γ2τθ[(1− Ixi)2 + 1] + τ 2ε τx}
< 0,

which proves part (a) of the proposition. If λj > 0, both terms in (4.16) are affected

by a rise in λi. Comparative-statics analysis of the first term in (4.16) yields

d

{
log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]}
dλi

=
1

τθ +
τ 2ε τx

γ2 (1− Ixj)2

2τ 2ε τx
γ2(1− Ixj)3

dIxj
dλi

=
1

τθ γ
2 (1− Ixj)2 + τ 2ε τx

γ2 (1− Ixj)2

2τ 2ε τx
γ2(1− Ixj)3

dIxj
dλi

=
2τ 2ε τx

(1− Ixj)[γ2 (1− Ixj)2 τθ + τ 2ε τx]

dIxj
dλi

.
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Recalling (A31), we obtain

d

{
log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]}
dλi

=
2τ 2ε τx

(1− Ixj)[γ2 (1− Ixj)2 τθ + τ 2ε τx]

×
2τετx(1− Ixi)Ixj

γ2(1− Ixj)(1− 4IxiIxj)

=
4τ 3ε τ

2
x(1− Ixi)Ixj

γ2(1− 4IxiIxj)(1− Ixj)2[γ2 (1− Ixj)2 τθ + τ 2ε τx]
.

By carefully inspecting the above term, we see that the effect of a rise in λi depends

crucially on the sign of 1− 4IxiIxj . In other words, it depends on the equilibrium

rational traders coordinate on. In the LIE, a rise in λi translates into a higher Ixj .

Hence, the inverse of an xi-informed agent’s residual uncertainty about fundamentals

rises, thereby increasing the incentive to acquire information about xi. By contrast,

in the HIE, it holds that 1 − 4IxiIxj < 0. Therefore, an increase in λi triggers a

smaller Ixj , reducing the incentive to acquire information about xi.

Comparative-statics analysis of the second term in (4.16) gives

d
{

log
[
Var−1(θ |P )

]}
dλi

= Var(θ |P )

{
∂[Var−1(θ |P )]

∂Ixi

dIxi
dλi

+
∂[Var−1(θ |P )]

∂Ixj

dIxj
dλi

}
.

Making use of (A30), (A31), (A52), and (A53) delivers

∂[Var−1(θ |P )]

∂Ixi

dIxi
dλi

=
2τ 2ε τx(1− Ixi)

γ2[(1− Ixi)2 + (1− Ixj)2]2
τετx(1− Ixi)2

γ2(1− Ixj)2(1− 4IxiIxj)

=
2τ 3ε τ

2
x(1− Ixi)3

γ4(1− Ixj)2(1− 4IxiIxj)[(1− Ixi)2 + (1− Ixj)2]2

and

∂[Var−1(θ |P )]

∂Ixj

dIxj
dλi

=
2τ 2ε τx(1− Ixj)

γ2[(1− Ixi)2 + (1− Ixj)2]2
2τετx(1− Ixi)Ixj

γ2(1− Ixj)(1− 4IxiIxj)

=
4τ 3ε τ

2
x(1− Ixi)(1− Ixj)Ixj

γ4(1− Ixj)(1− 4IxiIxj)[(1− Ixi)2 + (1− Ixj)2]2
.

Therefore,

d
{

log
[
Var−1(θ |P )

]}
dλi

= Var(θ |P )
2τ 3ε τ

2
x(1− Ixi)[(1− Ixi)2 + 2 (1− Ixj)2Ixj ]

γ4(1− 4IxiIxj)(1− Ixj)2[(1− Ixi)2 + (1− Ixj)2]2
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=
1

τθ +
τ 2ε τx

γ2[(1− Ixi)2 + (1− Ixj)2]

×
2τ 3ε τ

2
x(1− Ixi)[(1− Ixi)2 + 2 (1− Ixj)2Ixj ]

γ4(1− 4IxiIxj)(1− Ixj)2[(1− Ixi)2 + (1− Ixj)2]2

=
γ2[(1− Ixi)2 + (1− Ixj)2]

τθγ2[(1− Ixi)2 + (1− Ixj)2] + τ 2ε τx

×
2τ 3ε τ

2
x(1− Ixi)[(1− Ixi)2 + 2 (1− Ixj)2Ixj ]

γ4(1− 4IxiIxj)(1− Ixj)2[(1− Ixi)2 + (1− Ixj)2]2

=
2τ 3ε τ

2
x(1− Ixi)[(1− Ixi)2 + 2 (1− Ixj)2Ixj ]

γ2χ(1− 4IxiIxj)(1− Ixj)2(τθγ2χ+ τ 2ε τx)
,

where χ ≡ (1− Ixi)2 + (1− Ixj)2. The sign of the above term again depends on

the sign of 1− 4IxiIxj and, thus, on the equilibrium traders coordinate on. In the

LIE, a rise in λi raises both Ixi and Ixj . Consequently, price efficiency increases,

which reduces the incentive to acquire information about xi. In the HIE, Ixi and Ixj
decrease in response to a higher λi. This raises the incentive to acquire information

about xi.

Thus, a change in λi triggers a change in both terms in (4.16) in the same direction.

The exact direction depends on the equilibrium. In the LIE, both terms rise. In the

HIE, the opposite happens. Putting the separately derived results together yields

dφxi
dλi

=
1

2γ

{
4τ 3ε τ

2
x(1− Ixi)Ixj

γ2(1− 4IxiIxj)(1− Ixj)2[γ2 (1− Ixj)2 τθ + τ 2ε τx]

−
2τ 3ε τ

2
x(1− Ixi)[(1− Ixi)2 + 2 (1− Ixj)2Ixj ]

γ2χ(1− 4IxiIxj)(1− Ixj)2(τθγ2χ+ τ 2ε τx)

}

=
1

2γ

{
4τ 3ε τ

2
x(1− Ixi)Ixjχ(τθγ

2χ+ τ 2ε τx)

γ2(1− 4IxiIxj)(1− Ixj)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

−
2τ 3ε τ

2
x(1− Ixi)[(1− Ixi)2 + 2 (1− Ixj)2Ixj ][γ2(1− Ixj)2τθ + τ 2ε τx]

γ2(1− 4IxiIxj)(1− Ixj)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

}

=
2τ 3ε τx[(1− Ixi)Ixjχ2τθγ

2 + (1− Ixi)Ixjχτ 2ε τx]
γ3(1− 4IxiIxj)(1− Ixj)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ

2χ+ τ 2ε τx)

−
τ 3ε τx[(1− Ixi)3 + 2(1− Ixj)2(1− Ixi)Ixj ](τθγ2(1− Ixj)2 + τ 2ε τx)

γ3(1− 4IxiIxj)(1− Ixj)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

=
τ 3ε τ

2
x [2(1− Ixi)5Ixj + 4(1− Ixi)3(1− Ixj)2Ixj − (1− Ixi)3(1− Ixj)2]τθγ2

γ3(1− 4IxiIxj)(1− Ixj)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)
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+
τ 3ε τ

2
x [2(1− Ixi)3Ixj − (1− Ixi)3]τ 2ε τx

γ3(1− 4IxiIxj)(1− Ixj)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

=
(1− Ixi)3τ 3ε τ 2x

{
τθγ

2[2(1− Ixi)2Ixj + (1− Ixj)2(4Ixj − 1)]− τ 2ε τx(1− 2Ixj)
}

γ3(1− 4IxiIxj)(1− Ixj)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

.

(A54)

The following analysis differentiates between the two possible equilibria. We begin

with the LIE, in which it holds that 1− 4IxiIxj > 0. This leads to a strictly positive

denominator in (A54). Thus, acquiring information about the same noise component

is a complement (resp., a substitute) if the numerator in (A54) is positive (resp.,

negative). This yields

dφLIExi

dλi
≷ 0 ⇔ τθγ

2[2(1− Ixi)2Ixj + (1− Ixj)2(4Ixj − 1)] ≷ τ 2ε τx(1− 2Ixj).

Note that if Ixj ≥ 0.5, acquiring information about the same noise component is

unambiguously a complement. Whenever Ixj < 0.5, it can be either a complement or

a substitute. Recall that the endogenous values of both Ixi and Ixj do not vary with

τθ. Thus, if Ixj < 0.5, both scenarios are plausible (given that the term in square

brackets on the left-hand side in the above inequality is positive).

Next, we consider the HIE. In the HIE, it holds that 1− 4IxiIxj < 0. This leads

to a strictly negative denominator in (A54). Thus, acquiring information about the

same noise component is a complement (resp., a substitute) if the numerator in (A54)

is negative (resp., positive). Hence,

dφHIExi

dλi
≶ 0 ⇔ τθγ

2[2(1− Ixi)2Ixj + (1− Ixj)2(4Ixj − 1)] ≷ τ 2ε τx(1− 2Ixj).

Note that in the HIE, it must hold that 4Ixj −1 > 0. From Ixi > 0.25I−1xj (i.e., Γ < 0)

and Ixi ∈ [0, 1), it follows that Ixj > 0.25. Otherwise, the existence of the HIE is

not possible. We further conclude that acquiring information about the same noise

component is always a substitute whenever Ixj ≥ 0.5. If 0.25 < Ixj < 0.5, it can be

either a complement or a substitute.

Lastly, to prove part (c) of the proposition, we investigate the influence of a change

in λj on φxi . As in the analysis before, we consider the two terms in (4.16) separately.

Direct computations yield

d

{
log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]}
dλj

=
1

τθ +
τ 2ε τx

γ2 (1− Ixj)2

2τ 2ε τx
γ2(1− Ixj)3

dIxj
dλj
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=
1

τθ γ
2 (1− Ixj)2 + τ 2ε τx

γ2 (1− Ixj)2

2τ 2ε τx
γ2(1− Ixj)3

dIxj
dλj

=
2τ 2ε τx

(1− Ixj)[γ2 (1− Ixj)2 τθ + τ 2ε τx]

dIxj
dλj

.

Using the symmetric counterpart of (A30) delivers

d

{
log

[
τθ +

τ 2ε τx
γ2 (1− Ixj)2

]}
dλj

=
2τ 2ε τx

(1− Ixj)(γ2 (1− Ixj)2 τθ + τ 2ε τx)

×
τετx(1− Ixj)2

γ2(1− Ixi)2(1− 4IxiIxj)

=
2τ 3ε τ

2
x(1− Ixj)

γ2(1− 4IxiIxj)(1− Ixi)2[γ2 (1− Ixj)2 τθ + τ 2ε τx]
.

Similar to the previous case, the effect of a rise in λj depends on the equilibrium

agents coordinate on. In the LIE, a rise in λj leads to a higher Ixj , increasing the

incentive to acquire information about xi. In the HIE, it holds that 1− 4IxiIxj < 0.

An increase in λj leads to a smaller Ixj , reducing the incentive to acquire information

about xi.

Comparative-statics analysis of the second term in (4.16) yields

d
{

log
[
Var−1(θ |P )

]}
dλj

= Var(θ |P )

{
∂
[
Var−1(θ |P )

]
∂Ixi

dIxi
dλj

+
∂
[
Var−1(θ |P )

]
∂Ixj

dIxj
dλj

}
.

Using the symmetric counterparts of (A30) and (A31), (A52), and (A53) yields

∂[Var−1(θ |P )]

∂Ixi

dIxi
dλj

=
2τ 2ε τx(1− Ixi)

γ2[(1− Ixi)2 + (1− Ixj)2]2
2τετx(1− Ixj)Ixi

γ2(1− Ixi)(1− 4IxiIxj)

=
4τ 3ε τ

2
x(1− Ixi)(1− Ixj)Ixi

γ4(1− Ixi)(1− 4IxiIxj)[(1− Ixi)2 + (1− Ixj)2]2

and

∂[Var−1(θ |P )]

∂Ixj

dIxj
dλj

=
2τ 2ε τx(1− Ixj)

γ2[(1− Ixi)2 + (1− Ixj)2]2
τετx(1− Ixj)2

γ2(1− Ixi)2(1− 4IxiIxj)

=
2τ 3ε τ

2
x(1− Ixj)3

γ4(1− Ixi)2(1− 4IxiIxj)[(1− Ixi)2 + (1− Ixj)2]2
.
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Thus,

d
{

log
[
Var−1(θ |P )

]}
dλj

= Var (θ|P )
2τ 3ε τ

2
x(1− Ixj)[(1− Ixj)2 + 2 (1− Ixi)2Ixi ]

γ4(1− 4IxiIxj)(1− Ixi)2[(1− Ixi)2 + (1− Ixj)2]2

=
1

τθ +
τ 2ε τx

γ2[(1− Ixi)2 + (1− Ixj)2]

×
2τ 3ε τ

2
x(1− Ixj)[(1− Ixj)2 + 2 (1− Ixi)2Ixi ]

γ4(1− 4IxiIxj)(1− Ixi)2[(1− Ixi)2 + (1− Ixj)2]2

=
γ2[(1− Ixi)2 + (1− Ixj)2]

τθγ2((1− Ixi)2 + (1− Ixj)2) + τ 2ε τx

×
2τ 3ε τ

2
x(1− Ixj)[(1− Ixj)2 + 2 (1− Ixi)2Ixi ]

γ4(1− 4IxiIxj)(1− Ixi)2[(1− Ixi)2 + (1− Ixj)2]2

=
2τ 3ε τ

2
x(1− Ixj)[(1− Ixj)2 + 2 (1− Ixi)2Ixi ]

γ2χ(1− 4IxiIxj)(1− Ixi)2(τθγ2χ+ τ 2ε τx)
,

where χ ≡ (1− Ixi)2 + (1− Ixj)2. The sign of the above term again depends on

the equilibrium traders coordinate on. In the LIE, a rise in λj raises both Ixi and

Ixj . Consequently, price efficiency increases. This reduces the incentive to acquire

information about xi. In the HIE, by contrast, Ixi and Ixj shrink in response to a

higher λj. This raises the incentive to acquire information about xi.

Analogous to the case before, a change in λj triggers a change in both terms in

(4.16) in the same direction. The exact direction is determined by the respective

equilibrium. Further calculations yield

dφxi
dλj

=
1

2γ

{
2τ 3ε τ

2
x(1− Ixj)

γ2(1− 4IxiIxj)(1− Ixi)2[γ2 (1− Ixj)2 τθ + τ 2ε τx]

−
2τ 3ε τ

2
x(1− Ixj)[(1− Ixj)2 + 2 (1− Ixi)2Ixi ]

γ2χ(1− 4IxiIxj)(1− Ixi)2(τθγ2χ+ τ 2ε τx)

}

=
1

2γ

{
2τ 3ε τ

2
x(1− Ixj)χ(τθγ

2χ+ τ 2ε τx)

γ2(1− 4IxiIxj)(1− Ixi)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

−
2τ 3ε τ

2
x(1− Ixj)[(1− Ixj)2 + 2 (1− Ixi)2Ixi ][γ2(1− Ixj)2τθ + τ 2ε τx]

γ2(1− 4IxiIxj)(1− Ixi)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

}

=
τ 3ε τ

2
x [(1− Ixj)χ2τθγ

2 + (1− Ixj)χτ 2ε τx]
γ3(1− 4IxiIxj)(1− Ixi)2χ(γ2 (1− Ixj)2 τθ + τ 2ε τx)(τθγ

2χ+ τ 2ε τx)

174



A Model Proofs

−
τ 3ε τ

2
x [(1− Ixj)3 + 2(1− Ixi)2(1− Ixj)Ixi ][τθγ2(1− Ixj)2 + τ 2ε τx]

γ3(1− 4IxiIxj)(1− Ixi)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

=
τ 3ε τ

2
x(1− Ixi)2(1− Ixj)[(1− Ixi)2 + 2(1− Ixj)2 − 2(1− Ixj)2Ixi ]τθγ2

γ3(1− 4IxiIxj)(1− Ixi)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

+
τ 3ε τ

2
x(1− 2Ixi)(1− Ixi)2(1− Ixj)τ 2ε τx

γ3(1− 4IxiIxj)(1− Ixi)2χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

=
τ 3ε τ

2
x(1− Ixj)

{
τθγ

2[(1− Ixi)2 + 2(1− Ixj)2(1− Ixi)] + τ 2ε τx(1− 2Ixi)
}

γ3(1− 4IxiIxj)χ[γ2 (1− Ixj)2 τθ + τ 2ε τx](τθγ
2χ+ τ 2ε τx)

.

(A55)

In the LIE, the denominator in (A55) is positive, since 1− 4IxiIxj > 0. Consequently,

acquiring information about different noise components is a complement (resp., a

substitute) if the numerator in (A55) is positive (resp., negative). This gives

dφLIExi

dλj
≷ 0 ⇔ τθγ

2[(1− Ixi)2 + 2(1− Ixj)2(1− Ixi)] + τ 2ε τx(1− 2Ixi) ≷ 0.

If Ixi ≤ 0.5, acquiring information about different noise components is unequivocally

a complement. Whenever Ixi > 0.5, it can be either a complement or a substitute.

In the HIE, the denominator in (A55) is negative. Thus, acquiring information about

different noise components is a complement (resp., a substitute) if the numerator in

(A55) is negative (resp., positive). Thus,

dφHIExi

dλj
≶ 0 ⇔ τθγ

2[(1− Ixi)2 + 2(1− Ixj)2(1− Ixi)] + τ 2ε τx(1− 2Ixi) ≷ 0.

In the HIE, contrary to the LIE, if Ixi ≤ 0.5, acquiring information about different

noise components is a substitute. Whenever Ixi > 0.5, both scenarios are possible,

since the endogenous values of Ixi and Ixj are independent of τθ. �

Proof of Proposition 4.7. Recalling (4.18), a noise-informed agent’s conditional

moments are

E(θ |P ∗ni) =

τx

β−2j + β−2l

(
P

aθ
− 1

βi
xi

)
τθ + τx/(β

−2
j + β−2l )

,

Var(θ |P ∗ni) =
1

τθ + τx/(β
−2
j + β−2l )

.
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Then, by (4.2), the demand function of an xi-informed trader becomes

Dni =

τx

β−2j + β−2l

(
P

aθ
− 1

βi
xi

)
− P

[
τθ + τx/(β

−2
j + β−2l )

]
γ

, (A56)

for i, j, l = 1, 2, 3, i 6= j 6= l. For a fundamentally informed trader, we obtain

E
(
θ | sf , P ∗f/u

)
=

τε sf +
τx

β−21 + β−22 + β−23

P

aθ

τθ + τε + τx/(β
−2
1 + β−22 + β−23 )

,

Var
(
θ | sf , P ∗f/u

)
=

1

τθ + τε + τx/(β
−2
1 + β−22 + β−23 )

.

Thus,

Df =

τε sf +
τx

β−21 + β−22 + β−23

P

aθ
− P

(
τθ + τε +

τx

β−21 + β−22 + β−23

)
γ

. (A57)

Analogously, the conditional moments of an uninformed, rational agent are

E
(
θ |P ∗f/u

)
=

τx

β−21 + β−22 + β−23

P

aθ

τθ + τx/(β
−2
1 + β−22 + β−23 )

,

Var
(
θ |P ∗f/u

)
=

1

τθ + τx/(β
−2
1 + β−22 + β−23 )

,

which gives

Du =

τx

β−21 + β−22 + β−23

P

aθ
− P

(
τθ +

τx

β−21 + β−22 + β−23

)
γ

. (A58)

Using
∫ 1

0
sf df = θ (which again follows from the strong law of large numbers), (A56),

(A57), and (A58), the market-clearing condition in (4.20) can be written as

τε θ +
τx

β−21 + β−22 + β−23

P

aθ
− P

(
τθ + τε +

τx

β−21 + β−22 + β−23

)
γ

+ λ1

τx

β−22 + β−23

(
P

aθ
− 1

β1
x1

)
− P

(
τθ +

τx

β−22 + β−23

)
γ
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+ λ2

τx

β−21 + β−23

(
P

aθ
− 1

β2
x1

)
− P

(
τθ +

τx

β−21 + β−23

)
γ

+ λ3

τx

β−21 + β−22

(
P

aθ
− 1

β3
x3

)
− P

(
τθ +

τx

β−21 + β−22

)
γ

+ x1 + x2 + x3 + λu

τx

β−21 + β−22 + β−23

P

aθ
− P

(
τθ +

τx

β−21 + β−22 + β−23

)
γ

= 0.

Recall that

τx

β−21 + β−22 + β−23

= Var−1
(
P ∗f/u| θ

)
,

τx

β−22 + β−23

= Var−1
(
P ∗n1
| θ
)
,

τx

β−21 + β−23

= Var−1
(
P ∗n2
| θ
)
,

τx

β−21 + β−22

= Var−1
(
P ∗n3
| θ
)
.

Thus, the market-clearing condition can be rearranged as follows:

[(1 + λu + λ1 + λ2 + λ3)τθ + τε] P

+ (1− a−1θ )

[
(1 + λu)Var−1(P ∗f/u| θ) + λ1Var−1(P ∗n1

| θ)
+λ2Var−1(P ∗n2

| θ) + λ3Var−1(P ∗n3
| θ)

]
P

= τε θ +

[
γ − λ1

τx

(β−22 + β−23 )β1

]
x1 +

[
γ − λ2

τx

(β−21 + β−23 )β2

]
x2

+

[
γ − λ3

τx

(β−21 + β−22 )β3

]
x3.

(A59)

Denote ω ≡ 1 + λu + λ1 + λ2 + λ3. Then, by comparing (A59) with (4.17) and

invoking rational expectations, we get

τε
aθ

= ωτθ + τε + (1− a−1θ )

[
(1 + λu)Var−1(P ∗f/u| θ) + λ1Var−1(P ∗n1

| θ)
+λ2Var−1(P ∗n2

| θ) + λ3Var−1(P ∗n3
| θ)

]

⇔ τε = (ωτθ + τε) aθ + (aθ − 1)

[
(1 + λu)Var−1(P ∗f/u| θ) + λ1Var−1(P ∗n1

| θ)
+λ2Var−1(P ∗n2

| θ) + λ3Var−1(P ∗n3
| θ)

]
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⇔ aθ =

τε +

[
(1 + λu)Var−1(P ∗f/u| θ) + λ1Var−1(P ∗n1

| θ)
+λ2Var−1(P ∗n2

| θ) + λ3Var−1(P ∗n3
| θ)

]

τε + ωτθ +

[
(1 + λu)Var−1(P ∗f/u| θ) + λ1Var−1(P ∗n1

| θ)
+λ2Var−1(P ∗n2

| θ) + λ3Var−1(P ∗n3
| θ)

] ,

which is positive. By the definition of βi, it immediately follows that

ai =
aθ
βi
, for i = 1, 2, 3.

Furthermore, by (A59), the implied value of βi is

βi =
τε

γ − λiτx

(β−2j + β−2l )βi

⇔ βiγ −
λiτx

β−2j + β−2l
= τε

⇔ βi =
τε
γ

+
λiτx

γ(β−2j + β−2l )
, for i, j, l = 1, 2, 3, i 6= j 6= l,

which is equal to (4.21) in the proposition. �

Proof of Proposition 4.8. By (4.21), βi = τε/γ if λi = 0. Then, the equation that

determines βj in equilibrium becomes

βj =
τε
γ

+
λjτx

γ

(
γ2

τ 2ε
+

1

β2
l

)

=
τε
γ

+
λjτxτ

2
ε β

2
l

γ (γ2β2
l + τ 2ε )

=
τ 3ε + β2

l τε(γ
2 + λjτετx)

γ(τ 2ε + β2
l γ

2)
. (A60)

Next, we plug the solution for βj contained in (A60) into the respective equation

that determines βl in equilibrium:

βl =
τε
γ

+
λlτx

γ

{
γ2

τ 2ε
+

γ2(τ 2ε + β2
l γ

2)2

[τ 3ε + β2
l τε(γ

2 + λjτετx)]
2

}

=
τε
γ

+
λlτxτ

2
ε [τ 2ε + β2

l (γ
2 + λjτετx)]

2

γ3
{

[τ 2ε + β2
l (γ

2 + λjτετx)]
2

+ (τ 2ε + β2
l γ

2)2
} ≡ f(βl). (A61)
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The number of solutions of the fixed-point equation in (A61) is equal to the number

of equilibria in the model. Denote

g(βl) ≡ τ 2ε + β2
l (γ

2 + λjτετx),

h(βl) ≡ τ 2ε + β2
l γ

2.

Then, differentiating yields

f ′(βl)

=
λlτxτ

2
ε

γ3
{[g(βl)]

2 + [h(βl)]
2}2g(βl)g

′(βl)− [g(βl)]
2[2g(βl)g

′(βl) + 2h(βl)h
′(βl)]

{[g(βl)]2 + [h(βl)]2}2

=
λlτxτ

2
ε

γ3
2[h(βl)]

2g(βl)g
′(βl)− 2[g(βl)]

2h(βl)h
′(βl)

[g(βl) + h(βl)]2

=
λlτxτ

2
ε

γ3

×

{
4(τ 2ε + β2

l γ
2)2 [τ 2ε + β2

l (γ
2 + λjτετx)]

×(γ2 + λjτετx)βl

}
−
{

[τ 2ε + β2
l (γ

2 + λjτετx)]
2

×4γ2βl(τ 2ε + β2
l γ

2)

}
{[g(βl)]2 + [h(βl)]2}2

=
4λlτxτ

2
ε βl[τ

2
ε + β2

l (γ
2 + λjτετx)](τ

2
ε + β2

l γ
2)

γ3

× (τ 2ε + β2
l γ

2)(γ2 + λjτετx)− γ2[τ 2ε + β2
l (γ

2 + λjτετx)]

{[g(βl)]2 + [h(βl)]2}2

=
4λjλlτ

2
xτ

5
ε βl[τ

2
ε + β2

l (γ
2 + λjτετx)](τ

2
ε + β2

l γ
2)

γ3{[g(βl)]2 + [h(βl)]2}2

=
4λjλlτ

2
xτ

5
ε βl g(βl)h(βl)

γ3{[g(βl)]2 + [h(βl)]2}2
> 0.

Thus, f(βl) is a monotonically increasing function in βl. Differentiating a second

time delivers

f ′′(βl) =
4λjλlτ

2
xτ

5
ε

γ3

(
g(βl)h(βl)

{[g(βl)]2 + [h(βl)]2}2

+ βl

{[g(βl)]
2 + [h(βl)]

2}2[g(βl)h
′(βl) + h(βl)g(βl)]

− 4{[g(βl)]2 + [h(βl)]2}[g(βl)g′(βl) + h(βl)h′(βl)]g(βl)h(βl)

{[g(βl)]2 + [h(βl)]2}4

)
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=
4λjλlτ

2
xτ

5
ε

γ3

g(βl)h(βl){[g(βl)]
2 + [h(βl)]

2 − 4βl[g(βl)g
′(βl) + h(βl)h

′(βl)]}
+ βl{[g(βl)]2 + [h(βl)]2}[g(βl)h′(βl) + h(βl)g′(βl)]

{[g(βl)]2 + [h(βl)]2}3
.

Direct computations yield

g(βl)h(βl){[g(βl)]
2 + [h(βl)]

2 − 4βl[g(βl)g
′(βl) + h(βl)h

′(βl)]}

= g(βl)h(βl)
{

[τ 2ε + β2
l (γ

2 + λjτετx)]
2 + (τ 2ε + β2

l γ
2)2

− 8β2
l (γ

2 + λjτxτε)[τ
2
ε + β2

l (γ
2 + λjτετx)]− 8γ2β2

l (τ
2
ε + β2

l γ
2)
}

= [τ 2ε + β2
l (γ

2 + λjτετx)](τ
2
ε + β2

l γ
2)

× {−7[γ4 + (γ2 + λjτxτε)
2]β4

j − 6τ 2ε (2γ2 + λjτxτε)β
2
l + 2τ 4ε }

= [γ2(γ2 + λjτxτε)β
4
l + τ 2ε (2γ2 + λjτxτε)β

2
l + τ 4ε ]

× {−7[γ4 + (γ2 + λjτxτε)
2]β4

j − 6τ 2ε (2γ2 + λjτxτε)β
2
l + 2τ 4ε }

= − 7γ2(γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2]β8
l

− τ 2ε (2γ2 + λjτxτε){6γ2(γ2 + λjτxτε) + 7[γ4 + (γ2 + λjτxτε)
2]}β6

l

− τ 4ε {−2γ2(γ2 + λjτxτε) + 6(2γ2 + λjτxτε)
2 + 7[γ4 + (γ2 + λjτxτε)

2]}β4
l

− 4τ 6ε (2γ2 + λjτxτε)β
2
l + 2τ 8ε

(A62)

and

βl{[g(βl)]
2 + [h(βl)]

2}[g(βl)h
′(βl) + h(βl)g

′(βl)]

= βl{[τ 2ε + β2
l (γ

2 + λjτετx)]
2 + (τ 2ε + β2

l γ
2)2}

× {2γ2βl[τ 2ε + β2
l (γ

2 + λjτετx)] + 2(γ2 + λjτxτε)(τ
2
ε + β2

l γ
2)βl}

= {[γ4 + (γ2 + λjτxτε)
2]β5

l + 2τ 2ε (2γ2 + λjτxτε)β
3
l + 2τ 4ε βl}

× [2τ 2ε (2γ2 + λjτxτε)βl + 4γ2(γ2 + λjτxτε)β
3
l ]

= 4γ2(γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2]β8
l

+ 2τ 2ε (2γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2 + 4γ2(γ2 + λjτxτε)]β
6
l

+ 4τ 4ε [(2γ2 + λjτxτε)
2 + 2γ2(γ2 + λjτxτε)]β

4
l + 4τ 6ε (2γ2 + λjτxτε)β

2
l .

(A63)
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Next, we pairwise compare the terms linked to β8
l , β

6
l , β

4
l , and β2

l in (A62) and

(A63):

− 7γ2(γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2]β8
l

+ 4γ2(γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2]β8
l

= − 3γ2(γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2]β8
l

and

− τ 2ε (2γ2 + λjτxτε){6γ2(γ2 + λjτxτε) + 7[γ4 + (γ2 + λjτxτε)
2]}β6

l

+ 2τ 2ε (2γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2 + 4γ2(γ2 + λjτxτε)]β
6
l

= τ 2ε (2γ2 + λjτxτε){−5[γ4 + (γ2 + λjτxτε)
2] + 2γ2(γ2 + λjτxτε)}β6

l

= − τ 2ε (2γ2 + λjτxτε)[8γ
2(γ2 + λjτxτε) + 5(λjτxτε)

2]β6
l

and

− τ 4ε {−2γ2(γ2 + λjτxτε) + 6(2γ2 + λjτxτε)
2 + 7[γ4 + (γ2 + λjτxτε)

2]}β4
l

+ 4τ 4ε [(2γ2 + λjτxτε)
2 + 2γ2(γ2 + λjτxτε)]β

4
l

= τ 4ε {10γ2(γ2 + λjτxτε)− 2(2γ2 + λjτxτε)
2 − 7[γ4 + (γ2 + λjτxτε)

2]}β4
l

= − 3τ 4ε [4γ2(γ2 + λjτxτε) + 3(λjτxτε)
2]β4

l

and

−4τ 6ε (2γ2 + λjτxτε)β
2
l + 4τ 6ε (2γ2 + λjτxτε)β

2
l = 0.

Putting all obtained results together, we finally get

f ′′(βl) =
4λjλlτ

2
xτ

5
ε

γ3
− b8β8

l − b6β6
l − b4β4

l + 2τ 8ε
{[τ 2ε + β2

l (γ
2 + λjτετx)]2 + (τ 2ε + β2

l γ
2)2}3

, (A64)

where

b8 ≡ 3γ2(γ2 + λjτxτε)[γ
4 + (γ2 + λjτxτε)

2],

b6 ≡ τ 2ε (2γ2 + λjτxτε)[8γ
2(γ2 + λjτxτε) + 5(λjτxτε)

2],

b4 ≡ 3τ 4ε [4γ2(γ2 + λjτxτε) + 3(λjτxτε)
2].
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Note that the numerator in (A64) is an octic polynomial in βl. Its terms are all

negative except for the constant (i.e., 2τ 8ε ), which is positive. Thus, by Descartes’

rule of signs, we can conclude that the octic has exactly one positive real root, since it

exhibits exactly one sign change. We denote this positive real root β̄l. As f ′′(0) > 0,

f(βl) is strictly convex in βl for βl < β̄l and strictly concave in βl for βl > β̄l. By

(4.21), any equilibrium solution for βl must be greater than τε/γ if λl > 0. Since

f(0) =
τε
γ

+
λlτxτ

6
ε

2γ3τ 4ε
=
τε(2γ

2 + λlτxτε)

2γ3
> 0,

f(βl) > βl holds for sure for all βl ≤ τε/γ. Next, we investigate the curvature of

f(βl) at βl = τε/γ:

f ′′(τε/γ) =
4λjλlτ

2
xτ

5
ε

γ3
− b8τ 8ε γ−8 − b6τ 6ε γ−6 − b4τ 4ε γ−4 + 2τ 8ε
[(τ 2ε + τ 2ε + λjτ 3ε τxγ

−2)2 + (τ 2ε + τ 2ε )2]3

=
4λjλlτ

2
xτ

5
ε

γ3
γ−8τ 4ε (− b8τ 4ε − b6τ 2ε γ2 − b4γ4 + 2τ 4ε γ

8)

γ−12τ 12ε [(2γ2 + λjτετx)2 + 4γ4]3

=
4λjλlτ

2
xγ

τ 3ε

− b8τ 4ε − b6τ 2ε γ2 − b4γ4 + 2τ 4ε γ
8

[(2γ2 + λjτετx)2 + 4γ4]3
.

Direct computations yield

− b8τ 4ε − b6τ 2ε γ2

= − 3τ 4ε γ
2(γ2 + λjτxτε)[γ

4 + (γ2 + λjτxτε)
2]

− τ 4ε γ2(2γ2 + λjτxτε)[8γ
2(γ2 + λjτxτε) + 5(λjτxτε)

2]

= − 3τ 4ε γ
2(2γ6 + 2γ4λjτxτε + γ2λ2jτ

2
xτ

2
ε + 2γ4λjτxτε + 2γ2λ2jτ

2
xτ

2
ε + λ3jτ

3
xτ

3
ε )

− τ 4ε γ2(16γ6 + 16γ4λjτxτε + 10γ2λ2jτ
2
xτ

2
ε + 8γ4λjτxτε + 8γ2λ2jτ

2
xτ

2
ε + 5λ3jτ

3
xτ

3
ε )

= − τ 4ε γ2(22γ6 + 36γ4λjτxτε + 27γ2λ2jτ
2
xτ

2
ε + 8λ3jτ

3
xτ

3
ε )

as well as

−b4γ4 + 2τ 4ε γ
8 = −3τ 4ε γ

4[4γ2(γ2 + λjτxτε) + 3(λjτxτε)
2] + 2τ 4ε γ

8

= −12τ 4ε γ
8 − 3τ 4ε γ

2(4γ4λjτxτε + 3γ2λ2jτ
2
xτ

2
ε ) + 2τ 4ε γ

8

= −τ 4ε γ2(10γ6 + 12γ4λjτxτε + 9γ2λ2jτ
2
xτ

2
ε ).
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Figure A.3: Mapping f(βl) with βl for λi = 0

Thus,

− b8τ 4ε − b6τ 2ε γ2 − b4γ4 + 2τ 4ε γ
8

= − τ 4ε γ2(22γ6 + 36γ4λjτxτε + 27γ2λ2jτ
2
xτ

2
ε + 8λ3jτ

3
xτ

3
ε )

− τ 4ε γ2(10γ6 + 12γ4λjτxτε + 9γ2λ2jτ
2
xτ

2
ε )

= − 4τ 4ε γ
2(8γ6 + 12γ4λjτxτε + 9γ2λ2jτ

2
xτ

2
ε + 2λ3τ 3xτ

3
ε ).

Eventually,

f ′′(τε/γ) = −4λjλlτ
2
xγ

τ 3ε

4τ 4ε γ
2(8γ6 + 12γ4λjτxτε + 9γ2λ2jτ

2
xτ

2
ε + 2λ3τ 3xτ

3
ε )

[(2γ2 + λjτετx)2 + 4γ4]3

= −
16λjλlτ

2
xτεγ

3(8γ6 + 12γ4λjτxτε + 9γ2λ2jτ
2
xτ

2
ε + 2λ3τ 3xτ

3
ε )

[(2γ2 + λjτετx)2 + 4γ4]3
< 0.

This implies that f(βl) is for sure concave for all βl ≥ τε/γ, which furthermore means

that β̄l < τε/γ. Thus, any potential solution for βl lies in the region where f(βl) is

strictly concave. Given that f(βl) > βl for βl = τε/γ, f(βl) unequivocally intersects

with the 45◦-line exactly once (see also Figure A.3). This proves that equilibrium is

unique. �
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Proof of Proposition 4.9. Formally, by (4.24), we obtain

dIxi
dλi

=
∂Ixi
∂λi

+
∂Ixi
∂Ixj

dIxj
dλi

+
∂Ixi
∂Ixl

dIxl
dλi

, (A65)

dIxj
dλi

=
∂Ixj
∂Ixi

dIxi
dλi

+
∂Ixj
∂Ixl

dIxl
dλi

, (A66)

dIxl
dλi

=
∂Ixl
∂Ixi

dIxi
dλi

+
∂Ixl
∂Ixj

dIxj
dλi

. (A67)

Plugging (A67) into (A66) and rearranging terms delivers

dIxj
dλi

=
∂Ixj
∂Ixi

dIxi
dλi

+
∂Ixj
∂Ixl

(
∂Ixl
∂Ixi

dIxi
dλi

+
∂Ixl
∂Ixj

dIxj
dλi

)

⇔
dIxj
dλi

=

∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

1−
∂Ixj
∂Ixl

∂Ixl
∂Ixj

dIxi
dλi

. (A68)

By (A68), (A67) can be written as

dIxl
dλi

=
∂Ixl
∂Ixi

dIxi
dλi

+
∂Ixl
∂Ixj


(
∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

)
dIxi
dλi

1−
∂Ixj
∂Ixl

∂Ixl
∂Ixj



=

∂Ixl∂Ixi
+

∂Ixl
∂Ixj

(
∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

)
1−

∂Ixj
∂Ixl

∂Ixl
∂Ixj

 dIxidλi

=

∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

1−
∂Ixj
∂Ixl

∂Ixl
∂Ixj

dIxi
dλi

. (A69)

Plugging (A68) and (A69) into (A65) gives

dIxi
dλi

=
∂Ixi
∂λi

+
∂Ixi
∂Ixj

∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

1−
∂Ixj
∂Ixl

∂Ixl
∂Ixj

dIxi
dλi
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+
∂Ixi
∂Ixl

∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

1−
∂Ixj
∂Ixl

∂Ixl
∂Ixj

dIxi
dλi

⇔

1−

∂Ixi
∂Ixj

(
∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

)
1−

∂Ixj
∂Ixl

∂Ixl
∂Ixj

−

∂Ixi
∂Ixl

(
∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

)
1−

∂Ixj
∂Ixl

∂Ixl
∂Ixj

 dIxidλi
=
∂Ixi
∂λi

⇔ dIxi
dλi

= Γ−11

(
1−

∂Ixj
∂Ixl

∂Ixl
∂Ixj

)
∂Ixi
∂λi

, (A70)

where

Γ1 ≡ 1−
[
∂Ixj
∂Ixl

∂Ixl
∂Ixj

+
∂Ixi
∂Ixj

(
∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

)
+
∂Ixi
∂Ixl

(
∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

)]
.

Finally, plugging (A70) into (A68) and (A69) yields

dIxj
dλi

=

∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

1−
∂Ixj
∂Ixl

∂Ixl
∂Ixj

× Γ−11

(
1−

∂Ixj
∂Ixl

∂Ixl
∂Ixj

)
∂Ixi
∂λi

= Γ−11

(
∂Ixj
∂Ixi

+
∂Ixj
∂Ixl

∂Ixl
∂Ixi

)
∂Ixi
∂λi

and

dIxl
dλi

=

∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

1−
∂Ixj
∂Ixl

∂Ixl
∂Ixj

× Γ−11

(
1−

∂Ixj
∂Ixl

∂Ixl
∂Ixj

)
∂Ixi
∂λi

= Γ−11

(
∂Ixl
∂Ixi

+
∂Ixl
∂Ixj

∂Ixj
∂Ixi

)
∂Ixi
∂λi

. �
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B Technical Appendix

This Technical Appendix aims to provide the necessary mathematical and statistical

background knowledge that is needed to understand some of the results derived in

the main text and in Appendix A.

B.1 Important Properties of Normal Random

Variables

The used theoretical framework relies on the assumption that all introduced random

variables are (jointly) normally distributed. Additionally, the framework works

with linear transformations of normal random variables and sums of and differences

between independent normal random variables. The aim of this section of Appendix

B is to prove that linear transformations of normal random variables and sums of and

differences between independent normal variables are again normally distributed.

B.1.1 Linear Transformations

Consider an arbitrary continuous random variable X ∼ N(µ, σ2) and a linear

transformation of this variable Y = a + bX, for constants a and b. It holds that

Y ∼ N(a+ bµ, b2σ2).

Proof. The probability density function (PDF) of the normal random variable X

evaluated at value x is given by

fX(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
.

The PDF can be used to determine the cumulative distribution function (CDF). The

CDF indicates the probability that a random variable takes on a realisation that

is smaller than or equal to a specific value. For example, the probability that the

normal random variable X takes on a realisation that is smaller than or equal to
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some value m is

FX(m) = P (X ≤ m) =

∫ x=m

x=−∞
fX(x) dx.

To determine the distribution of the random variable Y , we need to derive its PDF,

which can be done by computing its CDF. More specifically, we are interested in

determining

FY (m) = P (Y ≤ m) =

∫ y=m

y=−∞
fY (y) dy.

Recalling the relationship between Y and X, we obtain

P (Y ≤ m) = P (a+ bX ≤ m) = P

(
X ≤ m− a

b

)
= FX

(
m− a
b

)
.

The probability that X takes on a value that is smaller than or equal to (m− a)/b

is given by

FX

(
m− a
b

)
=

∫ x=(m−a)/b

x=−∞
fX(x) dx

=

∫ x=(m−a)/b

x=−∞

1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
dx.

Thus, we can conclude that

FY (m) = P (Y ≤ m) =

∫ x=(m−a)/b

x=−∞

1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
dx.

Next, we apply a change of variables to the above CDF, which allows us to express

it in terms of y rather than x. We have assumed that y = a+ bx. Consequently, the

boundaries of the integral become

x =
m− a
b

⇔ y = a+ b
m− a
b

= m,

x = −∞ ⇔ y = −∞.

Moreover,

dy

dx
= b ⇔ dx =

dy

b
,

y = a+ bx ⇔ x =
y − a
b

.
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Hence, the CDF can be written as

FY (m) = P (Y ≤ m) =

∫ y=m

y=−∞

1√
2πσ2

exp

{
− [(y − a)/b− µ]2

2σ2

}
dy

b

=

∫ y=m

y=−∞

1√
2πb2σ2

exp

[
−(1/b2) (y − a− bµ)2

2σ2

]
dy

=

∫ y=m

y=−∞

1√
2πb2σ2

exp

{
− [y − (a+ bµ)]2

2b2σ2

}
︸ ︷︷ ︸

= fY (y)

dy.

The term under the integral represents the PDF of the random variable Y . According

to the PDF, Y follows a normal distribution with mean a+ bµ and variance b2σ2. �

B.1.2 Sums and Differences

Consider two continuous, independent random variables X ∼ N(µx, σ
2
x) and Y ∼

N(µy, σ
2
y). Then, X + Y ∼ N(µx + µy, σ

2
x + σ2

y) and X − Y ∼ N(µx − µy, σ2
x + σ2

y).

Proof. The aim is to determine the PDF of X + Y , which indicates the distribution

of the sum of the two normal random variables. The PDF of X + Y can then be

used to determine the distribution of the difference between the two normal random

variables. Since X and Y are independent, the PDF of X +Y equals the convolution

of the PDFs of X and Y (see, e.g., Grinstead and Snell, 1998, Section 7.2). This

implies

fX+Y (z) =

∫ ∞
−∞

fX(t)fY (z − t) dt

=

∫ ∞
−∞

1√
2πσ2

x

exp

[
−(t− µx)2

2σ2
x

]
1√

2πσ2
y

exp

[
−(z − t− µy)2

2σ2
y

]
dt

=
1

2πσxσy

∫ ∞
−∞

exp

{
−

[
(t− µx)2

2σ2
x

+
(z − t− µy)2

2σ2
y

]}
dt.

The term in square brackets can be developed as follows:

(t− µx)2

2σ2
x

+
(z − t− µy)2

2σ2
y

=
t2 + µ2

x − 2tµx
2σ2

x

+
(z − µy)2 − 2t(z − µy) + t2

2σ2
y
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=
t2 + µ2

x − 2tµx
2σ2

x

+
(z − µy)2 − 2t(z − µy) + t2

2σ2
y

= t2
(

1

2σ2
x

+
1

2σ2
y

)
− 2t

(
µx
2σ2

x

+
z − µy

2σ2
y

)
+

µ2
x

2σ2
x

+
(z − µy)2

2σ2
y

=
1

2

σ2
x + σ2

y

σ2
xσ

2
y

[
t2 − 2t

µxσ
2
y + (z − µy)σ2

x

σ2
x + σ2

y

+
µ2
xσ

2
y + (z − µy)2σ2

x

σ2
x + σ2

y

]
.

Completing the square delivers

(t− µx)2

2σ2
x

+
(z − t− µy)2

2σ2
y

=
1

2

σ2
x + σ2

y

σ2
xσ

2
y

{[
t−

µxσ
2
y + (z − µy)σ2

x

σ2
x + σ2

y

]2
+
µ2
xσ

2
y + (z − µy)2σ2

x

σ2
x + σ2

y

−
[
µxσ

2
y + (z − µy)σ2

x

σ2
x + σ2

y

]2}
.

Note that

µ2
xσ

2
y + (z − µy)2σ2

x

σ2
x + σ2

y

−
[
µxσ

2
y + (z − µy)σ2

x

σ2
x + σ2

y

]2

=

[
µ2
xσ

2
y + (z − µy)2σ2

x

]
(σ2

x + σ2
y)− µ2

xσ
4
y − (z − µy)2σ4

x − 2µx(z − µy)σ2
xσ

2
y

(σ2
x + σ2

x)
2

=
σ2
xσ

2
y [µ2

x + (z − µy)2 − 2µx(z − µy)]
(σ2

x + σ2
y)

2

=
σ2
xσ

2
y [µ2

x − (z − µy)]2

(σ2
x + σ2

y)
2

=
σ2
xσ

2
y [z − (µx + µy)]

2

(σ2
x + σ2

y)
2

.

Thus, we obtain

(t− µx)2

2σ2
x

+
(z − t− µy)2

2σ2
y

=
σ2
x + σ2

y

2σ2
xσ

2
y

[
t−

µxσ
2
y + (z − µy)σ2

x

σ2
x + σ2

y

]2
+

[z − (µx + µy)]
2

2(σ2
x + σ2

y)
.
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The PDF of X + Y becomes

fX+Y (z) =
1

2πσxσy

∫ ∞
−∞

exp

{
−
σ2
x + σ2

y

2σ2
xσ

2
y

[
t−

µxσ
2
y + (z − µy)σ2

x

σ2
x + σ2

y

]2

− [z − (µx + µy)]
2

2(σ2
x + σ2

y)

}
dt

=

exp

{
− [z − (µx + µy)]

2

2(σ2
x + σ2

y)

}
2πσxσy

×
∫ ∞
−∞

exp

{
−
σ2
x + σ2

y

2σ2
xσ

2
y

[
t−

µxσ
2
y + (z − µy)σ2

x

σ2
x + σ2

y

]2}
dt.

Recall from Appendix B.1.1 that the CDF of a random variable evaluated at a

particular value indicates the probability that the random variable takes on a value

that is smaller than or equal to that particular value. The probability that a random

variable takes on a value that is smaller than or “equal to” positive infinity is, of

course, one. Thus, in general form, we obtain for any normal random variable that∫ ∞
−∞

1√
2πσ2

exp

[
−(t− µ)2

2σ2

]
dt = 1,

where the integrand stands for the PDF of the normal random variable. Note that

the integral in fX+Y (z) can be rewritten as follows:∫ ∞
−∞

exp

[
−(t− µ)2

2σ2

]
dt,

where µ =
µxσ

2
y + (z − µy)σ2

x

σ2
x + σ2

y

and σ2 =
σ2
xσ

2
y

σ2
x + σ2

x

.

Since∫ ∞
−∞

1√
2πσ2

exp

[
−(t− µ)2

2σ2

]
dt = 1,

we can immediately conclude that∫ ∞
−∞

exp

[
−(t− µ)2

2σ2

]
dt =

√
2πσ2 =

√
2π

σxσy√
σ2
x + σ2

y

.
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Eventually, the PDF of X + Y becomes

fX+Y (z) =

exp

{
− [z − (µx + µy)]

2

2(σ2
x + σ2

y)

}
2πσxσy

×
√

2π
σxσy√
σ2
x + σ2

y

=

exp

{
− [z − (µx + µy)]

2

2
(
σ2
x + σ2

y

) }
√

2π
(
σ2
x + σ2

y

) .

It can be clearly seen that the PDF of X +Y shows the form of the PDF of a normal

random variable with mean µx + µy and variance σ2
x + σ2

y.

Having derived the distribution of the sum of two independent normal random

variables, we can also determine the distribution of the difference between two

independent normal variables (i.e., X − Y ). Recall from Appendix B.1.1 that −Y
is just a linear transformation of the normal random variable Y , which is again

normally distributed with mean −µy and variance σ2
y . Thus, the difference between

X and Y can be interpreted as the sum of X and the linear transformation −Y .

This immediately gives that X − Y is normally distributed with mean µx − µy and

variance σ2
x + σ2

y . �

B.2 Projection Theorem

Consider an n-dimensional random vector X = (X1 X2)
T that is characterized by

the two subvectors X1 and X2 of arbitrary dimensions l× 1 and k× 1 with l+ k = n.

Each of the n random variables is assumed to follow a normal distribution. Following

Rao (1973, Chapter 8), it holds that X ∼ Nn(µ,Σ), i.e., X follows an n-variate

normal distribution with

µ =

µ1

µ2

 and Σ =

Σ11 Σ12

Σ21 Σ22

 .

µ is an n-dimensional vector that can be partitioned into µ1 of dimension l × 1

and µ2 of dimension k × 1, thereby representing the mean vectors of X1 and X2,

respectively. Σ11 of dimension l × l stands for the variance-covariance matrix of X1,

Σ12 of dimension l × k and Σ21 of dimension k × l for the covariance matrix of X1

and X2, respectively, and Σ22 of dimension k × k for the variance-covariance matrix

of X2. Note that Σ21 = ΣT
12.
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The projection theorem (see, e.g., Brunnermeier, 2001, p. 12) states that

(X1|X2 = x2) ∼ N(µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

B.2.1 Derivation

Since the projection theorem constitutes a central theorem in this thesis, we expound

a derivation below. We focus on the case where X1 is one-dimensional, as the

projection theorem is exclusively used in this variant in the main text. If X1 is

one-dimensional, Σ11 is one-dimensional too. Furthermore, Σ12 is a row vector of

dimension 1× n− 1, Σ21 a column vector of dimension n− 1× 1, and Σ22 a matrix

of dimension n− 1× n− 1. The following proof is an extensive and adjusted version

of Wang (2006):

Matrix properties and theorems

Before expounding the actual proof, some important properties of matrix calculations

(see, e.g., Gentle, 2017) need to be stated:

• Matrix multiplication is associative (i.e., (A×B)C = A(B × C)).

• Matrix multiplication is generally not commutative (i.e., AB 6= BA).

• Matrix multiplication is distributive (i.e., (A+B)C = AC +BC).

• The inverse of a symmetric matrix is symmetric too.

• The product of a matrix and its inverse yields the identity matrix

(i.e., A× A−1 = I).

• It holds that AT = A if A is symmetric.

• It generally holds that (AB)T = BTAT .

• The determinant of a matrix product is equal to the product of the respective

determinants (i.e., |AB| = |A||B|).

Furthermore, we need three important theorems:

Theorem 1. Let A, B, C, and D be four matrices of dimension k × k, k × l, l × l,
and l × k, respectively. Then,

(A−BC−1D)−1 = A−1 + A−1B(C −DA−1B)−1DA−1.

This theorem is a variant of the Sherman-Morrison-Woodbury formula (see, e.g.,

Golub and Van Loan, 2013, Chapter 2).
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Proof. The theorem is proven by showing that

(A−BC−1D)[A−1 + A−1B(C −DA−1B)−1DA−1] = I.

Direct computations yield

(A−BC−1D)[A−1 + A−1B(C −DA−1B)−1DA−1]

= (A−BC−1D)A−1 + (A−BC−1D)A−1B(C −DA−1B)−1DA−1

= I −BC−1DA−1 + (B −BC−1DA−1B)(C −DA−1B)−1DA−1

= I −BC−1DA−1 +BC−1(C −DA−1B)(C −DA−1B)−1DA−1

= I −BC−1DA−1 +BC−1DA−1

= I. �

Theorem 2. Consider a square, symmetric matrix M that can be divided into four

blocks, each of which represents an own matrix, i.e.,

M =

A B

C D

 .

The matrix M is called a partitioned matrix or block matrix. The respective inverse

matrix N can be divided in the same manner:

N = M−1 =

E F

G H

 ,

where the following holds:

• A and E are assumed to be of dimension n × n.

• D and H are assumed to be of dimension m × m.

• B and F are assumed to be of dimension n × m.

• C and G are assumed to be of dimension m × n.

Then,

E = (A−BD−1C)−1,
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F = −(A−BD−1C)−1BD−1,

G = −(D − CA−1B)−1CA−1,

H = (D − CA−1B)−1.

Proof. Since N is the inverse matrix of M , it must hold that MN = I. This delivers

MN =

A B

C D


E F

G H

 =

AE +BG AF +BH

CE +DG CF +DH

 =

I 0

0 I

 .

Thus,

AE +BG = I ⇔ A−1AE + A−1BG = A−1 ⇔ E = A−1 − A−1BG,

AF +BH = 0 ⇔ A−1AF + A−1BH = 0 ⇔ F = −A−1BH,

CE +DG = 0 ⇔ D−1CE +D−1DG = 0 ⇔ G = −D−1CE,

CF +DH = I ⇔ D−1CF +D−1DH = D−1 ⇔ H = D−1 −D−1CF.

Putting these four results together yields

E = A−1 − A−1BG

⇔ E = A−1 − A−1B(−D−1CE)

⇔ (I − A−1BD−1C)E = A−1

⇔ (A−BD−1C)E = I

⇔ E = (A−BD−1C)−1,

F = −A−1BH

⇔ F = −A−1B(D−1 −D−1CF )

⇔ (I − A−1BD−1C)F = −A−1BD−1

⇔ (A−BD−1C)F = −BD−1

⇔ F = −(A−BD−1C)BD−1,

G = −D−1CE
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⇔ G = −D−1C(A−1 − A−1BG)

⇔ (I −D−1CA−1B)G = −D−1CA−1

⇔ (D − CA−1B)G = −CA−1

⇔ G = −(D − CA−1B)−1CA−1,

H = D−1 −D−1CF

⇔H = D−1 −D−1C(−A−1BH)

⇔ (I −D−1CA−1B)H = D−1

⇔ (D − CA−1B)H = I

⇔H = (D − CA−1B)−1. �

Theorem 3. The determinant of a partitioned, symmetric matrix can be written as

|M | =

∣∣∣∣∣∣∣
A B

C D


∣∣∣∣∣∣∣ = |D||A−BD−1C|.

Proof. The matrix M can be decomposed as follows:

M =

A B

C D

 =

I B

0 D


A−BD−1C 0

D−1C I

 .

Thus,

|M | =

∣∣∣∣∣∣∣
I B

0 D


A−BD−1C 0

D−1C I


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
I B

0 D


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
A−BD−1C 0

D−1C I


∣∣∣∣∣∣∣ .

Following the results on determinants of partitioned matrices (see, e.g., Silvester,

2000), we obtain

|M | =
∣∣D × I −B × 0

∣∣ ∣∣(A−BD−1C)× I −D−1C × 0
∣∣
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= |D||A−BD−1C|. �

Conditional density function

To derive the projection theorem for the case where X1 is one-dimensional, we need

to determine the conditional distribution of X1 given X2. According to Lindgren

et al. (2013, Appendix A), the conditional density function of X1 given X2 can be

computed as follows:

fX1|X2(x1, x2) =
f(X1,X2)(x1, x2)

fX2(x2)
.

The joint density function of X1 and X2 is given by

f(X1,X2)(x1, x2) =
1

(2π)n/2|Σ|1/2

× exp

{
−1

2

[
(x1 − µ1)

T , (x2 − µ2)
T
]

Σ−1
(
x1 − µ1, x2 − µ2

)}
.

As Σ can be displayed as a 2× 2 block matrix, we can write

Σ−1 =

Σ11 Σ12

Σ21 Σ22


−1

=

Σ11 Σ12

Σ21 Σ22

 .

According to Theorems 1 and 2,

Σ11 = (Σ11 − Σ12Σ
−1
22 Σ21)

−1,

Σ12 = −(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 ,

Σ21 = −(Σ22 − Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 ,

Σ22 = (Σ22 − Σ21Σ
−1
11 Σ12)

−1 = Σ−122 + Σ−122 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 .

Since X1 is assumed to be one-dimensional, Σ11 is one-dimensional, Σ12 a row vector,

Σ21 a column vector, and Σ22 an n− 1× n− 1 matrix, equivalent to the entries of Σ.

Furthermore,

F (x1, x2) ≡
[
(x1 − µ1)

T , (x2 − µ2)
T
]

Σ−1
(
x1 − µ1, x2 − µ2

)

=
[
(x1 − µ1), (x2 − µ2)

T
]Σ11 Σ12

Σ21 Σ22


x1 − µ1

x2 − µ2


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=
[
(x1 − µ1)Σ

11 + (x2 − µ2)
TΣ21, (x1 − µ1)Σ

12 + (x2 − µ2)
TΣ22

]

×

x1 − µ1

x2 − µ2


= (x1 − µ1)

2Σ11 + (x2 − µ2)
TΣ21(x1 − µ1) + (x1 − µ1)Σ

12(x2 − µ2)

+ (x2 − µ2)
TΣ22(x2 − µ2)

= (x1 − µ1)
2Σ11 + [Σ12(x2 − µ2)]

T (x1 − µ1) + (x1 − µ1)Σ
12(x2 − µ2)

+ (x2 − µ2)
TΣ22(x2 − µ2)

= (x1 − µ1)
2Σ11 + 2Σ12(x2 − µ2)(x1 − µ1) + (x2 − µ2)

TΣ22(x2 − µ2).

The last step follows from the fact that Σ12(x2 − µ2) is one-dimensional, since Σ12 is

a row vector and (x2 − µ2) a column vector. Plugging the results for the entries of

Σ−1 into the above equation yields

F (x1, x2) = (x1 − µ1)
2(Σ11 − Σ12Σ

−1
22 Σ21)

−1

− 2 (Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)(x1 − µ1)

+ (x2 − µ2)
T
[
Σ−122 + Σ−122 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22

]
(x2 − µ2)

= (x1 − µ1)
2(Σ11 − Σ12Σ

−1
22 Σ21)

−1

− 2 (Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)(x1 − µ1)

− (x2 − µ2)
TΣ−122 (x2 − µ2)

− (x2 − µ2)
TΣ−122 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)

= (x1 − µ1)
2(Σ11 − Σ12Σ

−1
22 Σ21)

−1

− 2 (Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)(x1 − µ1)

+ (x2 − µ2)
TΣ−122 (x2 − µ2)

+ [Σ12Σ
−1
22 (x2 − µ2)]

T (Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22 (x2 − µ2)

= (x2 − µ2)
TΣ−122 (x2 − µ2)

+ [(x1 − µ1)− Σ12Σ
−1
22 (x2 − µ2)]

2(Σ11 − Σ12Σ
−1
22 Σ21)

−1,
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where the last equation follows from the fact that Σ12Σ
−1
22 (x2−µ2) is one-dimensional.

Thus,

f(X1,X2)(x1, x2) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(x2 − µ2)

TΣ−122 (x2 − µ2)

]

exp

{
−1

2

[
(x1 − µ1)− Σ12Σ

−1
22 (x2 − µ2)

]2
(Σ11 − Σ12Σ

−1
22 Σ21)

−1
}
.

Following Lindgren et al. (2013, Appendix A), the density function of the normal

random vector X2 of dimension n− 1× 1 is given by

fX2(x2) =
1

(2π)(n−1)/2|Σ22|1/2
exp

[
−1

2
(x2 − µ2)

TΣ−122 (x2 − µ2)

]
.

Hence,

fX1|X2(x1, x2) =
f(X1,X2)(x1, x2)

fX2(x2)

=
(2π)(n−1)/2|Σ22|1/2

(2π)n/2|Σ|1/2

exp

{
−1

2

[
(x1 − µ1)− Σ12Σ

−1
22 (X2 − µ2)

]2
(Σ11 − Σ12Σ

−1
22 Σ21)

−1
}
.

According to Theorem 3,

|Σ| = |Σ22||Σ11 − Σ12Σ
−1
22 Σ21|.

Thus,

fX1|X2(x1, x2) =
(2π)(n−1)/2|Σ22|1/2

(2π)n/2|Σ22|1/2|Σ11 − Σ12Σ
−1
22 Σ21|1/2

exp

{
−1

2

[
(x1 − µ1)− Σ12Σ

−1
22 (x2 − µ2)

]2
(Σ11 − Σ12Σ

−1
22 Σ21)

−1
}

=
1

(2π)1/2|Σ11 − Σ12Σ
−1
22 Σ21|1/2

exp

(
−1

2

{
x1 −

[
µ1 + Σ12Σ

−1
22 (x2 − µ2)

]}2
(Σ11 − Σ12Σ

−1
22 Σ21)

−1
)
.

The above function stands for the density function of the one-dimensional normal

random variable X1 with mean µ1+Σ12Σ
−1
22 (x2−µ2) and variance Σ11−Σ12Σ

−1
22 Σ21. In

other words, conditional on the normal random vector X2, X1 is normally distributed
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with mean µ1 + Σ12Σ
−1
22 (x2 − µ2) and variance Σ11 − Σ12Σ

−1
22 Σ21. �

B.2.2 Important Corollaries

Corollary 1. Consider the bivariate normal random variables Z = X + ε and

Y = ε + η with X ∼ N (µx, σ
2
x), ε ∼ N (0, σ2

ε ), and η ∼ N (0, σ2
η). The random

variables X, ε, and η are assumed to be pairwise uncorrelated. It holds that

E(X |Z, Y ) = E(X | Ẑ) and Var(X |Z, Y ) = Var(X | Ẑ) with Ẑ = Z − E(ε |Y ).

Proof. Using the projection theorem yields

E(X |Z, Y ) = µx +

(
σ2
x 0

)σ2
z σ2

ε

σ2
ε σ2

y


−1Z − µx

Y



= µx +

(
σ2
x 0

)
1

σ2
zσ

2
y − σ4

ε

 σ2
y −σ2

ε

−σ2
ε σ2

z


Z − µx

Y



= µx +
1

σ2
zσ

2
y − σ4

ε

(
σ2
xσ

2
y −σ2

xσ
2
ε

)Z − µx
Y


= µx +

1

σ2
zσ

2
y − σ4

ε

[
σ2
xσ

2
y(Z − µx)− σ2

xσ
2
εY
]

= µx +
1

σ2
x(σ

2
ε + σ2

η) + σ2
εσ

2
η

[
σ2
x(σ

2
ε + σ2

η)(Z − µx)− σ2
xσ

2
εY
]

and

Var(X |Z, Y ) = σ2
x −

(
σ2
x 0

)σ2
z σ2

ε

σ2
ε σ2

y


−1σ2

x

0



= σ2
x −

(
σ2
x 0

)
1

σ2
zσ

2
y − σ4

ε

 σ2
y −σ2

ε

−σ2
ε σ2

z


σ2

x

0



= σ2
x −

1

σ2
zσ

2
y − σ4

ε

(
σ2
xσ

2
y −σ2

xσ
2
ε

)σ2
x

0


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= σ2
x −

σ4
xσ

2
y

σ2
zσ

2
y − σ4

ε

= σ2
x −

σ4
x(σ

2
ε + σ2

η)

σ2
x(σ

2
ε + σ2

η) + σ2
εσ

2
η

=
σ2
xσ

2
εσ

2
η

σ2
x(σ

2
ε + σ2

η) + σ2
εσ

2
η

.

The corollary is proved if the respective calculations with the combined signal Ẑ

deliver identical results. According to the bivariate case of the projection theorem,

E(X | Ẑ) = E(X) +
Cov(X, Ẑ)

Var(Ẑ)

[
Ẑ − E(X)

]
.

Note that Ẑ = Z − E(ε |Y ) = Z − σ2
ε

σ2
ε + σ2

η

Y .

This gives

Var(Ẑ) = Var(Z) + Var

(
σ2
ε

σ2
ε + σ2

η

Y

)
− 2 Cov

(
Z,

σ2
ε

σ2
ε + σ2

η

Y

)

= σ2
z +

σ4
ε

(σ2
ε + σ2

η)
2
(σ2

ε + σ2
η)− 2

σ4
ε

σ2
ε + σ2

η

= σ2
z −

σ4
ε

σ2
ε + σ2

η

.

Hence,

E(X | Ẑ) = µx +
σ2
x

σ2
z −

σ4
ε

σ2
ε + σ2

η

(
Z − σ2

ε

σ2
ε + σ2

η

Y − µx
)

= µx +
σ2
xσ

2
y

σ2
zσ

2
y − σ4

ε

(
Z − µx −

σ2
ε

σ2
y

Y

)

= µx +
1

σ2
zσ

2
y − σ4

ε

[
σ2
xσ

2
y(Z − µx)− σ2

xσ
2
εY
]

= µx +
1

σ2
x(σ

2
ε + σ2

η) + σ2
εσ

2
η

[
σ2
x(σ

2
ε + σ2

η)(Z − µx)− σ2
xσ

2
εY
]
.

Moreover, using the projection theorem,

Var(X | Ẑ) = Var(X)− [Cov(X, Ẑ)]2

Var(Ẑ)
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= σ2
x −

σ4
x

σ2
z −

σ4
ε

σ2
ε + σ2

η

= σ2
x −

σ4
xσ

2
y

σ2
zσ

2
y − σ4

ε

=
σ2
xσ

2
εσ

2
η

σ2
x(σ

2
ε + σ2

η) + σ2
εσ

2
η

.

By comparing the relevant results, it can be seen that they are pairwise identical. �

Using the analogous proof, one can show that the corollary still holds if additional

signals about X with independent error terms are added. With the multivariate

normal variables Z1 = X + ε1, Z2 = X + ε2, and Y1 = ε1 + η, it holds that

E(X |Z1, Z2, Y1) = E(X | Ẑ1, Z2) and Var(X |Z1, Z2, Y1) = Var(X | Ẑ1, Z2) given

that X, ε1, ε2, and η are pairwise uncorrelated.

Furthermore, it can be shown that the corollary can be applied to cases with more

than one combined signal. With the multivariate normal variables Z1 = X + ε1,

Z2 = X + ε2, Y1 = ε1 + η1, and Y2 = ε2 + η2, it follows that E(X |Z1, Z2, Y1, Y2) =

E(X | Ẑ1, Ẑ2) and Var(X |Z1, Z2, Y1, Y2) = Var(X | Ẑ1, Ẑ2), where Ẑ1 = Z1−E(ε1 |Y1)
and Ẑ2 = Z2 − E(ε2 |Y2). This holds true as long as X, ε1, ε2, η1, and η2 are pairwise

uncorrelated.

Corollary 2. Consider an arbitrary continuous random variable X ∼ N (µx, τ
−1
x )

and K multivariate normal signals of the form sk = X + εk with εk ∼ i.i.d. N(0, τ−1εk
).

The noise terms εk are assumed to be independent of X. It holds that

E(X | s1, s2, ..., sK) = µx +
1

τx +
∑K

k=1 τεk

K∑
k=1

τεk(sk − µx),

Var(X | s1, s2, ..., sK) =
1

τx +
∑K

k=1 τεk
.

The parameter τ stands for the precision of a normal random variable, which is the

inverse of its variance (e.g., τx = 1/Var(X) for the normal random variable X).

Proof. Using the projection theorem, we obtain

E(X | s1, s2, ..., sK) = µx +

(
τ−1x τ−1x ... τ−1x

)
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×



τ−1x + τ−1ε1
τ−1x ... τ−1x

τ−1x τ−1x + τ−1ε2
... τ−1x

...
...

...
...

τ−1x τ−1x · · · τ−1x + τ−1εK



−1

s1 − µx

s2 − µx
...

sK − µx


.

Since the elements on the off-diagonals of the signals’ variance-covariance matrix are

identical, we can decompose the matrix as follows:

τ−1x + τ−1ε1
τ−1x ... τ−1x

τ−1x τ−1x + τ−1ε2
... τ−1x

...
...

...
...

τ−1x τ−1x · · · τ−1x + τ−1εK


=



τ−1ε1
0 ... 0

0 τ−1ε2
... 0

...
...

...
...

0 0 · · · τ−1εK



+



τ−1x

τ−1x

...

τ−1x


(

1 1 · · · 1

)
.

By defining

A ≡



τ−1ε1
0 ... 0

0 τ−1ε2
... 0

...
...

...
...

0 0 · · · τ−1εK


, u ≡



τ−1x

τ−1x

...

τ−1x


, and vT ≡

(
1 1 · · · 1

)
,

we can make use of the Sherman-Morrison formula (see, e.g., Bartlett, 1951), which

states that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Since the matrix A is diagonal, we can determine its inverse by simply inverting the
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elements on the main diagonal. Thus,

A−1uvTA−1 =



τε1 0 ... 0

0 τε2 ... 0

...
...

...
...

0 0 · · · τεK





τ−1x

τ−1x

...

τ−1x


(

1 1 · · · 1

)


τε1 0 ... 0

0 τε2 ... 0

...
...

...
...

0 0 · · · τεK



=



τ−1x τε1

τ−1x τε2

...

τ−1x τεK


(
τε1 τε2 · · · τεK

)

= τ−1x



τ 2ε1 τε1τε2 ... τε1τεK

τε2τε1 τ 2ε2 · · · τε2τεK

...
...

...
...

τεKτε1 τεKτε2 · · · τ 2εK


and

1 + vTA−1u = 1 +

(
1 1 · · · 1

)


τε1 0 ... 0

0 τε2 ... 0

...
...

...
...

0 0 · · · τεK





τ−1x

τ−1x

...

τ−1x



= 1 +

(
τε1 τε2 · · · τεK

)


τ−1x

τ−1x

...

τ−1x


= 1 + τ−1x

K∑
k=1

τεk .
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Denote ν ≡ τ−1x

1 + τ−1x

∑K
k=1 τεk

=
1

τx +
∑K

k=1 τεk
. Then,

(A+ uvT )−1 =



τε1 0 ... 0

0 τε2 ... 0

...
...

...
...

0 0 · · · τεK


− ν



τ 2ε1 τε1τε2 ... τε1τεK

τε2τε1 τ 2ε2 ... τε2τεK

...
...

...
...

τεKτε1 τεKτε2 · · · τ 2εK



=



τε1 − τ 2ε1ν −τε1τε2ν ... −τε1τεKν

−τε2τε1ν τε2 − τ 2ε2ν ... −τε2τεKν
...

...
...

...

−τεKτε1ν −τεKτε2ν · · · τεK − τ 2εKν


.

Hence,

E(X | s1, s2, ..., sK) = µx +

(
τ−1x τ−1x ... τ−1x

)

×



τε1 − τ 2ε1ν −τε1τε2ν ... −τε1τεKν

−τε2τε1ν τε2 − τ 2ε2ν ... τε2τεKν

...
...

...
...

−τεKτε1ν −τεKτε2ν · · · τεK − τ 2εKν





s1 − µx

s2 − µx
...

sK − µx


.

Note that

τ−1x

(
τε1 − τ 2ε1ν − τε1τε2ν − ...− τε1τεKν

)
= τ−1x

[
τε1 − τε1

(
τε1

τx +
∑K

k=1 τεk
+

τε2

τx +
∑K

k=1 τεk
+ ...+

τεK
τx +

∑K
k=1 τεk

)]

= τ−1x

(
τε1 − τε1

∑K
k=1 τεk

τx +
∑K

k=1 τεk

)

=
τε1

τx +
∑K

k=1 τεk
.
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This eventually gives

E(X | s1, s2, ..., sK) = µx +

(
τε1

τx +
∑K

k=1 τεk

τε2

τx +
∑K

k=1 τεk
...

τεK
τx +

∑K
k=1 τεk

)

×
(
s1 − µx s2 − µx · · · sK − µx

)T
= µx +

τε1

τx +
∑K

k=1 τεk
(s1 − µx) +

τε2

τx +
∑K

k=1 τεk
(s2 − µx) + ...

+
τεK

τx +
∑K

k=1 τεk
(sK − µx)

= µx +
1

τx +
∑K

k=1 τεk

K∑
k=1

τεk(sk − µx).

Furthermore,

Var(X | s1, s2, ..., sK) = τ−1x −
(
τ−1x τ−1x ... τ−1x

)

×



τ−1x + τ−1ε1
τ−1x ... τ−1x

τ−1x τ−1x + τ−1ε2
... τ−1x

...
...

...
...

τ−1x τ−1x · · · τ−1x + τ−1εK



−1

τ−1x

τ−1x

...

τ−1x


= τ−1x −

(
τ−1x τ−1x ... τ−1x

)

×



τε1 − τ 2ε1ν −τε1τε2ν ... −τε1τεKν

−τε2τε1ν τε2 − τ 2ε2ν ... τε2τεKν

...
...

...
...

−τεKτε1ν −τεKτε2ν · · · τεK − τ 2εKν





τ−1x

τ−1x

...

τ−1x


= τ−1x −

(
τε1

τx +
∑K

k=1 τεk

τε2

τx +
∑K

k=1 τεk
...

τεK
τx +

∑K
k=1 τεk

)

×
(
τ−1x τ−1x · · · τ−1x

)T
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= τ−1x − τ−1x

∑K
k=1 τεk

τx +
∑K

k=1 τεk

=
1

τx +
∑K

k=1 τεk
. �

B.3 Moment-Generating Functions

In general, the moment-generating function of an arbitrary random variable V is

MV (t) = E[exp(tv)], t ∈ R.

By differentiating this function n-times with respect to t and evaluating it at t = 0,

the n-th moment of the random variable V can be found. That is why the function is

called the moment-generating function (see, e.g., Grimmett and Welsh, 2014, Chapter

7). Since the models in the main text assume an exponential utility function, we are

confronted with moment-generating functions when considering expected utility. As

this thesis deals with random variables that follow a normal or a noncentral chi-square

distribution, we expound a derivation of their moment-generating functions below.

B.3.1 Normally Distributed Variable

Consider an arbitrary continuous random variable W ∼ N (µ, σ2). Its moment-

generating function is

MW (t) = E[exp(tw)] = exp

[
t

(
µ+

t

2
σ2

)]
. (B1)

Proof. In order to compute the expected value of a function of a random variable, it

suffices to know the density function of the respective random variable. In this case,

no further information about the density of the actual function is required. By the

law of the unconscious statistician (see, e.g., Allen, 2006, Chapter 1),

E[exp(tw)] =

∫ ∞
−∞

exp(tw)fW (w) dw.

Recalling the results of Appendix B.1.1, we get

E[exp(tw)] =

∫ ∞
−∞

exp(tw)
1√

2πσ2
exp

[
−(w − µ)2

2σ2

]
dw

=
1√

2πσ2

∫ ∞
−∞

exp

[
t w − (w − µ)2

2σ2

]
dw
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=
1√

2πσ2

∫ ∞
−∞

exp

(
2twσ2 − w2 − µ2 + 2wµ

2σ2

)
dw.

Now, we manipulate the above function in such a way that the integrand stands for

the PDF of an arbitrary normal random variable W . Note that

E[exp(tw)] =
1√

2πσ2

∫ ∞
−∞

exp

[
−w2 + 2w(µ+ tσ2)− µ2

2σ2

]

× exp

(
−2tµσ2 − t2σ4 + 2tµσ2 + t2σ4

2σ2

)
dw.

Further simplifications yield

E[exp(tw)] =
1√

2πσ2

∫ ∞
−∞

exp

[
−w2 + 2w (µ+ tσ2)− µ2 − 2tµσ2 − t2σ4

2σ2

]
dw

× exp

(
2tµσ2 + t2σ4

2σ2

)

=

∫ ∞
−∞

1√
2πσ2

exp

{
− [w − (µ+ tσ2)]2

2σ2

}
dw exp

(
tµ+

t2σ2

2

)
.

In fact, the integrand stands for the PDF of the normal random variable W with

mean µ + tσ2 and variance σ2. Together with the integral sign, it represents the

CDF of the random variable W evaluated at positive infinity. From Appendix B.1.2,

we know that its value equals unity. Eventually,

E[exp(tw)] = exp

(
tµ+

t2σ2

2

)

= exp

[
t

(
µ+

t

2
σ2

)]
. �

Note that the analogous result holds for taking conditional expectations. Let U be a

vector of jointly normal random variables. Then,

E[exp(tw)|u] =

∫ ∞
−∞

exp(tw)fW |U(w, u) dw.

From Appendix B.2.1, we know that conditional on U , the random variable W is

still normally distributed. This delivers

E[exp(tw)|u] =

∫ ∞
−∞

exp(tw)
1√

2πσ2
w|u

exp

[
−
(
w − µw|u

)2
2σ2

w|u

]
dw,
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where µw|u ≡ E(W |U) and σ2
w|u ≡ Var(W |U). After carrying out the analogous

calculations, we end up with

E[exp(tw)|u] = exp

[
t

(
µw|u +

t

2
σ2
w|u

)]
.

B.3.2 Noncentral Chi-Square Distributed Variable

Consider an arbitrary continuous random variable Z ∼ N (µ, 1). Then, Z2 ∼ χ2
1,λ, i.e.,

the random variable Z2 follows a noncentral chi-square distribution with one degree

of freedom and noncentrality parameter λ = µ2. For t < 0.5, its moment-generating

function is

MZ(t) = E[exp(tz2)] =
1√

1− 2t
exp

(
tµ2

1− 2t

)
. (B2)

Proof. Applying the law of the unconscious statistician delivers

E [exp(tz2)] =

∫ ∞
−∞

exp(tz2)fZ(z) dz

=

∫ ∞
−∞

exp(tz2)
1√
2π

exp

[
−(z − µ)2

2

]
dz

=
1√
2π

∫ ∞
−∞

exp

[
tz2 − (z − µ)2

2

]
dz

=
1√
2π

∫ ∞
−∞

exp

[
−(1− 2t)z2 + µ2 − 2zµ

2

]
dz

=
1√
2π

∫ ∞
−∞

exp

[
−z

2 + µ2(1− 2t)−1 − 2zµ(1− 2t)−1

2(1− 2t)−1

]
dz.

Similar to the method applied in Appendix B.3.1, we manipulate the above equation

in such a way that the integrand represents the PDF of an arbitrary normal random

variable Z. Note that

exp

[
−z

2 + µ2(1− 2t)−1 − 2zµ(1− 2t)−1

2(1− 2t)−1

]

= exp

[
−z

2 + µ2(1− 2t)−1 − 2zµ(1− 2t)−1 + µ2(1− 2t)−2 − µ2(1− 2t)−2

2(1− 2t)−1

]

= exp

{
− [z − µ(1− 2t)−1]2

2(1− 2t)−1

}
exp

[
µ2(1− 2t)−2 − µ2(1− 2t)−1

2(1− 2t)−1

]
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= exp

{
− [z − µ(1− 2t)−1]2

2(1− 2t)−1

}
exp

(
tµ2

1− 2t

)
.

Hence,

E[exp(tz2)] = exp

(
tµ2

1− 2t

)∫ ∞
−∞

1√
2π

exp

{
− [z − µ(1− 2t)−1]2

2(1− 2t)−1

}
dz

= exp

(
tµ2

1− 2t

)∫ ∞
−∞

(1− 2t)−1/2√
2π(1− 2t)−1/2

exp

{
− [z − µ(1− 2t)−1]2

2(1− 2t)−1

}
dz

=

exp

(
tµ2

1− 2t

)
√

1− 2t

∫ ∞
−∞

1√
2π(1− 2t)−1/2

exp

{
− [z − µ(1− 2t)−1]2

2(1− 2t)−1

}
dz.

As a matter of fact, the integrand represents the PDF of the normal random variable

Z with mean µ/(1 − 2t) and variance (1 − 2t)−1. Thus, the value of the integral,

which stands for the CDF of Z evaluated at positive infinity, is unity. Eventually,

E[exp(tz2)] =
1√

1− 2t
exp

(
tµ2

1− 2t

)
. �

As before, the analogous result holds for taking expectations conditional on jointly

normal random variables. Let U be a vector of jointly normal random variables and

suppose that Z|U ∼ N(µz|u, 1), i.e., conditional on U , the random variable Z2 follows

a noncentral chi-square distribution. Then,

E[exp(tz2)|u] =
1√

1− 2t
exp

(
tµ2

z|u

1− 2t

)
.

B.4 A Further Property of Normal Variables and

CARA Utility

Consider two continuous, bivariate normal random variables X ∼ N (µx, σ
2
x) and

Y ∼ N (µy, σ
2
y) with Cov(X, Y ) ≡ σxy. It holds that

E
[
exp

(
x− y2

)]
=

exp

[
µx +

1

2
σ2
x −

(µy + σxy)
2

1 + 2σ2
y

]
√

1 + 2σ2
y

. (B3)

This formula can be found, e.g., in Demange and Laroque (1995, p. 252).

Proof. Analogous to the univariate case, it suffices to know the joint density function

of the bivariate normal variables to calculate the expected value of the underlying
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function. According to the bivariate case of the law of the unconscious statistician,

E
[
exp

(
x− y2

)]
=

∫ ∞
−∞

∫ ∞
−∞

exp
(
x− y2

)
fXY (x, y) dx dy,

where

fXY (x, y) =

exp

{
− 1

2(1− ρ2)

[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ
(x− µx)(y − µy)

σxσy

]}
2πσxσy

√
1− ρ2

stands for the joint density function of X and Y , and ρ = σxy/σxσy for the correlation

between X and Y . Further computations deliver

E
[
exp

(
x− y2

)]
=

∫ ∞
−∞

exp

[
−y2 − (y − µy)2

2(1− ρ2)σ2
y

]

×
∫ ∞
−∞

exp

[
x− (x− µx)2

2(1− ρ2)σ2
x

+
2ρ(x− µx)(y − µy)

2(1− ρ2)σxσy

]
2πσxσy

√
1− ρ2

dx dy.

In the next step, we focus on the exponential of the innermost integrand, which can

be developed as follows:

exp

[
x− (x− µx)2

2(1− ρ2)σ2
x

+
2ρ(x− µx)(y − µy)

2(1− ρ2)σxσy

]

= exp

{
x[2(1− ρ2)σ2

xσy]− σy(x− µx)2 + 2ρσx(x− µx)(y − µy)
2(1− ρ2)σ2

xσy

}

= exp

{
−σy x2 + 2x[(1− ρ2)σ2

xσy + µxσy + ρσx(y − µy)]− 2ρσxµx(y − µy)− µ2
xσy

2(1− ρ2)σ2
xσy

}

= exp

{−x2 + 2x[(1− ρ2)σ2
x + µx + ρσxσ

−1
y (y − µy)]

2(1− ρ2)σ2
x

}

× exp

[−2ρσxσ
−1
y µx(y − µy)− µ2

x

2(1− ρ2)σ2
x

]

= exp

(
−
{
x−

[
(1− ρ2)σ2

x + µx + ρσxσ
−1
y (y − µy)

]}2
2(1− ρ2)σ2

x

)

× exp

{[
(1− ρ2)σ2

x + µx + ρσxσ
−1
y (y − µy)

]2 − 2ρσxσ
−1
y µx(y − µy)− µ2

x

2(1− ρ2)σ2
x

}
︸ ︷︷ ︸

≡ Φ(y)

.
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Hence,

E
[
exp

(
x− y2

)]
=

∫ ∞
−∞

Φ(y) exp

[
−y2 − (y − µy)2

2(1− ρ2)σ2
y

]

∫ ∞
−∞

exp

{
−
{
x−

[
(1− ρ2)σ2

x + µx + ρσxσ
−1
y (y − µy)

]}2
2(1− ρ2)σ2

x

}
2πσxσy

√
1− ρ2

dx dy

=

∫ ∞
−∞

1√
2πσy

Φ(y) exp

[
−y2 − (y − µy)2

2(1− ρ2)σ2
y

]

∫ ∞
−∞

exp

{
−
{
x−

[
(1− ρ2)σ2

x + µx + ρσxσ
−1
y (y − µy)

]}2
2(1− ρ2)σ2

x

}
√

2πσx
√

1− ρ2
dx dy.

Note that the term under the innermost integral sign stands for the PDF of a normal

random variable X. Thus, solving the innermost integral yields unity. We are left

with

E
[
exp

(
x− y2

)]
=

∫ ∞
−∞

1√
2πσy

Φ(y) exp

[
−y2 − (y − µy)2

2(1− ρ2)σ2
y

]
dy.

Further computations yield

Φ(y) = exp

{[
(1− ρ2)σ2

x + µx + ρσxσ
−1
y (y − µy)

]2 − 2ρσxσ
−1
y µx(y − µy)− µ2

x

2(1− ρ2)σ2
x

}

= exp

[
(1− ρ2)2σ4

x + 2(1− ρ2)σ2
xµx

2(1− ρ2)σ2
x

]

× exp

[
ρ2σ2

xσ
−2
y (y − µy)2 + 2ρ(1− ρ2)σ3

xσ
−1
y (y − µy)

2(1− ρ2)σ2
x

]

= exp

[
µx +

1

2
(1− ρ2)σ2

x

]

× exp

[
ρ2σ−2y (y − µy)2 + 2ρ(1− ρ2)σxσ−1y (y − µy)

2(1− ρ2)

]
.

This delivers

E
[
exp

(
x− y2

)]
=

exp

[
µx +

1

2
(1− ρ2)σ2

x

]
√

2πσy

∫ ∞
−∞

exp

[
−y2 − (y − µy)2

2(1− ρ2)σ2
y

]
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× exp

[
ρ2σ−2y (y − µy)2 + 2ρ(1− ρ2)σxσ−1y (y − µy)

2(1− ρ2)

]
dy.

The integrand becomes

exp

[
−y2 − (y − µy)2

2(1− ρ2)σ2
y

+
ρ2σ−2y (y − µy)2 + 2ρ(1− ρ2)σxσ−1y (y − µy)

2(1− ρ2)

]

= exp

[−2(1− ρ2)σ2
yy

2 − (y − µy)2 + ρ2(y − µy)2 + 2ρ(1− ρ2)σxσy(y − µy)
2σ2

y(1− ρ2)

]

= exp

{
y2
[
−2(1− ρ2)σ2

y − 1 + ρ2
]

+ 2y [µ2 − ρ2µ2 + ρ(1− ρ2)σxσy]
2σ2

y(1− ρ2)

}

× exp

[−µ2
y + ρ2µ2

y − 2ρ(1− ρ2)σxσyµ2

2σ2
y(1− ρ2)

]

= exp

[
−y2

(
1 + 2σ2

y

)
+ 2y (µ2 + ρσxσy)

2σ2
y

]
exp

[
−µy (µy + 2ρσxσy)

2σ2
y

]
.

Thus,

E
[
exp

(
x− y2

)]
=

exp

[
µx +

1

2
(1− ρ2)σ2

x −
µy (µy + 2ρσxσy)

2σ2
y

]
√

2πσy

×
∫ ∞
−∞

exp

[
−y2

(
1 + 2σ2

y

)
+ 2y (µy + ρσxσy)

2σ2
y

]
dy.

Further manipulations yield

exp

[
−y2

(
1 + 2σ2

y

)
+ 2y (µy + ρσxσy)

2σ2
y

]

= exp


−y2 + 2y

µy + ρσxσy
1 + 2σ2

y

2σ2
y

1 + 2σ2
y

−

(µy + ρσxσy)
2

(1 + 2σ2
y)

2
− (µy + ρσxσy)

2

(1 + 2σ2
y)

2

2σ2
y

1 + 2σ2
y



= exp

−
(
y − µy + ρσxσy

1 + 2σ2
y

)2

2σ2
y

1 + 2σ2
y

 exp

[
(µy + ρσxσy)

2

2σ2
y(1 + 2σ2

y)

]
.
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Hence,

E
[
exp

(
x− y2

)]
=

exp

[
µx +

1

2
(1− ρ2)σ2

x −
µy (µy + 2ρσxσy)

2σ2
y

+
(µy + ρσxσy)

2

2σ2
y(1 + 2σ2

y)

]
√

2πσy

×
∫ ∞
−∞

exp

−
(
y − µy + ρσxσy

1 + 2σ2
y

)2

2σ2
y

1 + 2σ2
y

 dy

=

exp

[
µx +

1

2
(1− ρ2)σ2

x −
µy (µy + 2ρσxσy)

2σ2
y

+
(µy + ρσxσy)

2

2σ2
y(1 + 2σ2

y)

]
√

1 + 2σ2
y

×
∫ ∞
−∞

1√
2πσ2

y

1 + 2σ2
y

exp

−
(
y − µy + ρσxσy

1 + 2σ2
y

)2

2σ2
y

1 + 2σ2
y

 dy.

Again, the integrand stands for the PDF of a normal random variable. Consequently,

the value of the integral equals unity. Finally, we obtain

E
[
exp

(
x− y2

)]
=

exp

[
µx +

1

2
(1− ρ2)σ2

x −
µy (µy + 2ρσxσy)

2σ2
y

+
(µy + ρσxσy)

2

2σ2
y(1 + 2σ2

y)

]
√

1 + 2σ2
y

=

exp

[
µx +

1

2
σ2
x −

σ2
xy + µy (µy + 2σxy)

2σ2
y

+
(µy + σxy)

2

2σ2
y(1 + 2σ2

y)

]
√

1 + 2σ2
y

=

exp

[
µx +

1

2
σ2
x −

(µy + σxy)
2(1 + 2σ2

y)

2σ2
y(1 + 2σ2

y)
+

(µy + σxy)
2

2σ2
y(1 + 2σ2

y)

]
√

1 + 2σ2
y

=

exp

[
µx +

1

2
σ2
x −

(µy + σxy)
2

1 + 2σ2
y

]
√

1 + 2σ2
y

. �

As before, the analogous result holds for taking expectations conditional on jointly

normally distributed variables by substituting the unconditional moments by the

respective conditional equivalents.

Furthermore, note that (B3) nests (B1) from Appendix B.3.1. If we set x = tw
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and y = 0 (and, thus, µy = σ2
y = σxy = 0) in (B3), we end up with

E [exp (x)] = exp

(
µx +

1

2
σ2
x

)

⇔ E [exp (tw)] = exp

(
tµw +

t2

2
σ2
w

)
,

which is equal to (B1). In this case, the random variable X is just a linear transform-

ation of the normal variable W . Thus, X is normally distributed too.

However, (B3) does not nest (B2) from Appendix B.3.2. Instead, (B3) with

x = 0 can be seen as a special case of (B2) with z = y/σy and t = −σ2
y. That

is, E [exp (−y2)] (resp., E [exp (−y2)|u]) can be calculated in two ways. First, (B3)

with x = 0 (and, thus, µx = σ2
x = σxy = 0) can be used. Second, the original term

can be transformed into the moment-generating function of a noncentral chi-square

distributed variable by setting z = y/σy (resp., z = y/σy|u) and t = −σ2
y (resp.,

t = −σ2
y|u) so that σ2

z = 1 (resp., σ2
z|u = 1) and tz2 = −y2. Then, (B2) can be used

(as done in Appendix A).
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28. https://www.sec.gov/news/testimony/gensler-testimony-20210505.

29. https://www.cnbc.com/2019/10/11/fidelitys-kathleen-murphy-explains-move-to-offer-

zero-trading-fees.html (Stankiewicz, K.,“Fidelity says it won’t pay for zero fees by selling your

trade executions to the highest bidder”, CNBC, October 11, 2019).

30. https://finance.yahoo.com/news/payments-for-order-flow-exploded-in-2020-

215034948.html (Cheung, B., “Payments for order flow almost tripled in 2020 at Robin-

hood, other brokerages”, Yahoo! Finance, February 18, 2021).

2. Literature Review

1. An overview of the work of Kahneman and Tversky and of other related studies can be found, e.g.,

in Shefrin (2000, Chapter 2).

2. A different strand of the theoretical asset-pricing literature labels positive feedback traders as

“chartists.” The corresponding (non-microfounded) chartist-fundamentalist approach pioneered by

Zeeman (1974) is, however, less relevant for this thesis. Hommes (2006) and Westerhoff (2009), e.g.,

provide an introduction to the field.

3. Bollen et al. (2011), Zhang et al. (2011), Sprenger et al. (2014), and Agrawal et al. (2018) are

further examples that relate twitter sentiment to future prices and stock market returns.

4. GS 1980 state that their model is based on the work of Lucas (1972), Green (1973), Grossman (1975,

1976, 1978), and Kihlstrom and Mirman (1975). Nevertheless, due to its remarkable influence, the

contribution of GS 1980 is considered to be the origin of the competitive noisy REE framework.

5. Laffont (1985) provides another early example of a welfare analysis.

6. A different strand of the literature avoids the need for random asset supply and noise traders by

introducing risk-averse, rationally behaving hedgers (see, e.g., Medrano and Vives, 2004, and Bond

and Garćıa, 2020). This way of modeling, however, would miss the basic spirit of this thesis.

7. It is worth noting that a second strand of the theoretical literature exists that explores the

consequences of non-fundamental information, using the setup developed by Kyle (1985). This

setup, however, is characterized by strategic trading and risk-neutral market participants, making it

less relevant for this thesis. Important contributions include Madrigal (1996), Yu (1999), Foucault

and Lescourret (2003), Bernhardt and Taub (2008), Cheynel and Levine (2012), Demarquette

(2016), Yang and Zhu (2017), and Sadzik and Woolnough (2021).

8. In Diamond and Verrecchia (1981) and Verrecchia (1982), rational traders are also endowed with

an uncertain amount of the risky asset. Contrary to Ganguli and Yang (2009), agents’ endowments

do not share a common component, preventing the existence of multiple equilibria in their setup.

3. Social Sentiment Investing and Price Efficiency

1. The story behind the KBC dates back to Keynes’ (1936) classical work. In a fictive beauty contest,

participants have to select the six individuals among a hundred photographs who they think are

considered the most attractive by the other participants. Thus, rather than naively picking the
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six they personally consider the most attractive, the participants should form expectations about

which photographs the others will pick. Since the other participants also form expectations about

which photographs the rest will pick, forecasting others’ choices entails forming expectations about

others’ expectations (i.e., higher-order expectations).

2. See, e.g., Admati (1985), Judd (1985), and Uhlig (1996) for more detailed discussions on adopting

the strong law of large numbers for a continuum of independent random variables.

3. The case of persistent noise trading in dynamic REE models is studied by Cespa and Vives (2012,

2015) and Avdis (2016). More details on these contributions can be found in Section 2.2.

4. Payment for Order Flow and Multidimensional

Noise

1. One could also interpret each component of noise trader demand as the sum of a fixed number of

single noise trader demands.

2. Any mass different from unity would leave all derived results unchanged.

3. This difference becomes even more visible when inspecting equations (11) and (12) on p. 1731 in

GY 2015 and comparing them to the relevant equations in this model.

4. Imposing a restriction on the overall mass of fundamentally uninformed, rational traders would

significantly complicate the derivation of an equilibrium at the information acquisition stage,

however leaving all derived results qualitatively unchanged.

5. Note that in the special case c1 < c̄ and c2 = f(c1), λ∗1 > 0, λ∗2 = 0 is the unique equilibrium (see

also Proposition 4.5).

6. Note that in the special case c1 = c2 = c̄, λ∗1 = λ∗2 = 0 is the unique equilibrium (see also Proposition

4.5).

7. Note that in the special case c1 > c̄ and c2 = g(c1), λ∗1 = 0, λ∗2 > 0 is the unique equilibrium (see

also Proposition 4.5).

8. The obtained result would not change qualitatively if we allowed for the excluded corner solutions.

There would still exist an area near the origin in Figure 4.3 where an equilibrium at the information

acquisition stage would fail to exist.

9. If one allows for a group of rational traders that observes two of the three noise shocks, the two

equilibria again exhibit the classical properties and a large mass of noise-informed traders always

leads to a market breakdown.

10. It is known that the adverse selection problem vanishes if the error terms in rational traders’ private

fundamental signals are correlated (see Manzano and Vives, 2011). However, Section 4.5 shows

that adverse selection is significantly weakened if noise is three-dimensional and non-fundamental

information is sufficiently dispersed.

11. We refrain from deriving an equilibrium at the information acquisition stage with endogenous

values of λ1, λ2, and λ3, since the complexity of the three-dimensional model prevents a full
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analytical characterization of such an equilibrium. However, this is not problematic, as all relevant

results on interactions in information acquisition can be gained without deriving an information

acquisition equilibrium with exogenous cost parameters. Another example of analyzing interactions

in information acquisition without deriving an information acquisition equilibrium beforehand can

be found, e.g., in Manzano and Vives (2011, Section 4.2).

220



References

References

Abreu, Dilip, and Markus K. Brunnermeier (2002), “Synchronization Risk and

Delayed Arbitrage”, Journal of Financial Economics 66, 341–360.

Abreu, Dilip, and Markus K. Brunnermeier (2003), “Bubbles and Crashes”, Econo-

metrica 71, 173–204.

Admati, Anat R. (1985), “A Noisy Rational Expectations Equilibrium for Multi-

Asset Securities Markets”, Econometrica 53, 629–658.

Agrawal, Shreyash, Pablo D. Azar, Andrew W. Lo, and Taranjit Singh (2018),

“Momentum, Mean-Reversion, and Social Media: Evidence from StockTwits

and Twitter”, The Journal of Portfolio Management 44, 85–95.

Akbas, Ferhat, Will J. Armstrong, Sorin Sorescu, and Avanidhar Subrahmanyam

(2015), “Smart Money, Dumb Money, and Capital Market Anomalies”, Journal

of Financial Economics 118, 355–382.

Allen, Franklin (1984), “The Social Value of Asymmetric Information”, Working

Paper.

Allen, Franklin, and Douglas Gale (1994), “Limited Market Participation and

Volatility of Asset Prices”, The American Economic Review 84, 933–955.

Allen, Franklin, Stephen Morris, and Hyung Song Shin (2006), “Beauty Contests

and Iterated Expectations in Asset Markets”, Review of Financial Studies 19,

719–752.

Allen, Theodore (2006), Introduction to Engineering Statistics and Six Sigma:

Statistical Quality Control and Design of Experiments and Systems, London:

Springer Science & Business Media.

Amromin, Gene, and Steven Sharpe (2014), “From the Horse’s Mouth: Economic

Conditions and Investor Expectations of Risk and Return”, Management

Science 60, 845–866.

Antweiler, Werner, and Murray Z. Frank (2004), “Is All That Talk Just Noise?

The Information Content of Internet Stock Message Boards”, The Journal of

Finance 59, 1259–1294.

Arnold, Lutz G. (2009), “Anything is Possible: On the Existence and Uniqueness

of Equilibria in the Shleifer-Vishny Model of Limits of Arbitrage”, Review of

Finance 13, 521–553.

221



References

Arnold, Lutz G., and Stephan Brunner (2015), “The Economics of Rational Specu-

lation in the Presence of Positive Feedback Trading”, The Quarterly Review of

Economics and Finance 57, 161–174.

Arnold, Lutz G., and Sebastian Zelzner (2020), “Welfare Effects of the Allocation of

Talent to Financial Trading: What Does the Grossman-Stiglitz Model Say?”,

BGPE Discussion Paper.

Arnold, Lutz G., and David Russ (2021), “Listening to the Noise: On Price Efficiency

with Dynamic Trading”, BGPE Discussion Paper.

Avdis, Efstahios (2016), “Information Tradeoffs in Dynamic Financial Markets”,

Journal of Financial Economics 122, 568–584.
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