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Abstract
For banks, credit lines play an important role exposing
both liquidity and credit risk. In the advanced inter-
nal ratings-based approach, banks are obliged to use
their own estimates of exposure at default using credit
conversion factors. For volatile segments, additional
downturn estimates are required. Using the world’s
largest database of defaulted credit lines from the US
and Europe and macroeconomic variables, we apply
a Bayesian mixed effect quantile regression and find
strongly varying covariate effects over the whole con-
ditional distribution of credit conversion factors and
especially between United States and Europe. If macroe-
conomic variables do not provide adequate downturn
estimates, the model is enhanced by random effects.
Results from European credit lines suggest that high
conversion factors are driven by random effects rather
than observable covariates. We further show that the
impact of the economic surrounding highly depends on
the level of utilization one year prior default, suggest-
ing that credit lines with high drawdown potential are
most affected by economic downturns and hence bear
the highest risk in crisis periods.
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1 INTRODUCTION

Credit lines are the dominant funding source for companies all around the world (see Lins
et al., 2010; Segura & Zeng, 2020). In the United States—a traditionally rather market-oriented
country—80% of small- and medium-sized enterprises (SME) heavily rely on these funding instru-
ments (see Sufi, 2009) and credit lines are the second most important debt financing category
for listed companies (see Colla et al., 2013). Acharya et al. (2014), Acharya and Mora (2015)
and Acharya et al. (2020) argue that credit lines are important for the economy in general as
they provide (short-term) liquidity to corporations to sustain investments. Particularly in crisis
periods when credit quality deteriorates, credit lines ensure that companies can maintain their
operations and contribute to sustain investments and liquidity (see also Agarwal et al., 2006;
Barraza & Civelli, 2020; Berrospide & Meisenzahl, 2015; Cornett et al., 2011; Gatev & Strahan,
2006). As a flip-side, they expose banks to both higher liquidity and credit risk. Ivashina and
Scharfstein (2010) show that there was a bank run in the global financial crisis (GFC) induc-
ing high liquidity risk. Following Acharya et al. (2013) and Acharya and Mora (2015), banks
with undrawn lines become riskier due to this additional risk in times of increased aggregated
volatility.

In addition to the well-documented liquidity risk, credit lines—such as loan contracts in
general—also expose banks to credit risk. In this paper, we focus solely on defaulted credit
lines, as we are interested in the dimensions of credit risk induced by the type of loan.
In the advanced internal ratings-based (IRB) approach of the Basel regulations, banks are
obliged to use their own estimates of the three central credit risk parameters—the probability
of default (PD), the loss given default (LGD) and the exposure at default (EAD)—to calcu-
late their capital requirements for loans. For credit lines, the EAD is particularly important
because a bank’s credit risk exposure is increased when a credit line is drawn and volatile over
time.

While the literature on PD and LGD modelling has widened considerably during the last
two decades, less attention has been paid to EAD modelling. Literature on EAD modelling can
roughly be divided into direct and indirect approaches. Direct modelling of EAD usually involves
multistage models (Hon & Bellotti, 2016; Leow & Crook, 2016; Thackham & Ma, 2019; Tong
et al., 2016). In contrast, indirect approaches are based on conversion factors which can be
interpreted as additional drawdowns on the credit line in a specific time period, for example
one year prior to default (see Section 2). As this is also the approach required by Basel regu-
lations (see Basel Committee on Banking Supervision, 2017, §241, §242), we follow this strand
of literature. While indirect approaches allow for beneficial interpretations, they are challeng-
ing, that is conversion factors tend to exhibit extreme bimodal distributions—comparable to loss
rate distributions—and are characterized by high amounts of outliers. Regardless, many stud-
ies use a classical linear OLS regression framework (see Araten & Jacobs, 2001; Moral, 2011;
Qi, 2009). Barakova and Parthasarathy (2013) additionally apply median regression which is
more robust to outliers. Although not recommended by the Basel regulations (see Basel Com-
mittee on Banking Supervision, 2017, §247), several studies trim or winsorize the data (see
Araten & Jacobs, 2001; Barakova & Parthasarathy, 2013; Jacobs & Bag, 2011; Moral, 2011; Qi,
2009; Yang & Tkachenko, 2012). First suggestions to consider the distributional features of
conversion factors are multi-stage models (see Valvonis, 2008) or beta regression (see Jacobs,
2010). Yang and Tkachenko (2012) find single-layer neural networks to be superior, indi-
cating that conversion factors might not be linearly related to covariates. However, neural
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networks lack economic interpretability and transparency which hampers application for regu-
latory purposes.

The risky position of a bank is not only increased by higher exposures when credit lines are
drawn, but also through a link between credit line usage and default that was found by several
studies (see Araten & Jacobs, 2001; Jacobs, 2010; Jacobs & Bag, 2011; Jiménez et al., 2009; Qi,
2009; Valvonis, 2008; Zhao et al., 2014). Hence, obligors seem to draw heavier when tumbling
towards default. In the literature, there is an ongoing debate regarding the impact of macroeco-
nomic variables, and whether credit line-specific risk increases in economic downturns. Jiménez
et al. (2009), Gatev and Strahan (2006), and Sufi (2009) find statistical evidence that firms tend to
draw more lines in economic downturns, while Barakova and Parthasarathy (2013) report higher
EADs in contraction (pre-crises) periods compared to crises. Zhao et al. (2014) find statistically
significant higher conversion factors during recession periods. Thackham and Ma (2019) even
state weak evidence of counter-cyclic patterns in the Global Financial Crisis, that is a negative
relation of EADs and default rates. In general, the identification of meaningful and statistically
evident macroeconomic variables is of high relevance with respect to modelling EAD and con-
version factors. In analogy to loss rates, estimates of conversion factors for (economic) downturns
are also mandatory for volatile segments in Basel regulations (see Basel Committee on Bank-
ing Supervision, 2017, §242) which is hampered by a lack of statistically evident systematic
variables. With respect to the literature, conversion factors are almost exclusively estimated with
mean-related methods (such as OLS), although the distribution is highly bimodal. Therefore,
conclusion with respect to the mean, which is rarely observed, may not be representative for
the whole distribution. Furthermore, the bimodality may lead to heterogeneous (varying) covari-
ate effects for the different parts of the distribution. This may also be an explanation of the lack
of statistically evident systematic variables. For a detailed discussion of heterogeneous covari-
ate effects, we refer to Koenker (2005). Therefore, we argue that using a quantile regression
may be more representative for this challenging setting. Additionally, individual quantile func-
tions enable financial institutions to better differentiate between loans and their inherent risk
profile.

Given the importance of credit lines and their relation to the macroeconomy, as well as the
lack of clear evidence in the literature, this paper provides the following contributions. First,
this paper is innovative by investigating the downturn, that is crisis periods, characteristics of
credit lines for the first time and comparing two important regions, namely Europe and United
States. Furthermore, our evidence is based on one of the world’s largest international datasets
with respect to defaulted credit lines. Second, we apply a novel approach to model conversion
factors. Because of the regulatory requirements for conversion factors and their bimodal dis-
tribution which can hardly be tackled by linear OLS regression, we apply a Bayesian quantile
regression (QR) approach. Therefore, this paper is—to the best of our knowledge—the first to
model the full conditional distribution of credit conversion factors. We show that the QR approach
yields an up to twice as good distributional fit, compared to the OLS regression in an out-of-time
forecasting exercise. Additionally, we show that the impact of covariates strongly varies across
quantiles, which cannot be captured by standard regression techniques. This suggests that there
are severe differences in the determinants of low or high additional drawdowns and between
regions, which is not documented in the literature so far. Third, we deeply investigate the impact
of macroeconomic variables and their ability to generate sufficiently conservative downturn esti-
mates, as required by Basel regulations. We find that evidence of macroeconomic variables seems
to vanish in the tails of the distribution and for credit lines which exhibit high utilization, that
is lines which are drawn heavily one year prior to default. Thus, credit lines with high risk (low
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utilization one year prior default) are particularly affected by the economic surrounding. Sys-
tematic variation which cannot be measured by macroeconomic variables is modelled via
time-specific random effects. This allows us to create adequate downturn estimates, even in set-
tings where the identification of meaningful and evident macroeconomic variables is unfeasible.
Furthermore, it offers banks and regulators an approach to incorporate their individual margin
of conservatism for capital requirements of credit lines in stressed periods.

The remainder of this paper is structured as follows. Section 2 presents the data of defaulted
credit lines. In Section 3, Bayesian quantile regression—including the extension by time-specific
random effects—is introduced. The main results are outlined in Section 4. Finally, Section 5
concludes.

2 DATA

Summarizing the literature reviewed in Section 1, EADs might be modelled directly or indirectly
by means of conversion factors. The latter represent additional drawdowns with respect to an
observed limit, balance or difference at a specific time t. Hereby, a more complete picture of the
drawdown behaviour of defaulted credit lines can be modelled. For example, (possible) differ-
ent drivers for low and high additional drawdowns can be determined. Furthermore, the use
of conversion factors is recommended by the Basel Accord (see Basel Committee on Banking
Supervision, 2017, §241–§250).

Generally, conversion factors should be estimated with a fixed-horizon approach, that is all
predictions should be linked to information 12 months prior to default (see Basel Committee on
Banking Supervision, 2017, §245). Therefore, in the following the time stamp t refers to 12 months
before the default in T. A rigorous discussion of advantages and disadvantages of various hori-
zon approaches can be found in Gürtler et al. (2018). In general, the conversion factors consist of
a composition of the following variables. Balancet is the drawn amount of the credit line at time
t, Limitt is the available amount provided by the financial institution up to with the obligor can
draw the line, and EADT is the drawn amount of the credit line at the time of default T. In the
literature, four common conversion factors can be found: The loan equivalent exposure

(
LEQ, cal-

culated by EADT−Balancet
Limitt−Balancet

)
, the credit conversion factor

(
CCF, calculated by EADT

Balancet

)
, the exposure

at default factor
(

EADF, calculated by EADT
Limitt

)
and the additional utilization factor

(
AUF, calcu-

lated by EADT−Balancet
Limitt

)
. As the nomenclature of these factors is not universally defined, we follow

the definitions of Leow and Crook (2016). A discussion about the drawbacks of the first three con-
version factors can be found in Leow and Crook (2016) and Thackham and Ma (2019). The AUF
is suggested by Yang and Tkachenko (2012) and found to be suitable for corporate credit lines by
Barakova and Parthasarathy (2013) and the following analysis also focuses on AUF. While incor-
porating the limit as well as the balance at time t, it is stable for almost completely drawn lines.
The AUF is undefined if the limit one year prior default is exactly zero. However, these credit
lines are of minor concern in estimating credit risk due to their low potential of additional draw-
downs. Furthermore, extreme values occur only if the limit one year prior default is extremely
small compared to the additional drawdown.1 Due to these benefits and the limited drawbacks,

1Note that an AUF of one indicates that the additional drawdown is equal to the limit one year prior default. This can
only occur if there is no balance one year prior default.
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we apply the AUF in the following analysis. For robustness, we also run our analysis using the
EADF, but find no differences regarding our contributions.2

We use access to the world’s largest loss and exposure database which is collected by Global
Credit Data (GCD).3 This cooperative consists of 55 globally acting member banks all around the
world encompassing several systemically important institutions. The access to a unique sample of
defaulted US American and European corporate credit lines provides exclusive insights accessing
a large and important proportion of the banking universe. We use a sample from 2006 until the
end of 2018. The database contains information about balance and limit at the time of default and
one year prior to default. We use the fixed-horizon approach for calculating the AUF which is in
line with the Basel Accord.

Imposing a materiality threshold of 500 Euro4 and using only credit lines where all indepen-
dent variables are available, we have 14,382 credit lines in Europe and 4432 credit lines in the
United States. To reduce the problem of extreme values, we restrict the range of AUF values to
[−0.5, 1.5]. By including negative AUFs, variables which impact balance reduction until default
can be identified, whereas AUFs greater than one enable us to look deeper into the drivers of
extreme additional drawdowns beyond the prearranged limits. These are possible due to accumu-
lated interest or banks allowing borrowers to draw beyond their limits, resulting in values greater
than 1. With respect to the interval, we delete 3466 credit lines in Europe and 390 in the United
States, corresponding to 24.10% and 8.80% of the sample. In Europe, 2976 of the deleted credit
lines have limits of zero one year prior default which implies a non-defined AUF.5 As these credit
lines have a low EAD potential, these observations are of minor economic concern. Values with
limits greater than zero account for 3.34% in Europe.

Table 1 compares descriptive statistics of the AUF and applied covariables in the two regions.
For metric variables the means and a range of quantiles are displayed. For each level of categorical
variables, the means and quantiles of the AUF are shown.

Comparing the variable age, which represents the number of years from origination of the
credit line until one year prior default, European lines are on average more than twice as old. This
may be attributed to the fact, that in Europe it is much more common to have tight and long-lasting
business relationships to banks with respect to funding, whereas in the United States, compa-
nies are usually more often funded by capital markets (see Antoniou et al., 2008). Furthermore,
it is apparent that the AUF differs among regions—especially in higher quantiles as (positive)
additional drawdowns are much more common in Europe. This is in line with the observation
that Utilization, which represents the percentage of how much is already drawn one year prior
default, is higher in the United States. In the first quartile, the lines are drawn up to 80%, whereas
in Europe, only up to 48%. Due to the higher utilization in the United States, the potential of
additional drawdowns is limited which might result in a lower AUF.

To control for the economic surrounding, we include the year-on-year growth of the Gross
Domestic Product (GDP), labelled asΔGDP in the final model. We also considered other macroe-
conomic variables, such as stock market growth, changes in house prices, volatility indexes,

2Rerunning our analysis using CCF would be counterintuitive, as we would have to omit the most risky credit lines,
which are especially important in crisis periods. Furthermore, as the LEQ has these two severe drawbacks and is only
weakly defined in our sample, an additional analysis would not add any robustness.
3GCD is a non-profit organization aiming to support its member banks in understanding and modelling credit risk
parameters such as LGD and EAD by, inter alia, collecting and pooling detailed loss and exposure information of
defaulted loan contracts including credit lines (for further information see https://www.globalcreditdata.org/).
4This is in line with the materiality threshold of the European Banking Authority (2016).
5In the US, only 34 lines have a limit of zero one year prior default.

https://www.globalcreditdata.org/
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interest rate spreads, unemployment rates and overall liquidity. ΔGDP has the highest and most
evident impact among all tested variables. Following Betz et al. (2018), we use one macro variable
in the final model, as they are highly correlated which might influence their statistical infer-
ence. Furthermore, our results in Section 4.2 show that the remaining systemic variation can be
easily captured with the introduced random effect, avoiding issues with highly correlated macroe-
conomic variables. We further include line-specific variables. Facility-type controls for different
revolving types of credit line and their maturity (overdraft,6 short- and medium-term revolver).
Additionally, the order of claims in the resolution process is included via different levels of Senior-
ity.7 Log(Limit) controls for the size of the credit line with respect to the available limit one year
prior default. We also tested whether the size of the company is a driver of the AUF, but found no
evident effect. The impact of the company size may be absorbed by the log(Limit) as larger firms
usually require larger credit lines.8 Furthermore, in the literature, the borrower rating is found
to be suitable to model additional drawdowns for non-defaulted and defaulted credit lines. How-
ever, as we focus on defaulted credit lines using the fixed horizon approach, the ratings of the
credit lines probably worsen for all defaulted lines one year prior default. To check this, we use a
subsample of our data for which we have ratings, but find no difference between the rating cate-
gories in terms of the AUF distribution, and a very large part has a non-investmentgrade rating.
This is similar to Thackham and Ma (2019), who do not include ratings in their final model for
EAD prediction either.

The left panels of Figure 1 illustrate the kernel density estimates of the AUF. The probability
mass around zero is more pronounced in the United States, whereas the probability mass around
one is greater in Europe. The right panels of Figure 1 illustrate the time patterns of the average
AUF (solid black line) and its 75% quantile (black dotted line). Hereby, differences among the
regions occur. The average AUF is lower in the United States compared to Europe. The Global
Financial Crisis and its aftermath is much more pronounced in Europe. This is especially true
focusing on the 75% quantile where the values increased considerably in the GFC and the sub-
sequent quarters. Summarizing, time varying behaviour is present in both regions, whereas it is
more pronounced in Europe. This may be attributed to the fact of generally higher utilization one
year prior default in the US American sample. To investigate this in more detail, we illustrate the
distribution of Utilization depending on the realized AUF in Figure 2.

Lines with positive and negative AUFs seem to clearly differ in the level of utilization one year
prior default. In Figure 2, the solid line illustrates the utilization of credit lines with positive AUFs
and the dashed line represents credit lines with negative AUFs. Obligors with negative AUFs have
more extensively drawn than obligors with positive AUFs. In Europe, there are many more credit
lines with almost no and very high utilization one year prior to default, whereas in the United
States, there is a more equal level of utilization for positive AUFs.

Overall, there is also evidence that the time varying behaviour is quantile-dependent. Usu-
ally, an explanation for different systematic behaviour may be different default definitions. In
this study, all loans have the same default definition according to Basel Committee on Banking

6In general, the Basel Accord does not require banks to estimate credit conversion factors for non-revolving lines, like
overdrafts. Instead, a comparatively low CCF of 10% is assigned. The descriptive statistics, however, show that these type
of lines have a much greater potential of additional drawdowns. Hence, we include them in our sample to investigate
their behaviour as well.
7Super senior refers to a priority order where only one creditor has prior claims. If there is at least another claimant on
the same rank, the seniority is defined as pari-passu.
8We also tested other credit-line-specific characteristics such as collateral, but did not find an evident impact, similar to
Thackham and Ma (2019).
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(a)

(b)

F I G U R E 1 Distribution and time variation of additional utilization factor (AUF). Note: The left panels of
the figure show the distribution of the AUF separated by regions. The black lines represent the kernel density
estimates, whereas the grey bars illustrate the histograms. The right panels illustrate the time patterns of the AUF
divided by regions. The solid lines represents the mean in the quarter of default and the dotted line is the 75%
quantile.

F I G U R E 2 Distribution of utilization level 1 year prior to default. Note: The figure shows the distribution
of the level of Utilization separated by positive and negative AUFs. The solid line represents the density of the
Utilization for lines with a positive additional drawdown (positive AUF) and the dashed line illustrates the
density of the Utilization with exposure reduction (negative AUF).
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Supervision (2017). Hence, we can eliminate the possibility that different systematic behaviours
are attributed to different default definitions.

3 METHODOLOGY

With respect to the extreme bimodal distribution of the AUF (see left panels of Figure 1), analysis
regarding the conditional mean of the distribution—such as a classical linear regression—may
not be favourable as rigorously shown by Krüger and Rösch (2017). Modelling the entire distribu-
tion instead infers more comprehensive results. Furthermore, the impact of variables may differ
over the distributional range. This is especially true in the existing setting as positive and neg-
ative AUFs are jointly modelled. Therefore, we analyse additional drawndowns using quantile
regression introduced by Koenker and Bassett (1978) which allows us to model the full condi-
tional distribution of the response variable.9 As each quantile is modelled separately by a linear
regression, a more comprehensive picture of the distribution is obtained. Additionally, it allows
for varying impacts of covariates over the entire distributional range. This enables us to detect the
(different) drivers of low and high additional drawdowns. These implications are important to
financial institutions as they can adjust their line management and, hence, distinguish between
low and high drawdowns more exactly.

In the quantile regression approach, each quantile 𝜏 of the dependent variable Y is modelled
based on a linear function. The corresponding regression function is

yi = xi𝛽(𝜏) + 𝜖i(𝜏), (1)

where yi represents the ith observation of the response variable and xi is the known covariate vec-
tor which includes a one for the 𝜏-dependent intercept. The vector 𝛽(𝜏) contains the unknown
parameters including the intercept and 𝜖i(𝜏) is the quantile-specific error term. Assuming expec-
tation Q

𝜏

(𝜖i(𝜏)) = 0, the expected 𝜏-quantile of the response variables is given by Q
𝜏

(yi|xi) = xi𝛽(𝜏)
for 0 < 𝜏 < 1. The 𝜏-specific estimates of 𝛽(𝜏) are obtained by minimizing the objective function
with respect to 𝛽(𝜏):

n∑
i=1
𝜌

𝜏

(yi − xi𝛽(𝜏))

with 𝜌

𝜏

(𝜔) =

{
𝜏𝜔, if 𝜔 ≥ 0,
(1 − 𝜏)|𝜔| else.

(2)

According to Koenker and Bassett (1978), the minimization problem of Equation (2) is solved
with simplex algorithms. Yu and Moyeed (2001) and Yu and Zhang (2005) linked the mini-
mization to the maximum likelihood theory via the asymmetric Laplace distribution (ALD).
This distribution is parametrized by 𝜇, 𝜎, and 𝜏. The random variable 𝜀 follows the ALD as its
probability density is:

f (𝜖|𝜇, 𝜎, 𝜏) = 𝜏(1 − 𝜏)
𝜎

exp
{
−𝜌

𝜏

(
𝜖 − 𝜇
𝜎

)}
,

with −∞ < 𝜇 < ∞, 0 < 𝜏 < 1, and 𝜎 > 0, (3)

9See Kellner et al. (2022) for a neural network version of the quantile regression.



BETZ et al. 11

where 𝜌
𝜏

is the objective function defined in Equation (2). The parameter 𝜇 determines the
location, 𝜏 controls the skewness, and 𝜎 is the variance. In general, 𝜎 can be considered as a nui-
sance parameter and the skewness parameter 𝜏 corresponds to the desired quantile. Therefore,
maximizing Equation (3) with respect to 𝜇 is equivalent to solving the minimization problem
in Equation (2). Yu and Moyeed (2001) argue that the resulting posterior is valid even if it is a
misspecification of the true error and Sriram et al. (2013) provide a theoretical justification for pos-
terior consistency under the ALD misspecification. The location parameter changes to 𝜇i = xi𝛽(𝜏)
and, for a fixed skewness parameter 𝜏, the likelihood function—up to a proportional constant (see
Luo et al., 2012)—results in

L(𝛽(𝜏), 𝜎|y, 𝜏) ∝ 𝜎−1 exp

{
−

n∑
i=1
𝜌

𝜏

(
𝜖 − 𝜇i

𝜎

)}
. (4)

Geraci and Bottai (2007) extended this approach to include a mixed effects model by including
a random effect. In this setting, we implement a time-specific random effect F to account for
clustering in the time line.10 According to Geraci and Bottai (2007), the regression function of
Equation (1) (and, thus, the location parameter) changes to

yi = xi𝛽(𝜏) + F(𝜏) + 𝜖i(𝜏), (5)

where 𝜖(𝜏) ∼ AL(0, 𝜎
𝜖

) and F(𝜏) ∼ N(0, 𝜎F(𝜏)). The realization of F(𝜏) corresponds to the quar-
ter of default, for example, 2008 Q3, of the obligor. Therefore, obligors which default in the same
quarter are exposed to the same 𝜏-dependent realization of the random effect. The model in
Equation (5) can be seen as a mixed effect model, where we treat impact of the covariates 𝛽(𝜏)
as fixed and the impact of the time variation F(𝜏) as (additional) random intercept. Following
Section 2, time patterns of AUFs vary among quantiles. Hence, it may be favourable to assign each
quantile an individual impact of the random effect. Equations (2)–(4) apply to the model with
random effects by analogy.11

The models (with and without random effects) are estimated via Bayesian inference as
the likelihood in Equation (4) cannot be maximized analytically. The posterior distribution is

10Alternatively, one could use time-specific dummies to control for the remaining time variation. However, this might
have at least two drawbacks. First, we want to use our model for predicting future conversion factors. Therefore,
predicting an appropriate value for a future time-dummy is not straightforward. Second, with respect to the downturn
estimates, the random effects structure gives financial institutions as well as prudential regulators a great flexibility to
apply their margin of conservatism individually.
11Alternatively, we could have used finite mixture models as in Calabrese (2014), Altman and Kalotay (2014), Kalotay
and Altman (2017), Betz et al. (2018) or Betz et al. (2021) for Losses Given Default (LGDs). These models assume a latent
variable which describes the affiliation to individual components of the mixture model and use observable and
unobservable covariates to model this latent variable. Some of these studies include a time-specific random intercept, as
we did, and evaluate the impact of this time variation on the latent variable. However, the ordered logit or probit does
not allow a direct link between changes in the latent variable and the resulting affiliation probabilities to the mixture
components. An increase of the latent variable results in a higher probability of the highest component and a lower
probability for the lowest component. However, the impact on intermediate components can not be inferred directly.
Therefore, we think that the interpretation in terms of quantiles and the impact of the random effect on each quantile
allows for a more direct interpretation. Moreover, one can think of fitting an unconditional mixture model on the
conversion factor’s distribution, following Tomarchio and Punzo (2019) for LGD estimation. As we observe different
shapes of the conversion factor’s distribution for different facility types or industries in our sample, we would have to
redo the inference for many subsets of our data.
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generated via Markov chain Monte Carlo (MCMC) procedure. By constructing reversible Markov
chains, the algorithm samples from the posterior distribution which corresponds to the target
distribution in the equilibrium. More details on the estimation and the specified prior
distributions for every parameter in the model can be found in Appendix A.

Alternatively, frequentistic approaches could be used following, for example, Geraci and Bot-
tai (2007), Chernozhukov et al. (2013), Galvao et al. (2013), Galvao and Kato (2017), Graham et al.
(2018) or Galvao and Poirier (2019). However, the Bayesian framework has some favorable prop-
erties. Following the statements by Yu et al. (2005); Yue and Rue (2011) and Bernardi et al. (2015)
the Bayesian quantile regression provides estimations and predictions which take into account
parameter uncertainty. This is especially interesting if the sample size is not extensively large.
Furthermore, inferring distributions instead of point estimates of the parameters contributes to
a more comprehensive understanding, see, for example, Bernardi et al. (2015), and the interpre-
tation of credibility intervals, for example highest posterior density intervals (HPDIs), is quite
intuitive. Additionally, the convergence and stability for extreme quantiles can easily be assessed
using the standard tools of Bayesian inference. With rising computational power, the estimation
of Bayesian models is fairly efficient using standard software. Moreover, recent literature suggests
that Bayesian quantile regressions are especially suitable for tail risk estimations, see for example
Carriero et al. (2020), Clements et al. (2020) and Ferrara et al. (2021). Summarizing, we think that
a Bayesian mixed effect quantile regression is a reasonable choice for modelling the challenging
distribution of the AUF.

As we use a default database, there might be a concern regarding endogeneity in particular
due to sample selection. Meaning, that our target variable is only observed after default and is
censored otherwise. This could imply that the sample is not representative for the population.
However, the endogeneity problem arises only if there is a dependence between the censoring
event (i.e. the default) and the resulting AUF. This problem may be alleviated by including the
time-to-default into the modelling framework. However, this metric is not known before default
and, thus, it is difficult to estimate. An alternative solution might be the joint modelling of AUF
and the probability of default and account for their dependencies via copulae, see, for example,
Krüger et al. (2018). More specifically regarding the methods employed in this article, Arellano
and Bonhomme (2017) propose a correction method for (frequentistic) quantile regressions in
the case of sample selection by ‘rotating’ the check function by an amount that depends on the
strength of selection. However, one has to quantify the strength of selection a priori. There is
some evidence for sample selection regarding LGD, see, for example Rösch and Scheule (2014)
or Krüger et al. (2018). To the best of our knowledge, there is no study which focuses on the
dependence between probability of default and conversion factors and, thus, it is difficult to
determine the potential impact of endogeneity in our empirical application. However, the ques-
tion of sample selection in conversion factor models is certainly a interesting path of future
research.12

We further include the ordinary-least-squares (OLS) regression as a benchmark for our novel
approach. This model focuses on the conditional mean of the distribution by neglecting varying
impacts through the bimodal distribution. However, it is the most common method in liter-
ature, see e.g. Barakova and Parthasarathy (2013), Jacobs (2010), Jacobs and Bag (2011), Qi
(2009) and Zhao et al. (2014). We estimate this regression in a Bayesian framework using unin-
formed priors such that the posterior means coincide with the point estimates in the frequentistic
framework.

12We would like to thank an anonymous associate editor for suggesting this discussion.
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4 EMPIRICAL RESULTS

In this section, we present the empirical results based on a subsample from 2006 to mid-2016.
The remaining observations are used in an out-of-time validation at the end of this section. We
start with the quantile regression without random effects—labelled as Macro Only Model (see
Equation (1) and Section 4.1)—to investigate the impact of the independent variables on the
AUF distribution in the United States and Europe. Afterwards, we look deeper in crisis peri-
ods and evaluate the model’s ability to provide an AUF downturn distribution comparable to
the one observed in the GFC. As the Macro Only Model only provides a sufficiently conser-
vative downturn distribution in the United States, we include a time-specific random effect
in the quantile regression for Europe. This model is labelled as Random Effects Model (see
Equation (5) and Section 4.2). It provides sufficiently conservative downturn distributions for
Europe.

To interpret the models in Bayesian terms, we follow two coherent concepts. The first is based
on posterior odds which are used to quantify the statistical evidence of the posterior means’ esti-
mated signs. Posterior odds coincide with the Bayes factor if the prior odds are equal to one. This
is true for any symmetric prior distribution with a mean of zero. Since we assume a normal dis-
tribution with a mean of zero as prior for each parameter in the 𝛽 vector (see Appendix A), the
posterior odds are equal to the Bayes factor.

They are defined as the ratio of the posterior probability that the parameter is negative and
the posterior probability that the parameter is positive:

Posterior odds
𝛽(𝜏)<0 =

P(𝛽(𝜏) < 0|data)
P(𝛽(𝜏) ≥ 0|data)

Posterior odds
𝛽(𝜏)>0 =

P(𝛽(𝜏) > 0|data)
P(𝛽(𝜏) ≤ 0|data)

Therefore, we can directly quantify the evidence favouring the sign of the posterior means, for
example posterior odds of 10 indicate that it is 10 times more likely that the sign of the posterior
mean is true compared to the opposite sign. Based on Kass and Raftery (1995), posterior odds
greater than 3.2 indicate substantial evidence, values exceeding 10 correspond to strong evidence
and posterior odds larger than 100 to decisive evidence.

The second concept to evaluate the evidence of posterior means are HPDIs. These intervals
quantify a range of the posterior distribution in which the unobservable parameter is located with
a given probability, for example 95%. If zero is not included in the HPDI, statistical evidence for
the sign of the posterior mean is assigned. For all model parameters, we assume non-informative
priors as we do not impose a direction of impact. Nevertheless, due to the two coherent concepts,
we are able to learn about the relation of covariates and AUF in a consecutive step.

4.1 Macro Only Model

In this subsection, results of the Macro Only Model and OLS with all variables described in Table 1
plus an interaction betweenΔGDP and Utilization, that isΔGDP⋅Utilization, are presented. This
interaction gives us insights, whether the impact of the macroeconomy depends on the level of
Utilization. This could have important implications for risk management practice in general and
for credit line exposure at default in particular. We choose for each categorical variable a reference
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category, which is indicated in brackets in the first column of Table 2. This table compares the
posterior means of the parameter estimates for the 5%, 50%, 95% quantile and the OLS regression
in the United States and Europe. Appendix D shows some conversion diagnostics of the estimated
models.13

For interpretation, please note that the AUF distribution is negative for quantiles lower than
the median and positive for quantiles greater than the median. Therefore, a negative poste-
rior mean indicates a higher amount of exposure reduction for the left part of the distribution
and a lower additional drawdown in the right part of the distribution. As there is a direct
link between AUF and EAD in terms of lower or higher values, we can interpret the poste-
rior means interchangeably for EAD and AUF. An increase of AUF results in an increase of
EAD and vice versa. In Table 2, the coefficients vary over the quantiles and (in many cases)
change their signs. This underpins the assumption that credit lines which reduce exposure
are differently impacted by the independent variables than credit lines with positive additional
drawdowns. This observation cannot be accounted for in the OLS model, where impacts are
related only to the conditional mean. Hence, conclusions regarding positive or negative impacts
of covariates for all levels of AUF are not possible. The applied quantile regression approach
is well suited to consider this quantile-varying influence. Furthermore, setting AUFs outside
the tolerated range back to the limits, for example, 0 or 1, which is common in the EAD
literature, might distort the results gathered from these models. This can be seen by the dif-
ferent signs of coefficients for positive and negative additional drawdowns. Setting outliers
back to the limits may also hamper the identification of significant drivers of credit conversion
factors.

In the United States, we find decisive evidence that short-term revolving lines have lower
additional drawdowns and larger exposure reductions compared to medium-term lines. These
findings are valid in Europe for the positive part of the response distribution. Contrary, we find
decisive evidence that another kind of short-term lines—so called overdrafts—have higher addi-
tional drawdowns compared to medium term lines. To summarize, short-term lines in the United
States have lower EADs, whereas in Europe it depends on the type of credit line. A possible
explanation may be that overdrafts are less in the focus of monitoring processes as they are uncon-
ditionally revocable. With respect to the results, we may see that these lines, however, also expose
credit risk to banks.

With respect to seniority, we find decisive evidence that non-senior credit lines draw less,
respectively, reduce more exposure than pari-passu in the United States. In Europe, we find
decisive evidence that non-senior lines draw considerably more compared to pari-passu lines.
The variable log(Limit) controls for the size of the credit line with respect to the limit one year
prior to default. We find decisive evidence that larger lines reduce more or draw less addi-
tional exposure. This might be explained by the fact that banks monitor larger lines more tightly
than smaller lines. The variable Age shows decisively evident negative signs for the quantiles

13The estimation of quantile regressions can be challenging in the tails of the distribution due to a very low number of
observations, as for example outlined by Chernozhukov (2005). This is frequently the case if we think about distributions
like normal, logit or Cauchy. However, considering the distribution of the conversion factors we can detect differences to
the aforementioned distributions. We observer considerable more realizations in the tails of the distribution compared
to the middle as both modes are at 0 and 1. Therefore, in our application, the tails of the distribution are well observed.
Similar observations can be found in Krüger and Rösch (2017) and Kellner et al. (2022), who found no instability
problems concerning LGD as target variable. Furthermore, we check for every estimated quantile regression the
common convergence checks which were all satisfied as outlined in our Appendices. Alternative approaches for extreme
quantiles can be found in Alhamzawi (2016), Huang and Chen (2015), Tian et al. (2017) or Hu et al. (2021).
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T A B L E 2 Results | Macro Only Model & OLS

Variable Level 𝝉 = 0.05 𝝉 = 0.50 𝝉 = 0.95 OLS

(a) USA

Intercept 0.128c 0.599c 1.125c 0.704c

Facility Short term revolver −0.042c −0.010b −0.019c −0.042c

Industry (FIRE) Agriculture −0.120c −0.008a 0.018a −0.026

Mining −0.115c −0.074c −0.024b −0.087c

Construction −0.075c −0.017c 0.018b −0.052c

Manufacturing −0.072c −0.011b 0.115c −0.023a

Transportation −0.008 0.001 0.076c −0.009

Wholesale −0.088c −0.016c 0.038c −0.046c

Service −0.070c −0.010b 0.041c −0.027a

Other −0.070c −0.008a 0.003 −0.050c

Seniority (pari-passu) Super senior 0.080c 0.014c −0.098c −0.003

Non senior −0.037c 0.008a −0.103c −0.034a

Unknown 0.133c 0.025c −0.125c −0.030b

log(Limit) −0.016c −0.011c −0.007c −0.017c

Age −0.003b −0.002c −0.004c −0.006c

ΔGDP −0.129 −2.922c −0.207 −1.100b

Utilization −0.234c −0.480c −0.870c −0.475c

Interaction 0.179 2.902c −0.398a 1.076a

(b) Europe

Intercept 0.132c 0.815c 1.099c 0.731c

Facility (medium term) Short term revolver 0.017a 0.015b −0.013b 0.027

Overdraft −0.029c 0.012c 0.220c 0.045c

Industry (FIRE) Agriculture −0.013a 0.004 0.117 c 0.044a

Mining 0.029a 0.007 0.611c 0.110

Construction −0.050c −0.007a 0.047c −0.001

Manufacturing −0.053c −0.019c 0.056c −0.014

Transportation −0.065c −0.021c 0.037b −0.001

Wholesale −0.050c −0.020c 0.019a −0.027b

Service −0.043c −0.009b 0.121c 0.011

Other −0.039c −0.027c 0.015a −0.054c

(Continues)
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T A B L E 2 (Continued)

Variable Level 𝝉 = 0.05 𝝉 = 0.50 𝝉 = 0.95 OLS

Seniority (pari-passu) Super senior −0.040c 0.001 0.045c −0.002

Non senior −0.045c 0.060c 0.461c 0.143c

log(Limit) −0.013c −0.010c −0.037c −0.028c

Age −0.002c 0.000 0.004c 0.000

ΔGDP −0.114a −1.997c −0.255a −0.869c

Utilization −0.269c −0.687c −0.295c −0.382c

Interaction 0.393b 1.978c 2.569c 1.088c

Note: This table shows the estimated posterior means for several selected quantiles. The first column inherits the name of the
different independent variables. If they are categorical, the reference group is indicated in brackets. The second column illust-
rates the different levels of categorical variables. Statistical evidence is indicated by the following a, b, c: acorresponds to sub-
stantial evidence (Odds >3.2), bcorresponds to strong evidence (Odds > 10), ccorresponds to decisive evidence (Odds >100). The
quantiles are chosen as they roughly correspond to negative drawndowns, almost no drawdowns and very high drawdowns.

in the United States. Thus, obligors with a short business relationship draw more, respectively,
reduce less. Banks may not know these obligors well and, hence, it is harder to foresee default
and the drawdowns of the firm one year prior to default. In Europe, we find the same pat-
tern for reductions, but the contrary sign for high additional draws. This might be explained by
the fact that the overall business relationship is longer and, in some cases, longstanding oblig-
ors may be granted more financial leeway to draw their lines in the hope that default may be
prevented.

Figure 3 illustrates the impact of the variables ΔGDP, Utilization and their interaction term
over the full response distribution, based on the Macro Only Model illustrated in Table 2. In
Appendix C, figures of all remaining independent variables are presented. We can clearly see that
the posterior mean of all three variables varies considerably over the response distribution. The
posterior mean (solid line) of ΔGDP is evidently negative for large parts of the distribution as the
95% HPDI (dotted line) does not include zero. The negative sign indicates an increase of the AUF
in economic downturns, that is whenΔGDP is negative. This is in line with Figure 1 as quantiles
of the AUF increase in the GFC. However, there is no statistically evident impact of the macroeco-
nomic variable in the tails of the response distribution. This lack of evidence cannot be revealed
by the OLS model, which underpins that our approach may be better suited to the non-linear
impact of macroeconomic variables on the AUF and further reveals novel results to the literature
of EAD modelling. This also suggests that the systematic of high additional drawdowns cannot
be captured with the observable macrovariable and hence, downturn estimates may be difficult
to obtain.

Regarding Utilization, we find a throughout evidently negative impact on the AUF distri-
bution indicating that the exposure reduction increases and, respectively, the additional drawn-
downs decrease with increasing Utilization. The latter effect may be explained by the fact that
the potential of additional drawdowns is limited with higher utilization one year prior to default.
Furthermore, credit lines with exposure reductions are heavily drawn one year prior default (see
Figure 2).

We include an interaction term between ΔGDP and Utilization to control for a dif-
ferent impact of the macroeconomic environment with respect to the available limit. The
interaction term has an evidently positive posterior mean in large parts of the response
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distribution. The total impact of the macroeconomic variable with respect to the level of
Utilization is:

Total effect = 𝛽(−)ΔGDP + 𝛽
(+)
Interaction ⋅Utilization.

The overall negative impact of ΔGDP decreases with a higher Utilization as the interaction term
is positive throughout the quantiles in both regions (see lower panel of Figure 3). For example,
at the 50% quantile, the overall (negative) impact of the macroeconomic environment in Europe
is reduced from −1.598 for 20% of utilization to −0.02 for 99% of utilization. Thus, the macroeco-
nomic environment, especially in the inner quantiles, is more relevant for less drawn credit lines
and less important for heavily drawn lines. This is plausible as less drawn lines have a higher
drawdown potential which can be affected by economic downturns. Furthermore, the macroeco-
nomic environment seems to be less important for credit lines with exposure reductions as they
draw heavily one year prior default. This might have substantial consequences for credit risk man-
agement as crises affect those parts of the exposure distribution which bear higher risk—in terms
of higher EADs.

4.1.1 Downturn estimation based on Macro Only Model

In this paragraph, we investigate the ability of the Macro Only Model to produce appropriate
downturn distributions—comparable to the one observed in the GFC. Hereby, we assume an
adverse realization of the macroeconomic variable ΔGDP to adopt an economic downturn. The

(a) (b)

F I G U R E 3 Results | Macro Only Model (coefficient plots). Note: The left three plots of the figure show the
estimated coefficients for ΔGDP, Utilization and the interaction term over the whole distributional range in the
United States. The black lines represent the posterior means, whereas the dotted lines illustrate 95% highest
posterior density intervals. The right three plots illustrate the estimated coefficients in Europe.
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(a) (b)

F I G U R E 4 Distribution of AUF in the global financial crisis (GFC). Note: The figure illustrates kernel
density estimates of the AUF during the GFC (grey line) and the remaining periods in the sample (black line).
With respect to the comparability of the density estimates, the same bandwidth was applied to both regions.

adverse realization is set to−5.5% in Europe and−3.9% in the United States, corresponding to the
95% quantile of the observed growth rates in the sample period.

Figure 4 compares the density of the AUF during the GFC (crises distribution, dashed lines)
and in the remaining time period (non-crises distribution, solid lines). According to the OECD,14

the GFC lasts from 2007 Q4 to 2009 Q2 in the United States, whereas it is slightly shifted in Europe
(2008 Q1 to 2009 Q3).

In the United States, the crises and non-crises distributions are very similar. This is in line
with Figure 1 where only small variations of the AUF over time and slightly higher AUFs during
the GFC arise. Contrary, there is less probability mass on exposure reduction (AUF< 0) and much
more mass on higher additional drawdowns (AUF≥ 1) in Europe, indicating a substantial impact
of the GFC.

To evaluate the fit of the posterior predictive distribution and the empirical distribution, we
use probability–probability (PP) plots following Michael (1983). Hereby, the empirical and theo-
retical quantiles are compared. The empirical quantiles pempirical,i are generated via the posterior
predictive distribution ̂F(yi), whereas the theoretical quantiles ptheoretical,i are calculated from the
data:

pempirical,i = ̂F(yi), and ptheoretical,i =
i − 0.5

n
(6)

where the credit lines i = 1, … , n are ordered by yi to ensure monotone increasing quantiles
̂F(yi).15 The compliance of all theoretical and empirical quantiles indicate perfect fit. Graphically,
a perfect fit is obtained when the points in the PP plot lie on the bisecting line. If the points are
above the bisecting line, the crisis distribution is underestimated, for example to little mass on
high additional drawdowns, and vice versa. For the PP plot of the estimation sample, the points
lie on the bisection line perfectly, thus, in-sample perfect fit is achieved for the Macro Only Model.
Contrary, the OLS shows considerable deviations.16

14The recession indicators of the OECD are available at https://fred.stlouisfed.org/series/USARECDM for the US Area
and available at https://fred.stlouisfed.org/series/EUROREC for the European Area.
15Having obtained the posterior distributions of the parameters after fitting the models, they can be used for predicting
the desired quantile by sampling from the model using the information of the selected (new) observations.
16The corresponding figures for the estimation sample are available from the authors upon request.

https://fred.stlouisfed.org/series/USARECDM
https://fred.stlouisfed.org/series/EUROREC
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(a) (b)

(c) (d)

F I G U R E 5 Distributional fit in downturn periods | macro only model & OLS. Note: The figure shows the
distributional fit in the Global Financial Crisis separated by regions. The black lines indicate the fit of the
posterior predicted distribution, whereas the grey lines illustrate the fit using a stress scenario. The stress
scenario is generated by considering an extreme value of the macro variable ΔGDP for each obligor defaulting
during the crisis period. We used the 95% quantile of ΔGDP during the whole sample period. For the US, the
extreme value corresponds to −3.9% and to −5.5% for Europe. An underestimation of the empirical crisis
distribution is indicated by a PP-line above the bisecting line. Contrary, overestimation, that is a too conservative
posterior predictive distribution, is indicated by a line below the bisecting line.

Figure 5 illustrates the distributional fit in a downturn period, that is the GFC, for the United
States (left panel) and Europe (right panel). The black points indicate the PP plot of the posterior
predictive distribution. In the United States, the Macro Only Model produces an almost perfect
fit. This might be expected as the crises and non-crises distribution do not substantially differ (see
Figure 4). However, the linear model deviates strongly from the bisecting line, showing a rather
poor distributional fit. In Europe, the empirical distribution is underestimated in the GFC as the
points are above the bisecting line. Hence, the posterior predictive distribution is not sufficiently
conservative. Again, the OLS provides a considerably lower fit.

To generate a stressed posterior predictive distribution, an extreme realization of ΔGDP is
applied. We use the 95% quantile of ΔGDP which corresponds to −3.9% in the United Staets and
−5.5% in Europe. According to the negative posterior mean ofΔGDP, a negative realization results
in a higher AUF. In Figure 5, the grey dots correspond to the stressed predictive distribution.
The stressed predictive distribution is too conservative in the United States which might have
been expected as the posterior predictive distribution already delivers a perfect fit. Contrary, the
stressed predictive distribution is still not conservative enough in Europe. This might be due to
two reasons. First,ΔGDP does not have an evident impact on the tails of the distribution. Second,
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there are more credit lines with positive AUF and high utilization in Europe as shown in Figure 2.
As we have seen, the negative impact of the macroeconomic environment is reduced with higher
utilization, and hence the ability to stress the distribution via macroeconomic variables is limited.

To summarize, the Macro Only Model provides a good distributional fit in crises and
non-crises periods in the United States, whereas the OLS does not. On the contrary, the macroe-
conomic variable does not seem to be able to capture the true systematic pattern in Europe.
Therefore, we include a time-specific random effect in our quantile regression approach in the
next step.

4.2 Random effects model

The model set-up for the random effects model is similar to the Macro Only Model as the observ-
able variables remain in the modelling framework. We extend the model by a time-specific
random effect as stated in Equation (5). The realizations of the random effect refer to the quar-
ter of default t. Obligors who default in the same quarter t, share the same realization of the
random effect and, thus, their AUFs are either higher (positive realization of the random effect)
or lower (negative realization of the random effect) on average. This enables us to capture the
co-movement in the time dimension. As the coefficients of the independent variables are very
similar to the ones obtained by the Macro Only Model, we focus only on the extension of this
model. The coefficients for selected quantiles can be found in Table B.1 in Appendix B.

The main parameter of the random effect and, thus, the random effects model, is the stan-
dard deviation 𝜎F . It can be interpreted in terms of magnitude of the random effect’s impact. The
higher the standard deviation, the larger the impact of the random effect on the specific quantile.
As an additional measure we use the inter cohort correlation (ICC) coefficient. It illustrates the
proportion of variation in the quantile captured by the random effect. According to Geraci and
Bottai (2007), the ICC is defined as:

ICC =
𝜎

2
F

𝜎

2
F + 𝜎

2
𝜖

, (7)

where 𝜎2
F is the variance of the random effect and 𝜎

2
𝜖

is the variance of the error term in the
quantile function (see Equation (5)). The higher the ICC, the more the random effect accounts
for the variation in the quantile.17

Figure 6 illustrates the standard deviation 𝜎F of the random effect (left panel) and the ICC
coefficient (right panel) for each quantile. The random effect has the highest impact in the tails
of the distribution. This coincides with the lack of statistical evidence for the macroeconomic
variable in this range (see right panels of Figure 3). From a credit risk management perspective, it
is noteworthy that the impact of the random effect is stronger in the right tail of the distribution.
Thus, unobservable systematic patterns are crucial for extreme positive additional drawdowns.
According to the ICC, the random effect accounts for more than 60% of the variation in the far
right tail. This has two major implications. First, modelling a quantile-dependent random effect
is favourable as the impact differs along the response distribution. Second, the random effect

17As we estimate every time-specific random effect independently for every quantile regression, the problem of quantile
crossing might be of concern. Overall, in less than 5% the quantiles cross and if we extend the distance of quantiles to be
considered to two, that is. 𝜏 ∈ [0.01, 0.03, … , 0.97, 0.99], the proportion drops to slightly more than 1%. As a robustness
check, we smooth the non-monotone quantiles and redo our analysis. The results are virtually unchanged. We thank an
anonymous referee for raising this important point.
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F I G U R E 6 Results | random effects model (coefficients plots of 𝜎F and ICC). Note: The left panel of the
figure illustrates the estimated posterior mean of 𝜎F in the Random Effects Model. The dashed lines indicate the
95% highest posterior density intervals. The standard deviation 𝜎F can be interpreted as the impact strength of
the random effect in the corresponding quantile. The right part of the figure displays the posterior mean of the
ICC coefficient (see Equation 7). It indicates how much of the variation in each quantile is due to the random
effect compared to the fixed effects.

accounts for the true systematic variation in a value range where macroeconomic variables lack
statistical evidence.

Figure 7 illustrates the posterior means (black solid line) and the HPDIs (black dashed line) of
the random effect realizations for the 75% and 95% quantile. The dotted line marks the reference
point of zero. As indicated by Figure 6, the magnitudes of the realizations substantially differ
among the quantiles. Regarding the 95% quantile, the posterior means are up to ten times as high
compared to the 75% quantile. In the GFC, large positive realizations indicating higher AUFs
occur. So the question arises why the random effect accounts for systematic variation, especially in
the early stages of the financial crisis and for higher quantiles? One reason may be that credit lines
in general are among the first financial instruments that companies use to sustain their liquidity
and financing duties when the economic condition deteriorates. This is in line with findings of
Barakova and Parthasarathy (2013) who find that EAD of syndicated credit lines is especially high
in pre- and early stages of crisis periods, where defaults are hard to anticipate for banks. Hence,
finding an observable variable for very early stages of crisis periods may be tedious and largely
portfolio dependent. The random effects approach provides a straightforward and tailor-made
solution to this problem. Banks and regulators may use a baseline macroeconomic variable, like
ΔGDP, to account for the overall economy and use the random effect to capture the remaining
systematic variation of credit lines, as suitable variables are hard to find.

To underline the importance of the random effect, assume a short-term revolver, located in
the FIRE industry, pari-passu in seniority, one year history of credit line and an available limit
of 250,000. To forecast an adverse realization of the EAD, a bank may use the posterior means,
displayed in Table B.1, of the Random Effects Model for the 95% quantile:

Q95th (yi|xi) = 1.094 − 0.015 − 0.037 ⋅ 250,000 + 1 ⋅ 0.0004 − ΔGDP ⋅ 0.319
− 0.287 ⋅Utilization + 2.221 ⋅ ΔGDP ⋅Utilization (8)

We can calculate the AUF based on observable variables in Equation (8) and subsequently esti-
mate the EAD. To calculate the EAD with the random effect, its realizations can simply be added
to the AUF based on Equation (8). For covering downturn characteristics, we use the realization
in 2008 Q1 of 0.22 and 2009 Q1 of 0.10 with the corresponding values of ΔGDP. To assess the
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F I G U R E 7 Results | random effects model (random effect realizations). Note: The figure illustrates the
posterior means (solid grey line) of the random effect realizations for the 75% and 95% quantile. The dashed lines
correspond to the 95% highest posterior density intervals. A positive posterior mean indicates a positive effect on
the corresponding quantile function and, therefore, a higher AUF.

importance of the random effect, the relative difference18 between the EAD estimate with ran-
dom effect and the EAD estimate based on Equation (2), depending on the level of Utilization is
shown in Figure 8.

We can obtain two important insights from this stylized example. First, the comparison of
the two lines indicates that the realization of the random effects has a large impact on the EAD
estimates, underlining the importance of this approach. The estimated EAD with the realiza-
tion of the random effect is up to 35% higher than when neglecting the realization. Furthermore,
we can see that the random effect, again, is most important for less drawn lines, which entail
the greatest risk to banks. This clearly shows that the random effect accounts for a large and
important share of systemic variation of credit lines, especially for higher quantiles of the AUF
distribution.

4.2.1 Downturn estimation based on Random Effects Model

In analogy to Section 4.1, we investigate the model’s ability to produce sufficiently conservative
downturn distributions. In Europe, the Macro Only Model underestimates the empirical AUF
distribution—even if the macroeconomic variable is stressed to its 95% quantile. This might be
due to its lack of statistical evidence in the tails of the AUF distribution. The downturn AUF
distribution in the Random Effects Model is generated by applying an adverse realization of the
random effect. As an adverse realization, we use the 95% quantile of each quantile-specific normal

18The relative difference is calculated by
(

EADwith random effect
EADwithout random effect

− 1
)

. Hence, a value greater than zero indicates a larger EAD
estimate by using the realization of the random effect.
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F I G U R E 8 Results | impact of the random effect. The figure illustrates the relative difference of EAD
estimates with and without considering the random effect. The black solid line represents the realization of 2008
Q1, whereas the dashed line illustrates the realization of 2009 Q1.

distribution with mean zero and standard deviation 𝜎F(𝜏). The posterior predictive distribution
is generated by setting the random effect to its mean.

Figure 9 illustrates the PP plots of the posterior predictive distribution and downturn distri-
bution based on the Random Effects Model in the GFC. The interpretation coincides to the one
in Figure 5. The black points indicate the distributional fit of the posterior predictive distribution,
whereas the grey dots illustrate the fit of the downturn distribution. The posterior predictive dis-
tribution underestimates the empirical AUF distribution as the black dots are above the bisecting
line. However, the downturn distribution via the random effect delivers a sufficiently conserva-
tive distribution. Summarizing, the random effect accounts for systematic variation in the tails of
the distribution where macroeconomic variables lack impact and statistical evidence. Therefore,
sufficiently conservative downturn distributions can be generated based on the random effect in
Europe.

4.2.2 Out-of-time comparison19

The final part of this section focuses on the out-of-time performance of quantile regression and
the benchmark model. In credit risk, we are usually interested in predicting the future. Hence, a
model should be capable of predicting the EAD in unseen time periods. We use the hold-out sam-
ple ranging from mid-2016 to the end of 2018 to conduct this out-of-time validation. To provide
a more broad picture, we sample 1000 portfolios including 200 credit lines each of the hold-out
sample instead of comparing both methods only once. As the comparison of all PP plots is tedious,
we summarize them using the Harmonic Mass Index (HMI). This measure averages the absolute
deviations of empirical and theoretical quantiles which are plotted in the PP plot (Wagenvoort,

19We thank discussants of the CFE 2019 for suggesting this comparison.



24 BETZ et al.

F I G U R E 9 Distributional fit in downturn periods | random effects model. Note: The figure shows the
distributional fit during the GFC for the random effects model. The black line indicates the fit of the posterior
predictive distribution, whereas the grey line illustrates the fit using a stress scenario. The stress scenario is
generated by considering an extreme realization of the random effect for each obligor defaulting during the
global financial crisis (GFC). Recall that the quantile-specific random effect follows a normal distribution with
mean zero and standard deviation 𝜎F . The 95% quantile of each quantile-specific random effect distribution is
applied as extreme realization. An underestimation of the empirical crisis distribution is indicated by a PP-line
above the bisecting line. Contrary, a too conservative posterior predictive distribution is indicated by a line below
the bisecting line.

T A B L E 3 Harmonic mass index

Quantile regression OLS

(a) USA

Mean 0.0458 0.0823

Standard deviation 0.0080 0.0067

(b) Europe

Mean 0.1216 0.1616

Standard deviation 0.0170 0.0130

Note: The table shows means, standard deviations of the HMI over the 1000 sampled portfolios in each region. The HMI
summarizes the absolute deviations from the perfect fit. Hence, the lower the value, the better the distributional fit. For the
European Data set, the random effects model is used, as it turned out to be superior. The random effects in the random effects
model are set to their expectation for prediction. The Macro Only Model is used in the US American data set.

2006). Formally, it is defined as:

HMI = 2
n

n∑
i=1

|pempirical,i − ptheoretical,i| (9)

The lower the calculated HMI, the better the distributional fit. A perfect fit results in an HMI of
zero. Table 3 reports mean and standard deviation over the 1000 samples:
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Regarding Table 3, the quantile regression performs much better over all samples and in both
regions. In the US American sample, the HMI is almost cut by half and in Europe it decreased
by 24.75%. The standard deviations across the 1000 portfolios in each region are similar. To
underline the superiority of the quantile regression in each and every portfolio, we would like
to stress the point that there is not a single portfolio in which our approach provides a worse fit
than the linear model. This out-of-time validation clearly underpins the superior performance of
our approach.

5 CONCLUSION

By using access to one of the world’s largest loss and exposure data bases, this paper sheds light
onto the topic of modelling EADs and conversion factors and, thus, the drawdown behaviour of
eventually defaulted credit lines. We apply Bayesian quantile regressions to model the full con-
ditional distribution of conversion factors. If the identification of adequate (i.e. meaningful and
statistically evident) macroeconomic variables is unfeasible, the quantile regression approach is
extended by time-specific random effects to capture the unexplained systematic time patterns of
conversion factors.

Quantile regression turns out to be a superior modelling technique in this setting as deviat-
ing effects among quantiles are captured. The most striking deviations throughout the quantile
range refer to the impact of macroeconomic variables. We find statistically evident impacts on the
inner quantiles, while evidence vanishes in the outer tails of the distribution. This is of special
relevance in the light of the requirement for downturn estimates, that is estimates which reflect
economic downturn conditions. Furthermore, macroeconomic effects on conversion factors vary
for different utilization levels. Less drawn lines (low utilization) are affected to a higher extent by
economic downturns. This entails tangible consequences for credit risk managements as these
lines bear the highest risk in terms of an EAD increase. Credit lines which are already exhausted
one year prior to default react less to economic decline.

With respect to downturn estimation, we reveal major differences among the two considered
regions—the United States and Europe. In the United States, macroeconomic variables seem to
capture wide parts of the systematic co-movement of conversion factors in the time line. Thus,
sufficiently conservative downturn estimates are able to be generated via these observable sys-
tematic variables. This might be due to the fact that comovements are generally less pronounced
compared to Europe.

In contrast to the Unitec States, macroeconomic variables do not seem to be suitable to pro-
duce adequate downturn estimates in Europe. Hence, time-specific random effects are included
into the modelling framework. These unobservable systematic effects are able to capture the true
systematic patterns in conversion factors. Indeed, the impact of the random effect is largest regard-
ing the tails of the distribution where the impact of the macroeconomic variables vanishes. As
a consequence, sufficiently conservative downturn estimations can be generated based on ran-
dom effects for Europe. Comparing our approach with the most common method in literature,
the OLS regression, we can provide evidence of superior fit and greater flexibility. Especially in
the out-of-time forecasting exercise, our model provides an up to twice as good distributional fit
compared to the benchmark model.

The results of this paper have three major implications for financial institutions and poli-
tics. First, less drawn credit lines not only bear the highest risk in terms of an EAD increase,
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but are also more severely affected by economic downturn. Second, systematic patterns in con-
version factors might be of different kind and magnitude depending on the considered region.
Thus, random effects might offer a reasonable option to generate sufficiently conservative
downturn estimates if the identification of adequate macroeconomic variables is challenging.
Furthermore, we can show that credit lines also induce higher credit risk besides the well
documented liquidity risk in crisis periods, which is important for politics and regulators.
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APPENDIX A. BAYESIAN MODEL SPECIFICATION

The quantile regression and its extensions are estimated using Bayesian inference. Hence, for
each parameter prior distributions have to be specified. Furthermore, to ensure a more efficient
estimation, this paper uses the decomposition of the asymmetric Laplace distribution based on
Yu and Stander (2007) and Luo et al. (2012). A random variable of the asymmetric Laplace distri-
bution can be expressed as a mixture of a standard normal and an exponential random variable.
Therefore, Equation (5) changes to:

yi = xi𝛽(𝜏) + F(𝜏) + c1ei +
√

c2𝜎eizi, (A1)

where c1 = 1−2𝜏
𝜏(1−𝜏)

, c2 = 2
𝜏(1−𝜏)

, zi ∼ N(0, 1) and ei ∼ exp
(

1
𝜎

)
.

The Bayesian quantile regression and its priors can be formulated as follows:

f (yi |𝛽(𝜏),F(𝜏), 𝜎𝜖, ei, zi) = (2𝜋c2𝜎𝜖ei)−
1
2 exp

{
− 1

2𝜋c2ei
(yi − xi𝛽(𝜏) − F(𝜏) − c1ei)2

}

F(𝜏) ∼ N(0, 𝜎F(𝜏))
𝜎F(𝜏) ∼ N(0, 105)[0,∞]
𝛽(𝜏) ∼ N(0, 105)
𝜎

𝜖

∼ N(0, 105)[0,∞]
zi ∼ N(0, 1)

ei ∼ exp
(

1
𝜎

𝜖

)
. (A2)

The squared brackets in the model specifications of the dispersion parameters indicate trunca-
tion. The prior specifications of model parameters are set to be uninformative assuming large
values of their dispersion parameters. The random effect follows a Normal distribution with
mean zero and the random effect specific standard deviation 𝜎F(𝜏). In this hierarchical set-
ting, we also specified a truncated Normal distribution for this dispersion parameter as the
prior distribution. The models are sampled using two MCMC chains each. We use a chain
length of 10,000 for the European sample and 20,000 for the US sample due to a smaller sam-
ple size. Furthermore, the burn-in length was set to 2000 in Europe and 4000 in the United
States.
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https://doi.org/10.1111/rssa.12855
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APPENDIX B. RANDOM EFFECTS MODEL

T A B L E B.1 Results | Macro Only Model (MOM) and Random Effects Model (REM) for Europe

𝝉 = 0.05 𝝉 = 0.50 𝝉 = 0.95

Variable Level MOM REM MOM REM MOM REM

Intercept 0.132c 0.136c 0.815c 0.818c 1.099c 1.094c

Facility type
(medium term)

Short term 0.017a 0.005a 0.015b 0.014b −0.013 −0.015

Overdraft −0.029c −0.035c 0.012c 0.008c 0.220c 0.189c

Industry (FIRE) Agricult. −0.013a 0.006 0.004 0.007 0.117c 0.148c

Mining 0.029a 0.043b 0.007 0.004a 0.611c 0.543c

Construct. −0.050c −0.051c −0.007a −0.008a 0.047c 0.071c

Manufact. −0.053c −0.048c −0.019c −0.021c 0.056c 0.073c

Transport −0.065c −0.074c −0.021c −0.020c 0.037b 0.067c

Wholesale −0.050c −0.046c −0.020c −0.021c 0.019a 0.041c

Service −0.043c −0.034c −0.009b −0.008a 0.121c 0.160c

Other −0.039c −0.043c −0.027c −0.031c 0.015a −0.010

Seniority (pari-passu) Super sen. −0.040c −0.056c 0.001 −0.003 0.045c 0.015c

Non sen. −0.045c −0.052c 0.060c 0.058c 0.461c 0.371c

log(Limit) −0.013c −0.013c −0.010c −0.011c −0.037c −0.037c

Age −0.002c −0.002c 0.000 0.000 0.004c 0.006c

ΔGDP −0.114a 0.045 −1.997c −1.952c −0.255a 0.319

Utilization −0.269c −0.261c −0.687c −0.677c −0.295c −0.287c

Interaction 0.393b 0.483a 1.978c 1.960c 2.569c 2.221c

𝝈F 0.041c 0.011c 0.098c

Note: This table shows the estimated posterior means for several selected quantiles and compares the Macro Only Model with the
Random Effects Model. As one can see, the estimated posterior means do not differ much. The first column inherits the name of
the different independent variables. If they are categorical, the reference group is indicated in brackets. The second column
illustrates the different levels of categorical variables. Statistical evidence is indicated by the following a, b, c: acorresponds to
substantial evidence (Odds > 3.2), bcorresponds to strong evidence (Odds >10), ccorresponds to decisive evidence (Odds >100).

APPENDIX C. COEFFICIENT PLOTS

The following figures show the estimated posterior means and the 95% HPDI for each parameter
in the three different quantile regressions. Statistical evidence is indicated if zero is not included
in the 95% HPDI (C1—C3).
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F I G U R E C.1 Coefficients USA| Macro Only Model. Note: The figure shows the estimated coefficients and
their 95% highest posterior density intervals (HPDIs) for all parameters in the whole distributional range in the
United States. The black lines represent the posterior means, whereas the dotted lines illustrate 95% HPDIs.
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F I G U R E C.2 Coefficients Europe| Macro Only Model. Note: The figure shows the estimated coefficients
and their 95% highest posterior density interval (HPDI) for all parameters in the whole distributional range in the
European sample. The black lines represent the posterior means, whereas the dotted lines illustrate 95% HPDIs.
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F I G U R E C.3 Coefficients Europe| Random Effects Model. Note: The figure shows the estimated
coefficients and their 95% highest posterior density intervals (HPDIs) for all parameters in the whole
distributional range in the European sample. The black lines represent the posterior means, whereas the dotted
lines illustrate 95% HPDIs.
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APPENDIX D. CONVERGENCE DIAGNOSTICS

To evaluate the convergence of the estimated models, trace plots are the primary source of con-
vergence diagnostics. Stable trace plots indicate that the chains converge to a steady state. Hence,
priors are well calibrated and the burn-in is sufficient. Furthermore, we examine two well-known
figures in Bayesian inference—the Gelman–Rubin and Heidelberger–Welch diagnostic. Both are
hypotheses tests in frequentist terms, however, applied widely to evaluate the length of burn-in
(Gelman–Rubin) and the length of chains (Heidelberger–Welch) (Tables D.1 and D.2). Further-
more, we display the diagnostic only for the median (𝜏 = 0.5). Please note that for all quantiles
convergence is achieved (D.1—D.3).20
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F I G U R E D.1 Traceplot USA| Macro Only Model |𝜏 = 0.5. Note: The figure illustrates the MCMC chains
for the Macro Only Model in the US American sample. The first chain is coloured in black, whereas the second
one in grey.

20Traceplots, Gelman–Rubin and Heidelberger–Welch diagnostics for all quantiles are available from the authors upon
request.
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F I G U R E D.2 Traceplot Europe| Macro Only Model |𝜏 = 0.5. Note: The figure illustrates the MCMC chains
for the Macro Only Model in the European sample. The first chain is coloured in black, whereas the second one
in grey.
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F I G U R E D.3 Traceplot Europe| Random Effects Model |𝜏 = 0.5. Note: The figure illustrates the MCMC
chains for the Macro Only Model in the European sample. The first chain is coloured in black, whereas the
second one in grey.
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D.2 Gelman–Rubin diagnostic

T A B L E D.1 Results | Macro Only Model (MOM) and Random Effects Model (REM) for Europe |𝜏 = 0.50

MOM | Europe MOM | USA REM Model | Europe

Level
Point
estimate

Upper
confid.
limits (90%)

Point
estimate

Upper
confid.
limits (90%)

Point
estimate

Upper
confid.
limits (90%)

𝛽Intercept 1.0016 1.0016 1.0008 1.0028 1.0007 1.0019

𝛽Shortterm 1.0000 1.0001 1.0010 1.0039 1.0000 1.0001

𝛽Overdraft 1.0011 1.0040 1.0009 1.0034

𝛽Agriculture 1.0003 1.0011 1.0027 1.0102 1.0003 1.0008

𝛽Mining 1.0003 1.0004 1.0010 1.0010 1.0001 1.0005

𝛽Construction 1.0014 1.0053 1.0036 1.0061 1.0003 1.0011

𝛽Manufact. 1.0015 1.0037 1.0005 1.0005 0.9999 1.0000

𝛽Transport 1.0011 1.0045 1.0014 1.0037 1.0001 1.0004

𝛽Wholesale 1.0002 1.0011 1.0000 1.0000 1.0001 1.0004

𝛽Service 1.0035 1.0136 1.0005 1.0016 1.0023 1.0074

𝛽Other 1.0005 1.0007 1.0003 1.0009 1.0014 1.0057

𝛽SuperSenior 1.0013 1.0028 1.0000 1.0001 1.0004 1.0012

𝛽NonSenior 1.0002 1.0005 1.0008 1.0032 1.0002 1.0004

𝛽Unknown 1.0004 1.0017

𝛽log(Limit) 1.0010 1.0037 1.0060 1.0165 0.9999 0.9999

𝛽Age 1.0008 1.0032 1.0008 1.0033 1.0012 1.0046

𝛽ΔGDP 1.0011 1.0026 1.0007 1.0022 1.0002 1.0006

𝛽Utilization 1.0012 1.0021 1.0001 1.0002 0.9999 0.9999

𝛽Interaction 1.0012 1.0034 1.0007 1.0020 1.0003 1.0007

𝜎

𝜖

1.0000 1.0000 1.0006 1.0025 1.0002 1.0006

𝜎F 1.0020 1.0073

Notes: The table summarizes the Gelman Rubin diagnostic for the different quantile regressions with 𝜏 = 0.5. The first column
indicates the estimated parameters. The Gelman-Rubin diagnostic examines the length of burn-in. The potential reduction
factor and the upper confidence limit are displayed in this table. Convergence is achieved if chains do not depend on their initial
values, that is for upper limits close to one (Gelman & Rubin, 1992). A rule of thumb assumes 1.1 as the critical value.
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D.3 Heidelberger–Welch diagnostic

T A B L E D.2 Results | Macro Only Model (MOM) and Random Effects Model (REM) for Europe |𝜏 = 0.50

MOM | Europe MOM | USA REM Model | Europe

Level
Stationary
test Start p-value

Stationary
test Start p-value

Stationary
test Start p-value

𝛽Intercept Passed 1 0.8105 Passed 1 0.1476 Passed 1 0.1537

𝛽Shortterm Passed 1 0.3552 Passed 1 0.2930 Passed 1 0.5847

𝛽Overdraft Passed 1 0.1478 Passed 1 0.2819

𝛽Agriculture Passed 1 0.6500 Passed 1 0.2812 Passed 1 0.1539

𝛽Mining Passed 1 0.5665 Passed 1 0.1009 Passed 1 0.8425

𝛽Construction Passed 1 0.6427 Passed 1 0.4143 Passed 1 0.7893

𝛽Manufact. Passed 1 0.5964 Passed 8001 0.0791 Passed 1 0.8941

𝛽Transport Passed 1 0.2271 Passed 1 0.5938 Passed 1 0.7341

𝛽Wholesale Passed 1 0.1283 Passed 1 0.4641 Passed 1 0.3796

𝛽Service Passed 5401 0.0705 Passed 1 0.5843 Passed 1 0.1254

𝛽Other Passed 1 0.5231 Passed 1 0.5648 Passed 1 0.2908

𝛽SuperSenior Passed 1 0.3019 Passed 1 0.2010 Passed 1 0.3966

𝛽NonSenior Passed 1 0.3736 Passed 1 0.4174 Passed 1 0.6930

𝛽Unknown Passed 1 0.2013

𝛽log(Limit) Passed 1 0.6185 Passed 1 0.0766 Passed 1 0.3555

𝛽Age Passed 1 0.7987 Passed 1 0.7029 Passed 1 0.8754

𝛽ΔGDP Passed 1 0.3652 Passed 1 0.3879 Passed 1 0.2158

𝛽Utilization Passed 1 0.1887 Passed 1 0.6711 Passed 1 0.4300

𝛽Interaction Passed 1 0.5972 Passed 1 0.3807 Passed 1 0.5506

𝜎

𝜖

Passed 1 0.5997 Passed 1 0.1964 Passed 1 0.4853

𝜎F Passed 1 0.2112

Notes: The table summarizes the results of the Heidelberger-Welch diagnostic for the different quantile regression in the
two samples. To evaluate whether the chain length is sufficiently long, both chains in each model are combined. In the
Heidelberger-Welch diagnostic, a criterion of relative accuracy for the posterior means is calculated. The frequentistic
stationary test uses the Cramer-von-Mises statistic to test the null hypotheses that the sampled values originate from a
stationary process (see Gelman & Rubin, 1992).
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