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1 Introduction

1 Introduction
Two-dimensional systems with a linear energy momentum relation own unique
electronic properties [1–4]. Their electrons behave like ultrarelativistic massless
Dirac fermions and are protected against disorder in the absence of a magnetic
field [5]. These qualities open a way to the study of interesting physics and
applications, e.g. Majorana fermions [1, 6, 7], Klein tunnelling [3, 8], the
quantum spin Hall effect [2, 9], or novel ultrafast detectors [10, 11]. To describe
these unique systems, the Dirac equation [12] is used rather than the non-
relativistic Schrödinger equation. Efforts in this field of research have led
to the realisation of two remarkable material classes, namely graphene and
topological insulators [5].
The first realization of a solid state material with linear dispersion was

graphene [4], a two-dimensional allotrope of carbon, which hosts massless Dirac
fermions [3, 4, 13]. The charge carriers move with a velocity of 106 m/s which
is 1/300 of the speed of light. Importantly, this velocity is independent of
the carrier energy, which is usually only the case for photons or neutrinos [5].
Stacking two coupled layers of graphene, called bi-layer graphene, results in a
material with parabolic dispersion and massive Dirac fermions. An important
feature of this material is that the band structure can be simply changed by
application of an external electric field. The ease of this tunability makes bi-
layer graphene a promising two-dimensional material for future applications
[4, 14–16].
Another material class in which linear dispersion has been realized are topo-

logical insulators. Similar to graphene these systems can be described within
the Dirac theory for massless particles. However, the spin-orbit interaction is
fairly large in topological insulators while it is vanishingly small in graphene.
Topological insulating materials exhibit a bulk energy gap like an ordinary
insulator but have perfectly conducting edge or surface states which are char-
acterized by a linear energy dispersion [1, 2, 17–19]. Importantly, the momen-
tum of the carriers residing at the boundaries is locked to their spin because
of the strong spin-orbit coupling, resulting in a counterpropagation of states
with oppositely directed spins [1]. In line with this fact, backscattering is for-
bidden yielding rather high carrier mobilities. These may play a role for the
development of novel electronic, optic and optoelectronic applications [1, 20].
Optoelectronic phenomena induced by terahertz radiation provide highly ef-

fective means for the characterization of such Dirac fermion systems [21–28].
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1 Introduction

In these effects the photoresponse is proportional to higher orders of the elec-
tric field and, therefore, they are termed as nonlinear. Illumination of the
materials may result in the generation of a photocurrent or a change in the
sample’s conductivity. Particular examples are second harmonic generation,
the photogalvanic and photon drag effect, photothermoelectrics, and ratchet
effects [29]. The present thesis is aimed to the study of nonlinear optoelec-
tronic phenomena induced by terahertz radiation in topological insulators and
graphene. Within this work, the observation of new phenomena are presented,
which provide a useful tool to study characteristic material properties. These
include: cyclotron resonance of surface states in topological insulators [30],
edge photocurrents in mono- and bi-layer graphene [31, 32], resonant edge
photocurrents in bi-layer graphene [33] and a circular Hall effect in the ab-
sence of a magnetic field [34].
In the first part of this thesis cyclotron-resonance-induced photocurrents

in partially strained 200 nm HgTe-based heterostructures were studied. It is
well known that by application of strain to bulk HgTe a gap opens in the
otherwise gapless semimetal. The two-dimensional surface states can be de-
coupled from the bulk states and, thus, strained HgTe can be considered as a
three-dimensional topological insulator [17, 35–37]. The detection of cyclotron
resonance in a strained HgTe film can be used to reveal information that are
explicitly about the surface, since bulk and surface carriers have different cy-
clotron masses [38, 39]. The present work demonstrates that applying this
technique to thicker 200 nm HgTe films, resonant photocurrents of both top
and bottom surfaces can be observed; although the strain is expected to relax
between a film thickness of 100 nm and 200 nm. In addition, their characteris-
tics are similar to those of the surface states of fully strained 80 nm HgTe films
[38]. These results are in line with recent magnetotransport and capacitance
measurements [40].
The study on cyclotron resonance and other optoelectronic phenomena was

extended to graphene-based devices. Since electronic and transport proper-
ties of two-dimensional materials are strongly influenced by their edges, it is
important to take a closer look on edge effects excited by terahertz radia-
tion. Therefore, photocurrents flowing along the edges of mono- and bi-layer
graphene were studied. The current generation belongs to the class of second
order electric field phenomena and originates from the alignment of the car-
rier momenta and P -symmetry breaking at the edges. In bi-layer graphene
exposed to a magnetic field, giant resonant edge photocurrents were observed
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1 Introduction

which are superimposed by 1/B-periodic oscillations at high carrier densities.
It was shown, that the resonances stem from inter and intra Landau level
transitions, where the latter ones can be associated with classical cyclotron
resonance.
All effects described above scale with the second power of the radiation’s

electric field. Phenomena proportional to the third order allow a new access
to material properties. Within the study of mono-layer graphene, a helicity-
dependent photoconductivity signal, normal to the applied bias voltage, was
observed which can be controlled by a back gate. The dc Hall effect manifests
the time-inversion symmetry breaking induced by the circularly polarized radi-
ation in the absence of a magnetic field. The observed Hall photoconductivity
shows a surprising intensity dependence: For low gate voltages the signal is
proportional to the radiation intensity, while at higher voltages it varies with
the square of it.
The thesis is structured in the following way: In Chap. 2, fundamental prin-

ciples and phenomena are outlined. It starts with an introduction of the Dirac
equation in Sec. 2.1 allowing the description of systems with spin 1/2 particles.
On the basis of this, the investigated material classes are depicted. Firstly, in
Sec. 2.1.2 HgTe-based topological insulators are introduced. This includes
the general depiction of two- and three-dimensional topological insulators and
their description within the modified Dirac theory in the zero-mass limit. Sec-
ondly, in Sec. 2.1.3 the crystalline and electronic structure of graphene is
outlined. The electronic properties of bi-layer graphene are depicted in Sec.
2.1.4. Chapter 2.2 gives a brief description of cyclotron resonance in sys-
tems with parabolic and linear dispersion. Furthermore, Chap. 2.3 presents
an overview of optoelectronic phenomena which may be induced by terahertz
radiation. The description of the experimental methods, given in Chap. 3,
starts with the investigated samples in Sec. 3.1 and their characteristic trans-
port properties. Section 3.2 is dedicated to the laser systems and electronic
setups employed in this work.
The presentation of the experimental findings begins in Chap. 4 with the

data obtained for HgTe topological insulators. The experimental results pre-
sented in Sec. 4.1 include photocurrents measured in 200 nm HgTe films which
are stongly enhanced under cyclotron resonance. Furthermore, the magneto-
transmission is studied and analysed. The discussion of these results is given
in Sec. 4.2. In Chap. 5 results on edge photocurrents in mono- and bi-layer
graphene are provided. It starts with a presentation of the data for mono-layer
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1 Introduction

graphene samples in Sec. 5.1. After this, the observed edge photocurrents in
bi-layer graphene are presented in Sec. 5.2. The subsequent discussion is
given in Sec. 5.2.2. Section 5.3 presents the experimental findings for edge
photocurrents resulting from inter and intra Landau level transitions in bi-
layer graphene. The discussion of the data, given in Sec. 5.3.2, deals with the
identification of the transitions within the Landau level spectrum and gives a
brief introduction to the microscopic theory describing the photocurrent gen-
eration. In Chap. 6, the results on the circular Hall effect in graphene arising
in the absence of a magnetic field are shown. The analysis of the experimental
observations is outlined in Sec. 6.2. In the last chapter, Chap. 7, the work is
summarized and a short outlook for further studies in this field is given.
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2 Fundamentals

2 Fundamentals

2.1 Dirac fermion systems

This section is dedicated to the description of the investigated material classes.
It starts with the introduction of the Dirac equation describing massive spin
1/2 particles [4, 14, 41]. On this basis, the studied material systems are de-
scribed beginning with HgTe-based topological insulators (HgTe TI) which ex-
hibit strong spin-orbit coupling. Then, the electronic and crystalline structures
of graphene are outlined which, unlike HgTe, has vanishing spin-orbit inter-
action and posses a pseudospin. Although these two materials have different
properties, the electrons in both systems manifest a linear dispersion relation
and can be described by the Dirac equation in the zero-mass limit [1, 3, 14,
42]. In contrast, bi-layer graphene, whose crystalline and electronic structure
is introduced in the last section of this chapter, has a parabolic dispersion and
hosts massive Dirac fermions [14–16].

2.1.1 The Dirac equation

In the year 1928 Paul A.M. Dirac wrote down a relativistic wave equation
describing elementary particles which posses a spin of 1

2 . This equation is
known as the Dirac equation [12, 43]. It can be found by linearization of the
general relativistic classical Schrödinger equation [44] and is given by [12, 43]

H = cp ·α+mc2β (1)

with the particle mass m, the momentum operator p, the speed of light c and
the Dirac matrices αi and β. The latter ones are given by [43, 44]

αi =
 0 σi

σi 0

 , β =
12 0

0 −12

 (2)

with the 2 × 2 identity matrix 1. The components of the spinoperator σ are
the 2× 2 Pauli matrices [43]

σx =
0 1

1 0

 , σy =
0 −i
i 0

 , andσz =
1 0

0 −1

 . (3)
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2.1 Dirac fermion systems

This shows that in three dimensions the Dirac matrices are at least four di-
mensional. Corresponding energy eigenvalues are [43]

E± = ±
√
m2c4 + p2c2 (4)

yielding four possible solutions of the Dirac equation. The two positive solu-
tions correspond to the description of electron-states with spin up and spin
down. The two negative solutions describe positrons, the electrons’ antiparti-
cles, with spin up and spin down.
The positive and negative energy states are separated by an energy gap

of 2mc2 [43]. In vacuum all negative energy states are filled, while only one
positive energy state is occupied. If the energy gap closes, i.e. m→ 0, then the
energy dispersion reduces to E(m→ 0) = ±|cp| which is linear in c and p. This
limit is described by the Weyl equation [45], which evolves from the reduction
of the Dirac equation. The Dirac equation is invariant under transformations
m → −m if β → −β which satisfies the mutual anticommutation relations.
This indicates that the equation is symmetric in its positive and negative
energy solutions [43].

2.1.2 HgTe-based topological insulators

After the introduction of the Dirac formalism, in the following an example of
its implementation in condensed matter physics will be given. Topological in-
sulators have a bulk energy gap which separates the highest occupied electronic
band from the lowest empty band. At the edges, or on the surface, however,
gapless states exist which are protected against disorder by time-reversal (T )
symmetry [1].
A two-dimensional (2D) topological insulator is also known as a quantum

spin Hall insulator. In systems exhibiting the quantum spin Hall effect, the
spin-up states propagate in a different direction than the spin-down states
resulting from spin-momentum locking. These states are called helical edge
states [1, 9] and differ from the chiral edge states existing in the quantum
Hall effect where up and down states propagate in the same directions [1, 46].
These one-dimensional (1D) helical edge states evolve to 2D surface states in
the case of a three-dimensional (3D) topological insluator. The bulk band
structure of topological insulators is similar to an ordinary insulator, with an
energy band gap separating the conduction and the valence band. In contrast,
in the vicinity of the boundary to a trivial insulator, gapless surface states

10



2.1 Dirac fermion systems

(a)  Conduction-band (b)  Conduction-band

Valence-band Valence-band

ε

Γa ΓaΓb Γbk k

εF

ε

εF

Figure 1: Dispersion relation between two Kramers degenerate points Γa = 0 and
Γb = π/a at the boundary of a T invariant 2D insulator. The shaded
regions illustrate the bulk conduction and valence band. (a) The bands
cross the Fermi energy an even number of times. (b) An odd number of
Fermi energy crossings leads to topologically protected conducting states
at the boundary. Note that only one half of the Brillouin zone is shown,
because the other half is just mirrored due to time-reversal symmetry.
Adapted from Ref. [1].

with a momentum locked to the electron spin exist with energies that lie in
the bulk energy gap [43]. A topological insulator is invariant under T .
In 2D topological insulators, T symmetry is described by an antiunitary op-

erator Θ which for spin 1/2 electrons fullfills Θ2 = −1. From this follows that
all eigenstates of the corresponding Hamiltonian have to be at least twofold
degenerate. This is known as Kramer’s theorem and results from the following
assumption. Imagine a nondegenerate state |χ〉 would exist, this would mean
Θ |χ〉 = c |χ〉 with c being some constant. This yields Θ2 |χ〉 = |c|2 |χ〉 which
is not allowed since Θ2 = −1 and |c|2 6= −1 [1]. In systems without spin-orbit
coupling Kramer’s theorem simply describes the degeneracy of spin-up and
spin-down states. In contrast, in systems with spin-orbit coupling this means
that there always exists a pair of states at a certain energy that have opposite
spin and momenta [1, 43] making the states resistant against backscattering.
Figure 1 illustrates the electronic dispersion between two Kramers degenerate
points, Γa = 0 and Γb = π/a, at the edge of a 2D insulator which is invari-
ant under T reversal. Here, an energy gap separates the bulk conduction and
valence band. The states existing at the edge of the insulator must fullfill
Kramer’s theorem, i.e. they have to be twofold degenerate at the T invari-
ant points Γa = 0 and Γb = π/a. Away from these momenta the spin-orbit
interaction will split the degeneracy. Two cases can be distinguished: In the
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2.1 Dirac fermion systems

first case, shown in Fig. 1(a), the states at Γa and Γb connect pairwise and
cross the Fermi energy εF an even number of times, while in the second case,
Fig. 1(b), the bands cross εF an odd number of times. The latter results in
topologically protected conducting edge states.
In the case of 3D topological insulators the Fermi circle encloses an odd

number of Kramers degenerate points, which in the simplest case is a single
Dirac cone. These surface states form a perfectly conducting 2D plane [47].
However, different to an ordinary metal these states are not spin degenerate.
T symmetry forces the spins to rotate around the Fermi surface.

Modified Dirac theory The Dirac equation reveals that at the interface be-
tween two media with positive and negative mass a pair of helical bound states
exist. However, in its raw form it cannot be used to describe topological insula-
tors due to its symmetry between the negative and positive masses (or energy
gaps). This makes it impossible to distinguish which state is topologically
trivial or non-trivial. To overcome this problem a modified Dirac Hamiltonian
with a quadratic correction −Bp2 to the mass-term is introduced [42]

H = vp · α + (mv2 −Bp2)β (5)

where mv2 defines the particle’s band gap and m and v are the mass and
speed, respectively. This introduced quadratic term breaks the symmetry of
the Dirac equation regarding positive and negative masses.
To find bound state solutions to the modified Dirac equation in two dimen-

sions, the modified Hamiltonian (Eq. (5)) is separated into two independent
equations given by [42]

h± = vpxσx ± vpyσy + (mv2 −Bp2)σx. (6)

This yields a one dimensional model for the helical edge states in two dimen-
sions. At x = 0 the dispersion relation for the bound states is given by [43,
48]

εpy ,± = ±vpysgn(B), (7)

which shows that the two bound states have opposite velocities and form a
pair of helical edge states. To distinguish a topologically trivial system from
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2.1 Dirac fermion systems

a nontrivial one, in two dimensions the Chern number is used. In relation to
the Hall conductance σ± = n±e

2/h the Chern number n± is given by [49, 50]

n± = ±(sgn(m) + sgn(B))/2. (8)

Here, two cases can be distinguished. If m and B have opposite sign, then
n± = 0 describing a topologically trivial system. The other case, where m
and B have the same sign, refers to a topologically non-trivial system. This
describes the bulk-edge relation of the integer quantum Hall effect [43, 51].
In three dimensions the modified Dirac Hamiltonian for a yz-plane at x = 0

is given by [42]

H3D = vpyαy + vpzαz −B(p2
y + p2

z)β (9)

The corresponding gapless dispersion relation for two-dimensional surface states
is found as

εp,± = ±vpsgn(B) (10)

with p =
√
p2
y + p2

z. This describes an effective model for a single Dirac cone
on the surface of a topologically nontrivial system.

Γ6

Γ6

Γ7

Γ7

Γ8

Γ8

k (nm-1)

HgTe CdTe
 1.0

    0

-1.0

-1.0           0           1.0

 1.0

 0

-1.0

k (nm-1)
-1.0           0           1.0

ε 
(e

v)

ε 
(e

v)

5           6           7            

 0.04

0.02

 0

-0.02

-0.04

ε (ev)

E1

H1
d (nm)

(a) (b) (c)

εF

Figure 2: Bulk band structure for (a) HgTe having an inverted band ordering and (b)
CdTe having a normal band ordering. The Fermi energy εF is illustrated as
dashed line in panel (a). (c) Energy of the E1 and H1 band as a function
of the HgTe thickness. Adapted from Ref. [52]
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2.1 Dirac fermion systems

2.1.2.1 HgCdTe topological insulators Materials made of heavy elements,
i.e. with strong spin-orbit coupling, are good candidates for realisation of
topological insulators. In 2006, Bernevig, Hughes, and Zhang [52] proposed a
quantum spin Hall insulator consisting of HgCdTe quantum wells. Soon after
the prediction the experimental realisation followed by König et al. [53].

Both, HgTe and CdTe have a zinc-blende lattice structure. The existence of
two types of atoms reduces the point group symmetry from Oh to Td where the
inversion symmetry is broken [54]. In both materials the energy gap is smallest
near the Γ-point in the Brillouin zone, see Fig. 2. The band structure of the
barrier material CdTe contains a s-type (Γ6) conduction band separated from
the p-type valence bands (Γ7 and Γ8) by a gap of approximately 1.6 eV, see
Fig. 2(b). The well material HgTe has an inverted band structure where the
conduction band is formed by the light-hole (LH) bulk subband of the Γ8 band
and the first valence band by its heavy-hole (HH) subband, see Fig. 2(a). The
s-type Γ6 band lies below the Γ8 band and above the Γ7 band [52]. HgTe can
be viewed as a zero-gap semiconductor because of the degeneracy of the Γ8’s
heavy- and light-hole band at the Γ-point [54]. From this follows the unique
property of HgTe quantum wells that the band structure can be tuned by
the well thickness. Figure 2(c) illustrates the band alignment with increasing
HgTe thickness. Note that H1 and E1 are two QW subbands which are formed
from the Γ6 and Γ8 bulk bands. H1 denotes the hole like band formed from
the Γ8 HH bulk states, whereas E1 is the electron like band formed from the
Γ6 and the Γ8 LH bulk states [52]. For a quantum well thicknesse smaller
than the so called critical thickness dc, the confinement is rather high and
the band structure is more similar to CdTe, i.e. the quantum wells exhibit a
normal band ordering where E1 > H1. By increasing the QW thickness the
material behaves more like HgTe, and thus has an inverted band structure,
where H1 > E1. In between, a critical thickness exists where the two bands
E1 and H1 cross [54].
An important parameter to describe the band ordering is the mass term in

the Dirac equation giving the energy gap between the two bands, see Eq. (1).
In two-dimensional materials with inverted band structure m < 0, whereas in
those with a normal band ordering m > 0. This means that the Dirac mass
parameter in HgTe quantum wells can be tuned from m > 0 for a thickness
d < dc to m < 0 for d > dc. At the crossing point of the two bands, the mass
term changes its sign and a quantum phase transitions occurs [52, 54]. Here,
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2.1 Dirac fermion systems

the system can be effectively described by the massless Dirac theory, similar
to graphene.

2.1.3 Graphene

Graphene, well known for the existence of massless Dirac fermions, exhibits a
vanishing spin-orbit interaction in strong contrast to the above described HgTe
topological insulators. Its first experimental realisation was accomplished in
2004 by the group around A. K. Geim from the University of Manchester
[4]. The first calculations on its electronic band structure, however, were al-
ready performed around 1946 by Wallace [55]. Due to its intriguing properties,
graphene became an active field of research in condensed matter physics [56].
In the following its crystalline structure as well as its fundamental electronic
properties are outlined.

KK'

x

y

(c)(a) (b)

kxky

ε

a1 a2 δ1

δ2

δ3

A

B
Γ

kx

ky

b1b2

(d)

Figure 3: (a) Hexagonal lattice structure of graphene with the two-atomic basis A
and B in real space. The primitive cell is illustrated by the grey area
spanned by two lattice unit vectors a1 and a2. The vectors δi are the
three nearest neighbour vectors. (b) First BZ with its centre Γ, the two
non-equivalent corner points K and K’, and the reciprocal vectors b1 and
b2. (c) Energy spectrum of graphene with an enlargement (panel (d)) close
to the Dirac points K and K’, showing a Dirac cone. Panel (a) and (b)
adapted from Ref. [3] and panels (c) and (d) adapted from Ref. [14].

Graphene consists of carbon atoms arranged on a hexagonal honeycomb
structure, see Fig. 3(a). It can be considered as a triangular lattice with a
basis consisting of two atoms per unit cell, A and B. The primitive cell vectors
can be written as [3]

a1 = a

2(3,
√

3), a2 = a

2(3,−
√

3) (11)
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2.1 Dirac fermion systems

with a ≈ 1.42Å being the distance between the carbon atoms. The nearest
neighbour vectors are given by

δ1 = −a(1, 0), δ2 = a

2(1,
√

3), δ3 = a

2(1,−
√

3). (12)

The Brillouin zone (BZ) is shown in Fig. 3(b) with the reciprocal vectors being

b1 = 2π
3a (1,

√
3), b2 = 2π

3a (1,−
√

3). (13)

Of particular importance are the points of high symmetry Γ, being the centre
of the BZ, and the two points K and K’, also called Dirac points, which lie at
the corners of the BZ.

Within the tight-binding approach, which takes second-nearest neighbour
hopping into account, the Hamiltonian for electrons in graphene in one of the
sublattices is given by 1 [3]

H =− t
∑
〈i,j〉,σ

(a†σ,ibσ,j + h.c.)

− t′
∑
〈〈i,j〉〉,σ

(a†σ,iaσ,j + b†σ,ibσ,j + h.c.).
(14)

Here ai,σ and a†i,σ are annihilation and creation operators for electrons with
spin σ (σ =↑, ↓) and h.c. is the hermitian conjugate. The two energies t and t′

correspond to the nearest neighbor (inter-sublattice) and next-nearest neigh-
bor (intra-sublattice) hopping, respectively, and t(≈ 2.8 eV)> t′(≈ 0.1 eV) [3,
57]. The summation over the nearest and next-nearest neighbours is indi-
cated by 〈i, j〉 and 〈〈i, j〉〉, respectively. From the tight-binding Hamiltonian
an analytical formula for the energy spectrum can be found

ε±(k) = ±t
√

3 + f(k)− t′f(k), (15)

with

f(k) = 2 cos
(√

3kya
)

+ 4 cos
(√

3
2 kya

)
+ cos

(3
2kxa

)
. (16)

1Note that here units are chosen such that ~ = 1.
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2.1 Dirac fermion systems

Here (+) accounts for the π∗ conduction band and (-) for the π valence band.
Equation (15) shows that the energy is symmetric around zero in the case
t′ = 0. The resulting energy spectrum corresponding to Eq. (15) and with
t′ = 0 is shown in Fig. 3(c). Close to the Dirac points K and K’, where
conduction and valence band intersect, the dispersion exhibits a linear energy-
momentum relation. A zoom in this region is shown in Fig. 3(d) illustrating
a single Dirac cone. The almost universal equation for the band structure can
be obtained from Eq. (15) close to the K (or K’) point for small momenta
relative to the Dirac points and t′ = 0. With k = K + q where |q| � |K| the
energy is given by [3, 55]

ε±(q) ≈ ±vF|q|+O((q/K)2) (17)

with the relative momentum q and the Fermi velocity vF ' 1 × 106 m/s [55].
Strikingly, different to systems with parabolic dispersion, the Fermi velocity
vF is independent of energy or momentum [3].

Dirac theory The analogy between the description of the graphene electronic
structure and the Dirac theory in the zero-mass limit is almost perfect. How-
ever, the Hamiltonian for electrons in graphene has distinguishing features.
One of great importance is the Fermi velocity being 1/300 of the speed of light
and the 2D nature of graphene [14]. The fact that the graphene lattice con-
sists of two independent sublattices A and B indicates the existence of a chiral
pseudo-spin analogous to the electron spin, however, completely independent
of it. The two linear bands which cross at the Dirac points, see Fig. 3(d),
become independent of each other [14]. The Hamiltonian for spinless charge
carriers in graphene at the K point (valley) is given by [3, 14]

HK = vFσ · k (18)

with σ = (σx, σy) describing the pseudo-spin. The eigenfunctions ψ(k) obeying
the 2D Dirac equation for massless chiral Fermions in momentum space for K
and K’ points have the form [3]

ψ±,K(k) = 1√
2

e−iθk/2

±eiθk/2

 , ψ±,K′(k) = 1√
2

 e−iθk/2

±e−iθk/2

 , (19)
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2.1 Dirac fermion systems

being 2D pseudo-spinors. Here θk = arctan(ky/kx) and the ± signs are at-
tributed to valence and conduction band. In one of the two energy eigenstates
the pseudo-spin is either parallel or anti-parallel to the momentum [56] fol-
lowing from the definition of helicity. Note that helicity is defined for the
real spin, the coupling of the momentum to the pseudo-spin is called chirality.
Therefore, in the K valley electrons have an opposite chirality than holes and
the situation is reversed in the K’ valley, making the chirality a good quantity
to characterize the eigenfunctions [3].
Close to the Dirac points, the well defined chirality resulting from the intrin-

sic coupling of the carrier momentum to the pseudo-spin is a good quantum
number. At higher energies and finite t′ this description, however, becomes
inappropriate [3].

2.1.4 Bi-layer graphene

Bi-layer graphene, previously shown to be a zero-gap semiconductor, owns
unique properties [16, 58–60]. In particular, the possibility to open and con-
trol a band gap simply by applying a gate voltage to the system makes it a
very promising material [16, 58]. To understand its remarkable properties, in
the following bi-layer graphene’s lattice structure and its electronic structure
are introduced.
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Figure 4: Lattice structure of bi-layer graphene: top view (panel (a)) and side view
(panel (b)). A1/B1 and A2/B2 correspond to the atoms of the bottom/top
layer. The unit cell with primitive lattice vectors a1 and a2 is illustrated
by the shaded area. γi are the hopping parameters. Panel (a) and (b)
are adapted from Ref [61]. (c) Band structure near the K (or K’) point
for eV = 150meV (full line) and V = 0 (dashed line) with band gap ∆g.
Adapted from Ref. [62]

Bi-layer graphene consists of two coupled mono-layers of graphene where
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2.1 Dirac fermion systems

each has a hexagonal lattice structure as shown above in Fig. 3(a). For AB
Bernal stacking, the top layer (label 2) has its sublattice A on top of the sub-
lattice B of the bottom layer (label 1). This is illustrated in Figures 4(a) and
(b) showing the lattice structure of bi-layer graphene in top and side view,
respectively. The corresponding unit cell owns twice the number of atoms as
mono-layer graphene, while the primitive lattice vectors are equal (Eq. (11))
[58].

In the tight binding approximation, the relevant Hamiltonian HBLG can be
written as [3]

HBLG =− γ0
∑

〈〈i,j〉〉,m,σ
(a†m,i,σbm,j,σ + h.c.)

− γ1
∑
j,σ

(a†1,j,σa2,j,σ + h.c.)

− γ3
∑
j,σ

(a†1,j,σb2,j,σ + a†2,j,σb1,j,σ + h.c.)

− γ4
∑
j,σ

(b†1,j,σb2,j,σ + h.c.)

(20)

with annihilation operators am,i,σ and bm,i,σ for electrons with spin σ in sublat-
tices A and B, respectively. The labelm = 1, 2 accounts for the two mono-layer
graphene planes. The hopping parameters are: γ0 = t the in-plane hopping en-
ergy, γ1 = t⊥ the energy describing inter-layer hopping between atoms B1 and
A2, γ3 corresponds to hopping between A1 and B2, and γ4 is the hopping en-
ergy between B1 and B2 [3]. Applying an external perpendicular electric field
(e.g. with a gate voltage) induces an electrostatic energy difference between
the two layers, defined by the parameter V .
In unbiased bi-layer graphene (V = 0) the band structure is given by [62]

ε±±k = ±
√
ε2
± + t2⊥/4± t⊥/2, (21)

with the electron dispersion of mono-layer graphene ε± (see Eq. (15)). The
result is presented with dashed lines in Fig. 4(c) showing four parabolic bands
where two touch at the Dirac points K and K’ [3, 62].
Strikingly, in the case V 6= 0, i.e. in the presence of a perpendicular electric

field, the situation changes. The corresponding energy spectrum is given by
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2.2 Cyclotron resonance

[15]

ε±±k = ±
√
ε2
± + t2⊥/2 + V 2/4±

√
t4⊥/4 + (t2⊥ + V 2)ε2

±. (22)

This yields a band structure which exhibits a gap ∆g between valence and
conduction band whose size can be controlled by V . The calculated energy is
shown as full line in Fig. 4(c). The induced band gap reads [15]

∆g =
√
t2⊥V

2/(t2⊥ + V 2). (23)

This demonstrates that bi-layer graphene can be tuned from a gapless system
into a semiconductor with a gap which can be controlled externally by the
electric field effect. In the region V � t⊥ and V � t the size of the gap is
approximately ∆g ≈ V . The electrostatic energy difference V is related to the
perpendicular electric field E = Eêz. It can be calculated when assuming that
the electric field results exclusively from the external applied electric field,
E = Eext [15]. Within the simple parallel plate capacitor model, the gap
parameter V in gated exfoliated bi-layer graphene is given by [15]

V = (n/n0 − 2)e2n0d/(2εrε0). (24)

Here n0 is the intrinsic carrier density and n = ng + n0 the total one, where
ng is the charge carrier density induced by the gate voltage Ug. The dielectric
constants in free space and in bi-layer graphene are defined by ε0 and εr, re-
spectively.

The energy dispersion of bi-layer graphene is parabolic (if V = 0) and thus,
unlike in mono-layer graphene, its fermions are massive (m∗ = t⊥/(2v2

F) ≈
0.03me). Although this behaviour is non-Dirac like, the existence of the A/B
sublattices still results in a conserved pseudospin quantum number at low
energies making it different to standard two-dimensional electron gases [14–
16].

2.2 Cyclotron resonance

In this work various techniques were used to investigate the different samples.
An effect of particular importance is introduced in this section.
Cyclotron resonance (CR) measurements provide an unique tool to study char-
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2.2 Cyclotron resonance

acteristic electronic properties of the materials. To understand the significance
of this technique it is important to provide an extended description of the ef-
fect behind. Therefore, in the following chapter, the quasiclassical description
within the Drude-Boltzmann picture as well as the quantum mechanical limit
of CR are discussed.
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Figure 5: Energies of the Landau level εl as a function of the magnetic field. (a)
Landau level spectrum in a system with parabolic dispersion. The levels
are labelled with l ∈ N and are shown for l = 0 to l = 10 at ε(kz) = 0 and
l > 0. Allowed transitions are shown by vertical arrows for two different
Fermi energies εF1,F2 and fixed radiation frequency ωc. (b) Landau level
energy in a two-dimensional system with linear energy momentum relation.
Here, for εF < ~ωc the levels are not equally spaced, while at higher
Landau levels, εF � ~ωc, the levels become almost equidistant. Adapted
from Refs. [63, 64]

In the classical picture, a particle with charge q subjected to an uniform
magnetic field B propagates on cyclotron orbits due to the Lorentz force F =
q(v × B) acting on it [65, 66]. The circular movement is described by the
cyclotron frequency given by [63, 66, 67]

ωc = qB

m
(25)

with the carrier mass m as well as the magnetic field strength B. In a solid-
state system the carriers experience an additional site dependent potential,
which can be taken into account by using the effective mass m∗. [67]. The
corresponding equation of motion for carriers in the presence of a magnetic
field B and an external ac electric field E is given by [66, 67]

m∗
dv
dt = q(E + v ×B)− m∗v

τ
(26)
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with the term proportional to the inverse momentum relaxation time τ−1 de-
scribing the scattering of the carriers e.g. on lattice impurities. If the frequency
of the external electric field E is equal to the cyclotron frequency of the car-
riers and ωcτ � 1, a strong absorption of the incoming radiation takes place
[65, 66]. This effect is called cyclotron resonance and for a fixed radiation
frequency ω its position at a certain magentic field strength is given by

BCR = m∗ω

q
. (27)

Under CR condition the time-averaged power P which is absorbed per unit
volume for circularly polarized radiation has the form [65, 68]

P±(ω, ωc) = σ0E
2
0

1
1 + (ω ± ωc)2τ 2 . (28)

Here, P+ and P− account for right-handed and left-handed circularly polar-
ized radiation, respectively. Furthermore, σ0 is the static dc conductivity of
the carriers. Equation (28) shows that the polarization of the ac driving field
determines if resonant absorption takes place or not. The polarization of the
radiation has to match the direction of the carriers cyclotron motion deter-
mined by the magnetic field polarity in order to enable CR. [68]. Due to the
fact that linear polarization is a superposition of circularly right- and left-
handed polarization states, in this case, resonant absorption is stimulated for
both magnetic field polarities.

In the quantum mechanical limit, CR can be described in terms of optical
transitions between adjacent quantized Landau levels [69], which are labelled
with l ∈ N. Assuming a system with parabolic band dispersion subjected to
a magnetic field applied in z-direction B = (0, 0, B) the energy of electrons is
given by [66]

ε = εl + ε(kz) = ~ωc
(
l + 1

2

)
+ ~2k2

z

2m∗ , (29)

with the energy in direction of the magnetic field ε(kz) and the Landau level
energy εl. This follows from the eigenvalue problem which is similar to that
for a harmonic oscillator. The resulting Landau level spectra are shown in
Fig. 5(a) exhibiting an equidistant energy spacing of ∆l = ~ωc = ~qB/m∗.
Allowed optical transitions can be found only between adjacent Landau levels

22



2.2 Cyclotron resonance

due to dipole selection rules [69]. As illustrated in Fig. 5(a) the corresponding
magnetic field strength |BCR| = |m∗ω/q| is independent of the Fermi energy
but scales linearly with the radiation frequency.
In two-dimensional systems with a linear band structure, like e.g. graphene or
surface states of a 3D TI, the situation changes. In this case the Landau level
energy has the form [70–72]

εl = sgn(l)~vF

√
2eB|l|

~
(30)

with vF being the Fermi velocity and l ∈ Z the Landau level number. Here
the values l < 0 and l > 0 belong to Landau levels within the valence and con-
duction band, respectively. Equation (30) shows that the energy has a square
root dependence on the magnetic field and, therefore, the Landau levels are no
longer equidistant. The corresponding energy spacing between neighbouring
levels is given by

∆l = ~ωc = ~vF

√
2eB
~

(
sgn(l + 1)

√
|l + 1| − sgn(l)

√
|l|
)

(31)

with the cyclotron frequency ωc depending not only on B but also on l. The cal-
culated Landau level energy is presented in Fig. 5(b) showing a non-equidistant
Landau level spectrum. It is important to mention that Eq. (31) is valid in
the quantum mechanical limit only, i.e. εF < ~ωc. In this regime due to
the non-equidistant spacing of the levels optical transitions appear at different
magnetic fields BCR at a fixed radiation frequency.
However, if εF � ~ωc, i.e. in the semi-classical regime, the dependence

of ωc on B approaches a linear behaviour [71] which results in an almost
equidistant spacing between adjacent Landau levels. The cyclotron frequency
is then approximately given by

ωc ≈
eB

m∗
(32)

This differs from the parabolic case because in systems with linear dispersion
the cyclotron mass depends on the carrier density, whereas in systems with
parabolic dispersion it is independent of n [71].
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2.3 THz induced optoelectronic phenomena

Homogeneous illumination of uniform materials with ac electric fields may
lead to several photoelectric effects. In particular, applying terahertz (THz)
radiation with photon energies much smaller than the energy gap of most semi-
conductors, leads to a photocurrent generation due to carrier redistribution in
momentum space and in energy [29]. Such phenomena are called nonlinear
if they are proportional to the second or higher order of the driving field E.
The following section devotes to the phenomonological description of a second
order phenomenon, the photogalvanic effect, supported by an exemplary mi-
croscopic model. In addition, the last section presents third order effects, in
particular photoconductivity phenomena.

2.3.1 The photogalvanic effect

The electric field of the radiation can be described by a plane wave yielding

E(r, t) = E(ω, q)e−iωt+iq·r +E∗(ω, q)eiωt−iq·r (33)

with the electric field’s angular frequency ω, the photon wavevector q and the
complex conjugate marked by an asterisk.
Phenomenologically, the interaction of the electric field E with the current

density in the material can be expressed as a series of powers of E. Thus, the
current density jα(r, t) up to the second order of E is given by [26]

jα(r, t) =
∑
β

[
σ

(1)
αβEβ(ω, q)e−iωt+iq·r + c.c.

]
+
∑
β,γ

[
σ

(2′)
αβγEβ(ω, q)Eγ(ω, q)e−i2ωt+2iq·r + c.c.

]
+
∑
β,γ

[
σ

(2)
αβγEβ(ω, q)E∗γ(ω, q)

]
+ ...

(34)

Here, σ denotes the conductivity tensor, the greek letters α, β, and γ take the
values of the Cartesian coordinates x, y, and z and c.c is the complex conjugate.
The first term ∝ E(ω, q) describes Ohm’s law, which is the change of the
current density induced by a static electric field. This part vanishes in the case
of an ac electric field, and is therefore not relevant in case of terahertz radiation.
The second order term ∝ e−2iωt describes second harmonic generation. Such
effects are not further discussed here, however, a detailed discussion on this
can be found in Ref. [26]. The last term in Eq. (34) ∝ Eβ(ω, q)E∗γ(ω, q)
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describes the dc current generation in response to an ac electric field. The
corresponding second-order conductivity σ(2)

αβγ(ω, q) can be written as a sum
of parts dependent and independent of the photon momentum [26, 73]

σ
(2)
αβγ(ω, q) = σ

(2)
αβγ(ω) + σ

(2)
αβγ(ω, q). (35)

These two parts can be redefined as follows

σ
(2)
αβγ(ω) = χαβγ(ω), and σ

(2)
αβγ(ω, q) = Tαδβγqδ (36)

with the coefficients χαβγ and Tαδβγ being third and fourth rank tensors, re-
spectively. Using Eq. (35) the current density from Eq. (34) can be rewritten
to [29]

jα =
∑
β,γ

χαβγEβE
∗
γ︸ ︷︷ ︸

photogalvanic effect

+
∑
δ,β,γ

TαδβγEβE
∗
γqδ︸ ︷︷ ︸

photon drag effect

(37)

Here, the first term represents the photogalvanic effect (PGE) and the second
one the photon drag effect (PDE). In the following the PGE is considered in
more detail. It is important to note that the PGE is only allowed in noncen-
trosymmetric systems because of the fact that jα(−r) = −jα(r) accounts only
for χαβγ = 0 [26, 29]. To go on, the external product EβE∗γ can be decomposed
into a sum of a symmetric {EβE∗γ} = 1

2(EβE∗γ + EγE
∗
β) and an antisymmetric

products [EβE∗γ ] = 1
2(EβE∗γ − EγE∗β), which yields [29]

EβE
∗
γ = ({EβE∗γ}+ [EβE∗γ ]). (38)

Here, the first term on the right hand side is real and symmetric, while the
second one is purely imaginary and antisymmetric. Using the totally antisym-
metric Levi-Civita tensor ενβγ the third rank tensor χαβγ can be reduced to a
second rank pseudotensor ζαν in the antisymmetric part [29]

∑
β,γ

χαβγ[EβE∗γ ] = i ·
∑
ν,β,γ

ζανενβγ[EβE∗γ ] =
∑
ν

ζανi(E ×E∗)ν (39)
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Concluding, the total PGE photocurrent density Jα,PGE is given by [29]

jα,PGE =
∑
β,γ

χαβγ{EβE∗γ}︸ ︷︷ ︸
LPGE

+
∑
ν

ζανi(E ×E∗)ν︸ ︷︷ ︸
CPGE

(40)

with the first term on the right hand side describing the linear photogal-
vanic effect (LPGE) and the second one the circular photogalvanic effect
(CPGE). Equation 40 demonstrated that the LPGE can be observed under
excitation with linear polarized radiation, while for the CPGE circularly po-
larized radiation is required. Since χαβγ has non-zero components only in
non-centrosymmetric media of piezoelectric crystal classes the LPGE is only
allowed in these materials. In contrast, the CPGE depends on the helicity
of the radiation and is not excited by linear polarized radiation. This effect
depends on the second-rank pseudotensor ζαν and is therefore only allowed in
gyrotropic media [29].

E (α = 0)

E (α = 90°)

(a) (b)

j j

Figure 6: Schematic illustration of the microscopic model of the LPGE in systems
with C3v symmetry exemplary shown for electrons (blue circles). The
electrons move along the oscillating electric field E (illustrated by dashed
arrows) and scatter on the equally oriented wedges. This causes an align-
ment of the carrier momenta (solid arrows ) and, consequently, a genera-
tion of an electric current j (red arrow). The preferred scattering direction
depends on the orientation of the electric field vector, defined by the az-
imuthal angle α. In panels (a) and (b) the scattering process is shown for
two perpendicular polarization states, resulting in opposite directions of
the generated photocurrent. Adapted from Refs. [29, 74, 75]

.

Microscopic model for LPGE In the following, an exemplary microscopic
model for the LPGE in systems with C3v symmetry is provided. Such sys-
tems lack an inversion centre which results in an asymmetric scattering even
for scatterers without anisotropy [74–76]. The scattering is described by the
probability for a transition of a particle from a state with momentum p to a
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state with p′, given by Wp,p′ . Assuming elastic scattering the symmetry rela-
tion Wp,p′ 6= W−p,−p′ holds. The photocurrent generation within the LPGE
can be visualized by asymmetric elastic scattering of charge carriers on ran-
domly distributed, but equally oriented triangle shaped wedges. Latter one
is characteristic for the symmetry in systems belonging to the C3v symmetry
group [29, 76, 77].
Figure 6 illustrates the elastic scattering on wedges and the subsequent pho-

tocurrent generation. Exciting a material with an ac electric field E oriented
at an angle α results in an optical alignment of the carrier momenta along the
polarization direction2 which on its own does not result in an net electric cur-
rent. The subsequent asymmetric scattering on the wedges, however, results in
a predominant scattering direction and consequently in a photocurrent. The
magnitude and direction of this current strongly depends on the relative ori-
entation of the radiation’s electric field vector E with respect to the wedges.
In Fig. 6(a) the radiation is polarized horizontally and the generated pho-
tocurrent flows in a direction normal to the electric field. The photocurrent
reverses its direction if the radiation is polarized vertically, see Fig. 6(b). This
polarization dependence is characteristic for the LPGE, for reviews see e.g.
Refs. [29, 74, 76, 81].

2.3.2 Photoconductivity

Equation (34) gives a phenomenological description of the current density up
to the second order of the electric field. Third order effects, in general, can as
well be excited by terahertz radiation. In particular, in the special case if a
static field E(dc)(0, 0) is applied. Latter one can be realized by application of
a bias voltage to the system. This can result in photoconductivity phenomena
like µ−photoconductivity. The understanding of these effects is particularly
important since the high power terahertz radiation leads to a strong heating
of the electron gas, and, consequently, to a change of the sample conductivity.
Here, the generated current is given by [26, 76]

jα(r, t) =
∑
βγδ

σ
(3′′)
αβγδEβ(ω, q)E∗γ(ω, q)E(dc)

δ (0, 0), (41)

2Note that this is valid only for intraband transitions and Drude absorption [31, 78]. In
the case of interband transition the momenta get aligned perpendicular to the electric
field vector [79, 80].
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where σ(3′′)
αβγδ is the fourth-order conductivity tensor. Equation 41 shows that

this effect is proportional to the static electric field and to the intensity I ∝
|E|2(ω, q). In the following the microscopic model of electron gas heating and
µ−photoconductivity is provided.

Electron gas heating and µ−photocondcutivity Variations of the sample
conductivity induced by absorption of high power terahertz radiation may
result from changes in the carrier density n, e.g. due to electron-hole pair
generation or light impact ionization. Another possible mechanism for photo-
conducitvity phenomena are based on changes of the carrier mobility µ. The
corresponding change of the conductivity ∆σ then reads

∆σ = |e|n∆µ, (42)

where ∆µ is the change of the mobility induced by the radiation. In relation
to this, the effect is termed µ−photoconductivity. The terahertz radiation
gets absorbed by free carriers which may result in a strong heating of the
electron gas [29]. If the carrier density n is large enough, the electron-electron
scattering time τee is much shorter than the energy relaxation time τε. From
this follows that the absorption leads to an electron temperature Te which
differs form the temperature of the surrounding lattice Tlattice due to electron-
electron scattering. The magnitude of Te depends on the competition between
power absorption and energy loss. This temperature Te can be found from the
balance equation for bulk materials [29]

K(ω)Iεeff

~ω
= 〈Q(Te)〉n, (43)

where K(ω) is the absorption coefficient, εeff the effective energy released from
one photoexcited electron to the electron system in equilibrium, and 〈Q〉 =
〈dε/dt〉 gives the energy loss per unit of time for a single carrier.
The variation of the conductivity, normalized to the dark conductivity σ0 =
|e|nµ, induced by the radiation can be approximated by [29]

∆σ
σ0

= 1
µ

∂µ

∂Te

∣∣∣∣∣
Te=Tlattice

∆Te. (44)

This equation indicates that the sign of the µ−photoconductivity depends
on the sign of ∂µ

∂Te
. The sign may give information about the predominant
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scattering mechansim. For instance, if impurity scattering dominates ∂µ
∂Te

is
positive while it is negative for scattering on phonons [65, 82].
Highly intense THz radiation may also affect the lattice temperature Tlattice.

In this case the response time of the photoconductivity process is usually longer
than in electron-temperature driven processes, where the time corresponds to
the energy relaxation time τε (≈ ps). However, due to rather low pulse energies
used in this work lattice-involving processes are neglected.

29



3 Methods

3 Methods
The following chapter is dedicated to the investigated samples and the applied
experimental techniques. It begins with a description of the samples based
on HgTe and graphene. Furthermore, the used laser systems, their mode of
operation as well as the experimental setups are outlined, including optical
and electrical components.

3.1 Investigated samples

3.1.1 HgTe/CdTe heterostructures

The measurements on HgTe were carried out on HgTe films having different
thicknesses of either 80 nm or 200 nm. All films have been grown on GaAs
substrates with (013) or (001) crystal orientation by molecular beam epitaxy
(MBE). A schematic cross section of the systems under study is depicted in
Fig. 7(a). The layer ordering is similar for all investigated samples with the
HgTe film being sandwiched between Hg0.4Cd0.6Te, a well known technique
to increase the mobility of the material and to decrease the number of bulk
impurities [83].
Since the lattice mismatch of HgTe on GaAs is rather large the substrate

is covered by a thin ZnTe layer and a 4 µm thick fully relaxed CdTe layer
having a 0.3 % larger lattice constant as HgTe. If the latter fully adopts the
lattice constant of CdTe this results in uniaxial strain and in an opening of
an indirect bulk bandgap of 15 meV in the HgTe layer [38, 40]. In general, it
is expected that the thickness of the pseudomorphic growth of HgTe films on
CdTe substrates lies in the order of 100-150 nm [37, 40]. Under this assumption
the 200 nm system under study should have a bulk bandgap close to zero.
Fig. 7(b) shows a two crystal high resolution x-ray diffraction measurement
performed in Ref. [40] to study the average strain on a 200 nm HgTe film
arising from the lattice mismatch between HgTe and CdTe . Note that the data
were measured on a structure fabricated from a wafer which is also investigated
in this work (wafer #B), see sample description below. The diffraction curves
were obtained for a [026] reflex in opposite directions, which correspond to
azimuthal angles δ = 0 and 180◦. Looking at the peak position values it can
be concluded that the HgTe, though already partly relaxed, still adopts to
the CdTe layer. This means that the investigated 200 nm thick HgTe film
still exhibits an average strain of approximately 60 % (100 % would be a fully
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Figure 7: (a) Layer ordering of the investigated samples. By means of MBE the
HgTe layer (80 nm or 200 nm thick) is grown on a GaAs substrate with
(013) or (001) crystal orientation. The film is sandwiched between two
Hg0.4Cd0.6Te layers serving as cap and buffer layer. The fully relaxed
CdTe film covering the GaAs substrate is the cause for the strain in the
HgTe film opening an indirect bulk band gap. Panel (b) shows an x-
ray diffraction measurement of a system with a 200 nm HgTe film in a
symmetrical Bragg geometry. The data reveal an average strain of 60 %
in the HgTe film arising from the lattice mismatch between CdTe and
HgTe. Figure adapted from Ref. [40]

strained HgTe film with an indirect bulk band gap of about 15 meV [37, 38, 84]
and 0 % a fully relaxed one where the valence and conduction band overlaps).
Comparing this value with thinner films, e.g. 80 nm HgTe studied in Refs.
[38, 83], the reduced strain in 200 nm thick HgTe films should result in a
significantly smaller but still existent bulk band gap.
To vary the Fermi level position εF some of the 200 nm samples were equipped

with semitransparent gates on top. For this purpose 14 nm thick NiCr was de-
posited on 100 nm Al2O3 grown by atomic layer deposition.

For the measurements presented in this work several samples were fabricated
in the group of Dr. Sergey Dvoretsky and Dr. Sergey Mikhailov at the A.V.
Rzhanov Institute of Semiconductor Physics, Novosibirsk, Russia. Wafer #A
owns a 80 nm thick HgTe film grown on GaAs with (001) crystal orientation
whereas wafer #B, mostly studied in this work, has a 200 nm thick HgTe layer
on a (013) oriented substrate. The samples were shaped in either van der Pauw
(VdP) or Hall bar geometry and mounted on 8 pin sample holders. Figure 8(a)
shows a photograph of a 200 nm HgTe VdP sample made from wafer #A and
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contacts

Figure 8: (a) Photograph of the 200 nm-HgTe sample in van der Pauw (VdP) geom-
etry and (b) in Hallbar geometry with a semitransparent top gate. The
samples are from the same wafer #B. (c) Schematic illustration of the
samples and cartesian coordinates: Top one shows the Hallbar geometry
with ten contacts and a top gate. The bottom one illustrates the VdP
geometry with eight ohmic contacts.

(b) a Hall bar structure from the same wafer additionally equipped with a
top gate. A sketch of the samples is presented in Fig. 8(c) where the top
structure shows the conducting channel of a rather big Hall bar corresponding
to panel (b) and the bottom scheme shows a typical VdP sample with eight
ohmic contacts, one at each corner and in the middle of each edge which are
oriented along x ‖ [100]. The contacts are soldered with indium and connected
via goldwires to the sample holder.

To characterize the samples transport measurements were carried out. Here,
exemplary the results obtained for partially relaxed 200 nm HgTe samples from
wafer #B are shown. Figure 9(a) depicts the longitudinal sheet resistance ρxx
at B = 0 as a function of the applied gate voltage Ug. It shows an asymmetric
behaviour around a maximum located at Ug ≈ 0.6 V. While the resistance
at the right side of the peak drops sharply at about Ug = 2 V to well below
100 Ω it is about twice as high on the left side. A similar behaviour was
already detected in thinner 80 nm HgTe films, see Refs. [40, 83], and can
be well understood by considering a schematic band diagram of such thicker
200 nm HgTe films, presented in Fig. 9(b). Since the film is partially relaxed
it has a much smaller indirect bulk energy gap of approximately 3 meV as
compared to 80 nm films [38, 83]. Different to bulk HgTe the valence band
edge lies beside the Γ point whereas the conduction band has its minimum at
the centre of the Brillouin zone. Topologically protected surface states with
almost linear dispersion exist in the system having a Dirac point situated deep
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Figure 9: (a) Gate dependence of the longitudinal resistance, measured in a 200 nm
thick HgTe sample at a temperature of T = 4.2K without a magnetic field
applied. Panel (b) shows a schematic illustration of the energy dispersion
of a 200 nm HgTe system at zero effective gate voltage. The Dirac point
of the surface states which are illustrated by the magenta solid line is
situated deep in the valence band. The Fermi level position is depicted by
the vertical dashed line. Figure adapted from Ref. [40].

in the valence band [37, 40]. By changing the applied gate voltage the Fermi
level εF can be tuned from the valence band across the charge neutrality point
(CNP) (maximum of ρxx) all over to the conduction band. The behaviour of
the longitudinal resistance observed in the transport, see Figure 9(a), supports
this assumption. At negative gate values εF lies in the valence band meaning
that bulk holes and surface electrons coexist. Changing the gate voltage to
positive values shifts the Fermi level towards the conduction band, where bulk
electrons contribute to the transport as well as the high-mobility electrons on
the surface. Thus, the comparison of the longitudinal resistivity between left
and right side of the CNP indicates a significant difference between the bulk
electron and hole mobilities.
Figure 10(a) shows the Hall resistance as a function of the magnetic field

at selected temperatures for a 200 nm thick HgTe film (wafer #B). For low
fields a nonlinear N-shape can be observed which is an indication for the co-
existence of electrons and holes, similarly observed in previously investigated
80 nm HgTe films [38, 83]. It is noticeable, that the Hall resistance changes
its sign for higher temperatures, indicating thermal activation of charge car-
riers. At low temperatures the current is mainly transported by holes since
in ungated HgTe the Fermi level lies in the valence band, see Fig. 9(b) [38,
83]. The smaller contribution stemming from electrons can be attributed to
the high-mobility surface states. However, at higher temperature the electron
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Figure 10: Magnetotransport of a sample from the 200 nm HgTe wafer #A. Panel (a)
shows the Hall resistance as a function of the magnetic field for selected
temperatures. During the same measurement the longitudinal sheet re-
sistance ρxx was also detected and is presented in the inset. Panel (b)
depicts the extracted carrier densities, ns and ps respective to electron
and hole conductivity, as a function of the temperature in the sample
chamber. The inset shows the electron and hole mobilities µe and µh, re-
spectively. These characteristics where obtained by applying the classical
two-carrier Drude model. Figures adapted from Ref. [30]

.

contribution increases due to increasing bulk electron concentration.
The corresponding longitudinal sheet resistance as a function of the magnetic

field is shown in the inset revealing always positive values and a symmetric be-
haviour around zero field. From the magnetotransport data the carrier density
can be extracted and is presented in Fig. 10(b) as function of the temperature.
It shows the electron and hole density ns and ps, respectively, extracted by fit-
ting Rxy(B) and ρxx(B) applying the classical two-carrier Drude formalism
[83]. The corresponding hole and electron mobilities µe and µh are presented
in the inset. Note that the electron mobility for low temperatures is not shown,
because the fitting gets more inaccurate here due to the low electron density.
An expected trend of the electron mobility at low temperatures is indicated
by the dashed line [38, 83].

3.1.2 Graphene-based systems

Beside HgTe films also several systems based on graphene were studied in this
work including mono-and bi-layer graphene samples. The Hall bar shaped
mono-layer graphene samples (MLG #1, MLG #2, and MLG #4) were fab-
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ricated in collaboration with the group of Dr. Jonathan Eroms/Prof. Dr.
Dieter Weiss. The bilayer graphene samples (BLG #1 and #2) fabricated as
VdP and Hall bar structures were produced at Manchester university from the
group of Prof. Dr. Artem Mischenko.

The investigated devices consist of exfoliated graphene layers sandwiched
between hexagonal boron nitride (h-BN) layers, see Fig. 11(a). H-BN being
an insulating isomorph of graphite is an ideal substrate candidate to improve
the quality and durability of graphene-based devices. It was demonstrated
that such devices exhibit enhanced mobilities, reduced carrier inhomogenities
as well as an intrinsic doping being lower than in SiO2 supported devices [85].

h-BN

SiO2 

n-Si substrate

C
h-BN

(a) (b) (c)
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Figure 11: (a) Layer ordering of the studied graphene devices. The graphene flake is
sandwiched between h-BN layers and transferred to a Si wafer. Panel (b)
shows a picture of the mono-layer graphene sample MLG #2 glued into
a 20 pin chip carrier. Two Hall bar structures on the graphene flake are
connected via gold wires with the holder. (c) Schematic of the Hall bar
geometry showing the conducting channel and Cr/Au contacts as well as
Cartesian coordinates. (d) Longitudinal sheet resistance as a function of
the effective gate voltage U eff

g obtained in sample BLG #2 at T = 4.2K.

To produce these high mobility graphene samples the exfoliated graphene
flakes are picked up by van der Waals interactions with an h-BN flake and
further transferred onto a second h-BN flake supported by a SiO2 substrate.
After an annealing procedure the stacks are patterned into a Hall bar geome-
try by means of electron beam lithography and reactive ion etching, and then
contacted using Cr/Au [86, 87]. Afterwards the samples are glued into 20 pin
chip carriers (8× 8mm2) using silver filled epoxy to contact the back gate and
then electrically wire-bonded, see Fig. 11(b). Figure 11(c) exemplary shows
the Hall bar shape of samples MLG #1 and #2. An overview of the samples
studied in this work is given in table 1 presenting their dimensions as well as
the corresponding carrier densities.
To characterize the devices transport measurements were performed by ap-

plying an ac current of Iac = 10 nA. Upon variation of the applied gate voltage
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Figure 12: Characteristics of sample MLG #2 obtained from magnetotransport mea-
surements. (a) Transverse resistance Rxy as a function of the magnetic
field for two different effective gate voltages U eff

g = ±1.2V. (b) The car-
rier densities n, p (grey open circles) for electron and hole transport with
a linear fit after ±0.75 · 1011U eff

g (dashed line). (c) Variation of the Fermi
energy εF with the effective gate voltage U eff

g . Dashed line shows the
calculated εF using the linear fit from panel (b)

the CNP can be detected as the maximum of the longitudinal resistance, see
exemplary Fig. 11(d). Since the CNP can slightly shift for different sample
cool downs an effective gate voltage is introduced U eff

g = Ug−UCNP
g . The sam-

ple characteristics, presented in table 1 were obtained from magnetotransport
measurements at T = 4.2K, exemplary shown in Fig. 12 for sample MLG #2.
Figure 12(a) shows the transverse Hall resistance Rxy as a function of the

magnetic field B for two effective gate voltages U eff
g = +1.2 and −1.2V. The

slopes have opposite signs revealing different carrier types, i.e. n- and p-type
conductivity for positive and negative U eff

g , respectively. The quantum Hall
effect is well observable showing the first Hall plateau with filling factor ν = 2
already below B = 2T3. The variation of the carrier density for n and p type
conductivity with the gate voltage is presented in Fig. 12(b) where the black
dashed line follows the linear fit after ±0.75 · 1011U eff

g . The carrier densities
3Note that in the bi-layer graphene samples no Hall plateaus in the transverse resistance
were detected in this magnetic field range.
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Sample name Size [µm/µm] n [cm−2]/|U eff
g | [V] p [cm−2]/|U eff

g | [V]

MLG #1 W/L = 2/9 0.90 · 1011 0.55 · 1011

MLG #2,#4 W/L = 2/9 0.75 · 1011 0.75 · 1011

BLG #1 W/L = 7/7 2.50 · 1011 2.50 · 1011

BLG #2 W/L = 9/31 0.46 · 1011 0.65 · 1011

Table 1: Characteristics of the mono-layer graphene samples MLG #1 and #2 as
well as the bi-layer graphene samples BLG #1 and #2. The carrier densities
are obtained from magnetotransport measurements at T = 4.2K. Note that
all samples, except BLG #1 (VdP), are shaped in Hall bar geometry.

for the other samples under study can be found in table 1. Figure 12(c)
shows the Fermi energy εF as a function of the effective gate voltage. From
the magnetotransport measurements also the charge carrier mobilities of the
graphene devices studied in this work can be extracted which lie in the range
0.9× 105 to 1.5× 105 cm2/Vs at T = 4.2K.

3.2 Measurement technique

3.2.1 THz laser systems

Optically pumped THz molecular gas laser [29, 88] were used to excite the
investigated samples. The THz lasers are pumped by CO2 lasers exciting
vibrational-rotational transitions of molecules having a permanent electric
dipole moment. Such laser systems are well approved since they are robust,
can achieve very high powers and cover a wide range of frequencies in the THz
range [29]. To accomplish the desired THz laser line the CO2 laser provides
monochromatic radiation between approximately 9 and 11µm coming from
rotational-vibrational transitions of two P - and R-branches. Note that P and
R indicate the change of the rotational quantum number ∆J = +1 and −1,
respectively.
In the molecules chosen for generation of THz radiation, the vibrational

levels characterized by quantum numbers ν split up into rotational levels
with angular momentum J . The mid infrared (MIR) CO2 radiation results
in vibrational-rotational transitions leading to population inversion in the vi-
brational states. The relaxation transitions between the rotational modes are
used to emit photons with energies in the THz range. The frequency of this
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emitted radiation depends on the one hand on the laser gas and on the other
hand on the pump line coming from the CO2 laser. Molecules used in this
work are NH3, CH3OH, CH3F,CH2F2, D2O and CH2O2, yielding several fre-
quency lines between 0.6 and 8.5 THz. The distance of the rotational levels is
determined by the molecules weight [67], and therefore, lighter molecules gen-
erate radiation with higher frequency. However, laser operation is also possible
with pump lines being different from the molecular transition. This is due to
stimulated Raman scattering which emerges in pulsed THz lasers depending
on excitation energy and gas pressure [29, 89].
In this work two types of THz molecular lasers were used, a pulsed THz molec-

BaF  lens2 NaCl window spherical Cu mirrors TPX window

ZnSe lens ZnSe Brewster window

Gold coated plane
steel mirror with hole
and cone

THz
radiation

THz
radiation

NH  / D O / CH F3 2 3

molecular gas

CH OH / CH F  / CH O3 2 2 2 2

molecular gas

(a)

(b)
Adjustable silver 
coated quartz mirror 
with uncoated annulus

MIR

MIR
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(cw)

Figure 13: Sketch of the used molecular THz laser systems pumped by MIR radiation
from CO2 lasers. (a) Pulsed THz laser and (b) cw THz laser. Adapted
from Ref. [90].

ular laser pumped by a transversely-excited atmospheric pressure (TEA) CO2

laser and a continous wave (cw) THz molecular laser pumped by a longitudi-
nally excited cw CO2 laser. Their build-up is very similar, see Fig. 13 (a) and
(b), and both lasers exhibit a fundamental Gaussian beam profile. The latter
one is checked by a pyroelectric camera [91], which is also used to determine
the full width at half maximum in x and y direction lying between 1.5 and
3.5mm depending on the wavelength. These values guarantee a homogeneous
illumination of the µm-sized samples. The knowledge of the full width at half
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maximum is particularly important for the calculation of the radiation inten-
sity at the sample position. In the following the main differences of the used
laser systems are depicted.

Molecule λ (µm) f (THZ) ~ω (meV) pump line

NH3 90 3.33 13.7 9R(16)

NH3 148 2.02 8.4 9P(36)

NH3 280 1.07 4.4 10R(8)

D2O 385 0.78 3.2 9R(22)

CH3F 496 0.61 2.5 9R(20)

Table 2: Characteristics of the THz laser lines used in this work pumped by a pulsed
TEA-CO2 laser. After Ref. [29]

Pulsed molecular THz laser The pulsed MIR radiation coming from a (TEA)
CO2 laser has a pulse duration of approximately 100 ns and peak powers up to
MW. Figure 13 (a) shows a typical build-up of a pulsed molecular THz laser.
The MIR radiation focused with a BaF2 lens is coupled through a NaCl win-
dow into a resonator. The latter one contains of a glass tube with two spherical
Cu mirrors having an in/outcoupling hole and is filled with the active media.
To prevent the remaining MIR radiation from leaving the resonator a TPX
(poly-4-methyl-1-penthen) window which is transparent for THz radiation but
not for MIR radiation is placed at the output. This laser system generates
pulses with a similar temporal shape as the pump source (≈ 100 ns) and a fre-
quency dependent peak power of several tens of kW. An overview of the used
molecules with corresponding wavelengths, frequencies and photon energies is
given in table 2. The used pump line coming from the CO2 laser is indicated
with the vibrational transition (10.4µm or 9.4µm), the branch P or R and
the angular momentum number J of the final state.

Continuous wave molecular THz laser In contrast to the pulsed THz laser
system the pumping energy for the cw THz laser comes from a longitudinally
excited cw CO2 laser with powers up to 50W. The MIR radiation is focused
with a ZnSe lens and coupled into the resonator through a ZnSe Brewster
window, see Fig. 13 (b). The resonator filled with molecular gas consists of
a gold-coated steel mirror at the entrance and semi-transparent silver coated
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3.2 Measurement technique

z-quartz mirror at the output. This quartz mirror is adjustable allowing to con-
trol the generated mode structure and wavelength by changing the resonator
length. To ensure an absorption of the MIR radiation an additional uncoated
central z-cut quartz annulus is placed at the output being transparent for
the generated THz radiation. For the cw THz laser system CH3OH,CH2F2

and CH2O2 are used as active media yielding frequencies f = 2.54, 1.63 and
0.69THz with line-dependent powers up to 80 mW.

3.2.2 Experimental setup

(a) (b)
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Figure 14: (a) Exemplary sketch of the measurement setup. Adapted from Ref.
[90]. (b) Photocurrent measurement setup. The photocurrent signal
is measured as a voltage drop over load resistors. (c) Four terminal
photoconductivity measurement setup. A dc bias voltage is applied to
the sample and the signal is picked up at contacts across the Hall bar.
Note that in some measurements a two terminal setup is used where the
signal is picked up in same direction as the bias voltage is applied.

Leaving the resonator the generated THz radiation passes through sev-
eral optical components, e.g. polarizers or wave plates, and is focussed by
a parabolic mirror into an optical cryostat where the sample is mounted, see
an exemplary sketch of the setup in Fig. 14 (a). In this work three different
types of cryostats where used: For most of the measurements with the pulsed
laser system a liquid helium flow cryostat was employed. Note that in this
setup the application of a magnetic field is not provided. At the cw laser sys-
tems either a helium bath cryostat or a variable temperature helium cryostat
where the temperature can be varied from T = 2K to room temperature was
used. In these cryostats the sample is mounted between two superconducting
split coils which are able to provide magnetic fields up to ±7T. In all measure-
ments the magnetic field was applied in Faraday geometry, i.e. normal to the
sample surface. However, it is not only the influence of the magnetic field and
temperature on the sample that is crucial, also polarization state and inten-
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sity of the incoming THz radiation play an important role for optoelectronic
phenomena excited in the graphene or HgTe samples. Therefore, the following
subchapters are dedicated to the optical components and methods used in this
work to manipulate or characterize the used THz radiation.

Variation of the radiation‘s polarization state THz radiation induced ef-
fects, in particular photogalvanic currents studied in this work, strongly de-
pend on the polarization state of the incoming radiation. The generated THz
radiation is almost perfectly linear polarized making it a good candidate for
manipulation. In the following a brief introduction of the stokes parameters
[92] describing the radiation polarization state and the wave plates [29] applied
to manipulate this state is given.
The light’s polarization state is well described in terms of the four Stokes pa-
rameter. The first one s0 describing the light‘s total intensity, s1 and s2 the
degree of linear polarization and the last one s3 characterizes the degree of
circular polarization. Latter one vanishes in case of purely linear polarization.

(a) (b)

φ

λ/2 plate λ/4 plate

d
d

Ef Ef
β

α

Ei

Ei

Ei

Ei

c-axisc-axis

E|| E||
E

E

Figure 15: Sketch of the geometry of (a) λ/2 and λ/4-plates with Cartesian coordi-
nates. Adapted from Ref. [90]

To control the polarization either λ/2 or λ/4-plates made of x-cut crystal
quartz are used. The functionality of this birefringent plates is illustrated in
Fig. 15 (a) and (b). Considering the λ/2-plate, panel (a), an incoming linearly
polarized beam with an electric field vector E i, oriented along the a-axis, is
rotated with respect to the c-axis around an angle β. E i is composed of an or-
dinary beam E i⊥ being perpendicular to the c-axis as well as an extraordinary
beam E i‖ being parallel. After passing the plate the two beam components
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have different velocities since for THz radiation the refractive index n of quartz
is different for the ordinary and the extraordinary axis, no and neo, respectively.
Therefore, the beams exhibit a phase shift [93]

∆φ = (2πd)/λ ·∆n (45)

with the thickness of the plate d and ∆n = neo − no. Here, two cases can
be distinguished: If ∆φ is an odd multiple of π the plate rotates the incident
electric field vector Ei by an angle α being twice as big as the rotation angle
β. These plates are well known as λ/2-plates, see Fig. 15 (a). This illustration
shows that if β is a multiple of 90◦ the initial polarization state does not get
influenced, i.e. E i = E f. In the second case ∆φ is an odd multiple of π/2 and
the incident radiation is converted into elliptically, or even circularly polarized
light controlled by the angle ϕ with the plate known as λ/4-plate, see Fig.
15 (b). If the angle ϕ is chosen to be 45◦ or 135◦ the radiation becomes left-
or right-handed circularly polarized, respectively, and at angles in between it
becomes elliptically. In contrast, at ϕ = 0◦, ϕ = 90◦ and ϕ = 180◦ the initial
polarization remains unchanged, and is therefore linearly polarized.
The Stokes parameter describing the polarization state of a beam initially

polarized along the y-axis (E i ‖ y) and propagating along the z-axis can be
expressed in terms of the rotation angles α = 2β for linear polarization. Ex-
emplary, for the pulsed laser setup they are given by

s1

s0
= − cos 2α

s2

s0
= − sin 2α.

(46)

For elliptical polarization with the rotating angle ϕ they are expressed by

s1

s0
= −cos 4ϕ+ 1

2
s2

s0
= −sin 4ϕ

2
s3

s0
= sin 2ϕ = −Pcirc,

(47)

where Pcirc defines the degree of circular polarization. Equations 46 and 47
help to analyse measurements performed with polarized radiation, where α or
ϕ are varied. The last term which describes the degree of circular polarization
Pcirc vanishes if the radiation is linearly polarized.
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Calibration and manipulation of radiation intensity To monitor the power
P of the THz radiation during the measurements a beam splitter (Mylar sheet)
is placed in the optical path and the reflected part is focused onto a photon
drag power detector [29], see Fig. 14(a). Since the power on the reference
detector position slightly differs to that at the sample position calibration
measurements are performed. To do so a second reference detector is placed at
the sample position and then the ratio between the part reflected at the beam
splitter and the transmitted part can be calculated. Taking this ratio into
account, which varies for different setups and radiation frequencies, the power
entering the sample during measurements can be determined. To calculate the
intensity at the sample position, it is also important to monitor the spatial
beam profile, typically done with a pyroelectric camera. Consequently, the
radiation intensity can be calculated as

I = P

A
(48)

with the area A of the Gaussian beam. Note that this parameter may also
change with radiation wavelength and laser setup.

To study THz induced optoelectronic phenomena it is fundamental to mea-
sure intensity dependencies. In this work, the control of the intensity exciting
the sample was done by means of crossed linear polarizes. First the linearly
polarized radiation coming from the laser passes through a rotatable polar-
izer resulting in a decrease of the radiation intensity and the rotation of the
polarization state. Then it passes through a second polarizer, which has a
fixed position. This on the one hand causes a further decrease of the radiation
intensity and on the other hand returns the polarization state to the initial
one.

Measurement configurations All components of the experimental setup are
connected to a computer via GPIB (General Purpose Interface Bus) allowing
to control them during the measurements with a software written in Labview.
The electronic setups of the pulsed an cw THz laser setups are slightly differ-
ent. In the first case signals coming from the sample are amplified and then
further processed by a digital storage oscilloscope. In the cw laser setup a
chopper was placed additionally in the optical path allowing to use standard
lock-in technique to process the photosignals.
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The THz radiation induced photosignals were measured as a voltage drop over
load resistors, see exemplary setups in Figs. 14. Figure 14(b) shows a pho-
tocurrent measurement where the detected photovoltage U is proportional to
the photocurrent J . Here no external bias voltage is applied while for the
photoconductivity measurements, as exemplary shown for circularly polarized
radiation in Fig. 14(c), an external dc bias voltage V dc is applied perpen-
dicular to the measurement direction. In some measurements a two terminal
photoconductivity setup was used where the signal is picked up in same direc-
tion as the bias voltage was applied.
By definition, the linear-in-V dc signal has opposite signs for opposite bias volt-
age polarities whereas the photogalvanic current is independent of the V dc

polarity. Consequently, the photoconductivity signal Upc can be extracted as

Upc = U(V dc)− U(−V dc)
2 . (49)

For the two terminal measurements of the photoconductivity signal, the rela-
tive photo-induced change in conductivity ∆σ normalized to the dark conduc-
tivity σ was calculated.
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4 CR-enhanced photovoltage in HgTe topological
insulators

In this chapter experiments on HgTe-based three-dimensional topological in-
sulators are presented and discussed. It starts with the experimental results,
where the observation of cyclotron resonances in samples with different HgTe
thickness is outlined. After that the discussion of the data is given which also
includes the introduction of the theory behind. All results in this chapter are
obtained using the cw terahertz laser. The corresponding data are published
in Ref. [30].

4.1 Experimental results

By applying normally incident THz radiation to three-dimensional HgTe topo-
logical insulators a strong enhancement of the photocurrent under cyclotron
resonance condition can be observed [30, 38]. Complementary measurements
of the radiation transmission [38, 39, 94] by placing a pyroelectric detector
behind the sample support the analysis of the photocurrent data. The pho-
tocurrent J was studied in the presence of a magnetic field up to 7T and
picked up across the sample as Photovoltage Ux,y ∝ Jx,y, see Fig. 14(b).
To analyse the transmission data obtained from the HgTe samples fit functions
were used. Before presenting the experimental results the model behind the
fit functions is briefly addressed, for review see Refs. [95–99].

Transmission fits The excited sample is assumed as a dielectric plate with
a thickness w, which represents the thick GaAs substrate having a refractive
index of n = 3.6. The, in comparison, negligibly thin HgTe layer on top of the
substrate hosts conducting surface and bulk carriers. The incident radiation
with a frequency of ω/2π is considered circularly polarized and hits the sample
at a normal incidence. In order to describe the THz wave transmitted through
the sample, one needs to take into account possible multiple reflections between
the dielectric interfaces (Fabry-Perot interferences) since the optical phase shift
φ = nωw across the substrate is much larger than unity. These interferences
influence the electrons in the HgTe layer and may result in a deviation of the
CR dip from a symmetrical Lorentzian form (see Sec. 4.2 below). The power
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transmission can be written as [95, 96]

T =
∣∣∣∣∣(1 + σ̃) cosφ− i1 + n2 + 2σ̃

2n sinφ
∣∣∣∣∣
−2

(50)

with ε0 being the vacuum permittivity and the dimensionless parameter σ̃ =
σ/2ε0c where σ = σxx(ω)+ iσxy(ω) is the complex dynamic conductivity. Note
that in HgTe an isotropic transport is assumed, meaning that σxx = σyy and
σyx = −σxy. Within the Drude model the ac conductivity is given by

σ± = e2ne/m

τ−1 − i(ω + ωc)
(51)

where τ is the momentum relaxation time and ωc = eBCR/m the cyclotron
frequency. From this follows

σ̃ = Γ
γ − i(1± ωc/ω) . (52)

Here, Γ represents the radiative decay rate [96–99] which is given as

Γ = e2ne
2ε0cmω

= 0.301T
BCR

ne
1012 cm−2 . (53)

From this it becomes apparent that Γ only depends on the electron density ne
and the cyclotron resonance magnetic field BCR. On the other hand

γ = 1
ωτ

= 1
µBCR

(54)

is determined by τ and the corresponding mobility µ. Thus, the transmitted
power, Eq. (50), depends on the Fabry-Perot interference phase φ, the cy-
clotron masses, carrier densities and corresponding carrier mobilities. If several
carrier types contribute to transport, σ̃ is written as the sum of the respec-
tive conductivities of the different transport channels. The above equations
are valid for left-handed circularly polarized radiation an can be translated to
right-handed polarization by substitution (ωc → −ωc).

After the introduction of the fit functions employed to analyse the transmis-
sion data the experimental findings are presented in the following. Irradiation
of samples based on 200 nm thick HgTe films with THz radiation results in
the observation of two distinct resonances in the photovoltage Ux,y ∝ Jx,y at
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magnetic fields BCR1 = 1.6T and BCR2 = 2.5T, see Fig. 16(a). The data were
obtained at T = 30K and with normally incident THz radiation (circularly
and linearly polarized) with a frequency of f = 1.63THz and the magnetic
field applied perpendicular to the sample surface.
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Figure 16: (a) Magnetic field dependence of the photosignals Ux ∝ Jx excited with
linearly and circularly polarized light. (b) Radiation transmission. Data
were obtained on a 200 nm HgTe film (wafer #B) at T = 30K and
at a radiation frequency f = 1.63THz. Solid line in (b) shows a fit
after Eq. (50) and (52) with fitting parameters: BCR1 = 1.8T and
BCR2 = 2.5T; φ = 8◦; n1 = 1.0 × 1011 cm−2 and n2 = 0.4 × 1011 cm−2;
µ1 = 3.5× 104 cm2/Vs and µ2 = 8× 104 cm2/Vs. Adapted from Ref. [30]

For circularly polarized radiation, the resonances appeared only for one mag-
netic field polarity, see Fig. 17. For right-handed circular polarization, σ+,
they emerge at positive fields, and for left-handed circular polarization, σ−,
at negative magnetic fields. Using linear polarization which is described by
a superposition of left and right-handed circular polarizations, the resonances
were consequently detected for both magnetic field polarities. The simulta-
neously measured radiation transmission is presented in Fig. 16(b) and shows
dips at similar magnetic fields as the resonant features observed in Ux. The
transmission fit shown as solid blue line in Fig. 16(b) is based on Eqs. (50)
and (52) introduced above. Corresponding fit parameters, BCR1 and BCR2,
carrier densities, and mobilities of top and bottom surface states as well as the
Fabry-Perot interference phase φ are given in the caption of Fig. 16.
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Figure 17: Photovoltage Ux as a function of the magnetic field for various samples
with different HgTe film thicknesses, different crystal orientations and
different measurement temperatures. (a) Photosignal in a gated 200 nm
thick film for σ+ and σ− polarized light with frequency f = 1.63THz.
Panels (b) to (d) show typical resonances detected in the various samples
with excitation frequency f = 2.54THz. Adapted from Ref. [30]

In addition to the 200 nm HgTe samples, films with a thickness of 80 nm
were studied. Qualitatively similar results were observed in these thinner films.
Figure 17 shows an overview of the photovoltage measured in different samples
with different thicknesses of the HgTe film and different crystal orientations of
the GaAs substrate. In all samples two well separated resonances are detected
which exhibit similar polarization dependencies. Notably, the resonant pho-
tocurrent can either be positive or negative, depending on the experimental
conditions. This is e.g. seen in Fig. 17(a) where the sign of the resonant
photocurrent is the same at magnetic fields +BCR2 and −BCR2 but different
at magnetic fields +BCR1 and −BCR1.
While in the photocurrent signals, the resonances always appear as two
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Figure 18: Normalized transmission as a function of the perpendicular applied mag-
netic field obtained for right-handed (positive B) and left-handed (nega-
tive B) polarized radiation on various samples with different HgTe thick-
ness and at different temperatures. Solid lines show fits after Eq. (50)
and (52). The fitting parameters are: Panel (a) BCR1 = 2.8T and
BCR2 = 3.4T; φ = 12◦; n1 = 2.5× 1011 cm−2 and n2 = 0.7× 1011 cm−2;
µ1 = 3× 104 cm2/Vs and µ2 = 2.3× 104 cm2/Vs; panel (b) BCR1 = 2.6T
and BCR2 = 3.3T; φ = 0◦; n1 = 0.8 × 1011 cm−2 and n2 = 0.34 ×
1011 cm−2; µ1 = 5.6 × 104 cm2/Vs and µ2 = 10 × 104 cm2/Vs; and panel
(c) BCR1 = 2.1T and BCR2 = 2.6T; φ = 0◦; n1 = 0.5 × 1011 cm−2 and
n2 = 0.1 × 1011 cm−2; µ1 = 6 × 104 cm2/Vs and µ2 = 10 × 104 cm2/Vs.
Adapted from [30]

separated extrema, in complementary radiation transmission the dips tend to
merge at higher temperatures, see Fig. 18. In the 200nm film, the observed
resonances appear as a merged resonance at T = 60K, whereas below T = 40K
the two resonances are well resolved in all studied samples, see Fig. 18 and
16(b).
For further analysis different laser lines were applied resulting in different

resonance positions BCR1,2, see Fig. 19(a). The positions scale linearly with
the frequency f for all HgTe devices studied. Together with the polarization
dependencies and the observations in magnetotransmission it can be concluded
that the observed features in the photovoltage stem from cyclotron resonance.
Depending on the experimental conditions the observed CR enhanced pho-

tocurrents can be positive or negative. Figure 20 shows typical photovoltage
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Figure 19: (a) Magnetic field position at cyclotron resonance as a function of the
frequency f detected from transmission measurements in two different
samples. (b) Dependence of the magnetic field’s z-component BCR1,2 cos θ
on the tilt angle θ. Adapted from Ref. [30]

traces measured in x- and y-direction. Here, panels (a) and (b) show data
obtained on the same sample, based on a 200 nm thick HgTe film, at differ-
ent temperatures. While at T = 40K the photocurrent at BCR1 has different
polarities for the two perpendicular directions, it has the same at BCR2. On
the other hand, at T = 60K the direction of the photocurrent is opposite
at both CR positions. Moreover, the current can have opposite signs for the
same measurement directions, see e.g. Fig. 17, where it has opposite polarity
at ±BCR1 but same polarity at ±BCR2. Changes of the observed photocurrent
sign under experimental conditions like temperature or frequency have also
been reported previously in HgTe QWs with and without magnetic field [38,
100]. A sketch of the photocurrent projections in x- and y-direction measured
in the experiment together with the total photocurrent J are shown in the
inset of Figs. 20(a) and (b).
To get evidence whether the CR traces in the photocurrent stem from two-

dimensional or three-dimensional states measurements with a tilted magnetic
field were performed. Therefore the sample was rotated by an angle θ and
the CR positions BCR1 and BCR2 were detected. By increasing the angle θ,
the resonances shift to higher magnetic fields, which indicates that they are
determined by the magnetic field component Bz normal to the sample surface.
Indeed, calculating the z-component of the fields BCR1,2 the positions Bz,CR1,2

do not change with the angle θ, see Fig. 19(b). This is a clear evidence
that the detected cyclotron resonance traces in photocurrent and transmission
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stem from carriers occupying the two-dimensional surface states and not from
bulk carriers. An overview of the detected cyclotron resonance positions with
corresponding masses in various HgTe systems is given in Tab. 3.

Sample BCR1, (T) BCR2, (T) mCR1/m0 mCR2/m0

200 nm HgTe (013) 1.8 2.5 0.031 0.043

80 nm HgTe (013) 1.6 2.2 0.028 0.038

80 nm HgTe (001) 1.3 1.7 0.023 0.030

Table 3: Cyclotron resonance position and corresponding cyclotron masses extracted
from transmission measurements on various samples at T = 40K and with
f = 1.63THz.

Furthermore, measurements of the CR enhanced photocurrent at different
Fermi level positions were performed. In order to do so, samples based on
200 nm thick HgTe films with a semitransparent gate were fabricated. Figure
21(a) shows photovoltage measurements as a function of the magnetic field for
various effective gate voltages U eff

g . It shows that on the one hand, the reso-
nance at BCR1 shifts to higher magnetic fields with increasing U eff

g , and, on the
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Figure 21: (a) Photosignal U as a function of the magnetic field B for various ef-
fective gate voltages U eff

g = Ug − UCNP
g . Data are vertically shifted for

clarity. (b) The extracted positions BCR1 as a function of U eff
g with UCNP

g
shown as vertical green line. The right axis shows the corresponding cy-
clotron masses mCR1 normalized to the electron mass m0. Adapted from
Ref. [30]

other hand, the position of the second resonance BCR2 almost stays the same.
In general, in systems with linear dispersion the cyclotron resonance position
BCR depends on the Fermi level position for εF < ~ωc which is in contrast to
systems with parabolic dispersion. However, the independence of BCR2 on U eff

g

demonstrates that the carrier density of only one surface gets influenced by
the gate voltage. This was already observed in previous works on CR in 80 nm
HgTe films [38], as well as in magnetotransport measurements of 80 nm [83]
and 200 nm thick HgTe films [40]. Due to electrostatic screening of the bottom
surface by the top one the filling rates dNs/dUg for the top and bottom surface
states are substantially different. Consequently, the resonance at BCR2 can be
attributed to the bottom surface and the one at BCR1 to the top. The shifting
of the top carrier resonance upon variation of the gate voltage becomes clearly
visible in Fig. 21(b) where the corresponding positions BCR1 are plotted. From
this the cyclotron masses of the top surface states were determined and are
depicted on the right axis.
Previous measurements on fully strained 80 nm thick HgTe films [38, 83] pro-
vide additionally support to the conclusion that the cyclotron resonances come
from top and bottom surface states. Here it was shown that these systems
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are 3D topological insulator exhibiting a gap between valence and conduction
band. Reference [38] reports on the observation of two separate CR traces in
transmission as well as in the photocurrent originating from top and bottom
interfaces of the HgTe film. Comparing the resonant peak positions, see table
3, extracted from transmission measurement shown in Fig. 18, it is conspic-
uous that the positions BCR1,2 in the 200 nm thick HgTe filme with (013)
crystal orientation match up well with that in the 80 nm thick HgTe film hav-
ing the same substrate orientation. This coincidence is a further indication
that resonances coming from top and bottom surfaces can also be detected in
samples having a thicker HgTe film. The resonance positions in the 80 nm
thick HgTe film with (001) crystal orientation lie at about 25% lower magnetic
fields. However, they exhibiting the same characteristic properties as the sam-
ples with (013) crystallographic orientation like helicity sensitivity and linear
frequency dependence, see Figs. 17(d) and 18(c).

4.2 Discussion

As addressed above, the two features observed in photovoltage as well as trans-
mission data can be attributed to cyclotron resonance of top an bottom surface
states of the investigated HgTe film. In fact, this observation is not obvious in
HgTe films with 200 nm thickness, where the lattice mismatch-induced strain
was expected to be already relaxed [37, 83]. Therefore, in this chapter the CR
response is further analysed as well possible reasons for the remaining partial
strain are discussed. Moreover, the origin of the CR-enhanced photocurrent
in (013)-grown films is presented and the observed differences in its sign are
explained in more detail.

Strain relaxation in 200 nm thick HgTe films The conclusion that traces
of the surface states in 200 nm thick HgTe films can be detected, despite the
thickness being larger than the estimated critical thickness for lattice relaxation
[37, 83] arise from the following facts: (i) two-dimensional origin of the CR
(Fig. 19 b), (ii) observation of two CRs attributed to excitation of top and
bottom surface states (see Figs. 16, 17, 19 and 20) and (iii) good coincidence
of the cyclotron masses for both resonances obtained in (013)-oriented 200 nm
and 80 nm thick HgTe films (Fig. 19). Furthermore, the magnetotransport,
magnetocapacitance and x-ray measurements performed in Ref. [40] support
this reasoning. In this work [40], Shubnikov–de Haas (SdH) oscillations in
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both conductivity and capacitance are analysed which makes it possible to
distinguish the different electrons contributing to transport, namely the ones
occupying states in the bulk as well as on top and on the bottom surface. It was
demonstrated that on the one hand the surface states are spin nondegenerate
whereas on the other hand the bulk electrons are spin degenerate. Moreover,
the X-ray measurements, briefly introduced in chap. 3.1.1, show that about
60% of the strain remains.
To understand the origin of the remaining strain one has to consider the

calculations of the critical thickness for lattice relaxation which usually are
performed in the framework of Matthews model [101]. This approximation is
an equilibrium thermodynamic approach to the formation of misfit dislocations
in epitaxial grown thin films where kinetic factors associated with the forma-
tion of misfit dislocations at a finite rate of epitaxial growth are neglected.
Above a specific critical thickness, the strain partially relaxes by the genera-
tion of energetically more favourable dislocations at the interface. For a large
lattice mismatch between the substrate and the epitaxially grown layer, this
model is in good agreement with experimental findings. However, it becomes
more imprecisely for small lattice misfits, which are typical for HgTe/CdTe
heterostructures. The discrepancy between the existing models and the exper-
imental data was already observed in low-misfit semiconductor systems [102,
103]. For instance, it was demonstrated that the difference between experi-
mentally obtained and calculated values of the critical thickness in GexSi1–x/Si
is about two orders of magnitude [104].
Another factor that should be considered in calculations of the critical thick-
ness is the substrate orientation. For example, reported theoretical values of
HgTe grown on (001)-oriented CdTe having a lattice mismatch of about 0.3%
lie between 50 nm [105] to 200 nm [37, 106, 107]. Looking at values reported on
Hg0.7Cd0.3Te on (013)-oriented CdTe (which have a lattice mismatch of about
0.216%) the situation is similar, and the critical thickness range from 47.5 nm
to 344 nm for 12 possible slip systems of dislocations [108]. In Ref. [108] it
was experimentally observed that the formation of dislocations, necessary for
the system to relax the strain, start at about 80 nm thickness and at 150 nm
the strain is relaxed by about 40%.
Another important factor that should not be disregarded are the intermedi-
ate ZnTe and CdTe layers introduced to retain the crystal orientation of the
HgTe layer [108]. The consideration of such multilayer heterostructures is very
complex because the substrate and the different epitaxial layers have differ-
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ent thermal expansion coefficients. Since the samples are cooled down to low
temperatures in the experiment, this presents a further parameter that can
influence the cirtical thickness. All these effects reinforce the assumption that
some residual strain remains even in thicker thicker HgTe films.

Evaluation of transmission data The transmission fits applied in Fig. 16
and 18 are based on Eqs. (50) and (52). As it was introduced in chapter 4.1,
the transmitted power depends on the Fabry-Perot interference phase φ, the
cyclotron masses and the densities and mobilities of the carriers. Knowledge
of these parameter allows an advanced analysis of the cyclotron resonances in
the transmitted power. The corresponding used fit parameters are provided
in the captions of the figures which present transmission data. Taking a closer
look at the shape of the CR dips in transmission, it is conspicuous that it often
is asymmetric, and therefore, deviates from a symmetric Lorentzian form, see
for example Fig. 18(a). Responsible for this effect are the Fabry-Perot like in-
terferences of the THz radiation between substrate and HgTe layer introduced
in the fit functions as the optical phase shift φ. If φ/π is close to an integer
value, one obtains constructive interference whereas for half-integer values, de-
structive interference prevails. Note that only in case of either constructive or
destructive interference, a Lorentzian shape of the resonance can be observed.
Another parameter that influences the shape of the CR traces in transmis-

sion are the superradiant decay rate Γ which depends on the carrier density,
and γ which is proportional to the inverse carrier mobility. These two pa-
rameters affect the broadening of the dip and have similar values in the fits
used in this work. The different shapes of the CR dips at different tempera-
tures, e.g. at T = 30K in Fig. 16 showing two separated sharp dips, and at
T = 60K in Fig. 18(a) showing one merged broad dip, are in line with trans-
port data presented in Fig. 10(b). While the carrier density (∝ Γ) increases
for higher temperatures, the mobility (∝ 1/γ) decreases. The employed fit
parameters are in good agreement with the characteristic parameters reported
in Ref. [40]. Here, the carrier densities and corresponding mobilities from
surface and bulk carriers were separately determined from magentotransport
measurements. Analysis of the transmission data shown above yields an elec-
tron density of the carriers occupying the top surface states being about three
times larger than the density in the bottom surface. This result is very similar
to the one obtained in the magnetotransport characterisation, shown in Fig.
3 in Ref. [40].
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Origin of CR enhanced photocurrent The origin of the enhanced photocur-
rent under cyclotron resonance condition has already been studied and theo-
retically described in different material systems. It was detected for example
in InSb/InAlSb quantum wells (QW)s [109], in 3D TI HgTe strained films [38]
and in HgTe QWs having either the critical thickness (≈6.6 nm) or slightly
larger [23]. The phenomenological description of this effect is similar for all
these systems. The underlying microscopic origin, however, is not universal
because it is sensitive to the band dispersion and can have spin as well as
orbital degrees of freedom. In the following, the theoretical model for pho-
tocurrent generation in systems with linear dispersion provided by Dr. G. V.
Budkin from the Ioffe Institute in St. Petersburg is presented. It is based
on the process of asymmetric energy relaxation of photoexcited carriers in the
presence of a magnetic field which is well known for two-dimensional systems
lacking spatial inversion symmetry [110].

In the samples under study the extension of the wave function of both sur-
face states is much smaller than the thickness of the HgTe film, which allows
one to neglect the coupling between the surface states. Therefore, the process
of energy relaxation of top and bottom surface states can be considered inde-
pendently. The incident THz radiation heats up the spin nondegenerate 2DEG
and after that the photoexcited carriers begin to relax. In the regime of low
temperatures relevant for this work, on the one hand, the energy relaxation is
dominated by the interaction of the carriers with acoustic phonons and, on the
other hand, their momentum relaxation appears mainly due to elastic scatter-
ing on static defects.
The THz radiation incident on the HgTe samples is partially absorbed by
the charge carriers in the film. After that the carriers provide the energy to
the phonon bath. This energy transfer is naturally accompanied by a heat-
ing of the electron subsystem. It is assumed that frequent collisions between
electrons support a fast exchange of the energy and result in a thermaliza-
tion of the photoexcited carriers. Due to this assumption, the isotropic part
of the steady-state nonequilibrium distribution function can be written as:
f

(0)
k = 1/[exp ((εk − εF )/Te) + 1] coming from Fermi-Dirac statistics. Here, k
and εk are the momentum and energy dispersion of the electrons, respectively,
and εF is the chemical potential. The effective temperature of the electron
bath, given by Te = T + ∆T , is assumed to be higher than the one of the
phonon bath T .
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In the presence of a magnetic field the electron scattering in momentum
space is asymmetric leading to an anisotropic correction δfk to f (0)

k which can
be extracted from the Boltzmann equation

δfk
τ

+ e

~
[vk ×B]∂δfk

∂k = St(ph)[f (0)
k ]. (55)

This equation consists of three parts: the first one is attributed to the mo-
mentum relaxation with τ being the transport relaxation time, the second one
to the cyclotron motion with group velocity vk, and the third part describes
the electron-phonon collision with its integral St(ph) where the full distribu-
tion function is replaced by f

(0)
k . This is the leading first-order pertubation

theory where the anisotropic correction δfk involves a weak asymmetry in the
electron-phonon collision integral St(ph). The latter one is given by [111]

St(ph)[f (0)] =
∑

k’,q,±
W±
k′k(q)f (0)

k′ (1−f (0)
k )N±q −W±

k′k(q)f (0)
k (1−f (0)

k′ )N±q . (56)

Here,W±
k′k(q) = 2π

~ |M
±
k′k(q)|2δ(εk′−εk±~Ωq) is the the scattering rate with the

matrix elements M±
k′k(q) being Hermitian conjugates M−

k′,k(q) = |M+
kk′(q)|∗.

The phonon wave vector is defined by q, and the phonon occupation numbers
byN−q andN+

q = N−q +1 where± is attributed to phonon emission/absorption.
The photocurrent is given by

j = e
∑

vkfk (57)

with the anisotropic correction δfk obtained from Eq. (55).
If no static magnetic field is applied to the system, the time reversal symme-

try (TRS) holds and the current is absent. In turn, if the system is exposed to a
magnetic field, the inversion of the magnetic field direction appears in the time-
reversal operation W−

k′k(q,B) = W−
−k′−k(−q,−B) resulting in an asymmetry

of the electron scattering on phonons. The matrix elements of the scattering
rate can be written in the lowest order correction proportional to Bz

|M−
k′k(q)|2 = δk′,k+q|| [ωo + ω1Bzg · (k′ + k)], (58)

where δk′,k+q|| is the Kronecker delta describing the momentum conservation
law, q || the in-plane component of the phonon momentum, ω0 corresponds to
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scattering at B = 0, and the scattering anisotropy is described by the in-plane
vector g. The phenomenology of this asymmetry in electron scattering is the
same as reported in QWs in Ref. [112] or for the spin-dependent scattering
described in Refs. [113–115]. Two-dimensional systems on (013)-oriented sur-
faces, as studied in this work, belong to the C1 point group where any nontriv-
ial symmetry elements are absent. In this specific case, the two-dimensional
vector g does not have any restrictions regarding its orientation.
The fact that the out-of-plane component of the phonons is typically large,

i.e. qz � |k− k′| = q||, allows an explicit summation in Eq. (57) over k,k′ and
q with usage of the scattering probability given in Eq. (58). Altogether, the
photocurrent can be written as

j = −eIη(ω)Bz
g + ωcτg⊥
1 + ω2

cτ
2 ξ
〈|qz|ω1〉
〈|qz|ω0〉

(59)

with the cyclotron frequency ωc = eBz/m, the in-plane vector g⊥ normal to
g, the average over qz and the direction of k and k′ denoted with the angle
brackets. The factor ξ = 1+m∂2εp/∂p

2 represents the charge carriers spectrum
and becomes numerical ξ = 1 or ξ = 2 for linear and parabolic dispersion,
respectively. Note that all equations were defined at εk = εF .
Looking at Eq. (59) it can be concluded that under cyclotron resonance

condition (ω = ωc) the increase in the absorbance η(ω) also results in a resonant
enhancement of the photocurrent. This is in agreement with the experimental
findings obtained in all HgTe films studied, see Figs. 16-19. The cyclotron
masses, obtained in experiments (see Tab. 3), depend on the band structure
and are therefore different for top and bottom surface states. These values are
in good agreement with previously performed band structure calculations [38]
based on the k · p method [116, 117].
Solving Eq. (59) the projections of the generated total photocurrent for two

perpendicular in-plane directions can be written as

jx = −eIη(ω)Bz
gx + ωcτgy
1 + ω2

cτ
2 ξ
〈|qz|ω1〉
〈|qz|ω0〉

jy = −eIη(ω)Bz
gy + ωcτgx
1 + ω2

cτ
2 ξ
〈|qz|ω1〉
〈|qz|ω0〉

.

(60)

Furthermore, from these equations it can be concluded that, on the one hand,
the magnitude of the photocurrent depends on |g|, and on the other hand,
its directions are determined by the orientation of g as well as by ωcτ . The
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direction of g in systems belonging to the C1 point group, where the non-
trivial in-plane point symmetry operation is absent, is not forced to a certain
crystallographic axis and therefore may change with temperature, gate volt-
age, radiation frequency or other conditions, see Ref. [100]. This was also
observed in the experiment, see Fig. 20, where the resonant photocurrent may
be odd or even in the magnetic field B depending on the experimental con-
ditions. A change of temperature, for example, can change the direction of
g so that resonances change from an even to an odd behaviour in magnetic
field, as demonstrated in Fig. 20. A similar behaviour of the photocurrent was
previously detected also in (013) oriented HgTe films, see Ref. [100].
Concluding, Eq. (60) demonstrates that the current projections in x- and

y-directions may change their sign under variation of experimental parameters
or the reversal of the magnetic field. This depends on the relative orientation
of the vector g to the orientations of the contacts as well as on the magnetic
field strength determining ωcτ .
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5 Edge photocurrents in mono- and bi-layer graphene

5 Edge photocurrents in mono- and bi-layer
graphene

As discussed above another example of a massless Dirac fermion system is
graphene. Beside the differences to HgTe, e.g. vanishingly small spin-orbit
interaction and existance of chiral edge states, the observation of cyclotron-
resonance-enhanced photocurrents is expected. However, before dealing with
CR, first effects excited at the edges at zero magnetic field are studied in more
detail. Therefore, this chapter devotes to THz induced photocurrents flowing
at the edges of mono- and bi-layer graphene samples. In the first section, re-
sults of edge currents in mono-layer graphene are discussed. The second one
presents the experimental results of edge photocurrents observed in bi-layer
graphene and provides a detailed discussion of the microscopic model and
underlying kinetic theory. The last section deals with resonant edge photocur-
rents in bi-layer graphene induced by inter-level and CR-involved intra-level
transitions between Landau levels. Here a distinction between the quantum
mechanical and semi-classical regime will be given. The corresponding results
are published in Refs. [31–33].

5.1 Edge photocurrents in mono-layer graphene

Irradiation of the Hall-bar-shaped mono-layer graphene samples with linearly
polarized and pulsed THz radiation results in the formation of a photocurrent
which was measured between two contacts along the long side of the sample,
see Fig. 22(a). Here, the photocurrents, picked up at opposite lying contact
pairs, is presented as a function of the radiation intensity I. The correspond-
ing contact labelling can be found in the inset of Fig. 22(b). The photosignal
consistently has an opposite sign at the opposite edges indicating that it pri-
mary originates from the current flowing along the edges and not from the
bulk. Moreover, looking at the behaviour of the detected current with respect
to I, it is conspicuous that it shows a linear dependency at low intensities but
tends to saturate at higher ones.
The magnitude of the photocurrent can be controlled not only by the radia-

tion intensity but also by the relative orientation of the radiation electric field
vector E to the corresponding edge defined by the angle α, see inset in Fig.
22(b). Figure 22(b) shows typical dependencies of the edge photocurrent on
α, which can be easily extracted by Jedge = (JAC − JGE)/2. The behaviour of
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Figure 22: (a) Photocurrents as a function of the radiation intensity obtained at con-
tact pairs along the edge of MLG sample #1. The curves were obtained
at an azimuthal angle α = 45◦ and with a frequency f = 2.02THz. (b)
Polarization dependence of the edge photocurrent Jedge = (JAC−JGE)/2
at different excitation intensities. Here the fits are curves after Eq. (61).
A small polarization-independent offset Joff was substracted. The az-
imuthal angle α as well as the used contacts are illustrated in the inset.
Arrows on top show the orientation of the radiation electric field vector
E with respect to the samples’ long side. Adapted from Ref. [32]

the photoresponse as a function of the azimuthal angle α presented for various
radiation intensities can be well fitted by [28]

Jedge = JL sin(2α + ψ) + Joff (61)

with the polarization-dependent and -independent amplitudes JL and Joff ,
respectively. The introduced phase shift ψ is close to zero and the small offset
Joff � JL may result from a photothermoelectic effect [118]. At low intensities,
the photogalvanic current flowing along the edges and obeying the behaviour
described through Eq. (61) was previously observed and discussed in several
works [26, 27, 119–121]. At higher intensities, the dependence of the edge
photocurrent on the azimuthal angle α is similar. Moreover, by comparing
the two highest intensities in Fig. 22(b) a saturation of the photocurrent’s
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5.1 Edge photocurrents in mono-layer graphene

magnitude is clearly visible, which agrees well with the observations in Fig.
22(a). This nonlinearity in the photocurrent can be controlled by the back
gate voltage, temperature and radiation frequency and shows for certain gate
voltages also a sign alternating behaviour.
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Figure 23: (a) Photosignal measured in the photoconductivity setup as a function
of the radiation intensity. The data were obtained with an applied bias
voltage of Vdc = ±0.3V. (b) Normalized photoconductivity ∆σ/σ as a
function of the intensity. Solid lines are fits after ∆σ/σ ∝ I/(1 + I/Is).
The inset shows the used measurement setup. Adapted from Ref. [32]

Furthermore, Fig. 23 presents the change of the sample’s conductivity under
THz radiation. Here, a dc bias voltage Vdc = 0.3V was applied to the sample,
see corresponding setup in the inset in Fig. 23(b). Applying bias voltages
with opposite polarities results in photoresponses having opposite signs, see
Fig. 23(a). As introduced in chapter 3.2.2, the photoconductivity signal Upc

can be extracted with following equation: Upc = (U(Vdc)−U(−Vdc))/2, which
cancels out possible photocurrent contributions. However, Fig. 23(a) shows
that the latter are rather small and that the detected signal is dominated by
the radiation-induced change of the sample’s conductivity, the photoconduc-
tivity, shown in Fig. 23(b), where it is normalized to the dark conductivity.
Increasing the radiation intensity yields a decrease in the photoconductivity.
This behaviour is well known in terms of the µ-photoconductivity mechanism
in which an increasing electron gas temperature results in a decrease in carrier
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5.2 Edge photocurrents in bi-layer graphene

mobility due to scattering on acoustic phonons [29], see Sec. 2.3. These com-
plementary measurements demonstrate that under the prevailing experimental
conditions the THz radiation induces a strong electron gas heating. The solid
lines in Fig. 23 are fits after ∆σ/σ ∝ I/(1 + I/Is) with the saturation inten-
sity Is. Alike the photocurrent data shown above, the photoconductivity first
behaves linearly and then exhibits a saturation behaviour at higher radiation
intensities.
A detailed analysis and discussion of the edge photogalvanic currents at high

intensities is given in Ref. [32] discussing the complex intensity dependence by
the interplay of direct inter-band optical transitions and Drude-like absorption.
The subsequent part of this chapter is dedicated to the photogalvanic currents
at low intensities which has been studied in numerous papers [26, 27, 80,
119–121]. However, the study of this effect in bi-layer graphene (BLG), in
particular of the photocurrent stemming from the edges, has been missing
so far. Therefore, the next section will present the observations of the edge
electric currents in bi-layer graphene at zero and at small magnetic fields.

5.2 Edge photocurrents in bi-layer graphene

Bi-layer graphene different to mono-layer graphene has a band structure which
can be tuned by the application of a gate voltage. At zero gate voltage its dis-
persion is parabolic and cannot be described by the zero-mass Dirac equation.
Nevertheless, the effect of edge photocurrents is also observed in this material
and corresponding results are outlined in the following.

5.2.1 Experimental results

Illumination of the bi-layer graphene sample BLG #1 with continuous wave
THz radiation results in a photocurrent which was measured as a voltage drop
Ux,y ∝ Jx,y over the sample. The photosignal was picked up between a contact
pair lying along the edges during illumination of the square-shaped sample
with linearly polarized radiation at normal incident. A typical measurement
of the photovoltage as a function of the azimuthal angle α is presented in Fig.
24. It demonstrates that the magnitude as well as the sign of the photosignal
Ux,y ∝ Jx,y detected for various effective gate voltages U eff

g depend on the
relative orientation of the radiation polarization plane and the direction in
which they are measured. Figure 24(a) shows the polarization dependencies
measured along the edge in x-direction while in panel (b) the photovoltage
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g . Data were measured at contact
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the angle α and the measurement directions. Arrows on top show the
relative orientation of the radiation electric field vector E with respect to
the sample’s edge in x-direction for several angles α. Adapted from Ref.
[31]

was measured in y-direction. Similar to the photogalvanic currents in mono-
layer graphene (see Fig. 22(b)), the data can be well fitted with the following
formula

Ux,y ∝ Jx,y = JLx,y sin(2α + ϕ0) + J0
x,y (62)

with JLx,y ∝ UL
x,y being the polarization-dependent amplitude and ψ the phase

shift which is close to zero. A small polarization-independent amplitude J0
x,y

was detected in some measurements. A possible reason for this could be the
photothermoelectric effect, which was studied previously, e.g. in Ref. [118].
The panels (a) and (b) in Fig. 24, corresponding to the two neighbouring edges,
show a similar behaviour and photocurrent sign. At a fixed angle α = 45◦ the
photosignal at both edges is positive for U eff

g > 0 and negative for U eff
g < 0.

Considering the angle α = 135◦ the photocurrent amplitude remains similar
but the signal reverses its sign. This indicates that the photocurrents flow
either towards or away from the sample’s corner.
The dependence of the photocurrent on the effective gate voltage is depicted
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in Fig. 25. For both, the x- and y-direction, the photocurrent amplitude
Ux,y ∝ Jx,y changes its sign upon switching from negative to positive gate
voltages, i.e. upon switching the carrier type from holes to electrons.
Moreover, the similar dependence of the photocurrent on the azimuthal an-

gle α (Eq. (62)) measured in the two perpendicular directions, shown in Fig.
24(a) and (b), supports the assumption that the photosignal stems from cur-
rents flowing at the edges. Gated bulk bi-layer graphene belonging to the
C3ν point group is non-centrosymmetric, i.e. it lacks a center of space inver-
sion. The trigonal symmetry is the reason why the photocurrents (excited
at normal incidence) have orthogonal components which are on the one hand
∝ cos(2α) and on the other hand ∝ sin(2α), i.e. a π/2 phase shift between
the photocurrents in x- and y-direction should be present, for details see Ref.
[75]. However, Fig. 24 clearly demonstrates that such a phase shift was not
detected, and consequently, the photoresponse can be attributed to carriers
residing at the edges of the sample.
Applying a low magnetic field the behaviour of the photocurrent changes

upon variation of the azimuthal angle α. Figure 26 shows the polarization
dependence of the photovoltage for various magnetic fields. By switching on
the magnetic field a phase shift is detected which increases with the field
strength. Consequently Eq. (62) changes to Ux,y = UL

x,y(B) sin(2α+ ϕ0 + θB).
The inset in Fig. 26 shows the introduced phase θB as a function of the
magnetic field.
At higher magnetic fields B ≥ 0.5T and U eff

g > 0 oscillations periodic in 1/B
appear in the photoresponse, see Fig. 27. The amplitude of this oscillations
is substantially larger than the photovoltage at zero magnetic field and its
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period can be controlled by the gate voltage, see Fig. 27(a)-(c). It is apparent
that at the vicinity of the CNP the oscillations are almost absent. Changing
the radiation frequency does not influence the period of the oscillations but
changes its amplitudes, see Fig. 27(d).
In Fig. 28(a) the photovoltage oscillations are presented together with the

first derivative of the magneto resistance dRxx/dB. The position of the cor-
responding oscillation maxima B−1 are shown in Fig. 28(b). It demonstrates
that the oscillations are linked to the detected SdH resistance oscillations since
they follow its first derivative. In further measurements with high power pulsed
lasers, however, the oscillations in the photovoltage are absent.

5.2.2 Discussion

The experimental findings, presented above, show that the dc edge currents
can be controlled by the polarization of the incident THz radiation (Eq. (62))
and the applied gate voltage. Applying classical magnetic fields results in a
phase shift in the polarization dependence, while at higher magnetic fields and
higher gate voltages 1/B-periodic oscillations appear which follow the first
derivative of the SdH oscillations in the longitudinal resistance. A conversion
of an ac THz field into a dc voltage can result from numerous phenomena.
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The origin can be for example photogalvanic and photothermoelectric effects
or rectification of plasmon-assisted photocurrents [122, 123]. However, in this
list only photogalvanics can explain the key properties of the detected edge
currents. Importantly, the observed edge currents differ from the photocurrents
stemming from edge states in 2D topological insulators [124] because helical
edge states are not present in our samples.
As hereinafter provided, the developed microscopic model describes the ori-

gin of the observed edge photocurrents in terms of P -symmetry breaking at
the edges [80]. Although mono-layer graphene has fundamental differences to
bi-layer graphene the description of the photocurrents’ cause is quite similar.
Therefore, the following model can also be used to describe photocurrents ob-
served in Chap. 5.1 at low intensities. After the discussion of the model a
brief introduction of the kinetic theory [27, 31, 80], provided by Dr. M. V.
Durnev from Ioffe Institute in St. Petersburg is given, followed by a concluding
discussion comparing theory and experimental results.
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Microscopic Model The dc edge photocurrent forms as a result of the excita-
tion with the high-frequency electric field of the THz radiation and the broken
charge symmetry at the edges. The electric field causes an alignment of the
free carrier momenta. A sketch of the photocurrent formation is shown in Fig.
29. After exciting the sample with linearly polarized THz radiation, Drude
absorption takes place which results in an alignment of the carrier momenta
p and, consequently, its velocities v. Subsequently the carriers move predomi-
nantly along the orientation of the electric field vector E. The herefrom arising
distribution is illustrated in Fig. 29(a) for an azimuthal angle α = 45◦. Note
that optical alignment is possible for intraband as well as interband optical
transitions. In the case of intraband transitions, considered here, the quasi-
momenta are aligned along E [78, 80]. In contrast, in the case of interband
transitions they are aligned orthogonally to E [79, 80, 125]. The momentum
alignment yields a distribution which is anisotropic and can be described by
the second angular harmonic of the distribution function f in p-space. The
alignment itself does not result in a net electric current but taking into account
the symmetry breaking at the edges a photocurrent arises, see Fig. 29(b). In

68



5.2 Edge photocurrents in bi-layer graphene

+

+

E

(a) (b) (c)

px

py

j

v
v

x

y

+

Δxedge≈ δ    Δxbulk

μV / W

-2  -1  0   1   2

Figure 29: Microscopic model for the edge photocurrent generation illustrated for
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and in the bulk ∆xbulk induced by the optical alignment of the carrier
momenta. The generated electric current caused by the imbalance of the
carrier fluxes at the edges is shown as vertical red arrow. (c) Spatial dis-
tribution of the dc photocurrent (arrows) and photoinduced electrostatic
potential normalized to the radiation power in a square-shaped sample.
Adapted from Ref. [31]

the bulk ∆xbulk two carrier fluxes (red and blue arrows) cancel each other
and thus no current can be measured4. However, the situation changes at the
edges. Here two mechanism resulting in a net electric current contribute. The
first one is related to imbalances of the carrier fluxes at the edges illustrated
in Fig. 29(b). In a stripe of the mean free path width ∆xedge the carrier flux
coming from bottom right is not compensated by a carrier flux coming from
the top left, as is the case for the bulk region. Due to this imbalance a net
electric current j flowing along the edges emerges. The second mechanism is
based on scattering at the edges and is discussed in more detail in Refs. [27,
28].
Figure 29(b) illustrates the current generation for p-type conductivity. Chang-

ing the carrier type does not change the direction of the carrier fluxes at the
edge which means that the electric current has the opposite sign. It also
demonstrates that the direction and magnitude of the photocurrent can be
controlled by the radiation’s polarization state. If the electric field vector of

4Note that here possible imbalances due to C3v symmetry of the bi-layer graphene are
neglected.
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the THz field points along or normal to the samples edge, α = 0◦ or 90◦, the
photocurrent vanishes, whereas if it is oriented at α = 45◦ or 135◦ the current
magnitude reaches a maximum. Moreover, it has the opposite sign for these
two polarization states. The polarization dependence follows jedge ∝ sin(2α),
which is in good agreement with the experimental findings, see Figs. 22, 24, 26.
Note that the small phase shift ϕ0 may be caused by photocurrents emerging
in the bulk of the bi-layer graphene. The origin of these currents is similar to
that observed in TIs based on BiSbTe having the same point group symmetry
C3v like gated bi-layer graphene as well as bi-layer graphene on a substrate.
Details to this mechanism can be found in chapter 2.3 and in Ref. [75].
Application of a small magnetic field normal to the bi-layer graphene leads

to a rotation of the distribution of the electron momenta due to the Lorentz
force. This was experimentally observed as a phase shift θB in the polarization
dependence, see Fig. 26.
All together, the properties of the edge photocurrent observed in experi-

ment, involving the dependence on polarization state of the radiation and on
the contributing carrier type, as well as the observed phase shift at classical
magnetic fields, can be well explained in terms of the presented microscopic
model.

Kinetic theory The microscopic theory explaining the edge photogalvanic
effect is based on the Boltzmann kinetic equation [27]

∂f

∂t
+ vx

∂f

∂x
+ e

(
E(x, t) + 1

c
v ×B

)∂f
∂p = Stf. (63)

Here, f(p, x, t) is the carrier distribution function, where p and v = p/m∗

define the momentum and velocity of the carriers, m∗ their effective mass and
e their electric charge. B is the magnetic field and Stf the collision integral.
The total field E(x, t) = E(x) exp(−iωt) + c.c. can be divided into the ac
electric field of the incoming wave E exp(−iωt) + c.c. and the local screening
field δEx(x) ∝ E induced by the dynamical charge accumulation of the electric
charge in the vicinity of the edges (see appendix in Ref. [31] for details).
With expansion of the distribution function in a series over the electric field

E, Eq. (63) can be solved

f(p, x, t) = f0 + [f1(p,x) exp(−iωt) + c.c.] + f2(p,x). (64)
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Here f0 is the equilibrium distribution function, f1 ∝ E the first-order correc-
tion, and f2 ∝ EE∗ the time-independent second-order correction describing
the dc electric current. The local current density of the dc current jy(x) can
be written as

jy(x) = 4e
∑
p

vyf2(p,x). (65)

Here the spin and valley degeneracy is taken into account by the factor 4. The
total electric edge current is obtained by

Jy =
∫ ∞

0
jy(x)dx. (66)

Taking into account boundary conditions f(px, py, 0) = f(−px, py, 0) and the
relevant experimental conditions ω � ωc the photocurrent flowing along the
edge is given by [31]

Jy = ne3τ 3

m∗2(1 + ω2τ 2)

[
2ωcτ |E|2
1 + ω2τ 2 −

i(ExE∗y − EyE∗x)
ωτ

−
ExE

∗
y + EyE

∗
x

1 + 4ω2
cτ

2 + 2ωcτ(2 + ω2τ 2)(|Ex|2 − |Ey|2)
(1 + 4ω2

cτ
2)(1 + ω2τ 2)

]
,

(67)

with the cyclotron frequency ωc = eBz/(m∗c) and the momentum relaxation
time τ .
Equation (67) shows that the edge photocurrent consists of (i) a polarization

independent term Jy ∝ |E|2, (ii) a term depending on the circular polarization
Jy ∝ S3 = i(ExE∗y − EyE∗x), and terms which are proportional to the Stokes
parameters for linear polarization given by S2 = ExE

∗
y + EyE

∗
x and S1 =

|Ex|2−|Ey|2. If no magnetic field is applied the terms∝ |E|2 and∝ |Ex|2−|Ey|2

vanish and the variation of the photocurrent with the polarization is described
by ExE∗y + EyE

∗
x .

If ωτ � 1 the last two terms play the most dominant role in the photocurrent
equation. In this particular case the external magnetic field influences only the
magnitude of the photocurrent and introduces a phase shift in the polarization
dependence given by θB = arctan(2ωcτ).

Comparison theory and experimental results After the introduction of the
kinetic theory based on Boltzmann kinetic equation, a brief discussion follows
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in which theory and experimental observations are compared. The developed
Eq. (67) describes the photocurrent in the vicinity of the edges for classical
magnetic fields. Experimentally relevant conditions are ωτ � 1 and ω � ωc.
The observed polarization dependence measured at contact pairs of neighbour-
ing edges is described by the last two terms of Eq. (67), Jy ∝ (ExE∗y +EyE

∗
y)

and Jy ∝ (|Ex|2− |Ey|2). If the magnetic field is absent the edge photocurrent
is determined by the Stokes parameters given by Jy ∝ (ExE∗y +EyE∗y) ∝ sin 2α
corresponding to Fig. 24, whereas at classical magnetic fields a phase shift ap-
pears in the polarization dependence, see Fig. 26. The photocurrent, and
consequently, the photovoltage is expressed by Uy ∝ Jy ∝ sin(2α + θB) with
θB = arctan(2ωcτ). The calculated phase shift θB is compared to the exper-
imental findings in the inset of Fig. 26. It exhibits a good agreement for
m∗ = 0.03m0 and τ = 0.6 ps, which are typical values in such samples [126,
127]. Furthermore, the change of the photocurrent sign observed in the ex-
periments (Figs. 24 and 25) is in line with Eq. (67), since Jy ∝ e3 implies an
opposite current direction for electrons (e < 0) and holes (e > 0).
Figure 29(c) shows the total dc current spreading in the sample and the

spatial distribution of the photocinduced electrostatic potential Φ(x, y). These
were obtained by solving the continuity equation for the total dc current ∇ ·
(j+jdr) = 0 with j and jdr being the edge photocurrent and the compensating
drift current in the bulk, respectively. The latter one can be written as jdr

α =∑
β σαβ∆Φ with the dc conductivity σαβ at ω = 0. This yields the Poisson

equation

σ0

1 + ω2
cτ

2
1

= ∇ · j, (68)

which can be solved numerically using Green’s function and taking into account
boundary conditions at x = 0, where the electric currrent is zero, similar to
Ref. [128]. The corresponding solution is shown in Fig. 29(c) for zero magnetic
field, ωτ � 1, an azimuthal angle α = 45◦, an effective mass m∗ = 0.03m0 and
a radiation frequency being ω/2π = 2.54THz. The photovoltage magnitude
calculated between adjacent edges of the sample is U/P ≈ 4µV/W and is in
good agreement with the experimentally obtained amplitude, see e.g. Fig. 24.
Applying higher magnetic fields Landau levels form which result in an oscil-

lating dependence of the density of states D(ε) on the Fermi energy. It yields
an additional term in the edge photocurrent described by Jy ∝ dE(ε)/dε. This
may explain the observed SdH related oscillations at higher magnetic fields and
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gate voltages (Figs. 27 and 28). Increasing the temperature results in a sup-
pression of the SdH oscillations, and, consequently of the related photocurrent
oscillations. This was also observed experimentally by applying high power
pulsed THz radiation, which result in the increased heating of the electron
gas. As yet, a microscopic theory of the edge photocurrent in the regime of
the SdH oscillations is missing, and therefore, a further discussion of its origin
is out of scope of this work.

5.3 Edge photocurrents due to CR and inter Landau level
transitions

After the discussion of the edge photocurrents, the following chapter will
present results on cyclotron-resonance-induced phenomena in bi-layer graphene.
Depending on the gate voltage and on the magnetic field also inter Landau level
transitions involving valence and conduction band can be observed.

5.3.1 Experimental results

In this section Hall bar structures prepared from exfoliated bi-layer graphene
similar to section 5.2.1 are investigated but in the presence of a strong magnetic
field. The photovoltage U ∝ J is picked up at contact pairs along the long side
of the Hall bar. By irradiating the bi-layer sample with cw THz radiation with
frequency f = 2.54THz, three resonances in the magnetic field dependence of
the photovoltage appear, see Fig. 30(a).
The pronounced resonances, labelled CR1, CR2, and CR3 were detected

at contacts A and B, see inset in Fig. 30(a). Their positions remain un-
changed during the variation of the azimuthal α; however, the amplitude
changes slightly. Strikingly, measuring at the opposite edge (contacts C and
D) the photosignal has consistantly the opposite sign, see Fig. 30(b) and inset
in panel (a) for the measurement setup. In the used electric setup the sig-
nal picked up at contacts AB is negative whilst the one picked up at CD is
positive indicating that the photocurrents along opposite edges flow in oppo-
site directions. This observation allows the conclusion that the photocurrents
are generated at the edges and not in the bulk since in the latter UAB and
UCD should have equal directions. This conclusion together with the fact
that the amplitudes have almost the same magnitude indicates that the pho-
tocurrents flow along the sample’s edges. To extract the edge contribution
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obtained for different azimuthal angles α. Inset shows the experimental
setup with contact names and an illustration of the angle α. (b) UAB
and UCD picked up from contact pairs at opposing edges. The normally
incident radiation has an intensity of I = 2 W/cm2. Adapted from Ref.
[33]

Uedge ∝ Jedge from the measured photosignals, UAB and UCD are subtracted
after Uedge = (UCD − UAB)/2.
Figure 31(a) presents a magnetic field dependency of the normalized edge

photosignal Uedge/U
max
edge . It shows that the resonances, indicated by CR1,CR2

and CR3, have opposite signs for opposite field polarities. Furthermore, by
changing the applied back gate voltage, i.e. the Fermi level position, the
traces of CR1 and CR3 get weaker wherease CR2 is still very pronounced, see
Fig. 31(b). However, the positions of the three resonances stay almost the
same for small gate voltage ranges. Going to even higher voltages results in
a full disappearance of CR1 and CR3, see Figs. 33 and 35(a). To investigate
the origin of these resonant traces further measurements at different radiation
frequencies were performed, see Fig. 31(c). It demonstrates that by changing
the frequency from f = 2.54 to 0.69THz a shift of CR2 and CR1 by an
factor 3.7 can be observed, which indicates that the resonance positions depend
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5.3 Edge photocurrents due to CR and inter Landau level transitions

linearly on the radiation frequency. The third resonance CR3 was not detected
at the lower frequency. These properties, shown in Fig. 31, are typical for
cyclotron resonance; however, a discussion on whether these traces stem from
CR-involving transitions is provided in Sec. 5.3.2.
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edge as a function of the magnetic field obtained
in sample BLG #2. Panel (a) was measured for both B-field polarities.
CR1, CR2, and CR3 indicate the resonance positions. Data in panel
(b) were measured for different effective gate voltages U eff

g . Curves are
vertically shifted by 0.2 for better visibility. (c) Photosignal UAB/U

max
AB

at two different frequencies f = 2.54 and 0.69THz. Adapted from Ref.
[33]

Moreover, the photocurrent amplitudes at resonance position can be con-
trolled by the relative orientation of the electric field to the edges defined by
the angle α, see Fig. 32. Here the polarization dependence of the photovoltage
UAB/I was measured at resonance positions BCR2 and BCR3. The data can be
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well fitted by

U ∝ J = JL sin(2α + ψ) + J0 (69)

with the polarization-dependent and -independent amplitudes, JL and J0, re-
spectively as well as the phase shift ψ being almost zero at the resonance
positions. Figure 32 also demonstrates that on the one hand the magnitude
of the photocurrent varies with the azimuthal angle α and on the other hand
the direction of the current remains unchanged.
So far, the data discussed were measured at low back gate voltages (below

1.6 V), corresponding to carrier densities below 0.7×1011 cm−2. The situation
changes for higher carrier densities as shown in Fig. 33. At a certain back
gate voltage SdH-related oscillations superimpose the resonances and make
the analysis of their positions more complex. These 1/B-periodic photocur-
rent oscillations are already observed in the sample BLG #1 and discussed in
Sec. 5.2.1. Their periods reveal the carrier densities of the sample providing an
excellent agreement with the ones obtained in the magnetotransport measure-
ments. However, a strong enhancement of the oscillations at certain magnetic
fields can be found with a position varying for the different carrier densities
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g = 20V. Dashed lines are fits after Eq. (4). The resonance

positions BCR1 (LL transitions (2−) → (3+) and (3−) → (2+)) and
BCR3 ((2−) → (1)) used for fits are calculated after Eqs. (71). For
the calculations of BCR2 and Bcb

CR values Eq. (72) was used. Here,
following LL transitions are considered: (1) → (2+) (a), (2+) → (3+)
(b), (4+) → (5+) (c), and (5+) → (6+) (d). The calculated resonance
positions are indicated by vertical arrows. The transport width used for
calculations was 1/τ = 1.4 ps and the superradiant decay rates Γ′ are
given in Tab. 4. Adapted from Ref. [33]

between B = 1.8 and 2.6T. As will be discussed in further details below, it
is assumed that a single resonance caused by intraband optical transitions is
responsible for this enhancement.

5.3.2 Discussion

The above presented experimental findings show a photocurrent flowing along
the samples edges which exhibits three resonances CR1, CR2, and CR3 in the
magnetic field dependency. The position of the resonances depend linearly
on the radiation frequency, while their magnitude can be controlled by the
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radiation’s polarization state. At small carrier densities the resonance positions
are resistant against variations of the back gate voltage. At carrier densities
larger than n = 0.7 · 1011 cm−2 it seems that the position of CR2 shifts to
higher magnetic fields, while CR1 and CR3 vanish. The precise determination
of the peak position is, however, difficult due to 1/B-periodic oscillations which
superimpose the resonances.
In the following an analysis of the positions and shape of the resonances is

given, including the identification of CR-induced transitions and comparison
of the developed semi-classical theoretical description based on Boltzmann
kinetic equation with the experimental results.

Identification of optical transitions To find possible optical transitions which
induce the resonantly enhanced edge photocurrents the energy dispersion of bi-
layer graphene was calculated by Dr. S. Slizovskiy from Manchester University.
The calculations are based on the Slonczewski–Weiss–McClure tight-binding
model, for review see e.g. [129–131]. From a four-band tight-binding model
the Landau level spectrum was found numerically, see Fig. 34, with follow-
ing parameters: hopping parameters γ0 = 3.16 eV, γ1 = 0.35 eV, γ3 = 0.3 eV,
γ4 = 0.14 eV, and the sublattice energy difference ∆AiBi

= 0.05 eV. The top-
bottom asymmetry parameter ∆ induced by a gate-dependent vertical electric
displacement field defines the energy gap emerging between valence and con-
duction band. Within the Hartree approximation it is given by [16, 61, 132]

∆ = 4πe2c0

ε

[
n2 −

ε+ 1
4 (n1 − n2)

]
(70)

with the interlayer separation c0 = 0.335 nm, the permittivity of graphene
ε ≈ 2.7, and the electron densities n1,2 (n = n1 + n2) of the two graphene
sheets which can be found from the wave functions of the occupied Landau
levels (LLs).
To obtain an analytical equation of the LL spectrum the four band model

was reduced to an effective two-band model where the trigonal warping term
was neglected. This yields exemplary for the K+ valley

E±l = 2l − 1
l2B

~2V4 ±

√
l(l − 1) +m2(V4 + l2B∆/(2~2))2

~−2l2Bm
(71)

with the LL label l, where positive and negative values correspond to con-
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Figure 34: Calculated Landau-level spectra for a gate-induced doping of n = 0.7 ×
1011 cm−2 with ∆ = 0.4meV. The levels are labelled according to Eq.
(71). Solid and dashed lines correspond to K+ and K− valleys, respec-
tively. The allowed optical transitions are illustrated by vertical arrows
and are shown for right-handed circular polarization (σ+) with a fre-
quency f = 2.54THz. The transitions are labelled corresponding to the
experimentally detected resonances CR1’, CR1”, CR2 and CR3. Note
that the transitions CR1’ and CR1” have positions very close to each
other and can not be resolved as two resonances in the photovoltage and
are therefore labelled as CR1. For linearly polarized radiation the tran-
sitions appear at both magnetic field polarities. Adapted from Ref. [33].

duction and valence band, respectively. The magnetic length is given by
lB =

√
~c/eB and V4 accounts for the electron-hole asymmetry of the spec-

trum. To obtain the LL spectra for the K− valley, ∆ has to be replaced by
−∆.
Considering the selection rules presented in Ref. [133], possible optical tran-

sitions between the LLs can be found. Assuming circular polarization and B
being parallel to the direction of the light angular momentum (B > 0) the
allowed transitions are

(2−)→ (1), (3−)→ (2±), (4−)→ (3±)...

whereas for the case B being antiparallel to the direction of the light angular
momentum (B < 0) they are

...(3∓)→ (4+), (2∓)→ (3+), (1)→ (2+)... .
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BCR1, BCR2, and BCR3 on the charge carrier density. (b) Resonance
positions calculated from possible transitions between Landau levels by
taking into account optical selection rules. Solid and dashed lines corre-
spond to K+ and K− valley, respectively. The plot legend assigns the
optical transitions. Adapted from Ref. [33]

The valley splitting of the transitions is negligible except for the transitions
(1) → (2+) and (2−) → (1) when ∆ 6= 0, here a small energy-splitting is
present. Classical CR transitions appear for holes at (l−) → ((l − 1)−) for
l� 1 while the other transitions are quantum interband transitions. It should
be noted here, that the transitions from or to level (0) are not possible in
case of a small asymmetry parameter ∆, see Ref. [133]. Additionally, one has
to take into account that for transitions the initial (final) states have to be
at least partially filled (empty). Considering this requirement together with
the selection rules four possible resonances CR1’, CR1”, CR2, and CR3 for
low electron densities and frequency f = 2.54THz can be found, indicated by
vertical arrows in Fig. 34.
The theoretical positions as a function of the carrier density are presented

in Fig. 35 together with the experimentally obtained ones. Comparison of the
calculated and the experimental values as well as their behaviour with varia-
tion of the back gate voltage reveal a very good agreement. In Fig. 34 the
resonances are shown for an excitation with circular polarized radiation. Using
linearly polarized radiation, as it was done in the experiment, the resonances
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at positive (negative) magnetic fields also appear for negative (positive) fields.
The transitions CR1’ and CR1” appear at B-field positions very close to each
other which makes it almost impossible to resolve them as two separate reso-
nances in the photovoltage measurement. Therefore, they are treated as one
resonance CR1. The greater mass of holes resulting from electron-asymmetry
in the spectrum is the reason why the resonance positions of CR2 and CR3 are
slightly different. Going to higher carrier densities results in a full occupation
of the final states involved in transitions CR3, CR1’, and CR1”, and there-
fore, these resonances vanish. Indeed, the corresponding photocurrent traces
become weaker in Fig. 31(b) and vanish in Fig. 33. Furthermore, the decrease
in frequency also involves an occupation of the final state (l = 1) responsible
for the transition CR3. This was also experimentally observed, see Fig. 31(c).
In the semi-classical regime, i.e. at higher densities (l� 1), the LL spectrum

is given by

El+1 − El ≈
2~2V4

l2B
sign(l) + ~2

l2Bm
√

1 +m2(V4 + l2B∆/(2~2))2/l2
. (72)

This equation was used to calculate the resonant magnetic field, whereas at
a low carrier density Eq. (71) was used. The obtained values are parameters
necessary to fit the data in Fig. 33. At high carrier densities, in contrast to
the low density regime, the resonance position BCR shifts to higher fields with
increasing gate-induced doping, which results from the almost linear growth of
∆ with the carrier density and, consequently, a reduction of the LL separation.

The resonantly enhanced photocurrents can be well described by the semi-
classical shape of cyclotron resonance in the absorbance which is given as

η ∝
∑
±

1
(Γ′ + 1/τ)2 + (ω ± ωc)2 (73)

with 1/τ characterized by the momentum relaxation time and the radiative
decay parameter Γ′ = 2πe2n/(cmCR) [96–99, 134] determined by the charge
carrier density n and the cyclotron mass mCR (see also chapter 4). Equation
(73) was used to fit the data in Fig. 33 shown by dashed lines. Corresponding
BCR values for low carrier densities were obtained from Eq. (71) describing
transitions between the lowest LL, including fields for interband (BCR1 and
BCR3) and intraband transitions (BCR2) , see Fig. 72(a). For higher densities
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Eq. (72) holds, describing CR-induced intraband transitions between neigh-
bouring LL within the conduction band. These transitions are labelled with
Bcb

CR, see Figs. 72(b)-(d). The calculated radiative decay parameter Γ′ used
for the fits in Fig. 33 and associated cyclotron masses mCR/m0 obtained from
the peak positions BCR are presented in Tab. 4. Overall, the calculated fit
curves reveal a good agreement with the experimental data.

U eff
g (V) n (1011 cm−2) BCR(T ) mCR/m0 Γ′ (ps)−1

0.5 0.23 BCR2 = 1.8 0.020 0.06

9.5 4.37 Bcb
CR = 2.1 0.023 1.00

15 6.90 Bcb
CR = 2.4 0.026 1.40

29 9.20 Bcb
CR = 2.7 0.029 1.70

Table 4: Magnetic field positions of the resonances BCR2 and Bcb
CR with correspond-

ing cyclotron masses mCR/m0 and radiative decay parameter Γ′. The val-
ues correspond to the fits in Fig. 33 together with the transport width
1/τ = 1.4 ps−1.

Strikingly, at low carrier densities (Fig. 33(a)) the calculated fitting curve
corresponding to the radiative decay parameter Γ′ = 0.06 ps−1 exhibits a
smaller CR halfwidth as experimentally detected for that gate voltage U eff

g =
0.5V. In this case, the momentum relaxation rate of the electrons in the
edge channel (1/τ) determines the width of the resonance. The used value
of τ ≈ 0.7 ps corresponds well to the relaxation times reported in Ref. [127]
but is half as much as estimated for the samples studied in this work with
mobilities being approximately µ ≈ 1.5× 105 cm2/Vs and a cyclotron mass of
mCR = 0.02m0, see Table 4. This differences in the relaxation times obtained
by means of transport and photocurrent measurements at the edge may result
from the fact that the relaxation times in the vicinity of the edges are shorter
than the ones in the bulk of the sample.
At higher carrier densities the situation changes. In this regime Γ′ increases

and exceeds the relaxation rate τ−1. Therefore, the halfwidth of the resonances
is determined by the radiative decay parameter (see Table 4) and an extraction
of the momentum relaxation time from the CR width is not possible.
Concluding, while at higher electron densities a good agreement between

the semi-classical calculations and experimental observations is found, at lower
densities, this approach becomes less reliable. Here contributions from elec-
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5.3 Edge photocurrents due to CR and inter Landau level transitions

trodynamic effects (Γ′) are negligible; however, Landau quantisation effects
should be taken into account [135]. Furthermore, the observed resonances can
be attributed to interband transitions (BCR1 and BCR3) as well as CR-involving
intraband transitions (BCR2 and Bcb

CR).

Microscopic Description The formation of the edge current induced by THz
radiation is well described in terms of the microscopic description explained
in chapter 5.2.2 which was developed in collaboration with Dr. M. V. Durnev
and is based on Boltzmann kinetic equation valid for frequencies ω � εF/~.
Within this approach the edge photocurrent is given by

Jy = eτ 2σ0

m

× [A|E|2 + iB(ExE∗y − EyE∗x) + C(ExE∗y + EyE
∗
x) +D(|Ex|2 − |Ey|2)]

(74)

with

A = 2ωcτ
1 + 2(ω2 + ω2

c )τ 2 + (ω2 − ω2
c )2τ 4 ,

B = 1 + (ω2 + ω2
c )τ 2

ωτ [1 + 2(ω2 + ω2
c )τ 2 + (ω2 − ω2

c )2τ 4] ,

C = − 1 + (ω2 − 5ω2
c )τ 2

(1 + 4ω2
cτ

2)[1 + 2(ω2 + ω2
c )τ 2 + (ω2 − ω2

c )2τ 4] ,

D = 2ωcτ [2 + (ω2 − ω2
c )τ 2]

(1 + 4ω2
cτ

2)[1 + 2(ω2 + ω2
c )τ 2 + (ω2 − ω2

c )2τ 4] .

(75)

Here, σ0 is the conductivity of the 2DEG without magnetic field and ωc is
the cyclotron frequency. Equation (74) demonstrates that in the presence of a
magnetic field the edge photocurrent consists of nonzero terms ∝ ExE

∗
y+EyE∗x

or |Ex|2 − |Ey|2 describing linear polarized radiation and a term ∝ i(ExE∗y −
EyE

∗
x) which is the Stokes parameter for circular polarized radiation as well as a

polarization independent term ∝ |E|2. Following, the total current induced by
linearly polarized radiation near the CR, under the condition (|ω−|ωc|| � |ωc|),
flowing along the edges, can be found

J lin
y = sign(Bz)cτηI

2BCR
×
[
1 +

√
1 + (ω − |ωc|2)τ 2

2|ωc|τ
sin(2α + θB)

]
(76)

for the condition |ωc|τ � 1. In this case cyclotron resonance appears for both
magnetic field polarities at positions BCR = mCRωC/|e|. The azimuthal angle
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5.3 Edge photocurrents due to CR and inter Landau level transitions

α describes the relative orientation of the electric field vector with respect to
the edges, see e.g. inset in Fig. 30(a). The absorbance η in the vicinity of the
CR is given by

η = 2πσ0

nωc

1
1 + (ω − |ωc|)2τ 2 (77)

for regions far from the edge and nonpolarized radiation. The intensity of
the incoming wave is given by I = cnω|E|2/(2π) with the refractive index
of the dielectric medium nω in which the bi-layer graphene is located. The
magnetic-field-induced phase shift is given by

tan θB = 1 + |ωc|(ω − |ωc|)τ 2

ωcτ
. (78)

Equations (76) and (77) demonstrate that for CR condition the edge pho-
tocurrent is proportional to the absorbed energy. This yields an increase in
the electric current resulting from the increased absorbance η. Not only the
magnitude but also the sign and the polarization dependence are determined
by Eq. (76). This description is in accordance with the experimental findings,
shown in Figs. 30, 31, and 32. In particular, the sign of the dc edge current
can be controlled by the magnetic field polarity which is in agreement with
the experimental observations presented in Figs. 30 and 31. Strikingly, the
direction of the photocurrent remains when changing from electron transport
to hole transport. This behaviour was also reported for edge currents in mono-
layer graphene subjected to a strong magnetic field in the quantum Hall regime
[28].
Equation (76) consists of a polarization-independent and a polarization-

dependent contribution. The second term ∝ sin(2α + θB) is sensitive to the
orientation of the electric field vector, and, therefore, determines the polar-
ization dependence of the photocurrent. The introduced phase shift θB (Eq.
(78)) vanishes if ω = ωc which yields a polarization dependence of the linear
photocurrent J lin

y being ∝ sin(2α). Indeed, this behaviour was experimentally
observed, see Fig. 32, showing a dependency of the photosignal on the angle α
well fitted by an equation ∝ sin(2α). In the case |ω−|ωc||τ � 1, i.e. away from
the CR condition, the phase shift θB = π/2 yields a polarization dependence
∝ cos(2α).
The dc edge current induced by circularly polarized radiation is deter-

mined by the two contributions ∝ |E|2 and ∝ i(ExE∗y − EyE∗x) in Eq. (74).
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Figure 36: (a) Magnetic field dependence of the edge electric current calculated after
Eqs. (74) and (75) for linear polarized radiation with α = 45◦ and 135◦.
Sharp CR features appear at BCR = ±2.4T. (b) Polarization dependence
of the edge photocurrent for various magnetic fields. At ωc = 0, at
CR ωc = ω as well as away from the CR condition, ωc = 0.75ω and
ωc = 1.25ω. (c) Edge current density jy(x) calculated for circularly
polarized radiation. The dashed vertical line illustrates the cyclotron
orbit lc = 2l0/(ωcτ) at CR. The parameters used for calculations are:
ω/2π = 2.54THz, τ = 0.7 ps, BCR = 2.4T, and ωτ = 11. Adapted from
Ref. [33]

Cyclotron resonance appears for a certain polarity of the magnetic field at
Bz = −(e/|e|)PcircBCR with Pcirc = i(ExE∗y − EyE

∗
x)/|E|2 equals +1(-1) for

right-(left-) handed circularly polarized radiation. The photocurrent (Eq.
(74)) in the vicinity of the CR is given by

Jcirc
y = sign(Bz)cτηI

BCR
. (79)

The edge photocurrent calculated after Eqs. (74) and (75) as a function of
the magnetic field is presented in Fig. 36(a). It shows the electric current for
two linear polarization states where (ExE∗y + EyE

∗
x)/|E|2 = ±1 which is the

case for α = 45◦ and 135◦. For the calculations similar parameters are used
as for the fit in Fig. 33(c) showing the photovoltage for U eff

g = 15V, see also
Tab. 4. The edge photocurrent exhibits two sharp CRs at B = ±2.4T with a
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5.3 Edge photocurrents due to CR and inter Landau level transitions

magnitude weakly depending on the polarization state and a sign varying with
the magnetic field polarity. The polarization dependence of the edge current
for different magnetic field strengths is presented in Fig. 36(b). While the
photocurrent at B = 0 (ωc = 0) has an opposite sign for α = 45◦ and 135◦,
at CR (ωc = ω) it is the same for both polarisation states. These calculations
are in good agreement with the experimental observations, see Figs. 22 and
24 for zero magnetic field and Figs. 30(a) and 32 for ω = ωc. Note that the
experimental results are presented for low carrier densities, i.e. in the quantum
mechanical limit, because of superimposing SdH-related oscillations at higher
densities. Therefore, the data can not be fully compared to the curves in
Fig. 36 which were calculated for the semi-classical case. Nevertheless, it can
be concluded that the photocurrent has a weak polarization dependence ∝
sin(2α). Above and below the fields for the CR (ωc = 0.75ω and ωc = 1.25ω)
the edge current follows cos(2α). Numerical calculations of the edge current
density jy(x) are presented in Fig. 36(c) obtained for circularly polarized light
at ωcτ � 1. It demonstrates that the current flows mainly along the edges
within a region as wide as the cyclotron diameter lc = 2l0/(ωcτ). The latter
is much smaller than the mean free path l0 at these conditions. Different to
that, at zero magnetic field, i.e. ωc = 0, the current distribution extends over
a much larger length being ∼ l0.
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6 THz induced circular Hall effect in graphene

6 THz induced circular Hall effect in graphene
Beside the effects which are quadratic in the electric field E, shown in Chap.
5, also phenomena proportional to higher orders of E have been observed.
These include µ-photoconductivity (see Chap. 2.3) and a circular Hall effect
excited in the absence of a magnetic field. In this chapter the observation of
this effect in mono-layer graphene is reported. The dc Hall effect manifests
the time inversion symmetry breaking induced by circularly polarized terahertz
radiation.
In the following the corresponding results on transverse photoconductivity

measurements in mono-layer graphene samples MLG #2 and #4 using circu-
larly polarized THz radiation are presented. It starts with the experimental
results and concludes with a subsequent discussion. The results are published
in Ref. [34].

6.1 Experimental results

Illumination of the samples with circularly polarized THz radiation in the
presence of a static electric field, provided by an applied bias voltage V dc,
results in a helicity-sensitive Hall photoresponse, see Fig. 37. The signals are
picked up across the sample between contact pairs in y-direction, while the
bias voltage is applied in x-direction 5, see Setup in Fig. 14(b) in Chap. 3. It
is important to mention that in all measurements shown in this chapter the
magnetic field is zero.
Figure 37(a) shows the transverse photosignal Uy as a function of the applied

bias voltage V dc
x for right- and left-handed circularly polarized radiation, σ+

and σ−, respectively. It shows that at a fixed radiation helicity the signals’
magnitude and sign can be controlled by the applied bias voltage. The signal
vanishes at V dc

x = 0 and increases (decreases) almost linearly up to V dc
x ≈

±0.2V, while at higher bias voltages it tends to saturate. Importantly, the
signal has consistently the opposite sign for opposite bias voltage polarity.
This demonstrates that the main signal comes from the change of the sample’s
dc conductivity 6.

5Note that in some measurements the bias voltage was applied between contacts neighbour-
ing the source and drain contacts which were broken. This, however, had no apparent
effect on the signal detected across the sample in the middle of the Hall bar.

6Note that excitation of graphene may also produce photogalvanic currents [26, 32]. Since
this chapter is devoted to the photoconductivity, no further discussion will be provided
here. Experimental results and discussion on the photocurrent can be found in Ref. [32].
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Figure 37: (a) Hall photosignal picked up perpendicular to the applied dc bias volt-
age V dc

x as a function of V dc
x for right-and left-handed circularly polarized

radiation. (b) Helicity dependent contribution U circ
y = (Uσ+

y −Uσ
−

y )/2 of
the Hall signal (full dots) and the longitudinal signal (open dots). The
dashed lines are linear fits as guide for the eye. Adapted from Ref. [34]

Strikingly, the inversion of the radiation helicities from σ+ to σ− also results
in an inversion of the photosignal, see Fig. 37(a). Measurements with the
usage of a rotating λ/4−plate revealed a behaviour of the signal which closely
follows the degree of circular polarization Pcirc = (Iσ+ − Iσ

−)/(Iσ+ + Iσ
−),

i.e. Uy ∝ Pcirc (not shown). Here, Iσ+,σ− are corresponding intensities. It
is important to note, that such a helicity dependent signal was only detected
for the transverse (Hall) configuration, i.e. signal Uy detected normal to the
applied dc voltage V dc

x . For the longitudinal photoresponse, i.e. signal detected
in same direction as the bias voltage, the situation is different. Here, the signals
for right- and left-handed circularly polarized radiation are almost identical.
This becomes apparent in Fig. 37(b), where the helicity dependent signal was
extracted as

U circ
y =

Uσ+
y − Uσ−

y

2 (80)

with Uσ+
y and Uσ−

y corresponding to photosignals excited by right- and left-
handed circularly polarization, respectively. Figure 37(b) shows the circular
photoresponse as a function of the bias voltage V dc

x for the Hall as well as for
the longitudinal signal. The latter one is almost zero and has an opposite sign
for opposite V dc

x polarities, similar to the Hall response.
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Figure 38: The transversal photoconductivity U circ
pc calculated after Eqs. (80) and

(81) as a function of the gate voltage U eff
g . (a) U circ

pc detected in sample
MLG #2 at a frequency of f = 2.02THz and with an intensity of I ≈
80 kW/cm2. (b) U circ

pc measured in sample MLG #4 at the same frequency
and I ≈ 100 kW/cm2. (c) U circ

pc in sample MLG #1 as a function of
U eff

g for two different frequencies f = 2.02 and f = 1.07THz at I ≈
20 kW/cm2. (d) U circ

pc measured after two different sample cooldown on
sample MLG #2 at a frequency f = 1.07THz. U circ

pc was calculated using
data measured at V dc

x = ±0.2 V for sample MLG #2 and V dc
x = ±0.1 V

for sample MLG #4 at T = 4.2K. Adapted from Ref. [34]

As demonstrated in Fig. 37 the sign change of the signal upon switching the
bias voltage polarity is consistent and was detected in all measurements. The
signals’ magnitude, however, was slightly different for negative and positive
bias voltages. This can be attributed to possible contributions coming from
photocurrent generation [26, 32], which will not be further discussed in this
chapter. Since the photogalvanic current is insensitive to the bias voltage
polarity, the photoconductivity contribution U circ

pc can be extracted from the
measured signal following

U circ
pc =

U circ
y (V dc

x )− U circ
y (−V dc

x )
2 . (81)

Note that in the following only this helicity dependent photocductivity signal
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is considered.
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Figure 39: Helicity dependent contribution of the Hall photoconductivity signal U circ
pc

as a function of the effective gate voltage U eff
g presented for four differ-

ent radiation intensities I. The maxima of U circ
pc (U eff

g ) are indicated by
vertical arrows. The applied dc bias voltage was V dc

x = ±0.2V. Adapted
from Ref. [34]

Changing the applied gate voltage U eff
g qualitatively changes the behaviour

of the signal, see Fig. 38. Here, the circular photoconductivity signal U circ
pc is

presented as a function of U eff
g for the samples MLG #2 and MLG#4, panel (a)

and (b), respectively. It shows that in both samples the signal almost vanishes
at the CNP, increases linearly at low U eff

g , and than saturates or even decreases
at higher U eff

g . At low U eff
g the dependence is almost symmetric with the gate

voltage, while at higher densities it is asymmetric. This becomes apparent,
e.g. in Fig. 38(a): On positive gate voltages the signal first increases further
up to ≈ 12V and than decreases; at negative gate voltages it starts to decrease
at much lower U eff

g and than even changes its sign. A similar dependence was
observed for different radiation frequencies and lower intensities, shown in Fig.
38(c). Moreover, the asymmetry of the photoconductive signal with respect to
the gate voltage was different for different sample cool-downs, see Fig. 38(d).
While at positive gate voltages functional behaviour as well as the amplitude
is almost the same for both cool-downs, it is different for negative voltages
exhibiting an almost zero signal for the second cool down. In the following
discussion the focus lies on positive gate voltages.
Figure 39 presents the gate voltage dependence of the circular photoconduc-

tive signal U circ
pc for various radiation intensities I. For all intensities the signal
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Figure 40: U circ
pc as a function of the radiation intensity for various U eff

g at f =
2.02THz and V dc

x = ±0.2V detected in sample MLG #2. Panel (a)
shows the data for U eff

g 5 10V. Solid lines are linear fits after U circ
pc = aI

with a = 2, 4 and 6 µV cm2/kW. Panels (b) and (c) present data at
higher U eff

g where solid lines are fits after U circ
pc = AI2. The inset presents

the intensity dependences at U eff
g = 24 and 28V measured on sample

MLG #4 under f = 2.02THz excitation and V dc
x = ±0.1 V dc bias. The

obtained coefficients are A = 0.1 (b), 0.055 (c), 0.021 and 0.036 (inset),
in units of µV cm4/kW2. Adapted from Ref. [34]

first increases up to a maximum value, then saturates and decreases at high
U eff

g . The position of the maximum slightly shifts to lower gate voltages for
lower radiation intensities. This is visualized by vertical arrows indicating the
maximum position.
To further analyse the dependence of the photoconductivity signal on the

radiation intensity, measurements at fixed gate voltages were done, where the
radiation intensity was varied up to I ≈ 100 kW/cm2 for f = 2.02THz, see
Fig. 40. Panel (a) presents the intensity dependence in the low density regime
U eff

g ≤ 10V exhibiting a linear behaviour. At higher gate voltages the situation
changes, see Fig. 40(b) and (c). Here, the dependence becomes superlinear.
In particular, at voltages > 20V, the behaviour of U circ

pc can be well fitted by

91



6.1 Experimental results

U circ
pc = A(f) × I2 with the frequency dependent fit parameter A(f). Similar

results as in sample MLG #2 are obtained in sample MLG #4, shown in the
inset of Fig. 40.
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Figure 41: Photoconductivity signal U circ
pc as a function of the radiation intensity for

three different radiation frequencies at V dc
x = ±0.2V and U eff

g = 30V.
(a) f = 3.33THz, (b) f = 2.02THz, and (c) f = 0.78THz. The solid
lines are fits after U circ

pc = AI2 yielding the parameters A = 0.17, 0.25,
and 12, with units µV cm4/kW2, in panels (a), (b), and (c), respectively.
Adapted from Ref. [34]

By variation of the radiation frequency the superlinearity at high gate volt-
ages remains, but the coefficient A(f) changes, see Fig. 41. It increases
with decreasing radiation frequency, e.g. for f = 3.33THz (panel (a)) A =
0.17µVcm4/kW2 while for f = 0.78THz A = 12µVcm4/kW2 yielding a ratio
A(0.78 THz)/A(3.33 THz) ≈ 70. It is important to note that the peak intensi-
ties of the laser radiation decrease with decreasing laser frequency at the laser
system used in this work.
Beside investigation of the Hall response also the longitudinal photocond-

cutivity was studied. Figure 42(a) presents the longitudinal photoconductiv-
ity detected in a two-terminal measurement setup where two contacts along
the Hall bar where used (see also Fig. 23). It shows the longitudinal pho-
toconductivity signal Upc,xx calculated using the voltage drops Ux measured
at V dc

x = ±0.3V for right- and left-handed circular polarization. The inten-
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Figure 42: The intensity dependence of (a) the longitudinal two terminal photocon-
ductivity signal Upc,xx and (b) the corresponding normalized longitudinal
photoconductivity ∆σ/σ for σ+ and σ− polarization. The helicity de-
pendent signal (Equ. (80)) and photoconductivity, UCR

pc,xx and ∆σcirc/σ,
respectively, are also shown in both panels (marked by superscript circ)
demonstrating that the helicity dependent part of the longitudinal pho-
toconductivity is vanishingly small in comparison with the total signal.
These data were obtained in sample MLG #1 at V dc

x = ±0.3V. Adapted
from Ref. [34]

sity dependence shows a linear behaviour at low intensities and a saturation at
higher ones. In Fig. 42(b) the corresponding calculated relative photo-induced
change of the longitudinal conductivity normalized to the dark conductivity
∆σ/σ is shown. The behaviour of ∆σ/σ reveals that the conductivity decreases
upon irradiation. This is consistent with the negative µ-photoconductivity
phenomenon where electron gas heating results in a reduction of the carrier
mobilities, see Chap. 2.3 and for review Refs. [29, 136–141].
Moreover, Fig. 42 demonstrates that the longitudinal signal does not depend

on the radiation helicity. Indeed, the helicity dependent part U circ
pc,xx is close

to zero. This is in sharp contrast to the transverse photoconductivity signal
shown above. The small difference between the signal for σ+ and σ− may
result from imperfections or misalignments of the implemented λ/4-plate.

6.2 Discussion

In the discussion of the experimental results a phenomenological theory based
on general symmetry arguments will be introduced and compared to the exper-
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imental observations. When a biased isotropic system is excited with spatially
homogeneous terahertz radiation at normal incidence the lowest-order dc pho-
tocurrent is linear in the dc electric field Edc

x and quadratic in the radiation
electric field given by E exp(−iωt) +E∗ exp(iωt), see Eq. 41 in Chap. 2. The
generated photocurrent can be fully characterized by three transport coeffi-
cients γk, given by [74]

jx = (γ1 + γ2S1)|E|2Edc
x ,

jy = (γ2S2 + γ3S3)|E|2Edc
x

(82)

where S1 and S2 are the Stokes parameters for linear polarization and S3

the one describing circular polarization. In the case of circular polarization
relevant for this work the anisotropic terms ∝ S1 = S2 = 0 vanish. Therefore,
the photoresponse reduces to

jx = γ1|E|2Edc
x ,

jy = ηγ3|E|2Edc
x .

(83)

Here, η = ±1 corresponds to the helicity of the radiation field representing the
two possible values for S3 = ±1 for right- and left-handed circular polariza-
tion. Equation (83) yields a form of jy which is equivalent to the description
of the conventional Hall effect with the circular polarized radiation being the
time-reversal breaking field instead of the magnetic field. The corresponding
diagonal and Hall components of the photoconductivity tensor are even and
odd with respect to the helicity η. This is in good agreement with the exper-
imental observations of the Hall photoresponse shown in Figs. 37-41 and the
longitudinal response presented in Fig. 37(b)7.
In general, the THz radiation induced photoconductivity may result from

either direct interband or indirect intraband optical transitions resulting from
scattering-assisted free carrier absorption. At low temperatures, however, in-
terband processes require photon energies larger than twice the Fermi energy
and thus this contribution should be maximal around the CNP and vanish for
higher U eff

g . Strikingly, the experimental results show a contrary behaviour
(see, e.g. Fig. 38), and, therefore, interband optical transitions can be ne-

7Note that in Fig. 37(b) the longitudinal signal jy was measured while the bias voltage
was applied across the Hall bar, along y−direction. An example for the longitudinal
component detected in x− direction with bias applied along the long side of the Hall bar
is provided in Fig. 23.
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glected.
High intensity radiation may also lead to a significant modification of the

energy spectrum of graphene [142]. But due to the low THz photon energies
such effects are neglected here. Therefore, the following discussion focusses on
photosignals arising from scattering-assisted intraband processes.
At low carrier densities (U eff

g < 10V) the observed photoconductivity signal
U circ

pc increases linearly with U eff
g and is almost symmetric around the CNP,

see Fig. 38. Furthermore, in agreement with Eq. (83) U circ
pc has a linear

dependence on the radiation intensity I ∝ |E|2, see Fig. 40(a).
Quite recently, the kinetic theory of the lowest-order transverse photocon-

ductivity in two-dimensional systems was developed, see Ref. [143]. This
semi-classical approach based on the Boltzmann equation shows that the Hall
photocurrent jy given by Eq. (83) involves two contributions. The first one
corresponds to optical alignment of the carrier momenta associated with the
second angular harmonic of the distribution function expanded in a series over
the electric field, and the second one to dynamic heating and cooling of the
electron gas corresponding to the zeroth angular harmonic. Both contributions
oscillate with time and appear at the second pertubation order to the equi-
librium Fermi distribution, perturbed by the THz and static electric fields.
Corresponding perturbation magnitudes depend on the dynamic relaxation
rates τ−1

nω = τ−1
n − iω with τ−1

n being the relaxation rate of the nth static an-
gular harmonics. In Ref. [143] the explicit form of Eq. (83) for graphene was
found

γ3 = σ0e
2v2Im

{
αωτ0ω

[τ1

ε
+ ε

2
(τ1

ε

)′]′
− αωε

2

2
[τ2ω

ε

(τ1

ε

)′]′
− 2αωτ2ω

(τ1

ε

)′}
ε=εF

,

(84)

with the static conductivity σ0 = e2εFτ1/π~2, the elementary charge e, the
Fermi energy εF, and αω = 1 + (1 − iωτ1)−1. The primes indicate derivatives
with respect to the kinetic energy ε taken at ε = εF.
Equation (84) demonstrates that the circular photoconductivity σx,y =
−ηγ3|E|2 is determined by the scattering rates τ−1

1 (ε) and τ−1
2 (ε) in the vicin-

ity of the Fermi surface. These rates depend on the microscopic nature of the
scattering. In particular, in case of Coulomb scattering τ1 = 2τ2 ∝ ε the term
γ3 vanishes. Such scattering events are dominant in graphene at low carrier
densities near the CNP. This is in good agreement with the experimental ob-
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servations where the photoconductivity signal is almost zero at the CNP, see
Figs. 38, 39.
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Figure 43: Circular Hall photoconductivity σxy = −ηγ3|E|2 calculated with Eq. (84)
for the model τ1 = 2τ2 ∝ ε/(ε2 +ε2

0) combining short-range and Coulomb
scattering at f = 1 and 2THz, ωτn � 1, and η = 1. Adapted from Ref.
[34]

Since the relevant scattering times τ0 � τ1 ∼ τ2 ∼ 1 ps are much longer
thant 1/ω the limit ωτn � 1 is most important in this work. In this regime,
where αω ≈ 1 and τ0ω, τ2ω ≈ iω−1, the terms corresponding to dynamic heating
∝ τ0ω and optical alignment ∝ τ2ω cancel each other in Eq. (84). This results
in a frequency dependence of γ3 being ∝ ω−3. In the particular case where
τ1 = 2τ2 ∝ ε−1 describing short-range scattering, Eq. (84) reduces to γ3 =
−6e4v2/π~2ω3εF in the high-frequency limit. A mixture of Coulomb and short-
range scattering is given at τ1 = 2τ2 ∝ ε/(ε2+ε2

0) [143] where ε0 is a parameter.
The corresponding calculated circular Hall photoconductivity σxy exhibits a
maximum at an intermediate carrier density where εF = ε0 and decreases
towards the CNP as well as towards higher carrier densities, see Fig. 43.
The theory introduced above qualitatively describes well the experimental

observations at low and intermediate gate voltages. Indeed, the detected
circular Hall photoconductivity has the following properties: It reverses its
sign with the change of the radiation helicity and scales linearly with the
intensity, see Fig. 40(a). The signal is almost zero in the vicinity of the CNP
and increases almost symmetrically with increasing U eff

g , see Figs. 38 and 39.
Moreover, at low radiation intensities the model also fits well to the experi-
mental data at higher carrier densities. Figure 39 shows that at low radiation
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intensities the photoconductivity signal increases with increasing U eff
g up

to a maximum and than decreases with higher U eff
g , in agreement with Fig. 43.

The situation, however, changes at higher radiation intensities and high
carrier densities. The increase of U eff

g qualitatively changes the intensity de-
pendence, see Figs. 40(b), 40(c) and Fig. 41. Importantly, the circular Hall
photoconductivity scales with the squared radiation intensity ∝ |E|4, and
therefore, can no longer be described by Eqs. (83) and (84). In the description
of the photoconductivity in this regime higher-order terms ∝ γ

(4)
3 |E|4 should

be taken into account within the semi-classical approach of Ref. [143]. Such
a theory should consider excitation of a larger number of different time and
angular harmonics of the distribution function. Moreover, it should explain
the dominance of the term ∝ γ

(4)
3 |E|4 over γ(2)

3 |E|2 at increasingly lower gate
voltages for lower intensities which would produce the observed shift of the
photosignals’ maxima with the radiation intensity, see Fig. 39.
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7 Conclusion
Within this work terahertz radiation-induced optoelectronic phenomena in
HgTe-based, three-dimensional topological insulators and graphene-based sys-
tems were studied. Both materials can be described within the Dirac theory
in the zero-mass limit, but while the spin-orbit interaction in HgTe is fairly
large, it is vanishingly small in graphene. In the framework of this thesis
several novel phenomena excited by THz radiation were observed in these ma-
terials, including edge photocurrents in mono- and bi-layer graphene [31, 32],
cyclotron resonance in bi-layer graphene [33] as well as in 3D HgTe TIs [30],
and the circular Hall effect at zero magnetic field in mono-layer graphene [34].
In particular, it was shown that homogeneous illumination with THz radia-
tion effectively results in a photocurrent proportional to the second order of the
electric field. Most of the observed phenomena have been studied in a regime
where the photon energy is smaller than the Fermi energy, which allowed the
development of a semi-classical theory based on the Boltzmann kinetic equa-
tion. Furthermore, in bi-layer graphene photocurrents due to inter Landau
level transitions were detected at small Fermi energies which belong to the
quantum mechanical regime. In mono-layer graphene, an effect proportional
to the third order of the electric field was observed, the circular Hall effect.
Here, the time-reversal symmetry breaking is induced by circularly polarized
THz radiation and not by a magnetic field. The experimental results and
subsequent discussions corresponding to the observed effects are provided in
Chaps. 4, 5, and 6.
Chapter 4 is devoted to the observation of cyclotron resonance of top and

bottom surface states in 200 nm thick partially strained HgTe films and fo-
cusses on the photocurrent and transmission data [30]. It was shown that
excitation with continuous wave terahertz radiation results in a strong en-
hancement of the photogalvanic current at cyclotron resonance. In the per-
formed magnetogalvanic measurements two separate resonances were detected
which show characteristic cyclotron resonance behaviour, like helicity and lin-
ear frequency dependence. An additional detection of the magnetotransmission
revealed dips at very similar positions. It was verified, that these resonances
stem from top and bottom surface states of the HgTe film. This conclusion
is supported on the one hand, by photocurrent measurements at various gate
voltages revealing a shifting of one of the resonances. On the other hand, it is
supported by previous measurements on 80 nm HgTe films [38] as well as mag-
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netotransport and capacitance data obtained from samples of the same 200 nm
HgTe wafer [40]. All these findings demonstrate that despite the film being
larger than the estimated critical thickness for lattice relaxation, topologically
protected surface states persist. In accordance with the results, the micro-
scopic theory, developed in cooperation with Dr. G. V. Budkin, describes the
formation of the cyclotron-resonance-assisted photocurrents in the framework
of asymmetric energy relaxation of photoexcited carriers [30].
Chapter 5 presents the experimental findings on edge photocurrents in mono-

and bi-layer graphene induced by linearly polarized terahertz radiation. It was
shown that in the absence of a magnetic field, the edge current is controlled by
the orientation of the polarization plane of the THz field [31]. An additionally
applied small magnetic field normal to the graphene plane leads to a phase
shift in the polarization dependence. It was demonstrated that the current is
generated in the vicinity of the edges within a strip limited by the mean free
path and the screening length of the terahertz field. The microscopic theory,
developed parallel to the experiments by Dr. M. V. Durnev from Ioffe Institute
in St. Petersburg, describes the current formation with optical alignment of
the free carrier momenta and P -symmetry breaking at the edges. In quantiz-
ing magnetic fields and at higher gate voltages, 1/B-periodic oscillations in the
photocurrent were detected which are linked to SdH-oscillations in the magne-
toresistance [31]. Further measurements in bi-layer graphene exposed to strong
magnetic fields revealed resonant features in the edge photocurrent [33]. A va-
riety of experiments established that these resonances result from transitions
between Landau levels. At low carrier densities, inter- and intralevel transi-
tions take place. In the semi-classical regime, i.e. at high carrier densities,
classical cyclotron-resonance-induced intralevel transitions appear. An inter-
esting topic for further studies of terahertz-radiation-induced edge currents in
graphene-based systems is the investigation of the 1/B-periodic oscillations.
Although their existence was observed in several measurements, their origin is
not fully understood to date.
The observation of a dc Hall effect in mono-layer graphene induced by cir-

cularly polarized THz radiation and in the absence of an applied magnetic
field, is reported in Chap. 6 [34]. It was demonstrated that the photoconduc-
tivity response is caused by free carrier absorption and reverses its sign upon
switching the radiation helictiy. At low and intermediate carrier densities, the
photoconductivity signal is shown to be proportional to the radiation inten-
sity. In this regime the photosignal can be well described within an analytical
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theory [143] taking into account the alignment of the carrier momenta as well
as dynamic heating and cooling of the electron gas. In the high-carrier density
regime the intensity-dependent photoresponse becomes superlinear and varies
with the square of the radiation intensity. The understanding of this unusual
behaviour at higher gate voltages is an interesting task for the future. It may
be explained by an interplay between second- and fourth-order effects in the
radiation electric field.
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