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Abstract
In this article, we study the strong well-posedness, stability and optimal control of an incom-
pressible magneto-viscoelastic fluid model in two dimensions. The model consists of an
incompressible Navier–Stokes equation for the velocity field, an evolution equation for the
deformation tensor, and a gradient flow equation for the magnetization vector. First, we prove
that the model under consideration posseses a global strong solution in a suitable functional
framework. Second, we derive stability estimates with respect to an external magnetic field.
Based on the stability estimates we use the external magnetic field as the control to mini-
mize a cost functional of tracking-type. We prove existence of an optimal control and derive
first-order necessary optimality conditions. Finally, we consider a second optimal control
problem, where the external magnetic field, which represents the control, is generated by a
finite number of fixed magnetic field coils.

Mathematics Subject Classification 35Q35 · 35Q60 · 49J20 · 49K20 · 76A10 · 76D05

1 Introduction

Magnetic materials have a huge variety of technical applications. In this paper we are inter-
ested in magneto-viscoelastic materials which have the important property that their elastic
behavior can be influenced by magnetic fields and vice versa. They thus belong to the class
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of smart materials and react to external stimuli in a remarkable way. We are particularly
interested in controlling the behavior of magneto-viscoelastic fluids by means of external
magnetic fields. In fact, a change of the applied external magnetic field will lead to changes
in the magnetization of the material. As a consequence, due to the coupling between mag-
netic and elastic effects, these changes will be converted to changes in the flow map of the
fluid’s body. The induced motion within the body can then be used for specific technical
applications.

In [3, 16] a system of partial differential equations was introduced which describes
incompressible magneto-viscoelastic fluids based on a gradient-flow dynamics for the mag-
netization vector, the incompressible Navier–Stokes equation and an evolution equation for
the deformation tensor. The existence of a weak solution to this system was established in
[16,Chapter 3] in two and three dimension. The uniqueness of suchweak solutionswas proved
in [36]. As this system involves the Navier–Stokes equation, the global strongwell-posedness
of the three-dimensional model is still an open problem. In fact, this issue is directly related
to the Millenium Problem stated by the Clay Mathematics Institute concerning the Navier–
Stokes equation. Sincewe are interested in strongwell-posedness, stability (with respect to an
external magnetic field H ) and optimal control, we thus consider a two-dimensional variant
of themodel proposed in [3, 16]. However, althoughwe can only prove strongwell-posedness
and stability in two dimensions, the optimal control theory we develop in this article would
also remain valid in the three-dimensional setting, provided that the strong well-posedness
and stability results could be verified.

Before we present the model, we first introduce some notation. Let � ⊂ R
2 be a bounded

domain with C4-boundary and let T > 0 be a given time. We write QT := � × (0, T ) to
denote the space-time cylinder and we set �T := ∂� × (0, T ). Let v : QT → R

2 be the
velocity field, p : QT → R the fluid pressure, F : QT → R

2×2 the deformation tensor,
and M : QT → R

3 the magnetization vector, all described in Eulerian coordinates. The
magnetoelastic material is exposed to an external magnetic field H : QT → R

3. To avoid
confusion, we want to make clear that in contrast to standard notation, H is not the magnetic
field generated by the magnetization M but an independent external field.

The model we consider (written in a non-dimensional form) reads as follows:

∂tv + (v · ∇)v + div
(
(∇M � ∇M) − FFT

)
+ ∇ p

= ν�v + (∇H)T M in QT , (1.1a)

div v = 0 in QT , (1.1b)

∂t F + (v · ∇)F − ∇vF = κ�F in QT , (1.1c)

∂t M+(v · ∇)M=�M− 1

α2 (|M |2−1)M+H in QT , (1.1d)

v = 0, F = 0, ∂nM = 0 on �T , (1.1e)

(v, M, F)(·, 0) = (v0, M0, F0) in �. (1.1f)

Here, (1.1a) is themomentum balance equation, (1.1b) is the incompressibility constraint,
whereas (1.1c) and (1.1d) describe the evolution of the deformation tensor F (in Eulerian
coordinates) and themagnetization vectorM , respectively.We further use the notation (∇M�
∇M)i j = ∑3

k=1(∂i Mk)(∂ j Mk), and we assume that the fluid viscosity ν > 0 is a constant.
The constant κ > 0 appearing in (1.1c) is an artificial regularization parameter whose value is
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assumed to be small. In (1.1d), the term α−2(|M |2 − 1)M with α > 0 acts as a penalization
corresponding to the saturation condition of the magnetization vector as it punishes any
deviation of |M | from one. The system is supplemented with a no-slip boundary condition
for the velocity field, a homogeneousDirichlet boundary condition for the deformation tensor
(see Sect. 1.2), and a homogeneous Neumann boundary condition for the magnetization (see
(1.1e)), as well as initial conditions (see (1.1f)).

1.1 Contents andmain results

Before highlighting the ideas behind the derivation of the model (1.1), we first outline the
structure and the main results of this paper. The final goal of this article is to investigate
optimal control problems where the quantities v, F and M are to be optimized in a desired
way by adjusting the external magnetic field H . To analyze such optimal control problems,
we first need to establish some basic results which are important in order to apply methods
from the calculus of variations. Therefore, our paper is organized as follows.

• Strong well-posedness.We first ensure that (1.1) possesses a unique, sufficiently regular
solution. We point out that the existence of a unique (Leray type) weak solution to the
model (1.1) has already been established in [16,Chapter 3, Theorem 9, p. 42]. However,
especially as wewant to derive first-order necessary optimality conditions for our optimal
control problems, the regularity of those weak solutions is by far not enough. Therefore,
our first main task is to establish the strong well-posedness of system (1.1).
Our construction of a strong solution is inspired from the proof of the weak existence
theory for (1.1) presented in [16,Section 3.1] (see also [4]). Roughly speaking, the idea is
to discretize only the velocity field via a Galerkin scheme. Then, we solve the equations
for the deformation tensor and magnetization with the discretized velocity. Eventually, a
suitable fixed point argument can be applied to obtain the existence of a solution to an
intermediate problem with a finite dimensional velocity field vm . In order to recover a
solution for the original problem (1.1), we derive uniform estimates in regular Sobolev
spaces which allow us to pass to the limit m → ∞. The proof of these estimates relies
on several interpolation results, which are collected in Sect. 2, as well as on Gronwall’s
inequality. The strong well-posedness result is stated in Theorem 3.2.

• Stability with respect to perturbations of the external magnetic field. We next need
to investigate how the solution of (1.1) reacts to changes of the external field H . To
this end, we prove stability results for strong solutions to system (1.1) with respect
to perturbations of the external magnetic field. A stability estimate with respect to the
function spaces corresponding to weak solutions is stated in Theorem 4.1, whereas a
stability result with respect to the function spaces corresponding to strong solutions is
presented in Theorem 3.14. Especially the stability in the functional framework of strong
solutions will be a crucial tool for the analysis of our optimal control problems.

• The control-to-state operator and itsmost important properties.As a consequence of
the strong well-posedness, we can define an operator F mapping any admissible control
H onto the corresponding strong solution of the system (1.1). This operator will be
referred to as the control-to-state operator. We next prove certain properties of F that
are needed to apply methods from the calculus of variations. More precisely, we show
that F is Lipschitz continuous (see Corollary 5.2), weakly sequentially continuous (see
Proposition 5.3) and Fréchet differentiable (see Proposition 5.5).
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• Optimal control via unconstrained external magnetic fields. The motivation behind
our optimal control problems is to adjust the external magnetic field H in such a way that
the quantities v, F and M approximate desired quantities vd , Fd and Md on a given time
interval [0, T ] as closely as possible. In the first optimal control problem we investigate,
this is to be achieved by minimizing the quadratic tracking-type cost functional

I (v, p, F, M, H) := a1
2

‖v − vd‖2L2(QT )
+ a2

2
‖F − Fd‖2L2(QT )

+ a3
2

‖M − Md‖2L2(QT )
+ λ

2
‖H‖2

H

subject to the following side conditions:

– H is an admissible control, i.e., it belongs to a suitable function space H (which is
defined in (5.1));

– (v, p, F, M) is the unique strong solution of the system (1.1) to the external magnetic
field H .

Here a1, a2, a3 ≥ 0 and λ > 0 are given constants which act as weights for the summands
of the cost functional.
Using the control-to-state operator F (see Definition (5.1)) that maps any admissible
control onto the corresponding strong solution of (1.1), this problem can be reformulated
as {

Minimize J (H) := I (F(H), H),

subject to H ∈ H,
(1.2)

which is called the reduced formulation. Invoking the weak sequential continuity of the
control-to-state operator mentioned above, we first show in Theorem 6.1 that this optimal
control problem has at least one global minimizer. This can be done by employing the
direct method of the calculus of variations.
After that, we use the Fréchet differentiability of the control-to-state operator to charac-
terize local minimizers by a first-order necessary optimality condition. We further show
that any local minimizer actually possesses a higher regularity than prescribed, and sat-
isfies a certain semilinear elliptic equation. These results are stated in Theorem 6.4.

• Optimal control via fixedmagnetic field coils.The control problem introduced above is
based on the rather idealistic assumption that any (locally) optimal control H can actually
be generated. However, since in real technical applications magnetic fields are usually
generated by magnetic field coils, it might not be possible to reproduce any theoretically
(locally) optimal external magnetic field in a satisfactory manner.
To this end, we investigate a second optimal control problem,where the externalmagnetic
field is generated by a finite number n ∈ N of magnetic field coils. We assume that the
geometry (i.e., the shape and the position) of these field coils is fixed, and only the
intensity of their generated magnetic field can be adjusted. Under this assumption, by
linear superposition, the total external magnetic field can be expressed as

H(x, t) =
n∑

i=1

ui (t) hi (x) =: C(u)(x, t) for all x ∈ �, t ∈ [0, T ],

where for any i ∈ {1, ..., n}, the factor ui is proportional to the intensity of the magnetic
field of the i-th coil. In the optimal control problem, the functions hi are assumed to be
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prescribed, and instead of thewhole externalmagnetic field H , the vector-valued function
of control parameters u = (u1, ..., un)T is now to be adjusted. In the spirit of the optimal
control problem presented above, we now want to minimize the cost functional

J̃ (u) := Ĩ
(F(C(u)), u

)
,

where F denotes again the control-to-state operator, and the functional Ĩ is defined as

Ĩ (v, p, F, M, u) := a1
2

‖v − vd‖2L2(QT )
+ a2

2
‖F − Fd‖2L2(QT )

+ a3
2

‖M − Md‖2L2(QT )
+ λ

2
‖u‖2L2(0,T ;Rn)

.

The side condition for the minimization problem is that u must belong to a certain
set of admissible control parameters Uad which is chosen as a box restricted subset of
L2(0, T ;Rn).
As for the first optimal control problem, we first prove the existence of a global minimizer
by means of the direct method of the calculus of variations (see Theorem 7.2). Next, in
Theorem 7.3, we establish a variational inequality as a first-order necessary optimality
condition, and we further show that any locally optimal control can be expressed by a
certain projection formula.

1.2 Comments on the derivation of themodel

The model (1.1) is essentially derived in [16]. Hence without going into details we will just
comment on the ideas and both physical and mathematical motivations behind.

The system (1.1) is derived by an energetic variational approach. The starting point is to
consider a Helmholtz free energy of the system which reads as


(F, M) = 1

2

∫

�

|∇M |2 + 1

4α2

∫

�

(|M |2 − 1
)2 −

∫

�

M · H + 1

2

∫

�

|F |2. (1.3)

The magnetic contribution to the energy (i.e., the first three terms of (1.3)) is motivated from
micromagnetics, see, e.g., the recent review [15] and references therein. For simplicity, we
only consider the so-called exchange energy contribution 1

2

∫
�

|∇M |2, which reflects the
tendency of the magnetization to align. In micromagnetics, the saturation condition is taken
into account, which means that the modulus of the magnetization is constant. As it is typical
in the mathematical literature, we set this saturation constant equal to one. In our model, we
include the saturation condition by means of a penalization term which punishes deviations
of |M | from 1 (the second integral on the right-hand side of (1.3)), see, e.g., [28,Section 1.2],
[11] or [36]. This penalization is also referred to as Ginzburg-Landau approximation. The
third integral in (1.3) is the Zeeman energy associated with the external magnetic field H .
The fourth integral in (1.3) represents the elastic energy, which for simplicity is assumed of
this quadratic form. For a discussion of more general forms of the elastic energy and related
mathematical difficulties see [25].

The derivation of (1.1a) relies on the least action principle and an energy dissipation law,
i.e., on a variational energetic approach, cf., e.g., [19]. One first introduces the action func-
tional

∫ t
0 K − 
(F, M), where K represents the kinetic energy. Its variation with respect to

the flowmap yields the evolution equation for the linear momentum. In particular, the source
term (∇H)T M in themomentumequation (1.1a) stems froma variation of theZeeman energy
with respect to the flow map. The term ν�v in (1.1a) results from taking the first variation of
the dissipation term ν

∫
�

|∇v|2 with respect to divergence free vector fields. The pressure p
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in (1.1a) can be interpreted as a Lagrange multiplier corresponding to the incompressibility
constraint (1.1b). The details of this derivation can be found in [16,Section 2.7].

The choice of the Dirichlet boundary condition F = 0 on �T in (1.1e) corresponds to
the boundary condition F = Fmin with Fmin being a minimizer of the elastic energy W ,
cf. [4]. From a physics point of view, one would rather impose the condition F = I on �T

(where I denotes the identity matrix inR2×2) instead. However, system (1.1) subject to F = I

instead of F = 0 on �T can be rewritten as a system with homogeneous Dirichlet boundary
condition in the following way:

The quadruplet (v, p, F, M) is a solution of (1.1) with F = 0 on �T in (1.1e) being
replaced by F = I on �T if and only if (v, p, E, M) with E := F − I is a solution to the
following system of equations:

∂tv + (v · ∇)v + div
(
(∇M � ∇M) − EET

)
+ ∇ p

= ν�v + (∇H)T M + div(E + ET ) in QT , (1.4a)

div v = 0 in QT , (1.4b)

∂t E + (v · ∇)E − ∇vE = κ�E + ∇v in QT , (1.4c)

∂t M + (v · ∇)M = �M − 1

α2 (|M |2 − 1)M + H in QT , (1.4d)

v = 0, E = 0, ∂nM = 0 on �T , (1.4e)

(v, M, E)(·, 0) = (v0, M0, F0 − I) in �. (1.4f)

Since the existence of weak solutions to system (1.1) (with F = 0 on �T ) has already been
established in the literature (see [16]), we will also stick to analyzing system (1.1) in order
to shorten the presentation and to avoid further technicalities. However, as the additional
terms div(E + ET ) in (1.4a) and ∇v in (1.4c) are linear and of lower order, the analysis of
system (1.4) could be carried out with slight modifications to what we present in this paper.
Of course, the same applies for the linearized system (5.10) and the adjoint system (6.6),
which would also have to be modified accordingly.

The derivation of (1.1c) with κ = 0 can be found in [33,Section 2]. If κ > 0, the term
κ�F is to be understood as a regularization term that changes the hyperbolic into a parabolic
structure, cf. [32,p. 1461] for the viscoelastic system. The term κ�F allows to obtain global
weak solutions of Leray type, see also [4, 13]. For references in the case κ = 0 we refer to
Sect. 1.3.

The derivation of the magnetization Eq. (1.1d) relies on a gradient flow approach and
can be found in [16,Section 2.8.1]. Concerning the Ginzburg-Landau penalization of the
magnetization, we would like to cite the article [1] where the authors introduced a similar
approximation to prove the existence of non-unique weak solutions to the Landau–Lifshitz–
Gilbert equation with |M | = 1.Later a similar approachwas adapted, e.g., in [25] to show the
existence of dissipative weak solutions to a model coupling incompressible Navier–Stokes
equations with the Landau–Lifshitz–Gilbert equation. However, such solutions do not posses
enough regularity for the investigation of optimal control problems via the approach used
in the present article. Therefore, we do not consider the limit system where the penalization
parameter α is sent to zero.
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1.3 Bibliographical remarks

To the best of our knowledge, the present article is the first one to study optimal control of the
magneto-viscoelastic model (1.1). In fact, the literature corresponding to the well-posedness
of (1.1) is quite recent. The global existence ofweak solutions (more specifically the Theorem
3.1) first appeared in the thesis [16]. The uniqueness of global weak solutions to (1.1) in two
dimensions was proved in [36]. The authors in [36] further proved a Prodi–Serrin type criteria
for the uniqueness of weak solutions in dimension three.

As an important tool for the analysis of optimal control problems for (1.1) via an external
magnetic field, we prove two stability results (in different functional frameworks) in Sect. 4.
The weak type stability result presented in Theorem 4.1 is an extension of the uniqueness
result in two dimensions established in [36].

The artificial regularization term in the equation for the deformation tensor plays a crucial
role in order to prove the global existence of weak solutions to (1.1). In the case κ = 0,
the compactness in the weak topology obtained for the approximation of F is only good
enough to pass to the limit in the nonlinearity FFT up to a positive Radon measure. Even
without the evolution of the magnetization, the global existence (for general initial data and
without any restriction on the interval of existence) of weak solutions to an incompressible
viscoelastic fluid model not involving any artificial regularization of the equation for the
deformation tensor is a longstanding open question. However, if κ = 0, the existence of
dissipative weak solutions for viscoelastic and magneto-viscoelastic models are proved in
[24] and [26], respectively.

The weak-strong uniqueness of the incompressible viscoelastic model on R
2 with κ = 0

is proved in [23] provided that the initial deformation tensor is close to the identity matrix and
the initial velocity is small. On a torus (in dimension two and three), local-in-time existence
of strong solutions for a similar non-regularized model is established in [38] extended to a
weak-strong uniqueness result in [39] under the assumption that global-in-time existence of
weak solutions was known.

Concerning the study of optimal control problems for the Navier–Stokes equation, there
already exists an extensive literature. For instance, we refer the readers to [2, 5, 9, 14, 17,
18, 21, 22] and the references therein. Although the optimal control of the system (1.1) has
not been studied before, there are some recent articles on optimal control problems for the
Ericksen-Leslie system which describes incompressible nematic liquid crystal flows (see,
e.g., [29, 31]) and is related to our model. To the best of our knowledge, the article [10] is the
first one to study optimal control problems for the approximation of the original Ericksen-
Leslie model (in dimension two) introduced in [29] by using a boundary control to influence
the averaged macroscopic/continuum molecular orientation. The analysis in [10] is inspired
from the well-posedness and stability results proved in [6] and [20]. The optimal control of
this model is studied in [34] using a distributed control entering the momentum balance equa-
tion. In yet another recent article [35], the authors investigate the optimal boundary control
of a different Ericksen-Leslie system where the director field satisfies a length constraint.
Roughly speaking, the model considered in [35] couples the non-homogeneous incompress-
ible Navier–Stokes equations and the transported flow of harmonicmaps for the director field.
The authors of [35] extend the theory developed in [30] to the situation of a time dependent
Dirichlet boundary condition for the director field, and they establish the existence of a global
weak solution that is smooth except for finitely many singular times. Moreover, the existence
of a unique global strong solution that is smooth for t > 0 is also established under the
assumption that the image of boundary data is contained in a hemisphere. These results are
then applied to study the optimal boundary control of the system they consider. It is not clear
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whether a similar approach with restricting the initial data can be applied to study the optimal
control of a system coupling the Navier–Stokes equations with the Landau–Lifshitz–Gilbert
equation.

2 Functional spaces and preliminaries

Before we state and prove the main results, we introduce some notation that will be used
throughout this article. We use the standard notation for Lebesgue spaces and Sobolev spaces
on a domain � ⊂ R

2, i.e., we write L p(�) and Ws,p(�) for p ∈ [1,∞] and s ∈ (0,∞).
For convenience, we do not distinguish between a Banach space X of scalar functions and
a space of a vector-valued functions with m components, where each of them belongs to X .
In particular, this means we will write ‖ · ‖L p(�), ‖ · ‖Ws,p(�), etc. also when vector-valued
functions are considered.

For Banach spaces X , Y we denote by X ↪→ Y (X
C

↪→ Y ) the continuous (compact)
embedding of X into Y . The dual space of a Banach space X is denoted by X ′, and for any
x ∈ X and φ ∈ X ′, we write 〈φ, x〉X to denote the duality pairing. Moreover, Cw([0, T ]; X)

stands for the subspace of L∞(0, T ; X) consisting of such f for which the mapping t 
→
〈φ, f (t)〉X is continuous on [0, T ] for every φ ∈ X ′.

Let us also introduce the following spaces

L2
div(�) = {v ∈ C∞

c (�) | div v = 0 in �}‖·‖L2 ,
W 1,2

0,div(�) = {v ∈ C∞
c (�) | div v = 0 in �}‖·‖W1,2

,

V (�) = W 1,2
0,div(�) ∩ W 2,2(�),

W 2,2
n (�) = {u ∈ W 2,2(�) | ∂nu = 0 on ∂�}.

Here, the first three spaces consist of solenoidal vector fields and the last one is used for both
scalar and tensor valued functions.

Next, we introduce the Leray projector Pdiv : L2(�) → L2
div(�) as

Pdiv( f ) = f − ∇ p for any vector field f ∈ L2(�), (2.1)

where p ∈ W 1,2(�) with
∫
�
p = 0 solves the weak Neumann problem

∫

�

∇ p · ∇ϕ =
∫

�

f · ∇ϕ for all ϕ ∈ C∞(�). (2.2)

In the following lemma, we collect several useful interpolation inequalities for Sobolev
spaces. We remark that the symbol C can denote different constants.

Lemma 2.1 Let � ⊂ R
2 be a bounded domain with C4-boundary. Then, there exist positive

constants C (depending on �) such that the following estimates hold:
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‖� f ‖L4(�) ≤ C‖� f ‖
1
2
L2(�)

(‖� f ‖2L2(�)
+ ‖∇� f ‖2L2(�)

) 1
4 ,

for all f ∈ W 3,2(�), (2.3)

‖ f ‖L∞(�) ≤ C‖ f ‖
1
2
L2(�)

(‖ f ‖2L2(�)
+ ‖� f ‖2L2(�)

) 1
4 ,

for all f ∈ W 2,2
n (�), (2.4)

‖∇ f ‖L∞(�) ≤ C‖∇ f ‖
1
2
L2(�)

(‖∇ f ‖2L2(�)
+ ‖� f ‖2L2 + ‖∇� f ‖2L2(�)

) 1
4 ,

for all f ∈ W 3,2(�) × ∩W 2,2
n (�), (2.5)

‖ f ‖L4(�) ≤ C
(‖ f ‖L2(�) + ‖ f ‖

1
2
L2(�)

‖∇ f ‖
1
2
L2(�)

)
,

for all f ∈ W 1,2(�), (2.6)

‖∇ f ‖L4(�) ≤ C‖∇ f ‖
1
2
L2(�)

(‖∇ f ‖2L2(�)
+ ‖� f ‖2L2(�)

) 1
4 ,

for all f ∈ W 2,2
n (�), (2.7)

‖ f ‖L4(�) ≤ C‖ f ‖
1
2
L2(�)

‖∇ f ‖
1
2
L2(�)

,

for all f ∈ W 1,2
0 (�), (2.8)

‖ f ‖L∞(�) ≤ C‖ f ‖
1
2
L2(�)

‖ f ‖
1
2
W 2,2(�)

≤ C‖ f ‖
1
2
L2(�)

‖� f ‖
1
2
L2(�)

,

for all f ∈ W 2,2(�) ∩ W 1,2
0 (�). (2.9)

Comments on the proof of Lemma 2.1. All the inequalities can be derived from the
Gagliardo-Nirenberg inequality with the help of elliptic regularity theory. Due to the fact
that the inequalities (2.3), (2.5) and (2.7) are somewhat more involved we refer the reader to
[4,p. 22] for their proofs. Similar results can also be found in [8,pp. 216, 226]. �

In the present article, we will use ε to denote small positive parameters. When using
Young’s inequality during the estimates of product terms, a possibly large constant will
appear which might depend on this parameter ε. For the sake of simplicity of our notation,
we will simply denote this constant by C instead of Cε. The use of this notation will become
clear from the context.

3 Global existence

3.1 Global existence of weak solutions

We point out that the choice of the parameter κ > 0 does not have any impact on the
mathematical analysis. From now on, we will thus set κ = 1 to provide a cleaner presen-
tation. In this section, the generic positive constant C may depend on �, the final time T ,
‖H‖L2(0,T ;W 1,2(�)), and the initial data.

Theorem 3.1 For any T > 0, v0 ∈ L2
div(�), F0 ∈ L2(�), M0 ∈ W 1,2(�) and

H ∈ L2(0, T ;W 1,2(�)), the system (1.1) has a unique weak solution (v, p, F, M) with
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the following regularity properties:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v ∈ W 1, 43 (0, T ; (W 1,2
0,div(�))′) ∩ L∞(0, T ; L2

div(�)) ∩ L2(0, T ;W 1,2
0,div(�)),

p ∈ W−1,∞(0, T ; L2(�)),

∫

�

p = 0,

F ∈ W 1, 43 (0, T ; (W 1,2(�))′) ∩ L∞(0, T ; L2(�)) ∩ L2(0, T ;W 1,2
0 (�)),

M ∈ W 1, 43 (0, T ; L2(�)) ∩ L∞(0, T ;W 1,2(�)) ∩ L2(0, T ;W 2,2
n (�)).

(3.1)

Here, W−1,∞(0, T ; L2(�)) denotes the space of distributions that can be expressed as the
distributional time derivative of a function in L∞(0, T ; L2(�)).

Furthermore, the energy estimate

‖v(t)‖2L2(�)
+ ‖F(t)‖2L2(�)

+ ‖M(t)‖2W 1,2(�)

+
∫ t

0

(
‖v(τ)‖2W 1,2(�)

+ ‖F(τ )‖2W 1,2(�)
+ ‖M(τ )‖2W 2,2(�)

)
dτ ≤ cw (3.2)

holds for all t ∈ [0, T ]. Here, cw is a positive constant depending only on ‖v0‖L2(�),

‖M0‖W 1,2(�), ‖F0‖W 1,2(�), ‖H‖L2(0,T ;W 1,2(�)), � and the final time T .

Proof The existence of a weak solution to system (1.1) is established in [16,Chapter 3,
Theorem 9]. The only difference of this result compared to the one presented in Theorem 3.1
is that in [16], the time regularities

∂tv ∈ L
4
3 (0, T ; (W 1,2

0,div(�))′), ∂t M ∈ L
4
3 (0, T ; L2(�)), ∂t F ∈ L

4
3 (0, T ; (W 1,2(�))′)

are not stated explicitly and moreover, the pressure is not recovered in a suitable functional
framework.

However, the time regularities are hidden in the proof that is given in [16,Section 3.1.4.1].
They are established for the sequence of approximate solutions (constructed by a Galerkin
scheme) and are uniform with respect to the approximation parameter. Hence, the same time

regularities can be recovered for the limit functions meaning that ∂tv ∈ L
4
3 (0, T ;W−1,2(�))

(in particular, ∂tv ∈ L
4
3 (0, T ; (W 1,2

0,div(�))′)), ∂t M ∈ L
4
3 (0, T ; L2(�)) and ∂t F ∈

L
4
3 (0, T ; (W 1,2(�))′) hold.
Moreover, the recovery of the pressure p is a standard but not straightforward line of

argument. We will just sketch the approach and refer to [7] for the technical details.
First, as in [7,Section 1.5, pp. 368–369], we derive the following relation from the weak

formulation of the momentum balance Eq. (1.1a):

〈G(t), ϕ〉W−1,2(�),W 1,2
0 (�)

= 0 for all ϕ ∈ W 1,2
0,div(�) and all t ∈ [0, T ]. (3.3)

Here, the function G is given as

G(t) = v(t)−v(0)+
∫ t

0

(
(v · ∇)v − ν�v+div(∇M � ∇M)−div(FFT )−(∇H)T M

)
dτ.

(3.4)

Invoking (3.1), we infer that the integrand in (3.4) belongs to L
4
3 (0, T ;W−1,2(�)); the

detailed computations can be imitated from [16,Section 3.1.4.1] and the fact that

‖(∇H)T M‖L2(0,T ;L3/2(�)) ≤ C‖∇H‖L2(QT )‖M‖L∞(0,T ;L6(�)).
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Hence, the map

t 
→
∫ t

0

(
(v · ∇)v − ν�v + div(∇M � ∇M) − div(FFT ) − (∇H)T M

)
dτ

is absolutely continuous. This implies that the functionG is continuous in [0, T ]with values in
W−1,2(�).Now, by deRham’s theorem, for all t ∈ [0, T ], there exists a uniqueπ(t) ∈ L2(�)

with
∫
�

π(t) = 0 such that

G(t) = −∇π(t) (3.5)

holds in the sense of distributions.
Once again, following the arguments from [7,Section 1.5, p. 369], we show that π(t) ∈

Cw([0, T ]; L2(�)). In particular, the map t 
→ π(t) belongs to L∞(0, T ; L2
0(�)) where

L2
0(�) denotes the space of L2(�)-functions with average zero. Now, let us introduce the

distribution p = ∂tπ ∈ W−1,∞(0, T ; L2
0(�)). Finally, by taking test functions of the form

∂tϑ (ϑ ∈ C∞
c (QT )) in the weak form of Eq. (3.5), we easily verify that (v, p, F, M) solves

the momentum balance Eq. (1.1a) in the sense of distributions.
The uniqueness of the weak solution was established in [36,Theorem 3]. This means that

all assertions are established and thus, the proof of Theorem 3.1 is complete.

3.2 Global existence of strong solutions

This section is devoted to the strong well-posedness of the model (1.1).

Theorem 3.2 For any T > 0, v0 ∈ W 1,2
0,div(�), F0 ∈ W 1,2

0 (�), M0 ∈ W 2,2
n (�) and H ∈

L2(0, T ;W 1,2(�)), the system (1.1) has a unique strong solution (v, p, F, M) with the
following regularity properties:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v ∈ L∞(0, T ;W 1,2
0,div(�)) ∩ L2(0, T ;W 2,2(�)) ∩ W 1,2(0, T ; L2(�)),

p ∈ L2(0, T ;W 1,2(�)),

∫

�

p = 0,

F ∈ L∞(0, T ;W 1,2
0 (�)) ∩ L2(0, T ;W 2,2(�)) ∩ W 1,2(0, T ; L2(�)),

M ∈ L∞(0, T ;W 2,2
n (�)) ∩ L2(0, T ;W 3,2(�)) ∩ W 1,2(0, T ;W 1,2(�)).

(3.6)

Furthermore, the following inequality holds:
‖v(t)‖2W 1,2(�)

+ ‖F(t)‖2W 1,2(�)
+ ‖M(t)‖2W 2,2(�)

+
∫ t

0

(
‖v(τ)‖2W 2,2(�)

+ ‖F(τ )‖2W 2,2(�)
+ ‖M(τ )‖2W 3,2(�)

)
dτ ≤ C, (3.7)

for all t ∈ [0, T ].Here,C is a positive constant depending only on ‖v0‖W 1,2(�), ‖M0‖W 2,2(�),

‖F0‖W 1,2(�), ‖H‖L2(0,T ;W 1,2(�)), |�| and the final time T .

In order to prove the existence of a unique strong solution we will use a similar strategy as
in the proof of the existence of weak solutions (see Theorem 3.1), of course keeping in mind
that we need to estimate the unknowns in Sobolev spaces with higher regularity.

Let {ξi | i ∈ N} ⊂ W 4,2(�;R2) ↪→ C2(�;R2) be an orthonormal basis of L2
div(�) and

an orthogonal basis ofW 1,2
0,div(�) consisting of eigenfunctions of the Stokes operator. For any

m ∈ N, we define the finite dimensional space
Hm := 〈ξ1, ...., ξm〉, (3.8)

along with the orthogonal projection Pm : L2
div(�) → Hm .
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Roughly speaking, the construction of a strong solution (v, F, M) is done in three steps:
first, for anym ∈ N, we construct a local-in-time strong solution (v∗

m, F∗
m, M∗

m) of an approx-
imate system (that is formulated in (3.29)) where v0 is replaced by Pmv0. Here, the function
v∗
m belongs to the set

Vm(t∗0 ) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v(x, t) =
m∑
i=1

gim(t)ξi (x)

∣∣∣∣∣∣∣∣∣∣

(
m∑
i=1

|gim(t)|2
) 1

2

≤ N for 0 ≤ t ≤ t∗0 ,

gim is continuous, and gim(0) =
∫

�

v0(x) · ξi (x)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(3.9)

for t∗0 > 0 suitably small, where N is a constant depending only on ‖v0‖L2(�) andm. Next, we
show that for each m, the local-in-time approximate solution (v∗

m, F∗
m, M∗

m) can be extended
onto the whole time interval (0, T ). In the second step, we derive a priori estimates that are
uniform in m, and in the third step, we pass to the limit m → ∞ to obtain a strong solution
(v, F, M) to (1.1) in (0, T ). Eventually, the uniqueness of the strong solution we constructed
follows directly from the uniqueness of weak solutions.

The following lemma will play a crucial role in the proof of Theorem 3.2.

Lemma 3.3 Let t∗1 > 0 and let vm ∈ L∞(0, t∗1 ;W 2,∞(�)) satisfy vm = 0 a.e. on �t∗1
and div vm = 0 a.e. on Qt∗1 . Then, for any H ∈ L2(0, t∗1 ;W 1,2(�)) and any (F0, M0) ∈
W 1,2

0 (�) × W 2,2
n (�), the system

∂t Fm + (vm · ∇)Fm − ∇vmFm = �Fm in Qt∗1 , (3.10a)

∂t Mm + (vm · ∇)Mm = �Mm − 1

α2 (|Mm |2 − 1)Mm + H in Qt∗1 , (3.10b)

∂nMm = 0, Fm = 0 on �t∗1 , (3.10c)

(Mm, Fm)(·, 0) = (M0, F0) in � (3.10d)

has a weak solution satisfying the estimates

‖Fm‖L∞(0,t∗1 ;L2(�)) + ‖Fm‖L2(0,t∗1 ;W 1,2
0 (�))

+ ‖∂t Fm‖L2(0,t∗1 ;W−1,2(�)) ≤ C(vm), (3.11)

‖Mm‖L∞(0,t∗1 ;L2(�)) + ‖Mm‖L4(0,t∗1 ;L4(�)) + ‖Mm‖L2(0,t∗1 ;W 1,2(�)) ≤ C, (3.12)

‖Mm‖L∞(0,t∗1 ;W 1,2(�)) + ‖Mm‖L2(0,t∗1 ;W 2,2
n (�))

+ ‖Mm‖H1(0,t∗1 ;L2(�))

+ ‖Mm‖L∞(0,t∗1 ;L4(�)) ≤ C(vm), (3.13)

Furthermore, this weak solution is actually a strong solution and the following estimates
hold:

‖Fm‖L2(0,t∗1 ;W 2,2(�)) + ‖Fm‖L∞(0,t∗1 ;W 1,2
0 (�))

≤ C(vm), (3.14a)

‖Mm‖L2(0,t∗1 ;W 3,2(�)) + ‖Mm‖L∞(0,t∗1 ;W 2,2
n (�))

≤ C(vm). (3.14b)

In the above estimates, C and C(vm) are generic positive constants. The constant C
depends only on ‖H‖L2(0,t∗1 ;W 1,2(�)) and the initial data, whereas C(vm) depends only on
‖H‖L2(0,t∗1 ;W 1,2(�)), the initial data, and ‖vm‖L∞(0,t∗1 ;W 2,∞(�)).

Proof of Lemma 3.3 We observe that the Eqs. (3.10a) and (3.10b) are decoupled and can thus
be solved independently.
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Step 1: Construction of a solution to (3.10b). Let {ηi | i ∈ N} be an orthonormal basis of
L2(�) and an orthogonal basis of W 1,2(�). The functions ηi can be chosen, for instance, as
L2(�)-normalized eigenfunctions to the eigenvalues 0 < μ1 ≤ μ2 ≤ ... of the eigenvalue
problem {

−�η + η = μη in �,

∂nη = 0 on ∂�.

We further define the operator P̃n : L2(�) → 〈η1, ..., ηn〉 as the orthogonal projection onto
the finite dimensional linear subspace 〈η1, ..., ηn〉. Following the arguments of [16,p. 62] we
prove the existence of a time t∗2 ∈ (0, t∗1 ] and coefficient functions hin : [0, t∗2 ) → R such
that the ansatz function

Mn
m(x, t) =

n∑
i=1

hin(t)ηi (x), x ∈ �, t ∈ [0, t∗2 )

is a solution of the system

∂t M
n
m = P̃n

[
−(vm · ∇)Mn

m + �Mn
m − 1

α2 (|Mn
m |2 − 1)Mn

m + H

]
in Qt∗2 , (3.15a)

∂nM
n
m = 0, on �t∗2 , (3.15b)

Mn
m(·, 0) = P̃nM0 in �. (3.15c)

In order to pass to the limit n → ∞, we need uniform estimates of Mn
m . It is shown in

[16,pp. 55–61] that Mn
m fulfills the estimates

‖Mn
m‖L∞(0,t∗2 ;L2(�)) + ‖Mn

m‖L4(0,t∗2 ;L4(�)) + ‖Mn
m‖L2(0,t∗2 ;W 1,2(�)) ≤ C, (3.16)

‖Mn
m‖L∞(0,t∗2 ;W 1,2(�)) + ‖Mn

m‖L2(0,t∗2 ;W 2,2
n (�))

+ ‖Mn
m‖H1(0,t∗2 ;L2(�))

+‖Mn
m‖L∞(0,t∗2 ;L4(�)) ≤ C(vm). (3.17)

Recall that the constantsC andC(vm)may depend on ‖H‖L2(0,t∗1 ;W 1,2(�)) and the initial data
but not on n or t∗2 . Since Mn

m is absolutely continuous in [0, t∗2 ) and the constants in the right-
hand sides of (3.16) and (3.17) are independent of t∗2 , the solution Mn

m can be extended onto
the whole time interval [0, t∗1 ) and the estimates (3.16) and (3.17) hold true with t1∗ instead of
t∗2 . Hence, by the Banach–Alaoglu theorem, we infer that the sequence (Mn

m)n∈N converges
to a limit function Mm in the weak-∗ sense, at least after an extraction of a subsequence. In
particular, the limit Mm satisfies the estimates (3.12) and (3.13). This further allows us to
pass to the limit in the weak formulation of (3.15) which proves that the limit function Mm

is a weak solution of (3.10b).
To further prove the estimate (3.14b), we first derive an analogous estimate for the approx-

imate solutions Mn
m . To this end, test (3.15a) by �2Mn

m , and we use ∂nMn
m = ∂n�Mn

m = 0
on ∂� (since ∂nηi = ∂n�ηi = 0 on ∂�) along with an integration by parts to obtain

1

2

d

dt
‖�Mn

m‖2L2(�)
+ ‖∇�Mn

m‖2L2(�)

=
∫

�

∇[(vm · ∇)Mn
m

] · ∇�Mn
m+ 1

α2

∫

�

∇ [(|Mn
m |2−1

)
Mn

m

] · ∇�Mn
m+

∫

�

(−∇H)· ∇�Mn
m

=:
3∑

i=1

Ji . (3.18)

The next step is to estimate the terms Ji , i = 1, ..., 3. For any ε > 0, we obtain
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|J1| =
∣∣∣∣
∫

�

∇[(vm · ∇)Mn
m

] · ∇�Mn
m

∣∣∣∣
≤ ‖∇�Mn

m‖L2(�)

(‖∇vm‖L4(�)‖∇Mn
m‖L4(�) + ‖vm‖L∞(�)‖Mn

m‖W 2,2(�)

)

≤ ε‖∇�Mn
m‖2L2(�)

+ C‖∇vm‖2L4(�)
‖∇Mn

m‖2L4(�)
+ C‖vm‖2L∞(�)‖Mn

m‖2W 2,2(�)

≤ ε‖∇�Mn
m‖2L2(�)

+ C‖∇vm‖2L4(�)
‖∇Mn

m‖L2(�)

(
‖∇Mn

m‖2L2(�)
+ ‖�Mn

m‖2L2(�)

) 1
2

+ C‖vm‖2L∞(�)

(
‖�Mn

m‖2L2(�)
+ ‖Mn

m‖2L2(�)

)

≤ ε‖∇�Mn
m‖2L2(�)

+ C‖∇vm‖2L4(�)

(
‖∇Mn

m‖2L2(�)
+ ‖�Mn

m‖2L2(�)

)

+ C‖vm‖2L∞(�)

(
‖�Mn

m‖2L2(�)
+ ‖Mn

m‖2L2(�)

)
. (3.19)

Here, from the third to the fourth line, we used the interpolation inequality (2.7) to estimate
‖∇Mn

m‖2
L4(�)

. To obtain the last two lines, we applied Young’s inequality on the term

‖∇Mn
m‖L2(�)

(
‖∇Mn

m‖2L2(�)
+ ‖�Mn

m‖2L2(�)

) 1
2
.

Next, we estimate J2 and J3. For any ε > 0, we get

|J2| ≤ C
∫

�

∣∣∇ [(|Mn
m |2 − 1

)
Mn

m

]∣∣ |∇�Mn
m |

≤ ε‖∇�Mn
m‖2L2(�)

+ C
(
‖∇Mn

m‖2L6(�)
‖Mn

m‖4L6(�)
+ ‖∇Mn

m‖2L2(�)

)
(3.20)

and

|J3| ≤ ε‖∇�Mn
m‖2L2(�)

+ C‖∇H‖2L2(�)
(3.21)

by means of Young’s inequality. Choosing ε sufficiently small, using (3.19)–(3.21) to bound
the right-hand side of (3.18), applyingGronwall’s inequality and invoking the weak estimates
(3.16) and (3.17), we find that

‖Mn
m‖L2(0,t∗1 ;W 3,2(�)) + ‖Mn

m‖L∞(0,t∗1 ;W 2,2(�)) ≤ C(vm). (3.22)

Since C(vm) is independent of n, we conclude that Mm satisfies the estimate (3.14b) by
passing to the limit n → ∞. In particular, this proves that the weak solution Mm of (3.10b)
is actually strong.

Step 2: Construction of a solution to (3.10a). Let {ζi | i ∈ N} be an orthonormal basis
of L2(�) and an orthogonal basis of W 1,2

0 (�). Here, the functions ηi can be chosen, for
instance, as L2(�)-normalized eigenfunctions to the eigenvalues 0 < μ1 ≤ μ2 ≤ ... of the
eigenvalue problem

{
−�ζ = μζ in �,

ζ = 0 on ∂�.

We further define the operator Pn : L2(�) → 〈ζ1, ..., ζn〉 as the orthogonal projection onto
the finite dimensional linear subspace 〈ζ1, ..., ζn〉.

Proceeding as in [16,pp. 50–53], we prove the existence of a time t∗3 ∈ (0, t∗1 ] and coeffi-
cient functions din : [0, t∗3 ) → R such that the ansatz function

Fn
m(x, t) =

n∑
i=1

din(t)ζi (x), x ∈ �, t ∈ [0, t∗e )
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is a solution of the system

∂t F
n
m = Pn

[− (vm · ∇)Fn
m + ∇vmF

n
m + �Fn

m

]
in Qt∗3 , (3.23a)

Fn
m = 0 on �t∗3 , (3.23b)

Fn
m(·, 0) = PnF0 in �, (3.23c)

which satisfies the estimate

‖Fn
m‖L∞(0,t∗3 ;L2(�)) + ‖Fn

m‖L2(0,t∗3 ;W 1,2
0 (�))

+ ‖∂t Fn
m‖L2(0,t∗3 ;W−1,2(�)) ≤ C(vm). (3.24)

Since the constant C(vm) is independent of n and t∗3 , we can thus argue as above to conclude
that the solution Fn

m can be extended onto the whole time interval [0, t∗1 ) and in particular, the
uniform estimate (3.24) holds true with t∗1 instead of t∗3 . Using the Banach–Alaoglu theorem,
we infer that the sequence (at least a subsequence of) (Fn

m)n∈N converges to a function Fm in
the weak-∗ sense, and the limit Fm satisfies estimate (3.11). By passing to the limit n → ∞
in the weak formulation of (3.23), we conclude that Fm is a weak solution of (3.10a).

In order to show that the obtained weak solution Fm satisfies the bound (3.14a), we will
first establish an analogous estimate for the approximate solutions Fn

m . Therefore, we test
(3.23a) by −�Fn

m . This yields

1

2

d

dt
‖∇Fn

m‖2L2(�)
+ ‖�Fn

m‖2L2(�)
=
∫

�

(vm · ∇)Fn
m�Fn

m +
∫

�

∇vmF
n
m(−�Fn

m)

=:
2∑

i=1

Ji . (3.25)

For any ε > 0, we obtain

|J1| =
∣∣∣∣
∫

�

(vm · ∇)Fn
m�Fn

m

∣∣∣∣ ≤ ε‖�Fn
m‖2L2(�)

+ C‖vm‖2L∞(�)‖∇Fn
m‖2L2(�)

(3.26)

and

|J2| =
∣∣∣∣∣∣

∫

�

∇vmF
n
m�Fn

m

∣∣∣∣∣∣
≤ ε‖�Fn

m‖2L2(�)
+ C‖vm‖2W 1,∞(�)

‖Fn
m‖2L2(�)

(3.27)

bymeans ofYoung’s inequality. Choosing ε sufficiently small, using (3.26)–(3.27) to estimate
the right-hand side of (3.25), using Gronwall’s inequality and invoking (3.24), we find that

‖Fn
m‖L2(0,t∗1 ;W 2,2(�)) + ‖Fn

m‖L∞(0,t∗1 ;W 1,2
0 (�))

≤ C(vm). (3.28)

Since C(vm) is independent of n, we conclude that Fm satisfies the estimate (3.14a) by
passing to the limit n → ∞. In particular, this proves that the weak solution Fm of (3.10a)
is actually strong.

This means that all assertions are established and thus, the proof is complete.

Proof of Theorem 3.2 The proof is split into three steps.
Step 1.Construction of an approximate solution.Wefixan arbitrarym ∈ N. Let t∗0 ∈ (0, T ]

be some time thatwill be adjusted later. For any function vm ∈ Vm(t∗0 ), we consider the system
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∂t ṽm = Pm
[− (̃vm · ∇ )̃vm − div

(
(∇Mm � ∇Mm) − FmF

T
m

)

− ∇ pm + ν�ṽm + (∇H)T Mm
]

in Qt∗0 , (3.29a)

div ṽm = 0 in QT , (3.29b)

∂t Fm + (vm · ∇)Fm − ∇vmFm = �Fm in Qt∗0 , (3.29c)

∂t Mm + (vm · ∇)Mm = �Mm − 1

α2 (|Mm |2 − 1)Mm + H in Qt∗0 , (3.29d)

ṽm = 0, ∂nMm = 0, Fm = 0 on �t∗0 , (3.29e)

(̃vm, Mm, Fm)(·, 0) = (Pmv0, M0, F0). in � (3.29f)

Let vm ∈ Vm(t∗0 ) be arbitrary. Invoking Lemma 3.3, we infer the existence of a strong
solution (Fm, Mm) to the subsystem (3.29c)–(3.29d) subject to the corresponding initial and
boundary conditions stated in (3.29e) and (3.29f). Choosing t∗0 sufficiently small, we proceed
as in [16,pp. 63–64] to construct a solution ṽm ∈ Vm(t∗0 ) of (3.29a) written for vm and the pair
(Fm, Mm) we just constructed. In summary, we have just obtained a local-in-time solution
(vm, Fm, Mm) of the system (3.29) to the given function vm existing on the time interval
[0, t∗0 ).

Since vm ∈ Vm(t∗0 ) was arbitrary, we can define an operator Sm : Vm(t∗0 ) →
Vm(t∗0 ),Sm(vm) := ṽm that maps any given function vm ∈ Vm(t∗0 ) onto the component
ṽm ∈ Vm(t∗0 ) of the corresponding solution (̃vm, Fm, Mm) that is constructed as described
above.

Proceeding as in [16,p. 64], and choosing t∗0 as small as necessary, we apply Schauder’s
fixed point theorem to prove the existence of a fixed point v∗

m of the operatorSm . By means
of Lemma 3.3, we can find an associated pair (F∗

m, M∗
m) such that the triplet

(v∗
m, F∗

m, M∗
m) ∈ Vm(t∗0 ) ×

(
L2(0, t∗0 ;W 2,2(�)) ∩ L∞(0, t∗0 ;W 1,2

0 (�))
)

× (
L2(0, t∗0 ;W 3,2(�)) ∩ L∞(0, t∗0 ;W 2,2

n (�))
)

(3.30)

is a weak solution to system (3.29) written for vm = v∗
m on the time interval [0, t∗0 ).

Following the line of argument in [16,Sections 3.1.3.3–3.1.3.4], we infer that the solution
(v∗

m, F∗
m, M∗

m) can be extended onto the whole time interval [0, T ]. Moreover, it is easy to
see that the functions v∗

m , F
∗
m and M∗

m satisfy the associated regularities stated in (3.1).
Since, by construction, v∗

m is smooth with respect to the space variables, we further con-
clude that v∗

m ∈ L∞(0, T ;W 2,∞(�)). As a consequence of Lemma 3.3, the pair (F∗
m, M∗

m)

fulfills the estimates (3.14). This means that the functions Sv∗
m (where S denotes the Stokes

operator, cf. (3.34)), �F∗
m and ∇�M∗

m are well defined a.e. on � × (0, T ).
Step 2. Uniform a priori estimates. The next step is to derive a priori estimates on the

approximate solution (v∗
m, F∗

m, M∗
m) that are uniformwith respect to the approximation index

m ∈ N. Eventually, this will allow us to pass to the limit m → ∞ to obtain a strong solution
of (1.1).

We claim that

d

dt
A(t) + B(t) ≤ C

(
A2(t) + ‖∇H‖2L2(�)

A(t) + ‖H‖2W 1,2(�)

)
, (3.31)

with

A(t) := ‖∇v∗
m(t)‖2L2(�)

+ ‖∇F∗
m(t)‖2L2(�)

+ ‖(�M∗
m(t) − f (M∗

m(t))‖2L2(�)
, (3.32)

B(t) := ‖Sv∗
m(t)‖2L2(�)

+ ‖�F∗
m(t)‖2L2(�)

+ ‖∇(�M∗
m(t) − f (M∗

m(t)))‖2L2(�)
, (3.33)
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where S denotes the Stokes operator, i.e.,

Sv∗
m := −ν�v∗

m + ∇ pm ∈ Hm, (3.34)

and

f : R2 → R
2, M 
→ 1

α2 (|M |2 − 1)M (3.35)

We point out that the Stokes operator S comes into play since for deriving strong a priori
estimates, we can use Sv∗

m as a test function in (3.29a) but not −ν�v∗
m as this function is not

necessarily in Hm .

Using the equations of system (3.29) as well as the identity

div(∇M � ∇M) = 1

2
∇|∇M |2 + (∇M)T�M, (3.36)

we derive the following equation:

1

2

d

dt
A(t) +

∫

�

|Sv∗
m |2 +

∫

�

|�F∗
m |2 +

∫

�

|∇ (�M∗
m − f (M∗

m)
) |2

=
∫

�

(v∗
m · ∇)v∗

m · Sv∗
m +

∫

�

(∇M∗
m)T�M∗

m · Sv∗
m −

∫

�

((∇H)T M∗
m) · Sv∗

m

+
∫

�

(v∗
m · ∇)F∗

m · �F∗
m −

∫

�

∇v∗
mF

∗
m · �F∗

m +
∫

�

∇(v∗
m · ∇)M∗

m · ∇(�M∗
m − f (M∗

m))

−
∫

�

∇H · (∇(�M∗
m − f (M∗

m))
)−

∫

�

∂t f (M
∗
m)(�M∗

m − f (M∗
m))

=:
8∑

i=1

Ii . (3.37)

In the following we will estimate the terms I1, ..., I8 appearing in the right-hand side of
(3.37). The estimates will be performed for almost every t ∈ [0, T ] but for the simplicity
of notation, we avoid writing the explicit dependence of the functions on t . We already
know from [16,Section 3.1.3.4] that the triplet (v∗

m, F∗
m, M∗

m) fulfills (3.2). In the following,
the letter C denotes generic positive constants that may depend on the norms ‖v∗

m‖L2(�),

‖F∗
m‖L2(�) and ‖M∗

m‖W 1,2(�) (which are bounded uniformly on [0, T ]), and may change its
value from line to line.

Recalling the definition of f in (3.35), we first observe that

‖ f (M∗
m)‖L2(�) ≤ C‖M∗

m‖3L6(�)
+ C‖M∗

m‖L2(�) ≤ C a.e. on [0, T ]. (3.38)

Furthermore, by regularity theory for the Stokes operator (see [7,Theorem IV.5.8]), we have

‖v∗
m‖H2(�) ≤ C‖Sv∗

m‖L2(�). (3.39)

Form now on until the end of this proof we will frequently use this inequality without
mentioning it explicitly. In the following, let ε > 0 be some real number that will be fixed
later. The constants C are now also allowed to depend on ε.

Using (2.6) to estimate ‖∇v∗
m‖L4(�), (2.8) to estimate ‖v∗

m‖L4(�) and employing the
inequality ‖∇2v∗

m‖L2(�) ≤ C‖�v∗
m‖L2(�) (which holds since v∗

m has trace zero at the bound-
ary), we obtain the following estimate for the term I1:
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|I1| ≤ ‖Sv∗
m‖L2(�)‖v∗

m‖L4(�)‖∇v∗
m‖L4(�)

≤ C‖Sv∗
m‖L2(�)

(
‖v∗

m‖
1
2
L2(�)

‖∇v∗
m‖

1
2
L2(�)

)(
‖∇v∗

m‖L2(�)+‖�v∗
m‖

1
2
L2(�)

‖∇v∗
m‖

1
2
L2(�)

)

≤ C‖Sv∗
m‖L2(�)‖∇v∗

m‖
3
2
L2(�)

+ C‖Sv∗
m‖

3
2
L2(�)

‖∇v∗
m‖L2(�)

≤ ε‖Sv∗
m‖2L2(�)

+ C‖∇v∗
m‖4L2(�)

+ C . (3.40)

We now derive two inequalities (namely (3.41) and (3.42)) that will be used in the subse-
quent approach, especially to estimate I2. For almost every t ∈ [0, T ], we obtain

‖∇M∗
m‖2L4(�)

≤ C
(‖∇M∗

m‖2L2(�)
+ ‖�M∗

m‖2L2(�)

)

≤ C‖�M∗
m‖L2(�) + C

≤ C‖(�M∗
m − f (M∗

m))‖L2(�) + C‖ f (M∗
m)‖L2(�) + C

≤ C‖(�M∗
m − f (M∗

m))‖L2(�) + C . (3.41)

Here, we used (2.7) and Young’s inequality to estimate ‖∇M∗
m‖2

L2(�)
, and (3.38) was

employed to bound ‖ f (M∗
m)‖L2(�) by a constant C .

Furthermore, using once again (2.6), we have

‖(�M∗
m − f (M∗

m))‖2L4(�)

≤ C‖(�M∗
m − f (M∗

m))‖2L2(�)
+ C‖(�M∗

m − f (M∗
m))‖L2(�)‖∇

(
�M∗

m − f (M∗
m)
)‖L2(�).

(3.42)

Hence, we obtain the following estimate for I2 :
|I2| ≤ ‖Sv∗

m‖L2(�)‖∇M∗
m‖L4(�)‖(�M∗

m − f (M∗
m))‖L4(�)

+ ‖Sv∗
m‖L2(�)‖∇M∗

m‖L4(�)‖ f (M∗
m)‖L4(�)

≤ ε‖Sv∗
m‖2L2(�)

+ C‖∇M∗
m‖2L4(�)

‖(�M∗
m − f (M∗

m))‖2L4(�)
+ C‖∇M∗

m‖2L4(�)

≤ ε‖Sv∗
m‖2L2(�)

+ C
(‖(�M∗

m − f (M∗
m))‖L2(�) + 1

)

· (‖(�M∗
m− f (M∗

m))‖2L2(�)
+‖(�M∗

m− f (M∗
m))‖L2(�)‖∇

(
�M∗

m− f (M∗
m)
)‖L2(�)

)

+ C‖(�M∗
m − f (M∗

m))‖L2(�) + C

≤ ε‖Sv∗
m‖2L2(�)

+ ε‖∇(�M∗
m − f (M∗

m))‖2L2(�)
+ C‖(�M∗

m − f (M∗
m))‖4L2(�)

+ C .

(3.43)

In this computation, the third line is obtained by using (3.41) and (3.42), and the final line is
deduced by means of Young’s inequality.

Let us now estimate I3. Using (2.4) to estimate ‖M∗
m‖L∞(�), we obtain

|I3| ≤ ε‖Sv∗
m‖2L2(�)

+ C‖M∗
m‖2L∞(�)‖∇H‖2L2(�)

≤ ε‖Sv∗
m‖2L2(�)

+ C‖M∗
m‖L2(�)

(‖M∗
m‖2L2(�)

+ ‖�M∗
m‖2L2(�)

) 1
2 ‖∇H‖2L2(�)

≤ ε‖Sv∗
m‖2L2(�)

+ C
(‖M∗

m‖2L2(�)
+ ‖�M∗

m‖2L2(�)

)‖∇H‖2L2(�)

≤ ε‖Sv∗
m‖2L2(�)

+ C‖∇H‖2L2(�)
‖(�M∗

m − f (M∗
m)
)‖2L2(�)

+ C‖∇H‖2L2(�)
, (3.44)
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where we have applied (3.38). The term I4 can be estimated in a similar fashion as I1. We
get

|I4| ≤ ε‖�F∗
m‖2L2(�)

+ C‖∇F∗
m‖4L2(�)

+ C‖∇v∗
m‖4L2(�)

+ C . (3.45)

Invoking (2.6) and the inequality ‖∇2v∗
m‖L2(�) ≤ C‖�v∗

M‖L2(�) to estimate ‖∇v∗
m‖L4(�),

and by (3.39) we find that

|I5| ≤ C‖�F∗
m‖L2(�)

(‖F∗
m‖

1
2
L2(�)

‖∇F∗
m‖

1
2
L2(�)

)(‖∇v∗
m‖L2(�) + ‖�v∗

m‖
1
2
L2(�)

‖∇v∗
m‖

1
2
L2(�)

)

≤ ε‖�F∗
m‖2L2(�)

+ C‖∇F∗
m‖L2(�)‖�v∗

m‖L2(�)‖∇v∗
m‖L2(�) + C‖∇F∗

m‖L2(�)‖∇v∗
m‖2L2(�)

≤ ε‖�F∗
m‖2L2(�)

+ ε‖Sv∗
m‖2L2(�)

+ C‖∇F∗
m‖2L2(�)

‖∇v∗
m‖2L2(�)

+ C‖∇F∗
m‖L2(�)‖∇v∗

m‖2L2(�)

≤ ε‖�F∗
m‖2L2(�)

+ ε‖Sv∗
m‖2L2(�)

+ C‖∇F∗
m‖4L2(�)

+ C‖∇v∗
m‖4L2(�)

+ C . (3.46)

Using (2.6), (2.9), (3.39) and (3.41), we derive the estimate

|I6| ≤ ‖∇(�M∗
m − f (M∗

m))‖L2(�)

(‖∇v∗
m‖L4(�)‖∇M∗

m‖L4(�) + ‖v∗
m‖L∞(�)‖M∗

m‖W 2,2(�)

)

≤ ε‖∇(�M∗
m − f (M∗

m))‖2L2(�)
+ C‖∇v∗

m‖2L4(�)
‖∇M∗

m‖2L4(�)
+ C‖v∗

m‖2L∞(�)‖M∗
m‖2W 2,2(�)

≤ ε‖∇(�M∗
m − f (M∗

m))‖2L2(�)
+ C‖�v∗

m‖L2(�)‖∇v∗
m‖L2(�)

(‖(�M∗
m − f (M∗

m))‖L2(�) + 1
)

+ C‖∇v∗
m‖2L2(�)

(‖(�M∗
m − f (M∗

m)
)‖L2(�) + 1

)

+ C‖�v∗
m‖L2(�)‖v∗

m‖L2(�)

(‖(�M∗
m − f (M∗

m))‖2L2(�)
+ 1

)

≤ ε‖Sv∗
m‖2L2(�)

+ ε‖∇(�M∗
m − f (M∗

m))‖2L2(�)
+ C‖∇v∗

m‖4L2(�)

+ C‖(�M∗
m − f (M∗

m))‖4L2(�)
+ C . (3.47)

For the term I7 we simply obtain the bound

|I7| ≤ ε‖∇(�M∗
m − f (M∗

m))‖2L2(�)
+ C‖∇H‖2L2(�)

. (3.48)

Eventually, for the term I8, we have

|I8| ≤
∣∣∣∣
∫

�

f ′(M∗
m)∂t M

∗
m(�M∗

m − f (M∗
m))

∣∣∣∣

≤
∣∣∣∣
∫

�

f ′(M∗
m)

(
− v∗

m · ∇M∗
m + (�M∗

m − f (M∗
m)) + H

)
· (�M∗

m − f (M∗
m))

∣∣∣∣
≤ C‖ f ′(M∗

m)‖L4(�)‖v∗
m‖L4(�)‖∇M∗

m‖L4(�)‖(�M∗
m − f (M∗

m))‖L4(�)

+ C‖ f ′(M∗
m)‖L2(�)‖(�M∗

m − f (M∗
m))‖2L4(�)

+ C‖H‖L4(�)‖ f ′(M∗
m)‖L2(�)‖(�M∗

m − f (M∗
m))‖L4(�)

≤ C‖∇v∗
m‖L2(�)‖v∗

m‖L2(�)‖∇M∗
m‖2L4(�)

+ C‖(�M∗
m − f (M∗

m))‖2L4(�)
+ C‖H‖2W 1,2(�)

≤ C‖∇v∗
m‖2L2(�)

+ C‖(�M∗
m − f (M∗

m))‖2L2(�)

+ ε‖∇(�M∗
m − f (M∗

m))‖2L2(�)
+ C‖H‖2W 1,2(�)

. (3.49)

Here, to deduce the fourth line from the third we have used

‖ f ′(M∗
m)‖L4(�) ≤ C‖M∗

m‖2L8(�)
+ C ≤ C for a.e. t ∈ [0, T ].

and the final line is obtained by using (3.41)–(3.42).
Now, fixing ε sufficiently small and using the bounds on the terms I1, ..., I8 to estimate

the right-hand side of (3.37), we eventually conclude the uniform estimate (3.31).
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Invoking Gronwall’s inequality, we infer that

A(t) ≤ e
C
∫ T
0

(
A(τ )+‖∇H(τ )‖2

L2(�)

) [
A(0) + ‖H‖2L2(0,T ;W 1,2(�))

]
, (3.50)

for any t ∈ [0, T ]. Since H ∈ L2(0, T ;W 1,2(�)), and

∫ T

0
A(τ ) ≤ C

as a consequence of [16,Section 3.1.3.4], we conclude that

A(t) ≤ C for a.e. t ∈ [0, T ]. (3.51)

Integrating (3.31) over (0, T ) and using (3.51), we further obtain

∫ T

0
B(s) ≤ C . (3.52)

Step 3: Passage to the limit and regularity properties.Due to the uniform a priori estimates
(3.51) and (3.52) we can now apply the Banach–Alaoglu theorem to pass to the limitm → ∞
in the weak-∗ sense in the corresponding function spaces. In particular, we recover the
estimate (3.7) by invoking the weak lower semicontinuity of the involved norms. To show
that (v, F, M) actually solves the weak formulation of the system (1.1) we need to pass to
the limit m → ∞ in the weak formulation of the system solved by (v∗

m, F∗
m, M∗

m). This can
be done by proceeding exactly as in [16,Section 3.1.4.2].

In order to complete the proof of Theorem 3.2 we still need to recover the time regularities
of v, F and M . In view of (3.7) and H ∈ L2(0, T ;W 1,2(�)) it is not difficult to check that

∥∥∥−(v · ∇)v − div
(
(∇M � ∇M) − FFT

)
+ ν�v + (∇H)T M

∥∥∥
L2(QT )

≤ C,

for some positive constant C depending only on ‖v0‖W 1,2(�), ‖M0‖W 2,2(�), ‖F0‖W 1,2(�),

‖H‖L2(0,T ;W 1,2(�)), |�| and the fixed final time T . Hence, the time regularity ∂tv ∈
L2(0, T ; L2

div(�)) follows by a standard comparison argument in the weak formulation of
(1.1a) written for test functions in L2

div(�). The time regularities of F and M can be obtained
in a similar fashion by estimating the right-hand sides of the weak formulations of (1.1c) and
(1.1d).

The regularity p ∈ W−1,∞(0, T ; L2(�)) of the pressure can be recovered by proceeding
as in the proof of Theorem 3.1. Since (1.1a) is satisfied in the sense of distributions, we
can use the regularities of (v, F, M) to conclude ∇ p ∈ L2(QT ) by another comparison
argument. As we already know from Theorem 3.1 that

∫
�
p = 0 we eventually conclude that

p ∈ L2(0, T ;W 1,2(�)) by means of Poincaré’s inequality.
In summary, the regularity properties (3.6) are established. Hence, the quadruplet

(v, p, F, M) is actually a strong solution of the system (1.1).
Lastly, we point out that the strong solution (v, p, F, M) is unique, which is a direct

consequence of the uniqueness of weak solutions established in Theorem 3.1.
This means that all assertions are established and thus, the proof of Theorem 3.2 is com-

plete. ��
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4 Stability estimates

In this section, we investigate the stability of strong solutions to the system (1.1) with respect
to perturbations of the external magnetic field in both the weak energy spaces (cf. (3.1)) and
the strong regularity framework (cf. (3.6)).

4.1 Weak stability

We now present a stability estimate for solutions of the system (1.1), where the involved
norms correspond to the regularity properties of weak solutions. Notice that in the following
theorem, the initial data are taken sufficiently regular such that the existence of a unique
strong solution to (1.1) is ensured by Theorem 3.2. Theorem 4.1 will further play a crucial
role in the proof of the strong stability estimate presented in Theorem 4.2.

Theorem 4.1 Let T > 0, v0 ∈ W 1,2
0,div(�), F0 ∈ W 1,2

0 (�), M0 ∈ W 2,2
n (�) be given, and let

(v1, F1, M1) and (v2, F2, M2) denote the unique strong solutions of (1.1) to the initial data
(v0, F0, M0) and the external magnetic fields H1, H2 ∈ L2(0, T ;W 1,2(�)), respectively.
We write H = H1 − H2.

Then, the difference of these two solutions (v, F, M) = (v1 − v2, F1 − F2, M1 − M2)

fulfills the stability estimate

‖v‖2L∞(0,T ;L2(�))∩L2(0,T ;W 1,2(�))
+ ‖F‖2L∞(0,T ;L2(�))∩L2(0,T ;W 1,2(�))

+ ‖M‖2L∞(0,T ;W 1,2(�))

+
∫ T

0
‖�M‖2L2(�)

≤ S1
(‖H1‖L2(0,T ;W 1,2(�)), ‖H2‖L2(0,T ;W 1,2(�))

)‖H‖L2(0,T ;W 1,2(�)),

(4.1)

where the functionS1 : [0,∞)×[0,∞) → (0,∞) is nondecreasing in both of its variables
and may depend on T , |�| and the initial data (v0, F0, M0).

Proof Our approach is motivated by [36], where the authors prove the uniqueness of weak
solutions to the system (1.1). However, in contrast to [36], we do not perturb the initial data
but the external magnetic field H .

We consider the difference of the equations of (1.1) written for (v1, F1, M1) and
(v2, F2, M2), respectively. Of the resulting equations, we test the first one by v, the sec-
ond one by F and the third one by M and −�M . This leads us to the equations

1

2

d

dt

∫

�

|v|2 + ν

∫

�

|∇v|2

= −
∫

�

(v · ∇)v1 · v −
∫

�

div(∇M1 � ∇M1 − ∇M2 � ∇M2) · v

+
∫

�

div
(
F1F

T
1 − F2F

T
2

)
· v +

∫

�

(∇H)T M1 · v +
∫

�

(∇H2)
T M · v =:

5∑
i=1

Ii , (4.2)

1

2

d

dt

∫

�

|F |2 + κ

∫

�

|∇F |2 =
∫

�

(∇v1F1 − ∇v2F2) · F −
∫

�

(v · ∇)F1 · F =:
7∑

i=6

Ii , (4.3)

1

2

d

dt

∫

�

|M |2 +
∫

�

|∇M |2

= −
∫

�

(v · ∇)M1 · M −
∫

�

( f (M1) − f (M2)) · M +
∫

�

H · M =:
10∑
i=8

Ii , (4.4)
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1

2

d

dt

∫

�

|∇M |2 +
∫

�

|�M |2

=
∫

�

((v1 · ∇)M1 − (v2 · ∇)M2) · �M +
∫

�

( f (M1) − f (M2)) · �M +
∫

�

H · �M =:
13∑

i=11

Ii ,

(4.5)

where f is the function that was introduced in (3.35).
In the following, we intend to estimate the terms Ii , i = 1, ..., 13, in a suitable way to

conclude the stability estimate. Let ε > 0 denote a small parameter that will be fixed later.
The letter C will denote positive constants that depend on ε, T , |�| and the initial data
(v0, F0, M0) and may change their value from line to line.

For I1, we obtain the estimate

|I1| ≤ ‖v‖2L4(�)
‖∇v1‖L2(�) ≤ C‖v‖L2(�)‖∇v‖L2(�)‖∇v1‖L2(�)

≤ ε‖∇v‖2L2(�)
+ C‖∇v1‖2L2(�)

‖v‖2L2(�)
. (4.6)

In view of the identity (3.36) which holds for both M1 and M2, we obtain

I2 + I11 = −
(∫

�

(v1 · ∇)M · �M2 − (v2 · ∇)M · �M1

)

= −
(∫

�

(v · ∇)M · �M2 − (v2 · ∇)M · �M

)
(4.7)

via integration by parts. We thus have

|I2 + I11| ≤
∣∣∣∣
∫

�

(v · ∇)M · �M2

∣∣∣∣+
∣∣∣∣
∫

�

(v2 · ∇)M · �M

∣∣∣∣ . (4.8)

For the first term in the right-hand side of (4.8) we obtain the estimate∣∣∣∣
∫

�

(v · ∇)M · �M2

∣∣∣∣ ≤ ‖�M2‖L2(�)‖v‖L4(�)‖∇M‖L4(�)

≤ C‖�M2‖L2(�)‖v‖
1
2
L2(�)

‖∇v‖
1
2
L2(�)

‖∇M‖
1
2
L2(�)

(
‖∇M‖2L2(�)

+ ‖�M‖2L2(�)

) 1
4

≤ C‖�M2‖2L2(�)
‖v‖L2(�)‖∇M‖L2(�) + ε‖∇v‖L2(�)

(
‖∇M‖2L2(�)

+ ‖�M‖2L2(�)

) 1
2

≤ C

(
‖�M2‖2L2(�)

+ 1

)(
‖v‖2L2(�)

+ ‖∇M‖2L2(�)

)
+ ε

2
‖∇v‖2L2(�)

+ ε

2
‖�M‖2L2(�)

,

(4.9)

where we used the interpolation inequalities (2.8) for ‖v‖L4(�) and (2.7) for ‖∇M‖L4(�) to
deduce the second line. The second term in the right-hand side of (4.8) can be estimated as
follows:∣∣∣∣
∫

�

(v2 · ∇)M · �M

∣∣∣∣ ≤ ‖v2‖L4(�)‖∇M‖L4(�)‖�M‖L2(�)

≤ C‖v2‖L4(�)‖�M‖L2(�)‖∇M‖
1
2
L2(�)

(
‖∇M‖2L2(�)

+ ‖�M‖2L2(�)

) 1
4

≤ ε‖�M‖2L2(�)
+ C‖v2‖L2(�)‖∇v2‖L2(�)‖∇M‖L2(�)

(
‖∇M‖2L2(�)

+ ‖�M‖2L2(�)

) 1
2

≤ 2ε‖�M‖2L2(�)
+ C

(
‖v2‖2L2(�)

‖∇v2‖2L2(�)
+ 1

)
‖∇M‖2L2(�)

. (4.10)
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Here, we used the interpolation inequalities (2.8) for ‖v2‖L4(�) and (2.7) for ‖∇M‖L4(�).

Hence, using (4.9) and (4.10) to bound the right-hand side of (4.8), we conclude that

|I2 + I11| ≤ 3ε‖�M‖2L2(�)
+ ε‖∇v‖2L2(�)

+ C
(‖�M2‖2L2(�)

+ ‖v2‖2L2(�)
‖∇v2‖2L2(�)

+ 1
)(‖v‖2L2(�)

+ ‖∇M‖2L2(�)

)
.

(4.11)

After some straightforward manipulations we find that

I3 + I6 =
∫

�

(
F1F

T
1

) · ∇v2 +
∫

�

(
F2F

T
2

) · ∇v1 −
∫

�

(∇v1F1
) · F2 −

∫

�

(∇v2F2
) · F1

= −
∫

�

(∇v1F
) · F2 +

∫

�

(∇v2F
) · F1 = −

∫

�

(∇vF
) · F1 +

∫

�

(∇v1F
) · F .

(4.12)

Hence, the term I3 + I6 can be estimated as follows:

|I3 + I6| ≤ ‖∇v‖L2(�)‖F‖L4(�)‖F1‖L4(�) + ‖∇v1‖L2(�)‖F‖2L4(�)

≤ C‖∇v‖L2(�)‖F‖
1
2
L2(�)

‖∇F‖
1
2
L2(�)

‖F1‖
1
2
L2(�)

‖∇F1‖
1
2
L2(�)

+ C‖∇v1‖L2(�)‖F‖L2(�)‖∇F‖L2(�)

≤ ε‖∇v‖2L2(�)
+ C‖F‖L2(�)‖∇F‖L2(�)‖F1‖L2(�)‖∇F1‖L2(�)

+ ε‖∇F‖2L2(�)
+ C‖∇v1‖2L2(�)

‖F‖2L2(�)

≤ ε‖∇v‖2L2(�)
+ 2ε‖∇F‖2L2(�)

+ C‖∇v1‖2L2(�)
‖F‖2L2(�)

+ C‖F‖2L2(�)

(‖F1‖2L2(�)
‖∇F1‖2L2(�)

)
. (4.13)

Using (2.6) to estimate ‖M1‖L4(�), we further get

|I4| ≤ ‖∇H‖L2(�)‖M1‖L4(�)‖v‖L4(�)

≤ 1
2‖∇H‖2L2(�)

+ 1
2‖M1‖2L4(�)

‖v‖2L4(�)

≤ 1
2‖∇H‖2L2(�)

+ C
(‖M1‖2L2(�)

+ ‖M1‖L2(�)‖∇M1‖L2(�)

)(‖v‖L2(�)‖∇v‖L2(�)

)

≤ 1
2‖∇H‖2L2(�)

+ ε‖∇v‖2L2(�)
+ C

(‖M1‖4L2(�)
+ ‖M1‖2L2(�)

‖∇M1‖2L2(�)

)‖v‖2L2(�)
.

(4.14)

Next, for I5, we derive the following estimate:

|I5| ≤ ‖∇H2‖L2(�)‖M‖L∞(�)‖v‖L2(�)

≤ C‖∇H2‖2L2(�)
‖v‖2L2(�)

+ ε‖M‖2W 2,2(�)

≤ C‖∇H2‖2L2(�)
‖v‖2L2(�)

+ εC
(‖M‖2L2(�)

+ ‖�M‖2L2(�)

)
. (4.15)

For the terms I7 and I8, we obtain the bounds

|I7| ≤ ‖v‖L4(�)‖F‖L4(�)‖∇F1‖L2(�)

≤ ‖v‖
1
2
L2(�)

‖∇v‖
1
2
L2(�)

‖F‖
1
2
L2(�)

‖∇F‖
1
2
L2(�)

‖∇F1‖L2(�)

≤ C(‖v‖2L2(�)
+ ‖F‖2L2(�)

)‖∇F1‖2L2(�)
+ ε

(
1
2‖∇v‖2L2(�)

+ 1
2‖∇F‖2L2(�)

)
(4.16)
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and

|I8| ≤ ‖v‖L2(�)‖∇M1‖L4(�)‖M‖L4(�)

≤ C‖v‖L2(�)‖∇M1‖L4(�)

(
‖M‖L2(�) + ‖M‖

1
2
L2(�)

‖∇M‖
1
2
L2(�)

)

≤ C

(
‖v‖2L2(�)

‖∇M1‖2L4(�)
+ ‖M‖2L2(�)

+ ‖∇M‖2L2(�)

)
, (4.17)

where we used (2.6) to estimate ‖M‖L4(�). Next, using the inequality

(|M1|2M1 − |M2|2M2) · (M1 − M2) ≥ 0,

we infer the estimate

I9 ≤ 1

α2 ‖M‖2L2(�)
. (4.18)

We further get

|I10| ≤ C
(‖H‖2L2(�)

+ ‖M‖2L2(�)

)
. (4.19)

Moreover, employing the inequality
∣∣|M1|2M1 − |M2|2M2

∣∣ ≤ C |M|(|M1|2 + |M2|2
)
,

as well as the interpolation inequality (2.6) to estimate ‖M‖L4(�), we find that

I12 ≤ C‖∇M‖2L2(�)
+ C

∫

�

(|M1|2 + |M2|2
)|M||�M |

≤ C
(‖∇M‖2L2(�)

+ ‖M‖2L4(�)
(‖M1‖4L8(�)

+ ‖M2‖4L8(�)
)
)+ ε‖�M‖2L2(�)

≤ C
(‖M‖2L2(�)

+ ‖∇M‖2L2(�)

)(
1 + ‖M1‖4L8(�)

+ ‖M2‖4L8(�)

)+ ε‖�M‖2L2(�)
.

(4.20)

Eventually, for I13, we obtain the following estimate:

|I13| ≤ C‖H‖2L2(�)
+ ε‖�M‖2L2(�)

. (4.21)

We now recall that the solutions (vi , Fi , Mi ), i ∈ {1, 2} are bounded in the function spaces
associated with weak solutions (see (3.1)) by a constant depending only on T , � and the
initial data. Hence, choosing ε > 0 sufficiently small, adding (4.2)–(4.5), and making use of
the estimates (4.6)–(4.21), we conclude that

1

2

d

dt
Y(t) + B(t) ≤ CQ(t)Y(t) + C‖H(t)‖2W 1,2(�)

(4.22)

for almost all t ∈ [0, T ], where
Y :=

∫

�

(|v|2 + |F |2 + |M|2 + |∇M |2), (4.23)

B := 1

2

∫

�

(
ν|∇v|2| + κ|∇F |2 + |∇M|2 + |�M |2), (4.24)

Q := ‖∇v1‖2L2(�)
+ ‖�M2‖2L2(�)

+ ‖v2‖2L2(�)
‖∇v2‖2L2(�)

+ ‖F1‖2L2(�)
‖∇F1‖2L2(�)

+ ‖M1‖4L2(�)
+ ‖M1‖2L2(�)

‖∇M1‖2L2(�)
+ ‖∇H2‖2L2(�)

+ ‖∇F1‖2L2(�)

+ ‖∇M1‖2L4(�)
+ ‖M1‖4L8(�)

+ ‖M2‖4L8(�)
+ 1. (4.25)
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From estimate (3.2) we infer that ‖Q‖L1([0,T ]) ≤ C . This allows us to apply Gronwall’s
inequality on (4.22) which eventually yields the desired estimate (4.1). Thus, the proof is
complete.

4.2 Strong stability

We now establish the stability of strong solutions to (1.1) with respect to perturbations of the
external magnetic field in the functional spaces that correspond to the regularity framework
(3.6) of strong solutions.

Theorem 4.2 Let T > 0, v0 ∈ W 1,2
0,div(�), F0 ∈ W 1,2

0 (�), M0 ∈ W 2,2
n (�) be given, and let

(v1, F1, M1) and (v2, F2, M2) denote the unique strong solutions of (1.1) to the initial data
(v0, F0, M0) and the external magnetic fields H1, H2 ∈ L2(0, T ;W 1,2(�)), respectively.
We write H = H1 − H2.

Then, the difference of the two solutions (v, F, M) = (v1−v2, F1− F2, M1−M2) fulfills
the stability estimate

‖v(t)‖2W 1,2(�)
+ ‖F(t)‖2W 1,2(�)

+ ‖M(t)‖2W 2,2(�)

+
∫ t

0

(
‖v(τ)‖2W 2,2(�)

+ ‖F(τ )‖2W 2,2(�)
+ ‖M(τ )‖2W 3,2(�)

)

≤ S2
(‖H1‖L2(0,T ;W 1,2(�)), ‖H2‖L2(0,T ;W 1,2(�))

)‖H‖L2(0,T ;W 1,2(�)) (4.26)

for almost all t ∈ [0, T ], where the functionS2 : [0,∞)×[0,∞) → (0,∞) is nondecreas-
ing in both of its variables and may depend on T , �, and the initial data (v0, F0, M0).

Proof Let ε > 0 be arbitrary; it will be fixed later. The letter C denotes generic positive
constants that depend only on ε, T , �, and the initial data and may change their value from
line to line.

First using the identity (3.36), we reformulate (1.1a) (written for (vi , pi , Fi , Mi ), i = 1, 2)
as

∂tvi + (vi · ∇)vi + (∇Mi )
T�Mi − div(Fi F

T
i ) + ∇ p#i = ν�vi + (∇Hi )

T Mi in QT ,

(4.27)

where the term 1
2∇|∇Mi |2 is absorbed by the redefined pressure p#i . Taking the difference

of (4.27) with i = 1 and i = 2, and testing the resulting equation by −�v, we infer

1

2

d

dt

∫

�

|∇v|2 + ν

∫

�

|�v|2

=
∫

�

(v · ∇)v1 · �v +
∫

�

(v2 · ∇)v · �v +
∫

�

(∇M)T�M1 · �v

+
∫

�

(∇M2)
T�M · �v −

∫

�

div(FFT
1 ) · �v −

∫

�

div(F2F
T
) · �v

−
∫

�

(∇H)T M1 · �v −
∫

�

(∇H2)
T M · �v =:

8∑
i=1

I v
i . (4.28)

The term I v
1 admits of the following estimate
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|I v
1 | ≤ ‖v‖L∞(�)‖∇v1‖L2(�)‖�v‖L2(�) ≤ ‖v‖

1
2
L2(�)

‖∇v1‖L2(�)‖�v‖
3
2
L2(�)

≤ ε

2
‖�v‖2L2(�)

+ C‖v‖2L2(�)
‖∇v1‖4L2(�)

, (4.29)

where we have used (2.9) to estimate ‖v‖L∞(�). Next we estimate I v
2 as

|I v
2 | ≤ ‖v2‖L4(�)‖∇v‖L4(�)‖�v‖L2(�)

≤ ‖v2‖
1
2
L2(�)

‖∇v2‖
1
2
L2(�)

(
‖∇v‖L2(�) + ‖�v‖

1
2
L2(�)

‖∇v‖
1
2
L2(�)

)
‖�v‖L2(�) (4.30)

≤ ε

2
‖�v‖2L2(�)

+ C‖v2‖L2(�)‖∇v2‖L2(�)‖∇v‖2L2(�)
+ C‖v2‖2L2(�)

‖∇v2‖2L2(�)
‖∇v‖2L2(�)

(4.31)

≤ ε

2
‖�v‖2L2(�)

+ C

(
‖∇v2‖4L2(�)

+ 1

)
‖∇v‖2L2(�)

, (4.32)

where we have used (2.8) to estimate ‖v2‖L4(�), (2.6) to estimate ‖∇v‖L4(�) and the fact
that ‖v2‖L2(�) ≤ C‖∇v2‖L2(�) by Poincaré’s inequality. Summing the above two estimates
and using ‖v‖L2(�) ≤ ‖∇v‖L2(�) we furnish

|I v
1 | + |I v

2 | ≤ ε‖�v‖2L2(�)
+ C

(‖∇v1‖4L2(�)
+ ‖∇v2‖4L2(�)

+ 1
)‖∇v‖2L2(�)

. (4.33)

Next, I v
3 is estimated using (2.5) in the following way:

|I v
3 | ≤ ‖∇M‖L∞(�)‖�M1‖L2(�)‖�v‖L2(�)

≤ C‖�v‖L2(�)‖�M1‖L2(�)‖∇M‖
1
2
L2(�)

(
‖∇M‖2L2(�)

+ ‖�M‖2L2(�)
+ ‖∇�M‖2L2(�)

) 1
4

≤ ε‖�v‖2L2(�)
+ C‖�M1‖2L2(�)

‖∇M‖L2(�)

(
‖∇M‖2L2(�)

+ ‖�M‖2L2(�)
+ ‖∇�M‖2L2(�)

) 1
2

≤ ε‖�v‖2L2(�)
+ C‖�M1‖4L2(�)

‖∇M‖2L2(�)
+ ε

(
‖∇M‖2L2(�)

+ ‖�M‖2L2(�)
+ ‖∇�M‖2L2(�)

)

≤ ε‖�v‖2L2(�)
+ C

(‖�M1‖4L2(�)
+ 1

)‖∇M‖2L2(�)
+ ε‖�M‖2L2(�)

+ ε‖∇�M‖2L2(�)
. (4.34)

For the term I v
4 , using (2.3) we have

|I v
4 | ≤ ‖∇M2‖L4(�)‖�M‖L4(�)‖�v‖L2(�)

≤ ε‖�v‖2L2(�)
+ C‖∇M2‖2L4(�)

‖�M‖2L4(�)

≤ ε‖�v‖2L2(�)
+ C‖∇M2‖2L4(�)

‖�M‖L2(�)

(‖�M‖2L2(�)
+ ‖∇�M‖2L2(�)

) 1
2

≤ ε‖�v‖2L2(�)
+ C‖∇M2‖4L4(�)

‖�M‖2L2(�)
+ ε

(‖�M‖2L2(�)
+ ‖∇�M‖2L2(�)

)

≤ ε‖�v‖2L2(�)
+ C

(‖∇M2‖4L4(�)
+ 1

)‖�M‖2L2(�)
+ ε‖∇�M‖2L2(�)

. (4.35)

For I v
5 , using (2.6) and (2.9) we derive the estimate

|I v
5 | ≤ ε‖�v‖2L2(�)

+ C‖∇F‖2L4(�)
‖F1‖2L4(�)

+ C‖∇F1‖2L2(�)
‖F‖2L∞(�)

≤ ε‖�v‖2L2(�)
+ C‖F1‖2L4(�)

(‖∇F‖2L2(�)
+ ‖∇F‖L2(�)‖�F‖L2(�)

)

+ C‖∇F1‖2L2(�)
‖F‖L2(�)‖�F‖L2(�)

≤ ε‖�v‖2L2(�)
+ C‖∇F‖2L2(�)

‖F1‖2L4(�)
+ C‖∇F‖L2(�)‖�F‖L2(�)‖F1‖2L4(�)
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+ ε‖�F‖2L2(�)
+ C‖∇F1‖4L2(�)

‖F‖2L2(�)

≤ ε‖�v‖2L2(�)
+ 2ε‖�F‖2L2(�)

+ C‖∇F‖2L2(�)

(‖F1‖2L4(�)
+ ‖F1‖4L4(�)

)

+ C‖∇F1‖4L2(�)
‖F‖2L2(�)

. (4.36)

Similar to (4.36), the term I v
6 can be estimated as follows:

|I v
6 | ≤ ε‖�v‖2L2(�)

+ 2ε‖�F‖2L2(�)
+ C‖∇F‖2L2(�)

(‖F2‖2L4(�)
+ ‖F2‖4L4(�)

)

+ C‖∇F2‖4L2(�)
‖F‖2L2(�)

. (4.37)

Eventually, for the terms I v
7 and I v

8 , we obtain the estimates

|I v
7 | ≤ ‖∇H‖L2(�)‖M1‖L∞(�)‖�v‖L2(�) ≤ ε‖�v‖2L2(�)

+ C‖M1‖2L∞(�)‖∇H‖2L2(�)

(4.38)

and using (2.4)

|I v
8 | ≤ ‖�v‖L2(�)‖M‖L∞(�)‖∇H2‖L2(�)

≤ ε‖�v‖2L2(�)
+ C‖M‖L2(�)

(‖M‖2L2(�)
+ ‖�M‖2L2(�)

) 1
2 ‖∇H2‖2L2(�)

≤ ε‖�v‖2L2(�)
+ C‖∇H2‖2L2(�)

‖M‖2L2(�)
+ C‖∇H2‖2L2(�)

‖�M‖2L2(�)
. (4.39)

Next, we consider the difference of (1.1d) written for (v1, p1, F1, M1) and for
(v2, p2, F2, M2). After taking the gradient of the resulting equation, we test it with −∇�M .
This leads to the identity

1

2

d

dt

∫

�

|�M |2 +
∫

�

|∇�M |2

=
∫

�

∇(v · ∇)M1 · ∇�M +
∫

�

∇(v2 · ∇)M · ∇�M

−
∫

�

∇H · ∇�M +
∫

�

∇(− f (M1) + f (M2)
) · ∇�M =:

4∑
i=1

I Mi , (4.40)

where f is the function that was introduced in (3.35).
The term I M1 can be estimated as

|I M1 | ≤ ε‖∇�M‖2L2(�)
+ C‖∇v‖2L2(�)

‖∇M1‖2L∞(�) + C‖v‖2L4(�)
‖∇2M1‖2L4(�)

≤ ε‖∇�M‖2L2(�)
+ C‖∇v‖2L2(�)

‖∇M1‖2L∞(�) + C‖∇2M1‖4L4(�)
‖∇v‖2L2(�)

+ C‖v‖2L2(�)
,

(4.41)

where (2.8) was employed to estimate ‖v‖L4(�). Using (2.7) and Young’s inequality to
estimate ‖∇M‖2

L4(�)
, we obtain

|I M2 | ≤ ε‖∇�M‖2L2(�)
+ C‖∇v2‖2L4(�)

‖∇M‖2L4(�)
+ C‖v2‖2L∞(�)‖∇2M‖2L2(�)

≤ ε‖∇�M‖2L2(�)
+ C‖∇v2‖2L4(�)

(‖∇M‖2L2(�)
+ ‖�M‖2L2(�)

)

+ C‖v2‖2L∞(�)

(‖�M‖2L2(�)
+ ‖M‖2L2(�)

)

≤ ε‖∇�M‖2L2(�)
+ C‖∇v2‖2L4(�)

‖∇M‖2L2(�)
+ C‖∇v2‖2L4(�)

‖�M‖2L2(�)

+ C‖v2‖2L∞(�)‖�M‖2L2(�)
+ C‖v2‖2L∞(�)‖M‖2L2(�)

. (4.42)
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For I M3 , we obtain the simple estimate

|I M3 | ≤ ε‖∇�M‖2L2(�)
+ C‖∇H‖2L2(�)

. (4.43)

For the term I M4 , we compute the following estimate:

|I M4 | ≤ ε‖∇�M‖2L2(�)
+ ‖∇( f (M1) − f (M2)

)‖2L2(�)

≤ ε‖∇�M‖2L2(�)
+ C‖∇M‖2L2(�)

+ C‖∇M2‖2L∞(�)‖M‖2L2(�)
. (4.44)

Here, to infer the third line from the second one, we employed the relations

∇
(
f (M1) − f (M2)

)
= f ′(M1) (∇M1 − ∇M2) + (

f ′(M1) − f ′(M2)
)∇M2 a.e. in QT ,

| f ′(M1) − f ′(M2)| ≤ C |M | a.e. in QT .

The above inequality follows directly from the mean value theorem.
Now,weconsider the differenceof (1.1c)written for (v1, p1, F1, M1) and for (v2, p2, F2, M2).

Testing the resulting equation with −�F , we obtain

1

2

d

dt

∫

�

|∇F |2 + κ

∫

�

|�F |2

=
∫

�

(v · ∇)F1 · �F +
∫

�

(v2 · ∇)F · �F −
∫

�

∇vF1�F −
∫

�

∇v2F�F =:
4∑

i=1

I F4 .

(4.45)

Using (2.8) to estimate ‖v‖2
L4(�)

, we obtain

|I F1 | ≤ ε‖�F‖2L2(�)
+ C‖v‖2L4(�)

‖∇F1‖2L4(�)

≤ ε‖�F‖2L2(�)
+ C‖v‖L2(�)‖∇v‖L2(�)‖∇F1‖2L4(�)

≤ ε‖�F‖2L2(�)
+ C‖∇F1‖4L4(�)

‖∇v‖2L2(�)
+ C‖v‖2L2(�)

. (4.46)

The terms I F2 and I F3 can be estimated as follows:

|I F2 | ≤ ε‖�F‖2L2(�)
+ C‖v2‖2L∞(�)‖∇F‖2L2(�)

, (4.47)

|I F3 | ≤ ε‖�F‖2L2(�)
+ C‖F1‖2L∞(�)‖∇v‖2L2(�)

. (4.48)

Sincevi and Fi both satisfy a homogeneousDirichlet boundary condition, I F4 canbe estimated

similarly as I F1 . We thus have

|I F4 | ≤ ε‖�F‖2L2(�)
+ C‖∇v2‖4L4(�)

‖∇F‖2L2(�)
+ C‖F‖2L2(�)

. (4.49)

Now, fixing ε > 0 sufficiently small, adding the (4.28), (4.40), (4.45) and using the above
estimates for the terms I v

i , I
M
i , and I Fi to bound the right-hand side of the resulting equation,

we eventually obtain

1

2

d

dt
Ys(t) + Bs(t) ≤ CQs(t)Ys(t) + CRs(t)Y(t) + C

(‖M1‖2L∞(�) + 1
)‖∇H‖2L2(�)

,

(4.50)
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for almost all t ∈ [0, T ], where
Ys :=

∫

�

(|∇v|2 + |�M |2 + |∇F |2) , (4.51)

Bs := 1

2

∫

�

(
ν|�v|2 + |∇�M|2 + κ|�F |2) (4.52)

Qs := ‖∇M1‖2L∞(�) + ‖∇2M1‖4L4(�)
+ ‖∇F1‖4L4(�)

+ ‖F1‖2L∞(�) + ‖F1‖2L4(�)

+ ‖F1‖4L4(�)
+ ‖F2‖2L4(�)

+ ‖F2‖4L4(�)
+ ‖v2‖2L∞(�) + ‖∇v1‖4L2(�)

+ ‖∇v2‖4L2(�)

+ ‖∇v2‖4L4(�)
+ ‖∇M2‖4L4(�)

+ ‖∇v2‖2L4(�)
+ ‖∇H2‖2L2(�)

+ 1, (4.53)

Rs := ‖�M1‖4L2(�)
+ ‖∇M2‖2L∞(�) + ‖∇v2‖2L4(�)

+ ‖v2‖2L∞(�) + ‖∇F1‖4L2(�)
+ ‖∇F2‖4L2(�)

+ ‖∇H2‖2L2(�)
+ 1 (4.54)

and Y is as introduced in (4.23). Hence, Y can be bounded by means of estimate (4.1).
It remains to show that

‖Qs‖L1([0,T ]) ≤ C and ‖Rs‖L1([0,T ]) ≤ C . (4.55)

Using Sobolev’s embedding theorem as well as interpolation between Sobolev spaces, we
conclude that

‖∇2M1‖4L1(0,T ;L4(�))
≤ C‖∇2M1‖4L4(QT )

≤ C‖∇2M1‖4L4(0,T ;W 1/2,2(�))

≤ C‖M1‖4L4(0,T ;W 5/2,2(�))
≤ C‖M1‖2L∞(0,T ;W 2,2(�))

‖M1‖2L2(0,T ;W 3,2(�))
. (4.56)

We point out that the norms appearing on the right-hand side of this inequality can be
bounded by the norms of the initial data since (v1, F1, M1) is a strong solution. The terms
‖∇F1‖L4(QT ) and ‖∇v2‖L4(QT ) can be estimated analogously. All further summands of Qs

and Rs are relatively easy to deal with and hence one can show (4.55).
Eventually, we add the inequalities (4.50) and (4.22), and we apply Gronwall’s lemma on

the resulting estimate. Using (4.55) we conclude the estimate (4.26) and hence, the proof is
complete. ��

5 The control-to-state operator and its properties

In this section, we fix an arbitrary final time T > 0 as well as initial data v0 ∈ W 1,2
0,div(�),

F0 ∈ W 1,2
0 (�), M0 ∈ W 2,2

n (�). We further introduce several function spaces to simplify the
notation in the subsequent approach:

H := L2(0, T ;W 1,2(�)), (5.1)

V := [
L2(0, T ; V (�)) ∩ L∞(0, T ;W 1,2

0,div(�))
]× L2(0, T ;W 1,2(�))

× [
L2(0, T ;W 2,2(�)) ∩ L∞(0, T ;W 1,2

0 (�))
]

× [
L2(0, T ;W 3,2(�)) ∩ L∞(0, T ;W 2,2

n (�))
]
, (5.2)

S := L2(0, T ; L2(�)) × L2(0, T ; L2(�)) × L2(0, T ; L2(�)) × L2(0, T ; L2(�)). (5.3)

The spaceH can be considered as the space of admissible controls. In view of Theorem 3.2
we can define an operator mapping any admissible control H ∈ H to the corresponding
solution of the system (1.1), the so-called state.
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Definition 5.1 For any field H ∈ H, let (vH , pH , FH , MH ) ∈ V denote the unique strong
solution of the state equation (1.1). The operator

F : H → S, H 
→ (vH , pH , FH , MH ) (5.4)

is referred to as the control-to-state operator.

In the following, we will discuss some properties of the control-to-state operator F which
are essential to investigate the optimal control problems. We point out that actually F(H) ⊂
V ⊂ S. However, for some of the properties established below (e.g., Fréchet differentiability),
it is more suitable to use the larger space S in the definition of F .

5.1 Lipschitz continuity

We first observe that the control-to-state operator F is Lipschitz continuous with respect to
the norm of V. In fact, this is a direct consequence of the strong stability result presented in
Theorem 4.2.

Corollary 5.2 The control-to-state operator F is locally Lipschitz continuous with respect to
the norm of V. It even holds that for every R > 0, there exists a positive constant L R > 0
depending only on R, T ,� and the initial data such that for all H1, H2 ∈ Hwith ‖H1‖H ≤ R
and ‖H2‖H ≤ R it holds that

‖F(H1) − F(H2)‖V ≤ LR ‖H1 − H2‖H . (5.5)

5.2 Weak sequential continuity

We next show that the control-to-state operator F is weakly (sequentially) continuous with
respect to the norm of V, and the components H 
→ vH , H 
→ FH , and H 
→ MH are even
strongly weakly (sequentially) continuous with respect to the norm of C([0, T ]; L2(�)).

Proposition 5.3 The control-to-state operator F is sequentially continuous in the following
sense: For any sequence (Hk)k∈N ∈ H with Hk⇀H∗ in H as k → ∞ it holds that

F(Hk)⇀F(H∗) inV,

vHk → vH∗ , FHk → FH∗ , MHk → MH∗ in C([0, T ]; L2(�)) and a.e. in QT
(5.6)

as k → ∞.

Proof Let (Hk)k∈N ∈ H be an arbitrary sequence converging weakly inH to a limit H∗ ∈ H,
i.e., Hk⇀H∗ ∈ H in H as k → ∞. Since weakly convergent sequences are bounded,
there exists a radius R > 0 such that ‖Hk‖H ≤ R for all k ∈ N. We then infer from
(3.7) that the sequence F(Hk)k∈N is bounded in V. Hence, there exists a quadruplet F∗ =
(v∗, p∗, F∗, M∗) ∈ V such that

F(Hk) = (vHk , pHk , FHk , MHk )⇀(v∗, p∗, F∗, M∗) = F∗ inV as k → ∞ (5.7)

along a non-relabeled subsequence. Moreover, by a comparison argument in the strong for-
mulation (1.1), we infer that the time derivatives are also bounded uniformly in k. To be
precise, we obtain

∥∥∂tvHk

∥∥
L2(0,T ;L2(�))

+ ∥∥∂t FHk

∥∥
L2(0,T ;L2(�))

+ ∥∥∂t MHk

∥∥
L2(0,T ;L2(�))

≤ C (5.8)
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for some constant C > 0 depending only on T , R, � and the initial data. Using the
Banach–Alaoglu theorem and the Aubin–Lions lemma, we conclude, possibly after another
subsequence extraction, that

vHk → v∗, FHk → F∗, MHk → M∗ inC([0, T ]; L2(�)) and a.e. in QT . (5.9)

Due to these convergence properties, we can pass to the limit in the weak formulation of (1.1)
to verify thatF∗ = (v∗, p∗, F∗, M∗) is the uniqueweak solution of (1.1) to themagnetic field
H∗ and the given initial data. According to Theorem 3.2, the solutionF∗ = (v∗, p∗, F∗, M∗)
is actually strong, and hence, F∗ = F(H∗). Furthermore, this means that the limit does not
depend on the subsequence extractions and thus, the above convergence properties hold true
for the whole sequence. In view of (5.7) and (5.9), this completes the proof.

5.3 Fréchet differentiability

To prove Fréchet differentiability of the control-to-state operator, we linearize the state equa-
tion. For any H ∈ H, the corresponding state (vH , pH , FH , MH ), and general source terms
S1, S2 and S3 belonging to L2(0, T ; L2(�)), we consider the following system of equations:

∂t v̂ + (̂v · ∇)vH + (vH · ∇ )̂v + div
(
(∇ M̂ � ∇MH ) − F̂ FT

H

)

+ div
(
(∇MH � ∇ M̂) − FH F̂T

)
+ ∇ p̂

= ν�v̂ + (∇H)T M̂ + S1 in QT , (5.10a)

div v̂ = 0 in QT , (5.10b)

∂t F̂ + (̂v · ∇)FH + (vH · ∇)F̂ − ∇v̂FH − ∇vH F̂ = �F̂ + S2 in QT , (5.10c)

∂t M̂ + (̂v · ∇)MH + (vH · ∇)M̂

= �M̂ − 1

α2 (|MH |2 − 1)M̂ − 2

α2 (M̂ · MH )MH + S3 in QT , (5.10d)

v̂ = 0, F̂ = 0, ∂n M̂ = 0 on �T , (5.10e)

(̂v, M̂, F̂)(·, 0) = (0, 0, 0) in �. (5.10f)

We next show that the system (5.10) actually has a unique weak solution.

Proposition 5.4 Let H ∈ H be arbitrary, let (vH , pH , FH , MH ) denote the corresponding
state, and suppose that the source terms S1, S2 and S3 belong to L2(0, T ; L2(�)). Then the
system (5.10) has a unique weak solution
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v̂ ∈ W 1,2(0, T ; (W 1
0,div(�))′) ∩ L∞(0, T ; L2

div(�)) ∩ L2(0, T ;W 1,2
0,div(�));

p̂ ∈ L2(0, T ; L2(�));
F̂ ∈ W 1,2(0, T ; (W 1,2(�))′) ∩ L∞(0, T ; L2(�)) ∩ L2(0, T ;W 1,2

0 (�));
M̂ ∈ W 1,2(0, T ; L2(�)) ∩ L∞(0, T ;W 1,2(�)) ∩ L2(0, T ;W 2,2

n (�)).

(5.11)

Moreover, there exists a constant C > 0 depending only on T , �, ‖H‖H and the initial data
of the state, such that

∥∥(̂v, p̂, F̂, M̂)
∥∥
S

≤ C
3∑

i=1

‖Si‖L2(0,T ;L2(�)) . (5.12)
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The proof of this proposition will be presented in the Appendix.
We will now establish the Fréchet differentiability of the control-to-state operator. In

particular, the Fréchet derivative can be expressed as the unique weak solution of (5.10) with
a special choice of source terms.

Proposition 5.5 The control-to-state operatorF is Fréchet differentiable, i.e., for all H ∈ H,
there exists a linear and bounded operator

F ′(H) : H → S,

such that ∥∥F(H + Ĥ) − F(H) − F ′(H)
∥∥
S∥∥Ĥ∥∥

H

→ 0 as
∥∥Ĥ∥∥

H
→ 0.

The Frechet derivative at the point H ∈ H in direction Ĥ ∈ H is then given as
(
v′
H [Ĥ ], p′

H [Ĥ ], F ′
H [Ĥ ], M ′

H [Ĥ ]) := F ′(H)[Ĥ ] = (̂v, p̂, F̂, M̂) (5.13)

where the quadruplet (̂v, p̂, F̂, M̂) is the unique weak solution of the linearized system (5.10)
to the source terms

S1 = (∇ Ĥ)T MH , S2 = 0, S3 = Ĥ .

Proof Let us fix an arbitrary field H ∈ H. Moreover, let Ĥ ∈ H be arbitrary, and without
loss of generality, we assume that ‖H − Ĥ‖H < 1. Hence, defining R := ‖H‖H + 1, we
have ‖H‖H ≤ R and ‖Ĥ‖H ≤ R, and thus, Corollary 5.2 can be applied with Lipschitz
constant LR . Let now C > 0 denote generic constants that depends only on T , R, � and the
initial data, and may change their value from line to line. To prove Fréchet differentiability,
we have to consider the difference

(v, p, F, M) = (vH+Ĥ , pH+Ĥ , FH+Ĥ , MH+Ĥ ) − (vH , pH , FH , MH )

To express (v, p, F, M), we expand the nonlinear terms in the state equation. We obtain

(vH+Ĥ · ∇)vH+Ĥ − (vH · ∇)vH = (v · ∇)vH + (vH · ∇)v + R1,

div
(∇MH+Ĥ � ∇MH+Ĥ

)− div
(∇MH � ∇MH

) = div
(∇M � ∇MH

)

+ div
(∇MH � ∇M

)+ R2,

div(FH+Ĥ FT
H+Ĥ

) − div(FH FT
H ) = div(FFT

H ) + div(FH FT ) + R3,

[∇(H + Ĥ)
]T

MH+Ĥ − (∇H)T MH = (∇ Ĥ)T MH + (∇H)T M + R4,

(vH+Ĥ · ∇)FH+Ĥ − (vH · ∇)FH = (v · ∇)FH + (vH · ∇)F + R5,

∇vH+Ĥ FH+Ĥ − ∇vH FH = ∇vFH + ∇vH F + R6,

(vH+Ĥ · ∇)MH+Ĥ − (vH · ∇)MH = (v · ∇)MH + (vH · ∇)M + R7,

α−2(|MH+Ĥ |2 − 1
)
MH+Ĥ − α−2(|MH |2 − 1

)
MH = 2α−2(M · MH )MH

+ α−2(|MH |2 − 1
)
M + R8

with

R1 := [
(vH+Ĥ − vH ) · ∇](vH+Ĥ − vH ),

R2 := div
[∇(MH+Ĥ − MH ) � ∇(MH+Ĥ − MH )

]
,
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R3 := div
[
(FH+Ĥ − FH )(FH+Ĥ − FH )T

]
,

R4 := (∇ Ĥ)T (MH+Ĥ − MH ),

R5 := [
(vH+Ĥ − vH ) · ∇](FH+Ĥ − FH ),

R6 := (∇vH+Ĥ − ∇vH )(FH+Ĥ − FH ),

R7 := [
(vH+Ĥ − vH ) · ∇](MH+Ĥ − MH ),

R8 := α−2(|MH+Ĥ | − |MH |)2
+ α−2(|MH+Ĥ | + |MH |)(|MH+Ĥ | − |MH |)(MH+Ĥ − MH ).

By means of the estimates (3.7) from Theorem 3.2 and (5.5) from Corollary 5.2, we deduce
that

‖R8‖L2(0,T ;L2(�)) ≤ α−2
(
1 + ∥∥MH+Ĥ

∥∥
L∞(0,T ;W 2,2(�))

+ ∥∥MH
∥∥
L∞(0,T ;W 2,2(�))

)

· ∥∥MH+Ĥ − MH
∥∥
L∞(0,T ;L4(�))

∥∥MH+Ĥ − MH
∥∥
L2(0,T ;L4(�))

≤ C
∥∥Ĥ∥∥2

H
.

Proceeding similarly with Ri , i = 1, ..., 7, we conclude that
∥∥Ri

∥∥
L2(0,T ;L2(�))

≤ C
∥∥Ĥ∥∥2

H
for all i ∈ {1, ..., 8}. (5.14)

Let now (̂v, p̂, F̂, M̂) denote the unique weak solution of the system (5.10) to the source
terms

S1 = (∇ Ĥ)T MH , S2 = 0, S3 = Ĥ ,

and let (vR, pR, FR, MR) denote the unique weak solution of (5.10) to the source terms

S1 = −R1 − R2 + R3 + R4, S2 = −R5 + R6, S3 = −R7 − R8.

Due to linearity, and recalling the above considerations, we infer that both (v, p, F, M) and
the sum (̂v, p̂, F̂, M̂)+ (vR, pR, FR, MR) are a weak solution of (5.10) to the source terms

S1 = −R1 − R2 + R3 + R4 + (∇ Ĥ)T MH , S2 = −R5 + R6, S3 = −R7 − R8 + Ĥ .

Because of uniqueness of the weak solution, this directly implies that

(vH+Ĥ , pH+Ĥ , FH+Ĥ , MH+Ĥ ) − (vH , pH , FH , MH ) = (̂v, p̂, F̂, M̂) + (vR, pR, FR, MR).

Consequently, recalling (5.14) and the estimate (5.12) from Proposition 5.4, we obtain
∥∥F(H + Ĥ) − F(H) − (̂v, p̂, F̂, M̂)

∥∥
S∥∥Ĥ∥∥

H

=
∥∥(vR, pR, FR, MR)

∥∥
S∥∥Ĥ∥∥

H

≤ C
∥∥Ĥ∥∥

H
→ 0

as ‖Ĥ‖H → 0. This means that the operator F is Fréchet differentiable at the point H ∈ H,
and the Fréchet derivative in any direction Ĥ ∈ H is given by F ′(H)[Ĥ ] = (̂v, p̂, F̂, Ĥ).
Thus, the proof is complete.

6 Optimal control via unconstrained external magnetic fields

In this section we investigate an optimal control problem where the control is represented
by the external magnetic field H ∈ H (see (5.1) for the definition of H). As no other
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constraints are imposed on the control H , the optimal control problem can be classified as
an unconstrained optimization problem.

We fix arbitrary T > 0, v0 ∈ W 1,2
0,div(�), F0 ∈ W 1,2

0 (�), M0 ∈ W 2,2
n (�). The goal is to

control the strong solution (v, p, F, M) of (1.1) in such a way that the functions v, F and M
are close to given desired functions vd , Fd , and Md , which belong to L2(0, T ; L2(�)), in a
certain sense. To formulate this more precisely, let a1, a2, a3 ≥ 0, λ > 0 be any given real
numbers. We intend to minimize the cost functional

I (v, p, F, M, H) := a1
2

‖v − vd‖2L2(QT )
+ a2

2
‖F − Fd‖2L2(QT )

+ a3
2

‖M − Md‖2L2(QT )
+ λ

2
‖H‖2

H

(6.1)

subject to the constraints

• H ∈ H, i.e., H is an admissible control;
• (v, p, F, M) is the unique strong solution of the state Eq. (1.1) to the control H .

By means of the control-to-state operator F , we can equivalently formulate this problem as
{
Minimize J (H) := I (F(H), H),

subject to H ∈ H.
(6.2)

This is referred to as the reduced formulation of the optimal control problem, and J is called
the reduced cost functional.

Exploiting the properties of the control-to-state operator established in Sect. 5, wewill first
show in Sect. 6.1 that the optimal control problem has at least one (globally) optimal solution.
Of course, since our optimization problem is non-convex (asF is a nonlinear operator), such
an optimal solutionwill usually not be unique. Theremight bemore than one globally optimal
solution but also several locally optimal solutions. In general, due to the non-convex structure,
numerical methods will not be able to detect a globally optimal solution but only find a local
one. To this end we will derive a characterization of locally optimal solutions by necessary
first-order optimality conditions in Sect. 6.2.

6.1 Existence of an optimal control

In the following, we will frequently use the spaces H, V and S that were introduced in
(5.1)–(5.3).

Theorem 6.1 The optimal control problem (6.2) has at least one (globally) optimal solution
H∗ ∈ H, i.e., it holds that J (H∗) ≤ J (H) for all H ∈ H.

Proof To prove the assertion, we employ the direct method of the calculus of variations. We
first notice that J is nonnegative, and thus, the infimum

J ∗ := inf
H∈H J (H)

exists. Consequently, there exists a minimizing sequence (Hk)k∈N such that J (Hk) → J ∗ as
k → ∞. In particular, this means that

‖Hk‖H ≤ 2

λ
J (Hk) ≤ 2

λ

(
J ∗ + 1

)
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if k ∈ N is sufficiently large. Hence, there exists a field H∗ ∈ H such that Hk⇀H∗ in H as
k → ∞ along a non-relabeled subsequence. From Proposition 5.3 we infer that F(Hk) →
F(H∗) in S. Eventually, due to weak lower semicontinuity of the norms, we obtain

J (H∗) = I
(F(H∗), H∗) ≤ lim inf

k→∞ I
(F(Hk), Hk

) = lim
k→∞J (Hk) = J ∗

which yields J ∗ = J (H∗) as J ∗ was defined as the infimum. This means that J attains its
minimum at H∗ ∈ H and thus, the proof is complete.

6.2 First-order necessary optimality conditions

We now derive first-order necessary optimality conditions for locally optimal solutions (i.e.,
local minimizers of the cost functional). Since the control-to-state operator F is Fréchet
differentiable, so is the cost functional J due to the chain rule. The Fréchet derivative at any
point H ∈ H can be written as

J ′(H)[Ĥ ] = λ
(∇H ,∇ Ĥ

)
L2(QT )

+ λ
(
H , Ĥ

)
L2(QT )

+ a1
(
vH − vd , v

′
H [Ĥ ] )L2(QT )

+ a2
(
FH − Fd , F

′
H [Ĥ ] )L2(QT )

+ a3
(
MH − Md , M

′
H [Ĥ ] )L2(QT )

(6.3)

for all directions Ĥ ∈ H. If H ∈ H is a locally optimal solution, it directly follows that the
derivative of J at H necessarily vanishes, i.e.,

J ′(H)[Ĥ ] = 0 for all Ĥ ∈ H. (6.4)

Note that (6.3) does not provide an explicit description of the derivative J ′(H) since in some
of the summands, the direction Ĥ appears only implicitly within the inner products. However,
many computational methods for solving such optimal control problems numerically require
an explicit representation of the derivative to compute a suitable descent direction. We notice
that if we could find an adjoint operator

(F ′(H)
)∗ = (

(v′
H )∗, (p′

H )∗, (F ′
H )∗, (M ′

H )∗
)

we could rewrite the condition (6.4) as

J ′(H)[Ĥ ] = λ
(∇H ,∇ Ĥ

)
L2(QT )

+ λ
(
H , Ĥ

)
L2(QT )

+
(
a1(v

′
H )∗[vH − vd ] + a2(F

′
H )∗[FH − Fd ] + a3(M

′
H )∗[MH − Md ] , Ĥ

)
L2(QT )

.

(6.5)

Following a standard approach in optimal control theory, we intend to express the first
argument of the inner product in the second line of (6.5) by means of so-called adjoint
variables. They can be constructed as the solution of a certain adjoint system, which can be
derived via the formal Lagrangian technique (see, e.g., [37]). We will write (w, q,G, N )

to denote the adjoint variables. For any given field H ∈ H and the corresponding state
F(H) = (vH , pH , FH , MH ), our adjoint system reads as
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∂tw + (vH · ∇)w − (∇vH )T w + ν�w + ∇q

= (∇FH )T G + div(GFT
H ) + (∇MH )T N − a1(vH − vd) in QT , (6.6a)

divw = 0 in QT , (6.6b)

∂tG + (vH · ∇)G + (∇vH )T G + �G = 2Dw FH − a2(FH − Fd) in QT , (6.6c)

∂t N + (vH · ∇)N − 2α−2(MH · N )MH − α−2(|MH |2 − 1
)
N + �N

= 2 div(∇MH Dw) − ∇H w − a3(MH − Md) in QT , (6.6d)

w = 0, G = 0, ∂nN = 0 on �T , (6.6e)

(w,G, N )(·, T ) = (0, 0, 0) in �. (6.6f)

Here

Dw := 1

2

(∇w + (∇w)T
)

denotes the symmetrized gradient of the functionw.We further point out that the term (∇F)T

stands for the transpose of the associated linear map, and thus

[
(∇FH )T G

]
i =

2∑
j,k=1

[∂i FH ] jk G jk, i = 1, ..., d.

We first need to ensure that the adjoint system (6.6) is well-posed. The following propo-
sition is a direct consequence of Proposition 8.1 which is established in the Appendix.

Proposition 6.2 Let H ∈ H be arbitrary with corresponding state F(H) = (vH , pH ,

FH , MH ). Then the system (6.6) has a unique weak solution (w, q,G, N ) having the regu-
larity
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w ∈ L2(0, T ; V (�)) ∩ L∞(0, T ;W 1,2
0,div(�)) ∩ W 1,2(0, T ; L2

div(�));
q ∈ L2(0, T ;W 1,2(�));
G ∈ L2(0, T ;W 2,2(�)) ∩ L∞(0, T ;W 1,2

0 (�)) ∩ W 1,2(0, T ; L2(�));
N ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ;W 1,2(�)) ∩ L

3
2 (0, T ;W 2, 32 (�)) ∩ W 1, 32 (0, T ; L 3

2 (�)).

(6.7)

This weak solution (w, q,G, N ) is called the adjoint state or costate associated with the field
H and the state F(H).

Similar to the definition of the control-to-state operatorF , the abovewell-posedness result
allows us to define an operator mapping any field H onto its corresponding adjoint state.

Definition 6.3 For any field H ∈ H, letF(H) = (vH , pH , FH , MH ) denote the correspond-
ing state, and let (wH , qH ,GH , NH ) denote the corresponding adjoint state. We define

A : H → S, H 
→ (wH , qH ,GH , NH ) (6.8)

which we refer to as the control-to-costate operator.

The adjoint variables can now be used to provide an explicit representation of the Fréchet
derivative of J . This description can then be used to reformulate the first-order necessary
optimality condition (6.4).
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Theorem 6.4 For any H ∈ H, let F(H) = (vH , pH , FH , MH ) denote the corresponding
state and let A(H) = (wH , qH ,GH , NH ) denote the corresponding adjoint state.

(a) The Fréchet derivative of the cost functional J at any point H ∈ H satisfies

J ′(H)[Ĥ ] = λ
(∇H ,∇ Ĥ

)
L2(QT )

+ λ
(
H , Ĥ

)
L2(QT )

+ (
NH − ∇MHwH , Ĥ

)
L2(QT )

(6.9)

for all Ĥ ∈ H, meaning that

J ′(H) = −λ�NH + λH + NH − ∇MHwH ∈ H
′, (6.10)

where �N is to be understood as the Laplace–Neumann operator.
(b) Suppose that H∗ ∈ H is a locally optimal solution of the optimal control problem (6.2).

Then it necessarily holds that

λ
(∇H∗,∇ Ĥ

)
L2(QT )

+ λ
(
H∗, Ĥ

)
L2(QT )

+ (
NH∗ − ∇MH∗wH∗ , Ĥ

)
L2(QT )

= 0
(6.11)

for all Ĥ ∈ H. This entails that H∗ ∈ L2(0, T ;W 2,2(�)) is a strong solution of the
semilinear vector-valued Helmholtz equation

−�H∗ + H∗ = 1

λ

(∇MH∗wH∗ − NH∗
)

in QT , (6.12a)

∂nH
∗ = 0 on�T . (6.12b)

Remark 6.5 (a) Provided that the global strong-well posedness of system (1.1) established
in Theorem 3.2 and the stability estimates in Theorems 4.1 and 4.2 could be established in
the three-dimensional setting, the results in Section 5 would also hold true. Moreover, the
optimal control problem (6.2) could then also be investigated in three dimensions and the
results of the present section would still be valid as they do not depend on the dimension. In
particular, the optimality conditions presented in Theorem 6.4 would remain the same.

(b) In principle, the theory of Sects. 5 and 6 would also remain true if H =
L2(0, T ;W 1,2(�)) were replaced by a linear subspace of L2(0, T ;W 1,2(�)). The only
exceptions are the representations (6.10) and (6.12). They would not remain valid since
under additional linear restrictions on the controls we would not recover the homogeneous
Neumann boundary condition from the variational formulations (6.9) and (6.11), respectively.

Proof of Theorem 6.4 To prove (a), let H , Ĥ ∈ H be arbitrary. For more clarity, we will write

(v, p, F, M) := F(H), (w, q,G, N ) := A(H), (̂v, p̂, F̂, M̂) := F ′(H)[Ĥ ].
Then, according to (6.3), the Fréchet derivative of the cost functional J at the point H in
direction Ĥ can be expressed as

J ′(H)[Ĥ ] = λ
(∇H ,∇ Ĥ

)
L2(QT )

+ λ
(
H , Ĥ

)
L2(QT )

+ (
a1(v − vd), v̂

)
L2(QT )

+ (
a2(F − Fd), F̂

)
L2(QT )

+ (
a3(M − Md), M̂

)
L2(QT )

.

Replacing the terms a1(v − vd), a2(F − Fd) and a3(M − Md) by means of the adjoint
Eqs. (6.6a), (6.6c) and (6.6d), we obtain
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J ′(H)[Ĥ ] = λ
(∇H ,∇ Ĥ

)
L2(QT )

+ λ
(
H , Ĥ

)
L2(QT )

−
∫ T

0

∫

�

(
∂tw + (v · ∇)w − (∇v)T w + ν�w + ∇q − (∇F)T G

− div(GFT ) − (∇M)T N
)

· v̂ dx dt

−
∫ T

0

∫

�

(
∂tG + (v · ∇)G + (∇v)T G + �G − 2Dw F

)
· F̂ dx dt

−
∫ T

0

∫

�

(
∂t N + (v · ∇)N − 2α−2(M · N )M − α−2(|M |2 − 1

)
N

+ �N − 2 div(∇MH Dw) − ∇H w
)

· M̂ dx dt .

Recalling that the functions (w, q,G, N ) further satisfy (6.6b), (6.6e) and (6.6f), whereas
the functions (̂v, p̂, F̂, M̂) fulfill (5.10b), (5.10e) and (5.10f) we conclude via integration by
parts that

J ′(H)[Ĥ ] = λ
(∇H ,∇ Ĥ

)
L2(QT )

+ λ
(
H , Ĥ

)
L2(QT )

+
∫ T

0

∫

�

(
∂t v̂ + (̂v · ∇)v + (v · ∇ )̂v + div

(
(∇ M̂ � ∇M) − F̂ FT )

+ div
(
(∇M � ∇ M̂) − F F̂T )+ ∇ p̂ − (∇H)T M̂

)
· w + ν∇v̂ · ∇w dx dt

+
∫ T

0

∫

�

(
∂t F̂ + (̂v · ∇)F + (v · ∇)F̂ − ∇v̂F − ∇v F̂

)
· G + ∇ F̂ · ∇G dx dt

+
∫ T

0

∫

�

(
∂t M̂ + (̂v · ∇)M + (v · ∇)M̂ − �M̂ + 1

α2 (|M |2 − 1)M̂

+ 2

α2 (M̂ · M)M
)

· N dx dt .

Since, according to Proposition 5.5, (̂v, p̂, F̂, M̂) is the uniqueweak solution of the linearized
system (5.10) with S1 = (∇ Ĥ)T M , S2 = 0 and S3 = Ĥ , the integrands in the above identity
can be replace by means of (5.10a), (5.10c) and (5.10d). We eventually obtain

J ′(H)[Ĥ ] = λ
(∇H ,∇ Ĥ

)
L2(QT )

+ λ
(
H , Ĥ

)
L2(QT )

+ (
N − ∇Mw, Ĥ

)
L2(QT )

.

Recalling (6.4), this proves (6.9), and the representation (6.10) directly follows.
To prove (b), we assume that H∗ ∈ H is a locally optimal solution. Hence, according to

(6.4), we know that J ′(H∗)[Ĥ ] = 0 for all Ĥ ∈ H. Expressing J ′(H∗)[Ĥ ] via (6.9) (written
for H∗ instead of H ), we obtain (6.11). This means that H∗ is a weak solution of the problem
(6.12). Recalling the regularity of the state variables (see (3.6)) and the adjoint variables (see
(6.7)), we infer that the right-hand side of the Helmholtz Eq. (6.12a) belongs to L2(QT ).
Using elliptic regularity theory, we conclude that H∗ ∈ L2(0, T ;W 2,2(�)). This means that
H∗ is actually a strong solution of (6.12). Thus, (b) is established and the proof is complete.

7 Optimal control via fixedmagnetic field coils

In real applications, it might not be possible to create themagnetic field ad libitum as assumed
in Sect. 6. Therefore, in this section we investigate an optimal control problem where the
external magnetic field is not the control itself but rather it is generated by a finite number
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n ∈ N of fixed magnetic field coils. This means that the geometry (i.e., shape and position) of
the field coils is not going to be optimized, but only the intensities of their generatedmagnetic
fields are to be adjusted.

We assume that the magnetic field of the i-th field coil is given as

Hi : QT → R
3, (x, t) 
→ Hi (x, t) := ui (t)hi (x).

Here, the factor

ui : [0, T ] → R, t 
→ ui (t)

is related to the intensity of the magnetic field, i.e., is proportional to the current of electricity
that flows through the i-th coil. The factor

hi : � → R
3, x 
→ hi (x).

is related to the geometry of the i-th field coil. It is a common technique in physics and engi-
neering science to compute the function hi via the Biot–Savart law which is a magnetostatic
approximation of Maxwell’s equations. For more details, we refer the reader to [27] where
such an ansatz was made for the optimal control of a plasma via external magnetic field coils.

By linear superposition, the total external magnetic field H can be expressed as

H(x, t) =
n∑

i=1

ui (t) hi (x)

for all t ∈ [0, T ] and x ∈ �.
In the optimal control problem,we assume that the hi , i = 1, ..., n are prescribed functions

that belong to H1(�;R3). The vector u = (u1, ..., uN ) of intensity functions will now
represent the control parameters. It is supposed to belong to the set of admissible control
parameters which is defined as

Uad :=
{
u ∈ L2(0, T ;Rn)

∣∣∣∣∣
ai (t) ≤ ui (t) ≤ bi (t) for all i ∈ {1, ..., n}
and almost all t ∈ [0, T ]

}
, (7.1)

where a, b ∈ L2(0, T ;Rn) are given functions with ai ≤ bi for all i ∈ {1, ..., n} and almost
all t ∈ [0, T ]. Note that the set Uad is a bounded, closed, convex subset of L2(0, T ;Rn) and
thus, it is weakly sequentially compact. Due to the boundedness of Uad, there exists a radius
r > 0 (depending on a and b) such that

Uad ⊂ Ur := {
u ∈ L2(0, T ;Rn) | ‖u‖L2(0,T ;Rn) < r

}
.

This further implies the existence of a radius R > 0 (depending on r and hi , i = 1, ..., n)
such that the corresponding field H ∈ H satisfies ‖H‖H < R.

To formulate and analyze the optimal control problem, we first define several operators.

Definition 7.1 We define the operators

C : Ur → H, C(u)(x, t) =
n∑

i=1

ui (t) hi (x), (7.2)

F̃ := F ◦ C : Ur → S, Ã := A ◦ C : Ur → S. (7.3)

Note that the operator C is linear and bounded. Hence, the results on F established in
Section 3 can easily be adapted to the operator F̃ .
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We now fix arbitrary T > 0, v0 ∈ W 1,2
0,div(�), F0 ∈ W 1,2

0 (�), M0 ∈ W 2,2
n (�). Moreover,

let vd , Fd , and Md be given functions belonging to L2(0, T ; L2(�)), and let a1, a2, a3 ≥ 0
and λ > 0 be given real numbers. In the spirit of Sect. 6, we now want to study the following
(reduced) optimal control problem:

{
Minimize J̃ (u) := Ĩ (F̃(u), u),

subject to u ∈ Uad.
(7.4)

Here, the functional I is defined as

Ĩ (v, p, F, M, u) := a1
2

‖v − vd‖2L2(QT )
+ a2

2
‖F − Fd‖2L2(QT )

+ a3
2

‖M − Md‖2L2(QT )
+ λ

2
‖u‖2L2(0,T ;Rn)

.

(7.5)

As in Sect. 6, we first prove that our optimal control problem (7.4) has at least one glob-
ally optimal solution. Then we derive first-order necessary optimality conditions for locally
optimal solutions.

7.1 Existence of an optimal control

Theorem 7.2 The optimal control problem (7.4) has at least one (globally) optimal solution
u∗ ∈ Uad, i.e., it holds that J̃ (u∗) ≤ J̃ (u) for all u ∈ Uad.

Proof We recall that the operator C is linear and bounded, and the control-to-state operator is
weakly sequentially continuous (see Proposition 5.3). It is thus easy to see that the operator
F̃ is also weakly sequentially continuous. As the setUad is a bounded, closed, convex subset
of the Hilbert space L2(0, T ;Rn), it follows that Uad is weakly sequentially compact (see
[37,Thm. 2.11]). Hence, the proof can be completed by proceeding exactly as in the proof of
Theorem 6.1.

7.2 First-order necessary optimality conditions

Theorem 7.3 For any u ∈ Ur , let F̃(u) = (vC(u), pC(u), FC(u), MC(u)) denote the corre-
sponding state and let Ã(u) = (wC(u), qC(u),GC(u), NC(u)) denote the corresponding adjoint
state.

We define the operator

D : Ur → L2(0, T ;Rn), u 
→ D(u) := (D1(u), ...,Dn(u)
)T

with Di (u) :=
∫

�

(
NC(u) − ∇MC(u)wC(u)

) · hi dx, i = 1, ..., n.

Then the following holds:

(a) The Fréchet derivative of the cost functional J̃ at any point u ∈ Ur satisfies

J̃ ′(u)[̂u] =
∫ T

0

(
λu + D(u)

) · û dt for all û ∈ L2(0, T ;Rn), (7.6)

meaning that

J̃ ′(u) = λu + D(u) ∈ L2([0, T ];Rn). (7.7)
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(b) Suppose that u∗ ∈ Uad is a locally optimal solution of the optimal control problem (6.2).
Then for u∗ necessarily satisfies the variational inequality

∫ T

0

(
λu∗ + D(u∗)

) · (u − u∗) dt ≥ 0 for all u ∈ Uad. (7.8)

As a consequence, u∗ can be described by the L2([0, T ];Rn)-orthogonal projection of
−λ−1D(u∗) onto the set Uad. This means that for all i ∈ {1, ..., n}, the i-th component
u∗
i can be expressed by the projection formula

u∗
i (t) = P[ai (t),bi (t)]

(
−1

λ
Di
(
u∗(t)

))
for almost all t ∈ [0, T ]. (7.9)

Here, for any real numbers c ≤ d, the function P[c,d] denotes the projection of R onto
the interval [c, d] that is given by

P[c,d](s) = max
{
c,min{s, d}}, s ∈ R.

Remark 7.4 As already discussed in Remark 6.5, the optimal control problem (7.4) could also
be investigated in three dimensions provided that the global strongwell-posedness of the state
Eq. (1.1) would be known and that the strong stability estimate could also be established. In
this case, the necessary optimality conditions presented in Theorem 7.3 would remain the
same.

Proof of Theorem 7.3 Since C is a linear and bounded operator, it is continuously Fréchet
differentiable with C′(u)[̂u] = C(̂u) for all u ∈ Ur and û ∈ L2(0, T ;Rn). By the chain rule,
this implies the functional J̃ is also continuously Fréchet differentiable. For any arbitrary
u ∈ Ur and û ∈ L2(0, T ;Rn), we have

J̃ ′(u)[̂u] = a1
(
vC(u) − vd , v

′
C(u)[C(̂u)])L2(QT )

+ a2
(
FC(u) − Fd , F

′
C(u)[C(̂u)])L2(QT )

+ a3
(
MC(u) − Md , v

′
C(u)[C(̂u)])L2(QT )

+ λ
(
u, û

)
L2(0,T ;Rn)

.

We now proceed exactly as in the proof of Theorem 6.4 to express the first three summands
on the right-hand side by means of the adjoint state. We obtain

J̃ ′(u)[̂u] = (
NC(u) − div(wC(u))MC(u) − ∇MC(u)wC(u), C(̂u)

)
L2(QT )

+ λ
(
u, û

)
L2(QT )

=
∫ T

0
λu · û +

n∑
i=1

[∫

�

(
NC(u) − ∇MC(u)wC(u)

) · hi dx ûi

]
dt

=
∫ T

0

(
λu + D(u)

) · û dt,

which proves (a).
To prove (b), we assume that u∗ ∈ Uad is a locally optimal solution. Since Uad is convex,

we know that for all u ∈ Uad and τ ∈ [0, 1], it holds that u∗ + τ(u − u∗) ∈ Uad. Let now
u ∈ Uad be arbitrary. As u∗ is a local minimizer of the cost functional J̃ , we have

J̃
(
u∗ + τ(u − u∗)) − J̃ (u∗) ≥ 0

for all u ∈ Uad and all sufficiently small t > 0. This implies that

0 ≤ d

dτ
J̃
(
u∗ + τ(u − u∗))

∣∣∣
τ=0

= J̃ ′(u∗ + τ(u − u∗))[u − u∗]
∣∣∣
τ=0

= J̃ ′(u∗)[u − u∗].
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Due to the representation (7.6), this proves (7.8). It is a well-known result of optimal control
theory, that u∗ can be expressed as the orthogonal projection onto the set of admissible control
parameters. We refer to [37,pp. 67–71] where such a projection formula was derived in a
similar situation. Hence, all assertions of (b) are established and thus, the proof is complete.
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Appendix

Well-posedness of the linearized system

Proof of Proposition 5.4 The existence of a weak solution can be established rigorously via
a standard Galerkin approximation where some of the arguments involved in the proof
of Theorem 3.1 can also be applied. Since the system is linear and the involved solution
(vH , pH , FH , MH ) of the state equation is sufficiently regular, the convergence of suitable
approximate solutions to a weak solution of the system (5.10) can be shown very easily. For
the same reason, the uniqueness of a weak solution can be established without any problems.

Therefore, we will just formally establish the a priori estimates that would be the most
significant part of a Galerkin approach. In the following, ε > 0 is any real number that will
be adjusted later. Moreover, C stands for a generic positive constant that depends on ε, T ,
�, ‖H‖L2(0,T ;W 1,2(�), and the initial data of the state (vH , pH , FH , MH ), and may change
its value from line to line. Testing (5.10a) by v̂, (5.10c) by F̂ , and (5.10d) by M̂ and −�M̂ ,
respectively, we derive the following identities:

1

2

d

dt

∫

�

|̂v|2 + ν

∫

�

|∇v̂|2

= −
∫

�

(̂v · ∇)vH · v̂ −
∫

�

(vH · ∇ )̂v · v̂ −
∫

�

div(∇ M̂ � ∇MH ) · v̂ +
∫

�

div(F̂ FT
H ) · v̂

−
∫

�

div(∇MH � ∇ M̂) · v̂ +
∫

�

div(FH F̂T ) · v̂ +
∫

�

(∇H)T M̂ · v̂ +
∫

�

S1 · v̂ =:
8∑

i=1

I v̂
i ,

(8.1)
1

2

d

dt

∫

�

|F̂ |2 +
∫

�

|∇ F̂ |2

=
∫

�

−(̂v · ∇)FH · F̂ −
∫

�

(vH · ∇)F̂ · F̂ +
∫

�

∇v̂FH · F̂ +
∫

�

∇vH F̂ · F̂ +
∫

�

S2 · F̂ =:
5∑

i=1

I F̂i ,

(8.2)
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1

2

d

dt

∫

�

|M̂ |2 +
∫

�

|∇ M̂|2

= −
∫

�

(̂v · ∇)MH · M̂ −
∫

�

(vH · ∇)M̂ · M̂ −
∫

�

1

α2 (|MH |2 − 1)M̂ · M̂

−
∫

�

2

α2 (M̂ · MH )MH · M̂ +
∫

�

S3 · M̂ · M̂ =:
5∑

i=1

I M̂i , (8.3)

1

2

d

dt

∫

�

|∇ M̂ |2 +
∫

�

|�M̂ |2

=
∫

�

(̂v · ∇)MH · �M̂ +
∫

�

(vH · ∇)M̂ · �M̂ +
∫

�

1

α2 (|MH |2 − 1)M̂ · �M̂

+
∫

�

2

α2 (M̂ · MH )MH · �M̂ −
∫

�

S3 · �M̂ =:
10∑
i=6

I M̂i . (8.4)

In the following, we estimate the terms I v̂
i , I F̂i and I M̂i for all indices i . We first estimate the

terms appearing in the right-hand side of (8.1). Using (2.8) to estimate ‖̂v‖L4(�), we find that

|I v̂
1 | ≤ C‖∇vH‖L2(�)‖̂v‖2L4(�)

≤ C‖∇vH‖L2(�)‖̂v‖L2(�)‖∇v̂‖L2(�)

≤ ε‖∇v̂‖2L2(�)
+ C‖∇vH‖2L2(�)

‖̂v‖2L2(�)
, (8.5)

and

|I v̂
2 | ≤ C‖vH‖L4(�)‖̂v‖L4(�)‖∇v̂‖L2(�) ≤ ε‖∇v̂‖2L2(�)

+ C‖vH‖2L4(�)
‖̂v‖2L4(�)

≤ 2ε‖∇v̂‖2L2(�)
+ C‖vH‖4L4(�)

‖̂v‖2L2(�)
. (8.6)

For the third term, we obtain

|I v̂
3 | ≤ C‖∇2M̂‖L2(�)‖∇MH‖L4(�)‖̂v‖L4(�) + C‖∇ M̂‖L4(�)‖∇2MH‖L2(�)‖̂v‖L4(�)

≤ ε‖∇2M̂‖2L2(�)
+ C‖∇MH‖2L4(�)

‖̂v‖L2(�)‖∇v̂‖L2(�)

+ C‖∇ M̂‖L2(�)

(
‖∇ M̂‖2L2(�)

+ ‖�M̂‖2L2(�)

) 1
2

+ C‖∇2MH‖2L2(�)
‖̂v‖L2(�)‖∇v̂‖L2(�)

≤ 2ε‖�M̂‖2L2(�)
+ C‖M̂‖2L2(�)

+ 2ε‖∇v̂‖2L2(�)
+ C‖∇ M̂‖2L2(�)

+ C
(
‖∇MH‖4L4(�)

+ ‖∇2MH‖4L2(�)

)
‖̂v‖2L2(�)

. (8.7)

Here, we used (2.7) and (2.8) to estimate ‖∇ M̂‖L4(�) and ‖̂v‖L4(�), and we applied elliptic
regularity theory. We further get

|I v̂
4 | ≤ C‖F̂‖L4(�)‖∇FH‖L2(�)‖̂v‖L4(�) + C‖∇ F̂‖L2(�)‖FH‖L4(�)‖̂v‖L4(�)

≤ C‖∇FH‖2L2(�)
‖F̂‖L2(�)‖∇ F̂‖L2(�) + C ‖̂v‖L2(�)‖∇v̂‖L2(�) + ε‖∇ F̂‖2L2(�)

(8.8)

+ C‖FH‖2L4(�)
‖̂v‖L2(�)‖∇v̂‖L2(�)

≤ 2ε‖∇ F̂‖2L2(�)
+ 2ε‖∇v̂‖2L2(�)

+ C‖∇FH‖4L2(�)
‖F̂‖2L2(�)

+ C(1 + ‖FH‖4L4(�)
)‖̂v‖2L2(�)

, (8.9)
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where both ‖F̂‖L4(�) and ‖̂v‖L4(�) are estimated by means of (2.8). Next one observes that
|I v̂
5 | and |I v̂

6 | admit the same estimates as that of (8.7) and (8.8) respectively. Employing (2.6)
to estimate ‖M̂‖L4(�), we obtain

|I v̂
7 | ≤ C‖∇H‖L2(�)‖M̂‖L4(�)‖̂v‖L4(�)

≤ C‖∇H‖L2(�)

(‖M̂‖2L2(�)
+ ‖∇ M̂‖2L2(�)

)+ C‖∇H‖L2(�)‖̂v‖L2(�)‖∇v̂‖L2(�)

≤ C‖∇H‖L2(�)‖M̂‖2L2(�)
+ C‖∇H‖L2(�)‖∇ M̂‖2L2(�)

+ C‖∇H‖2L2(�)
‖̂v‖2L2(�)

+ ε‖∇v̂‖2L2(�)
. (8.10)

Eventually, for the eighth term, we simply have

|I v̂
8 | ≤ C‖S1‖2L2(�)

+ C‖v‖2L2(�)
. (8.11)

We next estimate the terms appearing in the right-hand side of (8.2). Using (2.8) to estimate
‖F̂‖L4(�), we deduce the estimate

|I F̂1 | ≤ C ‖̂v‖L2(�)‖∇FH‖L4(�)‖F̂‖L4(�)

≤ C‖∇FH‖2L4(�)
‖̂v‖2L2(�)

+ C‖F̂‖L2(�)‖∇ F̂‖L2(�)

≤ C‖∇FH‖2L4(�)
‖̂v‖2L2(�)

+ C‖F̂‖2L2(�)
+ ε‖∇ F̂‖2L2(�)

(8.12)

For the second term, we get

|I F̂2 | ≤ C‖∇ F̂‖L2(�)‖vH‖L4(�)‖F̂‖L4(�)

≤ C‖vH‖2L4(�)
‖F̂‖2L4(�)

+ ε‖∇ F̂‖2L2(�)

≤ C‖vH‖2L4(�)
‖F̂‖L2(�)‖∇ F̂‖L2(�) + ε‖∇ F̂‖2L2(�)

≤ 2ε‖∇ F̂‖2L2(�)
+ C‖vH‖4L4(�)

‖F̂‖2L2(�)
. (8.13)

We further obtain

|I F̂3 | ≤ C‖∇v̂‖L2(�)‖FH‖L4(�)‖F̂‖L4(�)

≤ ε‖∇v̂‖2L2(�)
+ C‖FH‖2L4(�)

‖F̂‖2L4(�)

≤ ε‖∇v̂‖2L2(�)
+ C‖FH‖2L4(�)

‖F̂‖L2(�)‖∇ F̂‖L2(�)

≤ ε‖∇v̂‖2L2(�)
+ ε‖∇ F̂‖2L2(�)

+ C‖FH‖4L4(�)
‖F̂‖2L2(�)

. (8.14)

The fourth term can be bounded as follows:

|I F̂4 | ≤ ‖∇vH‖L4(�)‖F̂‖L4(�)‖F̂‖L2(�)

≤ C‖∇vH‖2L4(�)
‖F̂‖2L2(�)

+ C‖F̂‖2L4(�)

≤ C‖∇vH‖2L4(�)
‖F̂‖2L2(�)

+ C‖F̂‖L2(�)‖∇ F̂‖L2(�)

≤ ε‖∇ F̂‖2L2(�)
+ C‖F̂‖2L2(�)

+ C‖∇vH‖2L4(�)
‖F̂‖2L2(�)

. (8.15)
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Eventually, for the fifth term, we simply get

|I F̂5 | ≤ C‖S2‖2L2(�)
+ C‖F̂‖2L2(�)

. (8.16)

Now, we estimate the summands appearing in the right-hand side of (8.3). Using (2.6) to
estimate ‖M̂‖L4(�), we obtain

|I M̂1 | ≤ C‖∇MH‖L4(�)‖̂v‖L2(�)‖M̂‖L4(�) (8.17)

≤ C‖∇MH‖2L4(�)
‖̂v‖2L2(�)

+ C‖M̂‖2L2(�)
+ ε‖∇ M̂‖2L2(�)

(8.18)

and

|I M̂2 | ≤ ‖vH‖L4(�)‖∇ M̂‖L2(�)‖M̂‖L4(�)

≤ ε‖∇ M̂‖2L2(�)
+ C‖vH‖2L4(�)

‖M̂‖2L2(�)
+ C‖vH‖2L4(�)

‖M̂‖L2(�)‖∇ M̂‖L2(�)

≤ 2ε‖∇ M̂‖2L2(�)
+ C

(‖vH‖4L4(�)
+ 1

)‖M̂‖2L2(�)
. (8.19)

The terms I M̂i , i = 3, 4, 5 are estimated as follows:

|I M̂3 | ≤ C
(‖MH‖2L∞(�) + 1

)‖M̂‖2L2(�)
, (8.20)

|I M̂4 | ≤ C‖MH‖2L∞(�)‖M̂‖2L2(�)
, (8.21)

|I M̂5 | ≤ C‖S3‖2L2(�)
+ C‖M̂‖2L2(�)

. (8.22)

Finally, we estimate the terms appearing in the right-hand side of (8.4). Using (2.8) to estimate
‖̂v‖L4(�), we deduce

|I M̂6 | ≤ C‖∇MH‖L4(�)‖̂v‖L4(�)‖�M̂‖L2(�)

≤ ε‖�M̂‖2L2(�)
+ C‖∇MH‖2L4(�)

‖̂v‖L2(�)‖∇v̂‖L2(�)

≤ ε‖�M̂‖2L2(�)
+ ε‖∇v̂‖2L2(�)

+ C‖∇MH‖4L4(�)
‖̂v‖2L2(�)

. (8.23)

Moreover, employing (2.7) and Young’s inequality to estimate ‖∇ M̂‖L4(�), we get

|I M̂7 | ≤ ε‖�M̂‖2L2(�)
+ ‖vH‖2L4(�)

‖∇ M̂‖2L4(�)
(8.24)

≤ ε‖�M̂‖2L2(�)
+ ε‖vH‖2L4(�)

‖�M̂‖2L2(�)
+ C‖vH‖2L4(�)

‖∇ M̂‖2L2(�)
. (8.25)

The remaining terms can easily be estimated as follows:

|I M̂8 | ≤ ε‖�M̂‖2L2(�)
+ C

(‖MH‖2L∞(�) + 1
)2‖M̂‖2L2(�)

, (8.26)

|I M̂9 | ≤ ε‖�M̂‖2L2(�)
+ C‖MH‖4L∞(�)‖M̂‖2L2(�)

, (8.27)

|I M̂10 | ≤ ε‖�M̂‖2L2(�)
+ C‖S3‖2L2(�)

. (8.28)
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Now, choosing ε > 0 sufficiently small, adding (8.1)–(8.4), and using the estimates (8.5)–
(8.28) to estimate the right-hand side of the resulting equation, we conclude that

1

2

d

dt
Ŷ(t) + B̂(t) ≤ CQ̂(t) Ŷ(t) + C

(‖S1‖2L2(�)
+ ‖S2‖2L2(�)

+ ‖S3‖2L2(�)

)
, (8.29)

for almost all t ∈ [0, T ], where

Ŷ :=
∫

�

(|̂v|2 + |F̂ |2 + |M̂ |2 + |∇ M̂ |2), (8.30)

B̂ := 1

2

∫

�

(
ν|∇v̂|2| + |∇ F̂ |2 + |∇ M̂ |2 + |�M̂ |2), (8.31)

Q̂ := ‖∇vH‖2L2(�)
+ ‖vH‖4L4(�)

+ ‖∇vH‖2L4(�)
+ ‖∇MH‖4L4(�)

+ ‖∇2MH‖4L2(�)

+ ‖MH‖4L∞(�) + ‖∇FH‖4L2(�)
+ ‖FH‖4L4(�)

+ ‖∇FH‖2L4(�)
+ ‖∇H‖2L2(�)

+ 1.

(8.32)

We point out that we also made use of the fact that ‖vH‖L∞(0,T ;L2(�)) ≤ C (cf. (8.24)) to
derive the estimate (8.29).

Since H ∈ H and (vH , pH , FH , MH ) ∈ V, it is straightforward to check that
∥∥Q̂∥∥L1([0,T ]) ≤ C .

Applying Gronwall’s lemma, we finally obtain

∥∥Ŷ∥∥L∞([0,T ]) +
∫ T

0
B̂(t) dt ≤ C

3∑
i=1

‖Si‖L2(0,T ;L2(�)) . (8.33)

This a priori estimate can eventually be used to establish the spatial regularity properties
collected in (5.11) and, in particular, it implies the estimate (5.12). Eventually, the time
regularity properties stated in (5.11) then follow by standard comparison arguments.

Well-posedness of the adjoint system

Instead of proving well-posedness for the adjoint system, we consider the equivalent initial
value problem instead:

∂tw − ν�w − ∇q

= (vH · ∇)w − (∇vH )T w − (∇FH )T G (8.34a)

− div(GFT
H ) − (∇MH )T N + a1(vH − vd) in QT , (8.34b)

divw = 0 in QT , (8.34c)

∂tG − �G = (vH · ∇)G + (∇vH )T G

− 2Dw FH + a2(FH − Fd) in QT , (8.34d)

∂t N − �N = −2α−2(MH · N )MH

− α−2(|MH |2 − 1
)
N + (vH · ∇)N

− 2 div(∇MH Dw) + ∇H w + a3(MH − Md) in QT , (8.34e)

w = 0, G = 0, ∂nN = 0 on �T , (8.34f)

(w,G, N )(·, 0) = (0, 0, 0) in �. (8.34g)
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We point out that (8.34) is indeed equivalent to the adjoint system (6.6) through the trans-
formation t 
→ T − t . This means that by proving the weak well-posedness of the system
(8.34), the weak well-posedness of (6.6) is also established.

Proposition 8.1 Let H ∈ H be arbitrary with corresponding state F(H) = (vH , pH , FH ,

MH ). Then the system (8.34) has a unique weak solution (w, q,G, N ) having the regularity
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w ∈ L2(0, T ; V (�)) ∩ L∞(0, T ;W 1,2
0,div(�)) ∩ W 1,2(0, T ; L2

div(�));
q ∈ L2(0, T ;W 1,2(�));
G ∈ L2(0, T ;W 2,2(�)) ∩ L∞(0, T ;W 1,2

0 (�)) ∩ W 1,2(0, T ; L2(�));
N ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ;W 1,2(�))

(8.35)

Moreover, the function N has the additional regularity

N ∈ L
3
2 (0, T ;W 2, 32 (�)) ∩ W 1, 32 (0, T ; L 3

2 (�)). (8.36)

Proof For the same reasons as in the proof of Proposition 5.4, we only present the formal a
priori estimates. We point out that a rigorous proof can be carried out by means of a Galerkin
approximation. Passing to the limit in a Galerkin scheme and proving uniqueness of the weak
solution is straightforward due to the linearity of system (8.34).

In the following, let ε > 0 be any real number that will be fixed later. Moreover, the letter
C denotes a generic positive constant that depends on ε, T , �, ‖H‖L2(0,T ;W 1,2(�), and the
initial data of the state (vH , pH , FH , MH ), and may change its value from line to line. Since
the estimates in this proof are derived using very similar ideas as in in previous proofs, we
will mostly present the formal computations without further comments.

We first test (8.34a) by Sw, where Sw is the Stokes operator that is defined as

Sw = −ν�w − ∇q.

This yields the identity

d

dt

∫

�

|∇w|2 +
∫

�

|Sw|2

=
∫

�

(vH · ∇)w · Sw −
∫

�

(∇vH )T w · Sw −
∫

�

(∇FH )T G · Sw −
∫

�

div(GFT
H ) · Sw

−
∫

�

(∇MH )T N · Sw +
∫

�

a1(vH − vd) · Sw =:
6∑

i=1

Iw
i . (8.37)

The terms Iw
i , i = 1, ..., 6 are estimated as follows:

|Iw
1 | ≤ ε‖Sw‖2L2(�)

+ C‖∇w‖2L4(�)
‖vH‖2L4(�)

≤ ε‖Sw‖2L2(�)
+ C

(‖∇w‖2L2(�)
+ ‖∇w‖L2(�)‖�w‖L2(�)

)‖vH‖2L4(�)

≤ ε‖S w‖2L2(�)
+ C‖∇w‖2L2(�)

‖vH‖2L4(�)
+ C‖∇w‖L2(�)‖S w‖L2(�)‖vH‖2L4(�)

≤ 2ε‖Sw‖2L2(�)
+ C‖∇w‖2L2(�)

‖vH‖2L4(�)
+ C‖∇w‖2L2(�)

‖vH‖4L4(�)
, (8.38)

|Iw
2 | ≤ ε‖Sw‖2L2(�)

+ C‖∇vH‖2L4(�)
‖w‖2L4(�)

≤ ε‖Sw‖2L2(�)
+ C‖∇vH‖2L4(�)

‖∇w‖2L2(�)
, (8.39)

|Iw
3 | ≤ ε‖Sw‖2L2(�)

+ C‖∇FH‖2L4(�)
‖G‖2L4(�)
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≤ ε‖Sw‖2L2(�)
+ C‖∇FH‖2L4(�)

‖G‖L2(�)‖∇G‖L2(�)

≤ ε‖Sw‖2L2(�)
+ ε‖∇G‖2L2(�)

+ C‖∇FH‖4L4(�)
‖G‖2L2(�)

, (8.40)

|Iw
4 | ≤ 2ε‖Sw‖2L2(�)

+ C‖∇FH‖2L4(�)
‖G‖L2(�)‖∇G‖L2(�)

+ C‖∇G‖2L4(�)
‖FH‖2L4(�)

≤ 2ε‖Sw‖2L2(�)
+ ε‖∇G‖2L2(�)

+ C‖∇FH‖4L4(�)
‖G‖2L2(�)

+ C
(‖∇G‖2L2(�)

+ ‖∇G‖L2(�)‖�G‖L2(�)

)‖FH‖2L4(�)

≤ 2ε‖Sw‖2L2(�)
+ ε‖∇G‖2L2(�)

+ C‖∇FH‖4L4(�)
‖G‖2L2(�)

+ C‖∇G‖2L2(�)
‖FH‖2L4(�)

+ ε‖�G‖2L2(�)
+ C‖∇G‖2L2(�)

‖FH‖4L4(�)
, (8.41)

|Iw
5 | ≤ ε‖Sw‖2L2(�)

+ C‖∇MH‖2L4(�)
‖N‖2L4(�)

(8.42)

≤ ε‖Sw‖2L2(�)
+ C‖∇MH‖2L4(�)

(
‖N‖2L2(�)

+ ε‖∇N‖2L2(�)

)
,

|Iw
6 | ≤ ε‖Sw‖2L2(�)

+ C‖vH − vd‖2L2(�)
. (8.43)

In the estimate (8.42) we have used (2.6) and Young’s inequality.
Next, testing (8.34d) by −�G leads to

d

dt

∫

�

|∇G|2 +
∫

�

|�G|2

= −
∫

�

(vH · ∇)G · �G −
∫

�

(∇vH )T G · �G

+
∫

�

2Dw FH · �G −
∫

�

a2(FH − Fd) · �G =:
4∑

i=1

I Gi . (8.44)

Now, the terms I Gi , i = 1, ..., 4 are estimated as follows:

|I G1 | ≤ ε‖�G‖2L2(�)
+ C‖vH‖2L4(�)

‖∇G‖2L4(�)

≤ ε‖�G‖2L2(�)
+ C‖vH‖2L4(�)

(‖∇G‖2L2(�)
+ ‖∇G‖L2(�)‖�G‖L2(�)

)

≤ 2ε‖�G‖2L2(�)
+ C‖vH‖2L4(�)

‖∇G‖2L2(�)
+ C‖vH‖4L4(�)

‖∇G‖2L2(�)
, (8.45)

|I G2 | ≤ ε‖�G‖2L2(�)
+ C‖∇vH‖2L4(�)

‖G‖2L4(�)

≤ ε‖�G‖2L2(�)
+ C‖∇vH‖2L4(�)

‖G‖L2(�)‖∇G‖L2(�)

≤ ε‖�G‖2L2(�)
+ ε‖∇G‖2L2(�)

+ C‖∇vH‖4L4(�)
‖G‖2L2(�)

, (8.46)

|I G3 | ≤ ε‖�G‖2L2(�)
+ C‖∇w‖2L4(�)

‖FH‖2L4(�)

≤ ε‖�G‖2L2(�)
+ C

(‖∇w‖2L2(�)
+ ‖∇w‖L2(�)‖�w‖L2(�)

)‖FH‖2L4(�)

≤ ε‖�G‖2L2(�)
+ C‖∇w‖2L2(�)

‖FH‖2L4(�)
+ ε‖�w‖2L2(�)

+ C‖∇w‖2L2(�)
‖FH‖4L4(�)

,

(8.47)

|I G4 | ≤ ε‖�G‖2L2(�)
+ C‖FH − Fd‖2L2(�)

. (8.48)
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Finally, testing (8.34e) by N , we obtain

d

dt

∫

�

|N |2 +
∫

�

|∇N |2

= −
∫

�

2α−2(MH · N )MH · N −
∫

�

α−2(|MH |2 − 1
)
N · N +

∫

�

(vH · ∇)N · N

−
∫

�

2 div(∇MH Dw) · N +
∫

�

∇H w · N +
∫

�

a3(MH − Md) · N =:
6∑

i=1

I Ni .

(8.49)

For the terms I Ni , i = 1, ..., 6 we obtain the following estimates:

|I N1 | ≤ ‖MH‖2L∞(�)‖N‖2L2(�)
, (8.50)

|I N2 | ≤ ‖MH‖2L∞(�)‖N‖2L2(�)
+ ‖N‖2L2(�)

, (8.51)

|I N3 | ≤ ε‖∇N‖2L2(�)
+ C‖vH‖2L4(�)

‖N‖2L4(�)

≤ ε‖∇N‖2L2(�)
+ C‖vH‖2L4(�)

(‖N‖2L2(�)
+ ‖N‖L2(�)‖∇N‖L2(�)

)

≤ 2ε‖∇N‖2L2(�)
+ C‖vH‖2L4(�)

‖N‖2L2(�)
+ C‖vH‖4L4(�)

‖N‖2L2(�)
, (8.52)

|I N4 | ≤ ‖∇2MH‖L4(�)‖∇w‖L2(�)‖N‖L4(�) + ‖∇MH‖L4(�)‖∇2w‖L2(�)‖N‖L4(�)

≤ ‖∇2MH‖2L4(�)
‖∇w‖2L2(�)

+ (‖N‖2L2(�)
+ ‖N‖L2(�)‖∇N‖L2(�)

)

+ ε‖�w‖2L2(�)
+ C‖∇MH‖2L4(�)

‖N‖2L4(�)

≤ ‖∇2MH‖2L4(�)
‖∇w‖2L2(�)

+ C‖N‖2L2(�)
+ ε‖∇N‖2L2(�)

+ ε‖�w‖2L2(�)
+ C‖∇MH‖2L4(�)

(‖N‖2L2(�)
+ ‖N‖L2(�)‖∇N‖L2(�)

)

≤ ‖∇2MH‖2L4(�)
‖∇w‖2L2(�)

+ C‖N‖2L2(�)
+ ε‖∇N‖2L2(�)

+ ε‖�w‖2L2(�)

+ C‖∇MH‖2L4(�)
‖N‖2L2(�)

+ C‖∇MH‖4L4(�)
‖N‖2L2(�)

+ ε‖∇N‖2L2(�)
, (8.53)

|I N5 | ≤ ‖∇H‖L2(�)‖w‖L∞(�)‖N‖L2(�)

≤ ε‖�w‖2L2(�)
+ C‖∇H‖2L2(�)

‖N‖2L2(�)
(8.54)

|I N6 | ≤ 1

2
‖N‖2L2(�)

+ 1

2
‖MH − Md‖2L2(�)

. (8.55)

Choosing ε > 0 sufficiently small, summing (8.37), (8.44), (8.49), and using the inequalities
(8.38)–(8.43), (8.45)–(8.48) and (8.50)–(8.55), we conclude that

d

dt
Ya(t) + Ba(t)

≤ CQa(t)Ya(t) + C
(‖vH (t) − vd‖2L2(�)

+ ‖FH (t) − Fd‖2L2(�)
+ ‖MH (t) − Md‖2L2(�)

)
,

(8.56)

for almost all t ∈ [0, T ], where

Ya :=
∫

�

(|∇w|2 + |∇G|2 + |N |2),

Ba :=
∫

�

(|Sw|2 + |�G|2 + |∇N |2),
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Qa := ‖vH‖2L4(�)
+ ‖vH‖4L4(�)

+ ‖∇FH‖4L4(�)
+ ‖∇FH‖4L4(�)

+ ‖∇MH‖2L4(�)

+ ‖∇vH‖4L4(�)
+ ‖FH‖2L4(�)

+ ‖FH‖4L4(�)
+ ‖MH‖2L∞(�) + ‖∇2MH‖2L4(�)

+ ‖∇MH‖4L4(�)
+ ‖H‖2L4(�)

+ ‖∇H‖2L2(�)
+ 1.

We further point out that for the derivation of (8.56), we also used the estimates

‖∇G‖2L2(�)
≤ C‖�G‖2L2(�)

and ‖G‖2L2(�)
≤ C‖∇G‖2L2(�)

which follow from Poincaré’s inequality since G|∂� = 0 a.e. on ∂�.
It is not hard to check that ‖Qa‖L1([0,T ]) ≤ C . Specifically, we point out that the terms

‖∇FH‖4
L1(0,T ;L4(�)

, ‖∇vH‖4
L1(0,T L4(�)

and ‖∇2MH‖2
L1(0,T ;L4(�))

can be bounded by pro-
ceeding as in (4.56). We can thus apply Gronwall’s lemma to conclude the a priori estimate

‖Ya‖L∞([0,T ]) +
∫ T

0
Ba(t) dt ≤ C .

which can be used to recover the spatial regularity properties collected in (8.35). The time
regularity properties stated in (8.35) then follow by standard comparison arguments.

We still have to show the additional regularity of N stated in (8.36). In order to apply
maximal parabolic regularity theory, we intend to estimate the right-hand side of (8.34e) in
the L3/2(QT )-norm. By straightforward computations, we obtain the following estimates:

‖2α−2(MH · N )MH‖L2(QT ) ≤ C‖MH‖2L∞(QT )‖N‖L2(QT ),

‖α−2(|MH |2 − 1
)
N‖L2(QT ) ≤ C

(‖MH‖2L∞(QT ) + 1
)‖N‖L2(QT ),

‖(vH · ∇)N‖L2(0,T ;L3/2(�)) ≤ C‖vH‖L∞(0,T ;L6(�))‖∇N‖L2(QT ),

‖2 div(∇MH Dw)‖L2(0,T ;L3/2(�)) ≤ C
(‖∇2MH‖L∞(0,T ;L2(�))‖∇w‖L2(0,T ;L6(�))

+ ‖∇MH‖L∞(0,T ;L6(�))‖∇2w‖L2(QT )

)
,

‖∇Hw‖L2(0,T ;L3/2(�)) ≤ C‖∇H‖L2(QT )‖w‖L∞(0,T ;L6(�)).

Due to the regularities H ∈ H, (vH , pH , FH , MH ) ∈ V and (8.35) we conclude that the
right-hand side of (8.34e) is bounded in the L3/2(�)-norm. Hence, by employing maximal
parabolic regularity, we eventually conclude (8.36).
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