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Abstract Given a contact structure on a manifold V together with a support-
ing open book decomposition, Bourgeois gave an explicit construction of a
contact structure on V × T

2. We prove that all such structures are universally
tight in dimension 5, independent of whether the original contact manifold is
itself tight or overtwisted. In arbitrary dimensions, we provide obstructions
to the existence of strong symplectic fillings of Bourgeois manifolds. This
gives a broad class of new examples of weakly but not strongly fillable contact
5-manifolds, as well as the first examples of weakly but not strongly fillable
contact structures in all odd dimensions. These obstructions are particular
instances of more general obstructions for S1-invariant contact manifolds. We
also obtain a classification result in arbitrary dimensions, namely that the unit
cotangent bundle of the n-torus has a unique symplectically aspherical strong
filling up to diffeomorphism.
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1 Introduction

In [8], Bourgeois showed that, whenever (V, ξ) is a contact manifold endowed
with a supporting open book decomposition (which always exist by work of
Giroux [24]), then the manifold V ×T

2 carries a natural contact structure. The
main motivation behind such a construction was the problem of the existence
of contact structures on higher-dimensional manifolds. For instance, it showed
that every odd dimensional torus admits contact structures, a problem that had
been open since Lutz [40] proved thatT5 is contact, more than 20 years before.

It was not until recently that Borman-Eliashberg-Murphy [6] proved that
contact structures in higher-dimensions actually exist in abundance (i.e. when-
ever the obvious topological obstructions vanish) by generalizing Eliashberg’s
[16] notion of overtwistedness, as well as the h-principle that comes with it,
to higher dimensions. Overtwisted contact manifolds are topological/flexible
in nature, and most of the associated contact-topological invariants (e.g. those
coming from holomorphic curves) simply vanish. As a result, it has become
relevant to find examples of high-dimensional contact structures beyond the
overtwisted ones, which are more geometric/rigid and which potentially have
rich associated invariants. Contact structures which are not overtwisted are
usually referred to as tight.

The construction in [8] actually fits very well in this setting, as it is both
very explicit and yields a very broad class of contact manifolds in arbitrary odd
dimensions, with remarkable properties. For instance, [51] used it to construct
the first examples of high dimensional (closed) contact manifolds admitting a
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Plastikstufe, as defined in [47], which is subsequently equivalent to overtwist-
edness [13,33]. In [10], the authors also used it to construct contact structures
on the product of a contact manifold with the 2-sphere. More recently, Lisi,
Marinković and Niederkrüger [38] started the systematic study of the Bour-
geois construction, in particular studying its fillability properties, and in this
paper we continue this line of research.

In what follows we will use the following notation. Given an abstract open
book (Σ2n, φ) and the associated contact (2n + 1)-manifold OBD(Σ, φ),
we denote by BO(Σ, φ) the contact manifold obtained via the Bourgeois
construction [8]. Smoothly, BO(Σ, φ) = OBD(Σ, φ) × T

2 and we refer to
Section 2 for further details.

Tightness in dimension 5 We begin by addressing the natural question of
whether a given Bourgeois contact structure is tight or overtwisted.

In [38], the authors give examples, in every odd dimension, of an over-
twisted (V, ξ) such that the associated Bourgeois contact manifold is tight.
Moreover, in [22], it was shown that if V is a 3-manifold with non-zero first
Betti number, then there exists a supporting open book such that the associated
Bourgeois contact structure is (hyper)tight. In this paper, we prove that, at least
in dimension 5, these are particular instances of a more general fact. Namely,
5-dimensional Bourgeois contact structures are rigid, inherently geometric
objects, independently of the rigid or flexible nature of (V, ξ):

Theorem A (Tightness) For every abstract open book (Σ2, φ), the contact
5-manifold BO(Σ, φ) is (universally) tight.

Recall that universally tight means that the universal cover is tight. In
particular, universal tightness implies tightness. The fact that 5-dimensional
Bourgeois contact structures are universally tight is a simple consequence of
the fact that they are tight and that finite covers on either factor of the product
again yield Bourgeois contact structures.

While there are many ways of making contact/symplectic manifolds more
flexible (e.g. in dimension 3, by adding a Lutz twist; in any odd dimension, by
taking the connected sum with an overtwisted sphere; or in dimension at least
6, by taking the flexibilization of a Weinstein manifold), Theorem A says that
the Bourgeois construction can be interpreted as a “tightening” procedure.
To our knowledge, there is currently no other procedure with an analogous
property.

Moreover, the above result is sharp with respect to taking branched covers.
Namely, ifV is an overtwisted contact 3-manifold (or,more generally, (2n+1)-
manifold), then branched covers V × Σg of V ×T

2 are overtwisted; here, Σg
is the orientable surface of genus g ≥ 1, seen as a degree g branched cover
of T2 over two points, and the branched cover is obtained by product with
the identity on V . The fact that this is true for g big enough follows from the
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results in [49]; that this holds already from g = 2 is moreover a consequence
of an argument of Massot and Niederkrüger, based on ideas from [51] (cf. [48,
Theorem I.5.1]; the interested reader can also consult [22, Observation 5.9]
for details).

Symplectic fillability Another important problem in contact topology, that
is related to the flexible/rigid classification of contact structures, is that of
characterizing which contact structures admit symplectic fillings. Indeed, one
of the first results of the theory of holomorphic curves is that symplectically
fillable contact manifolds are tight.

Given Theorem A, it is natural to wonder whether Bourgeois contact struc-
tures are (at least weakly) symplectically fillable. While there exist partial
results in this direction [38,42], a complete answer is yet to be found.

In order to find obstructions to strong fillings, we shall prove a more general
statement concerning S1-invariant contact structures on manifolds of the form
V 2n×S

1. Such a contact structure is determined by a splitting of the base V into
ideal Liouville domains V = V+ ∪ V− glued along a contact manifold N :=
∂V+ = ∂V− (see [25,42] or Section 6 below). The subsetsV± correspond to the
positive resp. negative regionswhen V is viewed as a convex hypersurface, and
N to its dividing set.With this notationwe then have the following homological
andhomotopical criteria in the case that the contact structure is stronglyfillable.

Theorem B (Fillability ofS1-invariant contact structures) Suppose that V 2n×
S
1 admits a strongly fillableS1-invariant contact structurewith induced convex

splitting V = V+ ∪ V− and let N := ∂V+ = ∂V− be the dividing set, which
we assume to be connected. Let also (W 2n+2, ω) be a strong filling of V × S

1

and consider the natural inclusions and induced maps on homology:

N ↪→ V± ↪→ W and H∗(N ,Q)
I±−→ H∗(V±,Q) −→ H∗(W,Q).

Then the second inclusion induces an injection on the image Im (I±) in ratio-
nal homology. In particular, if V± are Weinstein, then the inclusion N ↪→ W
induces an injection in rational homology in all degrees strictly less than n.

In the case where W is semi-positive, we also have a surjection

π1(V × S
1) � π1(W )

of fundamental groups.

Since Bourgeois contact structures are T2-invariant, they are in particular
S
1-invariant and one obtains a convex splitting with pieces of the form V± =

Σ × D∗
S
1. Then applying Theorem B, we obtain the following result, which

imposes strong topological restrictions on the filling as well as the original
Bourgeois contact manifold:
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Theorem C (Fillability of Bourgeois contact structures) Suppose that a
(2n+1)-dimensional Bourgeois contact manifold BO(Σ, φ) is strongly sym-
plectically filled by (W, ω). Then the natural inclusion of a page into the filling,
given by the composition of inclusions

Σ ↪→ OBD(Σ, φ) × {pt} ↪→ BO(Σ, φ) = ∂W ↪→ W, (1)

induces an injection in rational homology.
Moreover, the composition of the natural inclusionsT2 ↪→ BO(Σ, φ)↪→W

also induces an injection in rational homology. Lastly, if W is semi-positive,
then we have a surjection π1(Σ × T

2) � π1(W ).

There are many topological situations where the above criteria can be imme-
diately applied to obstruct strong fillability of certain Bourgeois contact
structures, several of which are described below. We also have:

Remark 1.1 (Monodromy restrictions). The fact that Σ ↪→ W induces an
injection in rational homology implies that the same is true for the natural
inclusion Σ ↪→ OBD(Σ, φ), as Σ ↪→ W can be written as the composition
in Eq. (1). What is more, this also implies that φ∗ = Id on H∗(Σ;Q), i.e. φ
lies in the Torelli group: indeed, as Σ ↪→ OBD(Σ, φ) is the composition
Σ ↪→ Σφ ↪→ OBD(Σ, φ) where Σφ is the mapping torus part of the open
book, one can appeal to the long exact sequence of a mapping torus [26,
Example 2.48] to deduce that Σ ↪→ Σφ is injective in rational homology if
and only if φ∗ = Id on H∗(Σ;Q).

Remark 1.2 To deal with strong fillings in general, we need to use the polyfold
machinery of Hofer–Wysocki–Zehnder [31] (for the case of closed spheres).
However, this is not necessary if further technical assumptions on the filling
are imposed, e.g. asphericity or semi-positivity.

Homology of aspherical fillings In the case where a Bourgeois manifold is
assumed to admit a symplectically aspherical filling, we obtain the following
significant strengthening of Theorem C, which determines the homology of
any such filling:

Theorem D (Aspherical case) Suppose that a (2n + 1)-dimensional Bour-
geois contact manifold BO(Σ, φ) admits a symplectically aspherical filling
(W, ω). Then the natural inclusion Σ × T

2 ↪→ W into the filling induces an
isomorphism in integral homology.

If φ is symplectically isotopic to Id, OBD(Σ, φ) admits a subcritical Stein
filling. In this case the associated Bourgeois contact manifold admits a Stein
filling according to [38, Theorem A.b]. Moreover, this filling is smoothly of
the form X × T

2, where X = Σ × D
2 is the subcritical filling of the original
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manifold. Theorem C, as well as Remark 1.1 and Theorem D, then suggest
that perhaps it is always the case that strong fillability for Bourgeois manifolds
implies φ = Id (at least smoothly), and that the filling is (again, at least
smoothly) the standard one, in arbitrary dimensions. The fact that the filling
“remembers” both the T2-factor and the page Σ (at least homologically), as
well as the fact that, in the aspherical case, the homology of the filling is the
expected one are evidence in this direction. In particular, strong fillability for
Bourgeois manifolds might be equivalent to Stein fillability; this is indeed true
in several cases, as discussed below.

Fillability in dimension 5 Examples of weakly but not strongly fillable
contact structures in dimension 3 are well-known. The first examples of such
contact manifolds in higher dimensions were obtained in dimension 5 on man-
ifolds also diffeomorphic to a product of a 3-manifold with a 2-torus cf. [42,
Theorem E]. These examples are associated to contact 3-manifolds arising
from so-called Liouville pairs and and are known to exist only on very specific
3-manifolds (see [42] and references therein). Below, we provide a large class
of new 5-dimensional examples that arise via Bourgeois contact structures.

Indeed, as a first immediate corollary of Theorem C in dimension 5, we
obtain:

Corollary E (Rational homology 3-spheres) Suppose that V = OBD(Σ, φ)

is a 3-dimensional rational homology sphere, i.e. H1(V ;Q) = 0. Then the
Bourgeois contact manifold BO(Σ, φ) is strongly symplectically fillable if
and only if the page Σ = D

2 is a disc (and φ = Id), in which case it is
actually Stein fillable and V is S3.

This then yields many examples of weakly but not strongly fillable contact
manifolds in dimension 5. For example Legendrian surgery on any smoothly
non-trivial Legendrian knot in S

3 gives a Stein fillable contact structure on
a rational homology sphere, smoothly different from the standard 3-sphere.
The corresponding Bourgeois contact structure is weakly fillable by [38, The-
orem A.a] (cf. [42, Example 1.1]).

We now consider the planar case, i.e. the case where the page of the open
book of the original 3-manifold has genus zero. In the 3-dimensional situation,
strong symplectic fillings of contact structures supported by planar open books
exist in abundance, and in fact are in 1–1 correspondence with the factoriza-
tions of the monodromy into products of positive Dehn-twists [57]. Namely,
contact 3-manifolds admitting a supporting open book with planar page and
monodromy a product of positive Dehn twists are (precisely, by [57]) the con-
vex boundaries of symplectic Lefschetz fibrations. In particular, in the planar
case, strong fillability and Stein fillability are equivalent. However, if we apply
theBourgeois construction to a planar contact 3-manifold, and consider fillings
of the resulting contact 5-manifold, the situation is surprisingly more rigid:
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Theorem F (Planar case) Let (Σ2, φ) be an abstract open book with Σ of
genus zero and φ a non-trivial product of Dehn twists, all of the same sign.
Then, the contact 5-manifold BO(Σ, φ) is weakly but not strongly fillable.

The fact that the examples in Theorem F are weakly fillable follows again
from [38, Theorem A.a] or [42, Example 1.1]; and the fact that the conclusion
also holds for products of all negative Dehn twists, from [38, Theorem B]. In
the particular case of the annulus Σ = D∗

S
1, whose mapping class group is

generated by the Dehn twist τ along the zero section, we get BO(D∗
S
1, τ k)

is strongly fillable if and only if k = 0; see Theorem K below for a higher-
dimensional version.

Note that, in the planar case, the monodromy φ is necessarily the identity
in homology of the page, since this is generated by the boundary loops, along
which φ is trivial by assumption. In particular, the condition on φ given by
Remark 1.1 is not restrictive. However, one can still prove the following, by
applying Theorem C:

Corollary G If Σ is planar and BO(Σ, φ) is strongly fillable, then φ lies in
the commutator subgroup of the mapping class group (rel. boundary).

This implies, for instance, thatwheneverΣ is a pair of pants (whosemapping
class group is abelian) and BO(Σ, φ) is strongly fillable, then φ = Id. Note
that whilst mapping class groups of higher genus surfaces are perfect, meaning
that any element can be written as a product of commutators, this is not so in
the planar case. In fact, any non-trivial product of positive Dehn twists will
not lie in the commutator subgroup. This is because any product of positive
Dehn twists gives a non-trivial positive braid after identifying all but one
appropriately chosen boundary component to (marked) points, and positive
braids survive in the abelianization of the mapping class group of the marked
disk, which is infinite cyclic (cf. [18, p. 252]). In particular, one can then
deduce Theorem F from Corollary G via this observation.

Fillability in higher dimensions As a further consequence of Theorem C
we also obtain the following, which gives a plethora of weakly but not strongly
fillable contact structures in arbitrary dimensions.

Corollary H (Stabilizations) Let OBD(Σ, φ) be a (2n − 1)-dimensional
contact manifold, and let OBD(Σ+, φ+) be obtained by a single posi-
tive stabilization. Then the Bourgeois manifold BO(Σ+, φ+) is not strongly
symplectically fillable. In particular, if OBD(Σ, φ) is weakly fillable, then
BO(Σ+, φ+) is weakly but not strongly fillable.

The fact that such manifolds are not subcritically Stein fillable was already
observed in [38, Corollary 1.4] and hence the above can be viewed as a sig-
nificant strengthening of this. As a consequence we obtain the first known
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examples of weakly but not strongly fillable contact structures in all dimen-
sions.

See Theorems J and K below for more concrete examples.

Tight but non-fillable contact 5-folds Recall that an almost contact struc-
ture on V 2n+1 is a hyperplane field ξ equipped with a complex structure
J : ξ → ξ . On a 3-manifold, this simply reduces to the data of a homotopy
class of oriented 2-plane fields. Using Eliashberg’s classification of over-
twisted contact structures in dimension 3 [17], we can represent any almost
contact structure on a 3-manifold by an overtwisted contact structure, which
is supported by an open book by Giroux [24]. If we perform a single positive
stabilization, the contact structure is unchanged up to isotopy, and hence the
almost contact structure is also unchanged up to homotopy. Applying Corol-
lary H to the stabilized open book, and combining with Theorem A, we then
conclude:

Corollary I For an almost contact structure (M3, η) on a closed 3-manifold,
there exists a universally tight but not strongly fillable contact structure on
M ×T

2 which is homotopic to the product almost contact structure η ⊕ TT2.

We remark that the contact structure in Corollary I can sometimes beweakly
fillable (e.g. in the case where the monodromy of the planar open book is a
product of all negative Dehn twists, for which we do not need to positively
stabilize; cf. Theorem F).

Special higher-dimensional examplesWe also consider fillings for certain
specific examples of higher dimensional Bourgeois contact manifolds.

The family BO(D∗
S
n, τ k) We first consider the case of BO(D∗

S
n, τ ),

where τ is theDehn–Seidel twist on D∗
S
n , and as a special case ofCorollaryH,

or alternatively as a direct consequence of Theorem C, we give a negative
answer to [38, Question 1.6]:

Theorem J The Bourgeois contact manifold BO(D∗
S
n, τ ) is weakly but not

strongly symplectically fillable.

More generally, from Theorem C one easily obtains that the Bourgeois contact
manifold BO(D∗

S
n, τ k) is not symplectically fillable for most values of k and

n:

Theorem K For n ≥ 1, define the subset

BOFill(n) =
{
k ∈ Z : BO(D∗

S
n, τ k) is strongly fillable

}
.

Then BOFill(n) is a subgroup of Z. Denoting a generator by k0(n), we
moreover have the following: if n is odd, then k0(n) = 0, i.e. BOFill(n) is
the trivial group, and if n is even, then k0(n) is even.
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Remark 1.3 The fact that k0(n) is even if n is, also is related to the fact that the
Dehn-Seidel twist has finite order as a smooth map in this case; see [34] for
the precise orders. We remark that it is conceivable that BOFill(n) is always
the trivial group, which would be a stronger result, although the group itself
would no longer be interesting.

On the other hand, the contactmanifolds BO(D∗
S
n, τ k) admit weak fillings

for every k ∈ Z [38, Theorem A.a]. We then obtain infinitely many weakly
but not strongly fillable examples from this family alone; cf. Theorem J.

Unit cotangent bundle of Tn We determine the diffeomorphism type of the
strong symplectically aspherical fillings of the unit cotangent bundle S∗

T
n of

T
n for n ≥ 2 with its standard contact structure ξstd , induced by the restriction

of the standard Liouville form λstd on the unit disc cotangent bundle D∗
T
n to

its boundary S∗
T
n .

In fact, (S∗
T
n, ξstd) is none other than BO(D∗

T
n−2, Id) To see this first

observe that the contact manifold OBD(D∗
T
n−2, Id) is the convex boundary

of the subcritical Stein manifold

W = D∗
S
1 × · · · × D∗

S
1︸ ︷︷ ︸

n−2 times

×D
2 .

Then according to [38, Theorem A.b], BO(T ∗
T
n−2, Id) is then the convex

boundary of the Stein manifold
(∏n−2

i=1 D∗
S
1
)
×D∗

T
2 = D∗

T
n , with its split

Stein structure, which is just the standard one.
We then prove the following uniqueness result, which is a strengthening of

Theorem D for the case of S∗
T
n:

Theorem L The contact manifold (S∗
T
n, ξstd), n ≥ 3, has a unique strong

symplectically aspherical filling up to diffeomorphism.

Theorem L is a smooth higher-dimensional version of a result by Wendl
[57, Theorem 4] who classified symplectic fillings of S∗

T
2 up to symplectic

deformation, which in turn generalized a weaker homeomorphism classifica-
tion of Stipsicz [53, Theorem 1.6]. In dimension 5 (i.e. n = 3), Theorem F and
Theorem L then give a complete smooth characterization of symplectically
aspherical strong fillings for the Bourgeois contact 5-manifolds associated to
any open book with page D∗

S
1; i.e. the only strongly fillable case is the triv-

ial monodromy case, in which case the filling is smoothly unique. Note that,
according to [38], all examples with page D∗

S
1 are weakly fillable.

Remark 1.4 Theorem L has also been independently obtained by Geiges–
Kwon–Zehmisch [20]. While our original proof made use of punctured
holomorphic curves, the current one uses now closed holomorphic spheres,
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Fig. 1 The pseudo-Liouville cobordism (C, ωC ) given in Theorem 3.1

as kindly suggested to us by a referee in order to simplify the arguments.
Hence it now follows a similar line of argument as the proof in [20].

Outline of the proofs For convenience of the reader, we outline the main
arguments of the proofs of Theorems A, C and L.

Tightness in dimension 5 The proof of Theorem A involves some geo-
metric group theory and hyperbolic geometry as well as some holomorphic
curve techniques.

The first ingredient is the construction of a strong symplectic cobordism
between Bourgeois contact structures; this is done in Section 3.1. More pre-
cisely, Theorem 3.1 is a “stabilized” version of the analogous result for open
books, which was proven (independently) in [2,35]; see Figure 1. We point
out that, while the symplectic form on the strong cobordism of Theorem 3.1
is exact, the Liouville vector field associated to the global primitive is not
inwards pointing along the negative ends. We shall refer to a strong symplec-
tic cobordism with an exact symplectic form as pseudo-Liouville.

For “most” cases of surfaces (the rest are dealt with case by case), standard
results from low-dimensional topology then allowone towrite anymonodromy
as a composition such that the contact structures on the negative ends of the
cobordism in Figure 1 are hypertight; see Corollary 4.1. Then, a standard appli-
cation of the holomorphic curvemachinery à-la [1,28,47] gives a holomorphic
plane in the symplectization of one of the negative ends starting with a Bishop
family associated to a Plastikstufe in the positive end. While bubbles are ruled
out by exactness, holomorphic caps at the negative ends are excluded via the
explicit properties of the cobordism (C, ωC) (see Theorem 3.1 for a precise
statement) and via the specific Reeb dynamics at the negative ends; this is a
subtle point. Now, the existence of such holomorphic plane contradicts hyper-
tightness of each connected component of the concave boundary (C, ωC), thus
concluding the proof.

Obstructions to fillability in arbitrary dimensions The proof
of Theorem B is mostly based on holomorphic curve techniques.
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Wefirst attach the symplectic cobordismas in [42, Section6.1] to the original
contact manifold to obtain a symplectic fibration over ∂V , with S

2 as fiber;
see Lemma 6.1. This cobordism can be seen as the attaching of a symplectic
handle, having two distinguished symplectic co-cores C±.

In the presence of a strong symplectic filling W , after attaching such a
symplectic cobordism and obtaining a “capped” filling Wcap with boundary
a fibration over a contact manifold with symplectic sphere fibers, we obtain
an induced moduli space M of closed holomorphic spheres which “probes”
the original filling W . A key point is that each of the two co-cores C± of the
relevant handle of the capping are J -invariant, and every curve in the moduli
space intersects it precisely once, by positivity of intersections. The same is
true after considering the Gromov compactification M obtained by adding
nodal curves.

Assuming that there is a cycle σ in ∂C±, which is non-trivial in C± and
bounds a relative cycle b in the filling, this allows one to “pull-back” b to
the moduli space, and push it to a relative cycle in the co-core bounding the
original σ , thus contradicting the non-triviality of σ in C±. Such pull-backs
can be achieved via the theory of pseudo-cycles in the case that W is semi-
positive; in general, we appeal to polyfold theory [31] as, for example, in [42,
Section 7.2]. In other words, the homology of the co-core must then survive
in the filling.

Topology of aspherical fillings The proof of Theorem D relies on
the fact that the moduli space considered above is automatically compact (see
Proposition 7.1). One can then puncture the spheres by removing their inter-
section with (small open neighbourhoods of) the co-cores, obtaining a moduli
space of cylinders. Since each cylinder retracts onto any of its boundary com-
ponents, this moduli space also admits a retraction to a piece of its boundary,
along which the evaluation map is a diffeomorphism. Using a pull-push argu-
ment as in the proof of Theorem B, one obtains the desired isomorphism in
homology.

In the case of S∗
T
n applying some standard algebraic topology, one can

then prove that any symplectically apherical filling W is in fact homotopy
equivalent to D∗

T
n . Then, using the s-cobordism theorem as in [3, Section 8],

one concludes thatW is diffeomorphic to D∗
T
n . For this final step it is essential

that the fundamental group of S∗
T
n is abelian.

2 The Bourgeois construction

Consider a closed, oriented, connected smooth manifold V 2n−1 and an open
book decomposition (B, θ), together with a definingmapΦ : V → D

2 having
each z ∈ int(D2) as regular value. Here, B ⊂ V is a closed codimension-2
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submanifold, θ = Φ/ |Φ| : V \B → S
1 is a fiber bundle, and Φ is such that

Φ−1(0) = B.
A 1-form α on V is said to be adapted to Φ if it induces a contact structure

on the regular fibers of Φ and if dα is symplectic on the fibers of θ = Φ/ |Φ|.
In particular, if ξ is a contact structure on V supported by (B, θ), in the sense
of [24], then (by definition) there is such a pair (α, Φ) with α defining ξ .

Theorem 2.1 (Bourgeois [8]) Consider an open book decomposition (B, θ)

of V 2n−1, represented by a map Φ = (Φ1, Φ2) : V → R
2 as above, and let α

be a 1-form adapted to Φ. Then, β := α + Φ1dq1 − Φ2dq2 is a contact form
on M := V × T

2, where (q1, q2) are coordinates on T2.

The contact form β onM = V ×T
2 will be called aBourgeois form associated

to (α, Φ) in the following.

Remark 2.1 The contact structure on M = V × T
2 defined by β is actually

independent, up to isotopy, on the pair (α, Φ) defining the contact open book
(B, θ) on V . This can easily be seen in the case where n = 2, i.e. V is 3-
dimensional, using the contractibility of the space of symplectic forms on the
2-dimensional page. In the higher dimensional setting, this is discussed in
detail in [38, Section 2 and Appendix], using the reinterpretation of contact
open books in terms of ideal Liouville structures [25].

Remark 2.2 The contact structure determined by a Bourgeois contact form is
stable up to contactomorphism under finite covers of the torus factor. Indeed,
up to precomposing by an automorphism of T2, any such cover is of the form

(q1, q2) 	−→ (kq1, q2) .

Pulling back gives a contact form βk = α + kΦ1dq1 − Φ2dq2 and a straight-
forward calculation shows that linear interpolation gives a family of contact
forms.

Abstract open books and Bourgeois contact structures For the proof of
Theorem A, it is also useful to interpret the Bourgeois construction in abstract
terms. We briefly recall here the construction in order to fix some notation.
The reader can consult for instance [19, Section 7.3] for further details.

Consider a Liouville domain (Σ2n−2, λ), together with an exact symplecto-
morphism ψ of (Σ, dλ) (i.e. ψ∗λ = λ − dh, for some smooth h : Σ → R

+),
fixing pointwise a neighborhood of the boundary B := ∂Σ . One can then
consider the mapping torus Σψ of (Σ, ψ), and the abstract open book

VΣ,ψ :=
(
B × D

2 
 Σψ

) /
∼ (2)
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where ∼ identifies (p, θ) ∈ ∂(B × D
2) with [p, θ ] ∈ ∂Σψ . One can also

construct a fiberwise Liouville form λψ on the mapping torus π0 : Σψ →
S
1 of (Σ, ψ). For large K � 0 the form αK = Kπ∗

0 dθ + λψ is contact
on Σψ . Moreover, it can be extended to a contact form on all of VΣ,ψ by
h1(r)λB + h2(r)dθ on B × D

2, for a well chosen pair of functions (h1, h2),
and λB = λ|B .

We denote the resulting contact form on VΣ,ψ by αΣ,ψ . The contact mani-
fold (VΣ,ψ, ker(αΣ,ψ)) will also be called an abstract contact open book, and
denoted simply with OBD(Σ, ψ). Sometimes, we will also use the contact
form αΣ,ψ .

We point out that there is a well defined map ΦΣ,ψ : VΣ,ψ → D
2 given by

extending the projection to the circle on Σψ by setting

ΦΣ,ψ |B×D2(p, r, θ) = ρ(r)eiθ ∈ D
2,

for some non-decreasing function ρ satisfying ρ(r) = r near 0 and ρ(r) = 1
near r = 1. Notice also that αΣ,ψ is adapted to ΦΣ,ψ (as defined above).

We then denote by βΣ,ψ the Bourgeois form on MΣ,ψ := VΣ,ψ × T
2

associated to (αΣ,ψ, Φ) as in Theorem 2.1, and by ξΣ,ψ the contact structure
it defines. Finally we let BO(Σ, ψ) := (MΣ,ψ, ξΣ,ψ).

Hypertightness for Bourgeois Contact Forms In the following sections,
we will need a hypertightness criterion for αΣ,ψ . We first give a definition:
Let (V × T

2, ξ) be a contact manifold, and B any subset of the set of closed
Reeb orbits of a contact form β. We say that β has T2-trivial Reeb dynamics
concentrated in B if the image of every closed Reeb orbit not in B under the
projection V × T

2 → T
2 is homotopically non-trivial.

A straightforward computation gives:

Observation 2.2 [7, Section 10.2] (cf. [22, Corollary 6.3]). The Bourgeois
contact form βΣ,ψ for ξΣ,ψ has T2-trivial Reeb dynamics concentrated in the
setB consisting of the submanifolds γB ×{q} ⊂ V ×T

2, for all q ∈ T
2 and all

γB closed Reeb orbit of (B, αΣ,ψ |B). If the binding (B, αΣ,ψ |B) of the natural
open book of VΣ,ψ admits no Reeb orbits that are contractible in VΣ,ψ , then
the Bourgeois contact structure ξΣ,ψ is hypertight.

Notice that, in the 3-dimensional case, Observation 2.2 implies that, if the
binding consists of a collection of loops each having infinite order in π1(V ),
then the associated Bourgeois contact structure is hypertight.

We point out that we will not make use of Observation 2.2 in the proof of
Theorem A, as we will apply it directly on a another contact form, which still
defines the Bourgeois contact structure up to isotopy (see Lemma 5.1 below).

A supporting spinal open book decomposition We now present a geo-
metric way of understanding the Bourgeois construction, via SOBDs (see also
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Section 6 for an alternative SOBD). The notion of an SOBD, introduced in
[39] in dimension 3 (see also [46, Appendix B] for a version in arbitrary
dimensions), comes from the observation that an open book decomposition
can be thought of as two fibrations glued together: the neighbourhood of the
binding is a contact fibration over the 2-disc, while the mapping torus piece
is a Liouville fibration over the circle. More generally, an SOBD consists of a
contact fibration over a general Liouville domain, glued to a Liouville fibra-
tion over a contact manifold. The first fibration is called the spine; the second
one, the paper. The base of the spine (the vertebrae) has boundary the base
of the paper; the fibers of the paper are called the pages. The two fibrations
are glued together along an interface region, which for our purposes we will
think as a trivial product of a piece of the vertebrae (a collar neighbourhood
of its boundary) and the contact fiber of the spine, and hence can be given the
structure of both types of fibrations.

Let us see how this works in the case of Bourgeois manifolds. Consider
Φ = ΦΣ,ψ = ρeiθ = (ρ cos(θ), ρ sin(θ)), a defining map for V = VΣ,ψ =
OBD(Σ, ψ), together with the Giroux form α = αΣ,ψ and the associated
Bourgeois form β = βΣ,ψ . Let θ = Φ/|Φ| : V \ B → S

1 be the open book
coordinate. From Eq. 2, we obtain a decomposition

M = V × T
2 = B × D∗

T
2 ∪ Σψ × T

2 ,

wherewe identifyD∗
T
2 ∼−→ D

2×T
2 via (q1, p1, q2, p2) 	→ (p1, −p2, q1, q2).

We denote by MS := B × D∗
T
2, which we call the spine, and MP :=

Σψ ×T
2, the paper.We also have the interface region MI

∼= B×[−ε, ε]×T
3,

corresponding to the region where MS and MP glue together. Observe that we
have fibrations

πS : MS → D∗
T
2, πP : MP → S∗

T
2 = T

3,

where the monodromy of πP coincides with ψ along the cotangent S1-
direction, and is trivial along T2. The map πS has contact fibers and Liouville
base, whereas πP has contact base and Liouville fibers. The interface region
is a trivial product and hence fibers over B or over a collar neighbourhood of
∂D∗

T
2 inside D∗

T
2. This is then an SOBD for M . Observe that the fibers of

πP , the pages of the SOBD, coincide with the pages of the OBD for V . One
may also view the SOBD as a fibration π̂P : M\B → S

1 × T
2, where we

define the binding of the SOBD as B = B × {0} ×T
2 ⊂ B ×D

2 ×T
2 = MS .

This fibration has fibers which symplectically are copies of the Liouville com-
pletion of the page Σ , and has monodromy ψ along the first factor, and trivial
monodromy along the second.
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The Bourgeois contact structure ξ = ξΣ,ψ is “supported” by the SOBD
described above, in a sense which we now describe. Via the identification
D∗

T
2 → D

2 × T
2 above, up to isotopy of contact forms, we have

β|MS\MI = λB + λstd ,

where λstd = p1dq1 + p2dq2 is the standard Liouville form on D∗
T
2. In

other words, β|MS\MI is a split contact form, having a Liouville and a contact
summand. Note also that on MS\MI the Reeb vector field Rβ of β agrees with
RB over the binding B, and is transverse to the pages away from it. Similarly,
up to isotopy

β|MP\MI = λψ + αstd ,

where αstd = cos(θ)dq1 + sin(θ)dq2 is the standard contact form on T
3,

and so splits into a Liouville summand and a contact summand. In particular,
the restriction of dβ to the pages of the SOBD is a positive symplectic form,
and the Reeb vector field is transverse to the pages, agreeing with that of
αstd and so tangent to the T

2 factor. In other words, the contact structure,
the contact form, as well as the Reeb dynamics of β are “compatible” with
the underlying geometric decomposition. This interpretation also allows us to
reobtain Observation 2.2.

Remark 2.3 The observation that Bourgeois contact manifolds are supported
by the above SOBD, in the sense described above, should be attributed to Sam
Lisi.

3 A cobordism of Bourgeois manifolds

We describe a strong (actually, pseudo-Liouville) cobordism between Bour-
geois contact manifolds with the same page. Its purpose is to relate the
Bourgeois manifold coming from two different monodromies to the one com-
ing from their composition, and it will be used in the proof of Theorem A.

3.1 From disjoint union to composition of monodromies

Let (Σ2n−2, dλ) be a Liouville manifold, and let φ be an exact symplec-
tomorphism relative to the boundary. Notice that the boundary (B, λB) :=
(∂Σ, λ|∂Σ) can naturally be seen as the “binding” submanifold of the associ-
ated open book. For each q ∈ T

2, we also let Bq be B × {q} ⊂ VΣ,φ × T
2 =

MΣ,φ .
The aim of this section is to give a proof of the following result (recall Figure

1):
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Theorem 3.1 There is a smooth cobordismC from MΣ,ψ

⊔
MΣ,φ to MΣ,ψ◦φ .

This cobordism is smoothly a product C0×T
2, whereC0 is a smooth cobordism

from VΣ,ψ

⊔
VΣ,φ to VΣ,ψ◦φ . Moreover, there is a symplectic form ωC on C

which satisfies the following properties:

1. ωC admits local Liouville formsλ+ andλ− near MΣ,ψ◦φ and MΣ,ψ

⊔
MΣ,φ

respectively, satisfying:
(a) λ+ restricts on MΣ,ψ◦φ to the Bourgeois contact form βΣ,ψ◦φ ,
(b) λ− restricts on MΣ,ψ 
MΣ,φ to the Bourgeois contact forms βΣ,ψ and

βΣ,φ respectively; in particular,λ− has (on each connected component)
T
2-trivial Reeb dynamics concentrated in {Bq}q∈T2;

2. ωC admits a global primitive ν which coincides with λ+ at the convex
boundary and such that ν|Bq = λ−|Bq for each Bq ⊂ MΣ,ψ

⊔
MΣ,φ .

Item 1 means in particular that (C, ωC ) is a strong symplectic cobordism
with convex boundary BO(Σ, φ ◦ ψ) and concave boundary BO(Σ, φ) 

BO(Σ, ψ). Notice however that we do not claim that the global 1-form ν in
Item 2 defines a contact structure at the concave boundary; in other words, the
cobordism we give is not claimed to be Liouville, but just pseudo-Liouville
(as defined in the introduction). Lastly, we point out that Theorem 3.1 can be
thought of as a “stabilized” version of [2, Proposition 8.3] and [35, Theorem1];
in fact, smoothly (but not symplectically), the cobordism C is just the product
of the cobordism from [2,35]withT2. For the reader’s convenience, we start by
giving a topological description of the cobordism C as obtained by gluing two
“cobordisms with corners”, Cbot and Ctop, and then describe the symplectic
structures on these pieces in more detail.

A topological description of C Let P be the pair of pants, i.e. the surface
of genus 0 and with 3 boundary components. We view P as embedded in
R
2 as the (closed) disc D+ of radius 1 with two smaller (open) disjoint discs

D−,1 and D−,2, both of radius ε and centered at −1/2 and +1/2 respectively,
removed from it. In cobordisms terms, P is seen as a smooth cobordism with
concave boundary ∂D−,1 
 ∂D−,2 and convex boundary ∂D+.

Consider then the fiber bundle πE : E → P , with fiber the page Σ , over
the pair of pants P , where the monodromies along the two negative boundary
components are given by φ andψ respectively, and by their composition along
the positive one. This can be realized for instance as follows: consider γ1 and
γ2 disjoint arcs in P joining respectively ∂D−,1 and ∂D−,2 to ∂D+, then cut
Σ × P alongΣ ×γ1 andΣ ×γ2 and glue them back respectively via φ × Idγ1

and ψ × Idγ2 .
The desired “bottom piece” Cbot of C is then the cobordism with corners

E × T
2, which inherits a fibration π = πE × idT2 : Cbot → P × T

2; cf.
Figure 2. Notice that Cbot has the following distinguished boundary pieces:
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Fig. 2 Topological picture of Cbot

Fig. 3 Topological picture of the cobordism (with corners)Ctop ⊂ B×[0, +∞)×R
2×T

2. In
the proof ofTheorem3.1,R2×T

2 becomesT ∗
T
2 and [0, +∞)×B becomes the symplectization

of B

• ∂±Cbot given by the preimage by π of ∂D+ ×T
2 and ∂D−,1
∂D−,2×T

2,
respectively;

• ∂0Cbot given by ∂Cbot \ π−1(∂P × T
2).

Furthermore, since φ and ψ are both identity near ∂Σ , one simply has that
∂0Cbot = ∂Σ × P × T

2.
The “top piece” Ctop of C is given as follows. Consider P ⊂ R

2 as a
subset of {0} × R

2 ⊂ R
3. Let also S+, S−,1 and S−,2 be three hemispheres in

[0, +∞) × R
2 centered respectively at 0, −1/2 and +1/2, and of radius 1, ε

and ε respectively. Then, P together with these three hemispheres bounds a
compact region R ⊂ R

3 with piece-wise smooth boundary. The desired Ctop
is then just given by Ctop = B × R × T

2, where B = ∂Σ ; cf. Figure 3. As
was the case with Cbot , the manifold Ctop also has the distinguished boundary
pieces:

• ∂+Ctop given by B × S+ × T
2;

• ∂−Ctop given by B × (S−,1 
 S−,2) × T
2;

• ∂0Ctop given by B × P × T
2.

The desired cobordism C is then topologically just obtained by gluing Ctop
with Cbot along ∂0Ctop = B × P × T

2 and ∂0Cbot = B × P × T
2 (via the

natural identification).
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We now proceed to discuss the symplectic side of the construction, i.e.
to give a detailed proof of Theorem 3.1. We will follow closely, with some
adaptations, the proof given in [35].

A toroidal pair of pants cobordism in dimension In order to make the
topological sketch above into a detailed proof taking care of the symplectic
data, we need to utilise a symplectic counterpart of the product of the pair
of pants P and T

2 which has the right structure at the boundary. In other
words, we want a strong 4-dimensional symplectic cobordism with concave
end (S∗

T
2, ξstd) 
 (S∗

T
2, ξstd) and convex end (S∗

T
2, ξstd), and having the

topology of P×T
2. To this end, consider the unit disc cotangent bundle D∗

T
2

of T2, together with its standard symplectic structure ωstd = dλstd , where
in coordinates λstd = p1dq1 + p2dq2 is the standard Liouville form. To be
precise, we need to work with scalar multiples Kωstd and Kλstd , where K is
a positive real constant that will be determined later on in the proof. We also
denote by X the Liouville vector field p1∂p1 + p2∂p2 .

Consider the submanifold D∗
εT

2 of D∗
T
2 made of those covectors of norm

less than a certain ε < 1/10, and denote by j± : D∗
εT

2 → D∗
T
2 the sym-

plectomorphisms

(p1, q1, p2, q2)
j±	−→ (p1 ± 1/2, q1, p2, q2).

For ease of notation, we consider the inclusion

j = j− 
 j+ : (D∗
εT

2, Kωstd) 
 (D∗
εT

2, Kωstd) → (D∗
T
2, Kωstd).

Then, the desired cobordism is (Q, ωQ) := (D∗
T
2 \ j (D∗

εT
2), Kωstd). Topo-

logically this is just a product of the torus with a pair of pants P ⊂ R
2 in the

(p1, p2)-plane.
The Liouville field on a neighbourhood of the convex boundary is just given

by X , whereas the one near the concave boundary is given by j∗X , which is
the vector field (p1 ∓ 1/2)∂p1 + p2∂p2 on the image of j± respectively.

Lastly, we consider an auxiliary smooth function f : T ∗
T
2 → R, which

depends only on p1, p2, and satisfies:

1. f = p21 + p22 on T ∗
T
2 \ D∗

T
2,

2. f = (p1 ∓ 1/2)2 + p22 on the image of j± respectively,
3. ε2 < f < 1 on the interior of Q.

Notice that Item 1 implies in particular that d f (X) > 0 in a neighborhood
of ∂(D∗

T
2). Similarly, Item 2 implies that d f ( j∗X) > 0 on the image of j ,

except on j ({0} × T
2 
 {0} × T

2), where it vanishes.

Description of the symplectic cobordism Consider the bottom piece Cbot
as in the topological sketch above. We now view Cbot as a fiber bundle with
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fibersΣ over Q = P×T
2 ⊂ T ∗

T
2, andwant to prove that it admits a fiberwise

Liouville form λ0 which agrees with etλB near B × Q ⊂ Cbot . Here, etλB is
the normal form of λ on Σ on a sufficiently small neighborhood (−δ, 0] × B,
with t ∈ (−δ, 0], of its contact boundary B given by the (globally defined)
Liouville vector field Y for λ, which is outwards pointing along the boundary
∂Σ = B of the page Σ .

Recall that Cbot is obtained from Σ × T ∗
T
2 by a cut and paste procedure

alongΣ × (γ1∪γ2)×T
2, as described in the topological sketch above. Recall

also that φ and ψ are exact symplectomorphisms of the page (Σ, λ), equal
to the identity on a neighborhood of B; let then h1 and h2 be respectively
the functions on Σ , constant near the boundary, such that φ∗λ = λ − dh1
and ψ∗λ = λ − dh2. Taking normal coordinates ri ∈ (−ε, ε) to γi inside
P , one can then consider smooth cutoff functions ρi : (−ε, ε) → [0, 1] equal
to 0 near ri = −ε and to 1 near ri = 0. It then follows that, in the cut and
paste procedure to obtain Cbot from Σ × T ∗

T
2, the form λ − d(ρi hi ) on

Σ × (P \ (γ1 ∪ γ2)) × T
2 glues well under the identifications φ × Idγ1 and

ψ × Idγ2 along Σ × γ1 × T
2 and Σ × γ2 × T

2 respectively. The result is
hence a fiberwise Liouville form λ0 on the fiber bundle π : Cbot → Q, which
is equal to etλB near B × Q as the hi ’s are constant there.

We also point out that, for very large K � 0, the formΩ = dλ0+Kπ∗dλstd
on the total space Cbot of π : Cbot → Q is an exact symplectic form with
primitive ν = λ0 + Kπ∗λstd . Here, abusing notation sightly, we let λstd
denote the restriction of the canonical 1-form under the inclusion Q ⊂ T ∗

T
2.

This then gives the desired symplectic structure on Cbot ; it only remains to
describe the symplectic form on Ctop.

For this, let τ be a function on [0, ∞) vanishing at 0 with all its derivatives,
and strictly monotone increasing on (0, ∞). We then identify the Ctop of the
topological sketch above with the following set:

Ctop = {
(t, b, p, q) ∈ [0, ∞) × B × T ∗

T
2

∣∣ τ(t)2 + f (p, q)2 ≥ ε2,

τ (t)2 + |p|2 ≤ 1
}
.

The advantage of this identification is that Ctop inherits a natural Liouville
structure etλB + Kλstd from the symplectization ([0, ∞) × B, d(etλB)) and
the cotangent structure (T ∗

T
2, λstd).

Now,Cbot andCtop can be naturally glued along the subsets B×Q ⊂ ∂Cbot
and {τ = 0} = {0} × B × Q ⊂ Ctop (corresponding to ∂0Ctop and ∂0Cbot
in the topological sketch). What is more, this gluing is compatible with the
symplectic form Ω = dλ0 + Kπ∗dλstd on Cbot and d(etλB) + Kdλstd on
Ctop. We thus obtain a symplectic cobordism (C, ωC), and we now proceed
to check that it satisfies the required properties. We will only do this for the
negative ends, as the case of the positive end is entirely analogous.
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Proof of Theorem 3.1 Notice first that by construction C = C0 × T
2 is topo-

logically a product. Furthermore, each boundary component of C determine
T
2-stabilised open books, which we think of as supporting SOBD’s for the

Bourgeois contact structures. Moreover, these SOBD’s coincide, at least topo-
logically, with those used to define the Bourgeois contact structure. From a
symplectic point of view, we point out that the fiberwise Liouville form λ0 on
Cbot → Q glues well to the 1-form etλB on Ctop inherited from the ambient
space [0, ∞) × B × T ∗

T
2 to give a global 1-form denoted λ̂0, which is a

pullback of a form on C0.
We now describe the primitives near the boundary in the bottom part Cbot .

Consider the primitive j∗λstd of the standard symplectic form near the concave
boundary of Q, which in coordinates is just p1dq1 + p2dq2 ∓ 1/2dq1. The
Liouville vector field Z associated to the local primitive λ− = λ0+K j∗λstd is
then defined on a neighborhood of the negative boundary components ∂−Cbot
of Cbot . More precisely, an explicit computation shows that the vector field
Z is, in the explicit pre-glued version Σ × (P \ (γ1 ∪ γ2)) × T

2 of Cbot ,
just Y + Y ′ + j∗X + X ′, where Y is the Liouville form associated to λ on
Σ , Y ′ is the dλ-dual of ρdh (hence tangent to the Σ factor), and X ′ is the
dλstd -dual of 1

K hdρ; here we define ρ to be ρi , respectively on each of the
two negative ends. Hence, the vector field X ′ is tangent to the second factor
of Σ × (P \ (γ1 ∪ γ2)) × T

2, and has no ∂p component, using cotangent
coordinates (p, q) ∈ T ∗

T
2. In particular, the projection of Z on Cbot to Q

via the fiber bundle map has the same ∂p component as j∗X near ∂−Q, and is
hence transverse to it and inwards pointing.

Now, via the natural (orientation preserving) diffeomorphisms

S
1
ε × T

2 → S∗
εT

2 ⊂ D∗
εT

2

(ϕ, x, y) → (p1 = − cos(ϕ) ± 1/2, q1 = x, p2 = sin(ϕ), q2 = y),
(3)

whereS1ε is the circle inR
2 of radius ε, the restriction of the associatedLiouville

form on Cbot to the boundary is naturally pulled back to the Bourgeois contact
form on the paper region of the SOBD, for a suitable choice of adapted contact
form α and open book map Φ (cf. Remark 2.1).

In the top part Ctop of the cobordism the Liouville vector field is just the
linear combination ∂t + r∂r , where r is the radial parameter |p ∓ 1/2| at the
respective boundary components. This is then also transverse to the boundary.

By parametrizing the interior hemispherical caps using the canonical coor-
dinates coming from the cotangent bundle of the torus, we obtain the following
coordinate description on Ctop:

λ− = e
√

ε2−|r |2λB + K (p1 ∓ 1/2)dq1 + Kp2dq2 .
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Now, via the (orientation preserving) diffeomorphisms

D
2
ε × T

2 → D∗
εT

2

(r, ϕ, x, y) → (p1 = −r cos(ϕ) ± 1/2, q1 = x, p2 = r sin(ϕ), q2 = y),

naturally extending Eq. (3), where D
2
ε is here the disc in R

2 centered at the
origin of radius ε, λ− then pulls back on each negative boundary component of
Ctop to the Bourgeois contact form as in Theorem 2.1, for a suitable choice of
adapted contact form α and open book mapΦ, which can be taken compatible
with that coming from the bottom boundary part. This concludes the proof of
Item 1b.

Finally, notice that there is a global Liouville primitive ν for ωC defined on
all C , given by gluing λ0 + Kπ∗λstd on Cbot = E × T

2 and etλB + Kλstd
on Ctop ⊂ [0, +∞) × B × T ∗

T
2. By looking at the explicit expression for

λ− along Ctop, we see that ν coincides with λ− on the subsets of the form Bq
defined before the statement of Theorem 3.1. Indeed, these are given by Bq =
B×{x±}×{q}, where x± = (t = ε, p1 = ±1/2, p2 = 0) ∈ [0, +∞)×R

2 is
the “origin” in the hemispheres S−,1, S−,2, i.e. the points of S−,1 and S−,2 with
maximal t value. There, we just have λ−|Bq = eελB = ν|Bq . This concludes
the proof. �


4 Factorizing the monodromy

Let Σ denote a connected orientable surface with boundary. We will denote
the mapping class group as MCG(Σ), which is defined to be the set of isotopy
classes of orientation preserving diffeomorphisms of Σ ; note that we do not
require these diffeomorphisms to fix the boundary components. This group is
naturally isomorphic to the group of isotopy classes of diffeomorphisms of
the corresponding punctured surface. One may also consider MCG(Σ, ∂Σ)

of mapping classes fixing the boundary, and there is a natural forgetful map
MCG(Σ, ∂Σ) → MCG(Σ) whose kernel is generated by boundary parallel
Dehn twists.

Wewill refer to a surface as sporadic if it is either a disc, an annulus or a pair
of pants. These cases correspond to the mapping class group being virtually
abelian. The aim of this section is to prove the following:

Lemma 4.1 (Factorization Lemma) Let φ ∈ MCG(Σ, ∂Σ) for a non-
sporadic surface Σ . Then φ can be factored as φ = φ1 ◦ φ2, where, for
each i = 1, 2, φi is such that each connected component of the binding of
Vi := OBD(Σ, φi ) has infinite order in π1(Vi ).

A direct consequence of Lemma 4.1 and Observation 2.2 is the following:
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Corollary 4.1 Let φ be a mapping class of a compact, orientable, non-
sporadic surfaceΣ with boundary. Thenφ can be factored asφ = φ1◦φ2, with
φ1, φ2 such that the Bourgeois contact manifolds BO(Σ, φ1) and BO(Σ, φ2)

are hypertight.

In order to prove Lemma 4.1, we start by recalling some results from geo-
metric group theory and 3-dimensional hyperbolic geometry in Sections 4.1
and 4.2 respectively. The proof is then given in Section 4.3.

4.1 Dynamics of pseudo-Anosovs acting on the curve graph

Let Σ denote a compact, connected orientable surface (possibly with bound-
ary). We recall that, by the Nielsen–Thurston classification theorem (see for
instance [18, Theorem 13.2]), every element in MCG(Σ) or MCG(Σ, ∂Σ)

is either pseudo-Anosov, reducible or of finite order. This characterization
can also be extracted from the associated action on the curve graph, denoted
C(Σ). This is the graph whose vertices are isotopy classes of essential, non
boundary-parallel, simple closed curves onΣ so that there is an edge between
two vertices if the corresponding curves can be made disjoint via isotopy.
Endowing the edges to have length 1 we thus obtain a metric space on which
the mapping class group acts via isometries.

The curve graph was famously shown to be δ-hyperbolic in the sense of
Gromov by Masur-Minsky [43] in the case that Σ is neither the torus nor
sporadic, which has many important implications. In particular, one has the
following alternative description using this action that is again due to Masur-
Minsky [43, Theorem 4.6].

Theorem 4.1 (Masur–Minsky) Let φ �= I d be an arbitrary mapping class
on a non-sporadic compact, orientable, surface Σ with non-empty boundary.
Then, we have the following trichotomy:

• (Finite Order): The action of φ on C(Σ) has finite orbits, but no fixed point.
• (Reducible): φ has a fixed point in C(Σ).
• (Pseudo-Anosov): φ has no finite orbits and in fact acts hyperbolically on
C(Σ).

In the following wewill use some basic facts about Gromov-hyperbolic spaces
and their boundaries at infinity, which can for example be found in the book
of Bridson–Haefliger [11, Chapter 9].

We now collect some basic consequences of the fact that a pseudo-Anosov
mapping class f acts hyperbolically on the curve graph. First we note that, for
any choice of isotopy class α, which corresponds to a vertex in the curve graph
X = C(Σ), the bi-infinite orbit β = ( f n(α))n∈Z is a quasi-geodesic. More-
over, such a quasi-geodesic determines two distinct points p± on the Gromov
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boundary ∂∞X of the curve graph, which correspond to the fixed points of the
induced action on the boundary and form a repelling/attracting pair. Finally,
the action on the boundary has north-south dynamics. More precisely, for any
neighbourhoods U± around p± ∈ ∂∞X there is some (large) N so that

f N (∂∞X \U−) ⊂ U+ and f −N (∂∞X \U+) ⊂ U−.

In fact, this north-south dynamics can also be seen using half spaces associated
to the quasi-geodesic β = ( f n(α))n∈Z, as described presently. First of all the
nearest point projection Πβ : X → β, mapping an arbitrary point to a point
in β which is nearest to it, is well-defined in the coarse sense, meaning that
any two nearest point projections are a uniformly bounded distance apart. We
fix such a choice from now on; what follows is independent of this choice up
to constants. We decompose β = ( f n(α))n≤0 ∪ ( f n(α))n≥0 = β+ ∪ β− into
two (quasi-)rays and define half spaces

H± = Π−1
β (β±).

Taking closures in X ∪ ∂∞X , the north-south dynamics implies that

⋂
n≥0

f n
(
H+

) = p+ and
⋂
n≥0

f −n (
H−

) = p− .

For convenience we write WN± = f ±N (H±). Note that WN+ is precisely the
preimage of { f n(α)}n≥N under the projection and similarly forWN− . In partic-
ular, WN+ and WM− are disjoint for all N , M ≥ 1. Moreover, these half spaces
satisfy the following property:

Lemma 4.2 There is a constant C = C(δ, α), depending only on the hyper-
bolicity constant δ and the choice of curve α, such that every geodesic joining
a point z ∈ WN± to its nearest point projection lies in W N−C± .

Proof We refer to Figure 4 for this proof. Let z ∈ WN+ have nearest point
projection f L(α) and let [z, f L(α)] be a geodesic path from z to f L(α).
Assume that the nearest point projection f N

′
(α) of some x ∈ [z, f L(α)] sits

outside WN−C+ , i.e. N ′ ≤ N − C .
As ( f n(α))n is a quasi-geodesic, there is some C ′ > 0 so that, for any

N−C < M < N , there is a point p on the geodesic segment [ f N ′
(α), f L(α)]

which is at distanceC ′ from f M(α). Now, by the δ-slim property applied to the
geodesic triangle {x, f N

′
(α), f L(α)}, there is a point y either on the geodesic

segment [x, f N
′
(α)] or on [x, f L(α)] with distance at most δ from p. Hence,

y is also at distance at most C ′ + δ from f M(α).
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Fig. 4 The triangle in the proof of Lemma 4.2

Now, let us assume that y ∈ [x, f N
′
(α)]. Then, it follows that [y, f N

′
(α)]

has length atmostC ′+δ, otherwise therewould be a piecewise geodesic from x
to f M(α) shorter than the geodesic segment [x, f N

′
(α)], contradicting the fact

that f N
′
(α) is the nearest point projection of x . But then the geodesic triangle

{y, f N
′
(α), f M(α)} violates the triangle inequality if C is taken big enough

(this value only depends on δ and α, and not on the point y), as the two sides
containing y are both of length at mostC ′+δ, while the side [ f N ′

(α), f M(α)]
has length growing linearly in M − N ′ ≥ C .

If y ∈ [x, f L(α)], the analogous argument shows that the geodesic triangle
{y, f L(α), f M(α)} violates the triangle inequality if C is big enough. This
then proves the proposition, provided C = C(δ, α) is taken to be large. �


We now prove the following, which only uses facts about the dynamics of
isometries acting hyperbolically on δ-hyperbolic spaces. We are very thankful
to Sebastian Hensel for pointing this out to us.

Proposition 4.1 Let φ be a fixed mapping class on a non-sporadic compact,
orientable, surface Σ with non-empty boundary. Then, there exists a pseudo-
Anosov map f such that, for sufficiently large k, the mapping class f kφ ∈
MCG(Σ, ∂Σ) is pseudo-Anosov.

Proof Let φ be our given mapping class. We first claim that there is a pseudo-
Anosovmap f whose set of fixed points {q±} at infinity is mapped to a disjoint
set under φ. To see this, first recall that, since Σ is non-sporadic, there exist at
least two pseudo-Anosovmapping classes γ, η ∈ MCG(Σ, ∂Σ)with disjoint
sets of fixed points at infinity {pγ

±} and {pη
±}1. Now, if for instance φ mapped

the stable fixed point pγ
+ ∈ ∂∞X of γ to its unstable fixed point pγ

− (the other
case is similar), then we can consider the conjugate f = γ Nηγ −N for large N

1 This follows, for example, from the fact that the action on the boundary of the curve complex
is WPD in the sense of [4, Proposition 6].
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Fig. 5 The quadrilateral in the proof of Proposition 4.1

so that both fixed points q± of f lie in a small neighbourhood of the attracting
fixed point pγ

+ of γ , which is then mapped under φ to a small neighbourhood
of pγ

−. In particular, the set {φ(q±)} is disjoint from {q±} as claimed.
Consider now such a pseudo-Anosov f , and let WN± = f ±N (H±) as in the

notation described before the statement of Proposition 4.1. Note that these sub-
sets are definedwith respect to some a priori fixed quasi-geodesic ( f n(α))n∈Z.
Observe that, in view of our assumption on f , we can use the north-south
dynamics to assume that both φ−1(WN− ) and φ(WN+ ) are disjoint from WN− ,
for all large N � 0. In particular, for any given (large) M we can take k so
that gk = f kφ satisfies

gk(W
N+ ) ⊂ WN+3M+ .

Now suppose gk is not pseudo-Anosov. In particular, up to taking powers,
it has a fixed point, say α′. We claim that such a fixed point must belong to
WN+ . Assume not. Then consider the geodesic joining α′ to f N+M(α). This
has one end point fixed by gk , while the other gets mapped to gk( f N+M(α)) ∈
WN+3M+ under gk . Joining gk( f N+M(α)) by a geodesic to its nearest point
projection f L(α), where L ≥ N + 3M , we obtain a geodesic quadrilateral
with vertices gk( f N+M(α)), f L(α), f N+M(α), α′ that has two sides of equal
length D = d(α′, f N+M(α)) at the vertex α′. See Figure 5.

Then by the δ-slim triangle condition applied twice, the stability of quasi-
geodesics and Lemma 4.2, we find a point y on one of the sides containing α′
that has distance at most K = C ′(δ, α)+2δ from f N+2M(α)whereC ′(δ, α) is
the uniform constant coming from quasi-geodesic stability that in turn depends
only on δ and α. Moreover, we have (using that M is large) that y splits the
geodesic it lies on into subarcs each of length at least 2K , and hence of length at
most D−2K . This is also represented in Figure 5. Then the triangle inequality
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Fig. 6 The triangle {α′, f N
′
(α), f N+2M (α)}. (Here, recall that K ′ = C ′ + δ)

implies that

d(α′, f N+2M(α)) < d(α′, f N+M(α)).

Now let f N
′
(α) be the nearest point projection of α′ to the quasi-geodesic

β = ( f n(α))n∈Z so that N ′ < N by the assumption that α′ does not belong
to WN+ . We argue now as above. First apply the δ-slim triangle condition
to the geodesic triangle with vertices f N+2M(α), f N

′
(α) and α′, as well as

the stability of quasi-geodesics to find a point y on the geodesic segments
[ f N+2M(α), α′] or [ f N ′

(α), α′] that is distance at most K ′ = C ′(δ, α) + δ

to the point f N+M(α) (see Figure 6). Then using that M is large, so that the
distance from f N+M(α) to f N+2M(α) resp. f N

′
(α) is larger than 2K ′, we

deduce that y divides the geodesic segment it lies on into segments of length
at least 2K ′, and hence of length at most D − 2K ′. Thus we find a (piecewise
geodesic) path joining α′ to f N+M(α) of length strictly less than

D′ = d(α′, f N
′
(α)) ≤ d(α′, f N+2M(α)) < d(α′, f N+M(α)).

This is a contradiction to the fact that f N
′
(α) was a nearest point projection

and we conclude that α′ ∈ WN+ .
A similar argument (using g−1

k = φ−1 f −k instead of gk and, for any j ∈ Z,

φ−1 ◦ f − j (α) and φ−1(W j
−) instead of f j (α) and W j

+ respectively) shows
that any fixed point must also satisfy α′ ∈ φ−1(WN− ).

This however contradicts the fact that the two sets WN+ and φ−1(WN− ) are
disjoint. Thus no power of gk can have fixed points in X = C(Σ) and, in view
of Theorem 4.1, we deduce that gk is pseudo-Anosov for all sufficiently large
k. �
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Remark 4.1 One could also deduce Proposition 4.1 as a consequence of results
of Bestvina–Fujiwara cf. [5, Theorem 1.1]. In particular, for non-sporadic sur-
faces, they constructed unbounded quasi-morphisms h on MCG(Σ, ∂Σ) that
are bounded on the stabilizer of any essential simple closed curve. Moreover,
one can assume that h is homogeneous under (positive) powers, so that h then
vanishes on all reducible classes. Consider any f so that h( f ) �= 0. Then
given any reducible class φ, it follows from the quasi-morphism property that
h( f kφ) �= 0 for any sufficiently large k and hence f kφ cannot be reducible
or of finite order by the properties of h.

4.2 Some hyperbolic geometry

We recall the following theorem on hyperbolic mapping tori due to Thurston
[56]:

Theorem 4.2 (Thurston [56]) Let Σ be a compact, orientable surface with
boundary and negative Euler characteristic. If φ is a pseudo-Anosov map on
Σ , then the interior of the associatedmapping torus has a complete hyperbolic
structure of finite volume.

We will also need another result due to Thurston on Dehn fillings of hyper-
bolic manifolds; an introductory account, as well as a detailed proof, can be
found for instance in [41, Chapter 15]. For the readers’ ease, we give here a
statement of such a theorem which is adapted to the specific setting in which
we will apply it.

Let N be an orientable 3-manifoldwith boundary ∂N a finite union T1
· · ·

Tc of 2-dimensional tori. For each i = 1, . . . , c, let also mi , li be generators
of π1(Ti ). For any c-tuple s = (s1, . . . , sc) of Dehn filling parameters, i.e.
of pairs si = (pi , qi ) of coprime integers, one can consider the compact
(boundary-less) 3-manifold N f ill obtained by Dehn filling the boundary tori
with parameters s = (s1, . . . , sc); more explicitly, for each i = 1, . . . , c,
a solid torus Pi := D

2 × S
1 is glued to N via the (unique up to isotopy)

gluing map ∂Pi → Ti sending a meridian of ∂Pi to a curve in the class
pimi + qi li ∈ π1(Ti ).

Theorem 4.3 (Thurston [55]) In the setting described above, suppose more-
over that the interior of N admits a complete hyperbolicmetric of finite volume.
Then, there is a compact set K ⊂ R

2 such that, if every Dehn filling param-
eter si is in R

2 \ K, the closed 3-manifold N f ill obtained by Dehn filling N
with parameters s = (s1, . . . , sc) admits a finite-volume complete hyperbolic
structure g. Moreover, the cores of the filling solid tori are closed geodesics
of (N f ill, ghyp).

123



J. Bowden et al.

Notice that since each si is a pair of coprime integers, the theorem implies
that one can ensure that a Dehn filling is hyperbolic by excluding finitely many
values for each slope si .

Remark 4.2 Since the fundamental group of a closed hyperbolic manifold is
torsion-free and its closed geodesics are all non-contractible, the cores of the
Dehn filling tori will have infinite order in π1(N f ill).

4.3 Proof of the Factorization Lemma

Proof (Factorization Lemma) Let f be a pseudo Anosov map on Σ as in
Proposition 4.1. According to Proposition 4.1, f kφ is pseudo Anosov on Σ

for sufficiently large k. We then write φ = F ◦ G, where

F = f −k, G = f kφ,

where both are pseudo Anosov for k � 0. By Theorem 4.2, the interiors of
the mapping tori associated to (Σ, F) and (Σ,G) carry complete hyperbolic
structures.

Let γ1, . . . , γn be the components of the boundary ∂Σ . For each i =
1, . . . , n, we then denote by ci a curve in Σ which is parallel to γi and con-
tained in the interior Σ̊ ; we can assume, up to isotopy, that they are pairwise
disjoint. We also denote by τ1, . . . , τn the corresponding right-handed Dehn
twists, and τ := τ1 . . . τn .

Observe that τ r = τ r1 . . . τ rn for every r ∈ Z, since the ci ’s are disjoint.
Let φ1 := Fτ r and φ2 := τ−rG. It is easy to check that the 3-

manifolds OBD(Σ, φ1) and OBD(Σ, φ2) correspond to Dehn fillings of,
respectively, the mapping tori ΣF and ΣG with respect to Dehn filling
parameters s(r) = (s1(r), . . . , sn(r)) and t (r) = (t1(r), . . . , tn(r)) such
that |si (r)| , |ti (r)| → +∞ for each i = 1, . . . , n as r → +∞. Thus, for
sufficiently large r , the hyperbolic Dehn filling Theorem 4.3 implies that
OBD(Σ, φ1) and OBD(Σ, φ2) carry hyperbolic structures and that the bind-
ing components (which coincide with the cores of the Dehn filling tori) are
geodesics. In particular the latter have infinite order in the fundamental group
(see Remark 4.2). In other words, we have found the desired decomposition
φ = φ1 ◦ φ2 as posited in Lemma 4.1. �


5 Proof of tightness in dimension 5

The aim of this section is to prove Theorem A on tightness of the Bourgeois
contact structures in dimension 5. For this, we use the following lemma, which
is an analogue of the well-known fact that the convex end of a Liouville
cobordism with hypertight concave end must be tight [1,28]:
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Lemma 5.1 Suppose the connected components of the bindings of OBD(Σ2, φ)

and OBD(Σ2, ψ) have infinite order in the corresponding fundamental
groups. Then, BO(Σ, φ ◦ ψ) is tight.

Proof Let (C, ωC ) be the symplectic cobordism as in Theorem 3.1. According
toObservation 2.2, Item1b of Theorem3.1 and our hypothesis on OBD(Σ, φ)

and OBD(Σ, ψ), the Reeb flow of λ−|∂C− has no contractible periodic orbits.
We now show that this implies that BO(Σ, φ ◦ ψ) is tight.

We assume by contradiction that its convex boundary BO(Σ, φ ◦ ψ) is
overtwisted. According to [6], this implies the existence of an embedded Plas-
tikstufePS, as defined in [47]. Up to attaching a topologically trivial Liouville
cobordism to (C, ωC) along its positive end, we may then assume that the
induced contact form at the positive end is (a positive multiple of) a contact
form αPS which is “adapted” to PS, i.e. it has the normal form described in
[47, Proposition 4] near its core.

Attaching a cobordism at the negative ends using the local Liouville vector
fields associated to λ−, we obtain the negative Liouville completion Ĉ of
λ−, with a symplectic form ω̂C which coincides with d(etλ−) at the negative
ends. We now apply the following standard argument. Take an ω̂C -compatible
almost complex structure J , extending the local model of [47], and cylindrical
in the cylindrical ends. We have a Bishop family of Fredholm regular J -
holomorphic discs in Ĉ with totally real boundary, stemming from the core
of the Plastikstufe. Analogously to [47, Proposition 10], one can check that
the exactness of the symplectic form near the positive end, and hence near the
Plastikstufe, provides uniform bounds on the Hofer energy, defined as in [58,
Page 115]. Provided that we rule out boundary bubbling, sphere bubbling and
the appearance of symplectic caps, by standard bubbling analysis as in [1,28]
we can then obtain a finite energy plane in the negative ends. Note that there is
no boundary bubbling, as shown in [47], nor sphere bubbling, by exactness of
the symplectic form. We shall need to rule out holomorphic caps, and this can
be done as follows (notice that this is not automatic from standard arguments,
since (Ĉ, ω̂C) is only pseudo-Liouville).

Assume the existence of a J -holomorphic cap c, considered as a map from
C to Ĉ . TheHofer energy bounds on the Bishop family provide a periodic Reeb
orbit of the Reeb flow of λ−, to which c is negatively asymptotic. Now as γ is
nullhomotopic in Ĉ , projecting toT2 via the globally defined projection,we see
that the image of γ in T2 is also nullhomotopic. We conclude by Theorem 3.1
that the Reeb orbit γ must be a binding component Bq .

We now argue that such a cap cannot exist. To this end we let πδ : Ĉ → C
be a (smooth) map that collapses the ends of the completed cobordism onto
the boundary, depends only on the t-coordinate (monotonically) and is the
identity on C away from a small δ-neighbourhood of ∂C .
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Following [9, Section 6] we consider the ω-energy of a holomorphic plane

Eω(c) =
∫

C

c∗ωδ,

where ωδ = π∗
δ ωC is the 2-form which is explicitly given by

ωδ =
⎧
⎨
⎩
dλ+ on [0, ∞) × ∂+C
π∗

δ ωC on C
dλ− on (−∞, 0] × ∂−C.

In fact the resulting forms are all cohomologous relative to the ends for any
δ > 0 so that the precise value is irrelevant. Taking a limit as δ ↘ 0, we obtain
the (piecewise) description of the ω-energy of [9].

As the almost complex structure is cylindrical on the ends, it is easy to
check that Eω(c) is non-negative, and strictly positive if c is not completely
contained in an end. In particular, given the assumption that all Reeb orbits
have infinite order in the fundamental group of the negative end, we deduce
that the holomorphic cap cannot lie completely in the negative cylindrical end,
and hence Eω(c) > 0.

By Item 2 of Theorem 3.1, there is a primitive ν of ωC on the initial cobor-
dism that is positive along binding components. We remark that this primitive
will not be of the form d(etλ−) near the negative end, as the cobordism is
only pseudo-Liouville. Pulling back under the map πδ that collapses each end
in turn gives a primitive for ωδ that naturally extends to the compactification
given by adding {∞} × M±, since it is invariant under positive translations in
the t-direction. We denote the resulting primitive for ωδ by ν.

Then integrating the exact form ωδ = d ν along the holomorphic cap c, and
using Stokes’ theorem, we obtain:

0 <

∫

c
ωδ =

∫

−γ

ν < 0

and this contradiction finishes the proof. �

We can now proceed to the proof of Theorem A:

Proof (Theorem A) We start by proving tightness in the “generic” case of non-
sporadic page Σ2. We then deal with sporadic pages on a case by case basis.
Lastly, we explain how to deduce universal tightness by the proof of tightness.

Case 1: non-sporadic Σ By Lemma 4.1 we may factorise the monodromy
φ = φ1 ◦ φ2, where the components of the bindings in OBD(Σ, φ1) and
OBD(Σ, φ2) have infinite order. Then, according to Lemma 5.1, we conclude
that BO(Σ, φ) is tight.
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Case 2:Σ is a disc In this case, the monodromy φ is necessarily isotopic to
the identity. In other words, the resulting contact 3-manifold is (S3, ξstd) and
the open book structure is the one induced by the subcritical Stein-filling D

4.
According to [38, Theorem A.(b)], the associated Bourgeois contact structure
is Stein fillable, and hence tight.

Case 3: Σ is an annulus The mapping class group of the annulus is gener-
ated by a single positiveDehn twist around the core circle. If themonodromy is
a non-negative power of such generator, then the resulting contact 3-manifold
is Stein fillable; then, according to [42, Example 1.1], the associated Bourgeois
contact structure is weakly fillable, and hence tight. If the power is negative,
according to [38, Theorem B], the Bourgeois contact structure associated to
OBD(Σ, φ) is contactomorphic to that associated to OBD(Σ, φ−1), so we
obtain tightness for this case.

Case 4: Σ is a pair of pants For simplicity, enumerate from 1 to 3 the con-
nected components of ∂Σ . For i = 1, 2, 3, let τi be a positive Dehn twist along
the i-th connected component of ∂Σ ; these give generators for the abelianmap-
ping class group of the pair of pants (cf. [18, Section 3.6.4]). Thus we canwrite
φ = τ

a1
1 ◦ τ

a2
2 ◦ τ

a3
3 . We then set τ := τ1 ◦ τ2 ◦ τ3 and, for any N ∈ N>0,

we can decompose φ as φ = F ◦ G, with F := φ ◦ τ N = ∏3
i=1 τ

N+ai
i and

G := τ−N = ∏3
i=1 τ−N

i . We then use the following result:

Lemma 5.2 If N > 0 is big enough, each binding component of OBD(Σ, F)

is of infinite order in π1 (OBD (Σ, F)). The same is true for OBD(Σ,G).

Using Lemmas 5.1 and 5.2, we conclude that BO(Σ, φ) is tight, as desired. It’s
then only left to prove Lemma 5.2 in order to conclude the proof of tightness
in the case of a pair of pants:

Proof (Lemma 5.2) We deal only with the case of OBD(Σ, F); the proof for
the manifold OBD(Σ,G) is completely analogous.

We first point out that, as explained in detail for instance in [50, Section 3],
themanifold OBD(Σ, F) can be seen as obtained byDehn surgery on the total
space of S2 × S

1 → S
2 along three S1-fibers, with coefficients ri := − 1

N+ai
,

for each i = 1, 2, 3. In other words, OBD(Σ, F) is the Seifert manifold

{0, (o1, 0); (N + a1, −1), (N + a2, −1), (N + a3, −1)} .

Moreover, the orbit space O of the Seifert fibration of OBD(Σ, F) is a 2-
dimensional orbifold, with underlying topological surface S2, and the binding
B of OBD(Σ, F) consists of a union of fibers of the Seifert fibration.
We recall that there is a notion of orbifold Euler characteristic χorb for

orbifolds that behaves multiplicatively under finite covers of orbifolds. In our
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special case of the base orbifold B of the Seifert fibered space OBD(Σ, F),
we have

χorb(O) = χ(S2) −
3∑

i=1

(
1 + 1

N + ai

)
= −1 −

3∑
i=1

1

N + ai
.

Fromnowon, let N > 0be sobig thatχorb(O) < 0. In particular,OBD(Σ, F)

is finitely covered by a circle bundle X over a hyperbolic surface S, in such
a way that fibers of X → S are mapped to fibers of OBD(Σ, F) → O (see
[52] for instance). Now, S being hyperbolic, the fibers of X are of infinite order
in π1(X). As X covers OBD(Σ, F) in a compatible way with their Seifert
bundle structures, it follows the fibers of OBD(Σ, F), hence its binding too,
are of infinite order in its fundamental group, as desired. �


Universal tightness Note that all the above arguments remain valid for the
pull-back under any finite cover of V × T

2 induced by a finite cover of the
first factor. Since finite covers over the second factor do not change the contact
structure up to contactomorphism (cf. Remark 2.2), such covers also preserve
tightness. Now any finite cover is itself covered by a composition of covers of
the respective factors. Consequently, the contact structure remains tight under
any finite cover on the first factor. Since the fundamental group of any closed
3-manifold is residually finite (cf. [27]) so is π1(V ×T

2) and hence tightness
on finite covers is equivalent to tightness on the universal cover of V ×T

2 and
universal tightness follows. This concludes the proof of Theorem A. �


6 Obstructions to symplectic fillability

In this section we describe a general capping construction for S1-invariant
contact structures by applying the handle attachments ofMassot-Niederkrüger-
Wendl [42], and use it to give new obstructions to symplectic fillability in all
dimensions.

6.1 S
1-invariant contact structures in terms of Giroux domains

As discussed in [15, Section 6] any S
1-invariant contact structure induces

a decomposition into so called “ideal Liouville domains” as defined in [42,
Section 5]. We now describe how this decomposition arises. First of all we
recall:

Definition 6.1 (Giroux [25]) An ideal Liouville domain (V, ω) is a domain
V with an exact symplectic form ω defined on the interior of W that admits
a primitive λ, satisfying the following condition: for each (and hence any)
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function u : V → R≥0 with regular level set ∂V = {u = 0}, the form uλ

extends smoothly to V inducing a contact form on ∂V .

Notice that, by [25, Proposition 2], at the boundary of any ideal Liouville
domain (V, ω) there is a contact structure ξ which is well defined, i.e. only
depending on ω. Moreover, according to [25, Example 8], the complement of
the dividing set of a convex hypersurface in a contact manifold is a disjoint
union of ideal Liouville domains (the orientation of each of which can either
correspond or be opposite to that induced by the ambient orientation and the
transverse contact vector field on the hypersurface).

Now, given an ideal Liouville domain (V, ω), one can consider the associ-
atedGirouxdomain as defined in [42, Section5.3], namely the contactmanifold
(V × S

1, ker(udt + uλ)); this is well defined in the sense that, up to isotopy
relative boundary, it only depends on ω and not on the function u nor the
primitive λ.

We now consider an S
1-invariant contact structure on a product V × S

1.
Note that the hypersurfaces V × {pt} are convex in the sense of Giroux [23],
i.e. transverse to the contact vector field ∂θ , where θ ∈ S

1. Now, according to
what we pointed out above, this determines a decomposition V = V+ ∪ V−
with V+, V− ideal Liouville domains (where on V− the ideal symplectic form
is negative), where V± is the set where ∂θ is positively/negatively tranverse
to the contact structure. Moreover, by S

1-invariance, the contact structure on
V ×S

1 is just obtained by gluing the twoGiroux domains V+×S
1 and V−×S

1

associated to V+ and V− respectively along their common boundary N × S
1,

with N := ∂V+ = ∂V−, the dividing set, along which ∂θ is tangent to the
contact structure.

A capping cobordism Let nowW 2n+2 be a hypothetical strong symplectic
filling of V ×S

1. The aim of this subsection is to attach a symplectic cobordism
on top of W which, near its positive boundary, splits as the product of a
symplectic S2 and portion of the symplectization of ∂V+, where V = V+∪V−
is the decomposition in Liouville domains of the convex hypersurface {pt}×V
in the S1-invariant contact manifold V × S

1 = ∂W . In order to achieve this,
we use the symplectic cobordism described in [42, Section 6].

First, we describe what the cobordism should look like topologically (i.e.
without specifying the symplectic form or dealing with details such as corner
smoothings), as also done in [42, Section 6.1] in their analogous setting. For
this, it is more convenient to see V × S

1 as obtained as the union V+ × S
1 ∪

[−δ, δ]×N×S
1∪V−×S

1, as explained above.Now, the cobordism is obtained
by attaching V± ×D

2± on top of V± × S
1 ⊂ V × S

1 (and smoothing corners),
where the latter is seen as the positive boundary of the trivial cobordism [0, 1]×
V × S

1. The positive boundary component of the resulting cobordism is then
just N × S

2. Notice also that there are distinguished submanifolds C± :=
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V± × {0} ⊂ V± × D
2 in this capping cobordism, with the property that, once

removed, the cobordism deformation retracts onto the negative boundary.
Now that the topological picture has been described explicitly, we need to

argue that the cobordism has a symplectic structure suited to our needs. In fact,
this is precisely the content of [42, Section 6], where the smoothing procedure
and the symplectic structure are described with great care. We hence refer the
reader to that paper for details, and limit ourselves to stating the properties of
the cobordism that we will need below.

Lemma 6.1 There is a symplectic cobordism (C, ωC) with negative (i.e. con-
cave) contact boundary ∂−C = V ×S

1 and weakly convex positive boundary

∂+C = N × S
2

where N = ∂V . Moreover, there is a tubular neighborhood (−δ, 0] × ∂+C
such that ωC is of the form d(etαN ) + ωS, where t ∈ (−δ, 0] and
• ωS is an area form on S

2,
• αN is a contact form on N.

Lastly, there are symplectic submanifolds C±, diffeomorphic to V±, such that
C \ C± deformation retracts onto its negative boundary, and such that C±
intersect transversely, positively and in exactly one point, each symplectic
sphere in the previously described neighborhood of the positive boundary
∂+C.

In what follows, we denote by Wcap the result of stacking (C, ωC) on top of
the strong symplectic filling W along the common boundary V × S

1.

A moduli space of spheres in the capped filling We now consider a mod-
uli space of pseudo-holomorphic spheres in Wcap. The setup and properties
needed are essentially the same as those discussed in [42, Section 7.2]. For
this reason, we limit ourselves to describing the situation and stating the nec-
essary properties here, and refer the reader to [42] for further details. Note
however that in their situation the positive boundary of the capped filling has
two connected components, one of contact convex type and the other of stable
Hamiltonian type, which leads to a contradiction; in our setting, we instead
end up with one boundary component.

Now according to Lemma 6.1, the boundary ∂Wcap has a collar neighbor-
hood in Wcap so that the symplectic form is split and of the following form:

(
(−δ, 0] × N × S

2, d(etα) + ωS
)
, where t ∈ (−δ, 0].

Hence, one can find an almost complex structure J compatible with the sym-
plectic structurewhich, on this neighborhood, splits as a direct sumof an almost
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complex structure JS on the 2-sphere and some Jα on the symplectization fac-
tor ((−ε, 0] × N , d(etα)). In particular, for any point (t, q) ∈ (−ε, 0] × N ,
the sphere

ut,q : S
2 → (−ε, 0] × N × S

2

y 	→ (t, q, y)

is J -holomorphic. Moreover, as the co-cores C± from Lemma 6.1 are sym-
plectic submanifolds of Wcap, one can choose such a J in such a way that C±
are J -invariant in (Wcap, J ); we hence assume this is the case. Lastly, in the
complement of a neighborhood of ∂Wcap ∪C+ ∪C−, the J can then be chosen
to be generic, so that every simple holomorphic sphere intersecting said region
is regular.

We also have regularity near the boundary, which is proved in [42, Page 334]
in a completely analogous setting:

Lemma 6.2 (Fredholm Regularity) The spheres ut,q are Fredholm regular
and have Fredholm index dim(X) = 2n.

One can then consider the connected component of the moduli spaceM of
J -holomorphic spheres in Wcap containing the pseudo-holomorphic spheres
ut,q .We letM∗ denote the correspondingmarkedmoduli space onwhich there
is a naturally defined evaluation map ev : M∗ → Wcap. Lastly, we denote
by M,M∗ the Gromov compactification of M,M∗ respectively; abusing
notation slightly, we also continue to denote the evaluation map on the com-
pactification by ev : M∗ → Wcap.

Now, we have the following important uniqueness property near the bound-
ary, which can also be proven exactly as in [42, Pages 334 and 335]:

Lemma 6.3 (Local Uniqueness) For sufficiently small ε > 0, any curve u in
the moduli space M, that intersects the collar N =(−ε, 0] × N × S

2, is a
reparametrization of one of the spheres ut,q .

In particular, M,M∗ are smooth manifolds near their boundary, and the
restriction ev∂ of ev : M∗ → Wcap to a (sufficiently small) neighborhood
of ∂M∗ is a diffeomorphism onto a neighborhood of ∂Wcap. We also have
a diffeomorphism ∂M ∼= N . It follows that each of the curves in M has to
be simple, as they intersect each co-core geometrically once by positivity of
intersections together with uniqueness near the boundary (as the latter implies
that intersections cannot escape at the boundary).
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Nodal stratification: Semi-positive case In this case the moduli space M is
a stratified space 2 (cf. [45, Section 6.5]):

∅ = Mn+1 ⊂ Mn ⊂ · · · ⊂ M1 ⊂ M0 = M.

Here, Mi
consists of nodal configurations of spheres which have at least i

nodes, and the interior int(Mi ), consists of nodal configurationswith precisely

i nodes. For our choice of J , the top open stratumM = int(M0
) is a smooth

2n-dimensional manifold consisting of simply covered spheres. The elements

of the i-th stratum int(Mi
) contain main sphere components, which intersect

at least one of the J -invariant co-coresC± atmost once and so are again simply
covered, while the rest are possibly multiply covered bubbles which intersect

no co-cores. By the Uniqueness Lemma 6.3, no element in Mi
touches the

boundary of Wcap, for i ≥ 1.
Similar remarks hold for the marked moduli space, which is a stratified

space

∅ = Mn+1
∗ ⊂ Mn

∗ ⊂ · · · ⊂ M1
∗ ⊂ M0

∗ = M∗,

and the forgetful map respects the stratification.
The semi-positive assumption implies that the dimension of the image of

Mi
∗ under the evaluation map is at most 2n + 2− 2i , in the sense of [45, Sec.

6.5]. More precisely, the image under the evaluation map of Mi
∗ is covered

by the images of underlying moduli spaces of simple stable maps, each of
which is actually a smooth manifold for generic choice of almost complex
structure. With a slight abuse of language, we shall occasionally say that the

corresponding unmarked pieceMi
has dimension at most 2n − 2i .

Remark 6.1 Since the semipositivity condition is automatically satisfied for
every 6-dimensional symplectic manifold (see e.g. [45, Section 6.4]), in this
case the evaluationmapon themarkedmoduli space determines a pseudo-cycle
on Wcap (see e.g. [45, Section 6.5]).

6.2 Proof of Theorem B

Weare now ready to give a proof of TheoremB from the Introduction, i.e. of the
fact that the inclusion of N = ∂V± induces an injection in rational homology

2 In this paper, by stratifed space, we will mean a filtration ∅ = Mm+1 ⊂ Mm ⊂ · · · ⊂
M0 = M of a compact topological spaceM, where the interior int(Mi ) of eachMi is called

the i-th stratum, and the closure of each stratum satisfies Mi = ⋃
j≥i M j .
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for classes that survive in V±. We prove this first in the semi-positive setting,
which uses the more standard language of pseudo-cycles as documented for
instance in [45, Section 6.5]. Then, we prove the result in the general case
using the polyfold technology developed by Hofer–Wysocki–Zehnder in the
Gromov-Witten case in [31].

Proof of Theorem B in the semi-positive case We start by fixing some nota-
tion. Let i ′ be inclusion

N = N × {pt} ↪→ ∂Wcap = N × S
2

for pt a point in the equator of S2. We also let i denote the composition of i ′
with ∂Wcap ↪→ Wcap. (Notice that i(N ) in fact lives in ∂W ⊂ Wcap.)

By Lemma 6.1, we have that each element in the moduli spaceM intersects
each co-core C± transversely in a single point. Taking the intersection of a
curve with the co-core C± then gives a continuous map I± : M → C±,
which, by uniqueness of the ut,q ’s near the boundary N × S

2 of Wcap, is a
diffeomorphism near ∂C±.

Define now the maps I±∗ and f± so that the following diagram is commu-
tative:

N N × S
2 = ∂Wcap ∂M∗ M∗ Wcap

M

C± � V±

i ′

i

f±

ev−1
∂

∼=
j ev

π

I±∗

I±

(4)

Here, j is the natural inclusion ∂M∗ ⊂ M∗ and π is the map forgetting the
marked point. (Recall also that ev is a diffeomorphism near the boundary, by
the local uniqueness Lemma 6.3.) Moreover, by the explicit definitions of i ′
and I±, the map f± is actually homotopic to the natural inclusion of N = ∂V±
into C± � V±. We lastly note that, because we are in the semi-positive case,
the evaluation map gives a pseudo-cycle representing a relative fundamental
class that we denote [M∗].

Recall that the statement of Theorem B claims that the natural composition
V± � V±×{pt} ↪→ ∂W = V×S

1 ↪→ W induces an injectivemap on rational
homology once restricted to image((I±)∗), where I± : N = ∂V± ↪→ V± is the
natural injection, and (I±)∗ is the corresponding map in rational homology. In
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order to prove this, it is enough (and in fact stronger) to prove in fact that the
same conclusion holds for the composition V± ↪→ W ↪→ Wcap. We hence
aim at proving the property for this last map then.

Notice that one can find a deformation retraction ofWcap minus slight push-
offs ofC± ontoW which pushes the co-coresC± toV±×{pt} ⊂ V×S

1 = ∂W .
In particular, in order to prove statement of TheoremB it is enough to prove the
following: given a class z ∈ H∗(N ;Q) such that ( f±)∗(z) �= 0 in H∗(C±;Q),
then i∗(z) �= 0 in H∗(Wcap;Q). By looking at its contrapositive,we hence need
to prove that, if i∗(z) = 0 in H∗(Wcap;Q), then ( f±)∗(z) = 0 in H∗(C±;Q)

as well.
Let then ( f±)∗[σ ] ∈ H∗(C±;Q) be non-trivial, where σ is rational cycle in

N , such that i∗[σ ] = 0 in H∗(Wcap;Q). We then write σ = ∂b as a boundary
in Wcap.

In the ideal case that all spaces and cycles are actually smoothmanifolds one
could simply finish the proof as follows. After a small perturbation to ensure
transversality, the preimage ev−1(b) inM∗ is a chain with boundary ev−1(σ ).
As ev∂ is a diffeomorphism and σ (seen inWcap) lies in its image, this implies
that (I±)∗(ev−1(b)) has boundary σ in C+, thus proving that ( f±)∗[σ ] = 0
in H∗(C±;Q). However, sinceM∗ is not in general a manifold, we need rely
on pseudo-cycles, as follows.

We first claim that the map (ev, I∗) : M∗ → Wcap × C ′+ is a (2n + 2)-
dimensional pseudo-cycle. Indeed, the closure of the image of (ev, I∗) is the
image of the compactified moduli space M∗, on which the map (ev, I∗) is
continuous. Moreover, the image of the nodal set M1

∗ for both maps agrees
with the image of the spaceMs

∗ of underlying simple curves. AsMs
∗ consists

of components of dimension ≤ 2n by semi-positivity, this gives the claim.
Now, one can perturb b (relative to its boundary) so that b × C+ becomes

weakly transverse to the pseudo-cycle (ev, I∗), in the sense of [45, Defini-
tion 6.5.10]. Strictly speaking, in order to apply their definition to our setting,
the cycles b and σ , would need to be represented by embedded submanifolds
(up to integer multiples). This will however only be true for (relative) cycles in
degree < n. In the general case they can be represented, according to a result
of Thom [54], by smooth maps from manifolds, possibly with boundary, to
the target space. This being said, all the considerations in [45, Section 6.5],
including the definition of weakly transverse and the proposition that we use
below, carry on with the same proof to this more general setting. To ease the
notation, wewill however omit the explicit mention of thesemaps representing
σ, b.

According to (a relative version of) [45, Proposition 6.5.17], the restriction
of I∗ to ev−1(b) gives a relative pseudo-cycle onC+. (Here ev−1(b) should be
interpreted as the preimage of the diagonal under themap (b, ev) : B×M∗ →
W ×W in the case the the representingmap b : B → W is not a submanifold.)
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Moreover, the relative pseudo-cycle I∗(ev−1(b)) is a weak representative of a
relative homology class (see [45, Discussion after Lemma 6.5.6]). Finally, as
ev is a diffeomorphism near the boundary, the boundary of the relative pseudo-
cycle I∗(ev−1(b)) in C+ is the image of the original homology class [σ ] via
( f±)∗ : H∗(Σ;Q) → H∗(C+;Q). In particular, ( f±)∗[σ ] = 0 in H∗(C±;Q),
as desired.

The statement about surjectivity at the level of the fundamental group fol-
lows, as pointed out to us by a referee, from the fact that bubbling occurs in
codimension 2 for semi-positive fillings, again via a push-pull argument. This
can be carried out by an argument as in the proof of Lemma 2.3 in Ghiggini-
Niederkrüger-Wendl [21], to which we refer the reader for more details. �


We now need to deal with the general setting of possibly non semi-positive
fillings. As in the proof in the semi-positive case above, we have that each
element in the moduli space M intersects each co-core C± transversely in a
single point. This again gives a map I : M → C+, which, by uniqueness of
the ut,q ’s, is a diffeomorphism near the boundary. However, as we are in the
higher dimensional setting, the evaluationmap on themarked and compactified
moduli space will not automatically be a pseudo-cycle (e.g. in dimensions
2n + 2 ≥ 8). In order to remedy this, we appeal to the polyfold technology
of Hofer-Wysocki-Zehnder, which has been worked out in full detail in the
Gromov-Witten case (i.e. for closed spheres) in [31]. In particular, before
giving the proof, we need to recall the set up of the polyfold perturbation that
we will use in order to prove our statement. The argument follows closely that
of [42, Section 7.2].

More precisely, we viewM∗ as lying inside a Gromov–Witten polyfold B∗
[31, Section 2.2, Definition 2.29, Section 3.5] consisting of (not necessarily
holomorphic) stable nodal configurations of spheres with one marked point
and possibly multiple components. It comes with a natural evaluation map
ev : B∗ → Wcap, which extends the one of M∗. We view the nonlinear
Cauchy-Riemann operator ∂ J as a Fredholm section [29, Definition 4.1] of
a strong polyfold bundle E∗ → B∗ [31, Definition 2.37, 2.38, Section 3.6]

with zero set ∂
−1
J (0) = M∗. We also have a forgetful map π : B∗ → B,

where similarly B is a polyfold containingM, given by forgetting the marked
point, and a strong polyfold bundle E → B satisfying π∗E = E∗, with a
corresponding Fredholm section ∂ J making the obvious diagram commute.

Since the subsetM∂ := {ut,q} ⊂ M consisting of the spheres in (−ε, 0]×
∂X×S

2 is transversely cut out, the section ∂ J is in good position [29,Definition
4.12] at the boundary. According to [29, Theorem 4.22], we may introduce an
abstract perturbation p, which is a multivalued section of E∗ [29, Definition
3.35, Definition 3.43], so that:

• ∂ J + p is transverse to the zero section of E∗;
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• The perturbed moduli space

Mp
∗ = (∂ J + p)−1(0) ⊂ B∗

is a (2n + 2)-dimensional compact, oriented, weighted branched orbifold
with boundary and corners [29, Section 3.2, Definition 3.22]; and

• The perturbation p is supported away from a closed neighbourhood (in B∗)
of M∂

∗ = π−1(M∂
).

We then define Mp ⊂ B to be the image of Mp
∗ under the forgetful map

πp := π |Mp
∗ , which is a perturbation of M. Observe that the last condition

implies that a collar neighbourhood of the boundary of Mp
still consists of

the holomorphic spheres from M∂
, and local uniqueness still holds.

Moreover, for p sufficiently small, every element in Mp
will be close to

some element inM, in theGromov–Hausdorff topology.Hencewe can assume
that all elements in Mp

are transverse to the co-cores and have precisely one
intersection point, as this intersection is purely topological for codimension
reasons. Thus we obtain a well defined and smooth map Ip : Mp → C ′+, that
agrees with I on M∂

.
We are now in place to prove Theorem B in the non semi-positive case:

Proof of Theorem B in the general case Fix any sufficiently small abstract
perturbation p as described above, and consider the map Ip

± : Mp → C±.
Recall also that in this setting one has a well defined notion of integrating over
the moduli space: we refer to [30,31] for further details. For our purposes it
suffices to use the fact that there is a notion of sc-smooth differential forms [30,
Definition 1.8] in Mp

∗, such that Stokes’ theorem holds [30, Theorem 1.11],
as well as a de-Rham cohomology group H∗

dR(Mp
∗) [30, page 10], such that

said differential forms can be pulled back under the evaluation map. In our
setting, one then has a well-defined notion of degree of a map, which agrees
with the usual notion at the boundary of the moduli space, where smoothness
is built into the construction. We then formally define (relative) homology

H∗(Mp
∗, ∂M

p
∗) :=

(
H∗
dR(Mp

∗)
)∗

,

as the dual (over R) of the de-Rham cohomology group, with the obvious
notions of push-forwards, i.e. as duals of pull-backs.

This allows us to define a shriek map on homology (with real coefficients).
Formally one does this by definingmaps on the duals of the associated deRham
cohomologies via the integration map, as a map ev! : H∗(Wcap, ∂Wcap) →
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H∗(Mp
∗, ∂M

p
∗) given via the equation:

ev!(a)(β) =
∫

Mp
∗
ev∗PD(a) ∧ β,

where we have first used Poincaré–Lefschetz duality in the target.
The remainder of the argument then goes through exactly as in the semi-

positive setting and the theorem follows in the general case. More precisely,
consider a rational cycle σ in N that is sent to 0 via the map induced in
homology by the inclusion i : N → W ′

cap as defined in Eq. (4). ConsiderM
p
∗,

together with the perturbed intersection map (Ip
±)∗. Then, if i∗[σ ] is boundary

of a homology class b inWcap, one can take its shriek ev!(b), seen as an element
in the dual (H∗

dR(Mp
∗))∗, and push it, via the map induced in the dual of the

cohomology by Ip∗ , to a class c in the dual (H∗
dR(C±))∗. By Poincaré duality

on C±, we now have that c can be seen as a class in H∗(C±;Q). Moreover, as
ev at the boundary is actually a smooth map and, moreover, a diffeomorphism,
we have ∂c = ( f±)∗(σ ). But this means that ( f±)∗[σ ] = 0 in H∗(C±;Q),
thus concluding the proof as in the semi-positive case. �

Remark 6.2 As an alternative to the above argument, one could appeal to the
following.According to [32, Remark 15.8] (cf. also [44]) any compact oriented
weighted branched orbifold admits a rational relative fundamental class. This
then suffices to replicate the argument from the semi-positive case just using
continuity of the maps, without the need to talk about sc-smoothness. Note,
however, that our definition of relative homology bypasses the existence of
this relative fundamental class.

6.3 The case of Bourgeois structures

Let BO(Σ, φ) be the Bourgeois manifold obtained from the abstract contact
open book (Σ, φ). Denote more precisely β = α +Φ1dx −Φ2dy the contact
form on M × T

2 as in Section 2, where (x, y) are coordinates on T
2, Φ =

(Φ1, Φ2) : M → R
2 is a (properly chosen) function describing the open book

decomposition M = OBD(Σ, φ) and α is a contact form on M supported by
it.

Now, the vector field ∂y corresponding to the second factor ofT2 = S
1
x ×S

1
y

of M ×T
2 is contact. In particular, as described more generally in Section 6.1

for S1-equivariant contact structures, each hypersurface M ×S
1
x ×{y0} is con-

vex, and has hence a natural splitting as V+ ∪ V− as union of ideal Liouville
domains. In fact, V± are smoothly just given by the product of half of the
open book OBD(Σ, φ) with S

1
x , i.e. Σ × D∗

S
1
x with corners smoothened.

The Bourgeois contact manifold is then nothing else than the gluing of the two
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Giroux domains V+ × S
1
y and V− × S

1
y along their boundary. (This decompo-

sition is also explicitly described in [15, Section 5.3], without the use of this
terminology.)

Remark 6.3 Since Bourgeois contact structures are T
2-invariant and we are

free to choose any coordinate system (x, y) on the T2 factor, we can assume
thatS1x represents any primitive homology class in H1(T

2,Z). This observation
will be needed below in proving part of Theorem C, namely that T2 injects in
integer homology in the filling W .

We are now ready to prove Theorem C.

Proof of Theorem C Since the inclusion of Σ ⊆ ∂V± = N into V± ∼= Σ ×
D∗

S
1 is homotopic to the inclusion of a fiber, it is injective on homology

and the injectivity of the map induced by Σ ↪→ W on rational homology
follows directly fromTheoremB. Likewise, in the case of semi-positive filling,
surjectivity at the level of fundamental groups of the inclusion Σ ×T

2 ↪→ W
also follows directly from Theorem B.

Furthermore, Theorem B in fact also implies that the inclusion of the S1x -
factor is injective in rational homology. Now taking S1x to represent an arbitrary
(primitive) class in homology (c. f. Remark 6.3), we can then conclude that
the whole first homology group H1(T

2;Q) injects in H1(W ;Q). Further-
more, the statement that H∗(T2;Q) injects into H∗(W ;Q) is equivalent to
the dual statement that the inclusion induces a surjection on cohomology
H∗(W,Q) → H∗(T2;Q) by the Universal Coefficient Theorem. Using the
cup-product structure on H∗(T2;Q), this follows from the injectivity in H1,
concluding the proof. �


6.4 Applications to fillability

We now prove those corollaries of Theorem C that have been stated without
proof in the Introduction. We start with Corollary E on the equivalence of
strong symplectic and Stein fillability for Bourgeois manifolds associated to
rational homology 3-spheres:

Proof of Corollary E If V = OBD(Σ, φ) is a rational homology 3-sphere,
any inclusion of Σ in the 3-manifold V as a page of the given open book
is null homologous with coefficients Q. In particular, Theorem C tells that
BO(Σ, φ) cannot be strongly fillable whenever H1(Σ;Q) is non-trivial, i.e.
wheneverΣ is not a disc. On the other hand, we know by [38, Theorem A.(b)]
that BO(D2, Id) is Stein fillable. �


We now prove Theorem F, which states that Bourgeois 5-manifolds associ-
ated to 3-dimensional open books with planar pages and monodromies given
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by products of Dehn twists all of the same sign are weakly but not strongly
symplectically fillable.

Proof of Theorem F By [38, Theorems A.(a) and B] these contact structures
are weakly fillable and, hence, it suffices to prove that these are not strongly
fillable. According to Theorem C, it is hence enough to prove that the first
Betti number of the manifold b1(OBD(Σ, φ)) is strictly smaller than that of
the page b1(Σ) = #∂Σ − 1. This can be seen as follows. Since for Σ = D

2,
the monodromy is necessarily trivial, we may assume that #∂Σ ≥ 2. We
can then attach b1(Σ) − 1 ≥ 0 discs to Σ , in order to cap all but 2 of its
boundary components; as φ is a product of Dehn twist of all the same signs,
this can moreover be done in such a way that the resulting monodromy φ̂ in
the resulting annular page Σ̂ = D∗

S
1 is a power τ±K of the positive Dehn

twist τ , with K > 0.
Moreover, this 2-dimensional 2-handle attachment on the page can be

realized by attaching a 4-dimensional 2-handle on the boundary component
OBD(Σ, φ)×{1} of a thickening OBD(Σ, φ)×[0, 1], along neighborhoods,
of the form S

1 × D
2, of all but 2 binding components. The resulting positive

boundary of these b1(Σ) − 1 handle attachments is just OBD(D∗
S
1, τ±K )

where τ is a Dehn twist and K > 0 as above. This manifold is then a
Lens space and hence has b1 = 0. Since attaching a 4-dimensional 2-handle
reduces the first Betti number at the boundary by at most one, we deduce that
b1(OBD(Σ, φ)) ≤ b1(Σ) − 1, as desired. �


Now, we give a proof of Corollary G, i.e. that if Σ is a planar surface and
BO(Σ, φ) is strongly fillable, then φ lies in the commutator subgroup of the
relative mapping class group:

Proof of Corollary G We identify the pure braid group with the mapping class
group of the punctured surface obtained by collapsing all but one boundary
component of Σ to a puncture. It is well known that abelianization of the pure
braid group on n-strands is the free abelian group generated by

(n−1
2

)
Dehn

twists around pairs of punctures, where n = #∂Σ is the number of boundary
components (see for instance [18, Chapter 9 and page 264]).

Also, the kernel of the map on mapping class groups induced by the col-
lapsing map described above is generated by the n boundary parallel Dehn
twists (see [18, Theorem 3.18 and Proposition 3.19]). Hence the abelianiza-
tion of MCG(Σ, ∂Σ) is generated by n boundary parallel Dehn twists and(n−1

2

)
Dehn twists about pairs of boundary components different from a dis-

tinguished one; in total, it is hence generated by
(n
2

) = n + (n−1
2

)
Dehn twists

and has rank at most
(n
2

)
.

Denote by Σ̂i, j the annulus obtained by capping off all but 2 boundary
components γi , γ j of Σ . Doing so for each pair of i, j with i �= j , one obtains
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a homomorphism

MCG(Σ, ∂Σ) →
∏
i �= j

MCG(Σ̂i, j , γi ∪ γ j ) = Z
(n2), (5)

given by extending the element in the mapping class group of Σ relative
∂Σ as Id over the caps. It is easily seen that this homomorphism is surjective.
Moreover, by the explicit description of the

(n
2

)
generators for the abelianization

of MCG(Σ, ∂Σ) above, it induces an injective homomorphism after taking
the abelianization. In particular, the map in Eq. (5) induces an isomorphism
after abelianizing.

Hence, if the monodromy is not in the commutator subgroup, it is mapped
to a non-trivial element in Z(n2), and so it is non-trivial in MCG(Σ̂i0, j0, γi0 ∪
γ j0)

∼= Z after capping off all but 2 well-chosen boundary components
γi0, γ j0 of the page. We then deduce as in the proof of Theorem F that
b1(OBD(Σ, φ)) < b1(Σ), and we conclude the argument by appealing to
Theorem C. �


We now prove Corollary H about the fillability of Bourgeois structures
arising from open books which are positive stabilizations.

Proof of Corollary H The abstract positive stabilization OBD(Σ+, φ+) of a
contact open book OBD(Σ, φ) = (M, ξ) can be interpreted as the open book
on M#S2n+1 given by the Murasugi sum of OBD(Σ, φ) on M with the open
book OBD(D∗

S
n, τ ) = (S2n+1, ξstd), where τ is the positive Dehn-Seidel

twist. More precisely, from the explicit construction of Murasugi sum (see
for instance [12, Proposition 2.6]), one can see that the additional Lagrangian
sphere S created in the stabilized page Σ+ is actually contained in the contact
ball D2n+1 = S

2n+1\D, where D is the small Darboux ball taken out of
the S

2n+1 factor to build the connected sum M# S2n+1. Hence, S is null-
homologous in M# S2n+1 = M . In particular, as S is not null-homologous
(by construction) in Σ+, Theorem C gives that BO(Σ+, φ+) is not strongly
fillable. �

We now give a proof of Theorem K on the fillability of BO(D∗

S
n, τ k), of

which Theorem J in the case k = 1 is an immediate consequence:

Proof of Theorem K It follows fromTheorem3.1 and [38,TheoremsA.(b) andB]
that BOFill(n) is a subgroup of Z. It is hence necessarily cyclic.

According toTheoremC, in order to determine thegenerator of BOFill(n) ≤
Z, it then suffices to check for which k ≥ 1 the homology of the page injects in
Σk,n := OBD(D∗

S
n, τ k). According to [37, Proposition 4.10], for n, k ≥ 1

the manifold Σk,n is actually the (2n + 1)-dimensional Brieskorn manifold
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Σ(2, . . . , 2, k). An explicit computation via Mayer–Vietoris, using the Hee-
gaard splitting associated to the open book, gives the following: if n is odd, then
Hn(Σk,n;Z) = Zk for every k and so it vanishes overQ; and Hn(Σk,n;Z) = 0
if n is even, and k ≥ 1 is odd. We then see that k0(n) is even. Our method is
inconclusive for n and k ≥ 2 both even, since we have Hn(Σk,n;Q) = Q, gen-
erated by the zero section of the page. Indeed, if k is such that τ k is smoothly
isotopic to Id, then Σk,n

∼= S
n ×S

n+1 = Σ0,n as smooth manifolds, hence the
conclusion of Theorem C clearly holds, and we obtain no obstruction (accord-
ing to [34], cf. [14,36], for arbitrary even n ≥ 2, τ is known to have finite
order as a smooth map). Alternatively, for odd n, one may observe that τ k acts
non-trivially in homology if k �= 0 (by the Picard–Lefschetz formula), thus
Remark 1.1 allows to conclude; however, τ 2 is homologically trivial if n is
even, so this argument is inconclusive as well. �


7 Symplectically aspherical fillings of Bourgeois Contact Manifolds

Let W be a symplectically aspherical strong symplectic filling of BO(Σ, φ).
The goal of this section is to prove Theorem D and Theorem L from the
Introduction.

The symplectic manifold Wcap resulting from the handle attachment
described in Lemma 6.1 then has boundary of the form N × S

2, where N
is the contact boundary of Σ × D∗

S
1
x (smoothened at the corners). More pre-

cisely, in a neighborhood (−δ, 0] × N × S
2 of the boundary, the symplectic

structure has normal form d(etα) + ωS , with α a contact form on N and ωS
an area form on S2.

We thus obtain a moduli space M consisting of holomorphic spheres
inside Wcap, arising from the S2-factor at the boundary. Under the asphericity
assumption it turns out that there are no nodal degenerations in the Gromov
compactification and we thus obtain:

Proposition 7.1 M is a compact oriented smooth manifold (with boundary).

Proof As the fillingW is symplectically aspherical, there cannot be any nodal
curve inM which has one closed sphere component not intersecting either of
the co-cores. Hence, the only nodal degeneration that could a priori occur is
one separating a regular sphere in the moduli space in multiple spheres, each
intersecting at least one co-core. However, this would imply, after puncturing
the spheres at their intersection points with the co-cores, that one of the S1-
factors in the T

2-factor of ∂W = OBD(Σ, φ) × T
2 is null-homologous in

W . (Here, we use the fact that removing the co-cores from Wcap results in
a manifold which deformation retracts onto W .) This would then contradict
Theorem C, so that no nodal degenerations are possible, as desired. �
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A moduli space of punctured curves As in Section 6, we can consider the
marked moduli spaceM∗ obtained by adding a marked point to the domains,
which comes equipped with an evaluation map ev : M∗ → Wcap, and a
forgetful map π : M∗ → M.

We now consider a punctured version of the compact marked moduli space
M∗. More precisely, as each sphere inM intersects the co-coresC± positively
and transversely in exactly one point, we may remove from each sphere in
M∗ small disc-like neighborhoods around its intersection with the two co-
cores of Lemma 6.1. This results in a (compact) marked moduli space Mc∗
of (compact) cylinders. Moreover, this has a natural fibration structure π over
Mc := M induced by the forgetful map M∗ → M, and an evaluation map
ev : Mc∗ → W , where we see here Wcap minus a small tubular neighborhood
of the co-cores as naturally diffeomorphic to W . Because of the foliation
property of the moduli space of spheres M∗ near ∂Wcap, the evaluation map
of the cylindrical counterpartMc∗ is a diffeomorphism from a neighborhood of
the vertical boundary ∂vMc∗ := π−1(∂M) to a neighborhood of N ×D∗

S
1 ⊂

BO(Σ, φ) = ∂W inside W , where N is the boundary of V± = Σ × D∗
S
1
x

with corners smoothened as in the description in the beginning of Section 6.3.
Hence, the evaluation map has in particular degree 1.

What ismore, it also sends the horizontal boundary ∂hMc∗ := ∂Mc∗ \ ∂vMc∗
into a small neighbourhood of the co-cores minus the co-cores themselves, i.e.
into Nδ(C±)\C±. In particular, each cylinder inMc∗ has boundary components
which have a natural sign± according to where they are mapped to via ev; this
gives a partition ∂hMc∗ = ∂+

h Mc∗ 
 ∂−
h Mc∗. We further note that the image of

each of these components retracts onto the piece V± ×S
1 of BO(Σ, φ) = ∂W

in the decomposition induced by the S1-invariant perspective (cf. Section 6.1).

Homology of aspherical fillings We now prove that the inclusion of each
V± × S

1 = Σ × D∗
S
1 × S

1 � Σ × S
1 × S

1 into an aspherical filling induces
an isomorphism in integral homology.

Proof of Theorem D Recall that Lefschetz duality states that the cap product
with the fundamental class living in the top degree homology relative to the
boundary induces an isomorphism between relative cohomology groups and
homology groups (with proper degree shifting). Hence, since the evaluation
map ev ofMc∗ has degree 1, naturality of the cap product implies that it induces
a surjection on homology with Z-coefficients. Next, note that the inclusion
∂±
h Mc∗ → Mc∗ induces a homotopy equivalence, as each cylinder can be
smoothly collapsed to either of its boundary components. Now, the image
of ∂±

h Mc∗ under ev can be homotoped into V± × S
1. Then, one can do the

following: given any homology class in W , one can pull it back to the moduli
space, homotope it to the positive boundary ∂+

h Mc, and finally map it near
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V± × S
1 via ev. We hence obtain surjectivity of the inclusion V± × S

1 ↪→ W
as stated in Theorem D.

For injectivity,we note that the inclusion ofΣ×∂+(D∗
S
1
x )×S

1
y ⊆ ∂V+×S

1
y

into V+×S
1
y is a homotopy equivalence, where ∂+(D∗

S
1) denotes the positive

boundary component of D∗
S
1. Hence any non-trivial homology class [c] �= 0

in V+ × S
1 is represented by a class in ∂V+ × S

1, along which the evaluation
map is a diffeomorphism. Thus if c = ∂b were the boundary of a singular
chain, we could pull back, after perturbing the evaluation map (relative to
the horizontal boundary), and then push the resulting chain b̄ = ev−1b into
∂+
h Mc∗. Pushing forward by ev we would obtain that c is a boundary of ev∗b̄
in V+ ×S

1, which is a contradiction. The case of V− is completely analogous.
Finally observe that the inclusion ofΣ×∂+(D∗

S
1
x )×S

1
y into ∂W is precisely

the inclusion of Σ × T
2 ↪→ OBD(Σ, φ) × T

2, concluding the proof. �


7.1 Symplectically aspherical fillings of S∗
T
n

In this section, we consider (S∗
T
n, ξstd), the unit cotangent bundle of Tn,

for n ≥ 2, with its standard Stein fillable contact structure, and we prove
Theorem L from the Introduction.

The Bourgeois contact manifold given by BO(D∗
T
n−2, Id) is contacto-

morphic to the contact boundary of D∗
T
n−2 × D∗

T
2 by [38, Theorem A.(b)],

which can in turn be identified with the boundary of the unit cotangent bundle
of the n-torus namely (S∗

T
n, ξst ). In particular, ξstd is an S1-invariant contact

structure, with respect to the second S1-factor of the Bourgeois torus T2.

Symplectically aspherical fillings of S∗
T
n: homotopy type Recall that

S∗
T
n = BO(D∗

T
n−2, Id). According to the S

1-invariant picture as in Sec-
tion 6.1, this gives a decomposition

S∗
T
n = V+ × S

1 ∪ V− × S
1,

where V± are smoothly given by D∗
T
n−2×D∗

S
1, i.e. D∗

T
n−1 (up to rounding

corners). Denote then by j0 : Tn ↪→ S∗
T
n the inclusion given by the compo-

sition of inclusions Tn ↪→ D∗
T
n−1 × S

1 ↪→ S∗
T
n , where the first injection

is just induced by the zero section Tn−1 → D∗
T
n−1.

Wenext use the following result in order to conclude that the given aspherical
filling (W, ω) is homotopy equivalent to D∗

T
n .

Proposition 7.2 Let j : T
n ↪→ W be given by the composition of j0 defined

above and the natural inclusion S∗
T
n = ∂W into W. Consider also a lift j̃ of

j to the universal covers Rn and W̃ . Then:

1. H0(W̃ ;Z) = Z and Hk(W̃ ;Z) = {0} for k > 0,

123



J. Bowden et al.

2. j∗ : π1(T
n) → π1(W ) is an isomorphism.

According to [26, Section 4.2, Exercise 12]), this then implies that the inclu-
sion j , and hence the inclusion of its (trivial) normal bundle D∗

T
n , induces a

homotopy equivalence, as desired.

Remark 7.1 We point out that, as opposed to the simply connected case, it is
not in general true that a map inducing an isomorphism on fundamental group
and isomorphisms on homology is a homotopy equivalence. This is the reason
why we need to consider the universal cover in Proposition 7.2.

Proof (Proposition 7.2) We consider the moduli space of punctured curves
and its evaluation map Mc∗ → W considered as in the proof of Theorem D.
Since the evaluation map ev of Mc∗ has degree 1, it induces a surjection on
π1. Moreover, recall that the moduli space retracts onto its positive boundary,
which is mapped onto a neighborhood of the positive component, that in this
setting is just D∗

T
n−1 × {+1} × S

1. Arguing as in the proof of Theorem D,
one concludes that j : T

n ↪→ W also induces a surjection on fundamental
group. In particular, we deduce that the fundamental group of the filling is
abelian. The fact that j is H∗-injective follows from Theorem D; as π1(T

n)

and j∗(π1(T
n)) = π1(W ) are abelian, this immediately implies that j is also

π1-injective.
The only thing left to prove is hence that the map j̃ on the universal cover

also induces an isomorphism in H∗. Injectivity follows trivially from the fact
that the universal cover of Tn is contractible. We then prove surjectivity.

In order to do so, we first make the following observations. All holomorphic
curves inMc naturally lift to maps from the plane to the universal cover W̃ of
W . This gives a corresponding smoothmoduli spaceM̃of infinite holomorphic
strips in W̃ , together with its marked version M̃∗ equipped with an evaluation
map ẽv : M̃∗ → W̃ . One can check that the map ẽv is proper and has degree
1 (using cohomology with compact supports), since the diffeomorphism on
the vertical boundary ∂vMc∗ of Mc∗ induced by ev lifts to a diffeomorphism
from a subset of the boundary of M̃∗ to a subset of the boundary of W̃ .
Notice now thatM̃∗ deformation retracts onto its positive horizontal boundary
∂+
h M̃∗, defined as the lift of ∂+

h Mc∗, i.e. as the union of all the lifts of the
positive boundaries of the cylinders inMc∗. As j is an isomorphism inπ1, using
standard covering space arguments, one can check that this set is mapped, via
the lifted evaluation map, to a lift D∗

R
n−1 × R of the piece D∗

T
n−1 × S

1 of
∂W ⊂ W to W̃ .

Using this setup, we can now prove that any homology class in W̃ comes
from D∗

R
n−1 × R, which then concludes the proof of Proposition 7.2. More

precisely, consider a class x ∈ Hk(W̃ ,Z), for k ≥ 1. (The case k = 0 simply
follows from the fact that W̃ is connected.) As M̃∗ is an orientable manifold
(with boundary) and ẽv has degree 1, there is a well defined ẽv!(x) in H∗(M̃∗)
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such that ẽv∗ẽv!(x) = x , where ẽv! is given, geometrically, by perturbing ẽv
to be transverse to a cycle representing x and taking its preimage. Now, as
M̃∗ retracts onto ∂+

h M̃∗, ẽv!(x) can be homotoped to ∂+
h M̃∗. In particular,

x = ẽv∗ẽv!(x) is homologous in W̃ to a cycle σ in ẽv(∂+
h M̃∗) = D∗

R
n−1×R.

As the latter is contractible, [σ ], and so x , is null-homologous in W̃ , as desired.
�


Symplectically aspherical fillings of S∗
T
n: diffeomorphism type Once the

homotopy type is understood, the diffeomorphism type can be determined
using the s-cobordism theorem. The argument below is just an adaptation of
[3, Sections 5 and 8] to our setting.We thus give a sketch of the proof, referring
to the proofs of the technical statements in [3]; for the readers’ ease, we also
adopt their notations.

We start by describing the spaces involved in the argument. Let W1 be the
result of attaching a topologically trivial cobordism [0, 1] × S∗

T
n to W along

its boundary M0 := S∗
T
n = {0} × S∗

T
n .

Recall from the previous subsection that we have a natural inclusion
j0 : Tn → ∂W = S∗

T
n . As j0(Tn) has trivial normal bundle in ∂W , there

is a (smooth) copy of W0 := D∗
T
n which is entirely contained in the cobor-

dism [0, 1] × S∗
T
n . Let then X := W1 \ W0 and M1 := ∂W1; notice that

∂X = M1 ∪ (−M0). The aim is now to prove that X is diffeomorphic to a
cylinder [0, 1]× S∗

T
n , so thatW1 is actually diffeomorphic toW0, as desired.

As explained in [3, Lemmas 5.1 and 5.2], the fact that W is homotopy
equivalent to D∗

T
n implies that the inclusions M0, M1 ↪→ X induce iso-

morphisms on π1 and on H∗. Moreover, as S∗
T
n is a simple space (i.e. the

action of its π1 on every homotopy group is trivial), arguing exactly as in
[3, Lemmas 8.1 and 8.2] one can show that M0, M1 ↪→ X actually induce
isomorphisms on all homotopy groups. This proves that X is an h-cobordism
between M0 and M1.

Now, as M0 = S∗
T
n , the Whitehead group Wh(π1(M0)) vanishes, so that

the Whitehead torsion of the inclusion M0 ↪→ X is necessarily zero. The
s-cobordism theorem then tells that X is diffeomorphic to [0, 1] × S∗

T
n , as

desired.

8 Further discussion and open questions

Our results are, together with [38], among the first steps in understanding the
nature of the contact structures given by Bourgeois’ construction, and several
open questions remain. Firstly:

Question 8.1 Are Bourgeois contact structures tight in all odd dimensions?
Moreover, is every Bourgeois contact structure weakly fillable, at least in
dimension 5?
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It is an important problem to understand more precisely the dependence of
the Bourgeois structure on the starting open book decomposition. By a direct
consequence of their definition, all Bourgeois contact structures are contact
deformations of the almost contact structure ξV ⊕ TT2 (i.e. the endpoint η1
of a path (ηt )t∈[0,1] of hyperplane fields starting at η0 = ξV ⊕ TT2 and such
that ηt is contact for t > 0). One can then construct, as in [42, Example 1.1],
weak cobordisms between BO(Σ, φ) and BO(Σ ′, φ′) for any OBD(Σ ′, φ′)
and OBD(Σ, φ) supporting the same contact structure. What’s more, besides
sharing the formal homotopy class, TheoremA in this paper shows in particular
that the tight vs overtwisted classification typeof any5-dimensional BO(Σ, φ)

is independent of the open book.
On the other hand, in [7, Corollaries 10.6 and 10.8], Bourgeois used cylin-

drical contact homology, with respect to noncontractible homotopy classes of
Reeb orbits, in order to distinguish infinitely many Bourgeois contact man-
ifolds arising from open books supporting the standard contact structure on
S
3; and similarly for T3. Further instances of different open books supporting

the same contact structure that induce non-contactomorphic Bourgeois con-
tact manifolds can be found in [38, Example 1.5]; in the same spirit, other
examples also come from Theorem C proved above.

Question 8.2 Can we find further contactomorphisms of Bourgeois contact
manifolds, beyond the inversion of the monodromy from [38]? More ambi-
tiously, canwe classify the contactomorphism type of all the Bourgeois contact
manifolds arising from some fixed contact structure, especially via rigid holo-
morphic curves invariants?

In general, Theorem C imposes strong constraints on the monodromy. This
suggests the following:

Question 8.3 If BO(Σ, φ) is strongly fillable, is φ (at least smoothly) trivial?
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