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Abstract. We construct rigorously suitable approximate solutions to the Stokes/Cahn–Hilliard system by using the method of
matched asymptotics expansions. This is a main step in the proof of convergence given in the first part of this contribution,
[3], where the rigorous sharp interface limit of a coupled Stokes/Cahn–Hilliard system in a two dimensional, bounded
and smooth domain is shown. As a novelty compared to earlier works, we introduce fractional order terms, which are of
significant importance, but share the problematic feature that they may not be uniformly estimated in ε in arbitrarily strong
norms. As a consequence, gaining necessary estimates for the error, which occurs when considering the approximations in
the Stokes/Cahn–Hilliard system, is rather involved.
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1. Introduction and Overview

Let T > 0, Ω ⊂ R
2 be a bounded and smooth domain, ΩT := Ω × (0, T ), ∂ΩT = ∂Ω × (0, T ) and α0 > 0

be a fixed constant. We consider the Stokes/Cahn–Hilliard system

−Δvε + ∇pε = με∇cε in ΩT , (1.1)

divvε = 0 in ΩT , (1.2)

∂tc
ε + vε · ∇cε = Δμε in ΩT , (1.3)

με = −εΔcε + 1
ε f ′(cε) in ΩT , (1.4)

cε|t=0 = cε
0 in Ω, (1.5)

(−2Dsvε + pεI) · n∂Ω = α0vε on ∂T Ω, (1.6)

(με, cε) = (0,−1) on ∂T Ω, (1.7)

vε and pε represent the mean velocity and pressure, Dsvε := 1
2

(
∇vε + (∇vε)T

)
, cε is related to the

concentration difference of the fluids and με is the chemical potential of the mixture. Moreover, cε
0 is a

suitable initial value, specified in Theorem 1.1 and f : R → R is a double well potential. It is the aim of
[3] to establish that the sharp interface limit of (1.1)–(1.7) is given by the system

−Δv + ∇p = 0 in Ω±(t), t ∈ [0, T0], (1.8)

divv = 0 in Ω±(t), t ∈ [0, T0], (1.9)

Δμ = 0 in Ω±(t), t ∈ [0, T0], (1.10)

(−2Dsv + pI)n∂Ω = α0v on ∂T0Ω, (1.11)

μ = 0 on ∂T0Ω, (1.12)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-021-00565-3&domain=pdf
http://orcid.org/0000-0002-6606-4352


38 Page 2 of 48 Helmut Abels and Andreas Marquardt JMFM

[2Dsv − pI]nΓt
= −2σHΓt

nΓt
on Γt, t ∈ [0, T0], (1.13)

μ = σHΓt
on Γt, t ∈ [0, T0], (1.14)

−VΓt
+ nΓt

· v = 1
2 [nΓt

· ∇μ] on Γt, t ∈ [0, T0], (1.15)

[v] = 0 on Γt, t ∈ [0, T0], (1.16)

Γ(0) = Γ0. (1.17)

Here, Γ0 ⊂⊂ Ω is a given, smooth, non-intersecting, closed initial curve. We assume that Γ =
⋃

t∈[0,T0]
Γt×

{t} is a smoothly evolving hypersurface in Ω, where (Γt)t∈[0,T0]
are compact, non-intersecting, closed

curves in Ω. Moreover, Ω+(t) is defined as the inside of Γt and Ω−(t) is such that Ω is the disjoint union
of Ω+(t), Ω−(t) and Γt. Furthermore, we define Ω±

T = ∪t∈[0,T ]Ω±(t)×{t} for T ∈ [0, T0] and define nΓt
(p)

for p ∈ Γt as the exterior normal with respect to Ω−(t) and VΓt
, and HΓt

as the normal velocity and
mean curvature of Γt with respect to nΓt

, t ∈ [0, T0]. We use the definitions

[g] (p, t) := lim
h↘0

(g(p + nΓt
(p)h) − g(p − nΓt

(p)h)) for p ∈ Γt,

σ :=
1
2

∫ ∞

−∞
θ′
0(s)

2ds, (1.18)

where θ0 : R → R is the solution to the ordinary differential equation

− θ′′
0 + f ′(θ0) = 0 in R, θ0(0) = 0, lim

ρ→±∞ θ0(ρ) = ±1. (1.19)

We refer to the introduction of [3] for a review of known analytic results for the previous systems.
Throughout this work we consider the following assumptions and notations: Let (v, p, μ,Γ) be a

smooth solution to (1.8)–(1.17) and (cε, με,vε, pε) be smooth solutions to (1.1)–(1.7) for some T0 > 0
and ε ∈ (0, 1). More precisely (v, p, μ) are assumed to be smooth in Ω±

T0
such that the function and their

derivatives extend continuously to Ω±
T0

. Let

dΓ : ΩT0 → R, (x, t) �→
{

dist (Ω−(t), x) if x /∈ Ω−(t),
−dist (Ω+(t), x) if x ∈ Ω−(t)

denote the signed distance function to Γ such that dΓ is positive inside Ω+
T0

. We write Γt(α) :=
{x ∈ Ω| |dΓ(x, t)| < α} for α > 0 and set Γ(α;T ) :=

⋃
t∈[0,T ] Γt(α) × {t} for T ∈ [0, T0]. Moreover,

we assume that δ > 0 is a small positive constant such that dist (Γt, ∂Ω) > 5δ for all t ∈ [0, T0] and such
that PrΓt

: Γt(3δ) → Γt is well-defined and smooth for all t ∈ [0, T0]. In the following we often use the no-
tation Γ(2δ) := Γ(2δ;T0) as a simplification. We also define a tubular neighborhood around ∂Ω: For this
let dB : Ω → R be the signed distance function to ∂Ω such that dB < 0 in Ω. As for Γt we define a tubular
neighborhood by ∂Ω(α) := {x ∈ Ω |−α < dB(x) < 0} and ∂T Ω(α) := { (x, t) ∈ ΩT | dB(x) ∈ (−α, 0)} for
α > 0 and T ∈ (0, T0]. Moreover, we denote the outer unit normal to Ω by n∂Ω and denote the normalized
tangent by τ∂Ω, which is fixed by the relation

n∂Ω(p) =
(

0 −1
1 0

)
τ∂Ω(p)

for p ∈ ∂Ω. Finally we assume that δ > 0 is chosen small enough such that the projection Pr∂Ω : ∂Ω(δ) →
∂Ω along the normal n∂Ω is also well-defined and smooth.

Considering the potential f , we assume that it is a fourth order polynomial, satisfying

f(±1) = f ′(±1) = 0, f ′′(±1) > 0, f(s) = f(−s) > 0 for all s ∈ R (1.20)

for some C > 0 and fulfilling kf := f (4) > 0. Then the ordinary differential equation (1.19) allows for a
unique, monotonically increasing solution θ0 : R → (−1, 1). This solution furthermore satisfies the decay
estimate ∣

∣θ2
0(ρ) − 1

∣
∣ +

∣
∣θ(n)

0 (ρ)
∣
∣ ≤ Cne−α|ρ| for all ρ ∈ R, n ∈ N\ {0} (1.21)
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for constants Cn > 0, n ∈ N\ {0} and fixed α ∈
(
0,min

{√
f ′′(−1),

√
f ′′(1)

})
. As it will be needed a lot

in this work, we denote by ξ ∈ C∞(R) a cut-off function such that

ξ(s) = 1 if |s| ≤ δ, ξ(s) = 0 if |s| > 2δ, and 0 ≥ sξ′(s) ≥ −4 if δ ≤ |s| ≤ 2δ. (1.22)

The main result of [3] is the following (for an explanation of the used notations see the preliminaries
section):

Theorem 1.1 (Main result). Let (v, p, μ,Γ) be a smooth solution to (1.8)–(1.17) for some T0 > 0. More-
over, let M ∈ N with M ≥ 4, let ξ satisfy (1.22) and let γ(x) := ξ(4dB(x)) for all x ∈ Ω and let for
ε ∈ (0, 1) a smooth function ψε

0 : Ω → R be given, which satisfies ‖ψε
0‖C1(Ω) ≤ Cψ0ε

M for some Cψ0 > 0
independent of ε. Then there are smooth functions cε

A : Ω× [0, T0] → R,vε
A : Ω× [0, T0] → R

2 for ε ∈ (0, 1)
such that the following holds:

There is some cε
A : Ω → R, ε ∈ (0, 1], depending only on (v, p, μ,Γ) such that, if (vε, pε, cε, με) are

smooth solutions to (1.1))–(1.7) with initial value

cε
0(x) = cε

A(x, 0) + ψε
0(x) for all x ∈ Ω, (1.23)

then there are some ε0 ∈ (0, 1], K > 0, T ∈ (0, T0] such that

‖cε − cε
A‖L2(0,T ;L2(Ω)) +

∥
∥∇Γ

(
cε − cε

A

)∥∥
L2(0,T ;L2(Γt(δ)))

≤ KεM− 1
2 , (1.24a)

ε
∥
∥∇

(
cε − cε

A

)∥∥
L2(0,T ;L2(Ω\Γt(δ)))

+ ‖cε − cε
A‖L2(0,T ;L2(Ω\Γt(δ)))

≤ KεM+ 1
2 , (1.24b)

ε
3
2

∥
∥∂n

(
cε − cε

A

)∥∥
L2(0,T ;L2(Γt(δ)))

+ ‖cε − cε
A‖L∞(0,T ;H−1(Ω)) ≤ KεM , (1.24c)

∫

ΩT

ε
∣
∣∇

(
cε − cε

A

)∣∣2 + 1
ε f ′′(cε

A) (cε − cε
A)2 d(x, t) ≤ K2ε2M , (1.24d)

∥
∥γ

(
cε − cε

A

)∥∥
L∞(0,T ;L2(Ω))

+ ε
1
2

∥
∥γΔ

(
cε − cε

A

)∥∥
L2(ΩT )

≤ KεM− 1
2 , (1.24e)

∥
∥γ∇

(
cε − cε

A

)∥∥
L2(ΩT )

+
∥
∥γ

(
cε − cε

A

)
∇

(
cε − cε

A

)∥∥
L2(ΩT )

≤ KεM , (1.24f)

and for q ∈ (1, 2)
‖vε − vε

A‖L1(0,T ;Lq(Ω)) ≤ C(K, q)εM− 1
2 , (1.25)

hold for all ε ∈ (0, ε0) and some C(K, q) > 0. Moreover, we have

lim
ε→0

cε
A = ±1 in L∞((s, t) × Ω′) (1.26)

and
lim
ε→0

vε
A = v± in L6

(
(s, t);H2(Ω′)2

)
(1.27)

for every (s, t) × Ω′ ⊂⊂ Ω±
T .

Remark 1.2. Here cε
A is determined by formally matched asymptotic calcultations in the following proof.

In highest we have

cε
A(x) = θ0

(
dΓ0 (x)+εh0(s,t)

ε

)
+ O(ε) uniformly as ε → 0

for some h0 : Γ → R, where s = PrΓt
(x).

It will be beneficial to the readability of many results throughout this contribution to introduce the
following set of assumptions, which will be cited often later on.

Assumption 1.3. Let γ(x) := ξ (4dB(x)) for all x ∈ Ω. We assume that cA : Ω × [0, T0] → R is a smooth
function and that there are ε0 ∈ (0, 1), K ≥ 1 and a family (Tε)ε∈(0,ε0)

⊂ (0, T0] such that the following
holds: if cε is given as in Theorem 1.1 with cε

0(x) = cA(x, 0), then it holds for R := cε − cε
A

‖R‖L2(ΩTε ) +
∥
∥∇ΓR

∥
∥

L2(0,Tε;L2(Γt(δ)))
+

∥
∥(

1
ε R,∇R

)∥∥
L2(0,Tε;L2(Ω\Γt(δ)))

≤ KεM− 1
2 , (1.28a)
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ε
3
2 ‖∂nR‖L2(0,Tε;L2(Γt(δ)))

+ ‖R‖L∞(0,Tε;H−1(Ω)) ≤ KεM , (1.28b)
∫

ΩTε

ε |∇R|2 +
1
ε
f ′′ (cε

A)R2d(x, t) ≤ K2ε2M , (1.28c)

ε
1
2 ‖γR‖L∞(0,Tε;L2(Ω)) + ‖(εγΔR, γ∇R, γR (∇R))‖L2(ΩTε ) ≤ KεM (1.28d)

for all ε ∈ (0, ε0).

It is the aim of this article to show the following theorem and to provide the additional structural
information gathered in [3, Subsection 4.1].

Theorem 1.4. For every ε ∈ (0, 1) there are vε
A,wε

1 : ΩT0 → R
2, cε

A, με
A, pε

A : ΩT0 → R and rε
S : ΩT0 → R

2,
rε
div, r

ε
CH1, r

ε
CH2 : ΩT0 → R such that

−Δvε
A + ∇pε

A = με
A∇cε

A + rε
S in ΩT0 , (1.29)

divvε
A = rε

div in ΩT0 , (1.30)

∂tc
ε
A +

(
vε

A + εM− 1
2 wε

1|Γ ξ (dΓ)
)

· ∇cε
A = Δμε

A + rε
CH1 in ΩT0 , (1.31)

με
A = −εΔcε

A + ε−1f ′ (cε
A) + rε

CH2 in ΩT0 . (1.32)

Furthermore, the boundary conditions

cε
A = −1, με

A = 0, (−2Dsvε
A + pε

AI)n∂Ω = α0vε
A, rε

div = 0 on ∂T0Ω (1.33)

are satisfied. If additionally Assumption 1.3 holds for ε0 ∈ (0, 1), K ≥ 1 and a family (Tε)ε∈(0,ε0)
⊂ (0, T0],

then there are some ε1 ∈ (0, ε0], C(K) > 0 depending on K and CK : (0, T0] × (0, 1] → (0,∞) (also
depending on K), which satisfies CK(T, ε) → 0 as (T, ε) → 0, such that

∫ Tε

0

∣
∣
∣
∣

∫

Ω

rε
CH1(x, t)ϕ(x, t)dx

∣
∣
∣
∣ dt ≤ CK(Tε, ε)εM ‖ϕ‖L∞(0,Tε;H1(Ω)) , (1.34)

∫ Tε

0

∣
∣
∣
∣

∫

Ω

rε
CH2(x, t) (cε(x, t) − cε

A(x, t)) dx

∣
∣
∣
∣ dt ≤ CK(Tε, ε)ε2M , (1.35)

‖rε
S‖L2(0,Tε;(H1(Ω))′) + ‖rε

div‖L2(ΩTε ) ≤ C(K)εM , (1.36)

‖rε
CH2∇cε

A‖L2(0,Tε;(H1(Ω)2)′) ≤ C(K)C(Tε, ε)εM (1.37)

‖rε
CH1‖L2(∂TεΩ( δ

2 )) ≤ C(K)εM (1.38)

for all ε ∈ (0, ε1) and ϕ ∈ L∞ (
0, Tε;H1(Ω)

)
.

This work is organized as follows: Section 2 gives a short overview over the needed mathematical
tools, particularly existence results for parabolic equations on Γ and a short summary of the differential
geometric properties that will be needed later on.

Section 3 is based on the approaches in [1,5,6,9]; here we present results for the construction of inner,
outer and boundary terms of arbitrarily high order of the asymptotic expansions for solutions of (1.1)–
(1.7). Due to constraints to the length of this contribution, many details are left out, but can be found
in [7]. In Sect. 3.2, we introduce the auxiliary function wε

1, which turns out in [3] to be a representation
of the leading term of the error in the velocity vε

A − vε. Section 3.3 is then concerned with constructing
fractional order terms in the asymptotic expansion, which are defined with the help of solutions to a
nonlinear evolution equation involving wε

1 .
To rigorously justify that the “approximate solutions” constructed in the work really are a good

approximation of solutions, it is necessary to estimate the remainder terms in Sect. 4, i.e., the functions
rε
CH1, rε

CH2, r
ε
S and rε

div presented in Theorem 1.4. Thus, in Sect. 4, we analyze these terms in detail,
starting with a proper definition of the involved approximate solutions and a subsequent structural
representation of rε

CH1, etc. The facts that the terms of fractional order may not be estimated uniformly in
ε in arbitrarily strong norms and that there appear terms of relatively low orders of ε in the representations
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of the remainder, when discussing the region close to the interface, account for many technical difficulties.
The involved estimates rely heavily on Lemma 3.19, which is a direct consequence of our construction
scheme of the fractional order terms. The actual proof for Theorem 1.4 is given at the end of this article.

2. Preliminaries

2.1. Differential-Geometric Background

The following overview was already given in [3] in more detail; due to the importance of the concepts in
view of later considerations in this article and for the sake of completeness, we give a brief reminder.

We parameterize the curves (Γt)t∈[0,T0]
by choosing a family of smooth diffeomorphisms X0 : T1 ×

[0, T0] → Ω such that ∂sX0(s, t) �= 0 for all s ∈ T
1, t ∈ [0, T0]. In particular

⋃
t∈[0,T0]

X0

(
T

1 × {t}
)
×{t} =

Γ. Moreover, we define the tangent and normal vectors on Γt at X0(s, t) as

τ (s, t) :=
∂sX0(s, t)
|∂sX0(s, t)|

and n(s, t) :=
(

0 −1
1 0

)
τ (s, t) (2.1)

for all (s, t) ∈ T
1×[0, T0]. We choose X0 (and thereby the orientation of Γt) such that n(., t) is the exterior

normal with respect to Ω−(t). Thus, for a point p ∈ Γt with p = X0(s, t) it holds nΓt
(p) = n(s, t).

Furthermore, V (s, t) := VΓt
(X0(s, t)) and H(s, t) := HΓt

(X0(s, t)) and V (s, t) = ∂tX0(s, t) · n(s, t)
for all (s, t) ∈ T

1 × [0, T0] by definition of the normal velocity. We write for a function v : Γ → R
d,

d ∈ N, (X∗
0v) (s, t) := v(X0(s, t), t) for all (s, t) ∈ T

1 × [0, T0] for a function h : T1 × [0, T0] → R we set(
X∗,−1

0 h
)
(p) := h

(
X−1

0 (p)
)

for all p ∈ Γt, t ∈ [0, T0].
Choosing δ > 0 small enough, the orthogonal projection PrΓt

: Γt (3δ) → Γt is well defined and smooth
for all t ∈ [0, T0] and the mapping φt(x) = (dΓ(x, t),PrΓt

(x)) is a diffeomorphism from Γ (3δ) onto its
image. Its inverse is given by φ−1

t (r, p) = p + rnΓt
(p). Although PrΓt

and φt are well defined in Γt(3δ),
almost all computations later on are performed in Γt(2δ), which is why, for the sake of readability, we
work on Γt(2δ) in the following.

Combining φ−1
t and X0 we may define a diffeomorphism

X(r, s, t) =
(
φ−1

t (r,X0(s, t)), t
)

= (X0(s, t) + rn(s, t), t) (2.2)

for (r, s, t) ∈ (−2δ, 2δ) × T
1 × [0, T0] with inverse X−1(x, t) = (dΓ(x, t), S(x, t), t) where we define

S(x, t) :=
(
X−1

0 (PrΓt
(x))

)
1

(2.3)

for (x, t) ∈ Γ(2δ) and where (.)1 signifies that we take the first component. In particular it holds S(x, t) =
S(PrΓt

(x), t). In the following we will write n(x, t) := n(S(x, t), t) and τ (x, t) := τ (S(x, t), t) for (x, t) ∈
Γ(2δ).

For (x, t) ∈ Γ(2δ) it holds

∇dΓ(x, t) = n(x, t), |∇dΓ(x, t)| = 1, ∇S(x, t) · dΓ(x, t) = 0. (2.4)

In order to connect dΓ to the curvature and mean velocity, we observe that for s ∈ T
1, r ∈ (−2δ, 2δ) and

t ∈ [0, T0] it holds ΔdΓ(X0(s, t), t) = −H(s, t) and −∂tdΓ(X(r, s, t)) = V (s, t).
For a function φ : Γ(2δ) → R we define φ̃(r, s, t) := φ(X(r, s, t)) and often write φ(r, s, t) instead of

φ̃(r, s, t). In the case that φ is twice continuously differentiable, we introduce

∂Γ
t φ̃(r, s, t) := (∂t + ∂tS(X(r, s, t))∂s) φ̃(r, s, t),

∇Γφ̃(r, s, t) := ∇S(X(r, s, t))∂sφ̃(r, s, t),

ΔΓφ̃(r, s, t) := (ΔS(X(r, s, t))∂s + (∇S · ∇S) (X(r, s, t))∂ss) φ̃(r, s, t). (2.5)

Similarly, if v : Γ(2δ) → R
2 is continuously differentiable, we will also write ṽ(r, s, t) := v (X(r, s, t)) and

introduce
divΓṽ(r, s, t) = ∇S (X(r, s, t)) · ∂sṽ(r, s, t). (2.6)
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For later use we introduce

∇Γφ(x, t) := ∇S(x, t)∂sφ̃ (dΓ(x, t), S(x, t), t) and

divΓ v(x, t) := ∇S(x, t)∂sṽ (dΓ(x, t), S(x, t), t)

for (x, t) ∈ Γ(2δ).
With these notations we have the decompositions

∇φ(x, t) = ∂nφ(x, t)n + ∇Γφ(x, t), (2.7)

divv(x, t) = ∂nv(x, t) · n + divΓ v(x, t) (2.8)

for all (x, t) ∈ Γ(2δ), as
d

dr
(φ ◦ X) |(r,s,t)=(dΓ(x,t),S(x,t),t) = ∂nφ(x, t).

Remark 2.1. If h : T1 × [0, T0] → R is a function that is independent of r ∈ (−2δ, 2δ), the functions
∂Γ

t h,∇Γh and ΔΓh will nevertheless depend on r via the derivatives of S. To connect the presented
concepts with the classical surface operators we introduce the following notations:

Dt,Γh(s, t) := ∂Γ
t h(0, s, t), ∇Γh(s, t) := ∇Γh(0, s, t), ΔΓh(s, t) := ΔΓh(0, s, t).

Later in this work (from Sect. 3.1.2 on forward) we will often consider h(S(x, t), t) and thus will write for
simplicity

∂Γ
t h(x, t) := (∂t + ∂tS(x, t)∂s) h(S(x, t), t),

∇Γh(x, t) := (∇S(x, t)∂s) h(S(x, t), t),

ΔΓh(x, t) := (ΔS(x, t)∂s + ∇S(x, t) · ∇S(x, t)∂ss) h(S(x, t), t) (2.9)

for (x, t) ∈ Γ(2δ). Using the definitions and notations from this section we gain the identity

∂Γ
t h(x, t) = X∗

0

(
∂Γ

t h
)
(s, t) = ∂Γ

t h(0, s, t) = Dt,Γh(s, t) (2.10)

for (s, t) ∈ T
1 × [0, T0] and (X0(s, t), t) = (x, t) ∈ Γ. This might seem cumbersome but turns out to be

convenient throughout this work.

In later parts of this article, we will introduce stretched coordinates of the form

ρε(x, t) =
dΓ(x, t) − εh(S(x, t), t)

ε
(2.11)

for (x, t) ∈ Γ(2δ), ε ∈ (0, 1) and for some smooth function h : T1 × [0, T0] → R (which will later on
also depend on ε). Writing ρ = ρε, the relation between the regular and the stretched variables can be
expressed as

X̂(ρ, s, t) := X(ε (ρ + h(s, t)) , s, t) = (X0(s, t) + ε (ρ + h(s, t))n(s, t), t) . (2.12)

Lemma 2.2. Let φ : R × Γ(2δ) → R be twice continuously differentiable and let ρ be given as in (2.11).
Then the following formulas hold for (x, t) ∈ Γ(2δ) and ε ∈ (0, 1)

∂t (φ(ρ(x, t), x, t)) =
(
−ε−1V (S(x, t), t) − ∂Γ

t h(x, t)
)
∂ρφ(ρ(x, t), x, t) + ∂tφ(ρ(x, t), x, t),

∇ (φ(ρ(x, t), x, t)) =
(
ε−1n(S(x, t), t) − ∇Γh(x, t)

)
∂ρφ(ρ(x, t), x, t) + ∇xφ(ρ(x, t), x, t),

Δ(φ(ρ(x, t), x, t)) =
(
ε−2 +

∣
∣∇Γh(x, t)

∣
∣2

)
∂ρρφ(ρ(x, t), x, t) + Δxφ (ρ(x, t), x, t)

+
(
ε−1ΔdΓ(x, t) − ΔΓh(x, t)

)
∂ρφ(ρ(x, t), x, t)

+ 2
(
ε−1n(S(x, t), t) − ∇Γh(x, t)

)
· ∇x∂ρφ(ρ(x, t), x, t),

Here ∇x and Δx operate solely on the x-variable of φ.

Proof. This follows from the chain rule, (2.4) and the notations introduced in Remark 2.1. �
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2.2. Remainder Terms

Most of the following was already discussed in [3] and is only presented for the convenience of the reader.
For t ∈ [0, T0] and 1 ≤ p < ∞ we define

Lp,∞ (Γt(2δ)) :=
{

f : Γt(2δ) → R measurable| ‖f‖Lp,∞(Γt(2δ)) < ∞
}

,

where

‖f‖Lp,∞(Γt(2δ)) :=
(∫

T1
esssup|r|≤2δ |f ((X(r, s, t))1)|

p ds

) 1
p

.

Here X1(r, s, t) := X0(s, t) + rn(s, t) denotes the first component of X. Let T ∈ [0, T0], 1 ≤ p, q < ∞ and
α ∈ (0, 3δ) be given and let . Then we set

Lq (0, T ;Lp (Γt (α))) :=
{

f : Γ (α, T ) → R measurable| ‖f‖Lq(0,T ;Lp(Γt(α))) < ∞
}

,

‖f‖Lq(0,T ;Lp(Γt(α))) :=

⎛

⎝
∫ T

0

(∫

Γt(α)

|f(x, t)|p dx

) q
p

dt

⎞

⎠

1
q

.

Analogously, we define Lq (0, T ;Lp (Ω\Γt(α))) and Lq (0, T ;Lp (Ω±(t)))) and the corresponding norms.
Furthermore, for m ∈ N0 we define for U(t) = Ω±(t) or U(t) = Γt(α)

Lp(0, T ;Hm(U(t))) := {f ∈ Lp(0, T ;L2(Ω±(t))) : ∂α
x f ∈ Lp(0, T ;L2(U(t)))∀|α| ≤ m},

‖f‖Lp(0,T ;Hm(U(t))) :=
∑

|α|≤m

‖∂α
x f‖Lp(0,T ;L2(U(t))).

The following embedding was already remarked in [1, Subsection 2.5].

Lemma 2.3. We have H1 (Γt(2δ)) ↪→ L4,∞ (Γt(2δ)) with operator norm uniformly bounded with respect
to t ∈ [0, T0].

The following estimates will be frequently used:

Lemma 2.4. Let h : T1 × [0, T0] → R be continuous, ε ∈ (0, 1), t ∈ [0, T0]. Then there are constants
C1, C2 > 0 independent of h, ε and t such that

1. for all ψ ∈ L1,∞(Γt(2δ)), η ∈ L1(R)
∥
∥
∥η

(
dΓ(.,t)

ε − h(S(., t), t)
)

ψ
∥
∥
∥

L1(Γt(2δ))
≤ C1ε ‖η‖L1(R) ‖ψ‖L1,∞(Γt(2δ)) .

2. for all ψ ∈ L2,∞(Γt(2δ)), η ∈ L2(R) and u ∈ L2(Γt(2δ))
∥
∥
∥η

(
dΓ(.,t)

ε − h(S(., t), t)
)

ψu
∥
∥
∥

L1(Γt(2δ))
≤ C2ε

1
2 ‖η‖L2(R) ‖ψ‖L2,∞(Γt(2δ)) ‖u‖L2(Γt(2δ)) .

Proof. Ad 1.: With two changes of variables we obtain
∥
∥
∥η

(
dΓ(.,t)

ε − h(S(., t), t)
)

ψ
∥
∥
∥

L1(Γt(2δ))

=
∫

T1

∫ 2δ

−2δ

∣
∣η

(
r
ε − h(s, t)

)
ψ(X1(r, s, t))

∣
∣ |det (∇X1(r, s, t))| drds

≤ C

∫

T1
‖ψ ◦ X1‖L∞(−2δ,2δ)

∫ 2δ
ε −h(s,t)

− 2δ
ε −h(s,t)

ε |η(ρ)| dρds ≤ Cε ‖ψ‖L1,∞(Γt(δ))
‖η‖L1(R) .

Here we used the uniform boundedness of |det(∇X1)| in (−2δ, 2δ) ×T
1 × [0, T0] in the second inequality.

Ad 2.: This can be shown in the same way as the first statement. �

For future use, we introduce the concept of remainder terms, similar to [1, Definition 2.5].
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Definition 2.5. Let n ∈ N, ε0 > 0. For α > 0 let Rα denote the vector space of all families (r̂ε)ε∈(0,ε0)
of

continuous functions r̂ε : R × Γ(2δ) → R
n which satisfy

|r̂ε(ρ, x, t)| ≤ Ce−α|ρ| for all ρ ∈ R, (x, t) ∈ Γ(2δ), ε ∈ (0, 1).

Moreover, let R0
α be the subspace of all (r̂ε)ε∈(0,ε0)

∈ Rα such that

r̂ε(ρ, x, t) = 0 for all ρ ∈ R, (x, t) ∈ Γ.

2.3. Parabolic Equations on Evolving Surfaces

We introduce the space

XT = L2
(
0, T ;H

7
2 (T1)

)
∩ H1

(
0, T ;H

1
2 (T1)

)
(2.13)

for T ∈ (0,∞), where we equip XT with the norm

‖h‖XT
= ‖h‖

L2(0,T ;H
7
2 (T1))

+ ‖h‖
H1(0,T ;H

1
2 (T1))

+ ‖h|t=0‖H2(T1) .

Proposition 2.6. Let T ∈ (0,∞). Then we have
1. XT ↪→ C0([0, T ];H2(T1)) where the operator norm of the embedding is bounded independently of T ,
2. XT ↪→ H

1
2 (0, T ;H2(T1)) ∩ H

1
3 (0, T ;H

5
2 (T1)).

Proof. Ad 1.: See e.g. [4, Lemma A.8].
Ad 2.: According to [8, Proposition 3.2] we have XT ↪→ Hσ

(
0, T ;H

1
2+(1−σ)3(T1)

)
. Thus the statement

follows for σ = 1
2 and σ = 1

3 . �

The following result on solvability of a linearized Mullins-Sekerka/Stokes system is shown in [7] and
in a more general form in [2] and will be important for the construction of the approximate solution.

Theorem 2.7. Let T ∈ (0, T0] and t ∈ [0, T ]. For every f ∈ L2(Ω)2, s ∈ H
3
2 (Γt)2, a ∈ H

1
2 (Γt)2 and

g ∈ H
1
2 (∂Ω)2 the system

−Δv± + ∇p± = f in Ω±(t), (2.14)

divv± = 0 in Ω±(t), (2.15)
(
−2Dsv− + p−I

)
n∂Ω = α0v− + g on ∂Ω, (2.16)

[v] = s on Γt, (2.17)
[
2Dsv − p−I

]
nΓt

= a on Γt (2.18)

has a unique solution (v±, p±) ∈ H2(Ω±(t)) × H1(Ω±(t)). Moreover, there is a constant C > 0 indepen-
dent of t ∈ [0, T0] such that

‖(v, p)‖H2(Ω±(t))×H1(Ω±(t)) ≤C
(
‖f‖L2(Ω) + ‖s‖

H
3
2 (Γt)

+ ‖a‖
H

1
2 (Γt)

+ ‖g‖
H

1
2 (∂Ω)

)
(2.19)

holds.

Proof. See [7, Theorem 2.36] or [2]. �

Theorem 2.8. Let T ∈ (0, T0]. Let b : T1 × [0, T ] → R
2, b : T1 × [0, T ] → R, a1 : Ω × [0, T ] → R,

a2, a3, a5 : Γ → R, a4 : ∂T Ω → R, a1 : Ω × [0, T ] → R
2, a2,a3,a4,a5 : Γ → R

2 and a6 : ∂T Ω → R
2 be

smooth given functions. For every g ∈ L2
(
0, T ;H

1
2 (T1)

)
and h0 ∈ H2(T1) there exists a unique solution

h ∈ XT of

Dt,Γh + b · ∇Γh − bh + 1
2X∗

0

(
(v+ + v−) · nΓt

)
+ 1

2X∗
0

([
∂nΓt

μ
])

= g inT
1 × (0, T ) ,

h (., 0) = h0 inT
1,
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where for every t ∈ [0, T ], the functions v± = v±(x, t), p± = p±(x, t) and μ± = μ±(x, t) for (x, t) ∈ Ω±
T

with v± ∈ H2(Ω±(t)), p± ∈ H1(Ω±(t)) and μ± ∈ H2(Ω±(t)) are the unique solutions to

Δμ± = a1 in Ω±(t), (2.20)

μ± = X∗,−1
0

(
σΔΓh ± a2h

)
+ a3 on Γt, (2.21)

μ− = a4 on ∂Ω, (2.22)

−Δv± + ∇p± = a1 in Ω±(t), (2.23)

divv± = 0 in Ω±(t), (2.24)

[v] = a2 on Γt, (2.25)

[2Dsv − pI]nΓt
= X∗,−1

0

(
a3h + a4ΔΓh + a5∇Γh + a5

)
on Γt, (2.26)

(
−2Dsv− + p−I

)
n∂Ω = α0v− + a6 on ∂Ω. (2.27)

Moreover, if g, h0 and b, b, ai, and aj are smooth on their respective domains for i ∈ {1, . . . , 5},
j ∈ {1, . . . , 6}, then h is smooth and p±, v± and μ± are smooth on Ω±(t).

Proof. See [7, Theorem 2.37] or [2]. �

We note that, if μ|Ω±(t) ∈ H2(Ω±(t)), for t ∈ [0, T ], is determined by

Δμ± = 0 in Ω±(t), (2.28a)

μ± = X∗,−1
0 (σΔΓh ± b2h) on Γt, (2.28b)

μ− = 0 on ∂Ω, (2.28c)

then by standard results for elliptic equations the estimate
∑

±

∥
∥μ±∥

∥
L2(0,T ;H2(Ω±(t)))∩L6(0,T ;H1(Ω±(t)))

≤ C ‖h‖XT
, (2.29)

holds true for some constant C > 0 independent of μ and h.

2.4. Spectral Theory

In order to be able to access the results from [3], Subsection 2.4, we will need to show that our approximate
solution cε

A has certain properties. For the readability of presentation, we repeat these assumptions here.

Assumption 2.9. Let ε ∈ (0, ε0), T ∈ (0, T0] and ξ be a cut-off function satisfying (1.22). We assume that
cε
A : ΩT → R is a smooth function, which has the structure

cε
A(x, t) = ξ(dΓ(x, t)) (θ0(ρ(x, t)) + εpε(PrΓt

(x), t)θ1(ρ(x, t))) + ξ(dΓ(x, t))ε2qε(x, t)

+ (1 − ξ(dΓ(x, t)))
(
cε,+
A (x, t)χΩ+

T0
(x, t) + cε,−

A (x, t)χΩ−
T0

(x, t)
)

(2.30)

for all (x, t) ∈ ΩT , where ρ(x, t) := dΓ(x,t)
ε − hε(S(x, t), t). The occurring functions are supposed to be

smooth and satisfy for some C∗ > 0 the following properties: θ1 : R → R is a bounded function satisfying
∫

R

θ1(ρ) (θ′
0(ρ))2 f (3)(θ0(ρ))dρ = 0. (2.31)

Furthermore, pε : Γ → R, qε : Γ(2δ) → R satisfy

sup
ε∈(0,ε0)

sup
(x,t)∈Γ(2δ;T )

(
|pε(PrΓt

(x), t)| +
ε

ε + |dΓ(x, t) − εhε(S(x, t), t)| |qε(x, t)|
)

≤ C∗, (2.32)

hε : T1 × [0, T ] → R fulfills

sup
ε∈(0,ε0)

sup
(s,t)∈T1×[0,T ]

(|hε(s, t)| + |∂sh
ε(s, t)|) ≤ C∗ (2.33)
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and cε,±
A : Ω±

T → R satisfy
± cε,±

A > 0 in Ω±
T . (2.34)

Additionally, we suppose that

sup
ε∈(0,ε0)

(

sup
(x,t)∈ΩT

|cε
A(x, t)| + sup

x∈Γ(δ)

∣
∣∇Γcε

A(x, t)
∣
∣
)

≤ C∗, (2.35)

inf
ε∈(0,ε0)

inf
(x,t)∈ΩT \Γ(δ;T )

f ′′ (cε
A(x, t)) ≥ 1

C∗ (2.36)

holds.

3. Construction of Approximate Solutions

In the following we use the method of matched asymptotic expansions to construct approximate solu-
tions (cε

A, με
A,vε

A, pε
A) of (1.1)–(1.7). Throughout this chapter the formalism “≈” will represent a formal

asymptotic expansion ansatz, that is, writing uε ≈
∑

k≥0 εkuk means that for every integer K ∈ N we
have

uε =
K∑

k=0

εkuk + ũK+1ε
K+1, (3.1)

where ũK+1 is uniformly bounded in ε.

3.1. The First M + 1 Terms

Many of the following steps are based on ideas taken from [5], [1] and [6]. In order to present the results
for the construction of terms of arbitrarily high order in Lemmata 3.6 and 3.8, we devise an inductive
scheme similar to the approach in [5]. However, in favor of the brevity of presentation, we did not include
this scheme in this article and simply state the results. For the background of the construction and the
proofs, see [7].

3.1.1. The Outer Expansion. We assume that in Ω±
T0

\Γ(2δ) the solutions of (1.1)–(1.7) have the expan-
sions

cε(x, t) ≈
∑

k≥0

εkc±
k (x, t), με(x, t) ≈

∑

k≥0

εkμ±
k (x, t),

vε(x, t) ≈
∑

k≥0

εkv±
k (x, t), pε(x, t) ≈

∑

k≥0

εkp±
k (x, t), (3.2)

where c±
k , μ±

k , v±
k and p±

k are smooth functions defined in Ω±
T0

. Plugging this ansatz into (1.1), (1.2),
(1.3) and (1.4) yields

−
∑

k≥0

εkΔv±
k +

∑

k≥0

εk∇p±
k =

∑

k,j≥0

εkμ±
k εj∇c±

j , (3.3)

∑

k≥0

εkdivv±
k = 0, (3.4)

∑

k≥0

εk∂tc
±
k +

( ∑

k≥0

εkv±
k

)
·
( ∑

k≥0

εk∇c±
k

)
=

( ∑

k≥0

εkΔμ±
k

)
, (3.5)

and
∑

k≥0

εkμ±
k = −ε

∑

k≥0

εkΔc±
k +

1
ε
f ′(c±

0 ) + f ′′ (c±
0

) ∑

k≥1

εk−1c±
k +

∑

k≥1

εkfk(c±
0 , . . . , c±

k ), (3.6)
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where for fixed c±
0 the functions fk are polynomials in (c±

1 , . . . , c±
k ) and are the result of a Taylor expansion.

Moreover, fk(c±
0 , . . . , c±

k ) are chosen such that they do not depend on ε. Matching the O(ε−1) terms yields
f ′(c±

0 ) = 0 and in view of the Dirichlet boundary data for cε we set

c±
0 = ±1. (3.7)

Comparing the higher order terms O
(
εk

)
, where k ≥ 1, yields:

c±
k =

μ±
k−1 + Δc±

k−2 − fk−1(c±
0 , . . . , c±

k−1)
f ′′(±1)

in Ω±
T0

, (3.8)

Δμ±
k = ∂tc

±
k +

k∑

j=0

v±
j · ∇c±

k−j in Ω±
T0

, (3.9)

−Δv±
k + ∇p±

k =
k−1∑

j=0

μ±
j ∇c±

k−j in Ω±
T0

, (3.10)

divv±
k = 0 in Ω±

T0
. (3.11)

Remark 3.1. 1. As we will only construct c±
0 , . . . , c±

M+1, we need to consider the remainder of the
Taylor expansion of f ′. In this case, we choose to expand f ′ up to order M + 2 and get

f ′
( M+1∑

k=0

εkc±
k

)
= f ′(c±

0 ) + εf ′′(c±
0 )

M+1∑

k=1

εk−1c±
k + ε2

M∑

k=1

εk−1fk(c±
0 , . . . , c±

k )

+ εM+2f̃ε(c±
0 , . . . , c±

M+1).

Here f̃ε(c±
0 , . . . , c±

M+1) consists of polynomials in (c±
1 , . . . , c±

M+1), which may be of even higher order
in ε and which are either multiplied by f (j)(c±

0 ) for j ∈ {2, . . . , M + 1} or by f (M+2)
(
ξ(c±

0 , . . . , c±
M+1)

)

for suitable ξ ∈
[
c±
0 ,

∑M+1
k=0 εkc±

k

]
. If c±

k ∈ L∞(Ω±
T0

) for all k ∈ {0, . . . , M + 1}, it holds

‖f̃ε(c±
0 , . . . , c±

M+1)‖L∞(Ω±
T0

) ≤ C for all ε ∈ (0, 1).

2. We will need (c±
k , μ±

k ,v±
k , p±

k ), for k ≥ 0, to not only be defined in Ω±
T0

, but we have to extend them
onto Ω±

T0
∪Γ(2δ;T0). For μ±

k and p±
k we may use any smooth extension. One possibility is to use the

extension operator defined in [10, Part VI, Theorem 5], . It is trivial to extend c±
0 and if all (c±

i , μ±
i )

for i ≤ k − 1 have been defined on Ω±
T0

∪ Γ(2δ;T0), then c±
k is as well, by (3.8). For v±

k we employ
the same extension operator and then use the Bogovskii operator to ensure that the extension is
divergence free in Γt(2δ). In particular we may construct a divergence free extension E±(v±

k ) such
that E±(v±

k )|Ω±(t) = v±
k in Ω±(t) and

∥
∥E±(v±

k )
∥
∥

H2(Ω±(t)∪Γt(2δ))
≤ C‖v±

k ‖H2(Ω±(t)). (3.12)

For later use we define

U±
k (x, t) = Δμ±

k (x, t) − ∂tc
±
k (x, t) −

k∑

j=0

v±
j (x, t) · ∇c±

k−j(x, t), U± =
∑

k≥0

εkU±
k , (3.13)

W±
k (x, t) = −Δv±

k (x, t) + ∇p±
k (x, t) −

k−1∑

j=0

μ±
j (x, t)∇c±

k−j(x, t), W± =
∑

k≥0

εkW±
k , (3.14)

for (x, t) ∈ Ω±
T0

∪Γ(2δ). Note that by (3.9) and (3.11) we have W±
k (x, t) = U±

k (x, t) = 0 for all (x, t) ∈ Ω±
T0

.
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3.1.2. The Inner Expansion. Close to the interface Γ we introduce a stretched variable

ρε(x, t) :=
dΓ(x, t) − εhε(S(x, t), t)

ε
for all (x, t) ∈ Γ(2δ) (3.15)

for ε ∈ (0, 1). Here hε : T1 × [0, T0] → R is a given smooth function and can heuristically be interpreted
as the distance of the zero level set of cε to Γ, see also [6, Chapter 4.2]. In the following, we will often
drop the ε-dependence and write ρ(x, t) = ρε(x, t).

Now assume that, in Γ(2δ), the identities

cε(x, t) = c̃ε
(dΓ(x,t)

ε − hε(S(x, t), t), x, t
)
, με(x, t) = μ̃ε

(dΓ(x,t)
ε − hε(S(x, t), t), x, t

)
,

pε(x, t) = p̃ε
(dΓ(x,t)

ε − hε(S(x, t), t), x, t
)
, vε(x, t) = ṽε

(dΓ(x,t)
ε − hε(S(x, t), t), x, t

)
(3.16)

hold for the solutions of (1.1)–(1.7) and some smooth functions c̃ε, μ̃ε, p̃ε : R×Γ(2δ) → R, ṽε : R×Γ(2δ) →
R

2. Furthermore, we assume that we have the expansions

c̃ε(ρ, x, t) ≈
∑

k≥0

εkck(ρ, x, t), μ̃ε(ρ, x, t) ≈
∑

k≥0

εkμk(ρ, x, t),

p̃ε(ρ, x, t) ≈
∑

k≥0

εkpk(ρ, x, t), ṽε(ρ, x, t) ≈
∑

k≥0

εkvk(ρ, x, t) (3.17)

for all (ρ, x, t) ∈ R × Γ(2δ) and also

hε(s, t) ≈
∑

k≥0

εkhk+1(s, t), (3.18)

where ck, μk, pk : R × Γ(2δ) → R, vk : R × Γ(2δ) → R
2 and hk : T1 × [0, T0] → R are smooth functions

for all k ≥ 0. When referring to c̃, μ̃, p̃, ṽ and the expansion terms we write ∇ = ∇x and Δ = Δx. The
expressions ∂Γ

t hε(x, t), ∇Γhε(x, t), ΔΓhε(x, t) and D2
Γhε(x, t) are for (x, t) ∈ Γ(2δ) to be understood in

the sense of Remark 2.1.
In order to match the inner and outer expansions, we require that for all k the so-called inner-outer

matching conditions

sup
(x,t)∈Γ(2δ)

∣
∣∂m

x ∂n
t ∂l

ρ

(
ϕ (±ρ, x, t) − ϕ±(x, t)

)∣∣ ≤ Ce−αρ, (3.19)

where ϕ = ck, μk,vk, pk and k ≥ 0 hold for constants α,C > 0 and all ρ > 0, m,n, l ≥ 0.

Remark 3.2. We will only use the matching conditions for m,n, l ∈ {0, 1, 2}. However, since the ordinary
differential equations for (ck, c±

k , μk, μ±
k ,vk,v±

k , pk, p±
k ) (cf. (3.27), (3.29), (3.31), (3.33)) are dependent

on derivatives of lower order terms, it is necessary and sufficient for the matching conditions to hold for
m,n, l ∈ {0, . . . , C(M)} for some C(M) ∈ N depending on the general number of terms in the expansion.

We interpret {(x, t) ∈ Γ(2δ)|dΓ(x, t) = εhε(S(x, t), t)} as an approximation of the 0-level set of cε.
Thus, we normalize ck such that

ck(0, x, t) = 0 for all (x, t) ∈ Γ(2δ), k ≥ 0.

Similarly as in [5], we introduce auxiliary functions gε(x, t), jε(x, t) and lε(x, t) as well as uε(x, t) and
qε(x, t) for (x, t) ∈ Γ(2δ). As a rough guideline, the functions gε, jε, and qε will enable us to fulfill the
compatibility conditions in Γ(2δ)\Γ. lε and uε on the other hand are of importance when it comes to
fulfilling the matching conditions in Γ(2δ)\Γ. Moreover we choose η : R → [0, 1] such that η = 0 in
(−∞,−1], η = 1 in [1,∞) and η′ ≥ 0 in R and such that

∫

R

(
η(ρ) − 1

2

)
θ′
0(ρ)dρ = 0 (3.20)

is satisfied. For later use we also define

ηC,±(ρ) = η(−C ± ρ)
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for an arbitrary constant C > 0 and ρ ∈ R.
Now we may rewrite (1.1)-(1.4) as

−∂ρρṽε = ε
(
∂ρṽεΔdΓ + 2(∇∂ρṽε)Tn + μ̃ε∂ρc̃

εn
)

+ ε2
(

− 2(∇∂ρṽε)T · ∇Γhε + ∂ρρṽε|∇Γhε|2 − ∂ρṽεΔΓhε − μ̃ε∂ρc̃
ε∇Γhε

+ ∂ρp̃
ε∇Γhε + Δṽε − ∇p̃ε + μ̃ε∇c̃ε) − uεη′′(ρ)

(
dΓ − ε(ρ + hε)

)

+ qεη′(ρ)
(
dΓ − ε(ρ + hε)

)
+ ε2(W+ηCS ,+ + W−ηCS ,−), (3.21)

∂ρṽε · n = ε∂ρṽε∇Γhε − εdivṽε +
(
uε · (n − ε∇Γhε)

)
η′(ρ)

(
dΓ − ε(ρ + hε)

)
, (3.22)

∂ρρc̃
ε − f ′(cε) = ε

(
− μ̃ε − ∂ρc̃

εΔdΓ − 2∇∂ρc̃
ε · n

)
+ gεη′(ρ) (dΓ − ε (ρ + hε))

+ ε2
(

− ∂ρρc̃
ε
∣
∣∇Γhε

∣
∣2 + ∂ρc̃

εΔΓhε + 2∇∂ρc̃
ε · ∇Γhε − Δc̃ε

)
(3.23)

∂ρρμ̃
ε = ε

(
∂ρc̃

ε(∂tdΓ + ṽε · n) − ∂ρμ̃
εΔdΓ − 2∇∂ρμ̃

ε · n
)

+ ε2
(

− ∂ρc̃
ε(∂Γ

t hε + ṽε · ∇Γhε) + ∂ρμ̃
εΔΓhε

− ∂ρρμ̃
ε|∇Γhε|2 + 2∇∂ρμ̃

ε · ∇Γhε + ṽε · ∇c̃ε + ∂tc̃
ε − Δμ̃ε

)

+ (lεη′′(ρ) + jεη′(ρ))
(
dΓ − ε(ρ + hε)

)
+ ε2

(
U+ηCS ,+ + U−ηCS ,−)

, (3.24)

where the equalities are only assumed to hold in

Sε :=
{
(ρ, x, t) ∈ R × Γ(2δ)|ρ = dΓ(x,t)

ε − hε(S(x, t), t)
}
,

but we consider them as ordinary differential equations in ρ ∈ R, where (x, t) ∈ Γ(2δ) are seen as fixed
parameters. Thus we assume from now on that (3.21)–(3.24) are fulfilled in R×Γ(2δ). The terms U± and
W± (cf. (3.13), (3.14)) are used here in order to ensure the exponential decay of the right hand sides; in
this context CS > 0 is a constant which will be determined later on (see Remark 3.4). We assume that
the auxiliary functions have expansions of the form

uε(x, t) ≈
∑

k≥0

uk(x, t)εk, lε(x, t) ≈
∑

k≥0

lk(x, t)εk, qε(x, t) ≈
∑

k≥0

qk(x, t)εk+1,

jε(x, t) ≈
∑

k≥0

jk(x, t)εk+1, gε(x, t) ≈
∑

k≥0

gk(x, t)εk+1, (3.25)

for (x, t) ∈ Γ(2δ). Matching the ε-orders, we gain the following ordinary differential equations in ρ: From
(3.21) and (3.22) we get

−∂ρρ(v0 − u0ηdΓ) = 0, (3.26)

−∂ρρ

(
vk − (ukdΓ − u0hk)η

)
+ ∂ρpk−1n = Vk−1 (3.27)

and

∂ρ

(
v0 · n − u0 · ndΓη

)
= 0, (3.28)

∂ρ

(
vk · n − (ukdΓ − u0hk) · nη

)
= W k−1 + ∇Γhk · (∂ρv0 − u0dΓη′), (3.29)

respectively, for ρ ∈ R, (x, t) ∈ Γ(2δ) and k ≥ 1, where Vk−1 = Vk−1(ρ, x, t) and W k−1 = W k−1(ρ, x, t)
are defined below. Similaly, from (3.23) and (3.24) we get

∂ρρc0 − f ′(c0) = 0, (3.30)

∂ρρck − f ′′(c0)ck = Ak−1 (3.31)

and

∂ρρ

(
μ0 − l0ηdΓ

)
= 0, (3.32)

∂ρρ

(
μk − (lkdΓ − l0hk) η

)
= Bk−1 (3.33)
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respectively, for ρ ∈ R, (x, t) ∈ Γ(2δ) and k ≥ 1, where Ak−1 = Ak−1(ρ, x, t) and Bk−1 = Bk−1(ρ, x, t)
are defined below. Here we used

Vk−1 = ∂ρvk−1ΔdΓ + 2(∇∂ρvk−1)Tn − 2(∇∂ρv0)T ∇Γhk−1 − ∂ρv0ΔΓhk−1

+ ∂ρp0∇Γhk−1 + βk
22∂ρρv0∇Γhk−1 · ∇Γh1 + βk

1 (μ0∂ρck−1 + μk−1∂ρc0)n

− μ0∂ρc0∇Γhk−1 + qk−1η
′dΓ − q0η

′hk−1 + (ρ + δk
1h1)uk−1η

′′ + u1η
′′hk−1

+ Δvk−2 − ∇pk−2 +
k−2∑

i=0

μi∇ck−2−i + W+
k−2η

CS ,+ + W−
k−2η

CS ,− + Vk−2, (3.34)

W k−1 = δk
1∂ρvk−1∇Γh1 + ∂ρv1∇Γhk−1 − divvk−1 − uk−1 · nη′ρ − δk

1uk−1h1 · nη′

− u1 · nη′hk−1 − δk
1 (uk−1 · ∇Γh1 + u1 · ∇Γhk−1)dΓη′

+ u0 ·
(
∇Γhk−1ρ + βk

2 (∇Γhk−1h1 + ∇Γh1hk−1)
)
η′ + Wk−2, (3.35)

Ak−1 = −μk−1 − ∂ρck−1ΔdΓ − 2∇∂ρck−1 · n + fk−1(c0, . . . , ck−1) + gk−1η
′dΓ

− βk
22∂ρρc0∇Γhk−1 · ∇Γh1 + ∂ρc0ΔΓhk−1 + 2∇∂ρc0 · ∇Γhk−1 − g0hk−1η

′

− Δck−2 + Ak−2, (3.36)

and

Bk−1 = ∂ρck−1∂tdΓ + βk
1 (∂ρck−1v0 + ∂ρc0vk−1) · n − ∂ρμk−1ΔdΓ − 2∇∂ρμk−1 · n

− lk−1η
′′ρ − δk

1 lk−1h1η
′′ + jk−1η

′dΓ − ∂ρc0v0 · ∇Γhk−1 − ∂ρc0∂
Γ
t hk−1

− βk
22∂ρρμ0∇Γhk−1 · ∇Γh1 + ∂ρμ0ΔΓhk−1 + 2∇∂ρμ0 · ∇Γhk−1 − l1hk−1η

′′ − j0hk−1η
′

+ ∂tck−2 − Δμk−2 +
k−2∑

i=0

vi∇ck−2−i + U+
k−2η

CS ,+ + U−
k−2η

CS ,− + Bk−2. (3.37)

Here Vk−2, Wk−2, Ak−2, and Bk−2 denote terms of order k − 2 or lower which are unimportant in the
following—the detailed structure of these terms can be found in [7, Subsection 5.1.2]. In all of the above
identities we used the following conventions:

Notation 3.3.
1. All functions with negative index are supposed to be zero. In particular V−1 = W−1 = A−1 =

B−1 = 0. Moreover, h0 := 0.
2. We introduced the notation

βk
i =

{
1
2 if i = k,

1 else

and δk
i is an “inverse” Kronecker delta, i.e.

δk
i =

{
0 if i = k,

1 else.

3. fk−1(c0, . . . , ck−1) (appearing in (3.36)) are terms from a Taylor expansion defined in the same way
as in Remark 3.1. In particular, we will later on also use a remainder term f̃ as discussed in Remark
3.1 for the inner solutions. Moreover, we use the convention f0(c0) = 0.

We will see after the construction of the zeroth order terms that the term hk appearing on the right
hand side of (3.29) is actually multiplied by 0.

Remark 3.4. Note that W± and U±, which we inserted in (3.21) and (3.24), are not multiplied by terms
of the kind (dΓ − ε (ρ + hε)). So we have to make sure they vanish on the set Sε. This is accomplished by
choosing the constant CS > 0 in a suitable way.
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In particular we set

CS := ‖h1‖C0(T1×[0,T0])
+ 2

and assume that ∣
∣
∣
∑

k≥1

εkhk+1(S(x, t), t)
∣
∣
∣ ≤ 1 (3.38)

holds for all ε > 0 small enough. It turns out that h1 does not depend on the term ε2(U+ηCS ,++U−ηCS ,−)
and ε2(W+ηCS ,+ + W−ηCS ,−), so this choice of CS does not cause problems. Choosing CS in this way,
it is possible to show (see [5, Remark 4.2 (2)]) that for ρ = dΓ(x,t)

ε − hε (S(x, t), t) and (x, t) ∈ Γ(2δ)
such that dΓ(x, t) ≥ 0 it follows ρ ≥ −CS + 1. Thus, ηCS ,−(ρ) = 0 and since (x, t) ∈ Ω+ we have
W+(x, t) = U+(x, t) = 0 and so

ε2
(
U+ηCS ,+ + U−ηCS ,−)

= ε2
(
W+ηCS ,+ + W−ηCS ,−)

= 0.

A similar statement holds when dΓ(x, t) < 0.

3.1.3. The Boundary Layer Expansion. To be able to guarantee that the approximate solutions satisfy
boundary conditions akin to (1.6)–(1.7), we also need to consider a separate expansion close to the
boundary of Ω. In the following we write n∂Ω(x) := n∂Ω (Pr∂Ω(x)) and τ ∂Ω(x) := τ ∂Ω (Pr∂Ω(x)) for
x ∈ ∂Ω(δ).

We assume that for (x, t) ∈ ∂T Ω(δ) the identities

cε(x, t) = cε
B

(dB(x)
ε , x, t

)
, με(x, t) = με

B

(dB(x)
ε , x, t

)
,

pε(x, t) = pε
B

(dB(x)
ε , x, t

)
, vε(x, t) = vε

B

(dB(x)
ε , x, t

)
(3.39)

hold for the solutions of (1.1)- (1.7) and smooth functions cε
B, με

B, pε
B : R × ∂T0Ω(δ) → R, vε

B : R ×
∂T0Ω(δ) → R

2. Furthermore, we assume that the expansions

cε
B (z, x, t) ≈ −1 +

∑

k≥1

εkcBk (z, x, t) , με
B (z, x, t) ≈

∑

k≥0

εkμB
k (z, x, t) ,

pε
B (z, x, t) ≈

∑

k≥0

εkpBk (z, x, t) , vε
B (z, x, t) ≈

∑

k≥0

εkvB
k (z, x, t) (3.40)

are given for all (z, x, t) ∈ (−∞, 0] × ∂T0Ω(δ). As in the case of the inner expansion, we also assume that
the outer-boundary matching conditions

sup
(x,t)∈∂T0Ω(δ)

∣
∣∂m

x ∂n
t ∂l

z(ϕ
B
k (z, x, t) − ϕ−

k (x, t))
∣
∣ ≤ Ceαz, (3.41)

hold for ϕ = c, μ,v, p and some constants α,C > 0 and all z ≤ 0, m,n, l ≥ 0. Plugging the assumed form
of the exact solutions (3.39) into the equations (1.1)–(1.4) we obtain for (x, t) ∈ ∂T0Ω(δ) and z = dB(x)

ε
the identities

−∂zzvε
B + ∂zp

ε
B∇dB = ε (2∂zDvε

B∇dB + ∂zvε
BΔdB + με∂zc

ε
B∇dB)

+ ε2 (Δvε
B − ∇pε

B + με
B∇cε

B) ,

∂zvε
B · ∇dB = −εdivvε

B,

where the differential operator ∇ = ∇x, div = divx, Δ = Δx act only on the variable x and not on z. In
the calculations we used |∇dB|2 = 1 for (x, t) ∈ ∂T0Ω(δ).

Moreover, we have

∂zzc
ε
B − f ′ (cε

B) = −ε (με
B + 2∂z∇cε

B · ∇dB + ∂zc
ε
BΔdB) − ε2Δcε

B,

∂zzμ
ε
B = ε (−2∂z∇με

B · ∇dB − ∂zμ
ε
BΔdB + vε

B · ∇dB∂zc
ε
B)

+ ε2 (∂tc
ε
B + vε · ∇cε

B − Δμε
B) .
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Using (3.40) and equating same orders of ε, we get

− ∂zzvB
k + ∂zp

B
k−1∇dB = Vk−1

B for k ≥ 0, (3.42)

∂zvB
k · ∇dB = −divvB

k−1 for k ≥ 0, (3.43)

∂zzc
B
k − f ′′ (−1) cBk = Ak−1

B for k ≥ 1, (3.44)

∂zzμ
B
k = Bk−1

B for k ≥ 0 (3.45)

for all (z, x, t) ∈ (−∞, 0] × ∂T0Ω(δ), where Vk−1
B = Vk−1

B (z, x, t), Ak−1
B = Ak−1

B (z, x, t) and Bk−1
B =

Bk−1
B (z, x, t). In detail, we have

Vk−1
B := 2∂zDvB

k−1∇dB + ∂zvB
k−1ΔdB + μB

0 ∂zc
B
k−1∇dB

+ ΔvB
k−2 − ∇pBk−2 +

k−2∑

i=0

μB
i ∇cBk−2−i, (3.46)

Ak−1
B := −μB

k−1 − 2∂z∇cBk−1 · ∇dB − ∂zc
B
k−1ΔdB − ΔcBk−2 + fk−1(cB0 , . . . , cBk−1), (3.47)

Bk−1
B := −2∂z∇μB

k−1 · ∇dB − ∂zμ
B
k−1ΔdB +

∑

i+j=k−1

vB
i · ∇dB∂zc

B
j + ∂tc

B
k−2

+
∑

i+j=k−2

vB
i · ∇cBj − ΔμB

k−2. (3.48)

We used the convention that all terms with negative index are supposed to be zero, i.e., μ−2 = μ−1 = 0.
To ensure the Dirichlet boundary condition we suppose that

cBk (0, x, t) =
μB

k−1(0, x, t)
f ′′(−1)

for all (x, t) ∈ ∂T0Ω(δ), k ≥ 1, (3.49)

μB
k (0, x, t) = 0 for all (x, t) ∈ ∂T0Ω, k ≥ 0. (3.50)

Regarding the boundary condition of the Stokes system we calculate

2Ds

(
vB

k

(dB(x)
ε , x, t

))
n∂Ω(x) =

1
ε

(I + n∂Ω(x) ⊗ n∂Ω(x)) ∂zvB
k

(dB(x)
ε , x, t

)

+ 2DsvB
k

(dB(x)
ε , x, t

)
n∂Ω(x)

and thus impose

− (I + n∂Ω(x) ⊗ n∂Ω(x)) ∂zvB
k (0, x, t) = 2DsvB

k−1(0, x, t)n∂Ω(x)

− pBk−1(0, x, t)n∂Ω(x) + α0vB
k−1(0, x, t) (3.51)

for all (x, t) ∈ ∂T0Ω, k ≥ 0.

Remark 3.5. It can be shown that by choosing (3.49), the unique solution cB1 to (3.49) satisfies cB1 (z, x, t) =
c−
1 (x, t) for all (z, x, t) ∈ (−∞, 0] × ∂T0Ω(δ).

3.1.4. Existence of Expansion Terms. For the proofs of the statements in this subsection we refer to [7,
Subsection 5.1.6].

Lemma 3.6 (The zeroth order terms). Let (v±, p±, μ±) be extended to Ω±
T0

∪Γ(2δ;T0) as in Remark 3.1.2.
We define the terms of the outer expansion (c±

0 , μ±
0 ,v±

0 , p±
0 ) for (x, t) ∈ Ω±

T0
∪ Γ(2δ;T0) as

c±
0 (x, t) = ±1, μ±

0 (x, t) = μ±(x, t), v±
0 (x, t) = v±(x, t), p±

0 (x, t) = p±(x, t), (3.52)

the terms of the inner expansion (c0, μ0,v0) as

c0(ρ, x, t) = θ0(ρ), (3.53)

μ0(ρ, x, t) = μ+
0 (x, t)η(ρ) − μ−

0 (x, t) (η(ρ) − 1) , (3.54)

v0(ρ, x, t) = v+
0 (x, t)η(ρ) − v−

0 (x, t) (η(ρ) − 1) , (3.55)
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for all (ρ, x, t) ∈ R × Γ(2δ;T0) and the terms of the boundary expansion
(
cB0 , μB

0 ,vB
0 , pB0

)
as

cB0 (z, x, t) = −1, μB
0 (z, x, t) = μ−

0 (x, t), vB
0 (z, x, t) = v−

0 (x, t), pB0 (z, x, t) = p−
0 (x, t)

for all (z, x, t) ∈ (−∞, 0] × ∂T0Ω(δ). Then there are smooth and bounded l0, j0, g0 : Γ(2δ) → R, and
u0, q0 : Γ(2δ) → R

2 such that the outer equations (3.7), (3.9), (3.11) (for k = 0), the inner equations
(3.26), (3.28), (3.30), (3.32), the boundary equations (3.42)–(3.45) (for k = 0), the inner-outer matching
conditions (3.19) the outer-boundary matching conditions (3.41) and the boundary conditions (3.50) and
(3.51) (for k = 0) are satisfied.

Remark 3.7. As a consequence of (3.54), (3.52), the equation for μ±
0 on Γt (1.14) and ΔdΓ(x, t) = −HΓt

(x)
for (x, t) ∈ Γ, we have

μ0(ρ, x, t) = −σΔdΓ(x, t) (3.56)

for (ρ, x, t) ∈ R × Γ. Moreover, it holds
u0 = 0 on Γ (3.57)

and ∂ρv0 = u0dΓη′ in R × Γ(2δ;T0).

Lemma 3.8 (The k-th order terms). Let k ∈ {1, . . . , M + 1} be given. Then there are smooth functions

vk,v±
k ,vB

k ,uk,qk, μk, μ±
k , μB

k , ck, c±
k , cBk , hk, lk, jk, gk, pk−1, p

±
k , pBk−1

which are bounded on their respective domains, such that for k-th order the outer equations (3.8), (3.9)
and (3.11), the inner equations (3.27), (3.29), (3.31) and (3.33), the boundary equations (3.42)–(3.45), the
inner-outer matching conditions (3.19), the outer-boundary matching conditions (3.41) and the boundary
conditions (3.49)–(3.51) are satisfied. Additionally, it holds hk(s, 0) = 0 for all s ∈ T

1. Here v±
k , μ±

k , c±
k

and p±
k are considered to be extended onto Ω±

T0
∪ Γ(2δ;T0) as in Remark 3.1.2.

Remark 3.9. Let us remark upon the difficulties that would arise if we considered e.g. no-slip boundary
conditions for vε. In that case, we would demand for vε

A to also satisfy vε
A = 0 on ∂T0Ω, which may be

achieved by suitable changes to the presented boundary layer expansion. As a consequence, the outer
solution would need to satisfy (among other equations)

divv±
k = 0 in Ω±

T0
,

[vk] = a1 on Γ,

v−
k = a2 on ∂T0Ω,

where a1, a2 are smooth functions, depending only on lower order terms. As a consequence, the divergence
theorem implies

0 =
∫

Ω+(t)

divv+
k dx +

∫

Ω−(t)

divv−
k dx = −

∫

Γt

a1 · nΓt
dH1(p) +

∫

∂Ω

a2 · n∂ΩdH1(p)

for t ∈ [0, T0]. However, this equality does not have to be satisfied for arbitrary k. To avoid this difficulty,
we restricted ourselves to the case of the boundary condition (1.6).

Now we “glue” together the inner and outer expansions of cε in order to get an approximate solution.
We will repeat this later for approximate solutions of με,vε, pε, cf. Definition 4.1.

Definition 3.10 [A First Approximate Solution]. Let S0, . . . ,SM+1 be the expansions up to order M +1
as given in Lemmata 3.6 and 3.8. Let furthermore some ε0 > 0, T ′ ∈ (0, T0] and (h̃ε)ε∈(0,ε0) ⊂ XT ′ with
h̃ε|t=0 = 0 be given (cf. (2.13) for the definition of XT ′). In the following, we write H := (h̃ε)ε∈(0,ε0).

We define

hε,H
A (s, t) :=

M∑

i=0

εihi+1(s, t) + εM− 3
2 h̃ε(s, t) (3.58)
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for (s, t) ∈ T
1 × [0, T ′]. Note that hε(s, t) is well-defined for all (s, t) ∈ T

1 × [0, T ′] since XT ′ ↪→
C0([0, T ′];C1(T1)) due to Proposition 2.6.2 and Sobolev embeddings. Furthermore, we set

c̃I(ρ, x, t) :=
M+1∑

i=0

εici(ρ, x, t), cH
I (x, t) :=

M+1∑

i=0

εici(ρH(x, t), x, t) (3.59)

for ρ ∈ R, (x, t) ∈ Γ(2δ;T ′) and

ρH(x, t) :=
dΓ(x, t)

ε
− hε,H

A (S(x, t), t). (3.60)

For the outer part we set

cO(x, t) :=
M+1∑

i=0

εi
(
c+
i (x, t)χΩ+(x, t) + c−

i (x, t)χΩ−(x, t)
)

for (x, t) ∈ ΩT ′ and for the boundary part we define

cB(x, t) :=
M+1∑

i=0

εicBi
(dB(x,t)

ε , x, t
)

for (x, t) ∈ ∂T ′Ω(δ).
Let ξ ∈ C∞(R) satisfy (1.22). We now define the approximate solution

cε,H
A := ξ(dΓ)cH

I + (1 − ξ(dΓ))(1 − ξ(2dB))cO + ξ(2dB)cB in ΩT ′ . (3.61)

Later on, the family H will be replaced by the terms of correct order hε
M− 1

2
, which will then depend

on ε. But in order to find those terms we need some preparations first, which will turn out to be more
flexible and notationally consistent when they are done with an arbitrary family of functions H.

3.2. A First Estimate of the Error in the Velocity

Let the assumptions and notations of Definition 3.10 hold throughout this subsection. Moreover, we
denote

V0 := {ϕ ∈ C∞(Ω)2 : div ϕ = 0}
H1(Ω)

and a ⊗s b := a ⊗ b + b ⊗ a for a,b ∈ R
n.

For T ∈ (0, T0], ε ∈ (0, ε0) and H = (h̃ε)ε∈(0,ε0) ⊂ XT with h̃ε|t=0 = 0 we consider weak solutions
w̃ε,H

1 : ΩT → R
2 and qε,H

1 : ΩT → R of

−Δw̃ε,H
1 + ∇qε,H

1 = −εdiv
(
(∇cε,H

A − hH) ⊗s ∇RH
)

in ΩT , (3.62)

divw̃ε,H
1 = 0 in ΩT , (3.63)

(
− 2Dsw̃

ε,H
1 + qε,H

1 I
)

· n∂Ω = α0w̃
ε,H
1 on ∂T Ω (3.64)

in the sense of [3, Subsection 2.1]. Here we denote

RH := cε − cε,H
A ,

where cε : ΩT0 → R is a smooth solution to (1.1)- (1.7) with cε
0 defined as in (1.23), for cε

A = cε,H
A and

fixed ψε
0. Note that cε does not depend on H, as

cH
I (x, 0) =

M+1∑

i=0

εici

(
ρH(x, 0), x, 0

)
=

M+1∑

i=0

εici

(dΓ(x,0)
ε , x, t

)

due to hi|t=0 = 0 by construction for i ∈ {1, . . . , M + 1} and h̃ε|t=0 = 0. Moreover, we define hH by

hH(x, t) := −ξ(dΓ(x, t))∂ρc̃I

(
ρH(x, t), x, t

)
εM− 3

2 ∇Γh̃ε(x, t) (3.65)



JMFM Sharp Interface Limit of a Stokes/Cahn–Hilliard System, Part II: Approximate Solutions Page 19 of 48 38

and calculate
(
∇cε,H

A − hH
)
(ρH(x, t), x, t)

= ξ′(dΓ(x, t))∇dΓ(x, t)cH
I (x, t) + ξ(dΓ(x, t))∇c̃I(ρH(x, t), x, t)

+ ξ(dΓ(x, t))∂ρc̃I(ρH(x, t), x, t)
(

1
ε ∇dΓ(x, t) −

M∑

i=0

εi∇Γhi+1(x, t)
)

+ ∇
(
(1 − ξ(dΓ(x, t)))(1 − ξ(2dB(x, t)))cO(x, t) + ξ(2dB(x, t))cB(x, t)

)
(3.66)

for (x, t) ∈ ΩT . We understand the right hand side of equation (3.62) as a functional in (V0)
′ given by

f ε,H(ψ) :=
∫

Ω

ε
((

∇cε,H
A − hH

)
⊗ ∇RH + ∇RH ⊗

(
∇cε,H

A − hH
))

: ∇ψdx (3.67)

for all ψ ∈ V0 and fixed t ∈ [0, T ]. As H ⊂ XT , [3, Theorem 2.1] implies the existence of a unique weak
solution. The following technical proposition is a key element in the proof of existence for the

(
M − 1

2

)
-th

order of the expansion of hε, cf. Theorem 3.15 below.

Proposition 3.11. Let ε0 ∈ (0, 1) and T ′ ∈ (0, T0] be fixed. Furthermore, let for a given family H =
(h̃ε)ε∈(0,ε0) ⊂ XT ′ with h̃ε|t=0 = 0 the function w̃ε,H

1 be defined as the weak solution to (3.62)–(3.64) for
ε ∈ (0, ε0). Then the following statements hold:

1. For all ε ∈ (0, ε0), there exists a constant C(ε) > 0 such that

‖w̃ε,H
1 ‖L2(0,T ′;H1(Ω)) ≤ C(ε)

(
(T ′)

1
2 + ‖h̃ε‖L2(0,T ′;H1(T1))

)
.

2. Let H1 = (hε
1)ε∈(0,ε0),H2 = (hε

2)ε∈(0,ε0) ⊂ XT ′ be given. For all ε ∈ (0, ε0), there exists a constant
C̃(ε) > 0 such that

‖w̃ε,H1
1 − w̃ε,H2

1 ‖L2(0,T ′;H1(Ω)) ≤ C̃(ε)(T ′)
1
2
(
1 + ‖hε

2‖XT ′
)
‖hε

1 − hε
2‖XT ′ .

Proof. Ad 1.: By [3, Theorem 2.1] there is a constant C > 0 such that

‖w̃ε,H
1 ‖L2(0,T ′,H1(Ω)) ≤ Cε

∥
∥(∇cε,H

A − hH) ⊗s ∇RH
∥
∥

L2(0,T ′;L2(Ω))
. (3.68)

Now in order to estimate the right hand side, we first note that

sup
(x,t)∈Ω×(0,T ′)

∣
∣
∣∇cε,H

A (x, t) − hH(x, t)
∣
∣
∣ ≤ C

ε
, (3.69)

with a constant C > 0 that does not depend on H. This can be deduced from the representation (3.66)
and the fact that cB and its appearing derivatives are in L∞ (∂T0Ω(δ)), cO and its derivatives are in
L∞ (ΩT0) and c̃I and its appearing derivatives are in L∞ (R × Γ (2δ;T0)). So we obtain

∥
∥
∥ε(∇cε,H

A − hH) ⊗s ∇RH
∥
∥
∥

L2(ΩT ′ )
≤ C1(ε)(T ′)

1
2 + C2(ε)‖∇Γh̃ε‖L2(Γ(2δ;T ′))

≤ C(ε)
(
(T ′)

1
2 + ‖hε‖(L2(0,T ′;H1(T1)))

)
,

where we used that cε is a known function and thus

sup
t∈(0,T ′)

‖∇cε‖L2(Ω) ≤ C(ε) (3.70)

holds for some ε-dependent constant C(ε). An analoguous estimate for ∇RH ⊗ (∇cε,H
A − hH) yields the

first part of the proposition.
Ad 2.: We write f ε,H := ε

(
∇cε,H

A − hH
)

⊗s ∇
(
cε − cε,H

A

)
and get using [3, Theorem 2.1] that

‖w̃ε,H1
1 − w̃ε,H2

1 ‖L2(0,T ′;H1(Ω)) ≤ C‖f ε,H1 − f ε,H2‖L2(0,T ′;L2(Ω)). (3.71)

Now in order to show the statement we first note that

Dk
ρDl

x

(
c̃I

(
ρH1(x, t), x, t

)
− c̃I

(
ρH2(x, t), x, t

))
= Dk+1

ρ Dl
xcI

(
ξ(x, t), x, t

)
εM− 3

2 (hε
2 − hε

1)
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for all (x, t) ∈ Γ(2δ, T ′) and k, l ∈ {0, 1} due to Taylor’s theorem. Here ξ : Γ(2δ, T ′) → R is a suitable
function depending on H1 and H2. Since all the terms which do not depend on H1, H2 cancel, we may
estimate

ε
∥
∥(

(∇cε,H1
A − hH1) − (∇cε,H2

A − hH2)
)

⊗s ∇cε
∥
∥

L2(ΩT ′ )
≤ C(ε)(T ′)

1
2 ‖hε

1 − hε
2‖XT ′

by (3.70), a Taylor expansion and XT ′ ↪→ C0([0, T ′];C1(T1)). With the help of a similar argumentation
the other terms in f ε,H1 − f ε,H2 may be treated, yielding the claim. �

3.3. Constructing the
(
M − 1

2

)
-th Terms

Our goal is to construct approximate solutions (vε
A, pε

A, cε
A, με

A) which fulfill (1.29)–(1.32) in ΩT0 , where
rε
S, rε

div, r
ε
CH1 and rε

CH2 are suitable error terms, which will be discussed in detail in Chapter 4. In (1.31)
we consider

wε,H
1 =

w̃ε,H
1

εM− 1
2

(3.72)

instead of wε
1, where w̃ε,H

1 is the weak solution to (3.62)–(3.64). Moreover, we write

wε,H
1 |Γ(x, t) := wε,H

1 (PrΓt
(x), t) for (x, t) ∈ Γ(2δ;T0)

and we use a suitable family H = (h̃ε)ε∈(0,ε0) ⊂ XT0 . Due to this appearance of a non-integer order term,
it is natural to also consider non-integer order terms in the expansion of (cε, με,vε, pε). More precisely, we
assume that terms εM− 1

2 (v±
M− 1

2
, p±

M− 1
2
, c±

M− 1
2
, μ±

M− 1
2
) (defined in Ω±

T0
) appear in the outer expansion and

that terms εM− 1
2 (vM− 1

2
, pM− 1

2
, cM− 1

2
, μM− 1

2
) (defined in R × Γ(2δ;T0)) appear in the inner expansion.

Moreover, we assume that there is a term εM− 3
2 hM− 1

2
: T1 × [0, T0] → R appearing in the expansion

of hε (and we sometimes write hε
M− 1

2
= hM− 1

2
) and further that there are εM− 1

2uM− 1
2

and εM− 1
2 lM− 1

2

appearing in the expansions of uε and lε. We assume that all these functions are smooth in their respective
domains; thus we can also consider wε,H

1 and wε,H
2 to be smooth, due to regularity theory. Note that we

do not introduce qM− 1
2
, jM− 1

2
or gM− 1

2
. In the following, we will fix H =

(
hε

M− 1
2

)

ε∈(0,ε0)
and drop the

explicit dependence on a family H in the notations when referring to H, i.e. we write h = hH , w̃ε
1 = w̃ε,H

1

and so forth.
In the following, we only assume that the zeroth and first order terms have been constructed with the

help of Lemmata 3.6 and 3.8.

3.3.1. The Outer Expansion. Using a Taylor expansion in (1.4) as before, we explicitly get in Ω±
T0

c±
M− 1

2
= 0, (3.73)

which can be derived similarly to (3.8). From (1.1)–(1.2), we deduce that the equations

−Δv±
M− 1

2
+ ∇p±

M− 1
2

= 0 in Ω±
T0

, (3.74)

divv±
M− 1

2
= 0 in Ω±

T0
, (3.75)

have to hold, as ∇c±
M− 1

2
= ∇c±

0 = 0. Using c±
M− 1

2
= 0 in (1.3), we get

Δμ±
M− 1

2
= ∂tc

±
M− 1

2
+ v±

M− 1
2

· ∇c±
0 + v±

0 · ∇c±
M− 1

2
= 0 in Ω±

T0
. (3.76)

We get corresponding boundary conditions for (3.74)–(3.75) and (3.76) on Γ from the inner expansion.
These boundary conditions will turn out to be non-trivial. But note that, since c±

M− 1
2

= 0, we do not
have to construct a boundary layer expansion, as we may explicitly prescribe the boundary values

(
− 2Dsv−

M− 1
2

+ p−
M− 1

2
I
)
n∂Ω = α0v−

M− 1
2

on ∂T0Ω
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for (3.74)–(3.75) and the Dirichlet datum μ−
M− 1

2
= 0 for (3.76).

In the following, we assume that
(
v±

M− 1
2
, p±

M− 1
2
, c±

M− 1
2
, μ±

M− 1
2

)
are smoothly extended to Ω±

T0
∪

Γ(2δ;T0), as discussed in Remark 3.1 for the integer order terms.

3.3.2. The Inner Expansion. We assume that the matching conditions (3.19) hold for the inner terms
vM− 1

2
, pM− 1

2
, cM− 1

2
, μM− 1

2
. As these are the first terms of fractional order which we introduce, the

following identities can be derived from (3.21)–(3.24):

−∂ρρ

(
vM− 1

2
− (uM− 1

2
dΓ − u0hM− 1

2
)η

)
= 0, (3.77)

∂ρ

(
vM− 1

2
· n −

(
uM− 1

2
dΓ − u0hM− 1

2

)
· nη

)
= 0, (3.78)

∂ρρcM− 1
2

− f ′′ (c0) cM− 1
2

= 0, (3.79)

∂ρρ

(
μM− 1

2
− (lM− 1

2
dΓ − l0hM− 1

2
)η

)
= 0 (3.80)

in R×Γ(2δ;T0). Note that we have used ∇ΓhM− 1
2
·(∂ρv0−u0dΓη′) = 0 in R×Γ(2δ;T0) as stated in Remark

3.7. As before, we complement (3.79) with the normalization cM− 1
2
(0, x, t) = 0 for all (x, t) ∈ Γ(2δ;T0).

Then we immediately find that cM− 1
2

= 0 is the unique solution to (3.79).

Now we introduce terms V M− 1
2 , WM− 1

2 , AM− 1
2 , BM− 1

2 which correspond to the respective terms in
(3.27)- (3.33) for order k = M + 1

2 , i.e., right hand sides for fictive terms
(
vM+ 1

2
, pM+ 1

2
, cM+ 1

2
, μM+ 1

2

)

which we will not construct. These are given by

AM− 1
2 = −μM− 1

2
− 2∂ρρc0∇ΓhM− 1

2
· ∇Γh1 + ∂ρc0ΔΓhM− 1

2
− g0hM− 1

2
η′, (3.81)

BM− 1
2 = ∂ρc0vM− 1

2
· n − ∂ρμM− 1

2
ΔdΓ − 2∇∂ρμM− 1

2
· n − lM− 1

2
η′′ (ρ + h1)

− ∂ρc0v0 · ∇ΓhM− 1
2

− 2∂ρρμ0∇ΓhM− 1
2

· ∇h1 − ∂ρc0∂
Γ
t hM− 1

2
+ ∂ρμ0ΔΓhM− 1

2

+ 2∇∂ρμ0 · ∇ΓhM− 1
2

− hM− 1
2

(l1η′′ + j0η
′) + wε

1|Γ · n∂ρc0, (3.82)

VM− 1
2 = ∂ρvM− 1

2
ΔdΓ + 2

(
(∇∂ρvM− 1

2
)Tn − (∇∂ρv0)T ∇ΓhM− 1

2

)
− ∂ρv0ΔΓhM− 1

2

− ∂ρpM− 1
2
n + ∂ρp0∇ΓhM− 1

2
+ 2∂ρρv0∇ΓhM− 1

2
· ∇Γh1 + μM− 1

2
∂ρc0n

− μ0∂ρc0∇ΓhM− 1
2

+ (ρ + h1)uM− 1
2
η′′ + hM− 1

2
(u1η

′′ − q0η
′) (3.83)

and

WM− 1
2 = ∂ρvM− 1

2
∇Γh1 + ∂ρv1∇ΓhM− 1

2
− divvM− 1

2
− uM− 1

2
· nη′ (ρ + h1)

− u1 · nη′hM− 1
2

− (uM− 1
2

· ∇Γh1 + u1 · ∇ΓhM− 1
2
)dΓη′

+ u0 ·
(
∇ΓhM− 1

2
ρ + (∇ΓhM− 1

2
h1 + ∇Γh1hM− 1

2
)
)
η′. (3.84)

Note the appearance of wε
1|Γ ·n∂ρc0 in (3.82) which is due to the fact that we want to approximate (1.31).

In the following corollary we use the notation

[uk] := u+
k − u−

k

for terms u±
k of the asymptotic expansion.

Corollary 3.12. Let ε > 0, the zeroth and first order terms be given as in Lemmata 3.6 and 3.8 and
assume that

(
vM− 1

2
, pM− 1

2
, cM− 1

2
, μM− 1

2

)
satisfy the matching conditions (3.19) for k = M − 1

2 . Then it
holds

1.
∫
R

AM− 1
2 θ′

0dρ = 0 for all (x, t) ∈ Γ if and only if

1
2

∫

R

μM− 1
2
θ′
0dρ = σΔΓhM− 1

2
− g0hM− 1

2

1
2

∫

R

η′θ′
0dρ on Γ (3.85)

where σ is given as in (1.18)
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2.
∫
R

BM− 1
2 dρ = 0 for all (x, t) ∈ Γ if and only if

0 =
∫

R

θ′
0

(
vM− 1

2
· n − v0 · ∇ΓhM− 1

2

)
dρ −

[
μM− 1

2

]
ΔdΓ − 2

[
∇μM− 1

2

]
· n + lM− 1

2

− 2∂Γ
t hM− 1

2
+ [μ0] ΔΓhM− 1

2
+ 2 [∇μ0] · ∇ΓhM− 1

2
− j0hM− 1

2
+ 2wε

1|Γ · n (3.86)

on Γ.
3.

∫
R
VM− 1

2 · ndρ = 0 for all (x, t) ∈ Γ if and only if

0 = −
[
pM− 1

2

]
+

[
vM− 1

2

]
· nΔdΓ + 2

([
∇vM− 1

2

]T
n − [∇v0]T ∇ΓhM− 1

2

)
· n

+
∫

R

μM− 1
2
θ′
0dρ − q0 · nhM− 1

2
− uM− 1

2
· n on Γ. (3.87)

4.
∫
R
VM− 1

2 · τdρ = 0 for all (x, t) ∈ Γ if and only if

0 =
[
vM− 1

2

]
· τΔdΓ + 2

([
∇vM− 1

2

]T
n −

[
∇v0

]T ∇ΓhM− 1
2

)
· τ + [p0] ∇ΓhM− 1

2
· τ

+ 2σΔdΓ∇ΓhM− 1
2

· τ − q0 · τhM− 1
2

− uM− 1
2

· τ on Γ. (3.88)

Proof. This can be shown by direct calculations. �

3.3.3. Construction of Expansion Terms. Considering the conditons (3.85)- (3.88), it can be reasoned
(see [7, Subsection 5.3.3]) that

(
v±

M− 1
2
, μ±

M− 1
2
, p±

M− 1
2
, hM− 1

2

)
need to satisfy

Δμ±
M− 1

2
= 0 in Ω±

T0
, (3.89a)

−Δv±
M− 1

2
+ ∇p±

M− 1
2

= 0 in Ω±
T0

, (3.89b)

divv±
M− 1

2
= 0 in Ω±

T0
, (3.89c)

μ−
M− 1

2
= 0 on ∂T0Ω, (3.89d)

(
− 2Dsv−

M− 1
2

+ p−
M− 1

2
I
)
n∂Ω = α0v−

M− 1
2

on ∂T0Ω, (3.89e)

coupled to

μ±
M− 1

2
= σΔΓhM− 1

2
+ (∓ 1

2 l0 − η̃g0)hM− 1
2

on Γ, (3.89f)
[
2DsvM− 1

2
− pM− 1

2

]
n = ∇u0nhM− 1

2
− [p0]∇ΓhM− 1

2
+ q0hM− 1

2
+ 2[∇v0]∇ΓhM− 1

2

− 2σΔdΓ∇ΓhM− 1
2

− 2
(
σΔΓhM− 1

2
− g0hM− 1

2
η̃
)
n on Γ, (3.89g)

[
vM− 1

2

]
= 0 on Γ, (3.89h)

∂Γ
t hM− 1

2
= 1

2 (l0ΔdΓ − j0 + ∂nl0) hM− 1
2

+ wε
1 · n + 1

2

(
v+

M− 1
2

+ v−
M− 1

2

)
· n

− v0 · ∇ΓhM− 1
2

− 1
2

(
∂nμ+

M− 1
2

− ∂nμ−
M− 1

2

)
on Γ, (3.89i)

hM− 1
2

∣
∣
t=0

= 0 on Γ0, (3.89j)

at the interface, where η̃ = 1
2

∫
R

η′(ρ)θ′
0(ρ) dρ. Before we may show existence of solutions together with

suitable estimates, we need the following lemmata.

Lemma 3.13. Let ε0 > 0, T ∈ (0, T0] and a family (Tε)ε∈(0,ε0) ⊂ (0, T ] be given. We assume that there is
some C̄ > 0 such that

sup
ε∈(0,ε0)

∥
∥hε

M− 1
2

∥
∥

XTε
≤ C̄ (3.90)

holds. Then there is ε1 ∈ (0, ε0] such that cε
A(., t) satisfies Assumption 2.9 for all t ∈ [0, Tε] and ε ∈ (0, ε1),

where the appearing constant C∗ does not depend on ε, Tε, hε
M− 1

2
or C̄.
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Proof. First of all, we note that there exists ε1 ∈ (0, ε0], which depends on C̄, such that
∣
∣
∣
dΓ(x, t)

ε
− hε

A(S(x, t), t)
∣
∣
∣ ≥ δ

2ε
(3.91)

for all (x, t) ∈ Γ(2δ;Tε)\Γ(δ;Tε) and ε ∈ (0, ε1). This is due to the fact that XT ↪→ C0([0, T ];C1(T1))
and that (3.90) holds. After possibly choosing ε1 > 0 smaller, we may ensure that

|θ0(ρ(x, t)) − χΩ+(x, t) + χΩ−(x, t)| + |θ′
0(ρ(x, t))| ≤ C1e

−C2
δ
2ε (3.92)

holds for all (x, t) ∈ Γ(2δ;Tε)\Γ(δ;Tε) and ε ∈ (0, ε1), as a consequence of (1.21), where C1, C2 > 0 can

be chosen independently of ε1. As a last condition on ε1 we impose that ε
M− 3

2
1 ≤ 1

C̄
such that

εM− 3
2
∥
∥hε

M− 1
2

∥
∥

XTε
≤ 1 for all ε ∈ (0, ε1). (3.93)

In particular, this implies
‖hε

A‖C0([0,Tε];C1(T1)) ≤ C∗ (3.94)

for all ε ∈ (0, ε1), where C∗ is independent of C̄, hε
M− 1

2
and Tε since the operator norm of the embedding

XTε
↪→ C0([0, Tε];H2(T1)) is independent of Tε, cf. Proposition 2.6 and since hi ∈ C0([0, T0];C1(T1)).

Thus, assumption (2.33) follows. (2.34) follows directly from the definition of cε
A and (2.35) is a conse-

quence of (3.94). Similarly, (2.36) follows when taking (3.92) into account.
Next, we show

cI = θ0(ρ) + εpε
(
PrΓt

)
θ1(ρ) + ε2qε,

where θ1 satisfies (2.31) and pε, qε satisfy (2.32). As c0 = θ0 by Lemma 3.6 and c2, . . . , cM+1 ∈ L∞(R ×
Γ(2δ)), the only thing we need to show is that c1 can be decomposed suitably. By (3.31) and (3.36) c1

satisfies

∂ρρc1 − f ′′(θ0)c1 = −μ0 − θ′
0ΔdΓ + g0η

′dΓ for all (ρ, x, t) ∈ R × Γ(2δ).

Thus we find by (3.56) that ∂ρρc1 − f ′′(θ0)c1 = ΔdΓ(σ − θ′
0) for all (ρ, x, t) ∈ R × Γ. Hence, c1(ρ, x, t) =

ΔdΓ(x, t)θ1(ρ) for all (ρ, x, t) ∈ R × Γ, where θ1 is the unique solution to

θ′′
1 − f ′′ (θ0) θ1 = σ − θ

′
0 in R, θ1 (0) = 0

with θ1 ∈ L∞(R). θ1 exists since
∫
R
(σ−θ′

0)θ
′
0dρ = 0 by the definition of σ (cf. [5, Lemma 4.1]) . Moreover,

we have

0 =
∫

R

θ′′
0

(
σ − θ′

0

)
dρ =

∫

R

θ′′
0

(
θ′′
1 − f ′′(θ0)θ1

)
dρ =

∫

R

f (3)(θ0)(θ′
0)

2θ1dρ,

as a consequence of (1.19). Thus θ1 satisfies (2.31). Setting pε = ΔdΓ in Γ(2δ) and

q̃ε(x, t) := 1
ε

(
c1(ρ(x, t), x, t) − pε

(
PrΓt

(x), t
)
θ1(ρ(x, t))

)
,

we can write c1(ρ(x, t), x, t) = pε
(
PrΓt

(x), t
)
θ1(ρ(x, t)) + εq̃ε(x, t). Now we estimate

ε |q̃ε(x, t)| =
∣
∣c1(ρ(x, t), x, t) − c1

(
ρ(x, t),PrΓt

(x), t
)∣∣

=
∣
∣∇xc1

(
ρ(x, t), ξ(x), t

)
·
(
x − PrΓt

(x)
)∣∣ ≤ ε (C|ρ(x, t)| + C∗) ,

where we used a Taylor expansion in the second line and the definition of ρ as well as (3.94) in the last
line. Here C > 0 only depends on c1, as |∇xc1| ∈ L∞ (R × Γ(2δ)). This shows assumption (2.32). �

Lemma 3.14. Let ε0 > 0, T ′ ∈ (0, T0] and a family (Tε)ε∈(0,ε0)
⊂ (0, T ′] be given. Let Assumption 1.3 hold

for cA = cε
A and we assume that there is some C̄ ≥ 1 such that

sup
ε∈(0,ε0)

∥
∥hε

M− 1
2

∥
∥

XTε
≤ C̄ (3.95)
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holds. Then there exists a constant C(K) > 0, which is independent of ε, Tε, hε
M− 1

2
and C̄, and some

ε1 ∈ (0, ε0) such that

‖w̃ε
1‖L2(0,T ;H1(Ω)) ≤ C(K)εM− 1

2 for all ε ∈ (0, ε1), T ∈ (0, Tε]. (3.96)

Proof. See [3, Lemma 4.4]. �

Now we show an existence result for the fractional order terms.

Theorem 3.15. Let ε0 ∈ (0, 1).
1. There exist unique solutions hε

M− 1
2

∈ XT0 , μ±,ε

M− 1
2

∈ L2(0, T0;H2(Ω±(t))) and
(
v±,ε

M− 1
2
, p±,ε

M− 1
2

)
∈ L2(0, T0;H2(Ω±(t))) × L2(0, T0;H1(Ω±(t)))

of (3.89a)–(3.89j) for all ε ∈ (0, ε0), where εM− 1
2wε

1 = w̃ε
1 ∈ L2(0, T0;V0) is the weak solution of

(3.62)–(3.64) with H =
(
hε

M− 1
2

)
ε∈(0,ε0)

.

2. If Assumption 1.3 holds true for cA = cε,H
A , there exist ε1 ∈ (0, ε0] and a constant C(K) > 0

independent of ε such that ∥
∥hε

M− 1
2

∥
∥

XTε
≤ C(K) (3.97)

and, writing ZTε
:= L2(0, Tε;H2(Ω±(t))) ∩ L6(0, Tε;H1(Ω±(t))),

∥
∥μ±,ε

M− 1
2

∥
∥

ZTε
+

∥
∥v±,ε

M− 1
2

∥
∥

L6(0,Tε;H2(Ω±(t)))
+

∥
∥p±,ε

M− 1
2

∥
∥

L6(0,Tε;H1(Ω±(t)))
≤ C(K) (3.98)

for all ε ∈ (0, ε1).

Proof. It is important to be aware that wε
1 depends on hε

M− 1
2

since it is a solution to (3.62), where cε
A

depends on

ρ(x, t) =
dΓ(x, t)

ε
− hε

A (S(x, t), t)

inside of Γ(2δ) and hε
M− 1

2
is a summand in hε

A, see (3.58). Here h̃ε := hε
M− 1

2
. Hence we can use Theorem

2.8 to reduce (3.89) to a fixed point equation

hε
M− 1

2
= ST

(
hε

M− 1
2

)
in XT .

This equation can be uniquely solved for an hε
M− 1

2
∈ XT0 by the same argumentation as in [1, Proof of

Lemma 4.2]. The necessary ingredients in the present case are the existence result for the linear system,
Theorem 2.8, and the estimate and Lipschitz-continuity of the nonlinearity presented in Proposition 3.11.
Details are omitted and can be found in [7, proof of Theorem 5.32].

It remains to prove the second statement. Let Tε > 0 be given for ε ∈ (0, ε0) as in the assumptions.
As a consequence of Theorem 2.8, we have

∥
∥hε

M− 1
2

∥
∥

XT ′
≤ C

∥
∥X∗

0 (wε,H
1 · n)

∥
∥

L2(0,T ′;H
1
2 (T1))

≤ C1
1

εM− 1
2

∥
∥w̃ε,H

1

∥
∥

L2(0,T ′;H1(Ω))
(3.99)

for all T ′ ∈ (0, T0). Here H :=
(
hε

M− 1
2

)
ε∈

(
0,ε0

) and C1 can be chosen independently of T ′. Now we choose

C(K) as in Lemma 3.14 (note that this constant is independent of the choice of h̃ε in the lemma) and
define ĉ(K) := 2C1C(K). Then we find that

T ′
ε := sup

{
t ∈ (0, Tε)

∣
∣
∣
∥
∥hε

M− 1
2

∥
∥

Xt
≤ ĉ(K)

}

satisfies T ′
ε > 0, due to the continuity of the norm ‖.‖Xt

in t > 0 and since hε
M− 1

2
|t=0 = 0 in H2(T1).

Using Lemma 3.14 again (with T ′
ε instead of Tε), we get the existence of ε1 ∈ (0, ε0] such that

∥
∥w̃ε,H

1

∥
∥

L2(0,T ′
ε ;H1(Ω))

≤ C(K)εM− 1
2



JMFM Sharp Interface Limit of a Stokes/Cahn–Hilliard System, Part II: Approximate Solutions Page 25 of 48 38

for all ε ∈ (0, ε1) with the same constant C(K) as above. Thus, by (3.99) we have
∥
∥hε

M− 1
2

∥
∥

XT ′
ε

≤ ĉ(K)
2

< ĉ(K)

for all ε ∈ (0, ε1). By the definition of T ′
ε this already implies T ′

ε = Tε.
Finally, (3.98) follows from (2.29) and (2.19) taken together with the embedding H

1
3 (0, Tε;Y ) ↪→

L6(0, Tε;Y ) for a Banach space Y and Proposition 2.6. �

Remark 3.16. Let
(
hε

M− 1
2
,v±,ε

M− 1
2
, p±,ε

M− 1
2
, μ±,ε

M− 1
2

)
be as in Theorem 3.15 for some ε ∈ (0, ε0).

1. Since hε
M− 1

2
∈ XT0 the right hand side of (3.62) is already in L2(ΩT0), so by regularity theory and

a bootstrap argumentation, we see that hε
M− 1

2
and w̃ε

1 are smooth functions, which transfers to
(
v±,ε

M− 1
2
, p±,ε

M− 1
2
, μ±,ε

M− 1
2

)
. So the true difficulty in the following is not the missing regularity, but the

missing control of higher norms uniformly in ε.
2. As for lower order terms, we may also extend μ±,ε

M− 1
2
, p±,ε

M− 1
2
, v±,ε

M− 1
2

onto Ω±
T0

∪ Γ(2δ) by using the

same extension as discussed in Remark 3.1. As the extension operator E± : W k
p (Ω±(t)) → W k

p (R2)
is continuous, we get in particular

∥
∥
∥E±

(
μ±,ε

M− 1
2

)∥
∥
∥

Hk(Ω±(t)∪Γt(2δ))
≤ C

∥
∥
∥μ±,ε

M− 1
2

∥
∥
∥

Hk(Ω±(t))

for k ∈ N, where we can choose C independently of t ∈ [0, T0]. Similar estimates hold for pε
M− 1

2
and

vε
M− 1

2
(for the latter see (3.12)).

3. In the following we write cε
A := cε,H

A for H =
(
hε

M− 1
2

)
ε∈(0,ε0)

, where cε,H
A is defined in Definition

3.10.

Lemma 3.17 (The
(
M − 1

2

)
th order terms). Let the zeroth and first order terms be given as in Lemmata

3.6 and 3.8, and let ε ∈ (0, 1).
Then we define the terms of the outer expansion

(
hε

M− 1
2
,v±,ε

M− 1
2
, p±,ε

M− 1
2
, μ±,ε

M− 1
2

)
as the unique solution

to (3.89) as given by Theorem 3.15.1 and we consider v±,ε

M− 1
2
, p±,ε

M− 1
2
, μ±,ε

M− 1
2

to be extended onto Ω±
T0

∪
Γ(2δ;T0) (cf. Remark 3.16). Moreover, we set c±,ε

M− 1
2

≡ 0 in Ω±
T0

. We define the terms of the inner

expansion given by the functions
(
cε
M− 1

2
, με

M− 1
2
,vε

M− 1
2
, pε

M− 1
2
, hε

M− 1
2

)
as cε

M− 1
2

≡ 0 and

με
M− 1

2
(ρ, x, t) := μ+,ε

M− 1
2
(x, t)η(ρ) + μ−,ε

M− 1
2
(x, t) (1 − η(ρ)) , (3.100)

vε
M− 1

2
(ρ, x, t) := v+,ε

M− 1
2
(x, t)η(ρ) + v−,ε

M− 1
2
(x, t) (1 − η(ρ)) , (3.101)

pε
M− 1

2
(ρ, x, t) := p+,ε

M− 1
2
(x, t)η(ρ) + p−,ε

M− 1
2
(x, t) (1 − η(ρ)) (3.102)

for all (ρ, x, t) ∈ R × Γ(2δ;T0). Furthermore, we define

lM− 1
2

:=

{
1

dΓ

(
μ+

M− 1
2

− μ−
M− 1

2
+ l0hM− 1

2

)
in Γ(2δ;T0)\Γ,

∇dΓ · ∇
(
μ+

M− 1
2

− μ−
M− 1

2
+ l0hM− 1

2

)
on Γ,

(3.103)

uM− 1
2

:=

{
1

dΓ

(
v+

M− 1
2

− v−
M− 1

2
+ u0hM− 1

2

)
in Γ(2δ;T0)\Γ,

∇dΓ · ∇
(
v+

M− 1
2

− v−
M− 1

2
+ u0hM− 1

2

)
on Γ.

(3.104)

Then the outer equations (3.74)–(3.76), the inner equations (3.77)–(3.80) and the identities (3.85))–(3.88)
are all satisfied.

Proof. As
(
hε

M− 1
2
,v±,ε

M− 1
2
, p±,ε

M− 1
2
, μ±,ε

M− 1
2

)
solves (3.89a)–(3.89j) it is immediately clear that the outer equa-

tions (3.74)–(3.76) are satisfied.
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Concerning (3.85), we compute

1
2

∫

R

θ′
0μ

ε
M− 1

2
dρ = 1

2

∫

R

θ′
0

1
2

(
μ+,ε

M− 1
2

+ μ−,ε

M− 1
2

)
dρ = σΔΓhε

M− 1
2

− g0h
ε
M− 1

2

1
2

∫

R

η′θ′
0dρ,

where we used (3.20) in the first equality and (3.89f) in the second. The validity of (3.87), (3.88) and
(3.86) then follow by the properties of θ0, η and the definition of the zeroth order terms.

Regarding the inner equations (3.77)- (3.80) we compute exemplarily

με
M− 1

2
−

(
lεM− 1

2
dΓ − l0h

ε
M− 1

2

)
η = μ−,ε

M− 1
2

in Γ(2δ)\Γ,

με
M− 1

2
+ l0h

ε
M− 1

2
η = μ−,ε

M− 1
2

on Γ,

where we used the definition of lε
M− 1

2
in the first equality and

[
με

M− 1
2

]
= −l0h

ε
M− 1

2
on Γ in the second

equality. The latter is a consequence of (3.89f). This implies (3.80). Equations (3.77) and (3.78) follow in
the same way, remarking u0 = 0 on Γ (see (3.57)) and

[
vε

M− 1
2

]
= 0 on Γ. �

Notation 3.18. For simplicity, we often write vM− 1
2

= vε
M− 1

2
, v±,ε

M− 1
2

= v±
M− 1

2
etc., especially if we

consider fractional and integer expansion orders together, as in Sect. 4.1.

The following lemma is a key ingredient in order to estimate the remainder terms properly.

Lemma 3.19. Let the
(
M − 1

2

)
th order terms be given as in Lemma 3.17, let the assumptions of Theorem

3.15.2 hold and let ε ∈ (0, ε1).
1. There are L1, L2 ∈ N such that

AM− 1
2 (ρ, x, t) =

L1∑

k=1

A1
k(x, t)A2

k(ρ) for (ρ, x, t) ∈ R × Γ(2δ) and

AM− 1
2 (ρ, x, t) =

L2∑

j=1

A1,Γ
j (x, t)A2,Γ

j (ρ) for (ρ, x, t) ∈ R × Γ,

where
∥
∥A2

k

∥
∥

L∞(R)
+

∥
∥A2,Γ

j

∥
∥

L∞(R)
≤ C for some C > 0 independent of ε, and

∥
∥A1

k

∥
∥

L6(0,Tε;L2(Γt(2δ)))
+

∥
∥A1,Γ

j

∥
∥

L6(0,Tε;L2(Γt))
≤ C(K) (3.105)

for all k ∈ {1, . . . , L1}, j ∈ {1, . . . , L2}. Moreover, there are C,α > 0 independent of ε such that
∣
∣
∣
∣

∫ τ2

−τ1

A2,Γ
j θ′

0dρ

∣
∣
∣
∣ ≤ Ce−α min{τ1,τ2} (3.106)

for τ1, τ2 > 0 large enough and all j ∈
{
1, . . . , L2

}
.

2. There are K1,K2 ∈ N such that

BM− 1
2 (ρ, x, t) =

K1∑

k=1

B1
k(x, t)B2

k(ρ) for (ρ, x, t) ∈ R × Γ(2δ)\Γ and

BM− 1
2 (ρ, x, t) =

K2∑

j=1

B1,Γ
j (x, t)B2,Γ

j (ρ) for (ρ, x, t) ∈ R × Γ,

where B2
k, B2,Γ

j ∈ O(e−α|ρ|) for ρ → ±∞ and
∥
∥B1

k

∥
∥

L2(Γ(2δ;Tε))
+

∥
∥B1,Γ

j

∥
∥

L2(0,Tε;L2(Γt))
≤ C(K) (3.107)

for all k ∈ {1, . . . , K1}, j ∈ {1, . . . , K2}. Moreover, there are C,α > 0 independent of ε such that
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∣
∣
∣
∣

∫ τ2

−τ1

B2,Γ
j dρ

∣
∣
∣
∣ ≤ Ce−α min{τ1,τ2} (3.108)

for τ1, τ2 > 0 large enough and all j ∈ {1, . . . , K2}.
3. There are N1, N2 ∈ N such that

VM− 1
2 (ρ, x, t) =

N1∑

k=1

V1
k(x, t)V2

k(ρ, x, t) for (ρ, x, t) ∈ R × Γ(2δ) and

VM− 1
2 (ρ, x, t) =

N2∑

j=1

V1,Γ
j (x, t)V2,Γ

j (ρ, x, t) for (ρ, x, t) ∈ R × Γ,

where V2
k, V2,Γ

j ∈ Rα and
∥
∥V1

k

∥
∥

L2(Γ(2δ;Tε))
+

∥
∥V1,Γ

j

∥
∥

L2(0,Tε;L2(Γt))
≤ C(K)

for all k ∈ {1, . . . , N1}, j ∈ {1, . . . , N2}. Moreover, there are C,α > 0 independent of ε such that

sup
(x,t)∈Γ

∣
∣
∣
∣

∫ τ2

−τ1

V2,Γ
j dρ

∣
∣
∣
∣ ≤ Ce−α min{τ1,τ2} (3.109)

for τ1, τ2 > 0 large enough and all j ∈ {1, . . . , N2}.

Proof. Ad 1.: Plugging the explicit structure of με
M− 1

2
as given in (3.100) into the definition of AM− 1

2

(see (3.81)) we get

AM− 1
2 = − 1

2

(
μ+,ε

M− 1
2

+ μ−,ε

M− 1
2

)
−

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

)
(η − 1

2 )

− 2∂ρρc0∇Γhε
M− 1

2
· ∇Γh1 + ∂ρc0ΔΓhε

M− 1
2

− g0h
ε
M− 1

2
η′ (3.110)

= ΔΓhε
M− 1

2
(∂ρc0 − σ) + g0h

ε
M− 1

2
(−η′ + η̃) −

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

)
(η − 1

2 )

− 2∂ρρc0∇Γhε
M− 1

2
· ∇Γh1 (3.111)

on R×Γ, where we used (3.89f) in the second line. Since (3.110) also holds on R×Γ(2δ), we immediately
get the first decomposition, noting that c0(ρ, x, t) = θ0(ρ).

Setting A1,Γ
1 = ΔΓhε

M− 1
2
, A2,Γ

1 = ∂ρc0 − σ, etc. we get the desired splitting on Γ (with L2 = 4). It is

clear by the properties of c0 and η that all terms A2
k, A2,Γ

j are bounded on R. Now
∫

R

(
∂ρc0 − σ +

(
− η′ + 1

2

∫

R

η′θ′
0dρ

)
− (η − 1

2 ) − ∂ρρc0

)
θ′
0 dρ = 0

by (1.18), (3.20) and the fact that ∂ρρc0θ
′
0 = 1

2
d
dρ (θ′

0)
2. Since θ′

0 has exponential decay by (1.21) we get
(3.106).

Now note that by the definition in Remark 2.1 we have e.g.

ΔΓhε
M− 1

2
(x, t) =

(
ΔS(x, t)∂s + |∇S(x, t)|2∂ss

)
hε

M− 1
2
(S(x, t), t),

where S is a smooth function Γ(2δ;T0) with bounded derivatives. Thus, by (3.97) and Proposition 2.6.3
it follows

∥
∥ΔΓhε

M− 1
2

+ g0h
ε
M− 1

2
− 2∇Γhε

M− 1
2

· ∇Γh1

∥
∥

L6(0,Tε;L2(Γt(2δ)))
≤ C(K)

and the same estimate also holds true if we exchange Γt(2δ) for Γt. On the other hand, the L6(L2) estimate
for μ±,ε

M− 1
2

follows from the continuity of the trace operator and the extension operator as discussed in
Remark 3.16, together with (3.98).

Ad 2.: We have by definition of BM− 1
2 in (3.82)

BM− 1
2 = ∂ρc0

((
1
2

(
v+,ε

M− 1
2

+ v−,ε

M− 1
2

)
+

(
v+,ε

M− 1
2

− v−,ε

M− 1
2

)
(η − 1

2 )
)

· n
)

− lεM− 1
2
η′′ρ
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+ ∂ρc0

(
− v0 · ∇Γhε

M− 1
2

− ∂Γ
t hε

M− 1
2

+ wε
1|Γ · n

)
+ η′′( − lεM− 1

2
h1 − hε

M− 1
2
l1

)

− η′
(
ΔdΓ

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

)
+ 2∂n

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

)
+ j0h

ε
M− 1

2

)

− 2∂ρρμ0∇Γhε
M− 1

2
· ∇Γh1 + ∂ρμ0ΔΓhε

M− 1
2

+ 2∇∂ρμ0 · ∇Γhε
M− 1

2

on Γ(2δ), where we used (3.101) and (3.100). This makes the decomposition on R × Γ(2δ) obvious if we
note that by (3.54) we have

∇i
x∂l

ρμ0 =
(
∇i

x [μ0]
)
∂l

ρη in R × Γ(2δ), i ∈ {0, 1}, l ∈ {1, 2}

and it is again clear by the properties of c0 = θ0 and η that all terms B2
k exhibit exponential decay.

Now for the decomposition on Γ: As a consequence of (3.89i), we find

BM− 1
2 =

(
v+,ε

M− 1
2

− v−,ε

M− 1
2

)
· n(η − 1

2 )∂ρc0 + j0h
ε
M− 1

2
( 1
2∂ρc0 − η′)

− η′ΔdΓ

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

)
− 1

2 l0ΔdΓ∂ρc0h
ε
M− 1

2
+ ∂nl0h

ε
M− 1

2

(
−η′′ρ − 1

2∂ρc0

)

+ ∂n

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

) (
1
2∂ρc0 − η′′ρ − 2η′) + η′′

(
−lεM− 1

2
h1 − hε

M− 1
2
l1

)

− 2∂ρρμ0∇Γhε
M− 1

2
· ∇Γh1 + ∂ρμ0ΔΓhε

M− 1
2

+ 2∇∂ρμ0 · ∇Γhε
M− 1

2

on R×Γ, where we used the structure of lε
M− 1

2
on Γ as given in (3.103). Using μ+,ε

M− 1
2
−μ−,ε

M− 1
2

= −l0h
ε
M− 1

2

on Γ due to (3.89f), ∂ρρμ0 = ∂ρμ0 = 0 on Γ due to (3.54) and

∇Γhε
M− 1

2
· ∇∂ρμ0 = ∇Γhε

M− 1
2

· n∂n [μ0] η′ = 0

on Γ by (3.54) and ∇Γ∂ρμ0 = 0, we arrive at

BM− 1
2 =

(
v+,ε

M− 1
2

− v−,ε

M− 1
2

)
· n

(
η(ρ) − 1

2

)
∂ρc0 + hε

M− 1
2

(j0 − l0ΔdΓ)
(

1
2∂ρc0 − η′)

+ ∂n

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

) (
1
2∂ρc0 − η′′ρ − 2η′) + ∂nl0h

ε
M− 1

2

(
−η′′ρ − 1

2∂ρc0

)

−
(
lεM− 1

2
h1 + hε

M− 1
2
l1

)
η′′

on R×Γ. This implies the desired decomposition if we set B1,Γ
1 =

(
v+,ε

M− 1
2

− v−,ε

M− 1
2

)
·n, B2,Γ

1 =
(
η(ρ) − 1

2

)

∂ρc0, etc. As before the B2,Γ
k terms possess exponential decay. The integral over the B2,Γ

k terms has
exponential decay due to the properties of η and c0 since e.g.

∫

R

(
1
2∂ρc0 − η′′ρ − 2η′) dρ = 1 +

∫

R

η′dρ − 2 = 0,

∫

R

η′′dρ = 0.

This implies (3.108).
The L2(L2) estimate for the terms of kind B1,Γ

k and B1
k now follows from (3.97), (3.98) and the continuity

of the trace operator H1(Ω±(t)) → L2(Γt) as well as from the continuity of the extension operators for
μ±,ε

M− 1
2

and v±,ε

M− 1
2
.

Ad 3.: Follows in a similar fashion as the proof of the second part and is left to the reader. �

Remark 3.20. We will not construct terms of order M + 1
2 as the right hand sides of the according

ordinary differential equations (similar to (3.77)–(3.80)) would depend on derivatives of the kind ∂Γ
t hε

M− 1
2

and Δhε
M− 1

2
among others. As a result, the already tenuous control (independent of ε) we have over the

terms of order M − 1
2 would only get worse for terms of order M + 1

2 . On the other hand, terms like
ΔμM+ 1

2
, ∂tvM+ 1

2
, etc. would appear in the remainder and have to be estimated suitably, which prohibit

the missing estimates.
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4. Estimates for the Remainder Terms

In this section we will prove that the constructed approximate solutions solve the original system (1.1)–
(1.7) upto error terms of a suitable order in ε. Throughout this section we write

Ik
q := {0, . . . , k} ∪ {q} (4.1)

for k ∈ N and q ∈ R. The following definition is central for the following.

Definition 4.1 [The approximate solutions]. Let ε ∈ (0, 1) and let ξ satisfy (1.22). We define

hε
A(s, t) :=

∑

i∈IM

M− 3
2

εihi+1(s, t)

for (s, t) ∈ T
1 × [0, T0] and ρ(x, t) := dΓ(x,t)

ε − hε
A(S(x, t), t) for (x, t) ∈ Γ(2δ), as well as z(x, t) := dB(x,t)

ε

for (x, t) ∈ ∂T0Ω(δ).
We define the inner solutions as

cI(x, t) :=
M+1∑

i=0

εici(ρ(x, t), x, t), μI(x, t) :=
∑

i∈IM+1
M− 1

2

εiμi(ρ(x, t), x, t),

vI(x, t) :=
∑

i∈IM+1
M− 1

2

εivi(ρ(x, t), x, t), pI(x, t) :=
∑

i∈IM

M− 1
2

εipi(ρ(x, t), x, t),

for all (x, t) ∈ Γ(2δ) and write

cI,k(x, t) := ck (ρ(x, t), x, t) for all (x, t) ∈ Γ(2δ) (4.2)

and analoguously for μI,k, vI,k, pI,k. We write

cO,k(x, t) := c+
k (x, t)χ

Ω+
T0

(x, t) + c−
k (x, t)χΩ−

T0
(x, t) for all (x, t) ∈ ΩT0 (4.3)

and analoguously for μO,k, vO,k, pO,k and define the outer solutions as

cO(x, t) :=
M+1∑

i=0

εicO,k(x, t), μO(x, t) :=
∑

i∈IM+1
M− 1

2

εiμO,k(x, t)

vO(x, t) :=
∑

i∈IM+1
M− 1

2

εivO,k(x, t), pO(x, t) :=
∑

i∈IM

M− 1
2

εipO,k(x, t)

for (x, t) ∈ ΩT0 . We define the boundary solutions as

cB(x, t) := −1 +
M+1∑

i=1

εicBi (z(x, t), x, t), μB(x, t) :=
∑

i∈IM+1
M− 1

2

εiμB
i (z(x, t), x, t),

vB(x, t) :=
∑

i∈IM+1
M− 1

2

εivB
i (z(x, t), x, t) − εM+1vB

M+1(0, x, t),

and pB(x, t) :=
∑

i∈IM

M− 1
2

εipBi (z(x, t), x, t) for (x, t) ∈ ∂T0Ω(δ), where we set

μB
M− 1

2
:= μ−

M− 1
2
, vB

M− 1
2

:= v−
M− 1

2
, pBM− 1

2
:= p−

M− 1
2

in (−∞, 0] × ∂T0Ω(δ) (4.4)

and write

cB,k(x, t) := cBk (z(x, t), x, t) for all (x, t) ∈ ∂T0Ω(δ) (4.5)
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and similarly μB,k, vB,k, pB,k with the only exception that

vB,M+1(x, t) = vB
M+1 (z(x, t), x, t) − vB

M+1(0, x, t).

We define the approximate solutions

cε
A := ξ(dΓ)cI + (1 − ξ(dΓ))(1 − ξ(2dB))cO + ξ(2dB)cB, (4.6)

in ΩT0 and write

cA,k(x, t) := ξ(dΓ)cI,k + (1 − ξ(dΓ)) (1 − ξ(2dB)) cO,k + ξ(2dB)cB,k (4.7)

for all (x, t) ∈ ΩT0 . Analoguously we define με
A, vε

A, pε
A and μA,k, vA,k, pA,k.

This definition implies in particular μA,M− 1
2

= ξ(dΓ)μI,M− 1
2

+ (1 − ξ(dΓ)) μO,M− 1
2

and a similar
structure for vA,M− 1

2
, pA,M− 1

2
.

Assumption 4.2. Throughout this section we assume that Assumption 1.3 holds for cA = cε
A and ε0 ∈

(0, 1), the family (Tε)ε∈(0,ε0) and K ≥ 1. Moreover, we assume ε1 ∈ (0, ε0] is given as in Theorem 3.15.2
and such that (3.96) holds for w̃ε

1, the weak solution to (3.62)–(3.64) with H =
(
hε

M− 1
2

)
ε∈(0,ε0)

.

Note in particular that the assumptions of Lemma 3.13 are satisfied in this situation. Addtitionally,
there is some C > 0 such that

‖∇cε
A‖L∞(ΩT0\Γ(2δ)) ≤ Cε (4.8)

for all ε ∈ (0, 1) small enough. This is the case since c±
0 = ±1 in Ω±

T0
(cf. (3.7)) and since cB0 = −1 and

cB1 = c−
1 in ∂T0Ω(δ) due to Corollary (3.5). Moreover, it holds

sup
0≤t≤Tε

‖hε
A(t)‖C1(Γt(2δ)) ≤ C(K) (4.9)

for some C(K) > 0 and all ε ∈ (0, ε1). This is a consequence of the uniform boundedness of hk, k ∈
{1, . . . , M + 1}, and (3.97) for hε

M− 1
2
.

Remark 4.3. At this point, we want to remark about the shortened statements in [3, Subsection 3.1].
Concerning the definitions of cI , cO, μI , etc. there is a discrepancy between the present contribution and
[3]. In [3], μI and vI are defined without the appearance of fractional order terms and in the present
context, we would define

μO,B :=
M+1∑

k=0

εk ((1 − ξ(2dB)) μO,k + ξ(2dB)μB,k) ,

with a similar representation for cO,B and vO,B. Again, this leaves out the fractional order terms, which are
considered separately. These notational differences help in [3] to keep the necessary structural information
about the approximate solutions as compact as possible, while still presenting enough background to make
the proofs self-contained. Now cO,B = ±1 + O(ε) in C1(Ω±

T0
) follows by the same arguments as (4.8) and

‖cO,B‖C2(Ω±
T0

) ≤ C is a consequence of D2
xcB = O(1). μO,B = μ± + O(ε) and vO,B = v± + O(ε) in

L∞(Ω±
T0

) as ε → 0 are direct results of Lemma 3.6. hε
A(s, 0) = 0 for all s ∈ T

1 is a consequence of Lemma
3.8 and (3.89j), while με,−

M− 1
2

= 0 on ∂T0Ω is due to (3.89d).

4.1. The Structure of the Remainder Terms

4.1.1. The Inner Remainder Terms. In the following, let Assumption 4.2 hold and we work under the
notations and assumptions of Definition 4.1. We now analyze up to which order in ε the equations (1.1)–
(1.4) are fulfilled by the inner solutions cI , μI ,vI , pI . For this we use the ordinary differential equations
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satisfied by (ck, μk,vk, pk−1) for k ∈ {0, . . . , M + 1} as constructed for the inner terms and evaluate them
at

ρ(x, t) =
dΓ(x, t)

ε
− hε

A(S(x, t), t) (4.10)

for (x, t) ∈ Γ(2δ;Tε) and ε ∈ (0, ε1). Before we give the explicit formula, note that we can choose ε1 so
small that for all ε ∈ (0, ε1) we have |hε

A − h1| ≤ 1 due to (3.97). Thus, (3.38) is satisfied and using
Remark 3.4 we get

ε2
(
U+ηCS ,+ + U−ηCS ,−) ∣

∣
ρ=

dΓ
ε −hε

A
= ε2

(
W+ηCS ,+ + W−ηCS ,−) ∣

∣
ρ=

dΓ
ε −hε

A
= 0.

Let ε ∈ (0, ε1). Using the inner equations derived in Chapter 3 we get

∂tcI + vI · ∇cI + εM− 1
2 wε

1|Γ · ∇cI − ΔμI

=εM (∂ρcM+1∂tdΓ − ∂ρμM+1ΔdΓ − 2∇∂ρμM+1 · n − jMη′ρ − lM+1η
′′ρ)

+ εM− 1
2wε

1|Γ ·
(

M+1∑

i=1

εi−1∂ρcin +
M+1∑

i=0

(

−
∑

j∈IM

M− 3
2

εi+j∂ρci∇Γhj+1 + εi∇ci

))

−
∑

0≤i≤M+1,j∈IM

M− 3
2

i+j≥M− 1
2

εi+j∂ρci∂
Γ
t hj+1 +

∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M− 1
2

εi+j
(
2∇∂ρμi · ∇Γhj+1 + ∂ρμiΔΓhj+1

)

+
∑

i∈IM+1
M− 1

2

1
ε

∑

0≤j≤M+1
i+j≥M+ 1

2

εi+jvi · n∂ρcj −
∑

0≤j≤M+1, l∈IM

M− 3
2

i+j+l≥M− 1
2

εi+j+lvi · ∂ρcj∇Γhl+1

−
∑

i∈IM+1
M− 1

2
,j,l∈IM

M− 3
2

i+j+l≥M− 1
2

εi+j+l∂ρρμi∇Γhj+1 · ∇Γhl+1 −
∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M+ 1
2

εi+j−1liη
′′hj+1

−
∑

0≤i≤M,k∈IM

M− 3
2

i+j≥M− 1
2

εi+kjiη
′hk+1 +

M+1∑

i=M

εi (∂tci − Δμi) − εM− 1
2 ΔμM− 1

2

+
∑

i∈IM+1
M− 1

2
,0≤j≤M

i+j≥M− 1
2

εi+jvi · ∇cj + εM− 3
2 BM− 1

2 =: rε
CH1,I in Γ(2δ;Tε), (4.11)

where wε
1 is given as in Theorem 3.15. We also get

εΔcI−ε−1f ′(cI) + μI = O(εM+1)

− ε
∑

0≤i≤M+1,j∈IM

M− 3
2

i+j≥M− 1
2

εi+j
(
∂ρciΔΓhj+1 + 2∇∂ρci · ∇Γhj+1

)
+

∑

0≤i≤M,j∈IM

M− 3
2

i+j≥M+ 1
2

εi+jgiη
′hj+1

+ ε
∑

0≤i≤M,j,l∈IM

M− 3
2

i+j+l≥M− 1
2

εi+j+l∂ρρci∇Γhj+1 · ∇Γhl+1 − εM− 1
2 AM− 1

2 =: rε
CH2,I (4.12)

in Γ(2δ;Tε), where the Landau symbol is with respect to L∞(Γ(2δ;T0)). Furthermore,

divvI = εM+1 divvM+1 −
∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M+ 1
2

εi+j∂ρvi · ∇Γhj+1 +
∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M+ 1
2

εi+jui · nη′hj+1
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+
∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M+ 1
2

εi+jui · ∇Γhj+1η
′dΓ − ε

∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M− 1
2

εi+jui · ∇Γhj+1η
′ρ

− ε
∑

i∈IM+1
M− 1

2
,j,k∈IM

M− 3
2

i+j+k≥M− 1
2

εi+j+kui · ∇Γhj+1hk+1η
′ − εM− 1

2 WM− 1
2 =: rε

div,I (4.13)

and

−ΔvI + ∇pI − μI∇cI

= εM
(
−∂ρvM+1ΔdΓ − 2∇∂ρvT

M+1n + qMη′ρ − uM+1η
′′ρ

)

− 1
ε

∑

i∈IM+1
M− 1

2
,0≤j≤M+1

i+j≥M+ 1
2

εi+jμi∂ρcjn −
∑

i∈IM+1
M− 1

2
,j,l∈IM

M− 3
2

i+j+l≥M− 1
2

εi+j+l∂ρρvi∇Γhj+1 · ∇Γhl+1

−
∑

i∈IM

M− 1
2

,j∈IM

M− 3
2

i+j≥M− 1
2

εi+j∂ρpi∇Γhj+1 +
∑

i∈IM+1
M− 1

2
,l∈IM

M− 3
2

∑

0≤j≤M+1

i+j+l≥M− 1
2

εi+j+lμi∂ρcj∇Γhl+1

+
∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M− 1
2

εi+j
(
∂ρviΔΓhj+1 + 2∇∂ρvT

i ∇Γhj+1

)

− 1
ε

∑

i∈IM+1
M− 1

2
,j∈IM

M− 3
2

i+j≥M+ 1
2

εi+juiη
′′hj+1 +

1
ε

∑

0≤i≤M,j∈IM

M− 3
2

i+j≥M− 1
2

εi+j+1qiη
′hj+1 −

M+1∑

i=M

εiΔvi

+ εM∇pM − εM− 1
2

(
ΔvM− 1

2
− ∇pM− 1

2

)
−

∑

0≤j≤M,i∈IM+1
M− 1

2
i+j≥M− 1

2

εi+jμi∇cj − εM− 3
2VM− 1

2

=: rε
S,I in Γ(2δ;Tε). (4.14)

4.1.2. The Outer and Boundary Remainder Terms. By the outer equations considered in Chapter 3 we
get in Ω+

T0
∪ Ω−

T0

∂tcO + vO · ∇cO − ΔμO = εM+ 1
2vO,M− 1

2
· ∇cO,1 +

∑

i∈IM+1
M− 1

2
,0≤j≤M+1

i+j≥M+ 3
2

εi+jvO,i · ∇cO,j

=: rε
CH1,O (4.15)

and

εΔcO − ε−1f ′(cO) + μO = O(εM+1) + εM− 1
2 μO,M− 1

2
=: rε

CH2,O (4.16)

in L∞(Ω+
T0

∪ Ω−
T0

). Furthermore,

−ΔvO + ∇pO − μO∇cO = −εM+ 1
2 μO,M− 1

2
∇cO,1 −

∑

i∈IM+1
M− 1

2
0≤j≤M+1
i+j≥M+ 3

2

εi+jμO,i∇cO,j =: rε
S,O (4.17)

and
divvO = 0 =: rε

div,O. (4.18)
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Consider the ordinary differential equations (3.42)–(3.45) satisfied by
(
cBk , μB

k ,vB
k , pBk−1

)
evaluated at

z(x, t) = dB(x,t)
ε for (x, t) ∈ ∂T0Ω(δ) and ε ∈ (0, ε1) and the outer equations as discussed in (3.89a)-

(3.89c) for
(
μB

M− 1
2
,vB

M− 1
2
, pB

M− 1
2

)
. Then

∂tcB + vB · ∇cB − ΔμB = O(εM ) + εM+ 1
2

∑

1≤j≤M+1

εj−1v−
M− 1

2
· ∇cBj

+
∑

2≤j≤M+1

εM+j− 3
2v−

M− 1
2

· ∇dB∂zc
B
j =: rε

CH1,B, (4.19)

as a consequence of ∂zc
B
0 = ∂zc

B
1 = 0, see Corollary 3.5. Moreover,

εΔcB − ε−1f ′ (cB) + μB = O(εM+1) + εM− 1
2 μ−

M− 1
2

=: rε
CH2,B, (4.20)

−ΔvB + ∇pB − μB∇cB = O(εM ) − εM+ 1
2 μ−

M− 1
2

∑

1≤j≤M+1

εj−1∇cBj

− εM+ 1
2 μ−

M− 1
2

∑

2≤j≤M+1

εj−2∇dB∂zc
B
j =: rε

S,B (4.21)

in L∞(Ω+
T0

∪ Ω−
T0

) and

divvB = εM+1
(
divvB

M+1 − divvB
M+1|z=0

)
=: rε

div,B (4.22)

in ∂T0Ω(δ). Moreover,

μB = 0, cB = −1, on ∂Ω, (4.23)

(−2DsvB + pBI) · n∂Ω = α0vB on ∂Ω. (4.24)

Remark 4.4. We introduce the notation

r̃ε
CH2,B := rε

CH2,B − εM− 1
2 μO,M− 1

2
(4.25)

in ∂T0Ω(δ) for later use. Note that r̃ε
CH2,B ∈ O(εM+1) in L∞(∂T0Ω(δ)).

4.2. First Estimates

In order to streamline the results, we define

TG :=
⋃

i∈{0,...,M+1}
{ci, μi, liη, jiη,vi,uiη,qiη} ,

Th :=
⋃

i,j∈IM+1
M− 1

2
\{0}

{
hj ,∇Γhj ,ΔΓhj , ∂

Γ
t hj ,∇Γhj · ∇Γhi

}
.

The following lemma will yield estimates for almost every term in (4.11), except for BM− 1
2 , which is

treated in Lemma 4.7.

Lemma 4.5 (Estimates for rε
CH1,I and rε

S,I). Let Assumption 4.2 hold, let ϕ ∈ L∞(0, T0;H1(Γt(2δ))) and
let z ∈ L2(0, Tε;H1(Ω)2). Then there is some constant C(K) > 0 such that for all ε ∈ (0, ε1)

∥
∥(

rε
CH1,I − εM− 3

2 BM− 1
2
)
ϕ
∥
∥

L1(Γ(2δ;Tε))
≤ C(K)εMT

1
2

ε ‖ϕ‖L∞(0,Tε;H1(Γt(2δ))) , (4.26)
∥
∥(

rε
S,I + εM− 3

2VM− 1
2
)

· z
∥
∥

L1(Γ(2δ;Tε))
≤ C(K)εM ‖z‖L2(0,Tε;H1(Ω)) . (4.27)
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Proof. The proof makes heavy use of the fact that (3.97) and (3.98) hold under Assumption 4.2. We first
show the inequality for the estimate involving rε

CH1,I in multiple steps, estimating the terms separately:
Step 1: Due to the matching conditions (3.19) and the definition of η, all f ∈ TG satisfy Dl

ρD
k
xf ∈ Rα

for l ∈ {1, 2}, k ∈ {0, 1} and some α > 0. Now let g ∈ Th. Since S : Γ(2δ) → T
1 (as defined in (2.3)) and

its derivatives are bounded in Γ(2δ) we have

|g(x, t)| ≤ C |a(S(x, t), t)|
for some function a : T1 × [0, T0] → R, where a is given by a suitable derivative of the corresponding hi,

i ∈ IM+1
M− 1

2
\ {0}, or hi itself.

Thus we may use [1, Corollary 2.7] to get
∫

Γ(2δ;Tε)

∣
∣Dl

ρD
k
xf · gϕ

∣
∣d(x, t) ≤ CεT

1
2

ε ‖a‖L2((0,Tε)×T1) ‖ϕ‖L∞(0,Tε;H1(Γt(2δ))) .

Now if g corresponds to hl or its derivatives for l ∈ {1, . . . , M + 1}, then a may be estimated in
L∞ (

(0, T0) × T
1
)

uniformly in ε. In case g corresponds to hε
M− 1

2
or its derivatives, we use

∥
∥(

hε
M− 1

2
, ∂sh

ε
M− 1

2
, ∂2

shε
M− 1

2
, ∂th

ε
M− 1

2
,
(
∂sh

ε
M− 1

2

)2)∥∥
L2((0,Tε)×T1)

≤ C
∥
∥hε

M− 1
2

∥
∥

XTε

together with (3.97). If g ∈ L∞(Γ(2δ;T0)) similar estimates follow with a ≡ 1.
Step 2: Concerning the terms involving lε

M− 1
2
: Since XTε

↪→ C0([0, Tε] ×T
1) due to Proposition 2.6.2,

we get by Lemma 2.4.2
∫

Γ(2δ;Tε)

∣
∣lεM− 1

2
η′′hiϕ

∣
∣d(x, t) ≤ C(K)ε

1
2 T

1
2

ε

∥
∥lεM− 1

2

∥
∥

L2(Γ(2δ;Tε))
‖ϕ‖L∞(0,Tε;H1(Γt(2δ))).

Here we also used H1(Γt(2δ)) ↪→ L2,∞(Γt(2δ)) due to Lemma 2.3 and again (3.97). Considering lε
M− 1

2
as

given in (3.103), we note that its numerator vanishes on Γ due to (3.89f). Thus, the mean value theorem
implies for a function γ : (−2δ, 2δ) → (−2δ, 2δ)

∥
∥lεM− 1

2

∥
∥2

L2(Γ(2δ;Tε))
≤ C

∫ Tε

0

∫

T1

∫ 2δ

−2δ

∣
∣
∣∂n

([
με

M− 1
2

]
+ l0h

ε
M− 1

2

)
(X(γ(r), s, t))

∣
∣
∣
2

drdsdt

≤ C1

∫ Tε

0

∫

T1
sup

r∈(−2δ,2δ)

∣
∣[∂nμε

M− 1
2

]
(X(r, s, t))

∣
∣2dsdt +C2

≤ C1

(∥
∥μ+,ε

M− 1
2

∥
∥2

L2(0,Tε;H2(Ω+(t)))
+

∥
∥μ−,ε

M− 1
2

∥
∥2

L2(0,Tε;H2(Ω−(t)))

)
+C2 (4.28)

Now (3.98) implies the desired estimate.
Step 3: Concerning the terms involving wε

1|Γ: As ∂ρci ∈ Rα for i ∈ {1, . . . , M + 1} we may again use
[1, Corollary 2.7] to get

∫

Γ(2δ;Tε)

|wε
1|Γ · n∂ρciϕ| d(x, t) ≤ CεT

1
2

ε ‖wε
1‖L2(0,T ;L2(Γt))

‖ϕ‖L∞(0,Tε;H1(Γt(2δ))) .

Since wε
1 = w̃ε

1

εM− 1
2

(cf. Theorem 3.15.1), we get due to Lemma 3.14 and the continuity of the trace
operator

∫

Γ(2δ;Tε)

|wε
1|Γ · n∂ρciϕ| d(x, t) ≤ C(K)εT

1
2

ε ‖ϕ‖L∞(0,Tε;H1(Γt(2δ))) .

Moreover, we get
∫

Γ(2δ;Tε)

∣
∣wε

1|Γ∂ρcl∇Γhjϕ
∣
∣ d(x, t) ≤ C(K)εT

1
2

ε ‖ϕ‖L∞(0,Tε;H1(Γt(2δ)))

by similar arguments as above. Finally, we have ∇c0 = 0 (as c0(ρ, x, t) = θ0(ρ)) which immediately shows
the wanted estimate for wε

1|Γ · ∇ci, as ∇ci ∈ L∞(R × Γ(2δ)) for all i ∈ {1, . . . , M + 1}.
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Step 4: Concerning the terms involving vi: Using the explicit form of vε
M− 1

2
as given in (3.101) together

with Lemma 2.4.2 and (3.97) we get
∫

Γ(2δ;Tε)

∣
∣∂ρcjvε

M− 1
2

· (n − ∇Γhk)ϕ
∣
∣d(x, t)

≤ CT
1
2

ε ε
∥
∥
∥
∣
∣v+,ε

M− 1
2

∣
∣ +

∣
∣v−,ε

M− 1
2

∣
∣
∥
∥
∥

L2(0,Tε;L2,∞(Γt(2δ)))
· ‖ϕ‖L∞(0,Tε;H1(Γt(2δ))) .

By H1(Γt(2δ)) ↪→ L2,∞(Γt(2δ)), (3.98) and the continuity of the extension operator we get the desired
estimate.

Step 5: Concerning the terms involving με
M− 1

2
: We use the explicit structure of με

M− 1
2

as given in
(3.100) and estimate

∫

Γ(2δ;Tε)

∣
∣∇∂ρμ

ε
M− 1

2
· ∇Γhiϕ

∣
∣d(x, t)

≤ C

∫ Tε

0

∫

T1
|∂shi(s, t)|

∫ 2δ

−2δ

∣
∣∇∂ρμ

ε
M− 1

2

(
r
ε − hε

A(s, t),X(r, s, t)
)
ϕ ◦ X

∣
∣drdsdt

≤ Cε

∫ Tε

0

∫

T1
|∂shi(s, t| sup

r∈(−2δ,2δ)

∣
∣[∇με

M− 1
2

]
(X(r, s, t))ϕ ◦ X

∣
∣dsdt

∫

R

|η′(ρ)| dρ

≤ Cε

∫ Tε

0

∥
∥[

∇με
M− 1

2

]∥∥
L4,∞(Γt(2δ))

‖ϕ‖L4,∞(Γt(2δ)) dt‖∂shi‖L∞(0,Tε;L2(T1))

≤ C(K)εT
1
2

ε ‖ϕ‖L∞(0,Tε;H1(Γt(2δ))). (4.29)

Here we used sup(x,t)∈Γ(2δ;Tε)

∣
∣∇Γhj(x, t)

∣
∣ ≤ C(K) for j ∈ IM+1

M− 1
2
\ {0}. The same procedure yields the

desired estimate for ∂ρρμ
ε
M− 1

2
∇hi ·∇hj and ∂ρμ

ε
M− 1

2
Δhi, i, j ∈ IM+1

M− 1
2
\ {0}. For the latter, it is necessary

to use XTε
↪→ C0

(
[0, Tε] ;H2(T1)

)
.

To treat Δμε
M− 1

2
we set

CK := sup
ε∈(0,ε1)

sup
(s,t)∈T1×[0,Tε]

|hε
A(s, t)| (4.30)

which is well defined due (4.9). As Δμε
M− 1

2
= ηΔμ+,ε

M− 1
2

+ (1 − η)Δμ−,ε

M− 1
2

and Δμ±,ε

M− 1
2

= 0 in Ω±
Tε

by
(3.89a), we find

∫

Ω+
Tε

∩Γ(2δ;Tε)

∣
∣Δμε

M− 1
2
ϕ
∣
∣d(x, t)

≤ C

∫ Tε

0

∫

T1
‖ϕ(., s, t)‖L∞(−2δ,2δ)

∫ 2δ

0

∣
∣Δμ−,ε

M− 1
2
(1 − η(ρ(r, s, t)))

∣
∣drdsdt

≤ CT
1
2

ε ‖ϕ‖L∞(0,Tε;H1(Ω))

∥
∥Δμ−,ε

M− 1
2

∥
∥

L2(Γ(2δ;Tε))
ε

1
2 ‖1 − η‖L2(−CK ,∞)

≤ C(K)T
1
2

ε ε
1
2 ‖ϕ‖L∞(0,Tε;H1(Ω)), (4.31)

where we used η − 1 ≡ 0 in (1,∞), the continuity of the extension operator for μ±,ε

M− 1
2

and (3.98) in the

last line. A similar estimate holds on Ω−
Tε

∩ Γ(2δ;Tε).
Now (4.26) follows since all not considered terms may be treated by simply using Hölder’s inequality

and L∞ bounds (for vi · ∇cj note ∇c0 = 0 and apply (3.98) for the fractional order term).
Regarding (4.27), the same ideas may be applied with the sole difference that z is only L2 in time

and as a consequence we do not get the term T
1
2

ε in the estimates. Due to the many similarities, we only
show three estimates in detail:



38 Page 36 of 48 Helmut Abels and Andreas Marquardt JMFM

Concerning ∂ρp
ε
M− 1

2
∇Γhj · z for j ∈ IM+1

M− 1
2
\ {0}, we use the explicit form of pε

M− 1
2

as given in (3.102)
to estimate

∥
∥∂ρp

ε
M− 1

2
∇Γhjz

∥
∥

L1(Γ(2δ;Tε))
≤ C(K)ε

∥
∥[

pε
M− 1

2

]
z
∥
∥

L1(0,Tε);L1,∞(Γt(2δ)))
‖η′‖L1(R)

≤ C(K)ε‖z‖L2(0,Tε;H1(Ω)),

where we used Lemma 2.4.1 in the first inequality and H1(Γt(2δ)) ↪→ L2,∞(Γt(2δ)) (cf. Lemma 2.3) as
well as (3.98) together with the continuity of the extension operator for p±,ε

M− 1
2

(cf. Remark 3.16) in the

last inequality. Here we again used the notation
[
pε

M− 1
2

]
= p+,ε

M− 1
2

− p−,ε

M− 1
2
.

Concerning terms involving ∂ρvε
M− 1

2
: Using the explicit form of vε

M− 1
2

as given in (3.101), we exem-
plarily estimate

∫

Γ(2δ;Tε)

∣
∣∇∂ρvε

M− 1
2

· ∇Γhiz
∣
∣d(x, t)

≤ Cε

∫ Tε

0

‖∂shi‖L2(T1)

∥
∥[

∇vε
M− 1

2

]∥∥
L4,∞(Γt(2δ))

‖z‖L4,∞(Γt(2δ))dt‖η′‖L1(R)

≤ Cε‖hi‖L4(0,Tε;H2(T1))

∥
∥[

∇vε
M− 1

2

]∥∥
L4(0,Tε;H1(Γt(2δ)))

‖z‖L2(0,Tε;H1(Ω))

≤ C(K)ε‖z‖L2(0,Tε;H1(Ω))

for all i ∈ I
M− 1

2
M+1 \ {0}, where we used H1(Γt(2δ)) ↪→ L4,∞(Γt(2δ)) in the second inequality and the

continuity of the trace operator, (3.98) and XTε
↪→ H

1
2 (0, Tε;H2(T1)) in the last inequality. The same

procedure can be used to estimate ∂ρρvε
M− 1

2
∇Γhi · ∇Γhj and ∂ρvε

M− 1
2
ΔΓhi for all i, j ∈ IM+1

M− 1
2
\ {0}.

Concerning Δvε
M− 1

2
− ∇pε

M− 1
2
: Let CK be given as in (4.30). Since

Δvε
M− 1

2
− ∇pε

M− 1
2

=
(
Δv+,ε

M− 1
2

− ∇p+,ε

M− 1
2

)
η +

(
Δv−,ε

M− 1
2

− ∇p−,ε

M− 1
2

)
(1 − η)

and Δv±,ε

M− 1
2

− ∇p±,ε

M− 1
2

= 0 in Ω±
Tε

by (3.89b), we can use the same approach as in (4.31) together with
(3.98) in the last line. �

The following proposition simplifies the estimates of remainder terms in (4.12).

Proposition 4.6. Let R = cε − cε
A. It holds

‖R‖L1(Γ(δ;Tε)) ≤ C(K)T
1
2

ε εM for all ε ∈ (0, ε1).

Proof. Due to Assumption 4.2, we may use [3, Proposition 3.3] and find that

R = ε− 1
2 Z(S(x, t), t)

(
β(S(x, t), t)θ′

0(ρ(x, t)) + FR
1 (x, t)

)
+ FR

2 (x, t) (4.32)

for (x, t) ∈ Γ(δ;Tε) with according estimates for Z, FR
1 , FR

2 . Using theses estimates we get
∫ Tε

0

∫

Γt(δ)

|R|dxdt

≤ C

∫ Tε

0

∫

T1

∫ δ
ε −hε

A

− δ
ε −hε

A

ε
1
2
∣
∣Z(s, t)

(
β(s, t)θ′

0(ρ) + FR
1 (ρ, s, t)

)∣∣ |Jε(ρ, s, t)| dρdsdt

+ CT
1
2

ε

∥
∥FR

2

∥
∥

L2(0,Tε;L2(Γt(δ)))

≤ CT
1
2

ε

(
ε

1
2 ‖Z‖L2(0,Tε;L2(T1))(1 + ε

1
2 ) + C(K)εM+ 1

2

)
≤ C(K)T

1
2

ε εM

for all ε ∈ (0, ε1). �
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When inspecting the remainder terms (4.11)- (4.14), one observes that the terms AM− 1
2 , BM− 1

2 ,
VM− 1

2 and WM− 1
2 are multiplied by a lower power of ε than the rest. Gaining these missing powers of ε

needs delicate work; the main ingredient for this is that we have intricate structural knowledge of AM− 1
2

etc. due to Lemma 3.19.

Lemma 4.7. Let ϕ ∈ L∞(0, Tε;H1(Ω)), z ∈ L2(0, Tε;H1(Ω)2) and R = cε − cε
A. Then there is some

ε2 ∈ (0, ε1] such that for all ε ∈ (0, ε2)

εM− 3
2

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

BM− 1
2 ϕdx

∣
∣
∣dt ≤ C(K)εM

(
T

1
2

ε + ε
1
2
)
‖ϕ‖L∞(0,Tε;H1(Ω)), (4.33)

εM− 3
2

∫ Tε

0

∣
∣
∣
∫

Γt(δ)

VM− 1
2 · zdx

∣
∣
∣dt ≤ C(K)εM‖z‖L2(0,Tε;H1(Ω)), (4.34)

εM− 1
2

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

AM− 1
2 Rdx

∣
∣
∣dt ≤ C(K)ε2M

(
T

1
3

ε + ε
1
2
)
, (4.35)

εM− 1
2
∥
∥WM− 1

2
∥
∥

L2(0,Tε;L2(Γt(2δ)))
≤ C(K)εM . (4.36)

Proof. For the sake of readability we will write throughout this proof

(f)Γ (ρ, x, t) := f(ρ, x, t) − f(ρ,PrΓt
(x), t)

for an arbitrary function f depending on (ρ, x, t) ∈ R × Γ(δ;Tε) (and similarly for functions depending
only on (x, t)). Moreover, for functions ψ : Γ(δ;Tε) → R we use the notation ψ(r, s, t) := ψ(X(r, s, t)) for
(r, s, t) ∈ (−δ, δ) × T

1 × [0, Tε] and write

Jε(ρ, s, t) := J(ε(ρ + hε
A(s, t)), s, t) for all (ρ, s, t) ∈ Is,t

ε × T
1 × [0, T0]

with J(r, s, t) := det
(
D(r,s)X(r, s, t)

)
for (r, s, t) ∈ (−δ, δ) × T

1 × [0, Tε] and

Is,t
ε :=

(
− δ

ε − hε
A(s, t), δ

ε − hε
A(s, t)

)
.

To show (4.33) we denote BM− 1
2 |Γ(ρ, x, t) := BM− 1

2 (ρ,PrΓt
(x), t) and get

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

BM− 1
2 ϕdx

∣
∣
∣dt

≤
∫ Tε

0

∣
∣
∣

∫

Γt(δ)

BM− 1
2 |Γϕdx

∣
∣
∣dt +

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

(
BM− 1

2 − BM− 1
2 |Γ

)
ϕdx

∣
∣
∣dt =: J1 + J2.

The fundamental theorem of calculus implies ϕ(r, s, t) = ϕ(0, s, t)+
∫ r

0
∂nϕ(r̃, s, t)dr̃ for (r, s, t) ∈ (−δ, δ)×

T
1 × [0, T ] and we write

J 1
1 :=

∫ Tε

0

∣
∣
∣

∫

T1

∫ δ

−δ

BM− 1
2 |Γϕ(0, s, t)J(r, s, t)drds

∣
∣
∣dt

J 2
1 :=

∫ Tε

0

∣
∣
∣

∫

T1

∫ δ

−δ

BM− 1
2 |Γ

∫ r

0

∂nϕ(r̃, s, t)dr̃J(r, s, t)drds
∣
∣
∣dt.

Concerning J 1
1 we use the splitting of BM− 1

2 on R × Γ as in Lemma 3.19.2 and get

J 1
1 ≤

K2∑

k=1

∫ Tε

0

∫

T1

∣
∣
∣B1,Γ

k (0, s, t)ϕ(0, s, t)
∣
∣
∣

∣
∣
∣
∣
∣
ε

∫ δ
ε −hε

A

− δ
ε −hε

A

B2,Γ
k (ρ)Jε(ρ, s, t)dρ

∣
∣
∣
∣
∣
dsdt.

Since supε∈(0,ε1) ‖hε
A‖L∞((0,Tε)×T1) < C(K) due to (4.9), it holds

∣
∣
∣
δ

ε
− hε

A

∣
∣
∣ ≥ δ

ε
− C(K) ≥ δ

2ε
for ε > 0 small enough. (4.37)

Moreover, we have
Jε(ρ, s, t) = 1 + ε (ρ + hε

A(s, t)) κ(s, t) (4.38)
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by [6, p. 537, Lemma 4] where κ(s, t) = κ(X0(s, t)) denotes the (principal) curvature of Γt at a point
X0(s, t) = p ∈ Γt. Thus, we may use that B2,Γ

k satisfies (3.108) and that H1 (Γt(δ)) ↪→ L2,∞ (Γt(δ)) holds
for ϕ to get

J 1
1 ≤ CT

1
2

ε

K2∑

k=1

∥
∥
∥B1,Γ

k

∥
∥
∥

L2(0,Tε;L2(Γt))
‖ϕ‖L∞(0,Tε;H1(Ω)) ε

(
e− αδ

ε + εC(K)
)

≤ C(K)ε2 ‖ϕ‖L∞(0,Tε;H1(Ω))

for ε > 0 small enough. Here we also used the fact that
∣
∣B2,Γ

k (ρ)
∣
∣ ≤ C1e

−C2|ρ| for ρ ∈ R , cf. Lemma
3.19.2.

To treat J 2
1 we again use the fact that all terms of kind B2,Γ

k exhibit exponential decay and thus

J 2
1 ≤ C

K2∑

k=1

∫ Tε

0

∫

T1
‖∂nϕ (., s, t)‖L2(−δ,δ)

∣
∣B1,Γ

k (0, s, t)
∣
∣
∫ δ

−δ

|r| 1
2
∣
∣B2,Γ

k (ρ(r, s, t))
∣
∣drdsdt

≤ Cε
3
2

K2∑

k=1

T
1
2

ε ‖ϕ‖L∞(0,Tε;H1(Γt(δ)))

∥
∥B1,Γ

k

∥
∥

L2(0,Tε;L2(Γt))
≤ C(K)ε

3
2 T

1
2

ε ‖ϕ‖L∞(0,Tε;H1(Ω))

where we used (3.107) in the last inequality.
Now we consider J2: Here we use the explicit form of BM− 1

2 as given in (3.82) and estimate the
occurring terms separately. First, note that there appears no term involving wε

1|Γ in
(
BM− 1

2
)Γ as it

cancels out. In order to estimate the term
(
∇∂ρμ

ε
M− 1

2
· n

)Γ = η′([∇με
M− 1

2

])Γ · n (where the equality
follows from (3.100)), we compute

∫

Γ(δ;Tε)

∣
∣
∣η′([∇με

M− 1
2

])Γ · nϕ
∣
∣
∣dxdt

≤ C

∫ Tε

0

∫

T1

∫ δ

−δ

∣
∣
∣η′

∫ r

0

∂2
n

[
με

M− 1
2

]
(r̃, s, t)dr̃ϕ

∣
∣
∣drdsdt

≤ C

∫ Tε

0

∫

T1

∥
∥
∥∂2

n

[
με

M− 1
2

]∥∥
∥

L2(−δ,δ)
‖ϕ‖L∞(−δ,δ)

∫ δ
ε −hε

A

−δ
ε −hε

A

∣
∣
∣η′(ρ)

(
ρ + hε

A

) 1
2

∣
∣
∣ε

3
2 dρdsdt

≤ C(K)T
1
2

ε ε
3
2 ‖ϕ‖L∞(0,Tε;H1(Γt(δ))), (4.39)

where we used (3.98).
(
∂ρc0vε

M− 1
2

)Γ and
(
∂ρμ

ε
M− 1

2
ΔdΓ

)Γ may be treated in a very similar fashion. For
(
lε
M− 1

2
η′′(ρ + h1)

)Γ note that by Taylor’s theorem, we get by the definition of lε
M− 1

2
in (3.103)

∣
∣
∣
(
lεM− 1

2

)Γ(r, s, t)
∣
∣
∣ =

∣
∣
∣
∣

∫ r

0

(r − r̃)
r

(
∂2
n

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

)
+ ∂2

nl0h
ε
M− 1

2

)
(r̃, s, t)dr̃

∣
∣
∣
∣

≤ Cr
1
2

∥
∥
∥∂2

n

(
μ+,ε

M− 1
2

− μ−,ε

M− 1
2

)
+ ∂2

nl0h
ε
M− 1

2

∥
∥
∥

L2(−δ,δ)
(4.40)

for (r, s, t) ∈ (−δ, δ) × T
1 × (0, Tε). This allows for the same strategy to be used as in (4.39).

By Remark 2.1, we have
(
ΔΓhε

M− 1
2
(x, t)

)Γ =
(

(ΔS(x, t))Γ ∂s +
(
|∇S(x, t)|2

)Γ
∂2

s

)
hε

M− 1
2
(S(x, t), t) (4.41)

Thus [1, Corollary 2.7], ∂ρμ0 ∈ Rα and (3.97) imply
∫ Tε

0

∣
∣
∣

∫

Γt(δ)

(
∂ρμ0ΔΓhε

M− 1
2

)Γ
ϕdx

∣
∣
∣dt ≤ C(K)T

1
2

ε ε2
∥
∥hε

M− 1
2

∥
∥

L2(0,Tε;H2(T1))
‖ϕ‖L∞(0,Tε;H1(Ω))

≤ C(K)T
1
2

ε ε2 ‖ϕ‖L∞(0,Tε;H1(Ω)) . (4.42)
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The remaining terms in
(
BM− 1

2

)Γ

can be estimated in a similar fashion. This proves (4.33).
Proof of (4.34): This can be shown analogously to (4.33) due to Lemma 3.19.3. Here we note that z is only

in L2 in time and thus we may not expect T
1
2

ε to appear on the right hand side. Due to the similarities
we shorten the proof: First of all

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

VM− 1
2 · zdx

∣
∣
∣dt ≤

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

VM− 1
2 |Γ · zdx

∣
∣
∣dt +

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

(
VM− 1

2
)Γ · zdx

∣
∣
∣dt.

Then we use Lemma 3.19.3 and (3.109) to obtain e.g.
∫ Tε

0

∣
∣
∣

∫

T1

∫ δ

−δ

(
VM− 1

2
)∣∣

Γ
· z(0, s, t)J(r, s, t)drds

∣
∣
∣dt

≤
N2∑

k=1

∫ Tε

0

∫

T1

∣
∣V1,Γ

k (0, s, t) · z(0, s, t)
∣
∣ε sup(x,τ)∈Γ

∣
∣
∣
∫ δ

ε −hε
A

− δ
ε −hε

A

V2,Γ
k (ρ, x, τ)Jε(ρ, x, τ)dρ

∣
∣
∣dsdt

≤ C(K)ε
3
2 ‖z‖L2(0,Tε;H1(Ω)).

For the other terms, the same argumentation as before can be applied.
Proof of (4.35): We use the decomposition of R as in [3, Proposition 3.3] and the decomposition of AM− 1

2

as in Lemma 3.19.1 to get
∫ Tε

0

∣
∣
∣

∫

Γt(δ)

AM− 1
2 Rdx

∣
∣
∣dt

≤ Cε− 1
2

∫ Tε

0

∫

T1
|Z(s, t)β(s, t)|

∣
∣
∣

∫ δ

−δ

θ′
0(ρ(r, s, t))AM− 1

2 J(r, s, t)dr
∣
∣
∣dsdt

+ Cε− 1
2

L1∑

k=1

∫ Tε

0

∫

T1
|Z(s, t)|

∥
∥A1

k (., s, t)
∥
∥

L2(−δ,δ)

( ∫ δ
ε −hε

A

−δ
ε −hε

A

ε
∣
∣FR

1

∣
∣2 Jεdρ

) 1
2 ∥

∥A2
k

∥
∥

L∞(R)
dsdt

+ C

L1∑

k=1

T
1
3

ε

∥
∥FR

2

∥
∥

L2(0,Tε;L2(Γt(δ)))

∥
∥A1

k

∥
∥

L6(0,Tε;L2(Γt(δ)))

∥
∥A2

k

∥
∥

L∞(R)
=: I1 + I2 + I3.

Concerning I1, we use I1 ≤ I1
1 + I2

1 , where

I1
1 := ε− 1

2

∫ Tε

0

∫

T1
|Z(s, t)|

∣
∣
∣

∫ δ

−δ

θ′
0(r, s, t)A

M− 1
2
∣
∣
Γ
J(r, s, t)dr

∣
∣
∣dsdt,

I2
1 := ε− 1

2

∫ Tε

0

∫

T1
|Z(s, t)|

∣
∣
∣

∫ δ

−δ

θ′
0(r, s, t)

(
AM− 1

2
)Γ

J(r, s, t)dr
∣
∣
∣dsdt.

For I1
1 we use the decomposition in Lemma 3.19.1 on R × Γ to conclude

I1
1 ≤

L2∑

k=1

ε− 1
2

∫ Tε

0

∫

T1
|Z(s, t)|

∣
∣A1,Γ

k (0, s, t)
∣
∣ε

∣
∣
∣

∫ δ
ε −hε

A

− δ
ε −hε

A

A2,Γ
k (ρ)θ′

0(ρ)Jε(ρ, s, t)dρ
∣
∣
∣dsdt.

The estimate in (4.37), (4.38), the properties of A2,Γ
k as shown in (3.106) and the exponential decay of θ′

0

imply

I1
1 ≤ Cε

1
2

L2∑

k=1

‖Z‖L2(0,Tε;L2(Γt))

∥
∥A1,Γ

k

∥
∥

L2(0,Tε;L2(Γt))

(
e− αδ

ε + C(K)ε
)

≤ C(K)εM+1

for ε > 0 small enough, where we used the estimate for Z and (3.105) for A1,Γ
k .

In order to estimate I2
1 , we use the explicit structure of AM− 1

2 and first of all analyze the term
(
με

M− 1
2

)Γ(ρ, x, t) =
(
μ+,ε

M− 1
2

)Γ(x, t)η(ρ) +
(
μ−,ε

M− 1
2

)Γ(x, t)(1 − η(ρ)), (4.43)
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which appears in
(
AM− 1

2
)Γ. We estimate

ε− 1
2

∫ Tε

0

∫

T1
|Z(s, t)|

∣
∣
∣

∫ δ

−δ

θ′
0(ρ(r, s, t))

(
μ+,ε

M− 1
2

)Γ
η(ρ(r, s, t))J(r, s, t)dr

∣
∣
∣dsdt

≤ Cε
3
2

∫ Tε

0

∫

T1
|Z(s, t)| sup

r∈(−δ,δ)

∣
∣∂nμ+,ε

M− 1
2
(r, s, t)

∣
∣
∫ δ

ε −hε
A

−δ
ε −hε

A

|θ′
0(ρ)||ρ + hε

A|dρdsdt

≤ C(K)εM+1.

Here we used Lemma 2.3, the exponential decay of θ′
0, (3.98) and the estimate for Z in the third inequality.

We may treat the term
(
μ−,ε

M− 1
2

)Γ(x, t)(1 − η(ρ(x, t))) completely analogously, which finishes the desired

estimate for
(
με

M− 1
2

)Γ.

Due to (4.41), we will now only consider the term
(
|∇S(x, t)|2

)Γ
∂2

shε
M− 1

2
(S(x, t), t) in AM− 1

2 , the
other occurring terms only involve derivatives of lower order and can be treated in the same manner.
Applying similar techniques as above, we get

ε− 1
2

∫ Tε

0

∫

T1
|Z(s, t)|

∣
∣
∣

∫ δ

−δ

θ′
0(r, s, t)

(
|∇S|2

)Γ
∂2

shε
M− 1

2
J(r, s, t)dr

∣
∣
∣dsdt

≤ CT
1
3

ε ‖Z‖L2(0,Tε;L2(T1))

∥
∥hε

M− 1
2

∥
∥

L6(0,Tε;H2(T1))
ε

3
2 .

Now the estimate for Z, (3.97) and Proposition 2.6.3 together with H
1
2 (0, Tε) ↪→ L6(0, Tε) yield the claim.

Concerning I2 and I3: Using [3, Proposition 3.3], the uniform boundedness of A2
k in R, and (3.105) for

A1
k we get

I2 ≤ C(K)T
1
3

ε ε− 1
2 εM− 1

2 ε
1
2 ε = C(K)T

1
3

ε εM+ 1
2 .

Noting the estimate for FR
2 , we also get

I3 ≤ C(K)T
1
3

ε εM+ 1
2 = C(K)T

1
3

ε εM+ 1
2 .

Combining the estimates for I1, I2 and I3, we obtain (4.35).
Proof of (4.36): We first note that

divvε
M− 1

2
(ρ, x, t) = divv+,ε

M− 1
2
(x, t)η(ρ) + divv−,ε

M− 1
2
(x, t) (1 − η(ρ)) = 0

by the construction (cf. Lemma 3.17) and the properties of the extension operator for v±,ε

M− 1
2
. We show

the estimate by using the explicit form of WM− 1
2 : We estimate

∥
∥∂ρvε

M− 1
2
∇Γh1

∥
∥2

L2(Γ(2δ;Tε))
≤ Cε

∫ Tε

0

∫

T1
sup

r∈(−2δ,2δ)

∣
∣[vε

M− 1
2

]
(r, s, t)

∣
∣2

∫ 2δ
ε −hε

A

− 2δ
ε −hε

A

|η′(ρ)|2dρdsdt

≤ C(K)ε

where we used again H1(Γt(2δ)) ↪→ L2,∞(Γt(2δ)) and (3.98). To treat the term with uε
M− 1

2
· nη′(ρ + h1)

term, we employ a similar strategy as we did when estimating lε
M− 1

2
in (4.28). We use the mean value

theorem and the definition of uε
M− 1

2
in (3.104) to estimate

∥
∥uε

M− 1
2

· nη′(ρ + h1)
∥
∥2

L2(Γ(2δ;Tε))

≤ C

∫ Tε

0

∫

T1

∫ 2δ

−2δ

(
∂n

(
v+,ε

M− 1
2

− v−,ε

M− 1
2

+ u0h
ε
M− 1

2

)
(X(γ(r)), s, t))η′(ρ(r, s, t) + h1)

)2

drdsdt

≤ Cε
∥
∥∂n

(
v+,ε

M− 1
2

− v−,ε

M− 1
2

+ u0h
ε
M− 1

2

)∥∥2

L2(0,Tε;L2,∞(Γt(2δ)))

∫

R

|η′(ρ + 1)|2dρ ≤ C(K)ε,
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where γ(r) is a suitable point in (0, r). These considerations can easily be adapted to estimate all other
terms in WM− 1

2 accordingly. �

The following proposition is a substitute of the matching conditions (3.19) for με
M− 1

2
, vε

M− 1
2

and
pε

M− 1
2
.

Proposition 4.8. There is some ε2 ∈ (0, ε1] such that for all ε ∈ (0, ε2)

Dk
ρDl

x

(
με

M− 1
2
(ρ, x, t) −

(
μ+,ε

M− 1
2
χ

Ω+
T0

+ μ−,ε

M− 1
2
χΩ−

T0

)
(x, t)

)∣∣
ρ=ρ(x,t)

= 0

Dm
t Dk

ρDl
x

(
vε

M− 1
2
(ρ, x, t) −

(
v+,ε

M− 1
2
χ

Ω+
T0

+ v−,ε

M− 1
2
χΩ−

T0

)
(x, t)

)∣∣
ρ=ρ(x,t)

= 0

pε
M− 1

2
(ρ(x, t), x, t) −

(
p+,ε

M− 1
2
χ

Ω+
T0

+ p−,ε

M− 1
2
χΩ−

T0

)
(x, t) = 0

for all (x, t) ∈ Γ(2δ;Tε)\Γ(δ;Tε) and m, k, l ≥ 0.

Proof. This is a direct consequence of dΓ(x,t)
ε −hε

A(x, t) ≥ 1 for (x, t) ∈ Γ(2δ;Tε)\Γ(δ;Tε) and ε > 0 small
enough together with η ≡ 1 in (1,∞) and η ≡ 0 in (−∞,−1). �

The next corollary is a consequence of Proposition 4.8 and the matching conditions for the integer
orders.

Corollary 4.9. There is some ε2 ∈ (0, ε1] such that for all ε ∈ (0, ε2)

‖Dl
x(μI − μO)‖L∞(Γ(2δ;Tε)\Γ(δ;Tε)) + ‖Dl

x(μO − μB)‖L∞(∂TεΩ(δ)\∂TεΩ( δ
2 )) ≤ C(K)e− C̃

ε ,

‖Dl
x(cI − cO)‖L∞(Γ(2δ;Tε)\Γ(δ;Tε)) + ‖Dl

x(cO − cB)‖L∞(∂TεΩ(δ)\∂TεΩ( δ
2 )) ≤ C(K)e− C̃

ε ,

‖Dl
x(vI − vO)‖L∞(Γ(2δ;Tε)\Γ(δ;Tε)) + ‖Dl

x(vO − vB)‖L∞(∂TεΩ(δ)\∂TεΩ( δ
2 )) ≤ C(K)εM+1,

‖pI − pO‖L∞(Γ(2δ;Tε)\Γ(δ;Tε)) + ‖pO − pB‖L∞(∂TεΩ(δ)\∂TεΩ( δ
2 )) ≤ C(K)e− C̃

ε

for l ∈ {0, 1} and constants C(K), C̃ > 0.

Proof. This follows directly from (3.19), (3.41), Proposition 4.8 and the fact that dΓ(x,t)
ε − hε

A(x, t) ≥ δ
2ε

for (x, t) ∈ Γ(2δ;Tε)\Γ(δ;Tε) and for ε > 0 small enough. Note in particular μB
M− 1

2
= μ−,ε

M− 1
2

as defined
in (4.4), which also holds for the other fractional terms, and consider

εM+1‖Dl
x(vO,M+1 − vB,M+1)‖L∞(∂TεΩ(δ)\∂TεΩ( δ

2 ))Ce−α δ
2ε + εM+1‖vB

M+1(0, .)‖L∞(∂T0Ω(δ)),

which accounts for the special case. �

4.3. Estimating the Remainder

The following results are at the same time proofs for the estimates in Theorem 1.4.

Theorem 4.10 (Remainder Terms). Let Assumption 4.2 hold and let for ε ∈ (0, ε0) the functions cε
A, με

A,
vε

A, pε
A, hε

A be defined as in Definition 4.1 and rε
S, rε

div, rε
CH1, rε

CH2 be given as in (1.29)–(1.32), for
wε

1 := 1

εM− 1
2
w̃ε

1. Here w̃ε
1 is the weak solution to (3.62)–(3.64) with H =

(
hε

M− 1
2

)
ε∈(0,ε0)

. Moreover, let

ϕ ∈ L∞(0, Tε;H1(Ω)) and R = cε − cε
A. Then there is some ε2 ∈ (0, ε1] and a constant C(K) > 0 such

that for all ε ∈ (0, ε2)
∫ Tε

0

∣
∣
∣
∫

Ω

rε
CH1ϕdx

∣
∣
∣dt ≤ C(K)

(
T

1
2

ε + ε
1
2
)
εM‖ϕ‖L∞(0,Tε;H1(Ω)), (4.44)

∫ Tε

0

∣
∣
∣
∣

∫

Ω

rε
CH2Rdx

∣
∣
∣
∣dt ≤ C(K)

(
T

1
3

ε + ε
1
2
)
ε2M , (4.45)
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‖rε
S‖L2(0,Tε;(H1(Ω))′) ≤ C(K)εM , (4.46)

‖rε
div‖L2(ΩTε ) ≤ C(K)εM . (4.47)

Proof. As before, we will use the notation ψ(r, s, t) := ψ(X(r, s, t)) for (r, s, t) ∈ (−2δ, 2δ) × T
1 × [0, Tε]

for functions ψ : Γ(2δ;Tε) → R. Let in the following ε̃2 ∈ (0, ε1] be chosen such that the results of Sect. 4.2
hold and let ε ∈ (0, ε̃2).
Proof of (4.44): Since ξ(dΓ) ≡ 1 in Γ(δ;T0), we have rε

CH1 = rε
CH1,I in Γ(δ;Tε) with rε

CH1,I as in (4.11).
Now

∫ Tε

0

∣
∣
∣

∫

Γt(δ)

rε
CH1,Iϕdx

∣
∣
∣dt ≤ C(K)

(
T

1
2

ε + ε
1
2
)
εM ‖ϕ‖L∞(0,Tε;H1(Ω))

holds because of Lemma 4.5 and (4.33).
Moreover, we have (1 − ξ(dΓ))(1 − ξ(2dB)) ≡ 1 in ΩTε

\ (Γ(2δ;Tε) ∪ ∂Tε
Ω(δ)) and thus rε

CH1 = rε
CH1,O

in that domain, with rε
CH1,O as in (4.15). Now all terms in rε

CH1,O which do not involve v±,ε

M− 1
2

can be

estimated in L∞(ΩT0\Γ(2δ;T0)), yielding the desired estimate. The terms involving v±,ε

M− 1
2

can be treated
by using Hölder’s inequality and (3.98), i.e.,

εM+ 1
2

∫ Tε

0

∫

Ω+(t)\Γt(2δ)

∣
∣vε,+

M− 1
2

· ∇c+
j ϕ

∣
∣dxdt ≤ C(K)T

1
2

ε εM+ 1
2 ‖ϕ‖L∞(0,Tε;H1(Ω)) (4.48)

for j ∈ {1, . . . , M + 1}. The same argumentation also holds in Ω−(t).
Close to the boundary, in ∂Tε

Ω( δ
2 ), we have ξ(2dB) ≡ 1 and thus rε

CH1 = rε
CH1,B. As in the outer case,

all terms not involving v−,ε

M− 1
2

may be estimated in L∞(∂T0Ω(δ)), the rest can be estimated as in (4.48).

Next, we give estimates for rε
CH1 in Γ(2δ;Tε)\Γ(δ;Tε): By definition of cε

A and με
A in (4.6) we have

rε
CH1 = ξ(dΓ)rε

CH1,I + (1 − ξ(dΓ))rε
CH1,O − 2ξ′n · ∇(μI − μO)

+ ξ′(dΓ)
(
∂tdΓ + vε

A · n + εM− 1
2wε

1|Γ · nξ(dΓ)
)
(cI − cO)

+ vε
A ·

(
ξ(dΓ)∇cI + (1 − ξ(dΓ))∇cO

)
− ξ(dΓ)vI · ∇cI − (1 − ξ(dΓ))vO · ∇cO

− (μI − μO) (ξ′′ + ξ′ΔdΓ) + εM− 1
2wε

1|Γ · ∇cOξ(dΓ) (1 − ξ(dΓ)) . (4.49)

The term (1 − ξ(dΓ))rε
CH1,O may be estimated in the same way as in the outer domain ΩTε

\ (Γ(2δ;Tε)
∪∂Tε

Ω(δ)), using |1 − ξ(dΓ)| ≤ 1. Regarding ξ(dΓ)rε
CH1,I , there is a subtlety we have to deal with: All

appearing terms in the explicit structure of the difference ξ(dΓ)
(
rε
CH1,I − εM− 3

2 BM− 1
2
)

can be estimated
with the help of Lemma 4.5. But we may not simply use (4.33) for ξ(dΓ)εM− 3

2 BM− 1
2 ϕ in Γ(2δ).

To treat this term let J = (−2δ,−δ) ∪ (δ, 2δ). We estimate, using Lemma 3.19.2,
∫ Tε

0

∫

Γt(2δ)\Γt(δ)

∣
∣ξ(dΓ)εM− 3

2 BM− 1
2 ϕ

∣
∣d(x, t) ≤ CεM− 3

2

∫ Tε

0

∫

T1

∫

J

∣
∣BM− 1

2 ϕ
∣
∣drdsdt

≤ CεM− 3
2

K1∑

k=1

∫ Tε

0

∫

T1
‖ϕ(., s, t)‖L∞(−2δ,2δ)

∥
∥B1

k(., s, t)
∥
∥

L2(−2δ,2δ)

∥
∥B2

k(ρ)
∥
∥

L2(J)
dsdt. (4.50)

Now since δ
ε − hε

A ≥ δ
2ε for ε > 0 small enough, we may derive for k ∈ {1, . . . , K1}

∫ 2δ

δ

∣
∣B2

k(ρ(r, p, t))
∣
∣2 dr ≤ ε

∫ ∞

δ
2ε

∣
∣B2

k(ρ)
∣
∣2 dρ ≤ εC1e

− C2
ε (4.51)

for some constants C1, C2 > 0, where we used B2
k ∈ O(e−α|ρ|) due to Lemma 3.19.2. A similar estimate

holds on (−2δ,−δ), allowing for a suitable estimate of (4.50) with the help of (3.107).
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Concerning ξ′(dΓ)
(
∂tdΓ + vε

A · n + εM− 1
2wε

1|Γ · nξ(dΓ)
)
(cI − cO) in (4.49), we exemplarily estimate

∫ Tε

0

∫

Γt(2δ)\Γt(δ)

∣
∣εM− 1

2wε
1|Γ · n(cI − cO)ϕ

∣
∣dxdt

≤ CT
1
2

ε

∥
∥εM− 1

2wε
1

∥
∥

L2(0,Tε;H1(Ω))
‖ϕ‖L∞(0,Tε;H1(Ω))‖cI − cO‖L∞(Γ(2δ;Tε)\Γ(δ;Tε))

≤ C(K)T
1
2

ε εM‖ϕ‖L∞(0,Tε;H1(Ω)), (4.52)

where we used H1(Γt(2δ)) ↪→ L2,∞(Γt(2δ)), Lemma 3.14, and Corollary 4.9. An analogous (but sim-
pler) argumentation may be used for ∂tdΓ ∈ L∞(Γ(2δ;T0)) and

(
vε

A − εM− 1
2vA,M− 1

2

)
∈ L∞(ΩT0) (cf.

Definition 4.1 for notations). The estimate for εM− 1
2vε

A,M− 1
2

then follows by using (3.98). The terms
2ξ′n · ∇ (μI − μO) + (μI − μO) (ξ′′ + ξ′ΔdΓ) in (4.49) may be treated by using Corollary 4.9.

For the third line of (4.49), we calculate

vε
A · ∇cI − vI · ∇cI = (1 − ξ(dΓ))(vO − vI) · ∇cI

vε
A · ∇cO − vO · ∇cO = ξ(dΓ)(vI − vO) · ∇cI

and Corollary 4.9 yields the estimate as before.
The only remaining term in (4.49) can be treated by

∫ Tε

0

∫

Γt(2δ)\Γt(δ)

∣
∣εM− 1

2wε
1|Γ · ∇cOϕ

∣
∣dxdt ≤ C(K)εM+ 1

2 ‖ϕ‖L∞(0,Tε;H1(Ω)),

where we used Lemma 3.14 and ∇cO = O(ε) in L∞(Ω±
T0

).
Thus, we need only consider rε

CH1 in ∂Tε
Ω(δ)\∂Tε

Ω( δ
2 ). Here we get a structure very similar to (4.49):

rε
CH1 = (1 − ξ(2dB))rε

CH1,O + ξ(2dB)rε
CH1,B + 2ξ′(2dB) (∂tdB + vε

A · n∂Ω) (cB − cO)

+ vε
A ·

(
(1 − ξ(2dB))∇cO + ξ(2dB)∇cB

)
− (1 − ξ(2dB))vO · ∇cO

− ξ(2dB)vB · ∇cB − 4ξ′n∂Ω · ∇(μB − μO) − (μB − μO) (4ξ′′ + 2ξ′ΔdB) .

The proof now follows in the same manner as the one for (4.49) using the already shown estimates for
rε
CH1,O and rε

CH1,B as well as the estimates close to the boundary in Corollary 4.9. This shows (1.34).
Proof of (4.45): We use a similar approach as before: In Γ(δ;Tε) we have rε

CH2 = rε
CH2,I , where rε

CH2,I

is defined in (4.12). For all terms in rε
CH2,I , which can be estimated in L∞(Γ(2δ;Tε)) (uniformly in ε),

we may use Proposition 4.6 to show the claim. Noting (4.9), the only terms that may not be treated
in this fashion are the ones involving ΔΓhε

M− 1
2

and AM− 1
2 . Regarding εM− 1

2 AM− 1
2 , we may use (4.35).

Concerning ΔΓhε
M− 1

2
, we obtain

εM+ 1
2

∫

Γ(δ;Tε)

∣
∣ΔΓhε

M− 1
2
∂ρc1R

∣
∣d(x, t)

≤ CεM+1
∥
∥(

∂2
shε

M− 1
2
, ∂sh

ε
M− 1

2

)∥∥
L∞(0;Tε;L2(T1))

‖R‖L2(ΩTε ) ·
∥
∥
∥ sup

(x,t)∈Γ(2δ;T0)

|∂ρc1(., x, t)|
∥
∥
∥

L2(R)

≤ C(K)ε2M+ 1
2 ,

where we used ∂ρc1 ∈ Rα, XT ↪→ C0([0, T ];H2(T1)) (cf. Proposition 2.6.2) and the L2-estimate for R in
(1.28).

In ΩTε
\(Γ(2δ;Tε) ∪ ∂Tε

Ω(δ)), we have rε
CH2 = rε

CH2,O with rε
CH2,O as in (4.16). For that, we obtain

(exemplarily in Ω+(t))
∫ Tε

0

∫

Ω+(t)\Γt(2δ)

∣
∣εM− 1

2 μ+,ε

M− 1
2
R

∣
∣dxdt

≤ CT
1
3

ε εM− 1
2
∥
∥μ+,ε

M− 1
2

∥
∥

L6(0,Tε;L2(Ω+(t)))
‖R‖L2(L2(ΩTε\Γ(δ;Tε))) ≤ C(K)T

1
3

ε ε2M ,
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where we used (3.98) and (1.28). As c±
i ∈ L∞(Ω±

T0
) for all i ∈ {0, . . . , M + 1}, a similar estimate follows

by (1.28) for the remaining terms in rε
CH2,O (cf. Remark 3.1 for the f̃ term). In ∂Tε

Ω( δ
2 ), it holds rε

CH2 =
rε
CH2,B and we may proceed as in ΩTε

\ (Γ (2δ;Tε) ∪ ∂Tε
Ω(δ)).

In Γ(2δ;Tε)\Γ(δ;Tε), we have

rε
CH2 = ξ(dΓ)(εΔcI + μI) + (1 − ξ(dΓ)) (εΔcO + μO) − ε−1f ′(cε

A)

+ ε ((cI − cO) (ξ′′(dΓ) + ξ′(dΓ)ΔdΓ) + ε2ξ′(dΓ)n · ∇ (cI − cO)) . (4.53)

The estimate for the second line in (4.53) follows by similar arguments as in the proof of (1.34), by using
Corollary 4.9.

Using a Taylor expansion, we can rewrite the first line of (4.53) as

ξ(dΓ)rε
CH2,I + (1 − ξ(dΓ))(rε

CH2,O)

+ ε−1 (cO − cI) ξ(dΓ)(1 − ξ(dΓ)) (−f ′′(σ2(cε
A, cO)) + f ′′(σ1(cε

A, cI))) , (4.54)

where σ1/2(cε
A, cI/O) are suitable intermediate points. Now cε

A, cO, cI ∈ L∞(Γ(2δ;T0)\Γ(δ;T0)) uniformly
in ε and thus |f ′′(σ1)|, |f ′′(σ2)| ≤ C. As a consequence of Corollary 4.9, we may estimate the last part
in (4.54) as before and the term involving rε

CH2,O as in the case of ΩTε
\ (Γ(2δ;Tε) ∪ ∂Tε

Ω(δ)). Regarding
rε
CH2,I , although we may not use the decomposition of R anymore (Proposition 4.6 only holds in Γ(δ;Tε)),

we may now use ‖R‖L2(0,Tε;L2(Ω\Γt(δ))) ≤ C(K)εM+ 1
2 due to (1.28a). Thus, all terms in rε

CH2,I , which can
be estimated in L∞(Γ(2δ;Tε)) (uniformly in ε), are of no concern. This leaves us with terms involving
ΔΓhε

M− 1
2

(which may be treated as before) and ξ(dΓ)εM− 1
2 AM− 1

2 since (4.35) only holds inside Γ(δ;Tε).
According to (1.28) and Lemma 3.19 1) we may estimate

εM− 1
2

∫

Γ(2δ;Tε)\Γ(δ;Tε)

∣
∣AM− 1

2 R
∣
∣d(x, t) ≤ C(K)ε2M

L1∑

k=1

∥
∥A1

k

∥
∥

L2(0,Tε;L2(Γt(2δ)))
≤ C(K)ε2MT

1
3

ε .

The situation in ∂Tε
Ω(δ)\∂Tε

Ω( δ
2 ) heavily resembles (4.53) and the estimate follows in a similar way as

for (4.53). Thus, we have estimated all terms in rε
CH2.

Proof of (4.46): The approach to show (1.36) is very similar to the one used for (1.34): We have rε
S = rε

S,I

in Γ(δ;Tε) with rε
S,I as in (4.14) and may then use Lemma 4.5 and Lemma 4.7 (more precisely (4.34)) to

get the estimate in Γ(δ;Tε). In ΩTε
\ (Γ(2δ;Tε) ∪ ∂Tε

Ω(δ)) we have rε
S = rε

S,O and we may simply estimate
the occurring terms in L∞(ΩT0) or with the help of (3.98). In ∂Tε

Ω( δ
2 ) it holds rε

S = rε
S,B, allowing for a

similar approach as for the outer remainder.
In Γ (2δ;Tε) \Γ (δ, Tε), we have

rε
S = ξ(dΓ)rε

S,I + (1 − ξ (dΓ)) rε
S,O − (ξ′ (dΓ) ΔdΓ + ξ′′ (dΓ)) (vI − vO)

− 2ξ′ (dΓ) D (vI − vO)n + ξ′ (dΓ)n (pI − pO) − με
Aξ′ (dΓ)n (cI − cO)

+ (−με
A (ξ (dΓ) ∇cI + (1 − ξ (dΓ)) ∇cO) + ξ (dΓ) μI∇cI + (1 − ξ (dΓ)) μO∇cO) . (4.55)

To estimate rε
S,I , we may use Lemma 4.5 inside Γ (δ;Tε) again, but have to be careful when estimating

εM− 3
2 ξ(dΓ)

(
VM− 1

2
)
z since (4.34) cannot be used. But, as for rε

CH1,I , we can get the desired inequality
in Γ(2δ;Tε)\Γ(δ, Tε) by using an approach analogous to (4.50), which is possible since Lemma 3.19.3
guarantees V2

k ∈ Rα. rε
S,O may be treated as in ΩTε

\(Γ(2δ;Tε)∪∂Tε
Ω(δ)) and due to Corollary 4.9 we get

the right estimate for the terms involving vI − vO, ∇ (vI − vO), pI − pO and cI − cO.
Regarding the last line of (4.55), we have

(−με
A + μI)∇cI = (1 − ξ(dΓ))(μI − μO)∇cI

(−με
A + μO)∇cO = ξ(dΓ)(μO − μI)∇cO,

allowing to apply Corollary 4.9. As in the proofs before, the estimates in ∂Tε
Ω(δ)\∂Tε

Ω( δ
2 ) may be shown

as in the case Γ(2δ;Tε)\Γ(δ, Tε).
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Proof of (4.47): We observe that in ΩTε
\ (Γ(2δ;Tε) ∪ ∂Tε

Ω(δ)) it holds rε
div,O = 0 by (4.18) and thus in

particular rε
div = 0 in ΩTε

\ (Γ(2δ;Tε) ∪ ∂Tε
Ω(δ)). In Γ(2δ;Tε) we have

rε
div = ξ(dΓ)rε

div,I + ξ′(dΓ)n · (vI − vO).

As before, we can treat the term ξ′(dΓ)n · (vI − vO) by using Corollary 4.9. For rε
div,I , as defined in

(4.13), we first note that we may use (4.36) to estimate εM− 1
2 WM− 1

2 suitably. Moreover, divvM+1 ∈
L∞(R× Γ(2δ;T0)) by construction and to estimate the products ∂ρvi · ∇Γhj+1, where i + j ≥ M + 1

2 , we
use that ‖∂ρvi‖L2(Γ(2δ;Tε))

∥
∥∇Γhj+1

∥
∥

L∞(Γ(2δ;Tε))
≤ C(K) for all i ∈ IM+1

M− 1
2
, j ∈ IM

M− 3
2
, due to construction

in the case of i, j ∈ {0, . . . , M} and i = M + 1 and due to (3.97) resp. (3.98) in the case of j = M − 3
2

resp. i = M − 1
2 . Similarly, we get ‖ui · n‖L2(Γ(2δ;Tε))

‖hj+1‖L∞((0,Tε)×T1) ≤ C(K), where we obtain an
L2 − L2 estimate for uε

M− 1
2

in the same way as in (4.28). The other terms appearing in the definition of
rε
div,I can then be treated in the same way. In ∂Tε

Ω(δ), we finally have

rε
div = ξ(2dB)rε

div,B + 2ξ′(2dB)n∂Ω · (vB − vO)

and the form of rε
div,B together with Corollary 4.9 implies the estimate. Thus, we have proven the

claim. �

Lemma 4.11. Let the assumptions of Theorem 4.10 hold. Then there are ε2 ∈ (0, ε1] and a constant
C(K) > 0 such that for all ε ∈ (0, ε2)

‖rε
CH2∇cε

A‖L2(0,Tε;(H1(Ω)2)′) ≤ C(K)C(Tε, ε)εM

‖rε
CH1‖L2(∂TεΩ( δ

2 )) ≤ C(K)εM

where C(T, ε) → 0 as (T, ε) → 0.

Proof. We start by showing (1.37). For ψ ∈ H1(Ω)2, we consider
∣
∣
∣
∫

Ω

rε
CH2∇cε

A · ψdx
∣
∣
∣ ≤

∣
∣
∣

∫

Γt(δ)

rε
CH2,I∇cε

A · ψdx
∣
∣
∣ +

∣
∣
∣

∫

Ω\Γt(δ)

rε
CH2∇cε

A · ψdx
∣
∣
∣ (4.56)

and begin with analyzing the integral over Γt(δ). First of all, we note that

∇cε
A = θ′

0(
1
εn − ∇Γhε

A) + ∂ρc1n + O(ε) (4.57)

in L∞(Γ(δ;Tε)) by construction and the fact that
∥
∥∇Γhε

A

∥
∥

L∞(Γ(2δ;Tε))
≤ C(K) by (4.9). Thus, for all

terms g : Γ(2δ) → R appearing in rε
CH2,I , which are multiplied by at least εM and which may be estimated

in L∞(Γ(2δ;Tε)) uniformly in ε, we may use the estimate
∥
∥
∥

∫

Γt(δ)

gθ′
0

(
1
εn − ∇Γhε

A

)
· ψdx

∥
∥
∥

L2(0,Tε)
≤ C(K)T

1
2

ε ‖g‖L∞(Γ(2δ;Tε))
‖ψ‖H1(Ω) ,

where we used H1 (Γt(2δ)) ↪→ L2,∞ (Γt(2δ)) and the exponential decay of θ′
0. As discussed in the proof

of Theorem 4.10, a similar approach also works for the terms involving ΔΓhM− 1
2
.

Thus we have to show

εM− 1
2

∥
∥
∥

∫

Γt(δ)

AM− 1
2 ∇cε

A · ψdx
∥
∥
∥

L2(0,Tε)
≤ C(K)C(Tε, ε)εM‖ψ‖H1(Ω). (4.58)

To this end we will use the same notations as discussed right at the beginning of the proof of Lemma
4.7. We will first consider 1

ε θ′
0n instead of ∇cε

A. Using the fundamental theorem of calculus we have
ψ(r, s) = ψ(0, s) +

∫ r

0
∂nψ(r̃, s)dr for (r, s, t) ∈ (−δ, δ) × T

1 and write
∣
∣
∣

∫

Γt(δ)

AM− 1
2
1
ε
θ′
0n · ψdx

∣
∣
∣ ≤ 1

ε

∫

T1
|ψ(0, s)|

∣
∣
∣
∫ δ

−δ

AM− 1
2
∣
∣
Γ
θ′
0J(r, s, t)dr

∣
∣
∣ds
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+
C1

ε

∫

T
1

∫ δ

−δ

∣
∣
∣AM− 1

2 |Γθ′
0

∫ r

0

∂nψ(r̃, s, t)dr̃
∣
∣
∣drds +

C2

ε

∫

T1

∫ δ

−δ

∣
∣
∣
(
AM− 1

2
)Γ

θ′
0ψ

∣
∣
∣drds

=: I1
1 + I2

1 + I2.

By Lemma 3.19 (after choosing ε > 0 small enough such that (4.37) holds), we may estimate

I1
1 ≤

L2∑

k=1

∫

T1

∣
∣ψ(0, s)A1,Γ

k

∣
∣
∣
∣
∣
∫ δ

ε −hε
A

− δ
ε −hε

A

A2,Γ
k θ′

0J
εdρ

∣
∣
∣ds ≤ C1‖ψ‖H1(Ω)

∥
∥A1,Γ

k

∥
∥

L2(Γt)

(
e−C2

δ
ε + C(K)ε

)

and thus get
∥
∥I1

1

∥
∥

L2(0,Tε)
≤ C(K)ε ‖ψ‖H1(Ω) due to (3.105). Concerning I2

1 , we have

‖I2
1‖L2(0,Tε) ≤

∥
∥
∥

1
ε

∫

T1
‖ψ‖H1(−δ,δ)

∫ δ

−δ

∣
∣AM− 1

2
∣
∣
Γ
θ′
0r

1
2
∣
∣drds

∥
∥
∥

L2(0,Tε)

≤ C(K)T
1
3

ε ε
1
2

L2∑

k=1

‖ψ‖H1(Ω)

∥
∥A1,Γ

k

∥
∥

L6(0,Tε;L2(Γt))

and may use (3.105). Here we used
∥
∥A2,Γ

k

∥
∥

L∞(R)
≤ C for all k ∈ {1, . . . , L2}.

For I2, we need to consider the explicit structure of AM− 1
2 and show only two exemplary estimates,

all others follow along the same lines. Firstly, we consider the term
(
με

M− 1
2

)Γ appearing in
(
AM− 1

2
)Γ (see

also (4.43) for the detailed structure):

1
ε

∫

T1

∫ δ

−δ

∣
∣
∣
(
μ+,ε

M− 1
2

)Γ
ηθ′

0ψ
∣
∣
∣drds

≤ C

∫

T1
sup

r∈(−δ,δ)

|ψ(r, s)| sup
r∈(−δ,δ)

∣
∣∂nμ+,ε

M− 1
2
(r, s, t)

∣
∣
∫ δ

ε −hε
A

− δ
ε −hε

A

|ε(ρ + hε
A)| |θ′

0|dρds

≤ C(K)ε‖ψ‖H1(Ω)

∥
∥μ+,ε

M− 1
2

∥
∥

H2(Ω+(t))
.

The estimate for
(
μ−,ε

M− 1
2

)Γ
η follows analogously.

Secondly, we consider the term
(
|∇S(x, t)|2

)Γ
∂2

shε
M− 1

2
(S(x, t), t), as all other occurring terms in

(
AM− 1

2
)Γ consist of lower derivatives of hε

M− 1
2

and can be treated in the same way. Using similar tech-
niques as in the estimate above, we get

1
ε

∫

T1

∫ δ

−δ

∣
∣(|∇S|2

)Γ
∂2

shε
M− 1

2
θ′
0ψ

∣
∣drds ≤ C(K)ε‖ψ‖H1(Ω)

∥
∥hε

M− 1
2

∥
∥

H2(T1)
.

Thus, we get by (3.97) and (3.98) ‖I2‖L2(0,Tε)
≤ C(K)ε ‖ψ‖H1(Ω) . Altogether we obtain

εM− 1
2

∥
∥
∥

∫

Γt(δ)

AM− 1
2
1
ε
θ′
0n · ψdx

∥
∥
∥

L2(0,Tε)
≤ C(K)C(Tε, ε)εM‖ψ‖H1(Ω).

Regarding (4.58), we conclude
∣
∣
∣
∫

Γt(δ)

AM− 1
2 θ′

0∇Γhε
A · ψdx

∣
∣
∣ ≤ C(K)

L1∑

k=1

∥
∥A1

k

∥
∥

L2(Γt(2δ))
‖ψ‖L2,∞(Γt(2δ))ε

1
2 ‖θ′

0‖L2(R)

by Lemma 3.19. As ∂ρc1 ∈ Rα and all other terms appearing in ∇cε
A are already of higher order in ε (see

(4.57)). This proves (4.58) and as a consequence also
∥
∥
∥

∫

Γt(δ)

rε
CH2,I∇cε

A · ψdx
∥
∥
∥

L2(0,Tε)
≤ C(K)C(T, ε)εM‖ψ‖H1(Ω).

In view of (4.56), we still need to consider
∣
∣ ∫

Ω\Γt(δ)
rε
CH2∇cε

A · ψdx
∣
∣. But this term may be treated with

similar techniques as used in the proof of (1.35). This shows (1.37).
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Finally, (1.38) follows immediately by noting that rε
CH1 = rε

CH1,B in ∂T0Ω
(

δ
2

)
, the form of the boundary

remainder terms (4.19) and the fact that all occurring terms in those boundary remainders are either
uniformly bounded in L∞(∂T0Ω(δ)) or may be estimated in L2(Ω−

Tε
) with the help of (3.98).

Proof of Theorem 1.4. Let the approximations be defined as in Definition 4.1, let wε
1 be given as in

Theorem 3.15 and let rε
CH1, rε

CH2, r
ε
S and rε

div be defined via (1.29)–(1.32). (1.33) is a result of (4.23)–
(4.24) and rε

div = 0 on ∂T0Ω of (4.22). The estimates (1.34)- (1.38) are a consequence of Theorem 4.10
and Lemma 4.11. �
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