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Abstract. We construct rigorously suitable approximate solutions to the Stokes/Cahn-Hilliard system by using the method of
matched asymptotics expansions. This is a main step in the proof of convergence given in the first part of this contribution,
[3], where the rigorous sharp interface limit of a coupled Stokes/Cahn-Hilliard system in a two dimensional, bounded
and smooth domain is shown. As a novelty compared to earlier works, we introduce fractional order terms, which are of
significant importance, but share the problematic feature that they may not be uniformly estimated in € in arbitrarily strong
norms. As a consequence, gaining necessary estimates for the error, which occurs when considering the approximations in
the Stokes/Cahn—Hilliard system, is rather involved.
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1. Introduction and Overview

Let T > 0, Q C R? be a bounded and smooth domain, Q7 := Q x (0,7T), 0027 = 0Q x (0,T) and ag > 0
be a fixed constant. We consider the Stokes/Cahn-Hilliard system

—AV® 4+ Vp© = pVce in Qp, (1.1)

divv® =0 in Qp, (1.2)

O +v© - Vet = Apc in Qrp, (1.3)

pe = —eAct + L f'(c) in Qr, (1.4)

cli=0 = ¢§ in Q, (1.5)

(=2Dsv + pI) - ngg = agv® on O, (1.6)

(uf, ) =(0,-1) on 072, (1.7)

v© and p° represent the mean velocity and pressure, D,v¢ := £ (Vv + (Vv)T), ¢ is related to the

concentration difference of the fluids and p¢ is the chemical potential of the mixture. Moreover, cf is a
suitable initial value, specified in Theorem 1.1 and f: R — R is a double well potential. It is the aim of
[3] to establish that the sharp interface limit of (1.1)—(1.7) is given by the system

~Av+Vp=0 in Q*(t),t € [0, To], (1.8)

divv =0 in QF(t),t € [0, Tyl (1.9)

Ap =0 in QF(t),t € [0, Tyl (1.10)

(=2Dyv + pI) ngo = apv on Jr, <2, (1.11)
nw=0 on Or, €2, (1.12)
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[2Dyv — pI|nr, = —20 Hp,nr, onI'y, t € [0,Tp], (1.13)
= O'H]"t on I'y,t € [0, To], (1.14)

—Vp, +nr, - v =1 [nr, - Vy onTI'y,t €[0,Tp], (1.15)
[v]=0 on I'y,t € [0, To], (1.16)

T(0) = T,. (1.17)

Here, I'y CC 1 is a given, smooth, non-intersecting, closed initial curve. We assume that I' = Ute[o,To] Iy x
{t} is a smoothly evolving hypersurface in 2, where (I';),c(o 1, are compact, non-intersecting, closed
curves in Q. Moreover, QO (¢) is defined as the inside of I'; and Q7 () is such that 2 is the disjoint union
of Q*(t), @ (t) and I';. Furthermore, we define QF = Uyc(o 712F () x {t} for T € [0, Tp] and define nr, (p)
for p € Ty as the exterior normal with respect to Q7 (¢) and Vr,, and Hr, as the normal velocity and
mean curvature of I'; with respect to nr,, ¢ € [0,7p]. We use the definitions

9] (p, 1) : hm( (p+mnr,(p)h) — g(p — nr,(p)h)) for p € T,

o= / 0} (s (1.18)

where 0y: R — R is the solution to the ordinary differential equation

— 05+ f'(00) =0 R, 6o(0) =0, lim fo(p) =L (1.19)
p—=£00

We refer to the introduction of [3] for a review of known analytic results for the previous systems.
Throughout this work we consider the following assumptions and notations: Let (v,p,u,T') be a

smooth solution to (1.8)—(1.17) and (¢, ¢, v€,p¢) be smooth solutions to (1.1)—(1.7) for some Tp > 0

and € € (0,1). More precisely (v, p, u) are assumed to be smooth in Q%O such that the function and their

derivatives extend continuously to Q%O. Let

dist (O (t),2)  ifx ¢ Q™ (1),

dr : Qr, — R t
A )H{dist((ﬁ(t),x) it z € Q (1)

denote the signed distance function to I' such that dr is positive inside QJTFO. We write T'y(a) :=
{z € Q[ldr(z,t)| <o} for a > 0 and set I'(a;T) = Ueo i) x {t} for T € [0,Ty]. Moreover,
we assume that § > 0 is a small positive constant such that dist (I'y, Q) > 5§ for all ¢ € [0, Tp] and such
that Prr, : I'4(30) — T’y is well-defined and smooth for all ¢ € [0, Tp]. In the following we often use the no-
tation I"(20) := T'(20; Tp) as a simplification. We also define a tubular neighborhood around 9€2: For this
let dg: €2 — R be the signed distance function to 92 such that dg < 0 in 2. As for I'; we define a tubular
neighborhood by 9Q(a) := {z € Q|—a < dp(x) < 0} and 9rQ(«a) = {(z,t) € Qr|d(z) € (—,0)} for
a>0and T € (0,Tp]. Moreover, we denote the outer unit normal to 2 by nspq and denote the normalized
tangent by 7pq, which is fixed by the relation

nsq(p) = <? _01) To0(p)

for p € 9. Finally we assume that § > 0 is chosen small enough such that the projection Prag: 9Q(6) —

0f) along the normal nyq is also well-defined and smooth.
Considering the potential f, we assume that it is a fourth order polynomial, satisfying

f(E£D) = f(£1) =0, f"(£1) >0, f(s) = f(—s) >0 forall seR (1.20)

for some C' > 0 and fulfilling ks := f* > 0. Then the ordinary differential equation (1.19) allows for a
unique, monotonically increasing solution 6y: R — (—1,1). This solution furthermore satisfies the decay
estimate

05(p) — 1] + !9(8") (p)| < Cne=??l for all p € R, n € N\ {0} (1.21)
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for constants C,, > 0, n € N\ {0} and fixed o € (O,min {\/f“(—l), \/f”(l)}). As it will be needed a lot
in this work, we denote by £ € C°°(R) a cut-off function such that

E(s) =1if |s| <4, &(s) =0if |s] > 25, and 0 > s¢'(s) > —4if § < |s| < 24. (1.22)

The main result of [3] is the following (for an explanation of the used notations see the preliminaries
section):

Theorem 1.1 (Main result). Let (v,p, u,T') be a smooth solution to (1.8)—~(1.17) for some Ty > 0. More-
over, let M € N with M > 4, let & satisfy (1.22) and let y(z) := {(4dp(x)) for all z € Q and let for
€ € (0,1) a smooth function ¢§: @ — R be given, which satisfies ||V c1(q) < Cyo€™ for some Cy, > 0
independent of €. Then there are smooth functions ¢5: Q x [0,Tp] — R, v : Qx [0, Ty] — R? for e € (0,1)
such that the following holds:

There is some ¢ : Q — R, e € (0,1], depending only on (v,p,u,T") such that, if (v¢,p%,c, uc) are
smooth solutions to (1.1))—~(1.7) with initial value

co(x) = c4(x,0) +g(x)  for all x € Q, (1.23)
then there are some ey € (0,1], K >0, T € (0,Ty] such that

le* ~ Cf4||L2(07T;L2(Q)) + HVF( CA) HL2(0 T;L2(T4(6))) < Ke 2» (1.24a)
eIV (e = )l peorzzanr oy +IE = Callzo iz, < KeTE, (1.24b)
6% ||3n (Ce - Cil) ||L2(O,T;L2(Ft(6))) + [l - Cf4||LOO(07T;H—1(Q)) < KEM, (1.24c¢)
/Q €|V (e —cy) |2 + 217(c%) (¢ — ) d(z,t) < K2e2M, (1.244)
T
[RACEY HLoo(o,T;Lz(Q)) + e [[vA (e~ Cf‘\)HLQ(Q ) S KMz, (1.24e)
P = ) oy + (e~ )T = )l agay < K (1211
and for q € (1,2)
1
[[ve — V,E4||L1(0,T;Lq(g)) < O(K, Q)eM g (1.25)
hold for all € € (0,¢y) and some C(K,q) > 0. Moreover, we have
lim = E1in L=((s,t) x Q) (1.26)
and
lirr(l)vi‘ =vt in LS ((s,t); H*(Q')?) (1.27)

+
for every (s, t) x Q' CC Q.

Remark 1.2. Here ¢, is determined by formally matched asymptotic calcultations in the following proof.
In highest we have

5 (x) =6 (M> +O(e)  uniformly as € — 0
for some hg: I' — R, where s = Prp, ().

It will be beneficial to the readability of many results throughout this contribution to introduce the
following set of assumptions, which will be cited often later on.

Assumption 1.3. Let v(x) := & (4dp(z)) for all z € Q. We assume that c4 : Q x [0,Tp] — R is a smooth
function and that there are €9 € (0,1), K > 1 and a family (7¢) . .,y C (0,70] such that the following
holds: if ¢€ is given as in Theorem 1.1 with ¢§(z) = ca(x,0), then it holds for R := ¢¢ — ¢

HR”LQ(QTe) + ||VFRHL2(O,TE;L2(Ft + H i VR)’|L2(O,T€;L2(Q\Ft(6))) < Ke 27 (1.28a)



38 Page 4 of 48 Helmut Abels and Andreas Marquardt JMFM

3
€ [10nBll 120 12y + I BllLoo 0,101 0y < KW, (1.28b)
1
/ e|VR]® + =" (¢5) R?d(x,t) < K2*M (1.28c¢)
Qr, €
1
€2 VR e (0.11:12(0y) + (VAR AVRAR (VR))| 1200y < KM (1.284)

for all € € (0, €).

It is the aim of this article to show the following theorem and to provide the additional structural
information gathered in [3, Subsection 4.1].

Theorem 1.4. For every € € (0,1) there are vy, Wi Qp — R2, o 15,05 : QO — R and 15: Qp, — R2,
rceiiva TE‘}H]_a TE‘}HQ: QTU — R such that

—AVy + VpGy = n4Veh +rg inQr,, (1.29)

divvgy = iy in Qrp,, (1.30)

Oucy + (Vi M E Wil € (dr)) - Vet = Auy + oy nQr,,  (L31)
pG = —€eAcs + e L (e5) + rés in Qg . (1.32)

Furthermore, the boundary conditions
¢G=-1, p4 =0, (=2Dyvy+p4Dnsg=aovy, ri =0 ondr, (1.33)
are satisfied. If additionally Assumption 1.3 holds for €g € (0,1), K > 1 and a family (T¢) ¢ .,y € (0,To],

then there are some €1 € (0,¢0], C(K) > 0 depending on K and Ck: (0,Tp] x (0,1] — (0,00) (also
depending on K ), which satisfies Ci (T, €) — 0 as (T,¢e) — 0, such that

Te
|| rem (e tds| at < Ol 0 el oo (1340)
Te
/ / roms(z,t) (¢ (z,t) — ¢4 (x,t)) de| dt < Ck (T, e)ezM, (1.35)
o |Jo
Iesll 20,7 @)y + ITGivll 2 0r) < C(K)eM, (1.36)
Iren2Veall pzom, a1 0y2y) < CHE)C(Te, )™ (1.37)
HTGCH1||L2(BTEQ(g)) < C(K)eM (1.38)

for all e € (0,€1) and p € L> (0,T.; H*(2)).

This work is organized as follows: Section 2 gives a short overview over the needed mathematical
tools, particularly existence results for parabolic equations on I' and a short summary of the differential
geometric properties that will be needed later on.

Section 3 is based on the approaches in [1,5,6,9]; here we present results for the construction of inner,
outer and boundary terms of arbitrarily high order of the asymptotic expansions for solutions of (1.1)—
(1.7). Due to constraints to the length of this contribution, many details are left out, but can be found
in [7]. In Sect. 3.2, we introduce the auxiliary function w{, which turns out in [3] to be a representation
of the leading term of the error in the velocity v§ — v°. Section 3.3 is then concerned with constructing
fractional order terms in the asymptotic expansion, which are defined with the help of solutions to a
nonlinear evolution equation involving wf{ .

To rigorously justify that the “approximate solutions” constructed in the work really are a good
approximation of solutions, it is necessary to estimate the remainder terms in Sect. 4, i.e., the functions
Toms Tome, T and 1§, presented in Theorem 1.4. Thus, in Sect. 4, we analyze these terms in detail,
starting with a proper definition of the involved approximate solutions and a subsequent structural
representation of 7& 4, etc. The facts that the terms of fractional order may not be estimated uniformly in
€ in arbitrarily strong norms and that there appear terms of relatively low orders of € in the representations
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of the remainder, when discussing the region close to the interface, account for many technical difficulties.
The involved estimates rely heavily on Lemma 3.19, which is a direct consequence of our construction
scheme of the fractional order terms. The actual proof for Theorem 1.4 is given at the end of this article.

2. Preliminaries
2.1. Differential-Geometric Background

The following overview was already given in [3] in more detail; due to the importance of the concepts in
view of later considerations in this article and for the sake of completeness, we give a brief reminder.
We parameterize the curves (Ft)te[o.To] by choosing a family of smooth diffeomorphisms Xg: T' x

[0, Tp] — € such that 05 Xo(s, t) # 0 for all s € T', ¢ € [0, Ty]. In particular U, 7 Xo (T' x {t}) x {t} =
I'. Moreover, we define the tangent and normal vectors on I'; at X(s,t) as

0sXo(s,t)

(1) = 5 gy M (s ) = <(1) _01> (s, 1) 2.1)

for all (s,t) € T* x [0, Tp]. We choose Xo (and thereby the orientation of I';) such that n(.,t) is the exterior
normal with respect to Q7 (¢). Thus, for a point p € I'; with p = Xo(s,¢) it holds nr,(p) = n(s,t).
Furthermore, V(s,t) := Vr,(Xo(s,t)) and H(s,t) := Hr,(Xo(s,t)) and V(s,t) = 0:Xo(s,t) - n(s,t)
for all (s,t) € T* x [0,Ty] by definition of the normal velocity. We write for a function v: T' — R%,
d e N, (X;v) (s,t) == v(Xo(s,t),t) for all (s,t) € T! x [0, Tp] for a function h: T x [0,T] — R we set
(Xg’_lh) (p) == h(Xo_l(p)) for all p € Ty, t € [0, Tp].

Choosing § > 0 small enough, the orthogonal projection Prr, : Tt (39) — TI'; is well defined and smooth
for all t € [0,Tp] and the mapping ¢¢(x) = (dr(z,t),Prr,(z)) is a diffeomorphism from I'(30) onto its
image. Its inverse is given by ¢; * (r,p) = p + rnr, (p). Although Prr, and ¢; are well defined in T';(36),
almost all computations later on are performed in I';(29), which is why, for the sake of readability, we
work on I'4(20) in the following,.

Combining ¢; Uand X, we may define a diffeomorphism

X(r,s,t) = (¢; ' (r, Xo(s,t)),t) = (Xo(s,t) +rn(s,t),1) (2.2)
for (r,s,t) € (=2§,25) x Tt x [0, Tp] with inverse X ~!(x,t) = (dr(z,t), S(z,t),t) where we define
S(a,) == (X5 (Prr, (@), (23)

for (x,t) € T'(20) and where (.), signifies that we take the first component. In particular it holds S(z,t) =
S(Prr, (z),t). In the following we will write n(x,t) := n(S(z,t),t) and 7(z,t) := 7(S(x,t),t) for (x,t) €
I'(20).
For (z,t) € T'(24) it holds

Vdr(z,t) = n(z,t), |Vdr(z,t)|=1, VS(z,t)- dr(z,t)=0. (2.4)
In order to connect dr to the curvature and mean velocity, we observe that for s € T!, r € (—24,24) and
t € [0, Tp] it holds Adr(Xo(s,t),t) = —H(s,t) and —0ydr(X(r, s,1)) = V(s,1).
~ For a function ¢: I'(26) — R we define ¢(r,s,t) := ¢(X(r,s,t)) and often write ¢(r,s,?) instead of
¢(r, s,t). In the case that ¢ is twice continuously differentiable, we introduce

8{(15(7“, $,t) := (O + 0,5 (X (1, 8,1))0s) &(r, 8, 1),
VFQB(T, s,t) := VS (X (r, s,t))asng(r, s, ),
AL (r, 5,t) == (AS(X(r,5,1))0s + (VS - VS) (X (1, 5,1))Dss) B(r, 5, 1). (2.5)

Similarly, if v: T'(26) — R? is continuously differentiable, we will also write v(r, s,t) := v (X (r,s,t)) and
introduce
divi v (r, s,t) = VS (X (1, 5,1)) - % (r, 5,1). (2.6)
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For later use we introduce
Vi(z,t):=V ( )8 <Z>( r(z,t),S(x,t),t)  and
div' v(z,t)

| |
/\
V
QD
/\
/—\
\.ﬂ
~—
!
—~
&

~
S~—"
~
=

for (x,t) € T'(20).
With these notations we have the decompositions

Vo(x,t) = Ono(z, t)n + V' d(z, 1), (2.7)
divv(z,t) = Oqv(z,t) - n+ div' v(z,t) (2.8)
for all (x,t) € T'(20), as

d
% (¢ © X) |(r,s,t):(dp(m,t),S(m,t),t) = an¢(x7 t)

Remark 2.1. If h: T x [0,Tp] — R is a function that is independent of r € (—26,26), the functions
OFh,VFh and ATh will nevertheless depend on r via the derivatives of S. To connect the presented
concepts with the classical surface operators we introduce the following notations:

Dy rh(s,t) :=0f h(0,s,t), Vrh(s,t):=V h(0,s,t), Arh(s,t):=Ah(0,s,t).
Later in this work (from Sect.3.1.2 on forward) we will often consider h(S(z,t),t) and thus will write for
simplicity
Of h(z,t) := (0 + 0:S(x,1)05) h(S(x,1),1),
Vh(x,t) := (VS(2,1)0s) h(S(z,1),1),

Ah(z,t) := (AS(2,1)0s + VS(2,t) - VS(x,)0s5) h(S(2,1), 1) (2.9)
for (x,t) € I'(20). Using the definitions and notations from this section we gain the identity
Oy h(z,t) = X (0 h) (s,t) = 9; h(0,s,t) = Dy rh(s,t) (2.10)

for (s,t) € T* x [0,Tp] and (Xo(s,t),t) = (x,t) € I'. This might seem cumbersome but turns out to be
convenient throughout this work.

In later parts of this article, we will introduce stretched coordinates of the form
. dr(z,t) — eh(S(x,t),t

1) = )= WS

for (x,t) € T'(25), € € (0,1) and for some smooth function h: T! x [0,Ty] — R (which will later on
also depend on €). Writing p = p¢, the relation between the regular and the stretched variables can be
expressed as

(2.11)

X(p,s,t) == X(e(p+h(s,t)),s,t) = (Xo(s,t) +€(p+ h(s,t))n(s,1),t). (2.12)

Lemma 2.2. Let ¢: R x I'(20) — R be twice continuously differentiable and let p be given as in (2.11).
Then the following formulas hold for (z,t) € T'(26) and € € (0,1)

e (d(p(x,1),2,1)) = (—e'V(S(x,1),t) = 0 h(x,1)) Do (p(x, 1), 1) + Ord(p(2,1), 2, 1),
V (¢(p(z,t),2,t)) = (€ 'n(S(x,t),t) — V' h(z,1)) Op0(p(x, t), 2, 1) + Vaud(p(z, t), 2, 1),
A @(pw.8).2.1)) = (€24 [Vh(. 1)) 0,000, ). .8) + Mgt (p(r. 1), 2.1
+ (€' Adr(x,t) — ATh(z,1)) 8,(p(, 1), 2., t)
+2 (e 'n(S(z,t),t) — VI h(z,1)) - V,0,0(p(x,t), 2,1),
Here V, and A, operate solely on the x-variable of ¢.

Proof. This follows from the chain rule, (2.4) and the notations introduced in Remark 2.1. O



JMFM  Sharp Interface Limit of a Stokes/Cahn-Hilliard System, Part II: Approximate Solutions Page 7 of 48 38
2.2. Remainder Terms
Most of the following was already discussed in [3] and is only presented for the convenience of the reader.
For t € [0,Tp] and 1 < p < oo we define
1P (T4(20)) := {f : T4(26) — R measurable| | fl| . (r, (25 < oo} :

where

Hf”Lp,oo(rt(zg)) = </11‘1 €SSSup| .| <25 |f ((X(T,S,t))1)|p d5>

Here X1 (7, s,t) :== Xo(s,t) + rn(s,t) denotes the first component of X. Let T € [0,Tp], 1 < p,q < oo and
a € (0,39) be given and let . Then we set

L9(0,T; LP (T (a))) = {f :T (@, T) — R measurable| |£] oo 7. 2o (r, o)) < oo} ,

1
q 1

T P
Fllracorre = / / flz, )P de | dt
1l a0, 7520 (0, ) | Ft(a)| (2, 1)

Analogously, we define L7 (0,T; LP (Q\I';(«))) and L7 (0,T; LP (2%(t)))) and the corresponding norms.
Furthermore, for m € Ny we define for U(t) = Q*(t) or U(t) = I';(a)

LP(0, T3 H™ (U (1)) = {f € LP(0,T5 L5 (1)) : 92 f € LP(0, 75 L*(U(#) Vo] < m},

Il £l e o, mm (0 (2))) Z 105 fll e 0, 1502 (U (1)) -

lo|<m

The following embedding was already remarked in [1, Subsection 2.5].

Lemma 2.3. We have H' (T'4(26)) < L**° (T'4(26)) with operator norm uniformly bounded with respect
tot e [07 T()}

The following estimates will be frequently used:

Lemma 2.4. Let h: T x [0,Ty] — R be continuous, ¢ € (0,1), t € [0,Ty]. Then there are constants
C1,C5 > 0 independent of h, € and t such that

1. for all ¢ € L1>°(T4(26)), n € LY(R)
dr(.,t)
H” ( - h(s("t)’t)) 1/)) L1(T(28)) —
2. for ally € L2*°°(Ft(25)) n € L*(R) and u € L*(T'4(26))
o (=2 =it .0) v

Proof. Ad 1.: With two changes of variables we obtain

[ (= = S 00) 8] 1,y

28
:/T/_ 7 (£ = h(s, 1) Y(Xi(r,s,t))| [det (VX1 (r,5,1))| drds

< Crelnll gy 1Yl 1o (ry 26)) -

L)) = Coe® nll ey 1901 . ooy el oy casy -

28 _p(s,t)
<C ||7/’OX1||L<>0( 26,25 en(p)ldpds < Ce[[¢f| 1. I':(8)) 7l 21 Ry -
) Ch(st) (e ( (®)

Here we used the uniform boundedness of \det(VXl)\ in (—26,20) x T! x [0, Tp] in the second inequality.
Ad 2.: This can be shown in the same way as the first statement. O

For future use, we introduce the concept of remainder terms, similar to [1, Definition 2.5].
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Definition 2.5. Let n € N, ¢y > 0. For @ > 0 let R,, denote the vector space of all families () of

continuous functions 7.: R x T'(2§) — R™ which satisfy
[7e(p, z,t)] < Ce P! for all p € R, (x,t) € T'(26), € € (0,1).
Moreover, let R? be the subspace of all (e)ec(0,e9) € Ra such that

e€(0,e0)

Fe(p,x,t) =0 for all p € R, (x,t) € T

2.3. Parabolic Equations on Evolving Surfaces

We introduce the space
X = L2(0,T; H2(TY)) N H' (0, T; H (T")) (2.13)
for T € (0, 00), where we equip X7 with the norm
”hHXT = ”hHLQ(O,T;H%(Tl)) + ”hHHl(O,T;H%(Tl)) + Hh|t:0HH2(T1) .

Proposition 2.6. Let T € (0,00). Then we have

1. X7 < C°([0,T); H*(T')) where the operator norm of the embedding is bounded independently of T,
2. Xp — Hz2(0,T; H*(T") N Hz (0, T; H3 (T1)).

Proof. Ad 1.: See e.g. [4, Lemma A.8].
Ad 2.: According to [8, Proposition 3.2] we have X1 — H? (0, T H%+(1_U)3(T1)). Thus the statement
1

follows for o = % and o = 3. O

The following result on solvability of a linearized Mullins-Sekerka/Stokes system is shown in [7] and
in a more general form in [2] and will be important for the construction of the approximate solution.

Theorem 2.7. Let T € (0,Tp] and t € [0,T]. For every f € L2(Q)2, s € H3(I,)2, a € Hz(I',)? and
g e H2 (0Q)* the system

~Avt L Vpt =f in Q*(¢), (2.14)

divv®E =0 in Q*(t), (2.15)

(=2D;v +p Dngo =apv_ +g on 0%, (2.16)
[v]=s onTl, (2.17)

[QDSV — p_I] nr, =a onT} (2.18)

has a unique solution (v, pt) € H2(QF(t)) x HY(Q%(t)). Moreover, there is a constant C > 0 indepen-
dent of t € [0,Ty] such that

1.2 s ooy < C (W + sl s+ s o, + Dl ) (2.19)
holds.
Proof. See [7, Theorem 2.36] or [2]. O

Theorem 2.8. Let T € (0,Tp]. Let b: T' x [0,7] — R?, b: T! x [0,T] — R, a1: 2 x [0,T] — R,
as,az,a5: I — R, ag: 0rQ — R, a;: Q x [0,T] — R?, ag,az,as,a5: [' — R? and ag: 0rQ) — R? be
smooth given functions. For every g € L? (O,T; H? (Tl)) and hg € H?(T?) there exists a unique solution
h e Xp of

Dyrh+b-Vrh—bh+ 3 X5 ((vi +v7) -nr,) + 5 X5 ([Onr, 1)) = 9 inT" x (0,7),
h(.,0) = hg inT?,
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where for every t € [0,T], the functions v¥ = vF(x,t), p* = p*(z,t) and p* = p*(x,t) for (z,t) € QF
with v € H2(Q* (1)), pt € HY(QF (1)) and p* € H2(QF(t)) are the unique solutions to

At =ay in Q*(¢), (2.20)
ut = Xg’_l(aAph:I:agh) + as onlY, (2.21)
0= ay on 0, (2.22)
~AvE +Vpt = ay in Q*(¢), (2.23)
divv® =0 in QF(t), (2.24)
[v] = as onl, (2.25)
[2Dgv — pI|nr, = Xg’fl(agh+a4Aph+a5Vrh+a5) onT, (2.26)
(—2DSV_ —|—p_I) Npo = v~ + ag on Of). (2.27)
Moreover, if g, ho and b, b, a;, and a; are smooth on their respective domains for i € {1,...,5},
je{l,...,6}, then h is smooth and p*, v*¥ and pu* are smooth on Q*(t).
Proof. See [7, Theorem 2.37] or [2]. O
We note that, if po= ) € H2(QE(t)), for ¢ € 0,7, is determined by
ApE =0 in QF(t), (2.28a)
pt = X7 (0Arh + byh) on Iy, (2.28b)
=0 on 012, (2.28¢)
then by standard results for elliptic equations the estimate
Z H'ui"L2(O,T;H2(Qi(t)))ﬁLG(O,T;Hl(Qi(t))) < Clhlly, (2.29)

+
holds true for some constant C' > 0 independent of x and h.

2.4. Spectral Theory
In order to be able to access the results from [3], Subsection 2.4, we will need to show that our approximate
solution ¢4 has certain properties. For the readability of presentation, we repeat these assumptions here.

Assumption 2.9. Let € € (0,¢9), T € (0,7p] and £ be a cut-off function satisfying (1.22). We assume that
¢ Q27 — R is a smooth function, which has the structure

(1) = §(dr(@.1) (Oo(p(w,1)) + &p* (Prr, (). D6 (p(z, 1)) + £ (dr(z, )" a1
+ (1= &(dr(w,0) (5@ Dxgy, (@.8) + i (@, Oxg; (@,1)) (2.30)

for all (x,t) € Qp, where p(z,t) = M — he(S(x,t),t). The occurring functions are supposed to be
smooth and satisfy for some C* > 0 the following properties: #;: R — R is a bounded function satisfying

/91 (64(0)) F9) (B0 (p))dp = 0. (2.31)

Furthermore, p©: I' — R, ¢: T'(20) — R satisfy
€

€+ |dr(z,t) — eh(S(x,t),t

sip  sup |p€(Prpt (@), )] +
e€(0,e0) (z,t)el(25;T)

he: TV x [0,7] — R fulfills

; |q6(x,t)\) <, (2.32)

sup sup (|he(s,t)| + |0sh (s, t)]) < C* (2.33)
e€(0,e0) (s,t)€Tx[0,T]
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and cAi Qi — R satisty

+¢5F > 0in QF. (2.34)
Additionally, we suppose that
sup sup |c%(z,t)| + sup ’VFCA (z,t)] | <C*, (2.35)
e€(0,60) \ (z,t)EQr z€eT(9)
1
inf inf " t 2.36
eél(%,eo) (z,t)eél;l\r(a;T)f (cal,t) = c* (2:36)

holds.

3. Construction of Approximate Solutions

In the following we use the method of matched asymptotic expansions to construct approximate solu-
tions (¢, p%,vS,p%) of (1.1)=(1.7). Throughout this chapter the formalism “~” will represent a formal
asymptotic expansion ansatz, that is, writing u® ~ >, -, e*up means that for every integer K € N we

have
K

u® = Zekuk + €8T (3.1)
k=0
where @11 is uniformly bounded in e.

3.1. The First M + 1 Terms

Many of the following steps are based on ideas taken from [5], [1] and [6]. In order to present the results
for the construction of terms of arbitrarily high order in Lemmata 3.6 and 3.8, we devise an inductive
scheme similar to the approach in [5]. However, in favor of the brevity of presentation, we did not include
this scheme in this article and simply state the results. For the background of the construction and the
proofs, see [7].

3.1.1. The Outer Expansion. We assume that in Q%O \I'(26) the solutions of (1.1)—(1.7) have the expan-

sions
Ze cF(x,t), pc(x,t) Ze i (x,t),

k>0 k>0
vi(zt) & Y V(e ), pi(zt) > Epl(at), (3.2)
k>0 k>0

where ¢if, pif, vii and pf are smooth functions defined in Q%O. Plugging this ansatz into (1.1), (1.2),

(1.3) and (1.4) yields
- Z FAVE + Z FVpiE = Z €" ech;E, (3.3)

k>0 k>0 k,j>0
Z Fdivvi =0, (3.4)
k>0
Zekatcf + (Zekwf) . (Zechki) = (ZekA,uf), (3.5)
k>0 k>0 k>0 k>0

and

Z € “k = —GZ EkAcf + %f’(cﬁf) + 7" (C?) Z ekflcf + Z ekfk(cg, .. ,cf), (3.6)

k>0 k>0 k>1 k>1
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where for fixed cgE the functions fj are polynomials in (cli7 cee cf) and are the result of a Taylor expansion.

Moreover, [} (cg:, .. ,cf) are chosen such that they do not depend on e. Matching the O(e~!) terms yields

1 (coi) = 0 and in view of the Dirichlet boundary data for ¢¢ we set
g =+1. (3.7)

Comparing the higher order terms O (ek), where k > 1, yields:

+ + + +
+  Hrpa +Aci_y — fr-1(cgs- 5 Ciy) i O (3.8)
€ = f”(il) 3oy, :
k
Auf = 8tcf + va . ch—j in 9%07 (3.9)
j=0

k-1
—AVE + VpE =) Vet in QF , (3.10)

j=0
divvi =0 in QF . (3.11)
Remark 3.1. 1. As we will only construct ca—L, .. .,cﬂ 41, we need to consider the remainder of the

Taylor expansion of f’. In this case, we choose to expand f’ up to order M + 2 and get

M+1 M+1 M
k4 + + k-1 + k— + +
f’( Z € ck> = f'(cy) +ef"(cg) Z et —|—€226 Yhe(e, sl
k=0 k=1 k=1
M Fox +
+€ +2f6(co,...,cM+1).
Here fe(cgt, ceey cﬁﬂ) consists of polynomials in (cli7 . ,c]jf/[H) which may be of even higher order

in € and which are either multiplied by f NeE)forj € {2,...,M + 1} or by fM+2) (§(c0 yee 7c]\i/H_l))
for suitable £ € [coi7 ,I:IJBI k i] If ci € L"O(QjE ) for all k£ € {0,..., M + 1}, it holds

| felcE, ... ,@H)Hm%) <C forallec(0,1).

2. We will need (c,f, uf, vki,pf), for £ > 0, to not only be defined in Qi, but we have to extend them
onto Q%O UT(20;Tp). For uf and pki we may use any smooth extension. One possibility is to use the
extension operator defined in [10, Part VI, Theorem 5], . It is trivial to extend c(ﬂf and if all (cgt, uli)
for i < k — 1 have been defined on Qi UT(28;Tp), then ¢ is as well, by (3.8). For vi we employ
the same extension operator and then use the Bogovskii operator to ensure that the extension is
divergence free in T';(26). In particular we may construct a divergence free extension £ (vi) such

that Ei(vf)\gi(t) = vif in QF(t) and

Hgi Vlc HH2 (Q*(#)UT (28)) = OHVk a2 (= @)- (3.12)
For later use we define
k
Ui (x,t) = Apit (2, 1) — 9,ci (x,1) Zv z,t) - Ve (1), U+ = ZekUlj[, (3.13)
7=0 k>0
k—1
Wi (2,t) = —Avi (2,t) + Vpi (z, 1) Zﬂ;t (z,t)Ver (@, 1), Wt = Zeka, (3.14)
7=0 k>0

for (z,t) € Q%OUF(%). Note that by (3.9) and (3.11) we have Wi (z,t) = Ui (x,t) = 0 for all (z,t) € Qiqiwo
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3.1.2. The Inner Expansion. Close to the interface I' we introduce a stretched variable
dr(z,t) — eh(S(z,1),1)
€

p(x,t) = for all (z,t) € T'(20) (3.15)

for e € (0,1). Here h*: T! x [0,Tp] — R is a given smooth function and can heuristically be interpreted
as the distance of the zero level set of ¢ to T', see also [6, Chapter 4.2]. In the following, we will often
drop the e-dependence and write p(x,t) = p(x,t).
Now assume that, in I'(26), the identities
¢“(a,t) = & (TEL e (S(a,t) ), wst), (e t) = 5 (TED DS (2, 1), 1), 2, 1),
pe(x,t) = p (D pe(S(x, 1), 1), 2, t), ve(a,t) = v (EED pe(S(a,t), 1), x,t) (3.16)

hold for the solutions of (1.1)—(1.7) and some smooth functions ¢, i, p¢: RxT'(2§) — R, v°: RxT'(26) —
R2. Furthermore, we assume that we have the expansions

E(pya,t) =Y Fenp,a,t), i (p . t) = > e pi(p, x,t),
k>0 k>0
P(p,x,t) = Ze pr(p,x,t), “(p,x,t) = Ze vi(p, ,t) (3.17)
k>0 k>0

for all (p,z,t) € R x I'(20) and also
he(s,t) m > Fhppa(s,t), (3.18)

k>0
where c, pir, pr: R x T'(26) — R, vi: R x T'(26) — R? and hg: T' x [0,7p] — R are smooth functions
for all £ > 0. When referring to ¢, fi, p, v and the expansion terms we write V =V, and A = A,. The
expressions O h¢(x,t), VI he(z,t), AVh(z,t) and DEh<(z,t) are for (z,t) € I'(25) to be understood in
the sense of Remark 2.1.
In order to match the inner and outer expansions, we require that for all k the so-called inner-outer
matching conditions

sup |3§18f82 (¢ (£p,z,t) — @i(x,t))| < Ce %P, (3.19)
(z,t)€T(26)

where ¢ = cg, pr, Vi, pr and k > 0 hold for constants o, C' > 0 and all p > 0, m,n,l > 0.

Remark 3.2. We will only use the matching conditions for m,n,l € {0,1,2}. However, since the ordinary
differential equations for (cx, ¢, pr, i, Vi, VIE, P, D) (cf. (3.27), (3.29), (3.31), (3.33)) are dependent
on derivatives of lower order terms, it is necessary and sufficient for the matching conditions to hold for
m,n,l € {0,...,C(M)} for some C(M) € N depending on the general number of terms in the expansion.

We interpret {(z,t) € I'(20)|dr(z,t) = eh¢(S(z,t),t)} as an approximation of the 0-level set of c°.
Thus, we normalize ¢* such that

cr(0,2,t) =0 for all (z,t) € T'(24),k > 0.

Similarly as in [5], we introduce auxiliary functions g¢¢(z,t), j¢(z,t) and [°(z,t) as well as u®(z,t) and
q“(z,t) for (z,t) € T'(26). As a rough guideline, the functions g€, j¢, and q° will enable us to fulfill the
compatibility conditions in T'(26)\I'. ¢ and u® on the other hand are of importance when it comes to
fulfilling the matching conditions in I'(26)\I'. Moreover we choose n: R — [0,1] such that n = 0 in
(—o0,—1],n=11n [1,00) and n" > 0 in R and such that

1
/ (o) - 5)96(p)dp =0 (320)
R
is satisfied. For later use we also define

n“*(p) = n(—C + p)
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for an arbitrary constant C' > 0 and p € R.
Now we may rewrite (1.1)-(1.4) as

—0ppv© = €(0,V Adr + 2(V9,v)'n + [i°0,¢n)
+ 62( —2(VO,v)" - VIR + 0,9 |V R — 9,v AThE — 19,e°V ¢

+ 0,5 VIR + AV — Vi + i°VE) — un” (p) (dpr — e(p + hf))

+q7 (p) (dr — e(p+ he)) + E(WHpTs T Wy©sm), (3.21)
9,V n = €0, vV he — edivi® + (u® - (n — eV 1))/ (p) (dr — e(p + k7)), (3.22)

Dppt — f(cf) = €( — i — 0,8 Adr — 2V 0, - 1) + g0/ (p) (dr — € (p + h°))
+ (= Oyt |th€| + 9,8 AV R + 2V, - VIR — AE) (3.23)

Dppi” = €(0,C (Opdr + v - m) — 0,4 Adr — 2V, - n)
+ 8( — 0, (0F hE + ¢ - VEhE) + 0,1 AR

Dppfi| VU RE[2 + 2V 0, i€ - VIS + ¥ - V& + 9,6 — A[f)

+ (10" (p) + 50 () (dr — e(p + 1)) + E(U Tt + U777, (3.24)
where the equalities are only assumed to hold in
= {(p.2.1) € R x T(20)|p = &0 _ p(S(a,1),1)},

but we consider them as ordinary differential equations in p € R, where (x,t) € I'(20) are seen as fixed
parameters. Thus we assume from now on that (3.21)—(3.24) are fulfilled in R x I'(2§). The terms U* and
W (cf. (3.13), (3.14)) are used here in order to ensure the exponential decay of the right hand sides; in
this context Cs > 0 is a constant which will be determined later on (see Remark 3.4). We assume that
the auxiliary functions have expansions of the form

t) ~ Zuk(x,t)ek, 1(x,t) Zlk x,t)e q(x,t) = qu(x,t)ekH,

k>0 k>0 k>0
)~ gl )T gt t) 2> gila, e, (3.25)
k>0 k>0

for (x,t) € T'(29). Matching the e-orders, we gain the following ordinary differential equations in p: From
(3.21) and (3.22) we get

—0pp(vo — uondr) = 0, (3.26)
—0pp (vk — (udr — uohk)n) + 0ppr—1n = V-l (3.27)
and
Dy (VO ‘n—ug- ndpn) =0, (3.28)
9p (Vi -1 — (updr — ughy) - mn) = Wr= 4+ VT hy, - (0,v0 — uodrn'), (3.29)

respectively, for p € R, (z,t) € I'(2) and k > 1, where V¥~ = V*=1(p 2 t) and Wk=1 = Wk-1(p 2, t)
are defined below. Similaly, from (3.23) and (3.24) we get

Dppco — f'(co) =0, (3.30)
Oppcr — 1" (co)er = AF 1 (3.31)

and
Dpp (10 — londr) =0, (3.32)

(9pp (,uk - (lkdr — lohk) 77) = Bk-1 (3.33)
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respectively, for p € R, (z,t) € T'(20) and k > 1, where A*~1 = A¥=1(p, x,t) and B*~! = Bk=1(p, x,1)
are defined below. Here we used
VEL = 9w 1 Adr + 2(VOpvi—1) 0 = 2(VO,v0) TV g1 — 8pvoA s
+ 0,poV b1 + 8520,,v0V hi—1 - VU hy + BY (100pck—1 + pr—10,c0)n
— 1100,V h—1 + dg—1m'dr — don'hi—1 + (p + ¥ h ) ug—1n” + win" hy—1
k—2
+ Avg_o — Vpgp_o + Z wiVeg—o—; + VV,':_277CS’+ + W,;_zncs’* + VF2, (3.34)
i=0
Wh = §¢0,v, 1V hy +0,viVihy 1 — divvg_1 —ug_1 - ny'p — 6¥uy_1hy -nf
—uy -y hp_y — 0¥ (wp_1 - VI hy +uy - Vg )dry
+uo - (Vhy—1p+ BE (VU hy—ihy + VE hihy_1))n' + WF2, (3.35)
AR = iy = Opck—1Adr — 2V8,c—1 -+ fr_1(co, -, ch—1) + gr—17'dr
— 3520,,c0V  hi 1 -V by + 9,c0A  hy 1 4+ 2V0,c0 - Vi1 — gohi_11'
— Acy_o + A2, (3.36)
and
B = 0pCr—10:dr + ﬁf(apck_lvo + 0pcoVi—1) -0 — Oppt—1Adp — 2V, pij—1 - M
— U1 p — ¥ l—rhan” + jr—1n'dr — dpcovo -V hg—1 — 0,c00; hi—1
— 520,10V hy—1 - VEhy + Oppio AT hig—1 4+ 2V ,p10 - V hi1 — lihg—1n” — johy—11’
k—2
+ Orcp_o — Apgp_o + Z viVeg_o_; + U,j'_27ycs’+ + U,;_ans’7 + BF2, (3.37)
i=0
Here VF=2 Wk=2 A*=2 and B*~2 denote terms of order k — 2 or lower which are unimportant in the
following—the detailed structure of these terms can be found in [7, Subsection 5.1.2]. In all of the above
identities we used the following conventions:
Notation 3.35.

1. All functions with negative index are supposed to be zero. In particular V~! = W=! = A~ =
B~ = 0. Moreover, hg := 0.
2. We introduced the notation

g = 3 ifi=k,
)1 else

5,_{0 if i =k,

1 else.

3. fr—1(co,-..,cr—1) (appearing in (3.36)) are terms from a Taylor expansion defined in the same way
as in Remark 3.1. In particular, we will later on also use a remainder term f as discussed in Remark
3.1 for the inner solutions. Moreover, we use the convention fy(cg) = 0.

We will see after the construction of the zeroth order terms that the term hj appearing on the right
hand side of (3.29) is actually multiplied by 0.

Remark 3.4. Note that W* and U*, which we inserted in (3.21) and (3.24), are not multiplied by terms
of the kind (dr — e (p + h¢)). So we have to make sure they vanish on the set S€. This is accomplished by
choosing the constant Cg > 0 in a suitable way.
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In particular we set
Cs = lhllcorx oz +2

and assume that

’Zekhk+1(5’(x,t),t) <1 (3.38)

k>1
holds for all € > 0 small enough. It turns out that h; does not depend on the term e?(U+7n“s T +U~n%s:™)
and €2(W+ns:+ 4+ W—n®s:7), so this choice of C's does not cause problems. Choosing C in this way,
it is possible to show (see [5, Remark 4.2 (2)]) that for p = M — he(S(z,t),t) and (x,t) € I'(20)
such that dr(z,t) > 0 it follows p > —Cgs + 1. Thus, n9~(p) = 0 and since (x,t) € QF we have
WT(z,t) = U (x,t) =0 and so

(U+ Cs,+ +U_ Cs,— ) _ 62 (W—i-ncs,—i- +W—ncs,—) —0.

A similar statement holds when dr(z,t) < 0.

3.1.3. The Boundary Layer Expansion. To be able to guarantee that the approximate solutions satisfy
boundary conditions akin to (1.6)—(1.7), we also need to consider a separate expansion close to the
boundary of Q. In the following we write ngq(x) := ngq (Praq(x)) and 1sq(z) := Tsq (Praa(z)) for
x € 00 (9).

We assume that for ( ) 072 (9) the identities

= ¢ (B"” ), (e t) = up (B ),
P (= wt), vi(t)  =vi(EE ) (3.39)

hold for the solutions of (1.1)— (1.7) and smooth functions cf, ug,pg : R x 05,2(0) — R, vg : R x
01,9 (6) — R2. Furthermore, we assume that the expansions

cg (z,2,t) ~ —1—|—Zeck (z,2,t) (z,z,t) Zﬁ,u,k (z,2,t)
k>1 k>0
P (zz,t) = ) pp (z,2,1), Vi (22, t) & ) VP (z,,) (3.40)
k>0 k>0

are given for all (z,z,t) € (—o0,0] X 91,2 (8). As in the case of the inner expansion, we also assume that
the outer-boundary matching conditions

sup ‘8?8?82(90?(2733,75) — ¢y (z,1)] < Ce, (3.41)
(2,t) €01, Q(9)

hold for ¢ = ¢, i, v, p and some constants o, C' > 0 and all z < 0, m,n,l > 0. Plugging the assumed form
of the exact solutions (3.39) into the equations (1.1)—(1.4) we obtain for (z,t) € 91,2 (0) and z = d%(z)
the identities

—0,.,vg + 0.pVdp = € (20, DvgVdp + 0. vgAdp + 1°0,cgVdn)
€ (Avi — Vpi + uVeg)
0,vg - Vdp = —edivvg,
where the differential operator V =V, div = div,, A = A, act only on the variable  and not on z. In
the calculations we used |Vdg|? = 1 for (z,t) € 91, (0).
Moreover, we have
D..c5 — f(cg) = —€(ug +20.Vcg - Vdp + 0.cgAdp) — 2 Ack,
0,15 = €(—20,Vug - Vdg — 0,ugAdp + v - Vdgd.cp)
+ €2 (Opcg + v Vg — Auf) .
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Using (3.40) and equating same orders of €, we get

—9,,vB +0.pP Vdg = Vi! for k > 0, (3.42)
d,vp -Vdg = —divwP_| for k >0, (3.43)

DocP — f' (1) cP = AE? for k> 1, (3.44)
0.2 = Bt for k >0 (3.45)

for all (z,z,t) € (—00,0] x O1,9Q(0), where Vg_l = Vg_l(z,x,t), A%_l = A’é_l(z,x,t) and Bg_l =
Bgﬁl(z,a;t). In detail, we have

Vi :=20,DvP \Vdg + 0.vP_|Adg + u§d.cB_ Vg

k—2
+AVE , —VpP 5+ Z uBvel , ., (3.46)
1=0
ARt = B 20.VeB | Vdg — 8.cB | Adg — AcE 5+ fr1(cB, .. B ), (3.47)
Byt i=—20.VuP | -Vdg — 0.u2 | Adp + Z vp - VdB@zc;3 + OpcP
i+j=k—1
+ Y VPV = A, (3.48)

i+j=k—2
We used the convention that all terms with negative index are supposed to be zero, i.e., u_o = p_1 = 0.
To ensure the Dirichlet boundary condition we suppose that

pi-1(0,2,t)
f(=1)
pe(0,z,t) =0 for all (z,t) € O, 2,k > 0. (3.50)
Regarding the boundary condition of the Stokes system we calculate

2D, (VB (%, 7,1) )mon(r) = © (I+ mon(r) @ nao(r)) 0P (202 2. 1)

+2D5Vk ( ) )1’1,‘39( )

cP(0,2,t) = for all (x,t) € 01, 2(0), k > 1, (3.49)

and thus impose
— (I +npq(z) @npo(x)) d.vE(0,z,t) = 2D,vE (0, z, t)ngo(z)
—pP (0,2, t)nga(z) + agvp_, (0,z,t) (3.51)
for all (z,t) € O, 2,k > 0.
Remark 3.5. It can be shown that by choosing (3.49), the unique solution B to (3.49) satisfies B (2, x,t) =
¢y (z,t) for all (z,x,t) € (—o0,0] x O, 2(9).
3.1.4. Existence of Expansion Terms. For the proofs of the statements in this subsection we refer to [7,

Subsection 5.1.6].

Lemma 3.6 (The zeroth order terms). Let (v i,pi jE) be extended to Qi UI'(20;Tpy) as in Remark 3.1.2.
We define the terms of the outer expansion (c0 ,,uo ,v0 . Do £) for (x,t) € Qio UT(26;Tp) as

(2, t) = 1, pE(x,t) = pt(x,t), vi(z,t) = vE(z,t), piz,t) = pT(x,t), (3.52)
the terms of the inner expansion (co, o, Vo) as
co(p, z,t) = bo(p), (3.53)
po(p,z,t) = pg (2, t)n(p) — pg (x,t) (n(p) — 1), (3.54)
vo(p,x,t) = vy (2, t)n(p) — vg (x,t) (n(p) — 1), (3.55)
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for all (p,z,t) € R x T'(26;Ty) and the terms of the boundary expansion (c&,u,ve,pF) as

C(])B(vavt) =1, /‘(])B(va7t) = g (2, 1), VOB(vaat) =, (z,1), p(ljg(za z,t) = pg (,1)
for all (z,z,t) € (—00,0] x O, 2(5). Then there are smooth and bounded ly, jo,go: I'(28) — R, and
ug, qo: ['(20) — R? such that the outer equations (3.7), (3.9), (3.11) (for k = 0), the inner equations
(3.26), (3.28), (3.30), (3.32), the boundary equations (3.42)—(3.45) (for k = 0), the inner-outer matching

conditions (3.19) the outer-boundary matching conditions (3.41) and the boundary conditions (3.50) and
(3.51) (for k =0) are satisfied.

Remark 8.7. As a consequence of (3.54), (3.52), the equation for i on T'; (1.14) and Adr(x,t) = —Hr, ()
for (x,t) € T, we have
po(p, x,t) = —ocAdr(z,t) (3.56)

for (p,z,t) € R x I'. Moreover, it holds
u=0onT (3.57)
and 0,vo = ugdrn’ in R x T'(25; Tp).

Lemma 3.8 (The k-th order terms). Let k € {1,...,M + 1} be given. Then there are smooth functions

+ B + B + B . + B
Vkavk s Vi 7ukaqk7/-l/k>a,u/k; s Mg 7ckvck 5 Cr ahknlk:a.]k:aglwpk—lapk yPr—1

which are bounded on their respective domains, such that for k-th order the outer equations (3.8), (3.9)
and (3.11), the inner equations (3.27), (3.29), (3.31) and (3.33), the boundary equations (3.42)—(3.45), the
inner-outer matching conditions (3.19), the outer-boundary matching conditions (3.41) and the boundary
conditions (3.49)~(3.51) are satisfied. Additionally, it holds hy(s,0) = 0 for all s € T'. Here vi-, uif, ¢if

and p,f are considered to be extended onto Qi UT'(25;Ty) as in Remark 3.1.2.

Remark 3.9. Let us remark upon the difficulties that would arise if we considered e.g. no-slip boundary
conditions for v¢. In that case, we would demand for v to also satisfy v§ = 0 on 07,2, which may be
achieved by suitable changes to the presented boundary layer expansion. As a consequence, the outer
solution would need to satisfy (among other equations)

. + : +

divv, =0 mQTO,
[vi] = a1 onT,
v, = az on dr, (2,

where ay, as are smooth functions, depending only on lower order terms. As a consequence, the divergence
theorem implies

0= / div v:dx +/ divv, dz = —/ a; -nr,dH*(p) +/ ay - npodH' (p)
Q+(t) Q- (1) r, a0
for t € [0,Tp]. However, this equality does not have to be satisfied for arbitrary k. To avoid this difficulty,
we restricted ourselves to the case of the boundary condition (1.6).

Now we “glue” together the inner and outer expansions of ¢¢ in order to get an approximate solution.
We will repeat this later for approximate solutions of u, v¢, p¢, cf. Definition 4.1.
Definition 3.10 [A First Approximate Solution]|. Let S&y,...,&Syr41 be the expansions up to order M +1
as given in Lemmata 3.6 and 3.8. Let furthermore some ey > 0, T € (0, Tp] and (h)cc(0,e,) C X7 with
h¢|;—o = 0 be given (cf. (2.13) for the definition of X7). In the following, we write H := (ﬁe)ee(o,eo)-

We define
M

WG (s,1) = et (s,t) + MR R (s, 8) (3.58)
1=0
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for (s,t) € T! x [0,7']. Note that h¢(s,t) is well-defined for all (s,t) € T! x [0,7"] since X+ —
C°([0,T"]; C*(T')) due to Proposition 2.6.2 and Sobolev embeddings. Furthermore, we set
M+1 M+1
ér(p,a,t) := Z ecilp, x,t), cH(x,t) = Z e'ci(pf(x,t), z,t) (3.59)
i=0 i=0

for p € R, (z,t) € I'(26; T") and

d t
p(z,t) = do@,t) _ hM(S(x,t),t). (3.60)
€
For the outer part we set
M+1
co(z,t) := Z € (¢f (z, t)xqr(z,t) + ¢ (z,t)xa- (z,t))
i=0

for (z,t) € Q7 and for the boundary part we define
M+1
cg(x,t) = Z eic?(w,x,t)
i=0
for (z,t) € 0 Q2(9).
Let ¢ € C*°(R) satisfy (1.22). We now define the approximate solution

M= g(dr)e + (1= €(dr))(1 — €(2dB))co + £(2dB)e  in Q. (3.61)
Later on, the family H will be replaced by the terms of correct order hS, ., which will then depend
2

on €. But in order to find those terms we need some preparations first, which will turn out to be more
flexible and notationally consistent when they are done with an arbitrary family of functions H.

3.2. A First Estimate of the Error in the Velocity

Let the assumptions and notations of Definition 3.10 hold throughout this subsection. Moreover, we

denote
H'(Q)

Vo = {p € C*(Q)2:divep =0}
and a®sb:=a®b+b®aforabeR". .
For T € (0,To], € € (0,e0) and H = (h)ce(0,es) € X7 With h[;—o = 0 we consider weak solutions
Wi Qp = R2 and ¢¢7: Qp — R of

AW 4 Vg = —ediv((VeiT — hf) @, VRY) in Qr, (3.62)
divws =0 in Qr, (3.63)
( — 2DSV~V?H + q?HI) ‘o = 040V~Vi’H on O} (3.64)

in the sense of [3, Subsection 2.1]. Here we denote
R .= ¢ — 57,

where ¢: Qp, — R is a smooth solution to (1.1)- (1.7) with ¢ defined as in (1.23), for ¢ = CZH and

fixed 1§. Note that ¢© does not depend on H, as

M+1 M+1
C?(.’E,O) = Z fici(pH(xvo)aan) = Z eici(dr(:)())vxat)
i=0 i=0

due to h;|t=o = 0 by construction for i € {1,..., M + 1} and if\t:o = 0. Moreover, we define h” by
h (z,t) :== —&(dr (2, 1)) 0,61 (p™ (2, ), 2, 1) eM_gVFBE(:B, t) (3.65)
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and calculate
(Vei™ =h") (o (@, 8), 2,1)
=¢ (dp(w,t))Vdp(x,t)ch(x,t) +&(dr(z,t))Veér(p H(:r t),x,t)

+ €(dr (2, £))0,e1(p" (2, 1), @, )( Vdr (z, 1) Ze VE hig (2, t))

+ V((1 = &(dr(z, 1)) (1 — £(2d(w,t)))co(z, t) + &(2dg(z, t))cB (2, 1)) (3.66)
for (x,t) € Qr. We understand the right hand side of equation (3.62) as a functional in (Vj)' given by

for () = / € ((Vci;H ~h") @ VR? + VR @ (V5" - hH)) : Vepda (3.67)
Q

for all ¢p € Vp and fixed ¢t € [0,T]. As H C X7, [3, Theorem 2.1] implies the existence of a unique weak
solution. The following technical proposition is a key element in the proof of existence for the (M — %)—th
order of the expansion of A€, cf. Theorem 3.15 below.

Proposition 3.11. Let ¢g € (0,1) and T" € (0, TO] be fized. Furthermore, let for a given family H =
(he )ee(0,e0) C X1v with h¢|i—o = 0 the function W™ be defined as the weak solution to (3.62)~(3.64) for
€ € (0,€9). Then the following statements hold:

1. For all € € (0,€p), there exists a constant C(€) > 0 such that

e L e
195 ™ 2 < COT)E + 1|2 ovy)-
2. Let Hy = (h{)ec(0,e0)s Ho = (h5)ec(0,e9) € X717 e given. For all € € (0,¢q), there exists a constant
C(€) > 0 such that

~€H ~ ¢, H ~ i € € €
W™ = Wi 2o, () < COT)2 (L4 [[RS]lx,. ) 1BS — hsllx,. -
Proof. Ad 1.: By [3, Theorem 2.1] there is a constant C' > 0 such that

155 2020 a1y < Cel| (V5" =0y @ TRI|| 1oy (3.68)
Now in order to estimate the right hand side, we first note that
C
sup Ve (@, 1) — hH(x,t)’ <= (3.69)
€

(z,t)eQx(0,T7)

with a constant C' > 0 that does not depend on H. This can be deduced from the representation (3.66)
and the fact that cg and its appearing derivatives are in L (01,9(d)), co and its derivatives are in
L*> (Qr,) and ¢y and its appearing derivatives are in L (R x I"(20;Tp)). So we obtain

|e(ves” ~n") @, VR < LT + Ca( IV A | L2 qriasiry

L2(Qp0)
< C(&) ((T")% + ||h]| L2 (o,1v: 1 (1)) ) s

where we used that ¢€ is a known function and thus

sup [|Vc© ||L2(Q) C(e) (3.70)
te(0,77)
holds for some e-dependent constant C(e). An analoguous estimate for VR @ (V5" — hl) yields the

first part of the proposition.
Ad 2.: We write f&f := e(Vci{H — hH) ®s V(CE — CZH) and get using [3, Theorem 2.1] that
- e H -
W™ — W2 || o, ) < CIECT = £972 | 120 7120 - (3.71)
Now in order to show the statement we first note that

D’;Di(él(le (2,t),2,t) — ér(p™*(2,1),2,t)) = D§+1Décf(§(m,t),x,t)e %(he hy)
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for all (z,t) € I'(26,7") and k,l € {0,1} due to Taylor’s theorem. Here £: I'(2§,7") — R is a suitable
function depending on H; and Hs. Since all the terms which do not depend on Hy, Hs cancel, we may
estimate

| (Ve 0Ty — (Ve 1)) @, Ve ) < COT)E S — hslx,

by (3.70), a Taylor expansion and X7+ < C°([0,7"]; C*(T')). With the help of a similar argumentation
the other terms in f&H1 — £f&72 may be treated, yielding the claim. O

3.3. Constructing the (M — %)-th Terms

Our goal is to construct approximate solutions (v<,p%, ¢4, %) which fulfill (1.29)-(1.32) in Qg,, where
r§, 7Sy o and r&p, are suitable error terms, which will be discussed in detail in Chapter 4. In (1.31)
we consider

woll = T (3.72)
€ 2

instead of w¢, where Wi is the weak solution to (3.62)-(3.64). Moreover, we write
Ap(z,t) = wit (Prp, (2),t)  for (x,t) € [(26; Tp)

and we use a suitable family H = (56)56(0750) C Xr,. Due to this appearance of a non-integer order term,
it is natural to also consider non-integer order terms in the expansion of (c¢, u¢, v¢, p¢). More precisely, we

1 . . .
M=z (VJT/F% , pjj\t/lié , c]ti% , ,u]iwi%) (defined in Q%O) appear in the outer expansion and

%(VM_% ,pM_%,cM_%,uM_%) (deﬁned in R x I'(20; Tp)) appear in the inner expansion.

assume that terms e

that terms eM—

Moreover, we assume that there is a term eM ~3h vo1: Tt x[0,T] — R appeanng in the expansion
of h¢ (and we sometimes write h{, | = hM—g) and further that there are ¢~ 2uM_% and e ZZM_;
2

appearing in the expansions of u® and [°. We assume that all these functions are smooth in their respective
domains; thus we can also consider wi’H and W;’H to be smooth, due to regularity theory. Note that we

do not introduce qu;_1, ju— 100 gy . In the following, we will fix H = (h5\4_7> 0.0 and drop the
€€ (0,e0

explicit dependence on a family H in the notations when referring to H, i.e. we write h = h, w§ = W H

and so forth.
In the following, we only assume that the zeroth and first order terms have been constructed with the
help of Lemmata 3.6 and 3.8.

3.3.1. The Outer Expansion. Using a Taylor expansion in (1.4) as before, we explicitly get in Q%O

cﬁ_% =0, (3.73)
which can be derived similarly to (3.8). From (1.1)—(1.2), we deduce that the equations
+ _ : +
—AVM7% + VpM =0 in Q7 , (3.74)
divvy, 4 =0 in Q7 , (3.75)
have to hold, as ch/[_l = Ve =0. Usmg c 1= 0 in (1.3), we get
2
Auﬁ_% = Otcf/f_% + vi L Ve 4 vE - Vc Mol = in Qi. (3.76)

We get corresponding boundary conditions for (3.74)7(3.75) and (3.76) on T' from the inner expansion.

These boundary conditions will turn out to be non-trivial. But note that, since cﬁ_l = 0, we do not
2

have to construct a boundary layer expansion, as we may explicitly prescribe the boundary values

(- 2st;4_% +p;/[_%]:)naﬂ = aov&_% on Or, 2
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for (3.74)—(3.75) and the Dirichlet datum p,, , =0 for (3.76).
In the following, we assume that (vﬁ_%,pi_%,cﬁ_%,uﬁ_%) are smoothly extended to QjT:O U
I'(20; Tp), as discussed in Remark 3.1 for the integer order terms.

3.3.2. The Inner Expansion. We assume that the matching conditions (3.19) hold for the inner terms
Va1, PM—1s Cy—1s Hay—i- As these are the first terms of fractional order which we introduce, the

2

following identities can be derived from (3.21)—(3.24):

—8pp(vM7% — (up_1dr — uOthé)W) =0, (3.77)
ap(VM_%'H*(UM_%drquhM_%) -1n) =0, (3.78)
6ppCM—% — f"(co) CmM-1 = 0, (3.79)

Dpp (NM—% - (ZM—%dF - thM_%)U) =0 (3.80)

in RxT'(26; Tp). Note that we have used VFhNF% (0p,vo—updrn’) = 0in RxI'(26; Tp) as stated in Remark
3.7. As before, we complement (3.79) with the normalization cy;_1(0,,t) = 0 for all (z,t) € I'(26;T).
Then we immediately find that ¢y, 1 =0 is the unique solution to (3.79).

. _1 _1 1 1 . . .
Now we introduce terms VM =2, WM~2 AM=3 BM=3 which correspond to the respective terms in

(3.27)- (3.33) for order k = M + 3, i.e., right hand sides for fictive terms (VM+%,pM+%,cM+%,uM+%)
which we will not construct. These are given by

AM=2 = = 20,0c0V By - Vi Ry + Opc0A By 1 — gohay_ 11 (3.81)
B = apCOVM—% ‘n- apﬂM—%AdF - 2vapﬂM—% ‘n-= lM—yl" (p+h1)
= 9pcovo - Vi hpr_s = 20,5110V hyy_ s - Ve = Bpco0f hyg_ 1 + Oppo A hyy_ 1
+2V0,p0 - Vihyry — by s (i + jon') + wilr - nd,co, (3.82)
vM-3 — Opvar—1Adr +2((Vpvyr_1) n = (VO,v0) ' Vihy_1) — 9,v0A by, s

2

— Opppg— 1+ 8ppoV by +20p,v0V hy_ s - VU Ry + iy 1pcom

3
— 110950V Py + (p+ b)) w10 + hyy_ s (win” = qon’) (3.83)
and
WwM-3 = ava_%VFhl + 8pv1VFhM_% —divvy 1 —uy g ny' (p+ hi)
—ug-ng'hy 1= (ayg Vih 4 u - VFhM_%)dpn’
+ug - (Vihyip+ (Vihy b+ Vihihy1))n'. (3.84)
Note the appearance of w{|r-nd,co in (3.82) which is due to the fact that we want to approximate (1.31).
In the following corollary we use the notation

[ur] = ul =y
for terms uf of the asymptotic expansion.

Corollary 3.12. Let € > 0, the zeroth and first order terms be given as in Lemmata 3.6 and 3.8 and
assume that (VM_%,pN[_%,CM_%,MM_%) satisfy the matching conditions (3.19) for k = M — % Then it
holds

1 [, AM=30/dp = 0 for all (x,t) € T if and only if

%/MM_%%dp: aAFhM_% —gOhM_%%/nlt%dp onT (3.85)
R R

where o is given as in (1.18)
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y 1 . .
2. [o BM~2dp =0 for all (x,t) € T if and only if

O:/eé(VM_%’ n—vy Vi, )dp [,uM_%]AdpfﬂVuM_%]-nJrlM_%
R
- Qa{hM—% + [no] A har—y +2[Vio] - thM—% = Johps—1 4 2wi[r - n (3.86)

onl.

3 [y VM=3 .ndp =0 for all (z,t) € T if and only if
0= ~[par—y] + [Var—y] -nAdr +2([Tvyy 3] 0= (Vv "Vihyy ) 1
+/RMM,%96dp—qo-nhM7%—qué-n onT. (3.87)
4o [o VM=2 . 7dp =0 for all (x,t) € T if and only if
0= [vy 1] TAdr + 2([VvM7%]Tn - [VVO]TthM—%) T4 pol Vihy 1T
+ QO'AdFVFhM_% T—qo-Thy 1 —upy_1-7 onl. (3.88)
Proof. This can be shown by direct calculations. O

3.3.3. Construction of Expansmn Terms Conbldermg the conditons (3.85)- (3.88), it can be reasoned
(see [7, Subsection 5.3.3]) that ( Vir—1 7,uM 1 7pM 1,hM,;) need to satisfy

AMM_% =0 in QF, , (3.89a)
—Avﬁ_% + vpj;_l =0 in QF | (3.89D)
divvy, ;=0 in QF , (3.89¢)
uM7% =0 on Or, €2, (3.89d)
(- 2D,y s +pX4_%I)n39 = aoVy, s on dr,Q, (3.89¢)
coupled to
,@_% = A hy_1 4 (F5lo —7go)hp—1 on T, (3.89f)
[2Dsvyr_1 = py_1]n = Vuonhy, 1 — [po]V by 1+ dohpy—1 +2[Vvo]V Ay s

—20Adr V' hyy_s = 2(0Ahy 1 — gohy_17)n on T, (3.89g)
[VM_%] =0 onTl, (3.89h)

9t hyr—y = 5 (lbAdr — jo + alo) by + Wi -n+ 5 (vi LV %) ‘n
—vg -V by — %(anuM_% - 8n,uM_%) onT, (3.89i)
har—il,_y =0 onTo, (3.89j)

at the interface, where i) = 1 [ 7/(p)6}(p) dp. Before we may show existence of solutions together with
suitable estimates, we need the following lemmata.

Lemma 3.13. Let ¢ > 0, T € (0,Ty] and a family (Te)cco,e,) C (0,T] be given. We assume that there is
some C' > 0 such that

sup ||h§ <C (3.90)

ce(0re0) M-1 ||XT€

holds. Then there is €1 € (0, €o] such that c§(.,t) satisfies Assumption 2.9 for allt € [0,T] and € € (0,¢1),
where the appearing constant C* does not depend on €, Te, h§, . or C.
2
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Proof. First of all; we note that there exists e; € (0, 9], which depends on C, such that

dr(z,t 5
W@ 0 pe (5 1),8)] = 2 (3.91)
€ 2e
for all (x,t) € ['(26;T.)\I'(§;T.) and € € (0,¢1). This is due to the fact that Xo — C°([0,T]; C1(T!))
and that (3.90) holds. After possibly choosing €; > 0 smaller, we may ensure that

100(p(,1)) = Xa+ (2,1) + Xa- (z,8)] + 05 (p(z,1))| < Cre~ 2 (3.92)

holds for all (z,t) € I'(26; Tc)\I'(0; T¢) and € € (0,€1), as a consequence of (1.21), where C1,Cs > 0 can
< L guch that

_3
be chosen independently of €;. As a last condition on €; we impose that ei\/j 2

Q

EM—%Hhi\/[_%HXT <1 forallee (0,e). (3.93)

In particular, this implies
1l o o,micr ey < € (3.94)
for all € € (0,¢;), where C* is independent of C, hS, . and T, since the operator norm of the embedding
2

Xr. — C9([0,T.]; H*(TY)) is independent of T, cf. Proposition 2.6 and since h; € C°([0,Tp]; C1(T?)).
Thus, assumption (2.33) follows. (2.34) follows directly from the definition of ¢4 and (2.35) is a conse-
quence of (3.94). Similarly, (2.36) follows when taking (3.92) into account.

Next, we show

Cr = Qo(p) + GPE(PITt )01(/)) + €2qe’

where 6; satisfies (2.31) and p€, ¢° satisfy (2.32). As ¢y = 6y by Lemma 3.6 and cs,...,cprp1 € L°(R x
I'(26)), the only thing we need to show is that ¢; can be decomposed suitably. By (3.31) and (3.36) ¢;
satisfies

Dppcr — ["(00)c1 = —po — 05Adr + gon'dr for all (p,z,t) € R x I'(26).

Thus we find by (3.56) that 0,,c1 — f"(00)c1 = Adr(o — 6;) for all (p,z,t) € R x I'. Hence, ¢ (p,z,t) =
Adp(z,t)01(p) for all (p,x,t) € R x T, where 6; is the unique solution to

0! — f"(60)6 =0 —6, R, 6 (0)=0

with 0; € L>®(R). 0; exists since [, (0 —6))04dp = 0 by the definition of o (cf. [5, Lemma 4.1]) . Moreover,
we have

0= [ (o~ t)an = [ o(6x 1 6081)dp = [ 106010510,

R R R
as a consequence of (1.19). Thus 6; satisfies (2.31). Setting p¢ = Adr in I'(20) and
de('xa t) = % (Cl (p(x, t)7 €T, t) - pE ( PrFt (JJ), t)el (p($, t))) )

we can write ¢1(p(,t), z,t) = p*(Prr, (2),t)01 (p(x, t)) + €4°(x, t). Now we estimate

€ ‘qe(‘rv t)‘ = {cl (,O(LE, t)? xz, t) -G (p(ﬂ?, t)? PrFt ($)7 t) |

= |Vaer(p(a, 1), &(2),t) - (x = Prp, ()] < e (Clp(a, )]+ C*),

where we used a Taylor expansion in the second line and the definition of p as well as (3.94) in the last
line. Here C' > 0 only depends on ¢y, as |V e1| € L (R x T'(24)). This shows assumption (2.32). O

Lemma 3.14. Let ¢g >0, T" € (0,To] and a family (1¢) ¢ .,y C (0,7"] be given. Let Assumption 1.3 hold

for ca = ¢ and we assume that there is some C > 1 such that
sup ||h <C (3.95)

-t
e€(0,¢e0) 2 1 X
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holds. Then there exists a constant C(K) > 0, which is independent of €, T, hS,—
€1 € (0,e9) such that

IS oo ) < C(K)EM ™2 for alle € (0,61),T € (0,T]. (3.96)

and C, and some

N|=

Proof. See [3, Lemma 4.4]. O
Now we show an existence result for the fractional order terms.

Theorem 3.15. Let ¢y € (0,1).
1. There exist unique solutions hS, , € X, Mﬁi; € L(0,Ty; H*(Q* (1)) and
2 2

(Vai® 1oy 1) € L2(0.Tos H(QF (1)) x L*(0, Tos H' (Q* (1))
of (3.89a)—(3.89j) for all € € (0,¢€p), where eM’%wi = w§ € L?(0,To; Vo) is the weak solution of
(3.62)—(3.64) with H = (h;h%)ee (0.60)"

2. If Assumption 1.3 holds true for cy = c;H, there exist e1 € (0,€0] and a constant C(K) > 0
independent of € such that

1]l x,, < CUK) (3.97)

and, writing Zr. := L*(0,T.; H2(Q%(t))) N LE(0, T.; HY(Q% (1)),
H/‘M_szT + ||VM——HL6(0T 20wy T Hp -1 HLG(O,TE;Hl(Qi(t))) < C(K) (3.98)
for all e € (0,€1).

. since it is a solution to (3.62), where ¢

Proof. 1t is important to be aware that w{ depends on hf,

)

depends on

p(l‘,t) = dr(j‘7t)

inside of I'(20) and h{, , is a summand in h§, see (3.58). Here he = hS,_ 1. Hence we can use Theorem
2

- h;} (S(xvt)7t)

[N

2.8 to reduce (3.89) to a fixed point equation
Wy =St (hjw_%) in Xr.
This equation can be uniquely solved for an h{, , € X7, by the same argumentation as in [1, Proof of
2

Lemma 4.2]. The necessary ingredients in the present case are the existence result for the linear system,
Theorem 2.8, and the estimate and Lipschitz-continuity of the nonlinearity presented in Proposition 3.11.
Details are omitted and can be found in (7, proof of Theorem 5.32].

It remains to prove the second statement. Let T, > 0 be given for ¢ € (0,¢p) as in the assumptions.
As a consequence of Theorem 2.8, we have

175

M—3% ||XT/ < C|| x5 (wi .

< Cigry rlIwi wi (3.99)

'n) HLz(o,T/;H% (T1Y) HL?(o,T/;Hl(Q))
for all 77 € (0,Tp). Here H := (hi\/[,;) e(0.c0) and C can be chosen mdependently of T". Now we choose
27 € »€0

C(K) as in Lemma 3.14 (note that this constant is independent of the choice of A€ in the lemma) and
define ¢(K) := 2C1C(K). Then we find that

17 o= sup {1 € (0.1) ||,y |, < ()}

satisfies T/ > 0, due to the continuity of the norm ||.|[x, in ¢ > 0 and since h<, ,|—o = 0 in H*(T").

2
Using Lemma 3.14 again (with 77 instead of T¢), we get the existence of €; € (0, 9] such that

’ ~EH|‘L2 0.1 H () = C(K)eMi%
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for all € € (0, €;) with the same constant C(K) as above. Thus, by (3.99) we have

; ¢(K)
95041, < O

< ¢(K)

for all € € (0,€¢;1). By the definition of 7! this already implies T/ = Te.
Finally, (3.98) follows from (2.29) and (2.19) taken together with the embedding Hz(0,T.;Y)
L5(0,T.;Y) for a Banach space Y and Proposition 2.6. O

+.e

Remark 3.16. Let (h;vf_%,VM 1,pM

L ,uM ) be as in Theorem 3.15 for some € € (0, €p).

1. Since thF% € X7, the right hand side of (3.62) is already in L?(f7,), so by regularity theory and

a bootstrap argumentation, we see that h{, , and wi are smooth functions, which transfers to
2

+,e +,e s
(Vi © Py
missmg control of higher norms uniformly in e.

2. As for lower order terms, we may also extend uff_l, pff Vie 1 onto Qi UT(20) by using the
2

same extension as discussed in Remark 3.1. As the extensmn operator et W;,‘“(Qi( ) — W;f (R?)
is continuous, we get in particular

Gy

for k € N, where we can choose C independently of ¢ € [0, Tp]. Similar estimates hold for P51 and
2

ij—% (for the latter see (3.12)).

3. In the following we write ¢ := CZH for H = (hS,
3.10.

). So the true difficulty in the following is not the missing regularity, but the

+,e
v

HFk(QE(£)UD(26)) — H* (Q*(t))

e, H . . Iy
—%)66(0,60)7 where ¢ is defined in Definition

Lemma 3.17 (The (M — %)th order terms). Let the zeroth and first order terms be given as in Lemmata

3.6 and 3.8, and let € € (0,1).

Then we define the terms of the outer expansion (hjw

o (3.89) as given by Theorem 3.15.1 and we consider v

+.e
17VM lva lvp’M
:I: :t
ME 1 pM 1 NMC,%
I'(20;Ty) (c¢f. Remark 3.16). Moreover, we set CEE,; =0 in Qio. We define the terms of the inner

2

) as the unique solution

to be extended onto Q%O U

expansion given by the functions (05\4_; , ujw_l,vjw_l,pjw_l,hjw_l) as C?vz . =0 and
2 B} 3 5 :
Mg (o ,t) i= 4"y (2, ) () +uM () (1=(p)). (3.100)
Vi1 (pya,t) = v};%(z,t)n(p) (@) (L= n(p)) (3.101)
Py (p@:1) 1= pv_%(w,t)n(m +p;f_%<w7t) (1=n(p)) (3.102)

Iy = 3.103

M é le" V(ML_% _IJ/X/[_% +thM7%) on F, ( )
L(vi | —v. L 4ughy 1 in T'(2; To)\T,

Uy 1= ar ( M—g TM-p T UOTM ) (26:To)} (3.104)

)-
{dlp (31— uA},é +loha_1) in T'(28; Ty\T,

Vdr - V(v+ — V]T/I—% + uothé) onT.

Then the outer equations (3.74)—(3.76), the inner equations (3.77)—(3.80) and the identities (3.85))—(3.88)
are all satisfied.

Proof. As (hj\/[—l ; Vif 1 ,pAij 1 ,uM ) solves (3.89a)—(3.89j) it is immediately clear that the outer equa-

tions (3.74)—(3.76) are satisfied.
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Concerning (3.85), we compute

/%uM 1dp=3 /902 pie 3t iy l)dpzoAFhfw_%—gohiw_%%/Rn'%dp,

where we used (3.20) in the first equality and (3.89f) in the second. The validity of (3.87), (3.88) and
(3.86) then follow by the properties of 6y, 77 and the definition of the zeroth order terms.
Regarding the inner equations (3.77)- (3.80) we compute exemplarily

par—y = (o ydr = okl _1)n = ny~ in T(20)\T,

M;VI_% + lohjw_%n = ,UZ_V[’E_% on T,
where we used the definition of 1S, , in the first equality and [, ,] = —lohS, , on T in the second

2 2 2
equality. The latter is a consequence of (3.89f). This implies (3.80). Equations (3.77) and (3.78) follow in
the same way, remarking ug = 0 on I' (see (3.57)) and [vS, ] =0onT. O
Notation 5.18. For simplicity, we often write vy, 1 = v§ 1, vff , = v]iw . etc., especially if we
2 -3 3 -3

consider fractional and integer expansion orders together, as in Sect.4.1.
The following lemma is a key ingredient in order to estimate the remainder terms properly.

Lemma 3.19. Let the (M — %) th order terms be given as in Lemma 3.17, let the assumptions of Theorem
3.15.2 hold and let € € (0,¢1).

1. There are Ly, Lo € N such that

AM=3(p 2 t) ZAk z,t)A (p for (p,z,t) € R x T'(20) and

AM p,xt ZAlF 2Fp) for (p,z,t) e R x T,

where HA%HLN(R) + HAJ-’ < C for some C > 0 independent of €, and

oo

1 I
HAkHLG(O,TE;LZ(Ft(Q(S))) + HAj HL5(0 T.:L2(y)) = < C(K) (3.105)
forallk e {1,..., L1}, j € {1,..., La}. Moreover, there are C,a > 0 independent of € such that

T2 .
[ ] < cememinin) (3.106)
_n
for 71,79 > 0 large enough and all j € {1, . .,Lz}-

2. There are K1, Ky € N such that

BM p,x t) ZBk z,t)Bi(p for (p,x,t) € R x I'(20)\I" and

BM p,xt ZBlFxt 2Fp) for (p,z,t) e Rx T,

where Bi,B2 Fe O(efa‘p‘) for p — £oo and

||B11€||L2(1"(26;T€)) + HB ||L2(0T 121y = C(K) (3.107)

forallk e{1,..., K1}, j €{1,...,Ks}. Moreover, there are C,a > 0 independent of € such that
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T2 .
‘/ B?’de‘ < Ceomintri} (3.108)
.

for T, 12 > 0 large enough and all j € {1,...,Ks}.
3. There are N1, No € N such that
Ny
v *%(p,amt) = Zvi(m,t)vi(p,x,t) for (p,xz,t) € R x I'(20) and
k=1

N2
VM3 (g, t) = VT (@ )V (p, 2, 1) for (p,x,t) ER X T,
j=1
where V3, V?’F € Ro and
1 1,0
HVkHL2(1"(26;TE)) + ij HL2(O,T€;L2(Ft)) < C(K)
forallk e {1,...,N1}, j € {1,..., Na}. Moreover, there are C,a > 0 independent of € such that

= 2,1
/ Vi dp
.

for T, 72 > 0 large enough and all j € {1,..., Na}.

sup < Qe omin{ri,m2} (3.109)

(z,t)er

Proof. Ad 1.: Plugging the explicit structure of u9, , as given in (3.100) into the definition of AM—3
2
(see (3.81)) we get

AM=3 = —%(MZ\Z’E_% —&-M;f_%) - (M;\T_% - M;je_%)(n - %)

= 20ppcoV" by - V' hy 4 Opco ARGy — gohfy, sl (3.110)
= ARG,y (Gpco = 0) + gohfy o (=0 1) = iy "y — "0 ) (0= 3)
- 28ppcovrh§wf% -Vih, (3.111)

on R x T, where we used (3.89f) in the second line. Since (3.110) also holds on R x T'(26), we immediately
get the first decomposition, noting that co(p, z,t) = by (p).
Setting A%’F = Arhi\/[i%7 Af’r = 0,¢0 — 0, etc. we get the desired splitting on I' (with Ly = 4). It is

clear by the properties of ¢y and 7 that all terms Az, A?’F are bounded on R. Now

/(8pco—a+<—n’+%/n’06dp> —(n—%)—ﬁppc())%dp:O
R R

by (1.18), (3.20) and the fact that d,,cob), =
(3.106).
Now note that by the definition in Remark 2.1 we have e.g.

ARG, 1 (1) = (AS(2,)0s + VS (2, 1)[*0ss) hy_ 1 (S(2, 1), 1),

1
2

%% (6})°. Since 6}, has exponential decay by (1.21) we get

where S is a smooth function I'(25;Ty) with bounded derivatives. Thus, by (3.97) and Proposition 2.6.3
it follows

[AT RS, 1 + gohfy, s =2V Gy, 1 - Vihy ) < C(K)

HLG(O,Té;Lz(I‘t(%
and the same estimate also holds true if we exchange I';(28) for T';. On the other hand, the L5(L?) estimate
for u;\—;’i% follows from the continuity of the trace operator and the extension operator as discussed in
Remark 3.16, together with (3.98).

Ad 2.: We have by definition of BM~2 in (3.82)

BYME = 0 (3 (i, +vity) + (VRS = Vi )= 5) m) =10

1
2
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+0pc0( = Vo VIRGy 1 — Oy by _y +Wilrom) 0 (= 1y, _yh = by l)
! +, - =+, - .
=1 (AdF(#Mi% - ﬂMi%) + 2an(#Mi% - F‘Mi%) + JOh;\/F%)
= 2000V Ay 1 - Vi + Oppo ATRG s +2V0ppo - VIR,

on I'(20), where we used (3.101) and (3.100). This makes the decomposition on R x I'(2d) obvious if we
note that by (3.54) we have

Vidhuo = (Viluo]) 0hn  in R xT(28),i € {0,1},1 € {1,2}

and it is again clear by the properties of ¢y = p and 7 that all terms B} exhibit exponential decay.
Now for the decomposition on I': As a consequence of (3.89i), we find
1 - .
B = (VJT/[i% - VJV[i%> -n(n — 3)9p¢0 +30h§\47%(%8p00 -1

- U/Adr (/.L}CI’E_% - 'u]_u’e_%) - %loAdrapCOhjw_% + 8nl0h§\/[_% (—T]Hp - %8,)00)
+,€ —,€ € €

+ an(/‘M—% - H’M—%) (%(’%co —n'p— 277/) +1" <_ZM—%h1 - hM—%ll)

— 26,,,,u0vfthf% Vih + apquFhM% + 2V, o - th;ﬂ%

on R x T, where we used the structure of 19, , on T as given in (3.103). Using ML’E,; — 1 =—lohS, 1
2 2 2 2
on I' due to (3.89f), 0,,u0 = Oppto = 0 on T' due to (3.54) and

VIR s - Voo = VTG, 1 - 10n [po]n' =0

on I' by (3.54) and V'9,up = 0, we arrive at

1

BYM7 = (v s = vy ) sn (n(p) = 5) Bpco + Dy (Go — loAdr) (59,c0 — 1)

+0n (13" — 13" 1) (39pc0 —0"p = 20') + Onlohy, s (=n"p — 30,c0)

— (ljw_%hl + hjw_%h)??”
.. . . .. . 1,1 +.,e —,€ 2, 1
on R x T'. This implies the desired decomposition if we set By = (VM_l - VM_;) ‘n, B = (n(p) — 3)
2 2
Opco, etc. As before the Bi’r terms possess exponential decay. The integral over the Bi’r terms has
exponential decay due to the properties of 17 and ¢y since e.g.

/ (30,c0 —n"p—210)dp =1+ / n'dp—2=0, / n"dp = 0.
R R R

This implies (3.108).

The L?(L?) estimate for the terms of kind B,lc’F and B, now follows from (3.97), (3.98) and the continuity
of the trace operator H*(Q*(t)) — L?*(T;) as well as from the continuity of the extension operators for
uff_% and vif_%.

Ad 3.: Follows in a similar fashion as the proof of the second part and is left to the reader. O

Remark 3.20. We will not construct terms of order M + % as the right hand sides of the according
ordinary differential equations (similar to (3.77)~(3.80)) would depend on derivatives of the kind d; ¢, ,
2

and Ah{, , among others. As a result, the already tenuous control (independent of €) we have over the
2

terms of order M — % would only get worse for terms of order M + % On the other hand, terms like
ANTRY: 41 Ovary 1, ete. would appear in the remainder and have to be estimated suitably, which prohibit
the missing estimates.
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4. Estimates for the Remainder Terms

In this section we will prove that the constructed approximate solutions solve the original system (1.1)—
(1.7) upto error terms of a suitable order in e. Throughout this section we write

k.
I :={0,...,k} U{q} (4.1)
for k € N and g € R. The following definition is central for the following.
Definition 4.1 [The approximate solutions]. Let € € (0,1) and let & satisfy (1.22). We define

ho(s,t) = > €hipi(s,t)

e TM
ZEIM,

Nl

for (s,t) € T' x [0,Tp] and p(,t) := & pe (S(x,t),t) for (z,t) € T(20), as well as z(z, t) := BE&H

for (z,t) € 01, Q(9).

We define the inner solutions as

M+1

cr(a,t) = 3 delple.t),a,1), (e, t) = 3 éuilplat),a,t),
=0 ierM+1
M-

vi(z, )= > evilp(a,t),x,t), pr(z,t) = > €pilpla,b),x,t),
ielﬁid% ierM |

for all (x,t) € T'(29) and write

crp(z,t) = cp (p(z,t), x,t) for all (x,t) € T'(29) (4.2)
and analoguously for s, vr i, pr k. We write
cor(z,t) = cg(x,t)xf(xﬂf) +cp (Lt)xﬂ;o (z,t) for all (x,t) € Qp, (4.3)
9

and analoguously for 110k, Vo,k, Po,r and define the outer solutions as

M+1

co(z,t) := Z e'cor(z,t), po(xz,t) = Z € 1o ()
=0 ielﬁf%
vo(z,t) = Y €vour(t), po(e,t):= Y €por(x,t)
ielﬁj% ie]ﬁ_%
for (x,t) € Qr,. We define the boundary solutions as
M+1
cB(@,t)=—1+ Y écPz(a,t),,t),  pelet):= > EuPz(at), 1),
i=1 i
Mol

2

ve(xz,t) := Z evP(z(x,t),2,t) — MTIvE L (0,2,1),

and write
e (1) == cP (2(x, 1), x,t) for all (x,t) € dr,Q(0) (4.5)
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and similarly ug.x, vB.k, pB,x With the only exception that
Ve (@,0) = VB, (2, 1),2,8) = VB (0,2,).
We define the approzximate solutions
¢y :=&(dr)er + (1= &(dr))(1 = £(2dB))co + £(2dB)cB, (4.6)
in Q7 and write
cak(w,t) :=&(dr)erk + (1 = &(dr)) (1 - §(2dB)) cok + £(2dB)cB K (4.7)
for all (z,t) € Qg . Analoguously we define p%, v, p% and pa k, Vak, DA k-

This definition implies in particular py 1 = &(dr)pyp-1 + (1= &(dr)) poa—1 and a similar
structure for VaM-1Panv—1-

Assumption 4.2. Throughout this section we assume that Assumption 1.3 holds for c4 = ¢ and ¢ €
(0,1), the family (7¢)ce(o,eo) and K > 1. Moreover, we assume €; € (0, €] is given as in Theorem 3.15.2
and such that (3.96) holds for w{, the weak solution to (3.62)—(3.64) with H = (hj\/[,;) (0.0
3/€ J€
Note in particular that the assumptions of Lemma 3.13 are satisfied in this situation. Addtitionally,
there is some C' > 0 such that

||V0f4||Loo(QTO\F(25)) < Ce (4.8)
for all e € (0,1) small enough. This is the case since ¢ = +1 in Qi (cf. (3.7)) and since ¢§ = —1 and
cB =c] in 97,9(0) due to Corollary (3.5). Moreover, it holds

sup |7 (1)l o1 (r, (26)) < C(K) (4.9)
0<t<T.

for some C'(K) > 0 and all ¢ € (0,¢;). This is a consequence of the uniform boundedness of hg, k €
{1,..., M +1}, and (3.97) for hS,_,.
2

Remark 4.3. At this point, we want to remark about the shortened statements in [3, Subsection 3.1].
Concerning the definitions of ¢y, co, ur, etc. there is a discrepancy between the present contribution and
[3]. In [3], p; and v; are defined without the appearance of fractional order terms and in the present
context, we would define

M+1

pom = Y € ((1-£2dp)) pox +&(2dB)uB k),

k=0
with a similar representation for co g and vp . Again, this leaves out the fractional order terms, which are
considered separately. These notational differences help in [3] to keep the necessary structural information
about the approximate solutions as compact as possible, while still presenting enough background to make
the proofs self-contained. Now co.g = £1+ O(e) in Cl(Q%O) follows by the same arguments as (4.8) and
||cO7B||Cz(Q%) < C'is a consequence of D2cg = O(1). pop = p* + O(e) and vop = v + O(e) in
0

L (Q%O) as € — 0 are direct results of Lemma 3.6. h%(s,0) = 0 for all s € T! is a consequence of Lemma
3.8 and (3.89j), while u,~ , = 0 on 97,9 is due to (3.89d).

2

4.1. The Structure of the Remainder Terms
4.1.1. The Inner Remainder Terms. In the following, let Assumption 4.2 hold and we work under the

notations and assumptions of Definition 4.1. We now analyze up to which order in e the equations (1.1)—
(1.4) are fulfilled by the inner solutions ¢y, ur, v, pr. For this we use the ordinary differential equations
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satisfied by (ck, ik, Vi, pr—1) for k € {0,..., M + 1} as constructed for the inner terms and evaluate them
at

dr(z,t
oo t) = D e (500001 (4.10)
for (z,t) € T'(26;T¢) and € € (0,¢1). Before we give the explicit formula, note that we can choose €; so
small that for all € € (0,¢1) we have |hS — hi| < 1 due to (3.97). Thus, (3.38) is satisfied and using

Remark 3.4 we get

2 (77+,,Cs.+ — Cs,— _ 2 (YWt Cs.+ -.C _
(Utnst +Un"s )|p_7 hy, =€ (WHp©st + Wp®s )|p_7_h€ =0.
Let € € (0,€;). Using the inner equations derived in Chapter 3 we get
1
Oer +vy-Vep+ €Mz wilp - Ver — Apg
M . / "
=€ (Opcr+10edr — Oppins+1Adr — 2V 0pping1 -1 — jun' p — lv1m” p)
M+1 M+1
+ 6 2W1|F Z 62 1(9 pCill + Z Z €Z+]8pcivrhj+1 + GZVCi
]EI [ 3
L - L r r
— Z 62+JapCi(Q)t hj+1 + Z EH_J (2V8p,ui -V hj+1 + 8puiA hj+1)
0<i<M+1,5erl 4 zeIM+1 GEIM 4
-3 _3
i+j>M—1 1+]2Mf§
1 . S
+ Z g Z EH_‘]Vi . IlapCj - Z GH_J-HVZ' . 8pchFhl+1
ety - 0<j<M+l 0<j<M+1, lel}] o
2 i+j>M+35 2
i+ > M1
itj+1 r r i+j—1
- Z €Z+J+ 8ppu,-V hj+1 -V hl-i—l - Z 61+] Z'Ln”hj-i-l
M+41 M - M+1 M
I -1 a]JEIM 3 zeIM7% IMii
1+J+1>M_, i+j> ML
M+1
M—1
- Z R b + Z (Orc; — Apy) — € 2A,uM_%
0<i<M kel 3 i=M
i+j>M—3
it _3 _1 .
+ Z etiv; - Vej+ M 2pM-2 = reury  in (205 Te), (4.11)
zeIM+1 0<j<M
1+]ZM—§
where w{ is given as in Theorem 3.15. We also get
CI_G—lf/(CI) + MI _ O(€M+1)
i+j r r itj
—€ Z et (chiA hj+1 + 2V8PC7; -V hj+1) Z GH_]gi?] hj+1
. .M
0§1§M+1,]€IM7% 0<i<M JEIM 3
i+j>M -} i+i2M+3
+ I eV by - Vi hyy — M3 AM T = (4.12)
€ € ppCi j+1 I+1 — € =:TcH2,I :
0<i<M jlel}l 3
1+]+ZZM——
in I'(26; T, ), where the Landau symbol is with respect to L>(I'(2d;Tp)). Furthermore,
divvy = M divvy — Z € 0,v; - Vi hj + Z etu; - nn'hj
ZEINIH'l,jEIM % ZGIIVII'H ,]GIM 3

z+]>1\/[+2 z+g2M+2
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+

>

el el
2

M-3
i+j=M+3

>

— €

- M+41 . M
zeIMir%,g,kGIM7

itj+k>M—3
and

—Av; + Vp; — purVer

€

Helmut Abels and Andreas Marquardt

>

o pMA1 oM
leIMf%’Jelei
s 1
i+j>M—3

i+j+k r ’ M—LygrmM—1
ea; YV h b — MT2WM T =g

Hug -V hjn'dp — e € - Vihjan'p

3
2

= GM (780VM+1Ad1" — 2V3pv§4+1n + QMUIP _ uM+177NP)

1

b

€
ielﬁj%,OngMJrl
iti>M+5

>

. M . M
Zell\l—% "]EII\/I—%

L it r r
€Z+j €Z+J+ 8ppviV hj+1 -V h[+1

>

oMl M
ZGIMi%,J,IGIM 3

Hi0pcim —

iHjHI>M—%

>

o MA41 M
I ler
e M-1 s

L r g r
GH_]appiv hj-l-l + Z et Miapij hl+1
0<j<M+1

2 . .
i+i>M—1 i+jHI>M—1%
E i+J I T
+ GH_J (8pviA hj+1 + 2V8pvi V hj+1)
ielﬁjg,jelg%
iti>M—1
1 1 M+1
i+7 " i1 ’ .
- - E €Z+Jui77 hj+1 + g E et q;n hj+1 — E e Av;
ielﬁjl%,jelﬁig OgigMJEIi‘;’i% i=M
i+i>M+L i+i>M—3
M M-1 i+ M—3~x,M—1
+ e Vpy — € Z(AVM_%7VpM_%)7 E €' j,uiVije 2V 2

—. p€
= rS,I

in T'(26;

. o MA41
0 <M el ty
i+j>M—3%
T.).

JMFM

(4.13)

(4.14)

4.1.2. The Outer and Boundary Remainder Terms. By the outer equations considered in Chapter 3 we

get in Q;O U Qg

Oico +vo - Veo — A/Jo

and

eAco — et

E EH_]VO’Z' . VCO,j

ie]ﬁj%,0§j§M+l
i+j>M+3

1
€M+2VO7M7% . ch,l —+

—. €
=:TcH1,0

J'(co) + po = O(M 1) + -

in L™ (Q;FO U Q7). Furthermore,

~Avo + Vpo — poVeo = *ﬁMJr%Mo,M—%VCOJ -

and

>
. M+1
ZEIM,%
0<j<M+1
i+j>M+3

1o,iVeo; =150

. Con e
divvp =0 =:71gy 0-

(4.15)

(4.16)

(4.17)

(4.18)
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Consider the ordinary differential equations (3.42)—(3.45) satisfied by (ckB, ,ukB, ka, pkB_l) evaluated at

z(x,t) = M for (x,t) € 0r,Q2(J) and € € (0,€e1) and the outer equations as discussed in (3.89a)-
(3.89¢) for (pﬁ_%,vﬁf_%,pﬁ_%). Then
Oicg + v - Veg — Aup = O(GM) 1 Mt Z ej_lvj_w_l . Vc;»3
1<j<M+1 :
+ Z eMJFj*%V]Qi% ~Vd13320;3 = TCHI1,B> (4.19)
2<j<M+1

as a consequence of 9,cB = 0,c2 = 0, see Corollary 3.5. Moreover,

Acg — ¢ ' (cB) + pp = O(MH) + EM_%/%Q*% = TCH2, B (4.20)
—Avgp + Vps — MBVCB = O(GM) — EZVIJF%,LL&i% Z 6j71VC;-3
1<5<M+1
PO j— €
- 6M+2/LM_% Z € 2Vd38zc}3 =:r$p (4.21)
2<j<M+1

in L>(Q7, U Q) and

divvg = Mt (div v, — div vy |.=0) = Tdiv.B (4.22)

in 07, 9Q(8). Moreover,
us =0, cg = —1, on 092, (4.23)
(=2Dsvp + pBI) - ns0 = apve on Of). (4.24)

Remark 4.4. We introduce the notation
= — M-3
FCH2,B = TCH2,B — € 2HOM-1 (4.25)

in 97,Q(9) for later use. Note that 7&y, g € O(eM) in L (97,Q(9)).

4.2. First Estimates

In order to streamline the results, we define

TG = U {cia/j/iylinajinaviauinvqin} )
1€{0,...,M+1}
Tp, = U {n.V'hy, ARy, 0 0y, VR - VR

i,jelﬂljj%\{o}
The following lemma will yield estimates for almost every term in (4.11), except for B _%, which is
treated in Lemma 4.7.

Lemma 4.5 (Estimates for r&y, ; and r§ ;). Let Assumption 4.2 hold, let o € L>(0,Ty; H'(T(20))) and
let z € L*(0,T.; H'(Q)?). Then there is some constant C(K) > 0 such that for all € € (0,¢€;)

€ _3 _1 1
H(TCHI,I —MmzpM 2)90HL1(F(25;Te)) < C(K)EMTEZ HS"”L“(O,Te;Hl(Ft(%)))’ (4.26)
. _3 _1
H (rSJ +eMmevi 2) 'Z||L1(1"(26;T6)) = C(K)EM HZHL?(O,TG;Hl(Q)) ’ (4.27)
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Proof. The proof makes heavy use of the fact that (3.97) and (3.98) hold under Assumption 4.2. We first
show the inequality for the estimate involving 7¢yy; ; in multiple steps, estimating the terms separately:

Step 1: Due to the matching conditions (3.19) and the definition of 7, all f € 74 satisfy Df)fo € Ra
for I € {1,2}, k € {0,1} and some o > 0. Now let g € 7,. Since S: I'(20) — T! (as defined in (2.3)) and
its derivatives are bounded in I'(26) we have

lg(z,t)| < Cla(S(z,1),1)|
for some function a: T' x [0, Ty] — R, where a is given by a suitable derivative of the corresponding h;,
€ Iﬁf%\ {0}, or h; itself.

Thus we may use [1, Corollary 2.7] to get

1
/1"(26'T) |D,DLf - ge|d(@,t) < CeTE |lall 201y sy 190l oo 01201 (0 (259 -

Now if g corresponds to h; or its derivatives for I € {1,...,M + 1}, then a may be estimated in
L ((0,Tp) x T*) uniformly in e. In case g corresponds to kS, ., or its derivatives, we use
2

| (hjwfé,8Sh§wf%,8§h§wf%,8th§w%, (9shS

2 €
Mfé) )||L2((O,T€)><’]I‘1) = CHh

sl

together with (3.97). If g € L>°(I'(20;Tp)) similar estimates follow with a = 1.
Step 2: Concerning the terms involving I, .: Since X7, — C°([0,T.] x T') due to Proposition 2.6.2,
2

we get by Lemma 2.4.2

A(QJ;TF)

Here we also used H'(I';(26)) < L*>(I';(26)) due to Lemma 2.3 and again (3.97). Considering I, , as
2

given in (3.103), we note that its numerator vanishes on I' due to (3.89f). Thus, the mean value theorem
implies for a function v: (—26,26) — (—20,2)

1115 /Hm(r(zéT)) = C/ /Tl/

< Cl/ / sup nﬁ‘iwf%} (X (r, s,t))|2dsdt +Cy
Tt re(

€

€ L3
lj\/[_%n”hﬁp‘d(x»t) < C(K)62T€2 lM %HL?(I‘(Q&;TE))||(10||L00(07T€;H1(Ft(2§))).

([15r—3] + Lohs, 2)(X(’y(r)7s,t))’2drdsdt

—25,26)
€ —€ 2
<G (HMM—% ’|L2(0,T€;H2(Q+(t)))+ HMM—% HLQ(O,TE;H2(Q*(t)))> +Cy (4.28)
Now (3.98) implies the desired estimate.
Step 3: Concerning the terms involving w|r: As 0,¢; € Rq for i € {1,..., M + 1} we may again use

[1, Corollary 2.7] to get
/F(%.T) |wilr - nd,cip|d(z,t) < Celé ||Wi||L2(o,T;L2(rt)) ||90||L°C(0,T€;H1(Ft(26)))'

Since w{ = % (cf. Theorem 3.15.1), we get due to Lemma 3.14 and the continuity of the trace
€ 2
operator

1
/ [wilr - nd,cip|d(z,t) < C(K)ETE [l Loo 0,1 111 (14 (26))) -
T'(26;T:)
Moreover, we get
/(26T) |Wi|F8pClvthS0’ d(xvt) S C(K)GTEE ||SO||LOC(0,T;,H1(Ft(26)))

by similar arguments as above. Finally, we have Vcy = 0 (as ¢o(p, x,t) = 0o(p)) which immediately shows
the wanted estimate for w§|r - V¢;, as Ve; € L®(R x I'(2§)) for all i € {1,..., M + 1}.
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Step 4: Concerning the terms involving v;: Using the explicit form of v,
with Lemma 2.4.2 and (3.97) we get

as given in (3.101) together

1
2

/ |8pcjv§v[71 - (n— Vrhk)go|d(x, t)
0(26;Tc) 2

,€

< Tl e|[vie | + vt

L2(0,Te; L2 (I'4(26))) . HSD”L“(OvTe?Hl(Ft(%))) :

By H(T';(20)) < L?°°(T';(25)), (3.98) and the continuity of the extension operator we get the desired
estimate.

Step 5: Concerning the terms involving uf, .: We use the explicit structure of uf, . as given in
2 2
(3.100) and estimate

/ |V, 1 -V hip|d(,t)
'(26;Te) ?
T. 26
< C’/ / \8Shi(s7t)|/ |Vap/$§\4,;(£ — h;(&t),X(r,s,t))goOX|drdsdt
0 Tt —26 2
Te

< Ce / |Bsha(s,t]  sup | [V, 1 ] (X(r,s,0))p 0 X]|dsdt / ' (p)| dp
0 Tt re(—26,26) 2 R

T.
< 06/0 | [Vuiw_%] HL4,oo(Ft(25)) 61l .00 (1, (26)) AN Oshill Lo 0,752 (T1))

1
< C(K)eTe ||l oo (0,711 (T4 (25))) - (4.29)

Here we used sup(, yyer(2s:7.)

VPhj(z,t)| < C(K) for j € I]]\\jji\{O} The same procedure yields the
2
desired estimate for 0,19, 1 Vh;-Vhj and 9,uq, 1Ah;, i,j € Iﬁfi\ {0}. For the latter, it is necessary
2 2 2
to use X7, — C° ([0,7.]; H*(T")).
To treat ApS, . we set
2

Ck = sup sup |hS (s, t)] (4.30)
e€(0,e1) (s,t)€TL x[0,T¢]

which is well defined due (4.9). As Au§, . = nAMEG_l + (1 —=n)Ap,, . and Auﬂi/f_l = 0in QFf by
2 2 2 2 N
(3.89a), we find

/ |Apsy,1eld(z, )
QF, NI (26:T.) 2
Te 26
<O [ [ ot Olmianan [ 180, (= nptrs. ) fardsa
0 T 0
< CT2 lolle=orsm ) ’|A“z;fi% HLQ(F(26;T5))€E 11 =nllz2(—cx,00)

1
< CEK)TZ € |l Lo (0,17, () (4.31)

where we used n — 1 =0 in (1, 00), the continuity of the extension operator for ui’s_l and (3.98) in the
2

M
last line. A similar estimate holds on Q7. NT'(25; T¢).

Now (4.26) follows since all not considered terms may be treated by simply using Holder’s inequality
and L*> bounds (for v; - V¢; note Veg = 0 and apply (3.98) for the fractional order term).

Regarding (4.27), the same ideas may be a;zplied with the sole difference that z is only L? in time

and as a consequence we do not get the term 7.2 in the estimates. Due to the many similarities, we only
show three estimates in detail:
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Concerning 9,p, V'h; -z for j € Iﬁfi\ {0}, we use the explicit form of p$, , as given in (3.102)
2 2 2
to estimate
1955 1V h; Z||L1(F 25:7,)) = C(K)el| [Py ]ZHLl(OT );L120 (T (26)) ”77 21 ()
< C(K)ellzl 20,711 (),
where we used Lemma 2.4.1 in the first inequality and H'(T';(26)) — L*»°(I';(26)) (cf. Lemma 2.3) as
well as (3.98) together with the continuity of the extension operator for p]j\;il (cf. Remark 3.16) in the
2
last inequality. Here we again used the notation [pjw_%] =Dy TPy
Concerning terms involving d,v{, .: Using the explicit form of v§, , as given in (3.101), we exem-
2 2

plarily estimate

/ VO, v, 1 - Vrhiz|d(3§, t)
(26:Te) 2

T.
< CE/O 10shill 2 x| [VVar— 3] L (0, 20y 12l 2020 (2 20 At [ 22 )

< Cellhills oz | [V V- ]l sz (v, oy Pl 20 20 )
< C(K)e HZHL2(OT TH1(Q))
_1
for all i € IJJ\\/14+12\{0}, where we used H'(T';(20)) — L**°(T'4(20)) in the second inequality and the

continuity of the trace operator, (3.98) and Xp, < H2(0,T.; H*(T")) in the last inequality. The same
procedure can be used to estimate J,,V¢ VFh- - V'h; and 9,v¢, Alh; for all i, j € IM'H 1\ {0}.
2

M—
Concerning Av*, VpM : Let Ck be given as in (4.30). Since
Avj\/[_% —ijw_% = (Av}‘[_% —Vp+ )77+ (A ~ Vp,; 1)(1 )

and Avl\j[/f’e_l - sz\i[_l =0 in QF by (3.89b), we can use the same approach as in (4.31) together with
2 2 €

(3.98) in the last line. O
The following proposition simplifies the estimates of remainder terms in (4.12).
Proposition 4.6. Let R = ¢ — c§. It holds
IRz (rssm)) < CEVTZM  foralle € (0,61).
Proof. Due to Assumption 4.2, we may use [3, Proposition 3.3] and find that

R=c2Z(S(x,t),1) (B(S(x, 1), )0 (p(w, 1)) + Ff(x, 1)) + F3(x, 1) (4.32)
for (x,t) € I'(6; T.) with according estimates for Z, Ft, FR. Using theses estimates we get

/ / |R|dzd
T+ (9)

2_hg
<c / / / (5,0)(B(s, )0 (0) + FR(p, 5,)) | [/(p, 5, 1)| dpdlsdt

R
+ CTEZ 225 |’L2(07T5;L2(Ft(5)))
< o (6%||Z||L2(O,T5;L2(T1))(1 +e2)+ C(K)€M+%) < C(K)TEeM

for all € € (0, €1). O
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When inspecting the remainder terms (4.11)- (4.14), one observes that the terms AM~-z BM-z
VM=3 and WM~z are multiplied by a lower power of € than the rest. Gaining these missing powers of €
needs delicate work; the main ingredient for this is that we have intricate structural knowledge of AM -3
etc. due to Lemma 3.19.

Lemma 4.7. Let ¢ € L>(0,T.; H'(Q)), z € L*(0,T; H'(Q)?) and R = ¢ — ¢5. Then there is some
€3 € (0,€1] such that for all € € (0, €2)

T.
e / / (®) B3 pdz|dt < O(K)e (Tf% +€2) ol Lo 0,15 (@) (4.33)
0 I
T.
M—3 / VM=2 . gde|dt < C(K)eM||zl| 12 0,101 () (4.34)
0 T (5)
T.
M3 / AM=3 Rda|dt < C(K)EM (T75 +¢3), (4.35)
0 I (8)
M-—1 M,,
ez W], 01 12(ry sy < CU )e (4.36)

Proof. For the sake of readability we will write throughout this proof

(N" (p.x,t) = f(p,x,t) = f(p, Prr, (x),1)
for an arbitrary function f depending on (p,z,t) € R x T'(§;T¢) (and similarly for functions depending
only on (z,t)). Moreover, for functions ¢ : I'(§; T.) — R we use the notation ¢ (r, s,t) := (X (r, s,t)) for
(r,s,t) € (=4,0) x T! x [0,T.] and write

J(p,s,t) = J(e(p+ hS(s,1)),s,t) forall (p,s,t) € I x T' x [0, Ty
with J(r,s,t) := det (D(T,S)X(r,s,t)) for (r,s,t) € (—6,6) x T! x [0, 7] and
I = (=8 — By, 1), 2 — By (s.1)
To show (4.33) we denote BM~z2|p(p, x,t) := BM~3(p, Prp, (), t) and get

T, .
/ / BM*wdx‘dt
0 T (9)
Te ) Te
g/ / BM_§|pg0dm’dt+/
0 T (6) 0

The fundamental theorem of calculus implies ¢(r, s, t) = ©(0,s,t)+ [ On@(7, s, t)dF for (r,s,t) € (—0,8)x
T! x [0,7] and we write

/ (BM=2 — BM_%|F)<pdx‘dt =T+ Jo.
r4(8)

5
/ BM—3 Ire(0, s,t)J(r, s, t)drds’dt
-5

5 r
BM—3 Ir / Ono(T, s,t)d7J (1, s, t)drds‘dt.
0

TE
/O

Concerning J{ we use the splitting of BM=z on R x I as in Lemma 3.19.2 and get

T1

2-hi
Ji <Z/ / L0, 5,4)0(0, 5, ) BT ()T (p, 5, 1)dp| dsdt.
T! —S—hy
Since supee(g,e,) 1Pl Lo ((0.7.)xT1) < C(K) due to (4.9), it holds
) 0 5
‘f —hS| > (K) > % for € > 0 small enough. (4.37)
€

Moreover, we have
J(p,s,t) =1+e€e(p+ h&(s,t)) k(s,t) (4.38)
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by [6, p. 537, Lemma 4] where (s,t) = k(Xo(s,t)) denotes the (principal) curvature of T'; at a point
Xo(s,t) = p € T;. Thus, we may use that B;"" satisfies (3.108) and that H' (T'+(8)) < L>> (T'+(6)) holds
for ¢ to get

_as
L2(0,T.;L2(T})) ||<p||L°°(07Te;H1(Q))E (6 € —l—eC(K))

Ko
1
Jll < CT? Z HBIIC,F‘
k=1

< CE)E |9l poo (0.1,:1 ()

for € > 0 small enough. Here we also used the fact that |Bi’r(p)| < Cre= @Il for p € R, cf. Lemma
3.19.2.
To treat J{ we again use the fact that all terms of kind BQ’F exhibit exponential decay and thus

J? <CZ/ /||8n<,0 (8,8 2 55)‘B Ost‘/ Ir|2 |B2F (r,s,t))|drdsdt

3 1 1,0 3%
< Cez ZTf el e .o IBK 2o, izaryy S CUHDETE NPl o101 ()
k=1

where we used (3.107) in the last inequality.

Now we consider Jp: Here we use the explicit form of BM~2 as given in (3.82) and estimate the
occurring terms separately. First, note that there appears no term involving w{|r in (BM _%)F as it
cancels out. In order to estimate the term (VO,u, , - n)F = U’([Vﬂj\/f_;])r -n (where the equality

2 2

follows from (3.100)), we compute

Jaa
T(6;Te)

([V/ijfé])r - ncp‘d:cdt

< C’/ / / / 32 (15 ](r s, t)dre|drdsdt
T
) 2[c Ca / evsl| 8
<c / [y, Jolmcan [ oo+ ) |efapsar
0 T! 2 = _hy,
< O(K)1Z %”‘P”L‘”(OT;Hl(Ft(&))); (4.39)

where we used (3.98). (9,covS,_ 1) and (9,45, 1 Adp)F may be treated in a very similar fashion. For

(lj\/[_ln”(p + hl)) note that by Taylor’s theorem, we get by the definition of IS, 1 in (3.103)
2

) st = | [ (BB ity + 2R,y ) st

< Cr2

O (ai "y = hf=y) + Oalohy, (4.40)

zllL2(—s.5)
for (r,s,t) € (—4,6) x T! x (0,7%). This allows for the same strategy to be used as in (4.39).
By Remark 2.1, we have

€ F F €
(AFhM_%(x,t)) = ((AS(m,t))F ds+ (IVS(z, 1)) 8§)hM_%(S(x,t),t) (4.41)
Thus [1, Corollary 2.7], 0,10 € Rq and (3.97) imply

Te
/o

€ F 3 €
/F ) (QJMOAFhM_%) @dx‘dt <C(K)T¢ €2HhM—% HLz(O,Te;H?(Tl)) H‘)OHLOO(O,TS;Hl(Q))

< C(K)TZ € ||80||Loo(o,T€;H1(Q)) : (4.42)
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r
The remaining terms in (BM_%) can be estimated in a similar fashion. This proves (4.33).
Proof of (4.34): This can be shown analogously to (4.33) due to Lemma 3.19.3. Here we note that z is only
1

in L? in time and thus we may not expect 7. to appear on the right hand side. Due to the similarities
we shorten the proof: First of all

T‘E 1 Te
/ vM-3 -zdm‘dtﬁ/
0 () 0 T (9)

Then we use Lemma 3.19.3 and (3.109) to obtain e.g.

T.
/0

< Z/ Y(0,s,1) - 2(0, 5, ) |esup(ac T)GF’/ Vi’r(p,x,T)JE(p,x,T)dp dsdt

T.
VM‘%|r-zdx‘dt+/ / (VM4)" - 2dadt.
L'+ (6)

s
/ (VM_%) ’F -z(O,s,t)J(ns,t)drds‘dt
T1

< C(K)e? ||zl 2 0,7.:m0 (52
For the other terms, the same argumentation as before can be applied.
Proof of (4.35): We use the decomposition of R as in [3, Proposition 3.3] and the decomposition of AM~=
as in Lemma 3.19.1 to get

TE
/ / AM—%Rda:‘dt
0 ' (0)

Te
gCe—%/ |Z(s,t)3 |‘/ 06(p(r, s, 1)) AM 2 J(r,s,t)dr‘dsdt
o Jm

he

Ly 3 o
ot S [ e sl ([
k=1 e ’

L1 1
+ CZTE HF2R||L2(O,T€;L2(D(5))) ||A11€||L'3(O,T€;L2(Ft(5))) HAzHLN(R) =TI +I> + Is.
k=1

1
e[ FR[*7dp) " (82| gy dslt

Concerning Z;, we use Z; < I} + Z?, where

1

T.
1'11::6_’/ |Zst|‘/ 04 (r, s, 1) AM |J(rstdr‘dsdt
T1

/ |Z5t|‘/ bo(r,s,t)(A 2)FJ(r,s,t)dr
T1
For Z{ we use the decomposition in Lemma 3.19.1 on R x I to conclude
11<Z *%/ / Z(s,t)||Ap"

The estimate in (4.37), (4.38), the properties of Ak’ as shown in (3.106) and the exponential decay of 6]
imply

[N

dsdt.

wh—t

dsdt.

) )

A7 ()0)(p) T (p, s, t)dp

) 5
—<c—ha

Lo
Ill < CG% Z ”Z”Lz(O,TE;L?(Ft)) HAlchHLQ(O,Té;L?(Ft)) (6_%5 + C(K)S) < C(K)GM_H
k=1

for € > 0 small enough, where we used the estimate for Z and (3.105) for A,lc’F
In order to estimate Z7, we use the explicit structure of AM=3 and first of all analyze the term

(1) (s t) = () @ tmlo) + ()" (@)1 = (), (4.43)
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which appears in (AM*%)F. We estimate
_1 Te 0 / +.€ T
- 1Z(s,DI| [ O(olr s, 0) (32 ) 0o, s,0)J(r, 5, 6)dr|dsdt
o Jm -5

T S_pg,
< C’e%/ |Z(s,t)| sup |8nuM (r,s,t |/ |90( )|p + k& |dpdsdt
o Jm re(—4,0) =5

<C(K )eM +1
Here we used Lemma 2.3, the exponential decay of 6, (3.98) and the estimate for Z in the third inequality.
We may treat the term (”X/[i 1 )F(x, t)(1 —n(p(zx,t))) completely analogously, which finishes the desired
2
. r
estimate for (“?\479 .

Due to (4.41), we will now only consider the term (|VS($,t)‘Q)Fﬁgh;/I_l(S($7t) t) in AM=z the
2

other occurring terms only involve derivatives of lower order and can be treated in the same manner.
Applying similar techniques as above, we get

T, s
6—%/ \Z(s,t)\‘ / Gg(r,s,t)(|V5|2)F83h§w—lJ(7"’s’t)dr‘det
0 Tl —(5 :

wlw

1
< OTE 120 g2 rsmzemy 1Par— oo smrery €

Now the estimate for Z, (3.97) and Proposition 2.6.3 together with Hz (0,7.) < L%(0,T}) yield the claim.
Concerning Z» and Z3: Using [3, Proposition 3.3], the uniform boundedness of A7 in R, and (3.105) for
A} we get

3 1
Ty < C(K)Ti e 2eM3ete = O(K)T5 eM*s,
Noting the estimate for FXt, we also get
T3 < C(K)TF M3 = C(K)TE M3,

Combining the estimates for Z;,7Z> and Z3, we obtain (4.35).
Proof of (4.36): We first note that

divvy, (p7;v t) = dlva (m,t)n(p) +divv,, i (z,t) (1 =n(p)) =0

by the construction (cf. Lemma 3.17) and the properties of the extension operator for vff_ 1. We show
2
the estimate by using the explicit form of WM —2: We estimate
i,hé
a,ve, Vi < Ce/ / sup v6 (r,s,t) / 2dpdsdt
R A )

<C(K
where we used again H*(I';(25)) — L27°°(1"t(25)) and (3.98). To treat the term with uf, 1 -0’ (p+ hy)

term, we employ a similar strategy as we did when estimating [, . in (4.28). We use the mean value

2
theorem and the definition of u¢ 1 in (3.104) to estimate

M
Hujw_l ny’(p + h1) ||L2(F 26;T.))

€ 2
<o [ [ [T (vt ity e ) XG0D 8O 05,0+ ) s
0 JTtJ-25 2 2 2

< Cella(viy”y = viity okl y) H;(O,Te;m,w(rtma))) /R 0 (p+1)?dp < C(K)e,
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where ~(r) is a suitable point in (0, 7). These considerations can easily be adapted to estimate all other
terms in WM~z accordingly. O

The following proposition is a substitute of the matching conditions (3.19) for pu, 1 vjw_% and

pi/[_%-
Proposition 4.8. There is some ez € (0,¢€1] such that for all € € (0, €2)
kpl (e +,€ —€ _
Dy D, (py— s (py,t) — (MM—lXQTJ'_ MM—lxﬂij)(x’t)) J———
DDy Dy (Vg g (o) = (Vi Sy X+ Vil Xag ) (@ D) |y = 0
p;w_%(p(m,t),x,t) - (pM_%X@""pM_%XQi})(xat) =0
for all (z,t) € T'(26; TH\IL'(6; Te) and m,k,1 > 0.

Proof. This is a direct consequence of &) —h&(x,t) > 1 for (z,t) € T'(26; T.)\I'(6; Te) and € > 0 small
enough together with n =1 in (1, 00) and n=0in (—oo,—1). O

The next corollary is a consequence of Proposition 4.8 and the matching conditions for the integer
orders.

Corollary 4.9. There is some €3 € (0, €1] such that for all € € (0, €2)

DL (1 = 10) 2= zsimnrezy) + 1D (10 — 18)ll 1= or, e(syom.0(2)) < CUe
ID% (1 = co)ll L (r@smnrem)) + D5 (co — ¢8| L~ (or, 260\0m, 2(3)) < C(K)e‘g
1% (v = vo)ll s \roiry) + IDE (Y0 = VB L (or, axs)\om, 03y < CE)M

Ipr = pollLe=(rsr\rem)) + IPo = PBll L= (0, a@nora) < O(K)e= €

for 1€ {0,1} and constants C(K),C > 0.

Proof. This follows directly from (3.19), (3.41), Proposition 4.8 and the fact that M — b (z,t) > £
for (z,t) € T'(20; T)\I'(0; T¢) and for € > 0 small enough. Note in particular uﬁ_% = /AX/[’S_% as defined

n (4.4), which also holds for the other fractional terms, and consider

6MHHDJZL-(VO,MH - VB,M-H)HL°°(8T€Q(5)\BTEQ(3))C€ e + €M+1||VM+1( )HLoc(aToﬂ(a)),

which accounts for the special case. (I

4.3. Estimating the Remainder

The following results are at the same time proofs for the estimates in Theorem 1.4.

Theorem 4.10 (Remainder Terms). Let Assumption 4.2 hold and let for € € (0,¢€g) the functions ¢, u%,
v, DY, hG be defined as in Definition 4.1 and r§, 75, &y, Toame be given as in (1.29)—(1.32), for
wi := -t wS§. Here W§ is the weak solution to (3.62)~(3.64) with H = (hS, .) C(0.co): Moreover, let
€ 2 3/ € L€
0 € L*>(0,T; HY(Q)) and R = ¢ — 5. Then there is some ez € (0,€1] and a constant C(K) > 0 such
that for all € € (0, €2)
Te
J

Te
/o

/ 7‘(3H1<Pd$’dt < C(K)(12 +eé)eM”‘P”L“’(O,TE;Hl(Q))7 (4.44)

dt < C(K) (T2 +e2)e, (4.45)
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IT§ | 20,711 (2)yy < C(K)eM, (4.46)
7G5l 22(r) < C(K)EM. (4.47)

Proof. As before, we will use the notation v (r, s,t) := (X (r,s,t)) for (r,s,t) € (—26,28) x T! x [0,T,]
for functions ¢: T'(26; T.) — R. Let in the following é; € (0, €1] be chosen such that the results of Sect. 4.2
hold and let € € (0, é2).

Proof of (4.44): Since {(dr) =1 in I'(6; 7o), we have rqyy = 76y  in I'(6; Te) with r&y, 7 as in (4.11).

Now
Te
/

holds because of Lemma 4.5 and (4.33).
Moreover, we have (1 —¢(dr))(1 —§(2dB)) =1 in Qr, \ (I'(26; Tc) U 07,Q(0)) and thus 1&gy = rémy o

+.,e

€ : 2
/F () TCHI,ISDdiU‘dt < CO(K)(T2 +e2)e 1ol e (0,7, 00

in that domain, with 7§y, o as in (4.15). Now all terms in r§y; o which do not involve v, can be
’ ' 3

M—

estimated in L>°(Qr, \I'(26; 1)), yielding the desired estimate. The terms involving vif_ , can be treated
2

by using Holder’s inequality and (3.98), i.e.,

2

1 Te 1 ,
M+ / / VoE L - Vet gldedt < COR)TE M ol o1 amri ) (4.48)
o Jarwnr.es

for j € {1,..., M + 1}. The same argumentation also holds in Q7 (¢).
Close to the boundary, in 97, ($), we have £(2dg) = 1 and thus r&y; = TG B- As in the outer case,
all terms not involving v, »“ , may be estimated in L>(97,Q(d)), the rest can be estimated as in (4.48).
2

Next, we give estimates for r&y; in I'(26; T.)\I'(6; T¢): By definition of ¢ and p in (4.6) we have
TCH1 = f(dF)TEHLI + (1 - f(dF))TEHl,o —2¢n- V(ur — po)
+€'(dr) (Dedr + v -0+ M2 w|p - né(dr)) (e — co)
+vy- (f(d[‘)VC[ + (1 — g(dp))VCo) - f(dF)V[ -Ver — (1 — §(dr))Vo -Veo
= (11 = o) (€" + &' Adp) + M2 wi|r - Veo(dr) (1 - €(dr)). (4.49)

The term (1 — &(dr))rGyy o may be estimated in the same way as in the outer domain Qr, \ (I'(26; 7¢)
Uor, 2(9)), using |1 —£(dr)| < 1. Regarding §(dr)r&y 1, there is a subtlety we have to deal with: All
appearing terms in the explicit structure of the difference £(dr) (TECHl, ;— M ~3BM *%) can be estimated

with the help of Lemma 4.5. But we may not simply use (4.33) for &(dp)eM =2 BM=z2¢ in T'(26).
To treat this term let J = (=20, —d) U (0,25). We estimate, using Lemma 3.19.2,

Te 1 E Te 1
/ / |&(dr)eM =2 BM =2 p|d(z, 1) gCeM*%/ / /|BM*§¢|drdsdt
0 JT4(26)\I'+(6) o JrtJJ

K T.
_3
< CEM 2 Z/O /]1’1 HQP('asvt)HLOO(—Q(S,ZS) ||BI]<-,‘('78,t)HL2(_26726) ||Bi(p)||L2(J)d8dt' (450)
k=1
Now since g —h§y > 2% for € > 0 small enough, we may derive for k € {1,..., K1}
26 ) 9 ) ) 9 oy
i B (p(r,p,t))| dr < e , IBZ(p)| dp < eCre™ = (4.51)

2e

for some constants Cy,Cy > 0, where we used B € O(e~*I?) due to Lemma 3.19.2. A similar estimate
holds on (—26, —4), allowing for a suitable estimate of (4.50) with the help of (3.107).
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Concerning &' (dr) (0ydr + v -n + s we|p - né(dr))(cr — co) in (4.49), we exemplarily estimate

/ / e 2Wi|r"n(C[7CO)gﬁ{d$dt
Ft(25 \I'¢ (9)

< OT?|eM “3W || ooz 1 L s @pller = coll e resmonrem,))

< C’(K)Tf Mol oo 0,751 (02)) (4.52)
where we used H'(T';(26)) — L?°°(I'4(26)), Lemma 3.14, and Corollary 4.9. An analogous (but sim-
pler) argumentation may be used for dydp € L>(I'(26;Tp)) and (v§ — EM_%VA,Mfé) € L>®(Qq,) (cf.
Definition 4.1 for notations). The estimate for eM_%va
28'n -V (ur — po) + (ur — po) (€” + € Adr) in (4.49) may be treated by using Corollary 4.9.

For the third line of (4.49), we calculate

vy -Ver —vy-Ver=(1—-£€(dr))(vo —vr) - Ve
Vf4 . VCO — Vo - VCO = f(dr)(vj — Vo) . VC[

and Corollary 4.9 yields the estimate as before.
The only remaining term in (4.49) can be treated by

v then follows by using (3.98). The terms
2

¢ 1 . 1
/ / |€M 2W1‘F . VCOQD’d.’Edt S C(K)€M+2 HSDHLOO(OﬁTE;Hl(Q))7
L (20)\TI'¢ (9)

where we used Lemma 3.14 and Vep = O(e) in L“(Qi)

Thus, we need only consider réy; in 97, Q(8)\d7. Q(2). Here we get a structure very similar to (4.49):

rom = (1= &€(2dB))rom.o + €(2dB)rom s + 26 (2dB) (9edB + VG - nag) (¢ — o)

+v4 - (1= &(2d))Veo + £(2dB)Ver) — (1 — £(2dB))vo - Veo

—&(2dB)ve - Ve — 4€'npq - V(i — pio) — (1B — po) (46" +2¢'Adg) .
The proof now follows in the same manner as the one for (4.49) using the already shown estimates for
TGH1.0 and r&y; g as well as the estimates close to the boundary in Corollary 4.9. This shows (1.34).
Proof of (4.45): We use a similar approach as before: In I'(d; T¢) we have 7y, = 76y 1, Where 76y,
is defined in (4.12). For all terms in rg&y, ;, which can be estimated in L>(T'(25;T¢)) (uniformly in e),
we may use Proposition 4.6 to show the claim. Noting (4 9), the only terms that may not be treated
in this fashion are the ones involving A'hS, 1 and AM~2. Regarding €2 AM~2 we may use (4.35).

Concerning Arhjw_%, we obtain
eM+%/ |ATR, ., 8,c1R|d(x,t)
(6:T) 2

< CéMJrl H (6fh§\4_%,83h§\4_%) ||LOC(O;TE;L2(T1))||R||L2(QTE) ’

sup ‘apC1(-,CC,t)|‘
(z,t)E€T(26;T0)

L*(R)
< O(K)eM+3
where we used d,¢1 € R, X1 — C°([0,T); H*(T')) (cf. Proposition 2.6.2) and the L*-estimate for R in
(1.28).
In Q7 \(I'(20; T¢) U 07,€(6)), we have r&yy = répa,o With 76y o as in (4.16). For that, we obtain
(exemplarily in Q7 (¢))

T. )
/ / M7zt | R|dadt
0 JOt()\I'v(26) 2

1 1 € 1
<CT¢ Mz HHD_% HLG(O’Te;LZ(Q+(t))) HRHLQ(LQ(QTé \D(5TL))) = C(K)T¢ €2M’
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where we used (3.98) and (1.28). As ¢ € L‘X’(Q%O) for all i € {0,..., M + 1}, a similar estimate follows
by (1.28) for the remaining terms in rgy, o (cf. Remark 3.1 for the f term). In Or.Q(%), it holds &y, =
Téme g and we may proceed as in Qr, \ (I' (26; T¢) U 91, €2(9)).

In T'(20; T.)\I'(9; T¢.), we have

réme = E(dr)(eAcr 4 pr) + (1 = £(dr)) (€Aco + po) — ¢ f/ (%)
+€((er = co) (§"(dr) + &' (dr)Adr) + €2¢'(dr)n - V (¢ — co)) - (4.53)

The estimate for the second line in (4.53) follows by similar arguments as in the proof of (1.34), by using
Corollary 4.9.
Using a Taylor expansion, we can rewrite the first line of (4.53) as

§(dr)rema,r + (1 = &(dr)) (rGma.0)
+ e eo —er)&(dr)(1 = &(dr)) (—f"(o2(cy, co)) + " (01(c, er))) (4.54)

where oy /5(c%, ¢1/0) are suitable intermediate points. Now ¢4, co, ¢ € L*(I'(26; Tp)\I'(0; Tp)) uniformly
in € and thus |f”(01)],|f"(02)] < C. As a consequence of Corollary 4.9, we may estimate the last part
in (4.54) as before and the term involving 7&q, o as in the case of Qr, \ (I'(25; 7¢) U 07, €2(6)). Regarding
TGne, 1> although we may not use the decomposition of R anymore (Proposition 4.6 only holds in I'(4; T%.)),
we may now use ||R||z2(0,7.;52(\r: (5))) < C(K)eM+z due to (1.28a). Thus, all terms in TGHa,7> Which can
be estimated in L>°(T'(2d;T¢)) (uniformly in €), are of no concern. This leaves us with terms involving
AThS, . (which may be treated as before) and €(dp)eM—2 AM=3 since (4.35) only holds inside I'(6;T}).
2
According to (1.28) and Lemma 3.19 1) we may estimate
Ly

A2 RJa(e, 1) < CODEM S oo 101,y < CUOIENTE.

M—-1 /
T(26;T)\I(6;Tc) k=1

€ 2

The situation in d7, Q(5)\9r. Q(3) heavily resembles (4.53) and the estimate follows in a similar way as
for (4.53). Thus, we have estimated all terms in r&pys.

Proof of (4.46): The approach to show (1.36) is very similar to the one used for (1.34): We have r§ = r§ ;
in I'(0; T¢) with r§ ; as in (4.14) and may then use Lemma 4.5 and Lemma 4.7 (more precisely (4.34)) to
get the estimate in I'(0;7¢). In Qr, \ (I'(26; T:) U Or,€2(0)) we have r§ = r§ ; and we may simply estimate
the occurring terms in L>°(Qr,) or with the help of (3.98). In (“)TEQ(g) it holds r§ = r§ g, allowing for a
similar approach as for the outer remainder.

InT'(20; T)\I" (9, T¢), we have

r§ = &(dr)r§ ; + (1= £ (dr))r§ o — (€' (dr) Adp +&" (dr)) (vi = vo)
— 2 (dr) D (vi = vo)n+¢ (dr)n(pr — po) — p4€ (dr)n(cr — co)
+ (=% (€(dr) Ver + (1 = €(dr)) Veo) + € (dr) prVer + (1 = € (dr)) poVeo) - (4.55)
To estimate r§ ;, we may use Lemma 4.5 inside I' (0;T.) again, but have to be careful when estimating

GM_%f(dF)(VM_%)Z since (4.34) cannot be used. But, as for r&y; ;, we can get the desired inequality
in I'(20; T.)\I'(d, T¢) by using an approach analogous to (4.50), which is possible since Lemma 3.19.3
guarantees V2 € R,. r§ o may be treated as in Qr, \(I'(20; T¢) U0r.€2(5)) and due to Corollary 4.9 we get
the right estimate for the terms involving v; — vp, V (v; — vo), pr — po and ¢; — co.

Regarding the last line of (4.55), we have

(=py + pr)Ver = (1 = &(dr))(ur — po)Ver
(—p% + po)Veo = €(dr)(po — pr)Veo,

allowing to apply Corollary 4.9. As in the proofs before, the estimates in 7, Q(8)\dr. Q($) may be shown
as in the case I'(20; T.)\I'(4, T).
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Proof of (4.47): We observe that in Qr. \ (I'(20; T;) U 07.€2(9)) it holds r§;, o = 0 by (4.18) and thus in
particular 75, = 0 in Q7 \ (I'(20; T.) U 07.€2(9)). In I'(26; T.) we have

Tav = &(dr)rai s + ¢ (dr)n - (vi —vo).
As before, we can treat the term {'(dr)n - (vi — vo) by using Corollary 4.9. For 7§, ;, as defined in

(4.13), we first note that we may use (4.36) to estimate ¢~ 2W™~2 suitably. Moreover, div v/ €
L>(R x I'(26; Tp)) by construction and to estimate the products 9,v; - V' hj 1, where i +j > M + %, we
use that [|0,vill 12 (p(as.1)) HVthHHLOO(F(M;Te)) < C(K) foralli € Igjé, JE Iﬁ_%, due to construction

in the case of 4,j € {0,..., M} and i = M + 1 and due to (3.97) resp. (3.98) in the case of j = M — 3

resp. i = M — 1. Similarly, we get [u; - |25ty ||hj+1||L°°((0,T€)><1r1) < C(K), where we obtain an
L? — L? estimate for u¢, , in the same way as in (4.28). The other terms appearing in the definition of
2

7diy,r can then be treated in the same way. In Jr, (), we finally have

Ty = E(QdB)rsliv,B + 25'(2dB)n39 “(vB —vo)

and the form of rg;, 5 together with Corollary 4.9 implies the estimate. Thus, we have proven the
claim. O

Lemma 4.11. Let the assumptions of Theorem 4.10 hold. Then there are eo € (0,€1] and a constant
C(K) > 0 such that for all € € (0, €3)

HTEHQVCTLX||L2(07T5;(H1(Q)2)/) S C(K)C(Te’ e)eM
||r€CH1HL2(8T€Q(%)) < C(K)eM
where C(T,e) — 0 as (T,e) — 0.

Proof. We start by showing (1.37). For v € H*(Q2)?, we consider
| / remVey - vda| < | / rer. Vs - e + | / re Ve - dde (4.56)
Q T4(5) ’ Q\I'¢(8)

and begin with analyzing the integral over I';(d). First of all, we note that
Ve = 0h(in — V'hG) + 9,cim + Ofe) (4.57)

in L>®(I'(6;T¢)) by construction and the fact that HVFh;HLm(F(%_T y < C(K) by (4.9). Thus, for all

terms g: I'(20) — R appearing in TGre,7> Which are multiplied by at least €M and which may be estimated
in L°°(I'(24;T¢)) uniformly in €, we may use the estimate

| / 904 (1n = V'hs) - vda
T'¢(6)

where we used H! (T'4(20)) < L% (I'4(26)) and the exponential decay of 6. As discussed in the proof
of Theorem 4.10, a similar approach also works for the terms involving A'h,, 1
Thus we have to show

1
< CE)TE gl oo (r2ssmyy 19l 102y »

L2(0.T.)

1
M2

AM=3ve - d)da:‘

< C(K)C(Te, )™ [ 1 () - (4.58)

I O) L2(0,Te)

To this end we will use the same notations as discussed right at the beginning of the proof of Lemma
4.7. We will first consider 16jn instead of Vc4. Using the fundamental theorem of calculus we have
Y(r,s) =1(0,5) + [5 Ontp(F, s)dr for (r,s,t) € (—6,6) x T* and write

1 1 o
‘ / AM_'lf%n%/de‘ < f/ [4(0, )] ‘/ AM_%’I,e{)J(T,S,t)dT ds
T'¢(9) € €Jm )
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CVl 0 M—1 ’ " - - CQ J M—I\T,,
+7/ / ‘A 2|F90/ 8nw(r,s,t)dr‘drds+—/ / ‘(A 5 How‘drds
€ Jrt J-s 0 € JriJ—s

=TI} + I} + I».
By Lemma 3.19 (after choosing € > 0 small enough such that (4.37) holds), we may estimate

I < Z/ |4(0, 5)A y\/ i’F%dep’ds < C1||1/JHH1(Q)||A]1€’F||L2(Ft)(6*022 + C(K)e)

and thus get ||Z] C(K)e H1/)||H1(Q) due to (3.105). Concerning Z7, we have

||L2(O,T€) =

1 O MLy g1
Tz < ¢ [ Wlincossy [ 1444 06 aras

L2(0,Te)

< C(K)TH et Z 191z o 145" | 2o 0,252
k=1

[ o) S C forall ke {1,.... Lo},

For Z,, we need to consider the explicit structure of AM ~2 and show only two exemplary estimates,

2,0
and may use (3.105). Here we used ||A;

all others follow along the same lines. Firstly, we consider the term (”5\/17
also (4.43) for the detailed structure):

/ / ‘ I)Fn%w‘drds
']1‘1

2_p5
<C s [p(rs)| swp |Gwli, (rs) \/ (p+ 1) Bpldpds
T1 re(=5,5) re(—5,5) s

< C(K)€||¢||H1(Q)HMX4’E—% HHQ(QJr(t))'

l)F appearing in (AM*%)F (see
2

The estimate for (;f ¢ )Fn follows analogously.

M-}

Secondly, we consider the term (|VS(z,t)[? ) azh, 1(S(:r,t),t), as all other occurring terms in

(AM ’%)F consist of lower derivatives of h{, . and can be treated in the same way. Using similar tech-
2

niques as in the estimate above, we get

1 6 r € €
. /T /5 [(IVS1) 02ROy |drds < CUR)el s o 51— | oo
Thus, we get by (3.97) and (3.98) || Z2l 129 1) < C(K)€ |9l 1 (q) - Altogether we obtain

M-1

11
AMT2—gin - ¢d H < C(K)C(T.,e)eM .
/Ft(tS) enon Yz L2(0,T.) — CE)C(Te, €)™ [[¥]l e

Regarding (4.58), we conclude

| / oA yda| < C(K ZHAkHLz (e 2oy 11122 (0 2 €2 195 | 2y
t k=1

by Lemma 3.19. As 0,¢1 € R, and all other terms appearing in Vc¢§ are already of higher order in € (see
(4.57)). This proves (4.58) and as a consequence also

€ Vs - wd H < C(K\C T, M )
H At(6) TCHQ,I CA w X L2(07T€) < ( ) ( E)E H'(/)”Hl(ﬂ)

In view of (4.56), we still need to consider | fQ\Ft(5) & Ve - bdz|. But this term may be treated with
similar techniques as used in the proof of (1.35). This shows (1.37).
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Finally, (1.38) follows immediately by noting that 76y, = r&yy g in Or, 2 (%), the form of the boundary
remainder terms (4.19) and the fact that all occurring terms in those boundary remainders are either
uniformly bounded in L>(d7,Q(0)) or may be estimated in L*(97, ) with the help of (3.98).

Proof of Theorem 1.4. Let the approximations be defined as in Definition 4.1, let w{ be given as in
Theorem 3.15 and let 7&yy, &g, rs and 7§, be defined via (1.29)-(1.32). (1.33) is a result of (4.23)—
(4.24) and rg;, = 0 on 07, Q of (4.22). The estimates (1.34)- (1.38) are a consequence of Theorem 4.10
and Lemma 4.11. (]
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