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Abstract

Epitaxially grown Al-InAs hybrids have a great potential for future
applications. The most prominent incentive in this regard are poten-
tial Majorana zero modes, which are to be believed ideal candidates for
fault-tolerant quantum computers. However, with the recent access to
these novel materials, it is furthermore possible to conduct experiments
on a wide range of generic phenomena. With the help of top-down fab-
rication, individual designed Josephson junctions offer an unprecedented
playground for experimentalists due to the unique combination of the two-
dimensional electron gas (2DEG) and the superconductor.

This dissertation is about examining of the fundamental building blocks
of single Josephson junctions built on such a heterostructure. For this
purpose, we elaborated a fabrication process and installed a measurement
technique based on a cold RLC resonator in the low MHz regime that is
placed in series to the sample. In contrast to the normal resistance, the
resonator is a tool which allows us to access the inductance of a super-
conducting system and thus to probe the supercurrent-carrying Andreev
bound states (ABS).

The main discoveries of this work include a complete picture of the ABS
dependency on various parameters, such as the charge carrier density, the
dc current, the magnetic fields, the temperature, or the transparency of
the junction, which is close to unity. In the heterostructure, we can break
inversion and time-reversal symmetry simultaneously with the interaction
of spin-orbit and Zeeman fields. This, in combination with the ballistic
character of the Josephson device, leads to a non-reciprocal current that
depends on the cross product of current and Zeeman field. Furthermore,
we report a rectification effect of the supercurrent even far below the
critical temperature of the superconductor. The observed non-reciprocal
current is a consequence of a distorted current-phase relation (CPR). Us-
ing the inductance, we can display this distortion and derive the novel
magnetochiral anisotropy (MCA) coefficient γL for supercurrents.

Moreover, with the MCA coefficient γL we extract the Dresselhaus com-
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ponent and witness furthermore a peculiar sign change of the MCA at the
point where the Zeeman energy is as large as the induced gap.

Finally, with the gained understanding and experience of single superconductor-
semiconductor Josephson junctions, we create the basis for more complex
devices, e.g. multiterminal Josephson junctions (MTJJs). Such junctions
with multiple superconducting leads are predicted to host synthetic Weyl
singularities in their ABS spectrum. In this work, we present first results
of this new topic and show that it is possible to fabricate such MTJJs and
to measure their inductance.
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1 Introduction

1.1 Motivation

In our daily lives, we are confronted with more and more technological revolutions in
shorter periods of time. But with increasing prosperity and technical progress, new
problems such as climate change, financial crisis or deseases like Covid-19 emerge and
affect everyone on our planet. The solution to solve these problems are supposed to
be new technologies. Technologies such as quantum computing (QC). A quantum
computer promises to process data at an exponential rate and to perform large-scale
simulations that are unthinkable in any supercomputer [1].

Figure 1.1
Overview of leading institutions,
sorted by the respective hardware
technology. Image taken from [2].

Due to this capability, in addition to the above-
mentioned problems, applications in the most di-
verse areas of industry and research and devel-
opment are conceivable, such as in chemical and
pharma industry (e.g. simulation of molecules
or pattern finding in genomics and DNA classi-
fication), finance (risk analysis etc.), technology
(i.e. machine learning, cryptography etc.), indus-
trial good (e.g. logistics, energy flow in power
networks etc.) or for many-body simulations in
physics [2]. Because of these far-reaching and en-
ticing applications, many companies and start-
ups are now researching alongside government in-
stitutions. Figure 1.1 lists some of the companies
with significant research activities on the field of quantum computing. However, in
addition to the competition between companies, there is also a competition between
the respective technological approaches.
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1 Introduction

The leading technology for quantum computing hardware today is based on supercon-
ducting circuits [3]. With this approach, google declared quantum supremacy 2019
[4]. In other words, the group led by J. Martinis claimed to solve a task in 200 s,
whereas a modern supercomputer would need 10,000 years to do so. The current
stage is called noisy intermediate-scale quantum (NISQ) era. In this era, quantum
computers with 50 to 100 qubits1 will surpass the computing power of classical com-
puters, but the number of reliable controlled qubits is limited and therefore NISQ
devices will not fundamentally change the world [5].

The reason why it is so difficult to develope the necessary hardware is decoherence.
The qubits interact with the environment and can collapse at the slightest disturbance
or measurement. But on the other hand, the qubits need to communicate with each
other very strongly. A way to overcome this contradiction is either by quantum error
correction (very cumbersome) or by storing the quantum information in a topological
state2, where the underlying wavefunction is decoupled from the environment.

1.2 Why Coupling a Superconductor to a
Semiconductor?

Topological superconductors have the potential to possess so-called Majorana fermions,
which were theoretically predicted in 1937 and named after the physicist E. Majorana
[6]. These novel particles are neither bosons nor fermions [7][8] and follow the non-
abelian anyon statistics, which, according to Alexei Kitaev’s theoretical report in 2001
[9], holds out the prospect of use for fault-tolerant quantum computers. In 2008, Fu
and Kane enriched the research field with their proposal to use the proximity effect
between an s-wave superconductor and a 3D topological insulator for the creation
of Majorana bound states [10]. Later followed the realisation that a 2D metal with
Rashba spin-orbit coupling in combination with the Zeeman effect can replace the
topological insulator [11][12][13][14].

Since these proposals and the first promising experiment by Mourik et al. in 2012
[15], the effort put into the search of this new kind of particle is steadily increasing.

1A quantum bit (qubit) is a two-state quantum-mechanical system.
2Topology is a mathematical concept. A geometric object belongs to the same class if it preserves

its properties under continuous deformation.
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1.2 Why Coupling a Superconductor to a Semiconductor?

Among the variety of other materials [16][17][18][19], the idea of using a super-semi
plattform has several advantages. One is the large number of control parameters
such as the gate voltage, magnetic field orientation and magnitude, device geometry,
materials, interface tailoring and the phase difference of superconductors in the case
of Josephson junctions. Another advantage is the benefit of historically well known
materials in terms of crystal growth and top-down fabrication [20]. To date, one
of the best developed semiconductors, say a two dimensional electron gas (2DEG),
are InAs and InSb and they are commonly used in combination with aluminium as
the superconductor. The first kind of these hybrid materials were one-dimensional
nanowires [21]. In 2016, Shabani et al. [22] set a new benchmark with the report of
in-situ MBE grown two-dimensional heterostructures.
In such heterostructures, the semiconductor inherits certain superconducting prop-
erties due to proximitisation, but it can maintain its characteristics like long mean
free path, spin-orbit interaction, g-factor or the tunability of the charge carrier density.

The aluminium can be removed in a predefined area in order to form a nanowire-like
device. The exposed 2DEG with its two superconducting leads is called Josephson
junction. The supercurrent, carried by electrons and holes, is dissipationless due to
the so-called Andreev bound states (ABS) and arise from coherent back and forth
bouncing between the superconductors [23]. Topological states can emerge due to the
absence of inversion symmetry and broken time-reversal symmetry which are caused
by intrinsic crystal structure and external magnetic fields, respectively.

In the past years, many different kinds of experiments were made in order to find
signatures of topological superconductivity in a 2D system [24][25]. Consequently, in
2019 Fornieri et al.[26] and Ren et al.[18] demonstrated this nature in planar Joseph-
son junctions. However, the evidence of Majorana bound states is still to come. The
zero-bias peaks (ZBP)3 are qualitatively similar to those in the 1D nanowire-based de-
vices, where Majorana zero modes (MZM) are indistinguishable from Andreev bound
states [27][28]. Moreover, according to theory these ZBPs must be quantized by 2e2/h

and appear on both ends of the nanowire at the same time. Neither of these con-
ditions has yet been confirmed experimentally. So far, even the opposite has been
observed [29]. Therefore, the attempt of addressing the MZMs directly appears to
have failed. New spectroscopy tools beyond electron transport are necessary and the

3ZBP can be a signature of Majorana zero modes
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1 Introduction

scientific focus should be extended to indirect signatures of topological properties, to
deepen the overall knowledge of this material class.

The specific aim of this thesis was therefore to study the effect of Rashba- and Dres-
selhaus spin-orbit interactions in combination with external magnetic fields on the
nature of Andreev bound states in Josephson junctions. Our approach was to obtain
the inductance of superconducting devices directly as a widely unused quantity. We
achieved this through embedding our sample in series to a cold RLC-circuit. Thus,
a change of the inductance of our device leads to a resonance shift of the center fre-
quency of the circuit, which then can be calculated in absolute inductance values. We
stress that this technique allows us to access the current-phase relation (CPR) directly
and hence the ABS-spectrum. In addition, it is possible to apply large external fields
and to perform DC transport measurement simultaneously.

We demonstrate the functionality of this method on one-dimensional Josephson junc-
tion arrays and on multiterminal Josephson junction arrays, where the junctions con-
sist of at least three superconducting leads. Arrays are necessary to guarantee a
sizeable inductance which must be large enough for a decent resonant shift of the
center frequency in the resonator. Furthermore, serial arrays have the advantage that
they compensate for the effects of individual defect configurations of a single Joseph-
son junction.

Among other things, this work contributes several achievements to the research com-
munity of topological superconductivity. First of all, we show the feasibility of the
described methodology and the preparation of the appropriate samples. From the
current dependent Josephson inductance, we extract the average ABS transparency
τ , which is 0.94. This high value substantiates the quality of the material and the
ballistic character of the devices. In addition, we can use the Josephson inductance to
determine some other parameters, such as the number of ABS channels, the induced
gap, or the fraction of the Dresselhaus parameter [30].

By applying a magnetic field in-plane, our devices exhibit a superconducting diode
effect (SDE). This diode effect depends on the cross product between the current ~I
and the in-plane magnetic field ~Bip. In other words, the orientation and sign of the
field determine whether there is a difference between positive and negative critical
currents and the sign and magnitude of that difference.
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1.3 Organisation of this Thesis

Moreover, we studied the magnetochiral anisotropy (MCA) in the fluctuation and in
the non-resistive regime. For latter case, we defined a new coefficient: the magnetochi-
ral anisotropy for supercurrents γL to which we can assign the value 0.77·106T−1A−1

for our one-dimensional Josephson junction array.

The origin of the diode effect is a cosine contribution to the sinusoidal current-phase
relation. In non-ballistic devices, this was observed by other groups as a shift in the
phase of the CPR by a finite ϕ0 [31]. However, with the help of the group of Prof.
Jaroslav Fabian from the University of Regensburg, we can provide a full story and
describe the physics of the superconducting diode effect qualitatively [32].

Besides these findings, we made some further observations in the presence of a Zee-
man field. For instance, a peculiar sign change of the newly defined magnetochiral
anisotropy coefficient γL. This change occurs, when the Zeeman energy and the size
of the induced gap coincide. This robust feature, which we measured in two samples
independently, is anisotropic with respect to the in-plane field orientation.

At the end, we make a detour into the world of multiterminal Josephson junctions
(MTJJs). With an additional superconducting lead, time-reversal symmetry can be
broken despite the absence of a Zeeman field and the spectrum of the Andreev bound
states take peculiar shapes. Theory predicts the emergency of topological protected
states such as Weyl singularities [33]. We show, that it is possible to fabricate and to
obtain the inductance of these new kind of devices.

1.3 Organisation of this Thesis
This thesis gives an overview what was established and achieved in our group with
regard to Josephon junctions based on epitaxial Al-InAs heterostructures. This work
can serve as a guide for a successor or researchers from other groups in terms of
fabrication, measurement methodology, and theory.
This thesis is subdivided into eight chapters and organized as follows:

• Chapter 1 - Introduction
This chapter introduces the subject. What is the motivation? What does this
work contribute to the research community? Why is it relevant to do this kind

5



1 Introduction

of research? All important questions that have to be answered to justify the
resources spent on this PhD thesis.

• Chapter 2 - Theory
First, the respective physics behind the semiconductor and the superconductor
are discussed. The third section in this chapter is dedicated to the description
of Josephson junctions. Finally, the physics related to the super-semi interface
of this material is discussed.

• Chapter 3 - Material, Methods & Characterisation
Here, the introduction of the heterostructure, the precharacterisation tools for
a new wafer, the description for the fabrication of devices and the methodology
of our measurement setup can be found.

• Chapter 4 - Josephson Inductance of One-Dimensional Josephson Junction Ar-
rays
The Josephson inductance allows us here to get an insight to the Josephson
junctions deep in the superconducting state. We describe the observations we
made in the absence of any in-plane magnetic field.

• Chapter 5 - Superconducting Diode Effect (SDE)
When we activate the Zeeman field in the plane, we observe due to the interplay
with the spin-orbit interaction a supercurrent rectification and magnetochiral
effect. This chapter is devoted to the experimental part of the study.

• Chapter 6 - Further Observations in One-Dimensional Josephson Junction Ar-
rays
In addition to the diode behaviour, we also see other effects. Such as the dif-
ference of the Dresselhaus component or a peculiar sign change of the MCA
γL.

• Chapter 7 - Multiterminal Josephson Junction Array (MTJJA)
This chapter is about the first steps into the world of MTJJAs. In DC transport
we see an enhancement and the counterpart with a deduction of the critical cur-
rent for finite magnetic fields in-plane and out-of plane applied simultaneously.

• Chapter 8 - Summary

6



2 Theory

There are essentially two categories of topological superconductors. They are either
intrinsic or artificially produced [34]. Candidates for the intrinsic approach are for in-
stance Sr2RuO4 [35][36], CuxBi2Se3 [37] or nodal superconductors like YPtBi [38][39].

Artificial topological supercondcutors are commonly made of a combination between
InAs/InSb and Al/Pb/Sn etc. and must fulfil basically two requirements, supercon-
ductivity and strong spin-orbit interaction (SOI).

Al (7 nm)

In0.8Ga0.2As (10 nm)

InAs (7 nm)

In0.81Ga0.19As (4 nm)

In0.81Al0.19As (25 nm)

Figure 2.1
Layer stack of the het-
erostructure. The orange
layer between the aluminium
and the InGaAs denotes two
monolayer of GaAs.

Other requirements may also include high quality in-
terface, robustness to external fields, control of fabri-
cation, low quasiparticle poisoning, intrinsic magnetic
fields (e.g. realized by ferromagnets), scalability for
devices and other individual reasons. In our case, the
material of choice is a two dimensional superconduc-
tor which proximitises a shallow quantum well (QW)
underneath.
The heterostructure (sketched in figure 2.1) consists
of a 7 nm thick epitaxial aluminium film. The film in-
duces superconductivity into the also 7 nm thick two-
dimensional electron gas (2DEG) made of InAs and is
separated by a 10 nm InGaAs barrier and 2 monolayer
GaAs (made for fabrication purposes). Increasing the
thickness or the Ga concentration of the InGaAs bar-
rier enhances the mobility, but at the price of a lower
proximity effect. The barrier height between the InAs
and the Al layer is thus important for the quality of
the heterostructure and a key challenge of the MBE
growth.
For our studies we were supplied with material from
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2 Theory

Prof. Dr. M. Manfra and his group from Purdue University, New Lafayette. This ma-
terial has the necessary properties to fabricate and perform experiments on extended
Josephson junction arrays. The most important features of the heterostructure are
the possibility of top-down fabrication, large SOI (≈ 15 meV nm), high g-factor
(≈ 10), sufficient mean free path lel (≈ 200 nm) for ballistic junctions, adequate prox-
imity effect (induced gap ∆∗ ' 130 µeV), sustainability against external magnetic
fields (BAl

c,|| ≈ 2.7 T) in the plane and the potential for low-resistive ohmic contacts
(Rcontact < 1 Ω).

Before the discussion of the methods and the experimental results, a fundamental
theoretical background is provided in this chapter. First, the basic properties of the
2DEG, the spin-orbit interaction and the Zeeman effect are described, followed by an
insight into the physics of superconductors. Subsequently, the physics of Josephson
contacts including the RSCJ model is discussed, passing over to interface phenomena
which are described by the Andreev process, BTK formalism and the proximity effect.

2.1 The Semiconductor

2.1.1 Two Dimensional Electron Gas

When semiconductors are arranged in a subtle way, a 2DEG can be formed, where the
motion of electrons is free in the plane and confined in z-direction. This confinement
leads to a quantisation and is essential for the observation of several effects such as
the Quantum Hall Effect [40] or the quantised conductance [41]. In our case, we use
the shallow 2DEG to benefit from its unique properties that allow us to manipulate
the Andreev bound states. The following pages give a quick overview of the underly-
ing physics. For a deeper understanding, solid state physics books with the following
references are recommended [42][43][44][45].

The density of states (DOS) in a quantum well differs significantly from the three, one
or zero-dimensional case. The spin-degenerate dispersion relation in two dimensions
has a parabolic shape and can be described by

En(k||) = En +
~2k2

||

2m∗ , (2.1)
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D(E)

E

E1

E2

kxky

a b

EF

E

Figure 2.2: Confinement in z: a) Parabolic dispersion relation for the first and second
sub-band. In between lies the Fermi energy EF. b) Density of states as a
function of energy.

with k|| =
√
k2
x + k2

y and m∗ being the effective mass. Because the integrated density
of states is energy independent, the carrier density n in the case of the first sub-band
is given by

n = m∗

π~2

∫ EF

E1
dE ′ = m∗

π~2 (EF − E1) (2.2)

and the resulting DOS is therefore

D(E) = dN(E)
dE

= m∗

π~2 . (2.3)

It is constant and shows a step for each corresponding parabolic sub-band, as illus-
trated in Fig. 2.2. The Fermi wavevector kF given from Eq. 2.1 as (EF −E1) = ~2k2

F
2m∗

leads to
kF =

√
2πn, (2.4)

when inserted into Eq. 2.2. This relation allows us to calculate a few mesoscopic
parameters of the 2DEG, which are key in evaluating our S-N-S devices. Parameters
such as

λF = 2π
kF
, vF = ~kF

m∗
, le = ~

e
µ
√

2πn, (2.5)

where λF is the Fermi wavelength, vF the Fermi velocity and le the mean free path.
The needed value n and the charge carrier mobility µ can be measured by using a
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hallbar geometry, where the quantities are extracted via the following relations:

n = 1
|e|dρxy(B = 0)/dB , µ = 1

enρxx(B = 0) (2.6)

How we characterised our 2DEG is described in section 3.4.2. There one can find the
gate voltage dependent parameters of our heterostructure.

n=2x1012cm−2

z (nm)

C
on

du
ct
io
n
ba

nd
pr
ofi

le
(e
V
)

VL=0.0 eV

VL=0.3 eV

In0.8Ga0.2As

10 nm 7 nm 4 nm 25 nm

In0.81Ga0.19As

InAs In0.81Al0.19As

0 16 12 18 24 30 36

0.2

0.4

0.6

0.8

Figure 2.3: Shallow quantum well: Illustration of the conduction band profiles of the
InAs quantum well for two different surface potentials VL (=left interface) with
an electron density of n = 2 ·1012cm−2. The Fermi energy, corresponding to the
energy of the lowest sub-band, is indicated by the horizontal thin line, whereas
the probability density of the wavefunction is displayed by the dashed line.
Original figure made by P.E. Faria Junior.

In order to create a confinement in one direction, the InAs layer with a lower band
gap (Eg = 0.417 eV [46]) is sandwiched between layers of In1−xGaxAs and In1−xAlxAs,
which have a higher band gap. The Fermi energies from the layers align and cuts the
conduction band of the InAs layer. The wave function distribution therefore localises
in the InAs QW and becomes asymmetric due to the broken inversion symmetry of
the heterostructure. Figure 2.3 shows the conduction band profile and the Fermi
energy of our near surface quantum well. Increasing the surface potential VL leads to
a further asymmetric shape, which in turn increases the Rashba spin-orbit coupling
strength. But what that actually is will be described in the next section.
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2.1 The Semiconductor

2.1.2 Spin-Orbit Interaction

As we know from the famous Stern-Gerlach experiment [47], the spin of an electron
determines whether the electron experiences a force in one or the other direction in a
magnetic field gradient. The same applies in an electric field which can originate from
an atom or a lattice. As requested by Lorentz invariance, an electron moving in an
electric field with a certain velocity v feels a magnetic field in its rest frame according
to

Beff = v

c2 × E, (2.7)

where c is the velocity of light. It is called spin-orbit coupling due to the interaction
of the electron’s spin and the orbital motion. In atoms this effect manifests itself in
the splitting of the energy levels known as the fine structure. In 2D systems such as in
our 2DEG, the spin-orbit interaction is responsible for linear spin dependent shifts of
the momentum dependent energy E(k). Hence, the spin degeneracy of the dispersion
relation is lifted.
In our system we can distinguish between two spin-orbit-related influences. One stems
from the Zincblende structure of the InAs. Here, the lack of inversion symmetry of the
crystal lattice (bulk inversion asymmetry = BIA) causes the so-called Dresselhaus
term [48].
The other influence comes from the 2D crystal growth and the parabolic confinement
potential, where spatial inversion symmetry (structure inversion asymmetry = SIA)
is absent and gives rise to the Rashba term [49][50]. Taking both effects into account,
the Hamiltonian for a Zincblende structure in two-dimensional electron gases is given
by

H = H0 + αR(σxky − σykx) + βD(σxkx − σyky), (2.8)

where σx and σy describe the Pauli spin matrices1 in the plane of the 2DEG and H0

the energy of the electrons without spin-orbit interaction [51].

The Rashba coefficient
αR = α〈EZ〉 (2.9)

depends on the material specific constant α and on the external electric field EZ nor-
mal to the plane. In practice, a gate electrode can be used as a capacitor to tune
αR. The Dresselhaus coefficient βD is determined by the thickness of the quantum

1the pauli matrices are: σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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[100]
k||[110]

k||[110]

[100]
k||[110]

k||[110]

βα α&β
[100]

k||[110]

k||[110]

Rashba Dresselhaus Rashba + Dresselhaus

a b c

Figure 2.4: SOI: Fermi circles and spin-orbit interaction fields for different k-space direc-
tions in our InAs quantum well for a, the Rashba term, b, the Dresselhaus term,
and the sum of both c, showing the resulting asymmetric SOI strength. Figures
adapted from Ref. [52].

well in the growth direction and by the band structure parameters of the material.
In contrast to the isotropic Rasbha SOI fields (Fig. 2.4a), the Dresselhaus field (Fig.
2.4b) is highly anisotropic and thus, the total spin-orbit field (Fig. 2.4c) is weaker
in k-direction [110] than in [110]. As we know from the bulk [53] and from previous
experiments [51], the Dresselhaus coefficient is expected to be much smaller. Does
it then still play a decisive role in experiments? This question will be answered in
chapter 6.1.

For the theoretical explanation of our observed diode effect (see chapter 5), P. E.
Faria Junior and the group of J. Fabian made self-consistent k · p calculations for the
estimation of realistic SOI values in our heterostructure (see the supplement of Ref.
[32]). The summarised result in figure 2.5 shows in panel a the Rashba- and in panel
b the Dresselhaus coefficient as a function of the charge carrier density n and the
surface potential VL. This potential is a representative of an electric field in growth
direction. In order to get an idea of the total SOI energy (ESO = 2αR/DkF) in relation
to the Fermi energy (EF = ~2k2

F/2m∗), the following ratio can be set up:

∆ESO

EF
= 4αR/Dm

∗

~2kF(n) (2.10)

In general, this relation points out, that apart from the Rashba and Dresselhaus
coefficients, a big effective mass m∗ and a smaller charge carrier density (i.e. small
kF) enhance the SOI effect.
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Figure 2.5: SOI: a, Rashba and b, Dresselhaus coefficients αR and βD for different n and
VL. Figure provided by P.E. Faria Junior.

2.1.3 Zeeman Effect

Each electron possesses an additional degree of freedom, namely the electronic spin. It
is a magnetic dipole moment which is related to the spin angular momentum according
to [42]

µ = −1
2gµBσ, (2.11)

with µB = |e|~/2me being the Bohr’s magneton. The Landé g-factor is ' 2 for free
electrons. In bulk InAs, the g-factor is ' 15 and becomes smaller with decreasing
thickness of the quantum well [54]. A magnetic field can couple to the magnetic dipole
moment, with the energy described by the Hamiltonian

H = −µB = 1
2gµBσB. (2.12)

The Zeeman energy can therefore be written as follows:

Ez,± = ±1
2gµBB (2.13)

The applied field opens a gap of 2Ez at k=0. This spin splitting leads to a spin
polarisation of the energy bands. Furthermore, the Zeeman field breaks the time-
reversal symmetry giving rise to different phenomena, such as the non-reciprocal
current discussed in chapter 5.
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2.2 The Superconductor

Superconductors are metals that lose their electrical resistance below a certain critical
temperature Tc. It was discovered by H. Kamerlingh Onnes in 1911 in Leiden, when
he studied the electrical behaviour of mercury [55]. Three years earlier, in 1908, he
had been the first person to succeed in liquefying helium giving him the ability to
reach temperatures of a few Kelvin. From then on, superconductor research expanded,
more and more materials were discovered, cooling techniques improved and the first
applications developed. A major leap for the theoretical description was made with
the publication of the macroscopic Ginzburg-Landau theory in 1950 [56] and the
microscopic BCS theory from Bardeen, Cooper and Schrieffer in 1957 [57]. To date,
superconductity is a huge field of research with much unknown land. Unlike other
quantum phenomena, it does not disappear when the system size is increased [44].

2.2.1 BCS Theory

According to BCS theory, two electrons with opposite momentum and spin (k ↓,−k ↑)
feel an attractive interaction and form pairs, resulting in bosonic particles called
Cooper pairs. These Cooper pairs have zero spin, form a macroscopic phase φ and
condensate to a single ground state. Due to the lower ground state the kinetic en-
ergy of the electrons is increased compared to a non-interacting Fermi gas and thus
overcompensated by the pairing energy ∆(r). If ∆(r) is present, excited particles are
described by the Bogoliubov-de-Gennes equations [45]

H(r) ∆(r)
∆∗(r) −H(r)

uk(r)
vk(r)

 = E

uk(r)
vk(r)

 , (2.14)

where the solutions are either electron-like or hole-like quasiparticles and are rep-
resented by the vector (uk, vk). The single-electron Hamiltonian H(r) is defined as

H(r) = −~2

2 ∇
2 1
m∗

+ U(r)− µ, (2.15)

with m∗ as the effective mass, µ as the chemical potential and U(r) as a scalar
potential. The superconducting pair potential ∆(r) is responsible for the coupling
of the electron and hole content uk and vk. The character of the quasiparticles is
electron-like for |uk|2 > |vk|2 and hole-like for the opposite case. The electron or hole-
like components decay into single-particle states when ∆(r) disappears. The spatial
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∆
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∆
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Figure 2.6: Quasiparticle spectrum and superconducting gap: a, Coherence factors
vk and uk of quasiparticles near kF. b, Excitation energy of quasiparticles in
a superconductor compared to a normal metal close to kF. c, Quasiparticle
density of states as a function of excitation energy in a superconductor. A gap
of the size ∆ opens around EF in which states are non-existent. Figure inspired
by [58].

component g(r) can be neglected in many cases and decoupled in the following way:
uk(r)
vk(r)

 = g(r)
u0

v0

 (2.16)

The assumption for a homogeneous superconductor ∆(r) = ∆0 and that the scalar
potential U(r) is zero facilitates the solution of equation 2.14 and yields u0 and v0

according to

u2
0 = 1

2

(
1 +

√
E2 −∆2

0

E

)
, (2.17)

v2
0 = 1− u2

0, (2.18)

where the eigenvalues of the energy are given by

E = ±
√
ξ2 + |∆0|2, (2.19)

with ξ = (~2k2

2m∗ −µ). As illustrated in figure 2.6a, excitations with k > kF are electron-
like, while excitations with k < kF are hole-like.

The superconducting density of states Ns(E) can be obtained by taking into ac-
count, that a superconductor is a metal with a gap around EF, which leads us to the
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assumption
Ns(E)dE = Nn(ξ)dξ. (2.20)

Since we are interested in energies ξ close to EF, we can equate Nn(ξ) = Nn(0) and
treat it as a constant. This leads to the result

Ds(E)
Dn(E) = Ns(E)

N(0) = dξ

dE
=


E

(E2−∆2)1/2 (E > ∆)
0 (E < ∆)

. (2.21)

We see that the pairing potential ∆ opens a gap around the Fermi energy, where no
fermionic states exist. This signature is illustrated in figure 2.6b for the dispersion
relation and in figure 2.6c for the density of states. The latter figure further indicates
the raised energy above ∆ for excitations with momentum k, whose ξ falls into the
gap. The density Ns(E) diverges for E = ∆, as the denominator in Eq. 2.21 becomes
zero [23].
Since the group velocity of a particle is described by

vk = 1
~
∇kE (2.22)

and the energy is positive for electrons with the momentum k > kF, it is evident that
the group velocity vk and the wave vector k have the same sign, whereas for a hole it is
the opposite situation. This foreshadows the application of the Bogoliubov equation
for inhomogeneous systems, like a superconductor/normal conductor interface. At
such an interface, the Andreev process and the proximity effect play a crucial role, as
we will see in section 2.4.

2.2.2 Ginzburg-Landau Theory

In 1950, Ginzburg and Landau proposed a phenomenological macroscopic description
of superconductivity. The theory indroduces a complex pseudowavefunction ψ as an
order parameter within treating superconductivity as a second-order transition. The
order parameter is related to the local density of superconducting electrons by

ns = |ψ(x)|2. (2.23)
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In the normal phase, ψ is equal to zero and can be used at the phase transition to
describe the free energy of the system which is

F = Fn + α|ψ|2 + β

2 |ψ|
4 + 1

2m∗

∣∣∣∣∣
(
− i~~∇+ 2e ~A

)
ψ

∣∣∣∣∣
2

+ |
~B|2

2µ0
, (2.24)

where Fn is the free energy in the normal state and α and β are phenomological
parameters. The minimisation of the free energy with respect to the fluctuations of
the order parameter ψ and the vector potential A leads to the two Ginzburg-Landau
equations: [23]

αψ + β|ψ|2ψ + 1
2m∗

(
− i~~∇+ 2e ~A

)2

ψ = 0 (2.25)

and
js = − 2e

m∗
Re
{
ψ∗
(
− i~~∇+ 2e ~A

)
ψ

}
. (2.26)

From these equations we can derive the London penetration depth λ, which is a
measure of the depth an external magnetic field can penetrate the superconductor.
To derive the London penetration depth λ, we assume that the superconductor is
homogeneous and contains no magnetic fields, so that ψ becomes constant. Therefore,
Eq. 2.25 reduces to the first two terms, leading to |ψ|2 = −α/β. Inserting this
expression into Eq. 2.26 gives the supercurrent density [59]

js = 4e2

2m
|α|
β
A. (2.27)

This equation is equal to the second London equation

curl js = −nse
2
s

ms
B (2.28)

and as a result the Ginzburg-Landau expression for the penetration depth λL is

λL =
√

mβ

4µ0e2|α|
. (2.29)

Since the density of Cooper pairs ns varies with temperature, the penetration depth
depends on the temperature according to

λL(T ) = λL(0)√
1− (T/Tc)4

. (2.30)
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The second parameter derived from the Ginzburg-Landau equation is the coherence
length

ξGL(T ) = ~√
|2m∗α(T )|

, (2.31)

and characterises the lengthscale over which the Cooper pair density ns can vary.

The ratio λL
ξGL

is the Ginzburg-Landau parameter κ which discriminates two scenarios:

κ < 1/
√

2 for type 1 superconductors
κ > 1/

√
2 for type 2 superconductors

Later in 1959, the GL-theory gain appreciation after Gor’kov showed that it was
actually a limiting form of the BCS-theory near Tc, where ψ is directly proportional
to the BCS gap ∆ [23][60].

2.2.3 Coherence Length

The Pippard coherence length ξ0 is another important characteristic. It describes the
length over which Cooper pairs are correlated to each other. In a pure superconductor,
when ξ is much smaller than the mean free path of electrons in the normal state lel,
it is given by [44]

ξclean
0 = ~vF

π|∆| . (2.32)

In the dirty case, ξ0 � lel, it is described by

ξdirty
0 =

√
~D
2∆ with D = 1

2vFlel, (2.33)

where D is the diffusion constant. In the pure case far below Tc, ξ approaches ξGL(T ),
whereas near Tc, ξGL(T ) diverges. These two parameter are thus related, but never-
theless different quantities [23].

2.2.4 Why Aluminium?

Why is aluminium chosen over other materials such as niobium or lead, which are
more robust superconductors? Well, the most obvious reason is that up to now it has
only been possible to grow two-dimensional heterostructures with aluminium. Among
other things, this is due to the similar lattice constant to InAs and thus aluminium
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shows good growth properties. However, there are also physical reasons that make
aluminium interesting. One reason is the Fermi velocities of Al (vF ' 2.0 · 106 m/s
for bulk Al [61]) and InAs (vF ' 1.2 · 106 m/s in our 2DEG system). The smaller the
Fermi velocity mismatch, the higher are the probabilites for Andreev reflections and
thus favors a strong proximity effect (discussed in section 2.4). Another property that
favours the proximity effect is the relatively high coherence length ξ0 of aluminium.
Furthermore, in order to perform operations with Majorana qubits it is essential to
prevent dephasing of the topological states. Unpaired electrons from the supercon-
ductor can disturb and scramble up the states, known as quasiparticle poisening [62].
Aluminium seems to be more robust against this poisoning than other materials. Alu-
minium shows 2e-periodic transport in Coulomb-blockaded devices without changing
the charge parity [63][20][64].
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2.3 S-N-S Devices
In this section we cover the main and most important physics behind S-N-S weak
links. By removing the aluminium in a predefined area, the result is an overdamped
Josephson junction in the short-ballistic regime, as sketched in Fig. 2.7. The de-
vices discussed in this work are based on such junctions, where most of the general
mechanisms can be described and understood by the Josephson equations and the
RCSJ-model. The superconducting banks with their own Ginzburg-Landau phase
and BCS-gap proximitise the 2DEG underneath, inducing a non-BCS like gap ∆∗,
whose quantity depends on the transparency of the interface between the aluminium
and the InAs.

S N

∆e−iϕ/2 ∆e+iϕ/2

x

y

∆∗ ∆∗

S

Figure 2.7: Schematic setup of a Josephson junction. The supercurrent is carried by the
Andreev bound states between the proximitised 2DEG areas.

The supercurrent between the proximitized 2DEG areas is carried by Andreev bound
states (ABS). Those can be manipulated via external magnetic fields, spin-orbit inter-
action, gate voltages and other external or intrinsic parameters. Due to the dominant
part of the ABS in the measurement signal compared to other sources (e.g. the super-
conducting film or vortex contributions), it is a subtle way to investigate the nature
of ABS to gain more insight into the properties of the underlying heterostructure and
associated devices. The ABS can be phase or current controlled and, therefore, they
are interesting in terms of topological aspects. Theoretically, this system has all the
ingredients that are required to tune it into a topological state, depending on the
magnitude and the orientation of the magnetic field. The phase difference between
the superconducting banks can function as an additional knob.

2.3.1 Josephson Effect

Superconducting junctions are rich of many unique physical phenomena and are thus
the basis for several applications nowadays, such as highly accurate voltmeters, single-
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photon detectors [65][66], magnetometers [67] or radiation meters just to mention a
few [68][44]. Josephson junctions can also be the basis of various future compo-
nents, e.g. superconducting diodes [69][70][32], quantum computers based on Andreev
qubits, transmon qubits or fault-tolerant topological qubits [71].

In general, the Josephson effect describes the current flowing between two weakly cou-
pled superconducting banks at zero voltage. In 1962, B. D. Josephson [72] predicted
the 1st Josephson equation according to

Is = Ic sin(∆ϕ) (2.34)

for a thin insulating weak link. The supercurrent Is depends on the phase difference
ϕ2 − ϕ1 of the macroscopic Ginzburg-Landau wavefunctions of the banks and on the
critical current Ic, the maximum current the weak link can sustain. This relation,
also known as the current-phase relation (CPR), is sinusoidal in the general case. But
its shape can change for highly transparent S-N-S junctions (chapter 4), can have
cosine contributions (chapter 5) or can take many other forms [73]. Moreover, B. D.
Josephson made a further prediction for finite voltages V across the junction, where
the phase difference ∆ϕ evolves as

d(∆ϕ)/dt = 2eV/~. (2.35)

In other words, a finite voltage causes an alternating current with the amplitude Ic

and the Josephson frequency ν = 2eV/h ≈ 484MHz
µV . Thus, such a Josephson device

can be used as a voltage controlled oscillator and this behaviour is so fundamental
that it is even used to define the volt.
In the superconducting state, no energy will be dissipated in the junction. However,
we can define a Josephson coupling energy:

EJ = ~Ic

2e (2.36)

The overlap of the macroscopic wavefunctions of the superconducting leads are re-
sponsible for a binding energy in analogy to molecules and covalent bonds. The
coupling energy is the maximal potential energy (Epot(ϕ) = EJ(1− cosϕ)) which can
be stored in a junction. The potential energy depends on the magnitude of the critical
current and on the phase of the banks. In order to change the phase difference, energy
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has to be supplied externally. Once the critical current is reached, the stored energy
Epot is converted to a kinetic energy Ekin. To better understand what this actually
means, we need to look at the following model.

2.3.2 RCSJ Model

The resistively and capacitively shunted junction (RCSJ) model is an elec-
trotechnical way to describe an ideal Josephson junction at finite voltages. In partic-

RC L

I

Figure 2.8: Circuit diagramm of the RCSJ model.

ular, it is a model to describe the dynamic state of the junction for currents larger than
the critical current by including a resistor and a capacitor in parallel to our Joseph-
son inductor (illustrated in scheme 2.8). Here, we neglect noise currents that can
stem from thermal noise in the resistor. The total current for these three components
according to Kirchhoff’s law is therefore

I = Ic sinϕ+ V

R
+ C

∂V

∂t
. (2.37)

By eliminating the voltage V = ϕ̇ ~
2e = ϕ̇Φ0

2/2π and the substitution of Lc = Φ0/Ic2π,
we can write the equation as:

I
2π

Φ0C
= 1
LcC

sinϕ+ 1
RC

∂ϕ

∂t
+ ∂2ϕ

∂t2
. (2.38)

This differential equation reveals a circuit that behaves as a non-linear LC-oscillator.
Therefore, we can introduce new parameters such as the Josephson plasma frequency

2Φ0 = h
2e ≈ 2 · 10−15 T·m2
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w2
p = 1

LcC
= Ic2π

Φ0C
= 2eIc

~C
(2.39)

and the quality factor [74][75]

Q = wpRC = R

√
C

Lc
=
√

2eIcR2C

~
. (2.40)

By introducing the normalised time τ = wpt and using the Eqs. 2.39 and 2.40, we
can write equation 2.38 as

Q2∂
2ϕ

∂τ 2 + ∂ϕ

∂τ
+ sinϕ− I

Ic
= 0. (2.41)

This is recognised as an equation of motion by a "classical" particle in a so-called tilted
washboard potential (visualised in Fig. 2.9). The background slope of the corrugated

Epot

ϕ
ωp

η I

M

quantum tunneling

Figure 2.9: Washboard potential: The current can modify the tilt in both directions and
bring the particle into motion. Potential energy converts to kinetic energy and
the point mass moves along the phase axis ϕ. Figure inspired by [43].

potential
Epot = EJ(1− cosϕ)− (~I/2e)ϕ (2.42)

is tuned by the applied current I. As long as the current I is smaller than the
critical current Ic, the particle is trapped in one of the minima and oscillates locally
with the Josephson frequency wp. Upon reaching the critical current, the point mass
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starts to slide over the barrier and the potential energy converts into a kinetic energy
(Ekin = 1

2m(∂ϕ
∂t

)2). Now, the particle with the mass M = (~/2e)2C and the damping
η = (~/2e)21/R moves along the ϕ axis and causes a finite voltage. In analogy to a
physical pendulum we can draw the following comparisons [76]:

Josephson Analog Mechanical Analog
Phase Difference ϕ <=> Angle Position θ
ϕ̇ <=> Angle Velocity θ̇
Capacitance C <=> Mass M
Direct Current I <=> Applied Torque ~M
Conductance 1/R <=> Damping Coefficient η

Note that quantum uncertainty or thermal fluctuations can assist quantum tunneling
through the barrier and bring the particle into motion. Thus, the observed critical
current is lower than the actual one. A particle with high mass and low damping
continues its ride down the potential. In our case, however, the opposite is valid.

2.3.3 Overdamped Junctions

We can discriminate between underdamped (Q � 1) and overdamped (Q � 1)
Josephson junctions. In our two-dimensional S-N-S devices, the capacitance and the
resistance are small and, hence, Q = (2eIcR

2C/~)1/2 is much smaller than 1. Starting
from the zero voltage state, the particle in our RCSJ model has no kinetic energy
until the critical current is reached.
In the strongly damped case, the particle starts moving slowly, corresponding to small
voltages. Whereas in the underdamped case, the particle accelerates immediatly to
an average velocity given by the background slope. However, reducing the current
and thus the tilt again, the barely damped particle has a sufficient high inertia to
continue its motion until the slope of the potential is almost zero. In contrast, the
strongly damped particle will stop its motion abruptly for I < Ic and the I − V

characteristicts follows:

V = R(I2 − I2
c )1/2 for T = 0 (2.43)

In the underdamped case the I − V curve shows a hysteretic behaviour.
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2.3 S-N-S Devices

2.3.4 Activation Energy

Ambegaokar and Halperin [77] showed in the late 60s that the kink in the I − V

relation 2.43 for an overdamped junction is smeared when thermal noise is considered
and thus they included an extra term in equation 2.38. In our washboard model,
the particle diffuses over the barriers and the strong damping brings it back into an
equilibrium distribution, where it can again diffuse into the next minimum. This
non-linear process increases towards I → Ic and, hence, a finite resistance is present
throughout. There exists a non-zero limiting value R0 for I → 0 which is related to
the normal resistance RN of the junction by

R0/RN = [I0(u/2)]−2 ∝ ue−u, (2.44)

with u = ~Ic/ekBT as the normalised activation energy and I0 as a modified Bessel
function. This equation is true for u � 1. The activation energy reveals how much
energy is needed to lift the particle above the barrier at zero temperature.

2.3.5 Thouless Energy

The Thouless Energy ETh characterises an energy scale sensitive to the boundary
conditions in diffusive disordered conductors [78]. This energy is defined as [79]

ETh = ~D
L2 , (2.45)

with L being the size of the system and D the diffusion constant. If we consider
D/L2 = 1/τTh, we see an inversely proportional relation to the diffusion time τTh. It
tells us how long it takes on average for an electron to explore the area L2 within the
given boundaries.
Strongly localized states (ETh small) are hardly influenced by a change of the system
edges, whereas it is the case for extended states (ETh large) [42].

For a ballistic system, the Thouless energy changes to [80]

ETh = ~vF

L
, (2.46)

with vF as the Fermi velocity. Although the Thouless energy describes numerous
quantities, it is not clearly defined for the ballistic regime [81][82][79].
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2.4 Interfaces of Hybrid Materials
In this section, we address the transport mechanism through a superconductor-2DEG-
superconductor junction, where the interface plays a crucial role. After introducing
Andreev reflection and BTK-theory, we will look into the nature of Andreev bound
states that form the supercurrent carrying states in the normal region. Finally, we
will discuss the proximity effect.

2.4.1 Andreev Reflection

When an electron in a normal conductor (metal or semiconductor) impinges on a
superconductor, it will undergo an unique reflection process called Andreev reflection
[83]. Since there are no quasiparticle states in the superconductor, transmission will
not take place for E < ∆0. Moreover, at an ideal interface, normal reflection is also
excluded, due to the lack of a barrier which can absorb the momentum difference.
However, an electron with an energy slightly above the Fermi energy µ forms a Cooper
pair with a second electron from the Fermi sea. As a consequence, a hole with opposite
momentum and spin is retroreflected, see figure 2.10. The hole carries furthermore
information of the phase of the electron state and of the macroscopic phase ϕ of
the BCS superconductor. The transfer of 2e into the superconductor increases the
conductance by a factor of two below the superconducting gap at zero temperature.

e

e e

h

Normal reflection Andreev reflection

µ
∆0

N S

a b c

Andreev reflection
Figure 2.10: Andreev reflection: a, Schematic of normal reflection in real space. b,

Andreev reflection in real space and in c, energy space. The incident electron
is retroreflected as a hole for energys below ∆. Images inspired by [45] and
[84].

2.4.2 BTK Theory

In reality, no interface is perfect and thus not every electron is retroreflected as a
hole. In 1982, Blonder, Tinkham and Klapwijk presented a theory describing the
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2.4 Interfaces of Hybrid Materials

probabilites of Andreev reflection (A), normal reflection (B) and transmission (T )
with and without branch crossing (C/D) [85]. For an approaching carrier counts:

A(E) +B(E) + T (E) = 1 (2.47)

Disorder, remaining oxides etc. lead to a non-ideal interface which is modeled by
a δ-shaped barrier, located at the S-N interface. For semiconductor/superconductor
systems, an additional potential stage U0 must be taken into account, which is as-
sumed to increase in a step-like manner, as schematically shown in Fig. 2.11a. The
cause of U0 is the difference in the respective charge carrier densities, which is respon-
sible for a considerable difference in the Fermi energies. Accordingly, the potential
U(x) of a S/2DEG junction is [45]

U(x) = U0Θ(−x) + ~2kFS

me
Zδ(x), (2.48)

with kFS =
√

2meµ/~2 being the Fermi wave number in the superconductor. The
dimensionless parameter Z expresses the coefficient H of the δ-shaped barrier and is
therefore

Z = H
me

~2kFS
, (2.49)

whereas Z = 0 corresponds to an ideal interface and thus to perfect Andreev reflection.

+ke

−ke

+kh

N S

+k̃e

−k̃h

e-like

h-like

N S

0 x

U0

Hδ(x)

∆0

a b

x

U(x)

E(x)

a

b

c

d

Figure 2.11: BTK theory: a, S-N junction modeled with a δ-function at the interface in
order to describe a realistic barrier. A step-like increase of the potential by
U0 is included due to Fermi velocity mismatch. b, Schematic representation
of the possible reflection or transmission effects that an electron impinging on
the superconductor from the semiconductor can experience.
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An incoming electron from the normal side with the wavefunction [45]

Ψincoming =
1

0

 eikex (2.50)

has overall four options, which are sketched in Fig. 2.11b. It can either be reflected
as a hole or electron

Ψreflected(x) = a

0
1

 e+ikhx + b

1
0

 e−ikex (2.51)

or be transmitted as an electron-like or hole-like quasiparticle into the superconductor:

Ψtransmitted(x) = c

u0

v0

 e+ik̃ex + d

v0

u0

 e−ik̃hx (2.52)

The wavenumbers can be derived from the eigenenergies of the BdG equation, intro-
duced in section 2.14. The resulting planewaves are

ke =
√
k2

FN + (2m∗/~2)E, (2.53a)

kh =
√
k2

FN − (2m∗/~2)E, (2.53b)

k̃e =
√
k2

FS + (2me/~2)(E2 −∆2
0)1/2, (2.53c)

k̃h =
√
k2

FS − (2me/~2)(E2 −∆2
0)1/2, (2.53d)

with kFN =
√

(2m∗/~2)(µ− U0) as the Fermi wave number in the normal region.

By applying appropriate boundary conditions on the wavefunctions 2.51 and 2.52
at x = 0, it is possible to derive the probability coefficients for the Andreev reflec-
tion A = a∗a, for the normal reflection B = b∗b and for the transmission T = c∗c+d∗d.

The corresponding probability amplitudes are listed in table 2.1. The parameter
Z is adjusted to Zeff =

√
Z2 + (1− r)2/4r to include the Fermi velocity mismatch
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A B T
Z > 0

E < ∆: ∆2

E2+(∆2−E2)(1+2Z2
eff)2 1− A 0

E > ∆: u2
0v

2
0

γ2
(u2

0−v
2
0)2Z2

eff(1+Z2
eff)

γ2 1− A−B

Z = 0
E < ∆: 1 0 0
E > ∆: v2

0
u2

0
0 1− A

Table 2.1: Reflection and transmission coefficients: Probabilites for Andreev reflection
(A), normal reflection (B) and transmission (T = C + D) for a perfect (Z = 0)
and a non-perfect (Z > 0) interface. Taken from [85].

r = vFN/vFS, and γ corresponds to

γ = u2
0 + (u2

0 − v2
0)Z2

eff , (2.54)

with the factors u0 and v0 given by the Eqs. 2.17 and 2.18. How the coefficients
A(E), B(E) and T (E) change for different Zeff shows figure 2.12.
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Figure 2.12: BTK theory: Probabilites of Andreev reflection A, normal reflection B and
transimission T for Zeff=0, 0.3 and 1.

2.4.3 Andreev Bound States

In our S-N-S junction, which we regard without barriers at the S-N and N-S interfaces
for a moment, the electron is retroreflected as a hole on the right N-S interface. This
hole moves along the same path in opposite direction and is in turn reflected at the S-
N interface as an electron again, destroying a Cooper pair in the first superconducting
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lead. This cycle continues and is called Andreev bound state, if a full cycle picks up
a phase multiple of 2π. The formation of these Andreev levels in Josephson junctions
is depicted in figure 2.13. The phases encountered of an electron at the retroreflection

D(E)

E

2∆ 2e2e
e

h

Figure 2.13: Andreev bound state in the 2DEG between two superconducting leads.

into a hole (ϕeh) and of a hole into an electron (ϕhe) are [44]

ϕeh = − arccos(E/∆) + φs, ϕhe = − arccos(E/∆)− φs, (2.55)

with φs being the phase of the superconductor. The accumulated phase of a full cycle
is

φ
(1)
tot = (kh + ke)L+ φ+ 2 arccos(E/∆) (2.56)

and for the opposite case the total phase is

φ
(2)
tot = (ke + kh)L− φ+ 2 arccos(E/∆). (2.57)

In the normal metal a total dynamical phase of (kh + ke)L ' 2EL/vF~ is aquired.
As discussed, the confined bound states must fulfil the condition φ

(1/2)
tot = 2nπ and

discrete energies are given.

As the Thouless energy ETh = ~vF/L is much larger than the superconducting gap
∆(T ), our junctions are in the short limit and the dynamical phase contribution can
be neglected. Therefore the energies of the Andreev bound states are

EABS = ±∆ cos(ϕ/2) (2.58)
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in the case of clean interfaces. In the presence of impurities, however, avoided crossing
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Figure 2.14: a, The Andreev bound state energies and b, the current-phase relation
for different transmission probabilities.

appears at ϕ = π and the bound state energies are described by [86][87]

EABS
± = ±∆

√
1− τn sin2(ϕ/2) 0 < τn < 1, (2.59)

where n(= 1, 2...m) is the number of all ABS modes and τn is the transmission
probability through the system per mode. The energy-phase relation for different
τ is shown in 2.14a. Each bound state transfers a Cooper pair through the normal
region and thus the supercurrent carried by each state is [88][89]

IABS
± = 2e

~
dE

dϕ
. (2.60)

The total supercurrent of a S-N-S junction is the sum of all ABS modes. For finite
temperatures the supercurrent is given by [90][91][44]

Is = 2e
~
∑
±

dEABS
±
dϕ

tanh
(
EABS

2kBT

)
= e∆2

2~
τ sin(ϕ)
EABS

+
tanh

[
EABS

+ (ϕ)
2kBT

]
. (2.61)

The shape of the current-phase relation is basically given by the derivative of equation
2.59 and is plotted in figure 2.14b. The first Josephson equation Is = Ic sin ∆ϕ is valid
only for the case of small transmission probabilities or high temperatures [44].
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2.4.4 Josephson Inductance

How can the current-phase relation be determined experimentally? In chapter 4 we
will see, that the CPR and the transmission probability can be obtained with the
direct current dependent Josephson inductance L(I).
In general, the inductance L is defined as the voltage divided by the time derivative
of the current. Together with the first and second Josephson equations 2.34 and 2.35,
the following equation can be established:

L(ϕ) = V
dI
dt

= Φ0

2πI0f ′(ϕ) . (2.62)

Φ0 is defined as the magnetic flux quantum and ϕ as the phase difference between the
superconducting leads. The derivative f ′(ϕ) comes from a 2π-periodic dimensionless
function. This function is part of the current-phase relation I = I0f(ϕ) and is sinu-
soidal (sin ϕ) in the case of tunnel junctions. By integrating Lİ = Φ0ϕ̇/2π, we can
extract the inverse CPR according to

ϕ(I) = ϕ(0) + 2π
Φ0

∫ I

0
L(I ′)dI ′. (2.63)

The function L(I) is what we get from the resonator. What we cannot determine,
however, is the integration constant ϕ(0), corresponding to a ϕ0-shift in the CPR.

In order to evaluate our data, we use the Beenakker-Furusaki formula to describe
the CPR for short-ballistic junctions, which applies to arbitrary temperatures and is
defined as follows [92][93][91][90]:

I(ϕ) = I0f(ϕ) = I0

τ sinϕ tanh
[

∆∗
2kBT

√
1− τ sin2(ϕ2 )

]
2
√

1− τ sin2(ϕ2 )
, (2.64)

where τ is the average transmission coefficient, ∆∗ the induced superconducting gap
and I0 the maximum critical current for τ = 1 and T = 0. An illustrative example of
how the Eqs. 2.62 and 2.64 are applied together is shown in figure 4.2 in chapter 4.
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2.4.5 Proximity Effect

In the context of hybrid S-N materials, the word proximity effect is part of the
standard vocabulary. It labels the leakage of Cooper pairs from the superconduc-
tor through a good interface into the normal conducting part. This part inherits
properties of the superconductor. In textbooks, this effect is rarely described in con-
trast to the Andreev process and is often treated as a separate phenomenon [94]. But
this is actually not the case. With increasing amount of studies it became clear that
these effects are intimately connected [89]. A fundamental reason for this discrepancy
was the original overly simple theory of the proximity effect. The usage of the Gorkov
equations or the simplified version of the Ginzburg-Landau theory, valid close to Tc,
were insufficient.
Further theoretical developement lead to the quasi-classical equations by Eilenberger
[95] and by Usadel [96] in the case of the dirty limit. Many experimental observa-
tions can be evaluated with the help of these quasi-classical equations, although the
Bogoliubov-de-Gennes equations in addition with the concept of Andreev reflection
give a better understanding in the case for ballistic electron transport [87].

Nowadays, the proximity effect can be understood as follows. Andreev reflection
causes a phase correlation between the incident electron and retroreflected hole. The
correlated phase decays over a distance of ' ~vF/2E (= ξN) from the interface, with
E being the energy difference of the electron and hole. The proximity effect also
works the other way round. Excited quasiparticles can diffuse into the superconduc-
tor and suppress superconductivity near the interface on the length scale of ξs [90][97].

The BTK model, described in section 2.4.2, assumes a step-like pair potential ∆(x) at
the S-N interface and is therefore oversimplified in the context of the proximity effect.
In Ref [45] and the authors cited therein, the application of the Green’s function on the
BTK model is discussed. They introduce the normal angle-averaged Green’s function
G(E, x) and the anomalous angle-averaged Green’s function F (E, x). The real part
of G(E, x) represents the quasiparticle density of states, DOS(E, x) = Re[G(E, x)],
whereas Re[F (E, x)] stands for the density of states of the correlated particles.

In their superconductor-semiconductor system, the authors include an additional layer
N, which represents a few degraded layers of atoms originating from the deposition
of the corresponding material. Hence, the layer sequence S-Sm extends to S-N-Sm.
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We look at the S-N boundary in the dirty limit, since the superconductor is a metal
which contains many scattering points. In the dirty limit, the coherence lengths
ξS,N =

√
~DS,N
2πkBTc

are much larger than the corresponding mean free paths lel,S and lel,N.
The attached semiconductor can be either in the clean or in the dirty limit.

Because the Usadel equations are [96] not applicable for distances of the order of lel,S

and lel,N from the interface, the Eilenberger [95] equations must be used to derive
the boundary conditions, yielding two parameters. The first parameter is the barrier
strength

γB = 2
3
lel,N

ξN

〈
1− t
t

〉
, (2.65)

where t is the interface transmission probability and related to the Z parameter from
the BTK model via t = 1

1+Z2 and the parantheses <...> denote angle averaging. The
second parameter

γ = %SξS

%NξN
(2.66)

is a measure of the proximity strength and marks the suppression of the order pa-
rameter in the superconductor. It depends on the resistivities and coherence lengths
%N,S and ξN,S of the N and S material, respectively. What the Cooper pair density,

N SγB

γ

x=0

ξSξN

Re[F (x)]

Figure 2.15: Superconducting proximity effect: Re[F (x)] represents the spatial density
of states of Cooper pairs. The amount of leaking correlated particles into the
normal region depends on the proximity strength γ and the barrier strength
γB. The coherence lengths ξN,S determine the characteristic length scale for
this effect. Figure adapted from [45].

expressed by Re[F (x)] near the interface, looks like is shown in figure 2.15. We can
see an inverse proximity effect in the superconductor, where the density of the Cooper
pairs decreases gradually towards the interface and is determined by γ. At the tran-
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sition to the normal-conducting part (i.e. x = 0), the parameter γB represents the
step in the pair density and thus the boundary transparency, while further on in the
normal conductor, Re[F (x)] decreases again gradually.

For a thin N layer with thickness dN, γ can be replaced by γm = γ dN
ξN
, if dN/ξN � 1

is fulfilled, as reported by Aminov et al. in Ref. [98]. Due to the reduced amount of
parameters, Aminov et al. could calculate and plot the density of states at different
locations for various γB for a fixed γm, as shown in figure 2.16. At the S-N interface,

γm = 0.1
T/Tc = 0

0.0 0.5 1.0 1.5 2.0
E/∆S

0

2

4

6

8

10

D
O
S
(E

)

γB = 10
γB = 5 γB = 1
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SN
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Figure 2.16: Induced gap: Density of states for different barrier strenghts γB of a S-N
device with a thin N-layer (dN � ξN) and constant proximity strength γm = 1.
Dashed and grey lines denote the location at the S-N interface and at the free
surface, respectively. Energy is normalized by the bulk superconducting gap
∆S, while the DOS is normalised to their normal-state values. Figure adapted
from [45][98].

the superconducting gap ∆S is hardly affected, whereas at the free surface of the N
layer (x = +dN), ∆N highly depends on barrier strength γB. An increase of γB results
in the reduction of ∆N.
This theory does not include impurities and, so far, finite temperatures. If the ratio
γm/γB is small one can neglect the spatial gradients in the superconductor and ∆S(x)
becomes equal to the BCS value ∆0(T ). The temperature dependence for the energy
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gap ∆N in the normal layer is then given by [98][45]

∆N(T ) = ∆0(T )
1 + γB

√
∆2

0(T )−∆2
N(T )/πTc

. (2.67)

This equation becomes invalid for temperatures close to Tc, where ∆0(T ) is small and
moreover, the two gaps ∆N and ∆0 merge for temperature towards Tc.

Besides theory, there are also great experimental reports, such as from Chrestin et
al. [99] or from Cherkez et al. [100], who visualised the proximity effect with spa-
tially resolved scanning tunneling spectroscopy. Another experiment that is definetely
worth to be mentioned is the work from le Sueur et al. [101]. Le Sueur et al. used a
dual-mode STM-AFM microscope to study the phase controlled proximity effect.

Despite these experiments, it is still unknown how magnetic fields influence the prox-
imity effect. In section 6.3, we present measurements of the proximity induced gap
∆∗ in the presence of in-plane magnetic fields.

2.5 ϕ0-Junction

A normal metal sandwiched in two conventional superconductors forms a Josephson
junction. The corresponding current-phase relation is sinusoidal near the critical tem-
perature, while at lower temperatures, higher harmonics In sin(nϕ) may contribute
to the CPR. If both time-reversal symmetry and inversion symmetry are broken, the
CPR is no longer antisymmetric I(−ϕ) 6= −I(ϕ) and the ground state of the junction
shifts by a finite phase ϕ0 according to [102][103][104]

IJ = Ic sin(ϕ+ ϕ0). (2.68)

The phase offset ϕ0 is proportional to the spin-orbit parameter and magnetic field as
the following equation shows [105]:

ϕ0 = 4αd|g∗|µBB
~vF,N

(2.69)

Here, vF,N is the Fermi velocity and g∗ the g-factor in the normal metal. A. Buzdin
[105] predicted the existence of such ϕ0-junctions with the help of the phenomenolog-
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ical Ginzburg-Landau theory and the quasi-classical Eilenberger approach. Very im-
portant for the occurence of this anomalous effect is the mixing of the spin-dependent
channels due to the SOI [106]. In other words, several transverse modes are necessary
to observe a finite current at zero phase difference.

In 2016, Szombati et. al [31] reported a finite current at zero phase difference on gate-
controlled nanowire quantum dots, demonstrating the existence of a ϕ0-junction. In
2019 and 2020, the observation of the ϕ0 effect in planar Josephson junctions made
of Bi2Se3 and InAs, each with aluminium electrodes, was reported by Assouline et al.
[16], by W. Mayer et al. [107] and 2020 again by Strambini et al. [108].
However, in chapter 5 we will see, that the ϕ0-shift alone is not the full story in order
to explain the observations we made in our short-ballistic Josephson junctions.
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3 Material, Methods &
Characterisation

As part of this work, our group broke new ground with this novel material and res-
onator technique. This chapter describes in a compact way the foundation of this
thesis - the methodology we elaborated in the past four years. Section 3.1 presents
the material of choice and its specific properties. Next, section 3.2 describes the fabri-
cation recipe, designed for the facilities in Regensburg. The following section 3.3 lists
an overview of the most important samples. Section 3.4 is about how a new wafer
can be characterised. The final section 3.5 describes our measurements setups with
focus on the resonator technique.

3.1 Material

3.1.1 Introduction

A convenient way to create topological superconductors is to marry an s-wave super-
conductor with a Rashba semiconductor [11][22]. In the past, one common approach
was to evaporate Al or Nb ex-situ to proximitise a nanowire or 2DEG [109]. However,
the result in those days were low interface qualities.
In 2015, T.S. Jespersen and P. Krogstrup et al. [21] reported how to solve this prob-
lem. They evaporated aluminium epitaxially in-situ on the facets of Vapor-liquid-
solid (VLS) grown InAs nanowires with a diameter of ' 100 nm. By finishing the
evaporation process before breaking the vacuum of the growth chamber, the material
characterisation showed high transparent and clean interfaces. Further tunnel exper-
iments showed a hard-induced superconducting gap in the InAs regime, revealing a
strong hybridisation [110]. Though, standard VLS nanowires are not suitable for com-
plex quantum devices, because manual placement of the individual nanowires quickly
reaches its limits. This approach does not allow scalability. Therefore, research in-
terest is orientated towards other techniques such as the Selective Area Growth - a
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bottom-up approach similar to nanowire growth. Instead of catalyst particles, a pre-
fabricated SiOx mask is used to grow planar hybrid Al/InAs nanowires [111].
After the success of the nanowire experiments, a new approach was reported for
two-dimensional quantum wells proximitised by epitaxial Al [22]. Both techniques
showed a hard induced superconducting gap in the semiconductor [112][24]. For our
experiments, we use the latter case. Here, the devices are fabricated in a top-down
procedure utilising selective wet etching. These materials offer the ideal playground
for us to study the physics of planar Josephson junctions and more.

We work in close collaboration with the group of D. Bougeard in Regensburg in order
to establish and improve the growing process of these hybrid materials. This working
together was an ongoing side project during this thesis and will not be covered in this
work. For this thesis we used material from the group of M. Manfra from Purdue
University, West Lafayette, USA. They supplied our group with half a wafer of the
epitaxial Al/InAs heterostructure. We carried out all the experiments discussed in this
work on this batch. Therefore, we will take a closer look on this material composition.

3.1.2 Heterostructure

The heterostructure is grown layer-by-layer with molecular beam epitaxy (MBE). The
result is crystal of high purity and homogeneity, where the atoms are precisely aligned
in a known composition. The schematic of our heterostructure is shown in figure 3.1a.
From bottom to top, the 500 µm thick indium phosphide (InP) is functioning as a
substrate. Followed by 100 nm In0.52Al0.48As matched buffer, 900 nm In0.52Al0.48As
to In0.84Al0.16As graded buffer (18×50 nm steps), a reversed 33 nm graded buffer
from In0.84Al0.16As to In0.81Al0.19As to compensate the overshoot1 and a 25 nm thick
In0.81Al0.19As virtual substrate. The 7 nm InAs quantum well is sandwiched in a
4 nm In0.81Ga0.19As bottom barrier and a 10 nm In0.8Ga0.2As top barrier. The whole
semiconducting wafer stack is capped with two monolayer GaAs, as the Al etchant
we use is designed to etch Al on GaAs. Finally, the superconducting layer, namely
7 nm of epitaxial Al, covers the top. Figure 3.1b shows a top-side-view SEM2 image
of the surface.

1In our case overshoot means a higher concentration of indium in the graded buffer compared to
the virtual substrate in order to adjust the lattice mismatch.

2Scanning Electron Microscope
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Al (7 nm)

In0.8Ga0.2As (10 nm)

InAs (7 nm)
In0.81Ga0.19As (4 nm)

In0.81Al0.19As (25 nm)

In0.84Al0.16As to In0.81Al0.19As (33 nm)
In0.52Al0.48As to In0.84Al0.16As (900 nm)

50 nm/step, 18 steps

InP substrate

a b

200 nm
In0.52Al0.48As (2.5 nm)
In0.53Ga0.47As (2.5 nm) SL x 5

In0.52Al0.48As (100 nm)

Figure 3.1: Heterostructure: a, Shows the layer stack, while b, shows a SEM image of
the Al surface from a of 60° tilted side-view.

Aluminium

Bulk aluminium as a superconductor has a relatively small Tc (≈ 1.2 K), a small
superconducting gap ∆ and a low critical field Bc2 (≈ 10.5 mT). These disadvantages
are an incentive for the search for other superconductors. Recent reports showed, that
other material compositions such as lead or vanadium on InAs [116][114] or tin on InSb
[115] can be grown with an epitaxial match if applied to nanowires. Other candidates
such as tantalum or niobium are up to debate, but do not yet have the quality [113].
TEM3 images in figure 3.2 show the existing qualitative differences between Al, Ta
and Nb, Pb and Sn in 2020/2021. However, for the case of 2D systems, aluminium
seems to be the only material so far, as far as we know, that epitaxially conforms to
the lattice periodicity of InAs.
A still inexplicable and peculiar property of aluminium is the increase of Tc and Bc

by growing thinner films or in a disorderly manner [117]. But growing thin films is
challenging. It requires a cooled substrate during the evaporation to avoid dewetting.
Even with the use of liquid nitrogen cooling, the aluminium starts dewetting at a
certain small film thickness, as long as the oxide layer is not formed. After the latter

3Transmission Electron Microscope
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a b c

d e

Figure 3.2: TEM images showing epitaxial match for a, aluminium, d, lead on InAs and
e, tin on InSb in the case of nanowires. Tantalum b, or niobium c, are possible
future candidates just like vanadium or indium, but the proof of their epitaxial
capability for superconductor-semiconductor hybrids is still missing. Images
taken from [113][114][115].

has happened, the film retains its epitaxial form [84][118].

Shallow 2DEG

The idea behind a near-surface QW is to let the electron wave function extend to
the surface, where the Al is deposited (see Fig. 3.3a). The desired proximity effect
is achieved in combination with a clean interface. For such an interface, the lattice
periods of the different layers should match, whereby the atoms are aligned orderly.
This is usually checked by using a TEM, as exemplified in figure 3.2a.
The price for a good proximity effect is a reduced mobility caused by the increased
scattering of the charge carriers at the surface of the 2DEG. Therefore, disorders at
the interface to the aluminium have a big impact on the materials properties and play
a crucial role in the fabrication process. As reported in [22] and shown in Fig. 3.3a,
the position of the wavefunction depends on the thickness of the InGaAs barrier and
the size of its band gap and thus on the Ga concentration. In addition, a significant
difference in mobility is observed for devices which have seen a wet etchant or not
(compare Fig. 3.3b).

This sensitivity to the 2DEG surface topography limits the amount of opportunities
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Figure 3.3: Near-surface InAs quantum well: a, Conduction band and electron den-
sity distribution calculated by a self-consistent Schrödinger-Poisson solver for
d=5 nm. b, 2DEG electron mobility µ as a function of InGaAs top barrier thick-
ness. Red dots show the result for wafers grown without Al. Images adapted
from [22].

how to strip off the aluminium. So far, Transene’s phosporic acid-based wet etchant
has become the standard and is used for most purposes. Despite of InAs surface re-
pairing attempts with argon-hydrogen plasma [119], the future seems to be pre-growth
fabrication to solve the obstacle of etched induced disorders. Utilising shadow masks
[120][121], it is possible to grow devices in-situ yielding Josephson junctions with sig-
nificantly higher quality than the etched junctions [122]. Other attemps were made
by thinning the aluminium with anodic oxidation. In combination with lithography,
anodic oxidation allows the fabrication of S-N-S junctions [123].
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3.2 Fabrication

In order to study individual Josephson junction devices we had to structure, or in
other words, fabricate them on the plain wafer. Because we started from scratch,
we had to get access to a heterostructure. After this, we set up a fabrication recipe.
The pioneering work in this regard was done by M. Kjaergaard and his colleague H.
Suominen from the Niels-Bohr Institute in Copenhagen. A very well documented
fabrication manual provides the PhD thesis from M. Kjaergaard [58].
However, our facility and experimental environment is different and therefore we had
to adapt and elaborate new fabrication steps. The most crucial step is the wet etching
of the aluminum and the semiconductor. The result of the etching steps gives already
a hint about the quality of the wafer and it can differ immensely from wafer to wafer.
But if the quality of the wafer is good and if the recipe is applied rigidly, the success
of working devices is very high. In the case of our Josephson junction arrays, we
faced the problem of single impurities while etching the mesa. The acquisition of own
equipment (beakers, pipettes, chemicals, resist etc.) lead to substantial improvements
but was nevertheless not perfect. Thereupon, it was tried to divide the array into
small sections in order to connect the better parts and to omit the bad ones. This
approach still offers room for improvement for the future.

Cleaving

First, we spin-coat a newly obtained wafer with optical resist to preserve the material
and to wash off particles with the resist that originate from the scribing process. To
maximise the amount of chips, we always cleave as needed, since the required sample
size is experiment dependent. A common size is 4× 4 mm.
For cutting the long edge, we scratch a marker with a fine diamond hand cleaver at
the outer part of the wafer. To apply some force gently, we use two tweezers to break
off a long piece. For the small edge, a high precision scriber is used to scratch the
surface once. Using the tweezer method for the smaller edges resulted in damaged
chips from time to time.

Cleaning

After cleaving, the chip is placed in two beakers with acetone for 1.5 minutes in each,
exposed to sonication for a few seconds during the acetone bath, then put in iso-
propanol and blown dry with the nitrogen pistol. It is unclear whether the sonication
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changes the material negatively or not. Therefore, sonication is avoided once fabri-
cation started. Our master student Linus Frész tested Trichloroethene (TCE) for an
additional cleaning step [124]. However, this step was abondonned, because we saw
no advantage in it. The philosophy throughout the fabrication is: As few steps as
necessary, but carried out very precisely and carefully.

Lithography

We use a 4 % PMMA 950 K (anisol) resist throughout the fabrication and spin-coat it
with 4000 rpm4 forming a pristine ' 160 nm thick layer after a bakeout of 10 minutes
at 120◦C. We expose the sample to a maximum temperature of only 120◦C. Higher
temperatures increased the surface roughness, what we relate to a decrease of the
aluminium quality [124].

We write the predefined structures into the resist using our Auriga SEM system from
Zeiss with the 30 µm aperture and 30 kV acceleration voltage. The sample is then
developed in methylisobutylketone (MIBK) and isopropanol. It has proved useful to
start by defining the mesa first, where the alignment markers can be easily etched
into the chip for further fabrication steps. For certain devices, the proximity effect of
the electron beam exposure poses an extremely great difficulty. This effect, not to be
confused with the superconducting proximity effect discussed in chapter 2.4.5, results
from scattered secondary electrons that still clearly expose the resist at distances
greater than 2 µm.

Etching the Mesa

The removement of the aluminium and the 2DEG take place in two steps. What re-
mains are bondpads, Al/InAs leads for the device, alignment markers and the sample
name (very important). The mesa has to be etched deep enough to distinguish the
markers in the SEM. Otherwise it is impossible to perform the SEM alignment, which
is necessary for the exposure of the fine structures (e.g. the part where the Al should
be removed for the Josephson junctions) at the right place.
Furthermore, we witnessed a mesa to mesa connection after the deployment of the
AlOx dielectric. We have overcome this obstacle by etching deeper (>250 nm). After
removing the aluminium layer (discussed below), we use the following solution

4rounds per minute
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H2O : H3PO4 : H2O2 : C6H8O7

88 ml : 1.2 ml : 2 ml : 22 ml

with a etching rate of ≈ 0.95 nm/s to remove everything of the semiconducting layers
homogeneously. The hydrogen peroxide H2O2 is responsible for oxidising the semicon-
ducting material and the phoshporic acid H3PO4 binds on the oxidised components.
Citric acid facilitates the replenish of fresh etch for the reaction process. After 5 min-
utes, the process is stopped by swirling the sample in distilled water.

Etching the Aluminium

This step is, besides the mesa etch, the most critical step in the fabrication process.
The desired result should be a clean and an uncovered aluminium free 2DEG as
unharmed as possible. As mentioned above in section 3.1.2, wet chemical etching
deteriorates the transport properties, but to our knowledge, the etchant type D from
Transene is up to date the best wet chemical to strip off the epitaxial aluminium.
After lithography and developement of the resist, we expose the sample to an oxygen
plasma to get rid of resist residues in the respective areas. At the beginning we used
our RIE5 system with the following parameters:

flow : pressure : power : duration
O2 20 sccm : 100 mTorr : 5 W : 10 s

Over time, we benefited from a new plasma asher (used for the multiterminal Joseph-
son junctions), with which lower power could be set and a lot of time could be saved
due to the easier handling.

After this step, the sample is ready for etching Josephson junctions or other types of
device patterns. But before, the etchant has to be pipetted into a beaker and heated
up to about 50◦C ±2◦C on a hotplate. The etching time itself is short and takes
about 2 to 2.2 s, varying from user to user. This short etch time is a reason why it
is difficult to etch a Josephson junction with a higher precision than ± 20 nm. The
process is again stopped for 20 s and 40 s in distilled water. The resist is then washed
off in acetone and isopropanol and the result can be examined in the SEM.

5Reactive Ion Etching
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Insulator Deposition

The choice for the dielectric separating the topgate from the heterostructure is alu-
minium oxide (Al2O3). It is grown at 80 ◦C with our Cambridge Nanotech Savannah
ALD6 machine. A preconditioning step by placing the sample in the chamber at
80◦C under low pressure for several hours might increase the quality. However, we
produced not a significant amount of samples to make a statistic. In addition, it is
recommended to start with the TMA (trimethylaluminium) cycle. This should pas-
sivate the surface and lower the amount of possible surface states.

Before the insulator is deposited, another EBL step is required to keep the bondpads
free from the AlOx. The reason for this step are the low contact resistances we
need for our inductance measurements (see chapter 4). Bonding directly to the bare
aluminium achieves a contact resistance well below one ohm, while bonding through
the dielectric leads to higher contact resistances.

Topgate Deposition

At the end, the Ti/Au topgate is deposited with an e-beam evaporator. The gate
area, connected to a bondpad, is again defined by an EBL step. For fine structures,
such as the gate finger of a quantum point contact, the deposition must be done in
two steps. In this case, (Ti/Au) (5/20 nm) was deposited first for the inner part,
followed by (Ti/Au) (5/100 nm) in a second step for the outer part.

Chip Carrier and Bonding

Finally, the fabricated devices are glued into a 20-pin chip carrier with PMMA. For
bonding the sample it turned out that only our old aluminium bonding machine7

can meet our requirements. It bonds on the plain aluminium film with a small con-
tact resistance and a high success rate. The following settings have usually proved
successful:

Gold bondpad on chip carrier: 180 (power)/ 100 (time)
Aluminium bondpad on sample: 120-140 (power)/ 100 (time)

The bondpads should be large enough so that each contact can be bonded at least
twice. This can save unnecessary, troublesome cooldowns, as the likelihood of a

6atomic layer deposition
7from Westbond company - model 5400B
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contact failing is greatly reduced.
Figure 3.4 shows an optical micrograph of sample 1 after bonding.

Topgate

AlOxOne-dimensional array Al bond wires

Alignment markers Interrupted array

Figure 3.4: Optical image from Sample 1.

3.2.1 Notes on the Fabrication Process

Despite a quite good working recipe has been elaborated, there is always room for
improvements. Because we had a small amount of material, we tried to get things
working step by step. For tests, we used the outer parts of the wafer, which are not
suitable and not worth for a characterisation. Mesa etching tests can be done only
once per chip, since the result of a second test is totally different and not reproducable
for an unknown reason. Solely aluminium etching tests can be carried out at least
five times per chip.
So far, the greatest source of inaccuracy in removing the aluminium film is the time.
With 2 to 2.2 s, it is hard to reproduce the etching process. That’s why it might
be worth a try on the long term to dilute the etchant type D solution with distilled
water. This approach was avoided because it is not known what the solution would
then do to the exposed 2DEG and how much the mobility might be degraded.
Reducing the temperature of the solution is not an option, since the result are alu-
minium residues or underetching if the etching time is increased.

Overall, the lithography gives the greatest opportunity for improvements. For our
arrays, we need to expose the same fine structure several hundred or thousand times
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per chip. Often we faced the problem, that the SEMs (Auriga or Supra) did not
expose each fine structure equally. In this regard, we did not find any systematics
behind this problem so far, as it occured irregularly and the number of samples in
this respect was too small.

Dividing the array into smaller parts can improve the quality immensely, as it was
the case for the multiterminal Josephson junction array, discussed in chapter 7. The
fabrication of small segments, for instance with only 50 Josephson junctions, results
in several defect free parts. After a further mesa etching step, the defect free segments
stay connected.
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3 Material, Methods & Characterisation

3.3 Devices

Various samples have been fabricated in recent years. Besides normal Josephson junc-
tions (JJ) and Quantum Point Contacts (QPC), the attention was drawn to different
Josephson junction arrays (JJA). The most important samples are shown as SEM
images in Fig. 3.5. Figure a and b show a JJ and a QPC, respectively. The first

a b c

d e f

g h

Al

Etched 2DEG

Flux Line

InAs Junctions

Loop

2DEG
2µm1µm

Al Islands InAs Junctions

Sample 1 Sample 2 Sample 3

Al 2DEG MESA etched Topgate

1µm 1µm 1µm

1µm 1µm200nm

[110]
[110] [110]

[110]
[110]

[110]

[110]
[110]

Figure 3.5: Devices with different layouts fabricated in the scope of this thesis. a, A single
Josephson junction. b, Quantum point contact. c, One-dimensional SQUID
array. d-f, One-dimensional Josephson junction array. g, Two-dimensional
Josephson junction array. h, Multiterminal Josephson junction array.
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inductance measurements were performed on a one-dimensional SQUID8 array (Fig.
c) and the results are presented in Ref. [124]. The figures d-f show one-dimensional
Josephson junction arrays. Most of the results in this work are from the sample 1,
with the current direction parallel to the [110] InAs crystallographic axis. The com-
plementary array is sample 3, with the current direction parallel to [1-10]. Sample 2
was characterised prior to sample 3, but the Josephson junctions length of sample 2
ranges from 130 to 170 nm from one end to the other and has thus an average trans-
parency τ of only ' 0.75. Therefore, it was necessary to measure sample 3 afterwards
for a quantitative analysis of the Dresselhaus component (see chapter 6.1).

Figure g shows a two-dimensional Josephson junction array with a junction length
of ' 100 nm. This sample will be characterised by the colleague Simon Reinhardt
in order to investigate the nature of frustration patterns. In addition to apply DC
transport and the resonator technique, it is planned to use a scanning Hall microscope
to spatially resolve the quantum patterns of the magnetic flux.

The last picture in h shows a multiterminal Josephson junction array. In this sam-
ple, each Josephson junction is connected to a third superconducting lead, whose
phase difference can be controlled by an attached SQUID. The sample and the first
experimental results are presented in chapter 7.

3.4 Characterisation Measurements
In order to execute experiments for the ongoing research, it is of significant advantage
to know and determine several parameters of a new wafer. Furthermore, a quantitative
feedback is essential for the growers. Hence, we use four different device geometries
to perform a precharacterisation of each new wafer. The devices can be placed on
a single chip, requiring a single fabrication and measurement session. Details of the
fabrication are discussed above in section 3.2.

Each of this standard characterisation devices we use is described in the rest of this
chapter. A hallbar with aluminium on top gives information about parameters such as
the critical field or critical temperature. Standard hallbar measurement techniques ap-
plied on the 2DEG with stripped off aluminum reveals the mobility and the mean free

8Superconducting QUantum Interference Device

51



3 Material, Methods & Characterisation

path. A single superconductor-normal-superconductor (S-N-S) Josephson junction is
a prerequisite for the functionality for more complex devices. Tunnel spectroscopy
on a superconductor-quantum point contact-normal (S-QPC-N) device measures the
induced gap ∆∗ and thus provides information about the proximity effect.

3.4.1 Aluminium Hallbar

The hallbar for this wafer was a meander with 3074 squares and was characterised by
the colleague Lorenz Fuchs. As he was investigating the physics of plain films, he was
mounting the sample (top view shown in Fig. 3.6) into a dilution refrigerator, where
he determined the following parameters listed in table 3.1.

Material parameter: Value: Formula:
Thickness (Al) 7 nm
Fermi velocity 2.0·106 m/s [61]
Sheet resistance 9.22 Ω R�

Mean free path 5 nm lel = 4× 10−16Ωm2/R�d [125]
Critical Temperature 1.502 K Tc defined at R = 0.5Rn

Energy gap 228 µeV ∆(0) = 1.764kBTc

Sheet kinetic inductance 9.2 pH L� = µ0
λ2

s
d

London penetration depth 220 nm λs =
√

L�d
µ0

Pearl penetration depth 19.8 µm Λ = 2λ2
s
d

GL coherence length 74 nm ξGL=
√

Φ0
2πBc2

Critical field out-of-plane 61 mT Bc,2 measured at low T

Critical field in-plane 2.8 T Bc,|| measured at low T

Clogston-Chandrasekar limit 2.78 T Bc = ∆√
2µB

Diffusion constant 3.3 · 10−3 m2/s D = 1
2v

s
Flel

Table 3.1
Table with parameter obtained from the meander characterisation by Lorenz Fuchs

[126].

Besides the sheet resistance R�, the critical temperature Tc and the Ginzburg-Landau
coherence length ξGl, the in-plane critical field Bc,|| is of particular interest. High val-
ues for the critical field Bc,|| are desired, so the superconducting condensate can sustain
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500 µm

Figure 3.6
Optical image of a hallbar meander
with 3074 squares. The light grey
areas indicate the aluminium. The
aluminium and the 2DEG are etched
away in the dark grey areas.

high Zeeman fields. The robustness against fields in the plane increases with decreas-
ing thickness of the aluminium film [117]. We can use the Clogston-Chandrasekhar
limit Bc = ∆√

2µB
to calculate the critical magnetic field. The result of Bcalc

c,|| =2.78 T
agrees with the measured Bmeas

c,|| '2.7 T at low temperatures.

3.4.2 2DEG Hallbar

We performed hall measurements with standard lock-in techniques on the plain 2DEG,
whereby the Al was etched away. Although it turned out that the obtained values
for λF here are different from the case of etched Josephson junctions (see chapter
4.1.2), we get nonetheless important information of the gate electric behaviour of
the near-surface quantum well. Quantum hall measurements on the hallbar (Fig.
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Figure 3.7: Hallbar measurements: a, Scheme of a hallbar. b, Longitudinal and
transversal magnetoresistance. The Shubnikov-de-Haas oscillations show a sec-
ond harmonic due to the occupation of the second sub-band at Vgate = 0 V
(indicated by the black arrows).
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Figure 3.8: 2DEG characteristics: a, Charge carrier density n and mobility µ. b, Mean
free path le and Fermi wavelength λF.

3.7) showed higher harmonics in the Shubnikov-de-Haas oscillations, since a second
oscillation pattern is recognisable in the red Rxx

� curve in Fig. b. Consistent with
other reports [127][128], we explain the higher harmonics with the occupation of the
second sub-band, as it is vanishing for lower gate voltages. As elaborated in chapter
2.1.1, we can determine the carrier density n, mobility µ, mean free path le and the
fermi wavelength λF as a function of gate voltage. Plotted in figure 3.8, the mobility
reaches a maximum at 22000 cm2/Vs for the charge carrier density n = 0.5×1016m−2

and so does the mean free path le at ≈ 270 nm, consequently. We relate the decrease
of µ and le for increasing gate voltages to the above discussed occupation of the
second sub-band, which enhances the probability of scattering of charge carriers at
the coexisting sub-band.

3.4.3 S-N-S Josephson Junction

A fast and informative tool is the DC transport characterisation of a single Josephson
junction. At the very beginning, we briefly measured a Josephson junction in a
He3 setup with a base temperature of 330 mK. Soon it became clear that we were
getting similar results to the pioneering experiments of M. Kjaergaard et al. [22][129]
and we moved on to quantum point contact measurements. The graphs in figure 3.9
show current-voltage characteristics for different gate voltages and temperatures. The
critical current is relatively small due to the junction’s length of 180 nm. A distance
of ≈100 nm between the superconducting leads proved to be more subtle resulting in
ballistic junctions.
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3.4.4 Quantum Point Contact

In 1988, Van Wees et al. [41] and Wharam et al. [130] reported about plateaus in the
conductance of quantum point contacts (QPC) in ballistic GaAs/AlGaAs heterostruc-
tures. These plateaus depend on multiples of natural constants and are quantised in
the form of

G = 2e2

h
N, (3.1)

where the factor two reflects the spin degeneracy and N the number of transmis-
sive channels. The channel number N is controlled by the width of the constriction,
which can be set by an applied voltage of the metallic split-gates. These split-gates
deplete the semiconductor underneath and reduce the effective width w(Vg) of the
constriction with decreasing voltage. In order to observe a single mode, w(Vg) has
to be ≥ λF showing 2e2

h
conductance steps. However, if the QPC is placed next to a

semiconductor-superconductor interface, Beenakker predicted in 1992 a doubling of
the quantisation steps [131]. In 2016, this prediction was experimentally confirmed
by Kjaergaard et al. [24] with the obervation of 4e2

h
conductance steps.

Furthermore, QPCs are used to measure the local density of states in the proximitised
InAs and thus the induced gap ∆∗. Our main reason to perform a tunnel spectroscopy
experiment was to measure ∆∗. In addition, it was intended to study the transport
in the presence of an in-plane field.

The design of our sample is shown in Fig. 3.10 and was inspired by the experiment
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a b

Figure 3.10: Quantum point contact: a, Illustration of the QPC (made by Nicola Par-
adiso). b, False color SEM image of the QPC seen from above.

of Ref. [24]. The metallic split-gates with a thickness of 5 nm Ti and 20 nm Au
were evaporated on top of a 40 nm thick AlOx dielectric. The gates are separated by
lg ' 200 nm, have a width wg ' 80 nm and count '100 nm (dg) in distance to the
epitaxial aluminium. In total, two samples were fabricated. First, sample QPC1 was
characterized in the a He3 setup at 330 mK, whereas sample QPC2 was mounted into
a dilution refrigerator with Tbase ≈ 40 mK.

Open-Channel Regime

The behaviour of the QPC in the open-channel regime is depicted in Fig. 3.11. The
figure shows a blue curve with superconductivity present and two curves where su-
perconductivity is absent due to temperature (grey) or to a perpendicular magnetic
field (red). The blue curve shows conductances which are increased by a factor of
roughly two compared to the red and grey curve. This increase is caused by the
above mentioned Andreev process, where an impinging electron forms a Cooper pair
with charge 2e with an electron from the Fermi sea. In order to align the first plateau
to an integer of G at ≈ Vgate=-8V, a resistance of 3.5 kΩ is substracted, which stems
from the semiconducting part in series to the QPC and is due to the topgate layout
slightly gate dependent (see SEM image 3.10).
As we deal here with a near surface quantum well with a mean free path of ≈200 nm,
we observe very unclear defined plateaus with many coexisting resonances in the con-
ductance. Impurities, a not perfect electric potential landscape from the gates and
trapped charges in the dielectric lead to a deterioration of the shape and reproducibil-
ity of the plateaus.
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due to the Andreev process at the S-N interface (blue curve). If superconduc-
tivity is suppressed (grey and red curves), the conductance plateaus take values
of a multiple of 2e2/h.

A way to improve the conditions is to sweep the split-gates asymmetric with a certain
offset to each other. In this way, it was tried to bypass impurities or other sources for
scattering events. The result of this calibration step of the offset is shown in figure
3.12a. In this figure, the offset voltage Voffset between the left and right gate show
an asymmetry between positive and negative values, in this case exemplified for sam-
ple QPC2. Figure 3.12b illustrates the given situation schematically. The top figure
shows the S-N interface with the split-gates in the presence of impurities. If both
gates are swept with Vdiag equally with the potential difference Voffset to each other,
the current can be directed along an impurity-free path.

A quite robust and peculiar feature is a dip between the first and second plateau.
It was observed in previous experiments on 2D materials [24] and on nanowires
[132][133]. It is presumably caused by mode mixing in presence of residual disor-
der.
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Figure 3.12: Offset voltage: a, Gates are sweept with a certain offset to each other in
order to reduce the influence of scattering centers. b, Illustation and definition
of Vdiag and Voff .

Tunnel Regime

If the voltage of the split-gate is further reduced, the QPC will be pinched off and
enter the tunnel regime. In this regime, the Andreev reflection is turned off by artifi-
cially increasing the Z parameter of the interface via the gates and normal reflection
as well as transmission are the most likely events to take place. The Z parameter is
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Figure 3.13: Tunnel spectroscopy: a, and b, show two distinct conductance curves in
the tunnel regime and are fitted with the Dynes formula revealing a induced
gap of 137 µeV and 150 µeV, respectively.

introduced by the BTK formalism and described in section 2.4.2. A charge carrier can
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3.4 Characterisation Measurements

tunnel through the barrier and move on, only if there are states in the proximitised
InAs, which is not the case for eVSD < ∆∗. Therefore, it is a tool that is used to
detect states inside the superconducting gap. Such a state can be a Majorana zero
mode which manifests itself with an emerging zero bias peak [15][26].
Figure 3.13a and b show the results of our tunnel spectroscopy measurements. The
two curves, obtained at 40 and 100 mK, show the conductance with respect to the
source-drain voltage VSD. The red dashed lines are fits with the Dynes formula ac-
cording to the following equation [134]:

NS(E,Γ,∆∗) = (E − iΓ)
[(E − iΓ)2 −∆∗2]1/2 (3.2)

The resulting fit parameters are ∆∗ = 137 µeV and Γ = 60 µeV in Fig. 3.13a and
∆∗ = 150 µeV and Γ = 28 µeV in Fig. 3.13b. The evolution of the gap with decreasing
gate voltage is presented in figure 3.14. Besides the induced gap a interference pattern
is recognisable for eVSD > ∆∗. This pattern probably originates from Fabry-Pérot
interferences, caused by scattering on the S-N interface and the depleted 2DEG area
of the split-gates. However, the size of ∆∗ appears to be unaffected. Although it
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Induced gap: Differential con-
ductance curves as a function of
voltage bias for different gate volt-
ages and at T=330 mK. A gap
emerges for gate voltages below
-9.25 V. The offset voltage Voff
between left and right gate is
+2 V. Data obtained from sample
QPC1.

quickly became clear that a QPC system of this kind with such a shallow 2DEG is
far too unreliable to achieve reproducible results, we continued to carry out tunnel
spectroscopy measurements in the presence of an in-plane magnetic field orientated
perpendicular to the current direction. The result, plotted in Fig. 3.15, shows an
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induced superconducting gap which becomes smaller with increasing fields. However,
at 0.7 T, the conductance at zero bias starts to decrease again. Because it was not
possible to reproduce G(VSD) curves, we stopped the experiment and moved on to the
investigation of Josephson junction based samples.
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Figure 3.15: Induced gap at finite Bip: Conductance versus voltage bias measurements
at different in-plane magnetic fields at Vgate=-5.5 V and Voff=-2 V.

60



3.5 Measurement Techniques

3.5 Measurement Techniques
This work is based on the dissipative and non-dissipative characterisation of Josephson
junction devices. For this purpose, we use a RLC circuit in a special arrangement of
the electronic components. This arrangement allows us to measure the DC behaviour
of the sample in the resistive state and the Josephson inductance when no resistance is
present. In this way, we can investigate the behaviour of a Josephson junction for any
direct current, magnetic field, temperature and gate voltage in a single measurement
session.

3.5.1 Cryostat

The measurements for this thesis were carried out in a dilution refrigerator with a
base temperature of ≈30 mK. The cryostat is surrounded by a copper shield to screen
external electrical fields. Throughout the measurements, a µ-metal shield was placed
around the dewar to screen the influence of external magnetic fields. A superconduct-
ing magnet can produce magnetic fields from -8 T ≤ B ≤ 8 T. Inside the magnet, two
home-made NbTi coils are situated in opposite to each other. With the help of these
coils, the mismatch between the sample and the 8 tesla magnet can be compensated.
Moreover, the compensation coils can be used to apply fields orientated out-of-plane
to the two-dimensional sample. The sample holder on the cold finger can be rotated
in-situ via a piezo-rotator. This means that the device can be exposed to large mag-
netic fields for various angles in the 2D plane.

The importance of noise reduction cannot be overemphasised. Noise which reaches the
sample can mess up the entire measurement. Part of the prevention are π-filters9 at
room temperature and cold copper-powder filters in the case of the DC lines. Another
part is a decent grounding topology, choice of the measuring devices and the proper
use of amplifiers. Many other things can have a significant impact on the quality of
the signal. However, these things often depend on the individual setup.

3.5.2 DC Techniques

The dc current bias ranges of Josephson junction devices are in the order of a few µA.
The voltage can be measured in parallel with the aid of two voltage lines. The circuit

9π-filter Tusonix 4201-053LF
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Figure 3.16
DC configuration: Two voltage
probes make it possible to perform a
four-terminal characterisation of the
sample at finite resistances. In this
case, the current is applied single
ended, where one end is the cold
ground of the resonator. The sample
is mounted in the resonator, whose cir-
cuit diagramm is shown in Fig. 3.17.

digaramm is displayed in figure 3.16. In order to apply and measure a direct current
bias single ended, we use the current preamplifier Femto DDCPA-S the other way
round. With a Yokogawa GS200 voltage source we bias the offset of the DDCPA-S
on the input with respect to ground. This offset voltage as a source defines together
with a 10 or 100 kΩ preresistor the current bias on the sample and is drained by the
cold ground of the resonator. The built-in voltage divider of the Femto reduces the
input signal and noise coming from the Yokogawa voltage source. On the output of
the Femto, we measure the corresponding offset voltage, amplified with a factor of
105, with the Agilent HP3458A multimeter.

3.5.3 Obtaining the Josephson Inductance

For the detection of the inductance we use the resonance frequency of a cold RLC
circuit. Such attempts to study superconducting materials were reported by Meser-
vey et al. in the late 60s [135], but this tool was to our knowledge rarely used in the
past decades. With increasing importance of external magnetic fields and the search
for different methods to study Josephson junctions and the nature of Andreev bound
states, it became interesting for us to use this method to extract the inductance.
Compared to other inductance measurement techniques, e.g. microwave experiments
with superconducting stripline resonators in the GHz regime, the advantages are:
Reliable results at high magnetic fields and the possibility to perform direct current
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measurements simultaneously. The disadvantage is the requirement of sufficient high
inductances. We solve this issue by using meander structures for plain films or in the
case of Josephson junction arrays, with the fabrication of several hundred or thousand
weak links in series. A low-transparent Josephson junction with 1 µA critical current
has a inductance of L(ϕ) = Φ0/2πIc cos(ϕ) ' 0.3 nH.
In section 3.5.3, we will see that the center frequency of the resonance can be deter-
mined with an accuracy of '0.1 nH in the best condition. In order to detect small
changes of the Josephson inductance by external parameters, e.g. direct current, we
need to increase the total inductance of the device under investigation.

L0
RD1 RD2

RD3 RD4

L0 C0

R0
R L

Sample

copper shield

cryostat

C0

RD

a b

RD

ZI-MFLI
out in

CP MITEQ

Figure 3.17: The resonator: a, Circuit diagramm of our cold RLC resonator. The sample
is embedded in parallel to the capacitor C0 and in series to the inductor L0.
The resistors RD1−4 decouple the resonator from the cryostat cables. The
resonator is driven by a Zurich Instrument 5 MHz lock-in and reads out the
returned signal, which is preamplified by 56 dB via the MITEQ amplifier. b,
Photograph of the RLC setup. The sample is mounted with the chip carrier
inside the brown element (indicated by the red dashed rectangular). The whole
component is screwd on to the piezo-rotator, which is installed on the cold
finger.

63



3 Material, Methods & Characterisation

The Resonator

In general, a RLC circuit is an electrical device composed of a resistor, a capacitor and
an inductor. These elements can be arranged in a parallel or in a serial configuration.
Our series RLC circuit with the components L0 = 382 nH, C0 = 4 nF and RDj = 1 kΩ
for j = 1,2,3,4 is shown in figure 3.17. The sample under investigation is mounted in
series to the inductor L0 and in parallel to the capacitor C0. In addition, the capacitor
C0 disconnects the direct connection between the input lines and the cold ground, so
that the direct current must flow through the sample.
The resistors RDj decouple the resonator from the external environment, i.e. mostly
from the measuring cables. These cables have a capacitance in the order of a few
hundreds of nF and would therefore hinder reasonable resonances in the MHz regime,
if they wouldn’t be disconnected from the resonator. RD3 and RD4 decouple the
voltage probe lines, RD1 and RD2 do the same to the coaxial input and output cable
of the lock-in. Thereby, the influence of the cryostat cables and of the π-filters on
the center frequency becomes negligible. Figure 3.18a shows an example of resonance
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Figure 3.18: Resonance curves: a, Example of resonance spectra for different DC bias at
T = 500 mK. The data was measured on Sample 1. b, Calculated inductance
by the center frequency with respect to direct current bias. The colored dots
correspond to the spectra in panel a.

spectra for different current bias of sample 1, an one-dimensional Josephson junction
array. The resonator is driven and read out with a 5 MHz MFLI lock-in from Zurich
Instruments. At the resonance, the resonator becomes resistive and a voltage builds up
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at the readout line, which is amplified by 56 dB with a preamplifier10. The resonator
is designed in such a way, that the resonances appear around 3 MHz and are thus
in the range of our 5 MHz MFLI lock-in. The center frequency f0 of the measured
spectra are given by the following relation:

f0 ≡
1

2π
√
LTC0

(3.3)

The total inductance LT is the sum of the external coil L0 and the Josephson induc-
tance L.
The quality factor Q is a measure how strong the damping and thus the energy loss of
the resonator is. The lower the q-factor, the higher the loss. For a series RLC circuit
the Q-factor is defined as

Q = f0

∆f = 1
Rs

√
LT

C0
= 2πLf0

Rs
, (3.4)

with Rs being the total normal resistance in the resonator.
We further define the sensitivity S according to

S ≡ δf

∆f = ∂f

∂L
δL

1
∆f = πf0

Rs
δL. (3.5)

The sensitivity S is a tiny frequency shift δf caused by a change of the inductance
δL. It depends for a given f0 only on Rs. We see, that simply increasing the total
inductance LT does not increase the sensitivity. However, the series resistance Rs

decreases S, which is why we try to minimise Rs in our setups. What can still signif-
icantly improve the sensitivity is the center frequency f0. This means that at higher
frequencies one can examine samples with a smaller Josephson inductance LJ.

Eqn. 3.4 is valid for a serial RLC circuit which in our case is true as long as the
decoupling resistors RD1 and RD2 are much bigger than the maximum tank impedance.
The maximum impedance at the resonance is given by

Zm = RsQ
2 L

RSC0
= 4π2f 2L2

Rs
. (3.6)

The reason why we have chosen 1 kΩ decoupling resistors becomes clear if we calculate

10We use the MITEQ AU-1447 amplifier with a frequency range of 0.01-400 MHz.
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Zm. We obtain a maximum Zm of about 400 Ω at the peak resonance, if we assume
LT = 600 nH, Rs = 0.3 Ω and f0 = 3 MHz. Bigger decoupling resistors lower the
input signal without improving the quality factor Q. Smaller decoupling resistors
lead henceforth to a parallel configuration of the circuit and the Q-factor goes down.
Consequently, a center frequency f0 cannot be extracted anymore.

Inductance L0

The external inductance L0 is mostly determined by our home-made copper coil. As
mentioned above, L0 does not affect the sensitivity. However, the inductor is necessary
to set the range of the center frequency f0. We performed a calibration measurement
at 4 K in our dilution refrigerator with a standard chip-carrier, whose source and
drain contacts were shorted with aluminium bond wires. From the center frequency,
we determined L0 to be 382 nH. This L0 is througout substracted from the total
inductance LT and the result is the Josephson inductance LJ.
Other sources to the total inductance are the kinetic inductance of the aluminium
film or the geometric inductance. However, their value in summary are in the order
of a few nH and thus within the scattering range. Therefore, the contribution to the
inductance from other sources can be neglected.

Resistance and Quality-Factor

A finite resistance Rs of a few ohms suppresses the Q-factor and hence the resonance
breaks down. In order to maintain the underdamped case (Q > 1), we have to elimi-
nate or decrease possible sources for dissipation. The main contribution comes from
the copper coil, that has to be without ferromagnetic oder superconducting materials,
because those would perturb the measurements with magnetic fields. Further sources
of resistance are the solder joints of the resonator, the sample itself, the bond wires
and the contacts. We reduce the contact resistance to a minimum by bonding each
bondpad ' 5 times. In the superconducting regime the dissipation of the sample is
zero. Once the current of the weakest junction approaches its critical current, the
inductance increases abruptly and the Q-factor drops down to zero. Figure 3.19a
illustrates this on the spectra example from above. We determine Rs by using equa-
tion 3.4 according to Rs = Q−1

√
(L+ L0)/C0. The corresponding resistances are

presented in 3.19b.
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Figure 3.19: Q-factor and serial resistance: a, L(I) curve together with the correspond-
ing Q-factor values. b, From the Q-factor calculated series resistance Rs in our
RLC circuit plus sample 1 at T=500 mK.

The Resonance Spectrum

In order to fit the spectra reliable, quick and automatically, we use a model based on
the Breit-Wigner-Fano function to extract the parameter L from the center frequency
f0. Due to a stray capacitance CP between the coaxial measurement leads (see circuit
diagramm 3.17), we observe a low-pass behaviour as a continuous background signal
in our spectra, which lead to an asymmetric line shape of the resonances. By using the
Breit-Wigner-Fano function, we can neglect this background or other small continuous
resonances, which interfere with the discrete resonance of the RLC. The Breit-Wigner-
Fano function is defined as

f(x;A, µ, σ, q) = A(qσ/2 + x− µ)2

(σ/2)2 + (x− µ)2 , (3.7)

with µ being the center frequency, A the amplitude, σ the cross-section and x as
the frequency. The Fano factor q is the ratio between the discrete resonance of our
RLC and the above mentioned continuous background. However, if this background
amplitude vanishes, q becomes zero and the Fano function boils down to a Lorentzian
function. Lorenz Fuchs treats the influence of the continuous background resonances
in his PhD thesis [126] in more detail and describes the corresponding scattering ma-
trices.
In this thesis, the BreitWignerModel class of the LMFIT module [136] for the pro-
gramming language python was used for the execution of the automated fits. The
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result of such an automated fit routine is illustrated in figure 3.20a. The center fre-
quency f0 of about 3 MHz is determined with an accuracy of 220 Hz. This corresponds
to an error of less than 0.1 nH.
The graph in 3.20b shows a zoom-in of a L(I) curve measured at 100 mK. The scat-
tering of the inductance points (' center frequencies) is with 0.6 nH at least 5 times
higher than the mentioned 0.1 nH standard deviation of the polynomial fit. We do not
know where this discrepancy comes from. It might stem from the sum of fluctuations
in the setup (e.g. gate voltage, current bias, temperature ...) or from instabilities in
the eletrical environment of the substrate.
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4 Josephson Inductance of
One-Dimensional Josephson
Junction Arrays

In this chapter, we focus on the results of DC transport and Josephson inductance
measurements of sample 1, an one-dimensional Josephson junction array. This array
consists of 2250 Josephson junctions in series, each with a length, width and spacing
of 100 nm, 3.15 µm and 1 µm, respectively. The current direction in this sample is
parallel to the InAs [110] crystallographic axis. A metal film of 5 nm Ti/ 120 nm Au
serves as a global topgate and is separated by an insulator of 40 nm AlOx. Figure
4.1a shows a schematic of sample 1. The large number of Josephson junctions is

Vg

V

a b

1 µm

defect

JJs with reduced Ic

Figure 4.1: One-dimensional Josephson junction array a, depicted as a cartoon. b,
SEM image of an array seen from the top before the deposition of the AlOx. The
array shows a defect by what two Josephson junctions have a reduced critical
current. Cartoon in panel a made by Nicola Paradiso.

necessary for a sizeable inductance in the order of a few hundred nH, which leads to a
detectable resonance shift in our RLC circuit. Furthermore, individual junctions can
be strongly affected by defects that blur the generic physics, as it was for instance
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reported in Ref. [137]. These individual defects are averaged out in our array and
become negligible.
One disadvantage of these large arrays is the high demands on the fabrication process.
The fabrication requirements were chosen as simple as possible for the first sample.
Surprisingly, the measurements on sample 1 were so productive that initially no im-
provements to the fabrication process were required. Therefore, the fabrication was
not yet optimised and the arrays were not free from defects, as exemplified in Fig.
4.1b. Such defects are responsible for some weaker junctions whose critical currents
are reduced. The accessible current range for the inductance is thus determined by
the smallest critical current, since a finite resistance of a few ohms already completely
damps our RLC circuit, causing the resonance to collapse.

In the following sections we show how we use the Josephson inductance to determine
various parameter. Most of these parameters are listed in table 4.1, such as the average
transpareny τ , the barrier parameter γB or the magnetochiral anisotropy coefficient
γL are not accessible with ordinary DC transport measurements.

Parameter Value Remarks
τ 0.94 Average transmission coefficient
I0 5.882 µA Maximum current
IC 4.41 µA Critical current
∆∗ 130 µeV Induced gap
∆Al 220 µeV BCS gap of Al
γB 1.7 Barrier parameter
N 187 Number of channels
γL 0.77 · 10−6 T−1A−1 Magnetochiral anisotropy coefficient

Table 4.1: List of parameters of Sample 1 obtained with the help of the Josephson induc-
tance.
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4.1 Josephson Inductance

The Josephson inductance at finite current is a direct mirror of the CPR. Once one can
access the CPR, one can gather information about the Andreev bound states energy
spectrum, which in turn is the integration of the CPR, as described in chapter 2.4.3.
To understand pictorially how we access the CPR, figure 4.2 shows descriptively what
it means to apply the equations 2.62 and 2.63. A theoretical optimum is exemplified

I ϕ L = ~
2e
dϕ
dI

I Iϕ

I ϕ L = ~
2e
dϕ
dI

I Iϕ

Current-phase relation (CPR) Josephson inductance
as a function of current

Theory

Experiment

inverse derivative

integrateinverse

a

b

Figure 4.2: Relationship between CPR and Josephson inductance: a, By taking the
inverse and the derivative of the CPR (from left to right) leads to the L(I) curve.
b, In the experiment, however, weaker junctions in the array allow inductance
values in a limited current range, so that the CPR is only partially probed
(bottom right to left).

in panel a, while panel b shows the reality with the limited range in current due to
defects in the array from the fabrication process.
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4.1.1 Temperature Dependence

The temperature dependence of the Josephson inductance gives information about the
induced gap ∆∗, the superconducting gap ∆Al and about the barrier height γB. For
low temperatures, when the induced gap becomes constant, it is possible to derive the
average transmission coefficient τ from the curvature of the L(I) curve. In figure 4.3a,
L(I) curves are plotted for different temperatures. The inductance at zero current
increases with temperature, as does the curvature. The dashed lines represent the
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Figure 4.3: Temperature dependent Josephson inductance measured with respect to
an applied direct current bias (solid lines). The dashed lines in a, show the
calculated inductance. b, The corresponding CPR curves.

quantitative description using the Beenakker-Furusaki equation 2.64 with the deter-
mined parameters listed above in table 4.1. The data deviates from the dashed lines
for a given current at finite temperatures, as indicated by the arrows. These kinks
occur when the weakest junction reaches its critical current. In this condition, the
inductance increases drastically and becomes dominant. At moderate bias, however,
the inductance of such a junction with a reduced critical current is negligible in the
ensemble of 2250 junctions. Figure 4.3b shows the accessible part of the CPR, which
is the inverse integrated L(I) data from figure 4.3a.

In order to extract τ from the shape of the L(I) curves, it is advantageous to get rid
of the prefactor I0 in the Beenakker-Furusaki equation 2.64. For this purpose, we plot
the data in a normalised way - namely as L(0)/L as a function of 2πL(0)I/Φ0 - as it
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Figure 4.4: Extraction of τ : Normalised representation of the L(I) curves from Fig. 4.3.

is shown in figure 4.4. To determine τ , we use the derivative of the function f(ϕ) of
the Beenakker-Furusaki equation 2.64 and plug it into L−1(ϕ) = 2πI0f

′(ϕ)/Φ0 (Eq.
2.62). The theoretical fits (highlighted in magenta) show how sensitive the curvature
is to the transparency, and thus we can assign 0.94 to the average transparency τ of
the whole array.
Furthermore, we clearly observe an increase of the curvature with increasing temper-
ature. The black solid and dashed lines show the theoretical limiting cases for τ = 1
and τ = 0, respectively.

The parameter I0 = 5.882 µA is then determined by substituting τ and L(I =
0 A, T=100 mK) into Eq. 2.62. The corresponding critical current Ic = I0maxϕf(τ =
0.94, ϕ) is 4.41 µA, i.e. about ≈ 0.75 I0.

The proximity effect is responsible for the emergence of the induced gap ∆∗, which
does, however, not follow the BCS theory. As we have seen in section 2.4.5, for
temperatures not too close to Tc, the gaps of the superconductor and the 2DEG are
related via [129][99]

∆∗(T ) ≈ ∆Al(T )
1 + γB

√
∆2

Al(T )−∆∗2(T )/(πkBTc)
, (4.1)

where the relation between these gaps is determined by the dimensionless barrier
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height γB. Using this equation, we can use the temperature dependent induced gap
∆∗(T ) and plug it into the Beenakker-Furusaki formula 2.64. The resulting function
f(ϕ) together with the predetermined I0 gives us via Eq. 2.62 the corresponding
theoretical L(T ) values.
With this approach, we tried to fit the temperature dependent L(0) values shown in
Fig. 4.5. For γB = 1.0 and ∆Al = 180 µeV, the fit (red curve) matches all points.
However, this fit is unrealistic, because the below in section 4.13 shown R(T ) mea-
surement reveals a critical temperature of 1.44 K, to which a BCS gap ∆Al = 220 µeV
can be assigned. That is why it is convenient to fix the ∆Al parameter and try to fit
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2π
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L
/Φ
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∆Al=180 µeV, γB=1.0
∆Al=220 µeV, γB=1.7

Figure 4.5
Temperature dependent zero bias in-
ductance L(0), normalised to (2πI0)/Φ0,
together with the fit results from the Eqs.
2.64 and 4.1 with ∆Al = 180 µeV and
γB = 1.0 (red curve) and ∆Al = 220 µeV
and γB = 1.7 (blue curve).

the L(T ) data by adjusting only γB, which shows the best result for 1.7 (blue curve).
The blue curve does match the data points at lower temperatures.
For both fits, the induced gap is 130 µeV, which we can confirm with our tunnel spec-
troscopy experiments (described in section 3.4.4) and additionally with the RN,1I0

product (∆∗ = eRN,1I0/π = 125 µeV). RN,1 is defined as the normal resistance of a
single Josephson junction (discussed below in section 4.2).
The reasons for the deviation between the data points and the blue fit at higher tem-
peratures is not yet fully understood. Besides the unreliability of equation 4.1 towards
Tc, the mentioned weak junctions could also be responsible, where the inductance of
individual junctions start to dominate (see arrows in Fig. 4.3).

4.1.2 Gate Dependence

The array discussed in this chapter is completely covered with a topgate. In this
way, we can tune the density of states in the normal conducting region. How the
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Gate dependence of L(I) at
T=100 mK. The experimental val-
ues (solid lines) are plotted to-
gether with the theoretical ones
calculated from Eq. 2.64. The
number of channels is determined
with the help of Eq. 4.2.

gate voltage affects the L(I) curves is shown in figure 4.6. At first glance, they
resemble the temperature dependent L(I) curves in Fig. 4.3. This time, however,
the curvature does not change despite the increase in inductance. In other words, the
average transparency τ remains constant, but the prefactor I0 changes and can be
decomposed into

I0(Vg) = e∆∗
~
N(Vg), (4.2)

where N(Vg) is the number of supercurrent-carrying transverse channels. Using Eqs.
4.2 and 2.64, the number of transverse channels N(0) is 187 for Vg = 0 . This number
can be compared with the Sharvin resistance, that is Rsh = RN,1 = 66.8 Ω. Inserted
in equation N = [(2e2/h)/Rsh]−1 gives a value of 193 for N(0) [87]. This shows that
almost all transverse channels are carrying a supercurrent.
Note the distiction from the number of channels estimated in the plain 2DEG hallbar
characterisation (see Fig. 3.8 in section 3.4.2). The use of the Fermi wavelength
from the 2DEG characterisation results in N(0) = W/λF = 700. We conclude that
in a Josephson junction the electrostatics in the vicinity of aluminium leads are not
comparable to an extended aluminium-free 2DEG.
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4 Josephson Inductance of One-Dimensional Josephson Junction Arrays

4.2 I-V Characteristics
When a new sample is mounted into the dilution refrigerator and cooled down, we
obtain an initial overview with DC transport measurements. Figure 4.7 shows the
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Figure 4.7: I-V characteristics of sample 1. Up- and downsweep show a tiny hysteresis.
A reduced critical current at ±1.6 µA stems from weaker junctions.

current-voltage curves of the sample 1 for an up- and downsweep (black and red
curves). The current bias is defined by a 10 kΩ preresistor and the temperature was
fixed to 100 mK. We observe a tiny hysteresis which we assign to heating effects and
not to retrapping. In this kind of heterostructure, the capacitance of our Josephson
junction is negligible and can therefore be regarded as an overdamped junction (de-
scribed in section 2.3.3).

Additionally, a finite resistance of 240 Ω shows up at ±1.6 µA (cyan dashed line). At
this point the weakest junctions reach their critical current.

The current where the entire array switches to normal state is at 2.4 µA, whereby the
critical current of the undamaged Josephson junctions is 4.41 µA, as we know from
the inductance characterisation described in section 4.1.1, and goes along with the
experience from single Josephson junction measurements. The discrepancy between
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4.3 The Fraunhofer Diffraction Pattern

the critical currents we get from the normal state resistance and from the inductance
measurements comes, according to our explanation, from weaker junctions that start
to heat the entire array. The switching to normal resistance of the weak links goes
rapidly, since the power increases with current according to P = I2 ·R.

4.3 The Fraunhofer Diffraction Pattern
In this section, we discuss the modulation of the critical current and inductance
by an external magnetic field acting on the array out-of-plane. The magnetic flux
penetration into the Josephson junction leads to quantum interference that causes a
variation of the supercurrent. The shape of the diffraction pattern depends on the
form of the Josephson contact. Figure 4.8a shows a sketch of a single homogeneous
and rectangular shaped S-N-S junction from above. The supercurrent across such a
junction is given by the spatial integration of the supercurrent density:

Is =
∫ ∫

Js(x, y)dxdy (4.3)

In the limit of small critical current densities Jc, where field screening effects over the
junction area can be neglected, the supercurrent density Js = Jc sin(x, y) oscillates
sinusoidally as a function of position y, as exemplified in Fig. 4.8b for the flux
Φ = 5

2Φ0. The net current is maximal for half cycles (as in the sketch) and zero for
full cycles. If the supercurrent density is uniform across the junction, the maximum
supercurrent can be written as follows:

Ic(B⊥) = Ic(0)
∣∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣∣ (4.4)

with the flux Φ = awB⊥. This sinc function describes the so-called Fraunhofer pat-
tern for a rectangular Josephson junction in analogy to optics.

The Fraunhofer pattern in Fig. 4.8c of our device with its 2250 junctions in series
can be well fitted (yellow dashed line) by applying Eq. 4.4. We have to consider an
extended area of a = d+2λ = 960 nm to match the periodicity of the lobes, instead of
the by lithography defined d = 100 nm. The size of this deviation was reported several
times for this heterostructure [137][138] and was related to flux focussing, where the
aluminium leads partially expel the magnetic field, thereby increasing the effective
field in the junction. Our explanation is different. We claim that the magnetic field
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Figure 4.8: Fraunhofer pattern: a, Schematic top-view illustration of a single Josephson
junction penetrated by flux Φ with λ being the London penetration depth. b,
Current density distribution across a homogeneous junction. c, Calculated dif-
ferential resistance of I-V curves show a Fraunhofer pattern, which follows the
sinc function (yellow dashed line) of a rectangular junction. Figure a, and b,
are inspired by [23].

78



4.3 The Fraunhofer Diffraction Pattern

almost completely penetrates the Al islands, which means that the effective area is
much larger. In our wafer, the London penetration depth λL was determined to be
220 nm by kinetic inductance measurements performed by Lorenz Fuchs [126]. For
large films, the field therefore penetrates up to Λ⊥ = λ2

L/d ≈ 8 µm.

Moreover, we observe some further puzzling features in the Fraunhofer pattern. For
instance, in all three one-dimensional JJAs measured so far, we see a hysteretic dis-
tortion of the higher side lobes, indicated in Fig. 4.8c on the left side. This behaviour
depends on the sweep direction of the out-of-plane field. However, since we see this
hysteretic behaviour in other measurements as well [139][126], the origin could lie in
glitches of the compensation coils.

In addition, we see a different hysteretic behaviour of low resistance within the main
lobe, highlighted in Fig. 4.9a and b. The yellow marked area indicates this hysteretic
feature, which might be caused by trapped vortices in the aluminium film. The green
arrows in the discussed figures of 4.9 show a smaller critical current, which is unaf-
fected by the sweeping direction of the perpendicular field. A plausible explanation
are a few weaker junction with a non-rectangular and smaller area size. Both fea-
tures in the main lobe are sample dependent and were not reproduced by sample 2
or sample 3. For this reason, no further analysis were considered.
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Figure 4.9: Fine structure of critical current: We observe a small resistance depending
whether it is an up- a, or a downsweep b, of the out-of-plane field (yellow
arrows). The green arrows mark another fine structure of the critical current in
the main lobe, which is independent of the sweep direction. Both fine structures
of Ic are an unique feature of sample 1.
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As long as the device remains in the zero resistance state, we can measure the in-
ductance with our RLC method. We characterised the dissipationless regime of the
main lobe and performed an up- and downsweep with respect to the out-of-plane
magnetic field. In contrast to the critical current Ic(B⊥) we obtain from the normal
state resistance, the Josephson inductance shows a high sensitivity to τ , as shown in
Fig. 4.10a. The experimental data points (black and grey symbols) match almost
a b
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Figure 4.10: Josephson inductance of the Fraunhofer pattern at a, zero-bias for up-
and downsweep. A few points scatter on each side. This is where the inner
hysteretic feature with finite resistance kills the resonance (compare with Fig.
4.9). b, Calculated inductance as a function of the out-of-plane magnetic
field. The intention of this plot is to emphasise the sensitivity of L(B⊥) to
τ . The theoretical curves in both figures were rescaled to match the zero-field
inductance. Analysis and theoretical curves made by Nicola Paradiso.

perfectly with the computed L(B⊥) values with the in section 4.1.1 predetermined
parameters I0, τ , a (red solid curve).
The green curves represent the limiting cases of a tunnel junction (τ ≈ 0). For the
solid green curve, the same junction area (a = (d + 2λ) · w=960 nm · 3.15 µm) was
taken as for the red curve, while for the dashed green curve, the effective junction
length a = d+ 2λ has been fixed to 548 nm in order to fit the data at low perpendic-
ular magnetic fields from -0.4 to 0.4 mT.
Fig. 4.10b shows further theoretical curves in order to highlight the strong depen-
dence of L(B⊥) on the shape of the CPR. To compute these curves, we have to take
the CPR from Eq. 2.64: I(ϕ) = I0f(ϕ). For a homogeneous rectangular junction,
the local phase difference is given by [23]

ϕ(y) = γ +
(

2πaB⊥
Φ0

)
y, (4.5)
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4.3 The Fraunhofer Diffraction Pattern

where γ is the gauge-invariant phase difference between the superconducting leads
and x the position in the Josephson junction. The second term is the vector potential
for a constant perpendicular field. The current I is given by the integral along the
junction width w of the CPR

I =
∫ w

0
(I0/w)f [ϕ(y)]dy = I0g(γ,B⊥), (4.6)

where we can define a function g(γ,B⊥) as the average of f over the width w of
our homogeneous junction. The current bias dependence of γ = γ(I), given by the
inverse of Eq. 4.6, allows us to calculate the inductance once again with Eq. 2.62.
The inductance is therefore

L(B⊥) = Φ0

2πI0( ∂g
∂γ

)γ=γ(I)
, (4.7)

where the variation of B⊥ is included in g and γ. To round off our analysis we also
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Figure 4.11: Current bias dependence of the Josephson inductance in the main lobe
for a, measured and b, computed values. Theoretical L(B⊥) curves made by
Nicola Paradiso.

measured the inductance of the main lobe of the Fraunhofer pattern at small and
moderate current bias. The experimental data (see Fig. 4.11a) are again reproduced
by the theory (compare with Fig. 4.11b).

Unlike the B⊥-dependence of the Josephson inductance, the diffraction pattern is not
affected at all by the transparency for short-ballistic junctions. Two cases, one for
the obtained τ = 0.94 and one for a tunneling junctions τ → 0, are depicted in
4.12. The former is calculated using Eq. 2.64, whereas the latter is replicated by
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the sinc function (Ic(B⊥)/Ic(0) = | sin(πΦ/Φ0)/(πΦ/Φ0))). Obviously, the curves are
indistinguishable from each other and this counts for any value of τ .

4.4 Temperature Dependent Resistance

Another basic characterisation represent R(T ) curves. Besides the critical temper-
ature, we obtain the total normal resistance RN of the device, which is 157 kΩ in
the case of the described sample 1. The R(T ) curve is plotted in Fig. 4.13a. The
data was obtained by low-frequency lock-in technique using 1 MΩ as a preresistor in
order to define 20 nA as current bias. The normal resistance RN,1 of a single junction
is 66.9 Ω, if we subtract 7 kΩ beforehand, which the aluminium islands and leads
contribute to the total normal resistance RN.
From the R(T ) curve we deduce for critical current Tc = 1.44 K with the criterion
R(Tc) = 0.5 RN. Thus, the assumed BCS superconducting gap of the aluminium is:

∆Al = 1.764 · kBTc = 220 µeV (4.8)

In figure 4.13b, we see the corresponding Arrhenius plot of the R(T ) measurement.
Due to the exponential behaviour of the R(T ) curve, we can fit the slope and extract
an activation energy EA of 68 K · kB, that is '5.9 meV (the Ambegaokar Halperin
theory to the activation energy is discussed in section 2.3.4). In section 6.4 we will
discuss the activation energy EA of sample 2 with respect to an in-plane field applied
in different directions. There, we will see that EA is slightly reduced by the field and
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4.4 Temperature Dependent Resistance

due to longer Josephson junctions of the array, whereby the average transparency τ
is smaller (i.e. '0.75 for sample 2) than it is for sample 1. Thus, in the image of the
tilted washboard model (introduced in section 2.3.2) the potential barrier is smaller
and less energy is necessary to activate the motion of the particle.
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Figure 4.13: Normal resistance a, as a function of temperature. b, Corresponding Ar-
rhenius plot. A few weaker junctions are responsible for the foot at lower
temperatures.
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5 Superconducting Diode Effect

Non-reciprocal charge transport is the basis of many important electronic components
such as rectifiers, photosensors, solar cells, transistors or diodes [140][141]. Diodes, for
example, are usually made of p- and n-doped semiconductors that form a p-n junction
at the interface when brought together. In these type of junctions, the resistances for
positive and negative currents are indeed different but finite, so energy losses cannot
be avoided. A diode based on a superconductor would allow dissipationless charge

p-type n-type

p-n junction

Homogeneous
non-centrosymmetric conductor

a

current

b

current

Figure 5.1: Diode effect: a, A diode normally consists of a p-n junction in which the
atomic composition is spatially different. But homogeneous materials that are
not centrosymmetric can also function as diodes if time-reversal symmetry is bro-
ken in addition. b, Illustration of diode effect in our one-dimensional Josephson
junction array. Spontaneous supercurrents carried by spin-split pairs of Andreev
bound states appear at zero phase difference. The amount and direction depend
on the value and the polarity of the applied field ~Bip. For θ = 0◦, the field is
aligned parallel to the current direction and perpendicular for θ = 90◦ and 270◦.

transport in the forward direction and might open the door to new types of super-
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conducting circuits.

In contrast to p-n junctions, where the non-reciprocal current is a consequence of spa-
tial asymmetry, in homogeneous devices (see Fig. 5.1a) the inversion and time-reversal
symmetries must be broken simultaneously to obtain a different current-voltage I−V
characteristic of the left and right moving charge carriers.

In 2020, Ando et al. [69] reported for the first time about the observation of a
superconducting diode effect (SDE) in an artificial Nb/V/Ta superlattice.
In this chapter, we discuss the SDE that we observe in our one-dimensional super-
conducting array (here discussed for sample 1), if we apply an in-plane magnetic field
perpendicular to the current direction. Figure 5.1b depicts this field-dependend diode
behaviour schematically. Red and blue arrows indicate spontaneous supercurrents at
zero phase difference, changing direction with the sign of the external in-plane field.
The interplay of spin-orbit interaction and external magnetic field leads to the re-
quired breaking of the inversion and time-reversal symmetries.

Furthermore, we define a novel quantity, namely the magnetochiral anisotropy (MCA)
coefficient γL, which we derive from the direct current dependend Josephson induc-
tance. The MCA coefficient γL complements to the already existing MCA coefficient
γS, which represents the non-reciprocal charge transport for the resistance in the su-
perconducting phase fluctuation regime [142].
In addition to the reports from Ando et al. [69], our theory colleagues from the group
of Prof. J. Fabian from the University of Regensburg provide a semi-quantitative
model for the understanding of the underlying physics.
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5.1 Non-Reciprocal Charge Transport in
Non-Centrosymmetric Quantum Materials

Chirality, derived from the greek word χειρ (hand), is an important type of broken
symmetry in physics, chemistry and biology. A molecule or a system is chiral, when
its mirror image is not identical to the original one. The symmetry group of chiral
systems lacks inversion and mirror symmetry Î and M̂ . Î can be expressed by combi-
nation of a mirror operation M̂ and a 180° rotation C2 around the axis perpendicular
to the mirror plane.
In our devices, inversion symmetry is broken in the z-direction due to the Zincblende
structure and the asymmetric bandstructure of the 2DEG. A non-reciprocal response
occurs when time-reversal symmetry T̂ is broken in addition, for example, by a mag-
netic field.

The T̂ -symmetry in linear response theory is reflected by the Onsager’s reciprocal
theorem and it is given by [143][144]

KAB(q, ω,B) = εAεBKBA(−q, ω,−B), (5.1)

where the function KAB describes the linear response of the physical input observ-
able A to the field coupled to the output observable B with the wave vector ~q and
frequency ω. The factors εA, εB = ±1 indicate the even (1) and odd (-1) nature of
the observable A(B) with respect to the T̂ -operation [142][145].

Rikken et al. [146][147] extended this result into the non-linear response regime and
to diffusive 2D conductors by using a heuristic argument. They replaced the wave
vector ~q by the current ~I, which leads to a resistance expressed by

R = R0[1 + γêz( ~B × ~I)], (5.2)

where the current ~I, the magnetic field ~B and the electric field ~E = | ~E|êz, caused
by broken Î-symmetry, are orthogonal to each other. The coefficient γ represents the
strength of the magnetochiral anisotropy.
In normal conducting metals, γ is rather small. Values in the order of 10−2 to 10−1

T−1A−1 are usually obtained. In superconducting regimes, however, γ reaches values
up to 106 T−1A−1 (see sections 5.2 and 5.3).
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a b
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−Ic
I

Ic
I

Normal Superconducting

Figure 5.2: Schematic illustration of non-reciprocal transport in a, the normal and
in b, the phase fluctuation regime. In both cases, the non-reciprocal current is
small for larger I. But, when a critical current exists due to superconductivity, a
much larger non-reciprocal current can be detected below Ic. The insets sketch
the electron motion and the correlation of the Cooper pairs in a magnetic field
B and in an asymmetric potential representing the lack of inversion symmetry.
Image taken from [148].

The reason for difference between γ in normal and superconductors lies within the
magnitude of the spin-orbit and Zeeman energies ∆SO and EZ. Both energies are
small compared to the Fermi energy EF and thus γ is small. In a superconducting
regime, however, the reference energy changes from the Fermi energy EF to the su-
perconducting gap ∆, which is orders of magnitude smaller.

As a result, a large γ can be extracted from the resistance when superconductivity
is added. The difference of the underlying regimes, i.e. the normal and the phase
fluctuation regime, where superconductivity and a finite resistance are coexistent, is
schematically illustrated in Fig. 5.2 [148][149]. Above the critical current, both I-
V characteristics show a tiny non-reciprocal current (dashed line stands for a linear
I-V ). However, in the case of existing superconductivity (Fig. 5.2b), a much larger
non-reciprocal current occurs below the critical current.
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5.2 The Magnetochiral Anisotropy Coefficient γs for
Dissipative Currents

So far, the magnetochiral anisotropy in superconducting materials was investigated in
the superconducting phase fluctuation regime [69][150][151]. An established method
are standard lock-in techniques to probe the first and the second harmonic of the
resistance. The linear and the non-reciprocal magnetoresistance are represented in
equation 5.2 by the first and second term in the bracket, where the latter and thus,
the total resistance is proportional to B and I. Written as the output voltage, the
equation reads as the following [150]:

V = R(1)(I + γsBI
2). (5.3)

An applied sinusoidal current excitation I = I0 sin(ωt), with the frequency ω (in our
experiments 17 Hz), results in:

V = R(1)I0 sin(ωt) +R(1)γsBI
2
0 sin2 ωt

= R(1)I0 sin(ωt) + 1
2γsR

(1)BI2
0

{
1 + sin

(
2ωt− π

2
)} (5.4)

Accordingly, the first and second harmonic resistances can be written as:

Rω = Vω
I0

= R(1) (5.5)

and
R2ω = V(2ω)

I0
= 1

2γsR
(1)BI0 (5.6)

The maximum strength of the non-reciprocal transport expressed by γ can be calcu-
lated with

γs = 2Rmax
2ω

RωBI0
. (5.7)

In this way, we can characterise non-reciprocity in our Josephson junction device in
the phase fluctation regime.
Figure 5.3a and b show the first and second harmonic resistance with respect to
temperature for different field directions in the plane, respectively. The outcome of
equation 5.7 is shown in figure 5.4.
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Figure 5.3: Magnetochiral anisotropy in the fluctuation regime: a, Normal resis-
tance Rω(T, θ) curves measured with ~Bip applied at different angles. b, Corre-
sponding R2ω(T, θ) curves. The data presented here are from sample 2.

By applying a sine fit we extract the coefficient γs ' 4.1 · 106 T−1A−1 close to the
transition temperature. The sinusoidal variation with the angle θ confirms the direc-
tional dependence of the in-plane field expected from Eq. 5.2. The product of γs and
the sample width w ≈ 3.15 µm with a value of γs · w ' 12.9 T−1A−1m is similar to
those quoted in the reports by Itahashi et al. from their artificial 2D superconductor
[150].
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5.3 The Magnetochiral Anisotropy Coefficient γL for
Supercurrents

Now we come to the main result of this thesis. With our ability to measure the
Josephson inductance LJ far below the transition temperature Tc, where the superfluid
stiffness is constant and resistance absent, we are able to measure a magnetochiral
anisotropy coefficient for a supercurrent. Here we introduce the new coefficient γL,
which expresses a distortion of the L(I) curves (the inverse CPR). In analogy to Eq.
5.2, the following equation

L = L0[1 + γLêz( ~B × ~I)], (5.8)

where the resistance is substituted by the Josephson inductance, describes non-reciprocal
supercurrents. According to this Eq. 5.8, a finite γL should distort the L(I) curves, if
the magnetic field is aligned perpendicular to the current. To see whether a γL exists
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Figure 5.5
L(I) data at | ~Bip|=+100 mT ap-
plied at different directions. From
this data we substracted offsets
from the horizontal and vertical
axis. This procedure is explained
in detail in the appendix B.

in our two-dimensional symmetric Josephson junctions, we measured L(I) curves at
| ~Bip = Bxx̂+Byŷ| = +100 mT for various angles.
As figure 5.5 shows, the L(I) curves in the top panel stay symmetric as expected for
in-plane fields parallel to the current direction x̂ (i.e. By = 0), because the vector
product ~B× ~I is zero. However, the situation changes for By 6= 0. The curves become
asymmetric, shift away from each other and the minima of the L(I) curves occur at
finite currents (mid and bottom panel).
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Figure 5.6: Polynomial coefficients: a, Extracted constant values L0, b, linear values
L′0 and c, quadratic values L′′0 for different in-plane field angles θ and topgate
voltages. The data presented here were obtained from sample 1.

In order to evaluate this asymmetry in the L(I) curves, we applied polynomial fits
and extracted the leading parts of the polynomial expansion ≈ L0 + L′0I + L′′0I

2/2,
with L′0 = ∂IL|I=0 and L′′0 = ∂IL

2|I=0 around zero current.

Fig. 5.6a,b and c show the constant part L0, the linear part L′0 and the quadratic
part L′′0 in form of polar plots. The constant part, already slightly asymmetric with
respect to the in-plane field direction, is maximal for 0◦ ( ~Bip||x̂) and minimal for
90◦ and 270◦ ( ~Bip||ŷ). Decreasing the topgate voltage increases L0, as it reduces the
amount of supercurrent carrying channels an thus the critical current (discussed in
the previous chapter 4.1.2).
But why the in-plane field affects L0 asymmetrically is unclear. A plausible explana-
tion is the warping of the Fermi surface in parallel magnetic fields, which influence
the Fermi velocities of the two spin components.

The linear part L′0 in Fig. 5.6b, however, is highly anisotropic with respect to the
in-plane field direction and L′0 mainly reflects the magnetochiral anisotropy of su-
percurrents. The gate voltage has little effect on the linear part in contrast to the
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angle θ for ~Bip=+100 mT for different topgate voltages. From the sine fit, we
extract the MCA coefficient γL u 0.77 · 106 T−1A−1. This graph includes the
theoretical results considering different confinement potentials Vconf , which are
essentially sinusoids.

constant part.

The quadratic coefficient L′′0, displayed in Fig. 5.6c, shows a similar directional in-
plane magnetic field behaviour as the constant part L0.

In figure 5.7 we present the novel quantity γL = −2L′0/(L0 ~Bip) as the magnetochi-
ral anisotropy coefficient for the inductance. It follows sinusoidally the angle θ

according to ( ~B × ~I) · ẑ = BI sin θ. From the sine amplitude we take the value
γL = 0.77 · 106T−1A−1, which has the same order of magnitude we estimated for γs.
The novel coefficient γL relates directly to the superfluid and cannot be obtained by
resistance measurements. It is material-specific and geometry-independent.

Our observations are consistent with the theory. A. Costa and the group of Prof. J.
Fabian from the University of Regensburg provided a semi-quantitative description
by numerical simulations with the Python package KWANT [152]. For their realistic
theoretical model, the following parameters were chosen: 15 meV nm for the Bychkov-
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5 Superconducting Diode Effect

Rashba spin-orbit coupling strength, -10 for the in-plane g-factor in the quantum well,
0.02 m0 for the effective mass and 239 meV for the Fermi energy µ.

In order to match the experimental data, a parabolic confinement potential along ẑ
has to be to be included in the simulations. The numerical results are also shown in
Fig. 5.7 (grey lines). As we can see, the result without a confinement potential is
off by one order of magnitude, while a confinement potential of Vconf = 200 meV can
best reproduce our data. Such a value is realistic and a similar value of 150 meV was
reported for the confinement in AlGa/GaAs/AlGa multilayers [153].

But since we cannot measure a ϕ0-shift in the CPR with our RLC method, what is
the reason for our observations? And why does the gate have little effect on γL, but
a parabolic confinement potential does? As introduced in section 2.5, the presence of
SOI and Zeeman field breaks Kramers degeneracy, which shows up as a ϕ0-shift. This
shift results from cosine contributions to the Fourier expansion of the 2π periodic
function of the CPR, which is in most cases a sine. In our case, however, the CPR
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Figure 5.8: Distorted CPR: a, Magnetic fields cause cosine terms in the Fourier series
which alter the shape of the CPR of short-ballistic Josephson junctions and
shift therefore the inflection point to positive or negative i∗ and ϕ∗. The results
are finite currents at zero phase difference and the emergence of asymmetric
critical currents. b, Corresponding L(I) curves to emphasise the link to the
experimental data in 5.5.

is skewed and non-sinusoidal due to the high transparency of the junctions. There-
fore, the CPR is not only distorted by a mere phase shift ϕ0. Here, the cosine terms
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additionally lead to a shape exemplified in Fig. 5.8a. Depending on the direction of
the magnetic field, the as red point indicated inflection point (i∗, ϕ∗) is shifted away
either from zero to positive or negative currents. Moreover, we can see the difference
in the extremal values for positive and negative phase differences that determine the
critical currents I+

c and I−c . This behaviour is the reason why we observe the diode
effect, i.e. supercurrent flow in one direction (I < I+

c ), while in the other direction the
system is resistive (|I| > |I−c |) (discussed below in section 5.4). The corresponding
L(I) curves are shown in Fig. 5.8b. The shift of the inflection point is reflected in
the inductance measurements.

We see, the diode effect of supercurrents and the anomalous ϕ0-shift seem to have
the same origin, but they do not always occur together. We can therefore use pre-
vious works from the latter effect for our purposes. A. Buzdin [105] concluded for
a single ballistic mode, that ϕ0 = 4αd|g∗|µB| ~Bip| sin θ/(~vF,x)2, with vF,x being the
Fermi velocity in x̂ of the mode. The conduction band offsets of the quantum well are
responsible for the formation of the confinement potential Vconf , which in turn lowers
the Fermi energy µ and thus the Fermi velocity vF,x. Hence, the ϕ0-shifts become
more significant and the CPR asymmetry is enhanced.
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Gate dependence of α/n: The
red arrow indicates approximately
how a gate sweep from 0 to −2 V
changes the charge carrier den-
sity n and the electrical poten-
tial VL. The black contour lines
show constant α/n traces. In or-
der to increase the magnetochiral
anisotropy, it is essential to in-
crease the ratio α/n. Figure pro-
vided by P.E. Faria Junior.

The same formula from A. Buzdin can also explain the small impact of the topgate.
The gate voltage changes not only the charge carrier density n and accordingly the
Fermi velocity vF, but also the Rashba parameter α.
Figure 5.9 shows the graph 2.5a from section 2.1.2, but here the Rashba parameter
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is divided by the corresponding carrier density n. From the previous gate dependent
L(I) measurements in section 4.1.2, we can deduce a change of density ∆n ≈ −0.2 ·
1012 cm−2, when sweeping the topgate from 0 to -2 V. The electrical potential VL

simultaneously changes by a few tens of meV. The red arrow in Fig. 5.9 shows the
corresponding change of the parameter in our data. It is roughly parallel to the
constant α/n contour lines. However, for an effect of the gate on γL, the ratio α/vF

has to change.

5.4 Non-reciprocal Critical Current and Rectification
Finally, we will analyse the DC transport measurements and demonstrate the super-
conducting diode effect, which can be controlled by an in-plane magnetic field. In our
superconducting system, this means that in one direction the current flows without
dissipation, while in the other direction there is a resistance that depends on the sum
of the normal resistances of the ensemble of the 2250 Josephson junctions in series.
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Figure 5.10: Fraunhofer interference pattern at different in-plane magnetic fields. a,
Bx is parallel to the current direction and By is zero. b, Fraunhofer pattern
for By < 0 and Bx=0. The asymmetry between the positive and negative
critical currents reaches a maximum at By=-75 mT and is highlighted in red
and orange. c, The same graph as in panel b, but for positive fields in By.
Temperature was fixed to T=100 mK for all measurements.

To get a complete overview, we again measured Fraunhofer interference patterns as
we did in section 4.3. This time, however, with the coexistence of in-plane fields in
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parallel and perpendicular directions. The current bias was swept from zero to finite
positive or negative values, respectively. The voltage criterion for the critical current
is 0.5 mV for the entire array.

As a reference, the green curve for Bx=0 mT is the same as in the previous chapter
in section 4.3. Fig 5.10a shows that the application of an in-plane field in x̂, i.e.
parallel to the current, reduces the critical current and the induced gap likewise, but
the symmetry between both current directions remains.

The figures 5.10b and 5.10c next to Fig. 5.10a clearly show an asymmetry between
negative and positive critical currents. Here, the field is aligned parallel to ŷ. The
curves for By ' ±75 mT are colorised in red and orange. The highlighted curves in
5.10c are again plotted in figure 5.11a as absolute values to emphasise the magnitude
of the diode effect. Reflected in ∆Ic = I+

c − |I−c |, the effect is mainly present in the
inner half of the main lobe (see Fig. 5.11b).
Figure 5.11c and d show the rectification as a function of By at zero out-of-plane fields
in absolute and difference values, respectively. The diode effect increases as expected
linearly, but reaches a maximum at about By ' ±75 mT and decreases from that on
until it is gone.

But why does the diode effect disappear? We see that both an out-of-plane field and
an in-plane field suppress the effect. As we will see later, temperature is another way
to remove the asymmetry between positive and negative critical currents.
Our phenomological explanation for the observation of the diode effect are higher
order sine terms in the Fourier expansion of the CPR, which can be written as [154]

I(ϕ)/I0 = a0 +
inf∑
n=1

[an cos(nϕ) + bn sin(nϕ)], (5.9)

where I0 was determined in the previous chapter 4.1.1 as being 5.882 µA. It is im-
portant that the bn coefficient is sizeable for n>1, otherwise the cosine contribution
a1 (only present in magnetic fields) will only cause an offset in the phase of the CPR,
but no asymmetry between I+

c and I−c .

In chapter 4.3, it is described how a magnetic field in ẑ affects the Beenakker-Furusaki
formula (Eq. 2.64), which we used so far to analyse the CPR of our short-ballistic
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Figure 5.11: Diode effect: a, Illustrative comparison between I+
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lighted curves in Fig. 5.10c, where the asymmetry is most pronounced. b,
Corresponding |∆Ic| from panel a. The diode effect mainly prevails in the in-
ner half of the main lobe an gets suppressed for Φ0/2 ' 0.37 mT (see later in
the text). c, By dependence of I+

c and |I−c | at Bz = 0. d, Difference between
I+

c and |I−c | from panel c.

Josephson junctions. How the CPR evolves in Bz shows Fig. 5.12a for magnetic
fields up to the first minimum in the Fraunhofer pattern. As expected, the maximum
currents decrease within the main lobe as in Fig. 5.10a. Interestingly, a phase shift
occurs at finite Bz. Since we just care about the sine terms in bn, we substracted the
phase offset. The following analysis was done by Nicola Paradiso.
Figure 5.12b displays the Fourier coefficients in zero field at T=100 mK, where the
percentage in bn decays exponentially with the order number of the harmonics. There-
fore, we will focus on b2 in relation to b1, because the diode effect depends on the
strength of the higher harmonics, which is mainly given by b2.
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Figure 5.12: Higher harmonics in Bz: a, Calculated CPR for perpendicular magnetic
fields up to the first minimum of the Fraunhofer pattern. Values are normalised
by I0. b, Fourier series coefficients an and bn for the zero field CPR. c, Plotted
interference pattern for the first three Fourier coefficients b1,2,3 of the CPR.
d, The black symbols show the difference between I+

c (Bz) and |I−c (Bz)| as a
function of Bz as in Fig. 5.11b, but normalised by ∆Ic(0). The red fit F (Bz)
is the product of Ic(Bz)|b2(Bz)|. The inset is a zoom-in on the bottom part.
Figures made by Nicola Paradiso.

Figure 5.12c shows the superconducting interference pattern in Bz for the first three
Fourier coefficients in bn, normalised to I0. Here is vividly visible, that the minima
of the n-th term are spaced by Φ0/n. With this insight, it is possible to explain the
∆Ic(Bz) data in Fig. 5.11b, which is again plotted in Fig. 5.12d (black symbols).
The red curve is the product of Ic(Bz) and b2(Bz), which reveals a cusp-like (if bn and
Ic = 0) and quadratic (if only b2 = 0) behaviour alternately. The red fit is stretched
horizontally by 10 % in order to match the data points.

The periodicity of the higher harmonics explains quite well the evolution of the su-
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perconducting diode effect with respect to the out-of-plane field Bz. But what about
the in-plane field By and the temperature T? In this case we can again refer to the
higher harmonics in the Fourier series.
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Figure 5.13: Higher harmonics a, of the sine Fourier coefficients for different pair-breaking
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a function of δ = ∆∗/∆∗0. c, Temperature dependence of the sine Fourier
coefficients bn. d, Corresponding T dependence of the natural logarithmic
ratio b2/b1. Figures made by Nicola Paradiso.

In our heterostructure, an in-plane magnetic field weakens the induced gap by pair-
breaking much more than it is the case for the superconducting gap of aluminium.
For the suppression of the induced gap, we define the factor δ = ∆∗/∆∗0. The question
is what happens to bn when one changes δ? The answer is presented in Fig. 5.13a
on a semi-log plot, where the bn coefficients are normalised by b1. The blue curve
corresponds to the curve presented in Fig. 5.12b and clarifies the exponential shape.
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The logarithmic ratio between b2/b1 as a function of δ is shown in 5.13b. What we
see is a moderate change of the ratio b2/b1 until ∆∗ becomes comparable to kBT

(T=100 mK in our case). In other words, when the pair-breaking becomes to strong,
higher harmonics vanish and the CPR reduces to a sine function and what remains is
a ϕ0-shift. This is what can be seen in the figures 5.11c and d, where the suppression
of the induced gap ∆∗ starts for By > 75 mT.

For the disappearance of the diode effect with increasing temperature we can pro-
ceed similarly. Instead of the pair-breaking, we can control the temperature in the
Beenakker-Furusaki formula and extract again the higher harmonics as depicted in
the figures 5.13c and d. This time, however, |b2/b1| decreases exponentially in T
according to |b2/b1| u e−κT , with κ=2.8 K−1. Panel a and b of Fig. 5.14 show ex-
perimental values of γL as a function of temperature. The figures 5.14b and c are
normalised in the same fashion and demonstrate a good comparison.
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6 More on One-Dimensional
Josephson Junction Arrays

Besides the superconducting diode effect and the magnetochiral anisotropy, we ob-
served further physical properties in our one-dimensional JJA in the presence of in-
plane magnetic fields. In addition to sample 1, which is described in chapter 4 and
5, we have fabricated sample 3, whose current direction is along the [110] crystal axis
of the InAs. In this chapter, we present a comparison of L′0 between the two crystal
orientations [110] and [110], which allows us to determine the ratio of the Rashba
and Dresselhaus components. Moreover, we observe in both samples a peculiar sign
change of the magnetochiral anisotropy coefficient γL(By) for in-plane fields exceeding
200 mT. In addition, we determine the variation of the induced gap ∆∗( ~Bip) via the
temperature dependent Josephson inductance. And finally, we present the in-plane
field angle dependence of the Josephson coupling energies.

6.1 Disentangling Rashba and Dresselhaus SOI

For a conductor with pure Rashba SOI, the spin-split Fermi surfaces are isotropic.
The situation changes for a finite Dresselhaus component β, as it is the case in our
heterostructure. As discussed in the theory chapter 2.1.2, the Dresselhaus term causes
anisotropic spin-orbit fields that are either enhanced or reduced with respect to pure
Rashba in the [110] and [110] directions. Figure 6.1a and b illustrate the different
situations for sample 1 and sample 3, respectively.

In order to determine β, we performed L(I) measurements to those of the previous
chapter 5 for sample 3 (current flow in [110] as opposed to sample 1). The L(I) curves
in Fig. 6.2a show the same behaviour as it was the case for sample 1 (compare with
Fig. 5.5), where the L(I) curves become distorted when a magnetic field is applied
in-plane at θ equal to 270° or 90°. Again, we extract the polynomial coefficients L0, L′0
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Figure 6.1: SOI field: Total spin-orbit fields (Rashba plus Dresselhaus) indicated by black
and grey arrows for the corresponding ~k-directions, where the current is a, hor-
izontal (in direction [110]) for sample 1 and b, vertical (in direction [110]) for
sample 3.

and L′′0 by fitting the L(I) curves approximately with a parabola at zero direct current.

The L0 values of both samples (red and blue curves in Fig. 6.2b) indicate a good
reproducibility of the fabrication process, because both samples have nearly the same
L0, when normalised by the corresponding Josephson junction widths.
In other words, the smaller inductance of sample 3 originates from a higher I0, which
in turn comes from a greater width of the Josephson junctions. The distinction in the
widths between sample 1 and 3 is about 120 nm, which corresponds to a difference of
3%. Since the average transparency τ of sample 1 and sample 3 are nearly equal (0.94
for sample 1 and 0.931 for sample 3), the width difference accounts for the different
L0 values of both samples (see Fig. 6.2b).

The MCA and thus the difference of the combined Rashba and Dresselhaus SOI is
reflected in the zero-bias slope of the L(I) curve, i.e. the L′0 coefficients, plotted in
Fig. 6.2c. From the small but clearly discernible differences in L′0 for sample 1 and
3, we deduce the ratio r = L′0(sample 3)

L′0(sample 1) = 0.854.
A value r unequal to 1 implies a finite Dresselhaus term β. Numerical quantum
transport simulations, performed by A. Costa using the KWANT package and the

1Obtained by an analysis analog to that in section 4.1.1.
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Figure 6.2: L(I) data: a, obtained from sample 3 at ~Bip=+100 mT and T=100 mK. b,
Constant term L0 for sample 1 (sample 3) in blue (red) as a function of θ. c,
The corresponding linear part L′0 and d, the quadratic part L′′0.

methodology discussed in Ref. [32], revealed that r(β) is given by [155]

r ≈ 1.004− 0.225|β|, (6.1)

with β in units of meV nm. Solving β(r), we obtain a Dresselhaus paramter of β=-
0.67 meV nm, which is in agreement with the ~k ·~p simulations from P. E. Faria Junior,
shown in Fig. 2.5 in section 2.1.2.

Another feature we observed in Fig. 6.2c is a shoulder in L′0( ~Bip) at θ=0° and 180°.
Interestingly, the shoulder is less pronounced for sample 1, where the current direction
is along [110]. Figure 6.2d shows the quadratic coefficient L′′0. In case of sample 3, the
quadratic part varies much more, when the 100 mT in-plane magnetic field is applied
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Figure 6.3
Magnetochiral anistropy
coefficient γL: Measured at
~Bip=+100 mT for sample 3 for
various angles θ. A difference
of the absolute values of γL is
recognisable between the red data
points and the blue sine curve,
which emphasises the breaking of
the C2v symmetry.

A further interesting observation is a difference of the absolute values between γL(θ =
90◦) and γL(θ = 270◦) in the case of both samples 1 and 3. The polar plot of Fig. 6.3
displays the from Fig. 6.2 corresponding γL values. Sample 3 clearly shows a difference
of the magnitude of the magnetochiral anisotropy between the angles around 90° and
270°. For these data we could exclude a dc-offset current as a possible cause of the
asymmetry, as the current bias was directly measured. For sample 1 we have not
measured the current bias directly.
The same asymmetry discussed here can be seen in the Fig. 5.6b for the linear
part and in Fig. 5.7 for γL for different gate voltages. For three-terminal Josephson
junctions (discussed in chapter 7.5.2), we will see a similar deviation from the expected
C2v-symmetry, which is there reflected in the critical currents.
A plausible explanation of a breaking of the C2v-symmetry may result from the in-
terface between the Al and the InAs. The aluminium has a fcc [111] lattice, which
in combination with the [001] facet of the InAs breaks C2v-symmetry [156]. Lorenz
Fuchs discusses in his thesis [126] an interface spin-orbit texture originating from the
Al/GaAs interface that is different from that of the InAs alone.
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6.2 Sign Changes in Magnetochiral Anisotropy

According to the heuristic expression of the MCA for the Josephson inductance (Eq.
5.8), γL is expected to increase linearly with the magnetic field. To test this rela-
tionship, we measured the MCA for the inductance as a function of By for sample 1
and sample 3. Interestingly, we observe the expected linearity in By only up to about
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Figure 6.4: Anomaly in L(I) curves: a, Measured L(I) curves from sample 3 at in-plane
magnetic fields applied perpendicular to the current direction (i.e θ=270◦). b,
Extracted constant term L0. c, Induced gap and Zeeman energy as a function
of By. At By '+200 mT, the via L0 calculated induced gap matches with the
Zeeman energy by considering a realistic g-factor of 10.

By = ±150 mT. The inspection of the measured L(I) curves, plotted in Fig. 6.4a,
shows an accumulation of traces around By=+200 mT and in addition, the tilt of
the traces changes direction, which is connected to a shift of the inflection point from
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6 More on One-Dimensional Josephson Junction Arrays

negative to positive current bias.
The corresponding zero-bias part L0 of the L(I) curves is presented in Fig. 6.4b.
For both samples, L0 increases steadily and shows a plateau around By '+200 mT,
which reflects the observed accumulation of the L(I) curves. This plateau appears in
a specific By range, exactly when the Zeeman energy Ez and the via L0 calculated
induced gap ∆∗ coincide (see Fig. 6.4c). If we assume that By affects the CPR solely
via the induced order parameter ∆∗(By), we can extract the variation the induced
gap ∆∗ as a function of By from L0 by using the equations 2.62 and 4.2, that is

L(ϕ) = V
dI
dt

= Φ0

2πI0f ′(ϕ) ⇒ I0 = Φ0

2πL0f ′(0)

and
I0(Vg) = e∆∗

~
N(Vg) ⇒ ∆∗ = ~

e

I0(Vg)
N(Vg) .

For this approach, we in particular assumed that the average transmission coefficient
τ and the number of ABS channels N(Vg) are independent of By. The plotted Zeeman
energy in Fig.6.4c (cyan curve) was calculated with a g-factor of 10.

The extracted linear part L′0 is presented in Fig. 6.5a and shows the expected linear
increase up to By '+150 mT. Then comes a peak at By = +190 mT, followed by a
strong decrease with a sign change of L′0 at By=+220 mT. For in-plane fields close to
+300 mT, L′0 bounces back from the minimum at +240 mT towards zero. Further L′0
values for higher fields could not be obtained, because the Q-factor of the resonator
was too strongly suppressed by the weakest link in the Josephson junction array.

The L′0 part of sample 3 reveals a deviation from point symmetry with respect to
By. According to the phenomenological equation of the MCA for the inductance (Eq.
5.8), one would expect a point-symmetric relation through zero between L′0(By < 0)
and L′0(By > 0). But, what we observe is that the L′0(By) values are point-symmetric
only up to By ' ±150 mT. For higher (lower) in-plane fields, the linear coefficients
differ from each other. Especially the dip of L′0 at By=-220 mT is with 150 nH/µA
more than a factor of 3 bigger than the peak of L′0 at By=+180 mT. In contrast, the
following peak at By=-250 mT is in absolute values smaller then the complementary
dip at By=+260 mT.

If we decompose the L′0(By) data into an even and odd part (see Figs. 6.5b and c),
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6.2 Sign Changes in Magnetochiral Anisotropy

we cleary see that Eq. 5.8 loses its validity for By ≥150 mT. The even part in panel b
is approximately zero up to By ' ±150 mT, but starts then to have a peculiar course
by going up, then down with a sign change and reaching a minimum at By=-220 mT.
Then, the even part of L′0 goes up and down again.
The odd part of L′0 in panel c is nearly linear up to By ' ±150 mT, shows then a
dip/peak at By at ±220 mT, followed by a sign change and does then not bounce
back again at higher By. The even part of L′0 could be a consequence of the broken
C2v symmetry (discussed at the end of section 6.1). For completion, Fig. 6.5d shows
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Figure 6.5: Linear and quadratic coefficients as a function of By. a, Linear part of
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the corresponding quadratic coefficient L′′0 of sample 1 and 3 of the data presented
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6 More on One-Dimensional Josephson Junction Arrays

in Fig. 6.4. The values of the quadratic term become inaccurate at higher in-plane
magnetic fields, because the weaker Josephson junctions produce kinks in the L(I)
curves (see section 4.1.1), which can have a drastic impact on the L′′0 coefficient.

To date, we cannot provide a physical explanation for the plateau in the L0(By) and
for the sign change in the L′0(By) data. This anomalous behaviour seems to be very
robust as it was measured in two samples independently. Further KWANT simula-
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Figure 6.6: Sign change reflected in γL: a, Experimental obtained MCA coefficient γL
plotted as a function of By. b, Corresponding computed γL from transport
simulations performed with the help of the KWANT package. Since the simu-
lation was fed with approximated parameters, the theoretical result is supposed
to show a qualitative agreement.

tions by Andreas Costa show likewise the sign change of the MCA coefficient γL. The
experimental and theoretical values of γL are plotted in figure 6.6a and b, respec-
tively. Surprisingly, in the numerical simulation the sign change of γL exists also for
vanishing SOI and depends on the Zeeman energy Ez only [A. Costa priv. comm.].
For the simulation, the setup from the previous chapter 5.3 was used, i.e. a g-factor
of 10 and a confinement potential of 200 meV2. In addition, the simulation used the
experimental determined values of the induced gap ∆∗(By) shown in Fig. 6.4c.

But what does this sign change of γL actually mean? Is it a topological transition
which is predicted to occur when the induced gap has the same magnitude as the
Zeeman energy in the case of low electron densities, as mentioned in Ref. [157]? Or

2also described in the supplement of Ref. [32]
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6.2 Sign Changes in Magnetochiral Anisotropy

does it simply reflect a 0-π transition in the CPR, which was a hint of a topological
transition, as it was experimentally reported in a comparable system by M. Dartiailh
et al. in Ref. [81]? In the latter case, a 0-π transition should be accompanied by
a closing and reopening of the induced gap. Therefore, a minimum in the critical
current should be visible. Furthermore, this effect should be highly anisotropic in
Bip(θ) [80].

If we take a look at the in-plane field dependence of the critical currents, shown in
the Figs. 6.7a and b, we observe a drastic difference of Ic between Bx(θ =0°) and
By(θ =270°). Like in the inductance measurements3, the I-V s confirm the higher
robustness of the superconducting state against magnetic fields applied perpendicular
to the current direction in the plane.
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Figure 6.7: Critical current evolution for finite in-plane fields applied in the direc-
tions a, θ=0° and b, θ=270°. The supercurrent shows a high anisotropic behav-
ior in Bip(θ). Data obtained from sample 3.

A possible explanation for the difference in Ic(Bip(θ)) could be the distinct effective
cross-sectional areas of the 2DEG, which are exposed to the in-plane magnetic field.
In case of Bx, a larger part of the 2DEG is susceptible to the magnetic field per
aluminium island and thus the suppression of ∆∗ is higher than for an applied By.
However, a minimum in Ic cannot be detected in Fig. 6.7b at the first glance. But if
we change the scaling of the resistance on the z-axis, a peculiar course of the critical
current appears. The transition from the superconducting to the resistive state starts
to smear out for magnetic field above 200 mT and a waist appears at By '600 mT.

3see the angle dependence of L0 in Fig. 6.2
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A different scale of the z-axis
of Fig. 6.7b reveals a blurred crit-
ical current from By '+220 mT
on to higher fields of the ensem-
ble of 2250 Josephson junctions in
series.

At By '600 mT, M. Dartiailh et al. [81] observe the reported minimum of the critical
current in a single Josephson junction.
Since we measure the accumulated resistance of 2250 Josephson junctions in series,
this could mean that the individual criticial currents begin to spread out as the in-
plane field increases. The main reason for this spreading comes from the out-of-plane
magnetic field Bz, which is not perfectly homogeneous over the lengthscale of 3 mm
of our Josephson junction array in contrast to the in-plane field ~Bip (also discussed
by L.Fuchs [126]). Therefore, the out-of-plane field cannot be optimally nulled at the
outer parts of the array with our home-made compensation coils. However, whether
the waist in Fig. 6.8 is related to a closing and opening the gap is questionable and
cannot be answered within the scope of this work.

For a further analysis of the sign change of the supercurrent diode effect, we ex-
tracted the critical currents from Fig. 6.7b, calculated the difference ∆Ic(By) =
I+

c (By) − |I−c (By)| and plotted the result together with the obtained ∆Ic(By) from
sample 1 (already shown in Fig. 5.11d) in figure 6.9. In this figure, ∆Ic(By) is nor-
malised by Ic(By = 0), because the critical currents of sample 1 and 3 differ due to
individual defects, which are the reason for weaker junctions that start to heat the
entire array at different currents. Thus, the critical currents of sample 1 and 3 differ.
The insert in Fig. 6.9 shows a zoom-in of ∆Ic(By) for higher By and reveals a sign
change of ∆Ic(By) for By '270 and '330 mT for sample 1 and 3, respectively. What
we do not see in our data is an oscillating ∆Ic(By) around 0. However, during the
measurement sessions we did not focus on obtaining the critical currents at high By.
That is why the red curve (sample 3) becomes so fuzzy, which is due to the low
amount of data points in the I-V s.
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Figure 6.9: Superconducting diode effect in the critical currents as a function of By.
Both samples show a sign change at higher fields, i.e. By '250-350 mT.

In order to further trace the angle dependence of the sign change of L′0, we performed
in addition L(I) measurements for in-plane fields in the directions 0° and 300°. The
L(I) curves, presented in the Figs. 6.10a and b, show no accumulation or a clear
change of the tilt. The constant part L0 in Fig. 6.10c shows no plateau. The linear
part L′0 in Fig. 6.10d shows no clear sign change, but the extracted L′0 oscillate around
zero with a huge error bar, because the data is difficult to fit accurately for higher
in-plane fields. Furthermore, due to the reduced range in ~Bip, where we can access
the Josephson inductance, we cannot clearly state that the sign change is anisotropic
with respect to ~Bip(θ).

Recently, B. Pal et al. [158] and A. Daido et al. [159] reported about a sign change
of the superconducting diode effect. B. Pal et al. observe this sign change in the dif-
ference of the critical currents and relate this behaviour to finite-momentum Cooper
pairing derived from spin-helical topological surface states in their NiTe2 device. In
our case, the Josephson junction arrays with the InAs quantum well should not pos-
sess any spin-helical topological surface states. However, we also observe a sign change
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in the difference of the critical current, but no oscillations so far. In our devices, the
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difference ∆Ic(By) is very small at higher By, due to the suppression of the higher
harmonics in the current-phase relation by By.

Another interesting experiment for the investigation of the sign change of γL is to study
a similar device like sample 1 or 3 again, but this time based on a heterostructure with
InSb as the quantum well. In such a heterostructure, the SOI field is much higher
and highly anisotropic with respect to the crystal lattice of the 2DEG due to the
high Dresselhaus component [82]. Measuring L(I) curves as a function of By for two
different crystal orientations would reveal whether there is really no dependence of the
sign change of L′0 on the spin-orbit field and could thus give a hint about topological
states or not [160].

6.3 Peculiar Temperature Dependence of the Induced
Gap at Finite In-Plane Fields

In the previous section, we have calculated the induced gap on the basis of L0 with
the assumption that τ and N(Vg) stay constant with increasing in-plane magnetic
fields (compare with Fig. 6.4c). A different approach to extract ∆∗ is by measuring
the temperature dependence of L(I = 0). We discussed this procedure already in
section 4.1.1 for zero ~Bip. Fitting the L(T ) data at low temperatures with the help of
the Furusaki-Beenakker equation 2.64, plus the Eq. 2.67 4, allows us to extract the
induced gap ∆∗.

Figure 6.11a and b show L(T ) curves for different in-plane magnetic fields applied in
the directions 0° and 270°, respectively. The red lines indicate the applied fits.

What we see again is the higher robustness of the Andreev bound states against fields
applied perpendicular to the array’s orientation, expressed by the smaller Josephson
inductance for the same magnitude of the magnetic field compared to the parallel
configuration.
Furthermore, in the 270° direction we can access L(0) for higher fields which in turn
reveals a peculiar curve at By=+150 mT, highlighted by red arrows in figure 6.11b.
In this curve, the L(0) values increase less with temperature compared to the other

4This equation describes the relation between the superconducting gaps of the InAs and of the
Al via γB. As we did in section 4.1.1, we set ∆Al to 220 µeV.
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Figure 6.11: L(I = 0) vs T : Temperature dependence of the obtained Josephson induc-
tance at zero current for different in-plane magnetic fields applied parallel a,
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fits. It was tried to match the data at low temperatures. Measurements per-
formed on sample 3.

curves, i.e. for By=+100 or +200 mT.

This different behaviour of the L(T,By=+150 mT) curve leads to a puzzling fit result
of the dimensionless parameter γB, shown in Fig. 6.12a. For the fitting routine, γB
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was the only free parameter and ∆Al was set to 220 µeV, as we did in section 4.1.1. Be-
cause a lower γB implies a higher ∆∗, the in Fig. 6.12b plotted corresponding induced
gap ∆∗ in red and blue shows this anomalous dependence in By too. For complete-
ness, figure 6.12b shows the induced gap ∆∗ calculated from solely L(0, T = 100 mK)
values (light blue and orange curve).
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Figure 6.12: Barrier strength γB and the related induced gap ∆∗ as a function of
~Bip. The data points are obtained from the raw L(T ) data presented above in
Fig. 6.11. The light blue and orange points, shown for comparison reasons, are
determined from the same dataset by taking the L(0) points at T=100 mK.
As in Fig. 6.4c, the average transparency and the number of channels were
assumed to stay constant for the calculation of the induced gap ∆∗ via L0.

The figure 6.12a (6.12b) shows a continuous increase (decrease) of γB (∆∗) up to
~Bip '100 mT. Then follows the deviation with a drastic decrease (increase) of γB

(∆∗).

Since we assume that N(Vg), τ and ∆Al stay constant with increasing ~Bip and tem-
perature T and the magnetochiral anisotropy for supercurrents as well as the sign
change of L′0 (discussed in the previous section 6.2) are not considered in the fitting
model, the evaluation of γB and ∆∗ with the help of Aminov’s equation 2.67 and the
Beenakker-Furusaki equation 2.64 seems to have reached its limits for By ≥100 mT.
However, the intention of this section is to show this divergent increase of the L(T )
curves at By ≥150 mT. Further measurements of the L(T ) curves for different By are
favorable for an analysis which could lead to a conclusion.
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6.4 Activation and Josephson Energy
In section 5.3, we discussed the anisotropy of L′0 with respect to the external in-plane
field for different angles, which mainly determines the MCA coefficient γL. In ad-
dition, we observed a smaller but still recogniseable anisotropy in L0 (in Fig. 5.6).
Because L0 is linked to the critical current Ic, we expect an anisotropic Josephson en-
ergy EJ = ~Ic/2e, which in turn leads to an anisotropic activation energy for thermal
phase slips in the Josephson junctions.

If we recall the model of the tilted potential from section 2.3.2, the activation energy
EA is the energy the particle needs to surpass the potential barriers. Here, a finite
voltage appears and the junctions gradually become more and more resistive. A con-
venient method to obtain the activation energy EA is to measure the temperature
dependent resistance around Tc.
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Figure 6.13: Angle dependence of EA and EJ: a, Arrhenius plots of the R(T ) curves
obtained at ~Bip=+90 mT applied at different angles θ. b, Corresponding
activation and Josephson energies. The latter was calculated from L0. All
data shown here are from sample 2.

We measured R(T ) using standard low-frequency lock-in techniques. With a integra-
tion time of 75 ms at 21 Hz and a 1 MΩ preresistor defining 20 nA current bias, we
obtained R(T ) at ~Bip=+90 mT applied in difference angles. The curves are shown in
figure 5.3 in section 5.2.
In this section, we show in Fig. 6.13a the corresponding Arrhenius plots, i.e. lnR vs.
1/T .
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6.4 Activation and Josephson Energy

We find an activated behaviour of the resistance, which we can clearly devote to
thermal activation with an angle dependent activation energy EA. This activation
energy is shown in figure 6.13b (blue symbols) together with twice the calculated
Josephson coupling energy 2EJ

5 (red symbols). For the red symbols, we assumed a
sinusoidal CPR (f ′(ϕ) = 1) in order to use the simple relation 2EJ = 2Φ0I0/2π = EA.
The result is a rough match up to a factor of '2 and the angle dependence of EA

and 2EJ matches very well. A possible reason for the deviation is the non-sinusoidal
shape of the CPR (τ ' 0.75 for sample 2).

5According to Eq. 2.44, taken from Ref. [23], 2EJ is necessary to overcome the potential barrier.
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7 Multiterminal Josephson Junction
Array

The physics of Josephson junctions still seem to have a lot of unknown land that
can be explored. New experimental avenues became accessible due to the rise of
the two-dimensional superconductor-semiconductor platforms [22][161]. With these
kind of heterostructures, we have the ability to flexibly design and fabricate different
complex quantum circuits. For instance multiterminal Josephson junctions (MTJJs),
where multiple superconducting leads are connected by a scattering region A. In such
a region, the energies of the Andreev bound states are controlled by the macroscopic
phase differences of the respective leads and may thus produce peculiar energy spec-
tra. Due to the 2π periodicity in all phases of the ABS energies, we can draw an
analogy to the band structures of natural solids.

Solids are limited to three dimensions. This does, however, not count for the quasi-
band structures of multiterminal Josephson junctions, where N+1 superconducting
leads correspond to the N -dimensions of the reciprocal space in solids [162]. For in-
stance, an ordinary two-terminal Josephson junction corresponds to a one-dimensional
solid or a three-terminal MTJJ to a two-dimensional solid.

7.1 Why Connect Several Superconducting Leads?

In condensed matter systems, single fermion states are a necessary condition for spin
qubits [163], spintronics [164] or for topological superconductors, where states such
as Majorana bound states or Weyl points are predicted to emerge. However, Kramers
theorem says, that the energy eigenstates of fermions with half-integer spin are double
degenerated, even in the presence of an electric field or when the spin-rotation is bro-
ken. The violation of Kramers theorem and creation of single state fermions requires
the breaking of time-reversal symmetry [165]. In our case, we used an external mag-
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7 Multiterminal Josephson Junction Array

netic field to break TRS in order to observe phenomena such as the superconducting
diode effect among other things discussed in the chapters 5 and 6.
But there is another possibility than by using magnetic fields to break TRS in Joseph-
son junctions. Theoretical reports (see Refs. [165][162][33][166]) propose a simple
change of the device geometry by adding an extra superconducting lead, as illus-
trated in Fig. 7.1. With a third lead, TRS is broken by superconductivity only and
the energy spectrum of the ABS changes crucially. Furthermore, if at least two of

Figure 7.1
Scheme of a three-
multiterminal JJA:
Three superconducting banks,
each with an independent macro-
scopic phase are connected via a
scattering area A. Two leads are
a part of a superconducting loop,
where the phase can be controlled
sensitively and locally with an
external flux. The other control
parameter is the current flow ~I.
Our sample, discussed below, is
based on the layout shown here.

ϕ1

ϕ3

ϕ2

Φ

A

~I

y

x

Superconductor
2DEG

the three leads are embedded in a superconducting loop, we can manipulate the ABS
states with a local flux through the loop without diminishing superconductivity in the
leads. Our attempt is to use a current-carrying wire next to the addressed loop in-
stead of the out-of-plane magnetic field in order to tune the phase difference between
the leads.

7.2 Weyl Semi-Metals
In solids, (3D) Weyl-semi metals (WSM) lack either inversion or time-reversal symme-
try and posses a strong spin-orbit interaction. Furthermore, WSM are characterised
by surface states that are a consequence of the topology of the bulk band structure.
The Berry curvature diverges in these surface states and the band gaps close in these
called Weyl points. In the vicinity of such Weyl points, the dispersion relation satis-
fies a conical dispersion relation, as it is known from graphene [167]. But unlike in
graphene, these isolated Weyl points are topologically protected and always occur in
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7.2 Weyl Semi-Metals

pairs with an opposite chirality. The Berry flux between two Weyl pairs leads to a
non-zero Chern number C and gives rise to chiral edge states. These edge states exist
only between the corresponding Weyl points and cause the appearance of a Fermi
arc (see Fig. 7.2a) [168][169][170]. The Fermi arcs are topologically protected by
the Weyl points and can evoke fascinating transport phenomena, e.g. novel quantum
oscillations in the density of states as a function of magnetic field [171][172]. In 2015,

Surface

Fermi arc

Bulk
kz

kx
ky

a b

E
/∆

0

0.2

0.4

0.6

0.8

1

-π 0 π

ϕN−1

Figure 7.2: Weyl points: a, Two Weyl nodes in momentum space (red), with linear disper-
sions in the vicinity (black), are connected by a Fermi arc (yellow). The plane
on the top shows the two-dimensional projection. b, ABS energy spectrum as
a function of ϕN−1. A Weyl singularity (indicated by the red dashed circle)
emerges in the phase difference ϕN−1, depending on the N(=4,5...) lead’s con-
figuration. Images taken from [173] and [33].

Weyl points with the predicted Fermi arcs have been experimentally observed for the
first time in a bulk material made of TaAs, by using angle-resolved photoemission
spectroscopy (ARPES) (see Ref. [174]).

In short two-terminal Josephson junctions, the Andreev bound state levels reach zero
energy when the phase difference is ϕ = ±π and the transmission coefficient of the
normal region τ is unity. Riwar et al. [33] proposed in 2016 the existence of synthetic
Weyl points in the pseudo-band structure of short multiterminal Josephson junctions,
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7 Multiterminal Josephson Junction Array

as exemplified in Fig. 7.2b. For N(= 4, 5...)-terminal Josephson junctions, the ABS
levels cross the zero energy level at various isolated points. The number of points
depend on the N -1 dimensions in the phase space [162]. Unlike in solids, spin-orbit
interaction and thus inversion symmetry breaking is not essential for existence of Weyl
points, neither is Zeeman splitting. What is required is at least a four-terminal setup
with a scattering area A. Numerical calculations with randomly generated scattering
matrices revealed a chance of 5% for the manifestation of topologically non-trivial
quasi-band structures.

We targeted the detection of these synthetic Weyl points in the ABS energy spectrum
of a MTJJ experimentally via the Josephson inductance. A linear dispersion of a
synthetic Weyl point in the energy spectrum should cause a significant decrease in
the Josephson inductance. Although Riwar et al. [33] predicted the appearance of
synthetic Weyl points for more than three superconducting leads, it might be possible
that an in-plane magnetic field in the right direction could replace the fourth lead in
our three-terminal Josephson junction layout.

7.3 What are the Goals of this Experiment?
To our knowledge, three and four-terminal Josephson junctions have been realised in
graphene [175] and in the two-dimensional Al/InAs platform, as we use it [176][177].
However, these reports mainly focus on critical current contours (CCCs). Due to the
lack of other experimental reports and with our experience acquired in the fabrication
process of super-/semiconducting heterostructure arrays and the characterisation of
such devices, it was appealing for us to start an experiment in the field of MTJJs.
For the beginning, we set up the following goals:

1. Show that it is possible to fabricate an array consisting of multiterminal Joseph-
son junctions.

2. DC transport characterisation with the sample exposed to magnetic fields out-
of-plane and in-plane at different angles.

3. Demonstration of the possibility to perform inductance measurements on a
MTJJA.

4. Manipulation of the ABS spectrum by using a superconducting loop, which is
controlled by a flux line next to it.
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7.4 The Sample MTJJA

7.4 The Sample MTJJA
Since the first experiment should have as simple a framework as possible, we decided
to start with a three-terminal setup, including a well defined scattering region A. Fig.
7.3a shows a false color SEM image of the sample with the name MTJJA before the
deposition of the AlOx. Figure 7.3b shows a zoom-in of the array.

2DEG

Etched 2DEG

2 µm

Al

SC LoopFlux Line

InAs Junctions
a b

500 nm

1 2 3

4 5

Figure 7.3: False color SEM image of the sample MTJJA: a, The current has to
pass 400 three-terminal Josephson junctions in series. The ABS spectrum can
be modulated by the attached superconducting loop, which is connected to two
three-terminal Josephson junctions. b, Zoom on a similar area as framed in red
in a. Three Josephson juctions tilted by 120° to each other are connected by a
rectangular shaped area with a side length of '400 nm.

The array has a total of 400 defect free1 three-terminal Josephson junctions (3TJJ or
trijunction) in series. Two 3TJJs are equipped with a superconducting loop. The ABS
states between the lead 1,2 and 3 can be tuned by a current, while the other states be-
tween the leads 1,2,4 and 2,3,5 are phase biased by the attached superconducting loop.
Below the loop is a flux line, consisting of the heterostructure’s material, i.e. epitaxial
Al on top of InAs. A broader strip of the 2DEG is left over due to fabrication reasons.

The layout and the corresponding geometric dimensions in this first sample are fab-
ricated in such a way, that the resulting Josephson inductance of the entire array is
large enough for the detection with our resonator technique. The fabrication steps
are essentially the same as described in the fabrication section 3.2. Accordingly, we
started to define and to etch the mesa first. Afterwards, the Josephson junctions and

1The inspection of the array by the SEM showed no defects.
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7 Multiterminal Josephson Junction Array

the flux line were fabricated in the same step.
The whole structure is covered by 30 nm AlOx as a gate dielectric. A topgate with
5 nm Ti and 100 nm Au is deposited above the Josephson junction area and also cov-
ers about half the area of the loops. The flux line was kept free from the topgate to
maintain the possibility to upgrade the sample with a flux line consisting of niobium
or any similar superconducting material that can sustain a high current.

7.4.1 The Mesa

It turned out that the first etching step must be for patterning the mesa, otherwise
the etching result is more than insufficient. Furthermore, this step can take place only
once per chip. The reason why a sample exposed to a prior etching process shows
such a different etching result, where the resist is underetched, etches are hardly to
distinguish and defects are found everywere, is not understood.

We divided the sample into many smaller segments, each defined with 25 supercon-
ducting loops. The number of Josephson junctions per segment could be specified in
the second etching step. There are two main reasons for this subdivision.
The first reason is the high demand on the positional accuracy of the components
of the chosen layout. The superconducting loops, the flux line, the widths of the
Josephson junctions and the alignment markers allow no shifts with respect to each
other in the x- and y-directions in the 2D-plane. For larger structures, the stage of
the SEM has to move mechanically and shifts are therefore unavoidable. This is one
reason why smaller segments are beneficial. And secondly, we can choose the best
segments and bypass those ones with defects.

For this sample, it took some time to elaborate a layout and a routine with a satisfying
result, especially due to the strong proximity effect, where secondary electrons cause
an overexposure of the resist. Any change on the layout entails various adjustments.
For example, if one exposure area is increased, the nearby structures within several
µm distance tend to be overexposed. By implication, their dose must be reduced. The
crucial step here is hence the mesa etching. For etching the aluminium, the recipe
described in section 3.2 must be applied rigidly and the alignment with the adjacent
markers must work.
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7.4 The Sample MTJJA

7.4.2 The Three-Terminal Josephson Junction

After fabricating the mesa, the next step is to etch the aluminium to define the
Josephson junctions. Since we cannot control the resulting contact spacing of the
junctions within a ±20-30 nm accuracy, the length of each of the three Josephson
junctions is 120 nm instead of the predefined 100 nm for all 400 junctions in series.
The three junctions are connected via the scattering region A, defined as a rectangle
with a side-length of 400 nm.

In comparison to the one-dimensional Josephson junction arrays (i.e. sample 1-3,
see overview in section 3.3), we downsized the width of the weak links2 and put two
3TJJ per loop to achieve a sufficient high Josephson inductance. However, it is also
interesting whether a sample with a single 3TJJ per SQUID reveals different results
and if yes, what kind of differences.

7.4.3 Superconducting QUantum Interference Device (SQUID)

The loops in our MTJJA resemble a dc-SQUID (see Fig. 7.4a), where a superconduct-
ing loop has two point-like Josephson links and is distinct from a rf-SQUID, which is
a superconducting loop interrupted by only one weak link.

I

ϕ1

ϕ2

Φ

0 1 2 3-1-2-3
Φ
Φ0

Ic

a b

Figure 7.4: SQUID: a, Cartoon of a dc-SQUID. b, Flux dependence of the critical current
of a dc-SQUID.

In order to derive the local phase difference between two points in an individual loop,
we need to consider the vector potential A. In general, the gauge-invariant phase
difference between a point A and B is described by [44][94]

φ = ϕAB −
2π
Φ0

∫ B

A
A · d~l, (7.1)

2The width of the Josephson junctions is defined by the mesa and by the position of the 3TJJ.

127



7 Multiterminal Josephson Junction Array

with
Φ0 = h

2e (7.2)

being the flux quantum for Cooper pairs. Transferred to the SQUID, the magnetic flux
is responsible for a phase gradient. This gradient gives rise to circulating supercurrents
to screen the flux. The produced flux by the loop together with the external one gives
the total flux Φ.
In textbooks as in the references [44][23][94], the derivation for the relation of the
maximum current of a dc-SQUID as a function of flux can be found. The maximum
current in the case of two identical critical currents of the weak links is:

Im = 2Ic

∣∣∣∣∣ cos
(
πΦ
Φ0

)∣∣∣∣∣. (7.3)

This function is plotted in Fig. 7.4b and depicts the analog to the two-slit interference
pattern in optics. In chapter 4.3, we discussed the Fraunhofer pattern, which is the
analog to the single-slit case. Due to the relation to the flux, the SQUID finds
application as an extremely sensitive magnetometer.
However, since the superconducting loop in our array has two weak links in form
of trijunctions instead of symmetric rectangluar junctions, the approximation with
equation 7.3 to describe the interference pattern of the critical current does not apply,
as we will see in section 7.5.1.

7.4.4 Flux Line

It is desirable to modulate the phase differences between the three leads of the 3TJJs
by an external field and by the loops separately. A simple but not ideal way is to
upsize the area of the superconducting loops in relation to the area of the MTJJs, as
it is the case in our sample MTJJA. The loops then show a higher periodicity to Bz,
while the change of the critical currents of the 3TJJs due to the interference in the
Josephson junctions caused by Bz can be assumed to be small.

The optimal way is to control the flux in the loops separately, especially in possible
future devices where more than one superconducting loop is to be operated indepen-
dently and at the same time.
Our approach to achieve this task is to use a current-carrying wire (flux line) next
to the loops. The current that flows through the flux line induces a magnetic field
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7.5 DC Transport Characterisation

and can be regulated very gently by an external sourcemeter. However, in our arrays,
the wire has to be positioned very precisely in order to tune all the loops equally.
Furthermore, the flux line must have a high critical current to produce the required
magnetic field. In our device, about 10 mA are required to induce a magnetic flux
Φ0 = h/2e. In the non-superconducting state, the wire with its finite resistance rep-
resents a heater and thus raises the temperature of the whole sample.

For the first try, we used the Al/InAs heterostructure to fabricate the wire, because
here we could define the wire together with the rest of the mesa in one fabrication step
and avoid an alignment procedure. But as we expected, the Al film is not suitable to
function as a flux line, because the critical current of the Al wire is too small.
The obstacle of establishing a reliable flux line has not yet been solved. In our opinion,
the current sample MTJJA should not be risked for a further fabrication step, before
most of the investigation is done.

7.5 DC Transport Characterisation

The results presented in this chapter are from the last experiment of this thesis, which
was our first step into the large subject area of MTJJs. Further experiments are nec-
essary for a deeper understanding of the data presented here. The following results
are from measurements, which have been performed together with the master student
Johanna Berger.

We mounted the sample MTJJA in our resonator (introduced in chapter 3.5.3) and
cooled it down to 50 mK. The topgate was kept at zero voltage throughout this
measurement session, since it had a finite resistance of 220 kΩ to the source electrode.
At the beginning, we started with DC transport measurements for a first overview.
Figure 7.5 shows current-voltage up- and downsweep curves at zero magnetic fields.
As with sample 1 (compare with Fig. 4.7), we do not see any hysteresis either.
However, the I-V curves of sample 1 look different due to the individual Josephson
junctions with a reduced critical current in the array, caused by defects. The sample
discussed here has no defects along the array, but certain inaccuracies instead. One
inaccuracy comes from the varying position of the 3TJJs from segment to segment (as
we know from SEM examination), which is a consequence of the repeated alignment
procedure of the SEM during fabrication. This means that the critical currents of the
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7 Multiterminal Josephson Junction Array

individual junctions are expected to differ slightly from segment to segment. Another
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Figure 7.5: Current-voltage curves at zero magnetic fields at T=50 mK. As expected for
a Josephson junction in the overdamped regime (see theory in section 2.3.3), we
see no hysteresis between up- and downsweep.

inaccuracy can be attributed to the different effective areas of the loops. Not all loops
of this sample have a perfect and consistent shape and since the modulation of the
critical current by these loops is high, minor differences of the effective area can have
a significant influence.
These inaccuracies can be a reason why a critical current of the array via the I-V
curves cannot be exactly determined, but Ic seems to be about 470 nA for the whole
array. Moreover, in the case of zero in-plane fields, we see finite resistance features
inside the central lobe of the Fraunhofer pattern (shown and discussed below in section
7.12).
The total resistance RN of sample MTJJA is '105 kΩ, of which an estimated 15 kΩ
comes from the aluminium leads and islands. This means that a single trijunction
has a normal resistance RN,1 of about 225Ω.

130



7.5 DC Transport Characterisation

7.5.1 Out-of-Plane Magnetic Field

The modulation of the critical current Ic(Bz) by quantum interference in an out-of-
plane magnetic field can reveal a lot about the spatial distribution of the supercurrent
Js in a Josephson junction. In the colorplot in figure 7.6a, the shown diffraction
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Figure 7.6: Interference diffraction pattern of sample MTJJA: a, Colorplot and b,
corresponding critical currents with a sinc function fit (blue curve) and a fit with
the product of a sinc function and SQUID modulation (red curve). An offset of
+150 nA has been added to the critical current of the fits. The voltage condition
for the critical current of the data was set to 2 mV, because of the sub-critical
current features (described below in section 7.6). For all other critical currents,
the voltage condition was set to 0.5 mV.

pattern appears to be a combination of a Fraunhofer pattern, as an envelope, and of
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7 Multiterminal Josephson Junction Array

SQUID oscillations. To compare more precisely, we fitted the critical current Ic(Bz)
data with a sinc function (introduced in chapter 4.3). Furthermore, we tried to fit
the data with the product of the envelope and the SQUID oscillations (introduced in
section 7.4.3) according to

Ic(Bz) = Ic(0) ·
∣∣∣∣∣sin(πBzAJ/Φ0)

πBzAJ/Φ0

∣∣∣∣∣ ·
∣∣∣∣∣ cos

(
πBzAL

Φ0

)∣∣∣∣∣+ Ioffset, (7.4)

with AJ= 1.15 µm2 and AL= 5.17 µm2 as the effective areas of the 3TJJ and the
loop, respectively. The respective fits are plotted in Fig. 7.6b. What we observe is
the matching of periodicity of the higher frequented oscilliations (red curve). The
envelope (blue curve = Fraunhofer pattern) does also match the periodicity of the
lower frequent enveloping oscillations.
However, the blue and consequently the red curve fail to fit the absolute values of
the critical currents. The measured critical currents of the central lobe are too small,
while for the side lobes, the measured critical currents are too big. This indicates a
non-trivial current-phase dependence of the trijunctions, which thus needs a profound
analysis. This analysis is part of the master thesis of Johanna Berger [178].
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7.5 DC Transport Characterisation

7.5.2 In-Plane Magnetic Field

The Superconducting Diode Effect (SDE)

The shape of the diffraction pattern becomes even more interesting in the presence
of in-plane magnetic fields. Like with the simple Josephson junction arrays, we also
observe in the MTJJA a diode effect of the critical currents in the central lobe (see
Fig. 7.7). The critical current differences in the central lobe, i.e. ∆Icenter

c = |I+
c −I−c |,
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Figure 7.7
Superconducting diode effect
in the central lobe of sample
MTJJA.

show likewise for the sample 1 (discussed in section 5.4) and for sample MTJJA (dis-
cussed here) a similar By dependence, as it is shown in Fig. 7.8a. The values are
normalised to 1 by the data point ∆Icenter

c at By = +75 mT for comparison reasons
and is necessary due to the different sample geometries.
Both curves show an absolute maximum of ∆Icenter

c at By = ±75 mT. For increasing
By, the diode effect begins to vanish, what we relate to the disappearence of the
higher harmonics in the current-phase relation (described in section 5.4).

To see whether our 120° geometry of our three-terminal Josephson junction has an
influence on the diode effect and thus reflected in ∆Icenter

c (θ), we measured diffraction
patterns for in-plane field orientations from 270° to 90° at ~Bip = ±75 mT. Figure 7.8b
presents the angle dependence of ∆Icenter

c . The result shows a similar angle depen-
dence as we have seen from the magnetochiral anisotropy effect of the two-terminal
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Figure 7.8: Superconducting diode effect a, of sample 1 and MTJJA as a function of By
(θ=270°) normalised by ∆Ic(By=+75 mT). b, Angle dependence of the critical
current difference ∆Ic(θ) at Bz=0 T and ~Bip=+75 mT for sample MTJJA.

Josephson junctions (compare sections 5.3 and 6.1) and from the Fraunhofer diffrac-
tion pattern of sample 1 (compare appendix C). Indeed, ∆Icenter

c seems to be stronger
in one direction (i.e. θ=270°), as we have also observed for the MCA effect of sample
1 and 3, shown in Fig. 6.3 in the previous chapter.

Interestingly, this asymmetric angle depende of ∆Icenter
c does not apply for the follow-

ing effect we have noticed in this 3TJJ device.

Asymmetry of ∆Ic between Positive and Negative Bz

In the presence of an in-plane magnetic field in y-direction (i.e. θ=90° or 270°), a
peculiar effect appears in our three-terminal Josephson junction device. The critical
currents between positive and negative perpendicular magnetic fields become asym-
metric with respect to each other, as figure 7.9 shows. The asymmetric effect is
particularly noticeable in the side lobes and therefore it is temporarly called side lobe
effect (SLE) in this work. That is why we have chosen to use the maximum critical
currents Imax,left

c and Imax,right
c for further analysis. As an example for the definition,

Imax,left
c and Imax,right

c are drawn into Fig. 7.9 bottom.

The direction of the current does not play a role in this side lobe effect, because it
applies: I+

c (Bz) = |I−c (Bz)|. In other words, by mirroring the critical currents on the
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Figure 7.9: Asymmetric critical currents between positive and negative out-of-plane
fields ~Bz. The effect is especially recogniseable in the side lobes of the envelope.
That is why Imax,left

c and Imax,right
c has been defined as the maximum critical

current of the left and right side lobe.
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Figure 7.10: Imax,left
c and Imax,right

c dependence: a, as a function of the in-plane field for
θ=270°. In contrast to the SDE, the difference ∆I left,right

c does not disappear
with increasing By, but becomes smaller due to the suppression of the induced
gap and thus the critical currents themselves become smaller. b, Angle depen-
dence of ∆I left,right

c for ~Bip=+75 and +150 mT.

horizontal axis does not alter the shape of the Ic(Bz) curves.
Such a mirror operation does, however, not work on the y-axis, which means that the
I±c values are not symmetric with respect to Bz, i.e. I±c (Bz < 0) 6= I±c (Bz > 0), and
neither are the I±c (Bz) values symmetric with respect to By, i.e. I±c (Bz, By < 0) 6=
I±c (Bz, By > 0). But inverting both, Bz andBy, leads to the original form of the traces.

Another interesting observation, which is different to the superconducting diode effect
in our samples, is the persistance of the SLE with increasing By. Fig. 7.10a presents
the absolute values of Imax,left

c , Imax,right
c and the difference of both. Similar to the

SDE, the difference ∆I left,right
c increases up to By=+75 mT, but ∆I left,right

c remains for
increasing By. We measured diffraction pattern up to By=300 mT, where the critical
currents of the side lobe become equally big as the critical currents from the central
lobe. Figure 7.10b shows the in-plane field angle dependence of ∆I left,right

c at ~Bip=
+75 and +150 mT in a polar plot. Both curves have a similar magnitude and angle
dependence. We see a two-fold symmetry of the side lobe effect similar to the super-
conducting diode effect and no reflection of the 120° geometry from the trijunctions.

If we compare this side lobe effect with the superconducting diode effect (see Fig.
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7.6 Josephson Inductance

7.11), we see that the absolute values of the ∆Ic are about the same size at ~Bip=+75 mT.
Moreover, an enhanced effect of the SLE in one direction (e.g. θ=270°) seems not to
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|(µA)|
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315°

0°

45°

90°

135°

180°

225°

0

∆Icenter
c

∆I left,right
c

~Bip =+75 mT

Figure 7.11
Angle dependence of SDE
and SLE: The SDE (red curve)
seems to be stronger if the in-
plane field is applied in θ=270°,
while the critical current differ-
ence of the side lobes (cyan curve)
does not show a pronounced dif-
ference between 270° and 90° ori-
entation. Interestingly, the criti-
cal current difference of both ef-
fects have a similar magnitude at
~Bip=+75 mT.

exist, which is in contrast to the SDE. But how isotropic the SLE between 270° and
90° really is, is difficult to tell since this data obtains a certain scattering amplitude.

7.6 Josephson Inductance

In addition to the observations we made from the sample MTJJA from the DC trans-
port characterisation, we obtained the Josephson inductance as a function of Bz. The
following graph in 7.12a shows the central lobe of the diffraction pattern presented
in Fig.7.6a, but this time with a smaller range on the z-scale (i.e. R=10 kΩ). Below
the critical current, finite resistance features appear for current biases greater than
± ' 200 µA. Figure 7.12b shows the corresponding Josephson inductance for zero
current bias and zero in-plane magnetic fields.
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7 Multiterminal Josephson Junction Array
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Figure 7.12: Diffraction pattern for ~Bip=0 T: a, Zoom-in of Fig. 7.6. In the central
lobe of the envelope we observe sub-critical current features which also show
up in the Josephson inductance in b, indicated by black arrows. b, The corre-
sponding Josephson inductance obtained at zero current bias.

The Josephson inductance reproduces the smaller oscillations of the central lobe of
the envelope caused by the attached superconducting loop. The inner sub-critical
current features are responsible for an overall reduced Ic of the array. Therefore,
these features seem to be reflected in the L(Bz) curve. The most prominent peaks
are highlighted by the black arrows.

138



7.6 Josephson Inductance

R (kΩ)

0

5

10

cu
rr
en
t
bi
as

(µ
A
)

0.0

-0.5

0.5

perpendicular magnetic field Bz (mT)

in
du

ct
an

ce
(n
H
)

-0.5 0.5-1.0 1.0

a

b

2.5

7.5

By=+75 mT

0
225

275

325

Figure 7.13: Diffraction pattern for By=75 mT: a, The sub-critical current features
(mentioned in Fig. 7.12) disappear at finite in-plane fields. Except a from Bz
nearly independent resistance remains, in this colorplot at +'-0.2µA and '-
0.13µA (indicated by white arrows). b, Corresponding Josephson inductance,
measured at zero current bias. The maximum critical current goes over to
a minimum at zero out-of-plane field. The offset on the x-axis was removed
manually in order to compensate the misalignment of the in-plane field.

Moreover, we observe a phase shift of the loop oscillations with respect to By. The
center of the central lobe has a maximum of the critical current around Bz=0 and
thus a minimum in the inductance. When an in-plane field By is added, for in-
stance of By=+75 mT, the situation is reversed. The plots in figure 7.13 show a
mininum/maximum of the critical current/Josephson inductance. This By dependent
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7 Multiterminal Josephson Junction Array

phase shift is studied by Johanna Berger and will be discussed in her thesis [178].

Another finding is the simultaneously disappearance of the sub-critical current fea-
tures at finite in-plane fields in the I-V characteristics and in the Josephson inductance
(compare Figs. 7.12 and 7.13). However, a small resistance remains, which is high-
lighted in Fig. 7.13 by white arrows. The resistance occuring here at Idc '+0.2 µA
and -0.13 µA seems to be independent from Bz, but not from By, since it shows a
diode behavior. Furthermore, this resistance feature shows a negative differential re-
sistance, which ranges from ≈900 to ≈600 kΩ (see appendix E).

Both, the origin of the remaining and of the vanishing resistance features are not
understood and might be sample dependent. More experiments on new samples will
show whether this is the case or not.

So far, we performed mainly DC transport measurements in the first measurement
session, because the Q-factor of our resonator was far to low (Q<7). Therefore,
especially the L(I) curves had an insufficient quality for a meaningful evaluation.
The reason for this low Q-factor could have been the cold ground, which the flux line
and the resonator shared together in order to save a wire against which our piezo-
rotator would have had to work. But, by sharing the cold ground, the resonator might
have seen the cable inductance of the flux line source connection.
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7.7 Discussion

7.7 Discussion
The experiment of our first multiterminal Josephson junction device showed first
promising and exciting results. It is possible to produce and to obtain the Josephson
inductance from a homogeneous MTJJ array. The sample MTJJA has 400 3TJJs in
series, which have a sufficient high inductance ('220 nH). This means that using the
same layout for future samples, 200 3TJJs in series will produce at least >100 nH
Josephson inductance - sufficient for a good sample characterisation. The attached
superconducting loops can serve as a knob to tune the phase difference, which we
controlled with an global out-of-plane magnetic field. To install a superconducting
flux line, which runs accross the entire array with the same distance to the loops with
a sufficient high critical current, has not yet been attempted.

The appearing asymmetries between the critical currents of positive and negative Bz,
which appear at finite By, deserve a deeper analysis. The side lobe effect (SLE) seems
to mainly be present in the envelope of the diffraction pattern. In order to examine if
this impression is true, a quick and easily realisable experiment could be carried out.
Because the SLE is a signature in the envelope, the loops are probably unimportant
for the effect and thus the loops can be just removed. The simplest way is to fabricate
a new sample, where multiple (e.g. 10) 3TJJs of the same 120° geometry of sample
MTJJA are etched in series into an Al/InAs strip. So far, we measured the SLE via
dc current-voltage curves and thus an array is obsolete for a quick validation. But,
about ten 3TJJs in series ensure that unique signatures of an individual 3TJJ, caused
by a defect for instance, are smoothed out by the number of junctions in series.
Another experiment building upon the described one above, is to fabricate a device
similar to the sample MTJJA, but with a different Josephson junction geometry.
Using a 90°, 90° and 180° layout, which means that one junction is arranged perpen-
dicular to the two other ones, should reveal whether the 120° geometry plays any role
for the SLE.

These two experiments would be a quick and easy way to check if the loop or the
layout of the 3TJJ are important for the SLE or not. Both devices can be put
on a single chip and be characterised in one measurement session. Step by step,
insights into the physics of the 3TJJs can be gathered for a more and more clear
picture. Overall, further experiments are necessary to have sufficient information for
a theoretical analysis.
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8 Summary

In this thesis, a study of superconductor-seminconductor weak links in the presence
of spin-orbit and Zeeman fields is presented. Besides the standard I-V characteris-
tics, we have measured the Josephson inductance, whose current bias dependence is a
direct mirror of the current-phase relation. This allowed us to study the response of
the Andreev bound states to various physical quantities, e.g. temperature, magnetic
and electric fields or current.

After elaborating a fabrication procedure and performing measurements to prechar-
acterise the Al/InAs heterostructure, we installed a RLC resonator technique to de-
termine the Josephson inductance. With this resonator, we have shown that it is
possible to investigate a Josephson junction device in the resistive and non-resistive
state in the same cooldown. Characterising both states together can provide an com-
prehensive picture of the Josephson physics of a device, which in our case is based on
a two-dimensional Al/InAs heterostructure.

The first part for drawing an all-encompassing picture of a Josephson device is pre-
sented in chapter 4. We conducted an experiment on an array made of 2250 two-
terminal Josephson junctions in series. The result of the Josephson inductance mea-
surements include i.a. the determination of the average transmisison coefficient of
the ABS τ , the maximum current I0, the number of ABS carrying channels N , the
induced gap in the proximitised InAs ∆∗ and the barrier parameter γB.
Direct current-voltage curves revealed an uniform Fraunhofer diffraction pattern con-
firming the homogeneity of the ensemble of rectangular Josephson junctions. The
shape of this pattern is independent of the value of τ , while in contrast, the diffrac-
tion pattern in the inductance is strongly influenced by τ .

The main goal of this thesis was to study the Josephson effect of two-terminal Joseph-
son junctions in the presence of spin-orbit and Zeeman fields. If both fields are present,
inversion and time-reversal symmetry are broken at the same time and we observe a
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8 Summary

rectification effect of the supercurrent. The observations are described in chapter 5
and 6.
Non-reciprocal behaviour shows up in the difference of the positive and negative criti-
cal currents, if a magnetic field is applied perpendicular to the current direction. This
superconducting diode effect (SDE) reaches an absolute maximum at By ' ±75 mT
and starts to vanish for higher magnetic fields. We relate the suppression of the SDE
with the disappearence of higher harmonics in the current-phase relation, since the
distortion of the CPR is a consequence of a cosine term.
Furthermore, we studied the magnetochiral anisotropy for resistances in the dissi-
pative fluctuation regime. In analogy, we introduced the magnetochiral anisotropy
coefficient for supercurrents γL, which we studied for all three magnetic field direc-
tions via the Josephson inductance. Our theory colleagues from the group of Prof. J.
Fabian confirm our observations with a semi-quantitative model (see supplementary
information in [32]).
With these findings, we make an important contribution to the possible future imple-
mentation of superconducting components, e.g. a Josephson rectifier for microwave
quantum electronic circuits or novel superconducting computing devices.

Moreover, the magnetochiral effect deep in the superconducting regime shows a sign
change for increasing magnetic fields at By '200 mT. Such a sign change is also re-
flected in the difference of the critical currents. However, in contrast to other works
[159][158] we do not observe a reappearance of the sign change, neither in the critical
currents nor in the MCA coefficient γL so far.
The Josephson inductance further allowed us to determine the influence of the intrinsic
spin-orbit Dresselhaus term, which originates from the Zincblende crystal structure of
the InAs. For this purpose, we produced the to sample 1 identical sample 3, but with
the current flowing in the [110] crystal lattice direction of the InAs. By comparing
the mangetochiral anisotropy coefficients for supercurrents of both samples, we can
assign a value 0.67 meV nm to β.

In our last experiment, we extended the Josephson junctions by a third supercon-
ducting lead and performed a first experiment on multiterminal Josephson junction
devices, which have, according to theory, the potential to accomodate synthetic Weyl
singularities.
In chapter 7, we present the results of a characterisation measurement of a multitermi-
nal Josephson junction array. This array has 400 three-terminal Josephson junctions
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in series, whereby two of three leads are part of a superconducting loop. The attached
loop makes it possible to vary the phase difference between the leads of the trijunc-
tions independently.
In this multiterminal Josephson junction device, the superconducting diode effect is
equally present as it is the case in the two-terminal Josephson junction arrays.
The envelope of the diffraction pattern, however, cannot be simply fitted with a mere
Fraunhofern pattern function. The smaller oscillations in the diffraction pattern can
be attributed to the loops, but the product of a sinc function and of SQUID oscilla-
tions does not match the critical currents of the experimental data.
Furthermore, we obtained an asymmetry of the critical currents between positive and
negativ out-of-plane magnetic fields, if an in-plane field is applied in y-direction. This
asymmetry, particularly noticeable in the side lobes, behaves different than the su-
perconducting diode effect. Although the SDE and SLE (side lobe effect) have same
magnitude at By=+75 mT, the SLE does, in contrast to the SDE, not disappear with
increasing in-plane magnetic fields. Moreover, we observe a different in-plane field
angle dependence between the SLE and the SDE.

Overall, this work establishes the Josephson inductance as a striking diagnostic tool
for unconventional Josephson junctions. Many further experiments are conceivable
with our methods, and questions remain to be answered, such as the sign change of
the magnetochiral anisotropy γL.
There is great potential in studying multiterminal Josephson junctions, which could
give rise to topological protected states or things that no one has thought of yet. With
this work, we have fundamentally deepened the understanding of the building blocks
of semiconductor-superconductor devices, which is essential for further research and
future applications.
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A Fabrication Recipe

Cleaving and Cleaning

1. Cleaving:

a) Spin optical resist (e.g. S1318) at 1000 rpm on wafer.

b) Bake out at 80◦C for 5 mins

c) Cleave long parts with the use of hand diamond scriber and two tweezers - size
depends on the planed device (3-4.5 mm)

d) Cleave short edges with scriber, power = 5, one time

e) Check in optical microscope the surface and note the crystallographic axis

2. Cleaning:

a) Sonicate in acetone for 10 s

b) Clean sample in two beakers for 1.5 mins with acetone in each, IPA 1 min

c) Blow dry with N2 pistol

Mesa Etch

1. Resist:

a) Spin PMMA 950 K 4 % (Anisol) @ 4000 rpm

b) Bake out at 120◦C for 10 mins

2. Exposure and Develop:

a) Auriga SEM: aperture: 30 µm , EHT: 30 kV , area dose: 200 µC, spacing: 10 nm

b) Develop: swirl 60 s in MIBK 1:3, 30 s in IPA, blow dry with N2 pistol

3. Al Etch:

a) Preparation: Insert 3 ml Etchant Type D from Transene company via glas
pipette into beaker and thermalise it to ≈ 50◦C±2◦C on the hot plate together
with a second beaker filled with distilled water. Prepare third beaker with
distilled water at room temperature
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A Fabrication Recipe

b) Etching: Swirl sample for 7 s in Transene Al etch

c) Stop process: 20 s in H2O @ 50◦C and 40 s in H2O @ RT

4. Mesa Etch:

a) Preparation: Dilute 20 g citric acid in 20 ml water. Fill large beaker with: H2O
: C6H8O7 : H3PO4 : H2O2 (88 : 22 : 1.2 : 2) and use a magnetic stirrer

b) Turn off magnetic stirrer. Put sample into solution for 5 mins (≈ 300 nm etching
depth)

c) Stop process: 20 s in H2O and 40 s in second beaker with H2O @ RT each

d) Wash off resist @ 3 min in Aceton, 1 min in IPA, blow dry with N2

Al Etch

1. Resist:

a) Spin PMMA 950 K4 % (Anisol) @ 4000 rpm

b) Bake out at 120◦C for 10 mins

2. Exposure:

a) Auriga SEM: aperture: 30 µm , EHT: 30 kV, area dose: 350 µC, spacing: 5 nm

b) Develop: swirl 60 s in MIBK 1:3, 30 s in IPA, blowdry with N2 pistol

3. Etch resist residues

a) Either by RIE: duration: 10 s, gas: O2[20 sccm], pressure: 100 mTorr, power:
5 W

b) Or new plasma asher: duration: 10 s, gas: O2, pressure: 3 mbar, power: 12 %,

4. Al etch:

a) Preparation: Insert 3 ml Etchant Type D from Transene company via glas
pipette into beaker and thermalise it to ≈ 50◦C±2◦C on the hot plate together
with second beaker filled with distilled water. Preparde third beaker with dis-
tilled water at RT

b) Etching: Swirl sample for 2 s in Transene Al etch

c) Stop process: 20 s in H2O @ 50◦C and 40 s in H2O @ RT

d) Wash off resist @ 3 min in Aceton, 1 min in IPA, blow dry

e) Check result in SEM
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Atomic Layer Deposition

1. Resist:

a) Spin PMMA 950 K 4 % (Anisol) @ 4000 rpm

b) Bake out @ 120◦C for 10 mins

a) Spin PMMA 200 K 9 % (Anisol) @ 4000 rpm

b) Bake out @ 120◦C for 10 mins

2. Exposure:

a) Auriga SEM: aperture: 120 µm , EHT: 30 kV , area dose: 280 µC, spacing:
40 nm

b) Develop: swirl 60 s in MIBK 1:3, 30 s in IPA, blow dry with N2 pistol

3. ALD:

a) Grow desired thickness of AlOx at 80°C. 10 h preconditioning. Start with TMA.

b) After process has finished: Put sample in lift-off beaker filled with acetone and
put beaker on hot plate (60◦C) for several hours.

c) Lift-off in Acetone. Put sample into IPA and check result in the optical micro-
scope. Use injection if necessary. Blow dry with N2 pistol.

Topgate Deposition

1. Resist:

a) Spin PMMA 950 K 4 % (Anisol) @ 4000 rpm

b) Bake out at 120°C for 10 mins

2. Exposure:

a) Auriga SEM: aperture: 30 µm , EHT: 30 kV , area dose: 200 µC, spacing: 10 nm

b) Develop: swirl 60 s in MIBK 1:3, 30 s in IPA, blowdry with N2 pistol

3. Evaporation:

a) Evaporate 5 nm Ti, xx nm Au in Univex B.

4. Lift-off

a) Acetone bath overnight at 60◦C

b) Lift-off in Acetone. Put sample into IPA and check result in the optical micro-
scope. Use injection if necessary. Blow dry with N2 pistol.
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B Offset in Data of Sample 1

When we investigated sample 1, described in chapter 4, 5 and 6, we were confronted with
certain offsets in the L(I) data on the vertical and horizontal scale. Figure B.1 shows the
L(I) curves from Fig. 5.5 in chapter 5. This time, however, without the substraction of
the offsets in the current bias and inductance values. The reason for the discrepancy on
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Figure B.1: Raw data from sample 1 from Fig. 5.5 plotted without applied offset.

the y-scale was a small residual field in the superconducting coil of the big 8 T magnet,
caused by trapped vortices. These vortices contributed a few mT to the total in-plane
magnetic field. If one nominally applies ±100 mT, the actual applied field was therefore
in the order of +98/-102 mT. This results in a recogniseable difference in L0 of a few percent.

For the whole dataset of sample 1 discussed in chapter 4 and 5, we substracted a constant
current offset of +130 nA. Such an offset comes from voltage differences between the MFLI
lock-in (our current source instrument) and the cold ground of the resonator. The current
is defined by the voltage difference and the 1 kΩ decoupling resistor RD1 of the RLC circuit.
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B Offset in Data of Sample 1

For the subsqeuent measurements after sample 1,i.e. sample 2, sample 3 and the multiter-
minal Josephson junction array, we solved the problem for the vertical offset by warming
up the magnetic coils before a new measurement session or by a demagnitisation procedure.
We got rid off the horizontal offset by measuring the current bias directly with a 100 Ω
preresistor.
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C Further Data of the Fraunhofer
Pattern of Sample 1

In this section, we present additional Fraunhofer diffraction pattern data from sample 1,
complementing the data shown in chapter 5.4.

C.1 Gate and Angle Dependence of the Diode Effect
Figure C.1a shows the gate dependence of the superconducting diode effect for different
magnetic fields along ŷ-direction. The difference between I+

c and I−c , normalised by the
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Figure C.1: a, Gate dependence of the non-reciprocal current at By =+50,+75 and
+125 mT. b, Angle dependence of the diode effect at ~Bip=+100 mT together
with a sine fit.

maximum value of I+
c , is nearly independent of the gate what confirms the observations

made by the gate dependent magnetochiral anisotropy coefficient γL (see section 5.3). Be-
low -2 V, we observe a breakdown due to the depletion of the 2DEG.
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C Further Data of the Fraunhofer Pattern of Sample 1

In Fig. C.1b, the angle dependence of the non-reciprocal current at ~Bip=+100 mT is shown,
extracted from the main lobe of the measured Fraunhofer patterns. Here we see again the
expected sinusoidal shape.

C.2 Periodicity of the Lobes
In the interference pattern, shown in chapter 5.4, we observe a change of the periodicity of
the lobes with increasing in-plane fields. This effect seems to occur regardless of whether the
field is applied in x̂ or in ŷ-direction. Figure C.2a shows a zoom-in of Fig. 5.10a with focus
on the main and the first side lobe of the diffraction pattern. The deviatiaons lie within
10 % (see Fig. C.2b). Interestingly, if we take a closer look on the in-plane field angle
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Figure C.2
a, Zoom-in on the interference pattern for
different Bx discussed in chapter 5.4. b,
Period between main and first side lobe Bz
as a function of Bx.

dependence of the Fraunhofer pattern for ~Bip=+100 and +150 mT (Figs. C.3a and c), we
see a different behaviour. The corresponding figures C.3b and d illustrate the positional
change of the side lobes with respect to the angle of the applied magnetic field. In case
of ~Bip=+100 mT the periodicity follows no distinct pattern, whereas for ~Bip=+150 mT, a
clear angle dependence is observed.

So far, we have no explanation for these observations. Studies of Josephson junctions
exposed to in-plane fields or next to Abrikosov vortex affecting the shape of the Fraunhofer
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C.2 Periodicity of the Lobes

pattern have been reported in [137] and [179]. However, effects such as flux focussing,
suppression of the superfluid stiffness or the influence of vortices in the film are so far not
suitable for an adequate explanation. Furthermore, the facts described here go beyond the
relevant research topics of this thesis.
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Figure C.3: Evaluation of the FP side lobe positions in Bz. a, Fraunhofer pattern obtained
for ~Bip = +100 mT applied in different angles. b, This panel shows how the
first, second and third side lobe of the FP change the relative position for fields
applied in different angles in-plane normalised to the FP side lobe positions for
Bip(θ=270°).

157





D Magnetochiral Anisotropy in the
Normal State

To see whether and how the magnetochiral anisotropy looks like above the critical temper-
ature, we took the experimental data from the R(T ) measurements of sample 2 (shown in
chapter 5.2) and averaged the values from 2.4 to 3 K. The result is plotted in D.1 on the
left y-axis together with theoretical results from tight-binding simulations from A. Costa.
The experimental and theoretical results show an extremely small MCA effect in the order
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Figure D.1: MCA above Tc: Experimental (left-) and theoretical (right axis) normalised
resistances at in-plane fields of +90 mT.

of 10−5, much smaller than the magnetochiral coefficient γL and is close to the limit of the
resolution of our measurement devices.
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E Fine Structures in the Diffraction
Pattern of Sample MTJJA

The colorplot in E.1a, shows the same data as in 7.13, but here for a smaller z-scale range
(i.e. 0-1.6 kΩ). The white arrows highlight a from B⊥ independent feature, whose resistance
becomes smaller for increasing current bias. This feature, omnipresent in all diffraction pat-
tern measurements, becomes smaller with increasing in-plane magnetic fields, probably due
to the suppression of the induced gap in the InAs. Moreover, it shows a small tilt along Bz

(not shown here), if ~Bip is applied in x̂. This tilt is inverted by inverting Bx.

Another interesting observation are small resistances in the main lobe of the envelope, where
no dissipation should be present. These features (indicated by white arrow in Fig. E.1b)
show a regular pattern and appear only for positive and negative in-plane magnetic fields
applied between θ=45° to 315° (i.e. ~Bip parallel to x̂). If the in-plane field is applied in
ŷ, as in Fig. E.1a, the subcritical currents are featureless. We made the observation of
these features for ~Bip=75 mT, other measurements where not accurate enough. Because
this pattern depends on the orientation of ~Bip and shows a robust regularity, this feature
might not be caused by a defect or by an unregular three-terminal Josephson junction.
Experiments on new samples can give an answer whether this pattern originates from an
individual 3TJJ or not.
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E Fine Structures in the Diffraction Pattern of Sample MTJJA
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