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Zusammenfassung 

 

Die Theorie der selbst-organisierten Kritikalität 

als neurodynamisches Korrelat des 

Bewusstseins: Ein neurophysiologischer Ansatz 

zur Messung von Bewusstseinszuständen anhand 

EEG-basierter Komplexitätsparameter 

 

Hintergrund und Zielsetzung 

Diese Arbeit basiert auf der Hypothese, dass der aus 

der Physik stammende theoretische Ansatz der 

selbstorganisierten Kritikalität auf die neuronale 

Dynamik des menschlichen Gehirns angewendet 

werden kann. Aus der Perspektive der 

Bewusstseinsforschung ist dies besonders attraktiv, 

da die kritische Gehirndynamik eine Nähe zu einem 

Phasenübergang impliziert, der mit optimierten 

Informationsverarbeitungsfunktionen sowie dem 

größten Repertoire an Konfigurationen verbunden 

ist, die ein System während seiner zeitlichen 

Entwicklung durchläuft. Daher könnte die 

selbstorganisierte Kritikalität als neurodynamisches 



Korrelat für das Bewusstsein dienen, das die 

Möglichkeit bietet, empirisch überprüfbare 

neurophysiologische Indizes abzuleiten, die zur 

Charakterisierung und Quantifizierung von 

Bewusstseinszuständen geeignet sind. Ziel dieser 

Arbeit war es, die Anwendbarkeit der 

selbstorganisierten Kritikalität als hypothetisches 

Korrelationsmaß für das Bewusstsein experimentell 

zu untersuchen. Zu diesem Zweck sollten auf der 

Grundlage der Analyse von drei 64-Kanal-EEG-

Datensätzen die folgenden Forschungsfragen 

beantwortet werden: 

(i) Lassen sich auf der Ebene des EEGs Signaturen 

selbstorganisierter Kritikalität in Form einer 

skalenfreien Verteilung neuronaler Lawinen und des 

Vorhandenseins temporaler Autokorrelationen 

(LRTC) in der Amplitude neuronaler Oszillationen 

finden?  

(ii) Sind Kritikalitätsmerkmale geeignet, um 

Bewusstseinszustände im Spektrum des Wachseins 

zu differenzieren? 



(iii) Kann die neuronale Dynamik durch mind-body 

Interventionen in Richtung des kritischen Punktes 

eines Phasenübergangs verschoben werden, der mit 

einer optimierten Informationsverarbeitungsfunktion 

verbunden ist?  

(iv) Kann eine eindeutige Beziehung zu anderen 

nichtlinearen Komplexitätsmerkmalen und 

Leistungsspektraldichteparametern identifiziert 

werden?  

(v) Spiegeln EEG-basierte Kritikalitätsmerkmale 

individuelle Persönlichkeitsmerkmale wider?  

 

Material und Methoden  

Studie (1): Reanalyse: Dreißig meditationserfahrene 

Teilnehmer (Durchschnittsalter 47 Jahre, 11 

Frauen/19 Männer, Meditationserfahrung von 

mindestens 5 Jahren Praxis oder mehr als 1000 

Stunden Gesamtmeditationszeit) wurden mit 64-

Kanal-EEG während einer Sitzung gemessen, die 

aus einem aufgabenfreien Ruhezustand, einer 

Lesebedingung und drei Meditationsbedingungen 



(gedankenlose Leere, Präsenz und fokussierte 

Aufmerksamkeit) bestand.  

Studie (2): 64-Kanal-EEG wurde von 34 Teilnehmern 

(Durchschnittsalter 36,3 ±13,4 Jahre, 24 Frauen/10 

Männer) vor, während und nach einer 

professionellen Klangschalenmassage 

aufgezeichnet. Darüber hinaus wurden 

psychometrische Daten erhoben, darunter die 

Absorptionskapazität, definiert als die Fähigkeit 

Aufmerksamkeitsressourcen für sensorische und 

imaginative Erfahrungen einzusetzen, gemessen mit 

der Tellegen-Absorptionsskala (TAS-D), subjektive 

Veränderungen des Körpergefühls, des emotionalen 

Zustands und des mentalen Zustands (CSP-14) 

sowie die Phänomenologie des Bewusstseins (PCI-

K).  

Studie (3): Elektrophysiologische Daten (64 Kanäle 

von EEG, EOG, EKG, Hautleitwert und Atmung) 

wurden von 116 Teilnehmern (Durchschnittsalter 

40,0 ±13,44 Jahre, 83 Frauen/ 33 Männer) – in 

Zusammenarbeit mit dem Institut für Psychologie, 

Bundeswehruniversität München -während eines 



aufgabenfreien Ruhezustands aufgezeichnet. Das 

individuelle Level der sensorischen 

Verarbeitungssensibilität wurde mit der High 

Sensitive Person Scale (HSPS-G) bewertet.  

Die Datensätze wurden mit Analysewerkzeugen aus 

der Theorie der selbstorganisierten Kritikalität 

(trendbereinigende Fluktuationsanalyse, neuronale 

Lawinenanalyse), nichtlinearen 

Komplexitätsalgorithmen (Multiskalenentropie, 

fraktale Dimension nach Higuchi) und der 

Leistungsspektraldichte analysiert. In Studie 1 und 2 

wurden die Aufgabenbedingungen kontrastiert und 

die Effektstärken mit einem gepaarten zweiseitigen t-

Test verglichen. Die t-Werte wurden anhand der 

Falscherkennungsrate für multiples Testen korrigiert. 

Zur Berechnung der Korrelationen zwischen den 

EEG-Merkmalen wurde die Spearman- 

Rangkorrelation verwendet, nachdem mit dem 

Shapiro-Wilk-Test festgestellt worden war, dass die 

Verteilung nicht für parametrische Tests geeignet 

war. Darüber hinaus wurde in Studie 1 eine 

Diskriminanzanalyse durchgeführt, um die 



Klassifizierungsleistung der EEG-Merkmale zu 

bestimmen. Hier wurden eine partielle Kleinste-

Quadrate-Regression (Englisch: Partial Least 

Squares Regression) und eine Analyse der 

Grenzwertoptimierungskurve (Englisch: receiver 

operating charactersitic, ROC) angewandt. Um 

festzustellen, ob die EEG-Merkmale individuelle 

Charaktereigenschaften widerspiegeln, wurde das 

individuelle Level der Absorptionskapazität (Studie 

2) und der sensorischen Verarbeitungssensibilität 

(Studie 3) mit den EEG-Merkmalen unter 

Verwendung der Spearman- Rangkorrelation 

korreliert. 

 

Ergebnisse 

Signaturen selbstorganisierter Kritikalität in Form 

einer skalenfreien Verteilung neuronaler Lawinen 

und zeitlichen Autokorrelationen (LRTCs) in der 

Amplitude neuronaler Oszillationen wurden in drei 

verschiedenen EEG-Datensätzen nachgewiesen. 

Sowohl EEG-Kritikalität als auch 

Komplexitätsmerkmale waren geeignet, 



unterschiedliche Bewusstseinszustände zu 

charakterisieren. In Studie 1 zeigten alle drei 

meditativen Zustände im Vergleich zum 

Ruhezustand signifikant reduzierte 

Autokorrelationen mit moderaten Effektgrößen 

(Präsenz: d= -0,49, p<.001; gedankenlose Leere: d= 

-0,37, p<.001; und fokussierte Aufmerksamkeit: d= -

0,28, p=.003). Der kritische Exponent war geeignet, 

um zwischen fokussierte Aufmerksamkeit und 

Präsenz zu unterscheiden (d= -0,32, p=.02). In 

Studie 2 änderten sich die Kritikalitätsparameter im 

Verlauf des Experiments signifikant, wobei die Werte 

eine Verschiebung in Richtung des kritischen 

Regimes während der Klangbedingung suggerieren. 

Beide Analysen des ersten und zweiten Datensatzes 

ergaben, dass der kritische Exponent signifikant 

negativ mit Werten der Entropie, dem aus der 

trendbereinigende Fluktuationsanalyse 

resultierenden Skalierungsexponenten, der das 

Ausmaß der zeitlichen Autokorrelationen angibt, 

sowie der fraktalen Dimension nach Higuchi in jeder 

Bedingung korreliert war. Darüber hinaus wurde 



festgestellt, dass der kritische Skalierungsexponent 

signifikant negativ mit dem Persönlichkeitsmerkmal 

der Absorption korreliert (Spearman's ρ= -0,39, p= 

.007), während ein Zusammenhang zwischen der 

kritischen Dynamik und dem Level der sensorischen 

Verarbeitungssensitivität nicht nachgewiesen 

werden konnte (Studie 3).  

 

Schlussfolgerung 

Die Ergebnisse dieser Arbeit legen nahe, dass die 

neuronale Dynamik durch das Phänomen der 

selbstorganisierten Kritikalität reguliert wird. EEG-

basierte Kritikalitätsmerkmale erwiesen sich als 

sensitiv, um experimentell induzierte Veränderungen 

des Bewusstseinszustandes zu erfassen. Darüber 

hinaus wurde ein eindeutiger Zusammenhang mit 

weiteren nichtlinearen Maßen, die den Grad der 

neuronalen Komplexität - in Form von statistischer 

Selbstähnlichkeit - bestimmen, festgestellt. Somit 

scheint die selbstorganisierte Kritikalität als Korrelate 

für das Bewusstsein geeignet zu sein, mit dem 

Potential Bewusstseinszuständen zu quantifizieren 



und zu charakterisieren. Die Übereinstimmung des 

Modells mit den derzeit einflussreichsten Theorien 

auf dem Gebiet der Bewusstseinsforschung wird 

diskutiert.  
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Phasenübergang, Komplexität, optimale 
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Abstract 

 

Self- organized criticality as a neurodynamical 

correlate of consciousness: 

A neurophysiological approach to measure states of 

consciousness based on EEG-complexity features 

 

Background and Objectives 

This thesis was based on the hypothesis that the 

physics-derived theoretical framework of self-

organized criticality can be applied to the neuronal 

dynamics of the human brain. From a consciousness 

science perspective, this is especially appealing as 

critical brain dynamics imply a vicinity a phase 

transition, which is associated with optimized 

information processing functions as well as the 

largest repertoire of configurations that a system 

explores throughout its temporal evolution. Hence, 

self-organised criticality could serve as a 

neurodynamical correlate for consciousness, which 

provides the possibility of deriving empirically 

testable neurophysiological indices suitable to 



characterise and quantify states of consciousness. 

The purpose of this work was to experimentally 

examine the feasibility of the self-organized criticality 

theory as a correlate for states of consciousness. 

Therefore, it was aimed at answering the following 

research questions based on the analysis of three 64 

channel EEG datasets: 

(i) Can signatures of self-organized criticality be 

found on the level of the EEG in terms of scale-free 

distribution of neuronal avalanches and the presence 

of long-range temporal correlations (LRTC) in 

neuronal oscillations?  

(ii) Are criticality features suitable to differentiate 

state of consciousness in the spectrum of 

wakefulness? 

(iii) Can the neuronal dynamics be shifted towards 

the critical point of a phase transition associated with 

optimized information processing function by mind-

body interventions?  

(iv) Can an explicit relationship to other nonlinear 

complexity features and power spectral density 

parameter be identified?  



(v) Do EEG-based criticality features reflect 

individual temperament traits?  

 

Material and Methods  

(1): Re-analysis: Thirty participants highly proficient 

in meditation (mean age 47 years, 11 females/19 

males, meditation experience of at least 5 years 

practice or more than 1000 h of total meditation time) 

were measured with 64-channel EEG during one 

session consisting of a task-free baseline resting, a 

reading condition and three meditation conditions, 

namely thoughtless emptiness, presence monitoring 

and focused attention.  

(2): 64-channel EEG was recorded from 34 

participants (mean age 36.0 ±13.4 years, 24 females/ 

10 males) before, during and after a professional 

singing bowl massage. Further, psychometric data 

was assessed including absorption capacity defined 

as the individual’s capacity for engaging attentional 

resources in sensory and imaginative experiences 

measured by the Tellegen-Absorption Scale (TAS-



D), subjective changes in in body sensation, 

emotional state, and mental state (CSP-14) as well 

as the phenomenology of consciousness (PCI-K).  

(3): Electrophysiological data (64 channels of EEG, 

EOG, ECG, skin conductance, and respiration) was 

recorded from 116 participants (mean age 40.0 ±13.4 

years, 83 females/ 33 males) – in collaboration with 

the Institute of Psychology, Bundeswehr University 

Munich - during a task-free baseline resting state. 

The individual level of sensory processing sensitivity 

was assessed using the High Sensitive Person Scale 

(HSPS-G).  

The datasets were analysed applying analytical tools 

from self-organized criticality theory (detrended 

fluctuation analysis, neuronal avalanche analysis), 

nonlinear complexity algorithms (multiscale entropy, 

Higuchi’s fractal dimension) and power spectral 

density. In study 1 and 2, task conditions were 

contrasted, and effect sizes were compared using a 

paired two-tailed t-test calculated across 

participants, and features. T-values were corrected 

for multiple testing using false discovery rate. To 



calculate correlations between the EEG features, 

Spearman’s rank correlation was applied after 

determining that the distribution was not appropriate 

for parametric testing by the Shapiro-Wilk test. In 

addition, in study 1, a discrimination analysis was 

carried out to determine the classification 

performance of the EEG features. Here, partial least 

squares regression and receiver operating 

characteristics analysis was applied. To determine 

whether the EEG features reflect individual 

temperament traits, the individual level of absorption 

capacity (study 2) and sensory processing sensitivity 

(study 3) was correlated with the EEG features using 

Spearman’s rank correlation.  

 

Results 

Signatures of self-organized criticality in the form of 

scale-free distribution of neuronal avalanches and 

long-range temporal correlations (LRTCs) in the 

amplitude of neural oscillations were observed in 

three distinct EEG-datasets. EEG criticality as well as 

complexity features were suitable to characterise 



distinct states of consciousness. In study 1, 

compared to the task-free resting condition, all three 

meditative states revealed significantly reduced long-

range temporal correlation with moderate effect sizes 

(presence monitoring: d= -0.49, p<.001; thoughtless 

emptiness: d= -0.37, p<.001; and focused attention: 

d= -0.28, p=.003). The critical exponent was suitable 

to differentiate between focused attention and 

presence monitoring (d= -0.32, p=.02). Further, in 

study 2, the criticality features significantly changed 

during the course of the experiment, whereby values 

indicated a shift towards the critical regime during the 

sound condition. Both analyses of the first and 

second dataset revealed that the critical exponent 

was significantly negatively correlated with the 

sample entropy, the scaling exponent resulting from 

the DFA denoting the amount of long-range temporal 

correlations as well as Higuchi’s fractal dimension in 

each condition, respectively. In addition, the critical 

scaling exponent was found to be significantly 

negatively correlated with the trait absorption 

(Spearman's ρ= -0.39, p= .007), whereas an 



association between critical dynamics and the level 

of sensory processing sensitivity could not be verified 

(study 3).  

 

Conclusion 

The findings of this thesis suggest that neuronal 

dynamics are governed by the phenomena of self-

organized criticality. EEG-based criticality features 

were shown to be sensitive to detect experimentally 

induced alterations in the state of consciousness. 

Further, an explicit relationship with nonlinear 

measures determining the degree of neuronal 

complexity was identified. Thus, self-organized 

criticality seems feasible as a neurodynamical 

correlate for consciousness with the potential to 

quantify and characterize states of consciousness. 

Its agreement with the current most influencing 

theories in the field of consciousness research is 

discussed.  

 

Keywords: Self-organised criticality, correlates of 

consciousness, neural dynamics, phase transition, 



complexity, optimal information processing, 

meditation, sensory processing sensitivity, EEG 
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1. Introduction 

“If the doors of perception were cleansed 

every thing would appear to man as it is, infinite. 

For man has closed himself up, 

till he sees all things thro’ narrow chinks of his cavern.” 

William Blake, The Marriage of Heaven and Hell 

 

1.1 Altered States of Consciousness: History, 

definitions and measures 

Understanding and defining consciousness has 

challenged thinkers, philosophers, and scientist for 

decades. Nowadays, with the development of 

greater spatial and temporal resolution of 

neuroimaging methods, allowing to investigate 

neural correlates of states consciousness more 

deeply, consciousness research is reflourishing. 

However, as the contemporary philosopher David 

Chalmers puts it: “Consciousness poses the most 

baffling problems in the science of the mind. There is 

nothing that we know more intimately than conscious 

experience, but there is nothing harder to explain” [1, 

p. 200]. Therefore, no all-encompassing universally 
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agreed definition on consciousness exists and 

distinguishing often blurred lines between ordinary 

waking consciousness, the tip of the iceberg and 

alterations from it, the wide realms beneath, depicts 

a challenge. In the literature, consciousness has 

often been associated with wakefulness [2] and was 

defined by Searle (1993) as “those subjective states 

of sentience or awareness that begin when one 

awakes in the morning from a dreamless sleep and 

continue throughout the day until one goes to sleep 

at night or falls into a coma, or dies, or otherwise 

becomes, as one would say, ‘unconscious.” [3, p. 

312]. Accordingly, from the clinical perspective, 

unconsciousness is described as the “absence of 

perception of self and environment [4]. However, 

importantly, being awake does not necessarily imply 

to be conscious [5]. Keeping in mind that any 

definition would be tentative at best, for the scope of 

this thesis, consciousness will be referred to the first-

person perspective filled with qualia and sensual 

experience, the subjective awareness of both 

internal and external phenomena [6]. In this context, 
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consciousness corresponds to the capacity of any 

kind of experience, “a concept that is upstream to  

further distinctions, such as those between levels, 

those between global states of consciousness (e.g. 

the distinction between dreaming and wakeful 

consciousness), and those between local states of 

consciousness characterized in terms of specific 

conscious contents or phenomenal character” [7]. 

While the specific modulation of states of 

consciousness has already been utilized by ancient 

culture since prehistoric times [8], Western 

psychology opened up to this field of research in the 

beginning of the 20th century, when William James 

made the pioneering statement in this lectures on the 

varieties of religious experience that “our normal 

waking consciousness, rational consciousness as 

we call it, is but one special type of consciousness, 

whilst all about it, parted from it by the filmiest of 

screens, there lie potential forms of consciousness 

entirely different. We may go through life without 

suspecting their existence; but apply the requisite 

stimulus, and at a touch they are there in all their 
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completeness, definite types of mentality which 

probably somewhere have their field of application 

and adaptation. No account of the universe in its 

totality can be final which leaves these other forms of 

consciousness quite disregarded“ [9, pp. 378-378]. 

During that time psychology was mainly influenced 

by behaviourism concentrating on operant and 

classical condition to modify behaviour based on 

work from Ivan Pavlov [10], John B. Watson [11] and 

B. F. Skinner [12]. Also, psychoanalysis was driving 

the field established by Sigmund Freud [13], who 

believed that an individual’s personality had three 

components affected by unconscious processes. Out 

of Freud’s theories, a number of schools developed 

in Europe, such as the ‘individual psychology’ by 

Alfred Adler [14], the ‘will therapy’ by Otto Rank [15] 

and the theory of the collective unconsciousness and 

archetypes by Carl Jung [16]. In the early 1950s a 

third force called humanistic psychology arose 

highlighting the human potential including higher 

functions of the psyche and qualities empathy and 

love. This was mainly initiated by Carl Rogers, who 
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revolutionized psychotherapy with his client-centered 

approach [17] and Abraham Maslow, who elaborated 

on his prominent hierarchy of needs, a model 

including the concept of self-actualization, a 

development towards personal growth, fulfilment, 

appreciation of life and the realization of one’s 

abilities [18]. Within the zeitgeist of the late 60s, 

shaped by revolutionary cultural movements in the 

United States and a growing interest in Eastern 

spiritual systems, Maslow replaced the top of his 

hierarchy of human needs with the motivational level 

of self-transcendence [19]. In the same stance, 

Arnold M. Ludwig wrote in 1966: “Beneath man’s thin 

veneer of consciousness lies a relatively uncharted 

realm of mental activity, in nature and function of 

which have neither systematically explored nor 

adequately conceptualized”, firstly coining the term 

Altered States of Consciousness (ASC), which set a 

cornerstone for research into the spectrum in which 

experience may be organized. In this work, he 

defined ASCs as “any mental state(s), induced by 

various physiological, psychological, or 
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pharmacological maneuvers or agents, which can be 

recognized subjectively by the individual himself (or 

by an objective observer of the individual) as 

representing a sufficient deviation in subjective 

experience of psychological functioning from certain 

general norms for that individual during alert, waking 

consciousness” [20, p.225]. A year later, a small 

working group of psychologists aimed at “creating a 

new psychology that would honour the entire 

spectrum of human experience, including various 

non-ordinary states of consciousness” [21, p. 3]. 

Subsequently, the Association of Transpersonal 

Psychology was launched in 1967, also founding the 

Journal of Transpersonal Psychology [19]. 

Transpersonal psychology was devoted to higher 

order development. Lajoie and Shapiro executed a 

review of 40 definitions published during the first two 

decades of the beginning of transpersonal 

psychology concluding that it "is concerned with the 

study of humanity's highest potential, and with the 

recognition, understanding, and realization of unitive, 

spiritual, and transcendent states of consciousness" 
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[22, p.91]. Proceeding, Charles T. Tart collected 

existing work in this domain with the purpose “to 

make this a respectable field of investigation” and 

emphasized “that one could scientifically approach 

altered states of consciousness” for which he 

provided the following definition: “An altered state of 

consciousness for a given individual is one in which 

he clearly feels a qualitative shift in his pattern of 

mental functioning, that is, he feels not just a 

quantitative shift (more or less alert, more or less 

visual imagery, sharper, duller, etc.), but also that 

some quality or qualities of his mental processes are 

different” [23, pp 1 and 8]. Further, Tart used the term 

discrete states of consciousness defined as “a 

unique, dynamic pattern or configuration of 

psychological structures” [24, p.5]. Tart also pointed 

out that Western psychology tends to assume that “a 

healthy personality is one which allows the individual 

to be well-adjusted in terms of his culture” [25, p.86]. 

Thus, according to Walsh, the implementation of 

Eastern therapy drawn from Buddhist, Hindu and 

Taoist knowledge systems in the domain of 
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transpersonal psychology can “change the deeper 

beliefs underlying collective pathology that keep us 

identified with an erroneous self-sense, trapped at 

conventional levels of development, and unaware of 

the true nature of our mind and identity” He further 

states that “our ordinary state of mind is considerably 

more dysfunctional, uncontrolled and 

underdeveloped than we usually recognize. This 

results in an enormous amount of unnecessary 

personal, interpersonal and social suffering…it is 

possible to train and develop the mind beyond 

conventionally recognized limits and thereby 

overcome the usual dysfunction and lack of control. 

This can enhance happiness, wellbeing, and 

psychological capacities to remarkable degrees “[26, 

p.6]. Also, for Stanislav Grof, who focused on what 

he calls “technologies of the sacred” such as 

psychedelic drugs and specific breathing methods 

[27], the term altered states reflects the belief of 

mainstream psychiatrists “that only the everyday 

state of consciousness is normal and that all 

departures from it without exception represent 
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pathological distortions of the correct perception of 

reality and have no positive potential“ [21, p.5]. 

Clarifying that “Transpersonal psychology is 

interested in a significant subgroup of these states 

that have heuristic, healing, transformative and even 

evolutionary potential”, he coined the term 

“holotropic” state, literally translated as “oriented 

towards wholeness” [21, p.5, 19].  

In the early 90s, G. William Farthing characterized 

ASC as “a drastic change in the overall patterns of 

subjective experience, which is accompanied by 

major differences in the cognitive as well as 

physiological functions. For typical examples we can 

consider here such states as sleeping, hypnagogic 

and hypnotic states, a variety of meditative, mystical 

and transcendent experiences, and all of the 

psychedelic states of consciousness induced by 

drugs, etc” [28, pp.202-203]. Additionally, he 

structured his explanations in the following points: i) 

ASCs are not merely changes in the content of 

consciousness; ii) ASCs involve a changed pattern 

of subjective experience, not merely a change in one 
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aspect or dimension of consciousness; iii) ASCs are 

not necessarily recognized by the individual at the 

time that they are happening; they may be inferred 

afterwards; iv) ASCs are relatively short-term, 

reversible conditions; v) ASCs are identified by 

comparison to the individual’s normal waking state of 

consciousness; vi) The essence of a state of 

consciousness is the individual’s pattern of 

subjective experience, not his or her overt behavior 

or psychological response. Following the attempts to 

categorize ASCs, Fischer mapped a variety of 

conscious states on a perception-hallucination-

meditation continuum, differentiating between 

ergotropic and trophotropic arousal. While the first 

describes aroused, hyperaroused up to ecstatic 

states, the latter refers to tranquil and hypoaroused 

states [29]. Other authors conceptualized ordinary 

and ASC as a function of arousal and absorption [30]. 

In their work “psychobiology of altered states of 

consciousness” Vaitl and colleagues highlighted that 

a valid overarching model for ASCs is missing and 

remarked domains associate with alterations of 
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consciousness classified by the method of induction. 

Here, the categories span from spontaneously 

occurring (states of drowsiness, daydreaming, 

hypnagogic states, sleep and dreaming, near-death 

experiences), physically and physiologically induced 

(extreme environmental conditions such as pressure 

or temperature, starvation and diet, sexual activity 

and orgasm, respiratory manoeuvres), 

psychologically induced (sensory deprivation, 

homogenization, and overload, rhythm-induced 

trance, relaxation, meditation, hypnosis, 

biofeedback), to disease induced (psychotic 

disorders, coma and vegetative state, epilepsy) and 

pharmacologically induced [31]. Also, it has been 

argued that ASC share certain features regardless of 

their induction method [32]. Whereas the concept of 

altered states of consciousness is still under an 

ongoing debate [33, 34], much effort has been done 

to develop measures to assess the subjective 

experience of perceptual alterations. For instance, in 

1995 a series of 11 experiments containing different 

induction methods was compiled on 1133 probands 
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in six countries to test the hypothesis that ASC have 

major dimension in common regardless of their 

induction. Here, a phenomenological approach was 

used applying the Abnormal Mental States (ABZ) 

questionnaire. Psychometric results revealed three 

shared dimensions, namely “oceanic 

boundlessness”, ‘‘dread of ego dissolution’’ and 

‘‘visionary restructuralization’’ [35, 36]. From there 

on, the original version from Dittrich and colleagues 

was revised and refined [37] and a variety of different 

questionnaires were developed such as the 

Phenomenology of Consciousness Inventory (PCI) 

[38], the Mystical Experience Questionnaire [39] or 

the Ego-Dissolution Inventory [40]. For a comparison 

between the phenomenological descriptions of 

differently induced ASCs, the Altered States 

Database has been introduced recently, extracting 

data from a specified set of standardized 

questionnaires [41]. Whereas the above-mentioned 

metrics assess the subjective experience as a 

multidimensional phenomenon including domains 

such as perception, imagery or working memory, 
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core characteristics of an ASC experiences can be 

summarized as an joint alteration in the experience 

of space and time [42, 43], a “sense of timelessness 

and spacelessness” [44]. Importantly, however, ASC 

should not be based on changes in phenomenal 

consciousness per se [34] and 

neurophenomenological research programs where 

launched to bridge the gap between first- and third 

person approaches [45, 46]. Hence, to measure 

ASC, besides determining individual pattern in 

psychometric data, features of electrophysiological 

data underlying the induced altered state have to be 

characterized (Figure 1). On the search of 

electrophysiological markers for consciousness 

multiple neurobiological theories were proposed [47–

50]. Especially, the attempt of unrevealing the “neural 

correlates of consciousness (NCC) paved the way for 

scientific approaches to consciousness as based on 

the premise that phenomenal experience is entailed 

by neuronal activity in the brain [51]. Thus, the 

obstacle of the hard problem, which describes the 

obstacle of the qualia of subjective experience, the 
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philosophical question of ‘what it is like” [52] has not 

been hindered progress in consciousness research 

anymore [53].  

 

Figure 1: Neuroscientific approach to measure altered states of 

consciousness. To associate phenomenological changes to 

underlying neuronal mechanisms, ASCs can be induced 

experimentally. For this, besides substance-based approaches, 

a variety of non-pharmacological induction methods such as 

breathing techniques, meditation practices or sensory 

deprivation can be utilized. By investigating phenomenological 

states and electrophysiological patterns simultaneously, 

subjective experience can be mapped onto brain functions. 

Comparisons across studies capturing a broad range of ASC 

experiences may lead to the identification of common structures 

shared by differently induced ASCs. Modified from [54]. 
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A huge body of literatures exists correlating changes 

in oscillatory brain activity with ASC [31]. Several 

candidate neurophysiological parameters were 

investigated, comprising for instance frequency-

specific synchronization across different brain areas, 

local gamma response and event-related potentials 

such as the contingent negative variation or the P3b 

component. However, most of them have proved 

illusory [55]. For example, it has been observed that 

gamma synchrony increases during non-rapid eye 

movement (NREM) sleep, anaesthesia or seizures 

[56, 57] and the P3b was shown to have a low 

sensitivity regarding the discrimination of vegetative 

and minimally conscious states [58–60]. Thus, 

decades of research on the physical substrate of 

consciousness did not lead to an agreement on the 

topic [7]. Therefore, one of the most compelling 

topics in consciousness sciences still remains finding 

a reliable biomarker capturing states of 

consciousness. In other words, computational 

measures that successfully quantify global brain 

states from electrophysiological data are required as 
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indices of consciousness [61]. Also, instead of solely 

describing correlations, such markers should be 

embedded in functional frameworks explaining the 

mechanisms underlying changes in the state of 

consciousness [31]. In the literature, there is a 

consensus that consciousness relates to neural 

dynamical complexity, which can be assessed with 

quantitative measures [2, 62, 51, 55, 63]. 

Accordingly, novel indices capturing the degree of 

differentiation (the repertoire of different firing 

patterns) and integration (neural activity behaving as 

a single entity) could be applied and ASC can be 

approximated as the results of quantitative changes 

in the level of complexity [64, 55]. Investigating 

markers suitable to capture how neural signals 

combine, dissolve, and reconfigure over time would 

be of special interest not only, although especially in 

the field of psychotherapy research. Psychological 

and psychosomatic interventions aim at modifying a 

patient’s mindset, i.e. the emotional and cognitive 

disposition or the embodied self-perception. 

Therefore, a broad range of techniques enabling a 
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modification of the state of consciousness found their 

way in therapeutical practice [65]. For instance, the 

concept of mindfulness has been incorporated into a 

number of evidenced-based clinical interventions 

[66, 67]. It is assumable that changes in neuronal 

complexity patterns occur in the course of 

therapeutic processes and measures could be useful 

for the evaluation of effectiveness [68]. Further, from 

a clinical perspective, such analytical tools could be 

important for advances in diagnosis paving the way 

for determining generalizable fingerprints of 

disorders of consciousness [63]. 

In the following I will outline basic principles 

underlying the umbrella term “chaos and complexity” 

and introduce methods based on the dynamical 

system approach to capture brain state activity on 

multiple spatial-temporal scales. In particular, I will 

elaborate on the concept of self-organized criticality 

(SOC), originally stemming from physics. This model 

will be adapted to the brain dynamics and the 

usefulness of criticality measures as general gauges 

of information processing and potential classifiers for 



24 

 

discriminating global states of consciousness will be 

investigated.  

"The mind as a whole is self-similar 

no matter whether it refers to the large or the small." 

Anaxagoras, Fragment No. 12 (456 BC) 

 

1.2 Measuring the brain’s complexity 

In a special issue of the journal Science for its 125th 

anniversary in the year 2005, scientific knowledge 

gaps were addressed with 125 questions, which 

have not yet been solved. The most fundamental was 

“What is the universe made of?”, followed by “What 

is the biological basis of consciousness?” [69]. Thus, 

answering elementary questions such as “How are 

those myriads of elements and interactions 

coordinated together in complex living creatures?” or 

“How does coherent behaviour emerge out of such a 

soup of highly heterogeneous components?” as 

already posed in 1944 by Schrödinger [70] is still 

contemporary. With the aim of finding general 

principles, that could underlie the large-scale 
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organization of biological complexity, approaches 

from Statistical Physics have been transferred and 

adapted to investigate living organisms [71]. 

Especially in neuroscience, the understanding of 

how the interaction of billions of neurons coordinated 

across multiple scales produces emergent 

phenomena such as cognition, behaviour and 

consciousness has been inspired researchers to 

incorporate interdisciplinary perspectives. 

A prominent non-invasive electrophysiological 

technique to measure electrical activity arising from 

the brain is the electroencephalography (EEG). This 

method records voltage fluctuations on the scalp 

associated with neuronal ionic current representing 

the summation of inhibitory and excitatory 

postsynaptic potentials. Given its high temporal 

resolution in a millisecond range, the EEG is 

beneficial in the evaluation of dynamic neuronal 

functioning. Historically, the first EEG recording was 

performed by Richard Caton, a British physician, in 

1875, who recorded electrical activity in rabbits and 

monkeys. Half a century later, in 1929, the Germany 
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psychiatrist Hans Berger used EEG in human [72, 

73]. Until the 1980s, EEG signals were registered on 

paper tape allowing for an interpretation of frequency 

of EEG waved by counting pen sways per seconds. 

With the introduction of computers enabling 

numerical registration of EEG-signals, spectral 

analysis methods such as the fast Fourier transform 

(FFT) and wavelet transforms were developed, 

converting the signal in the frequency domain [74]. 

Hitherto these linear methods have been the “gold 

standard’ in the analysis of electrophysiological data, 

characterizing the signal according to the five major 

brain rhythms (Table 1). Also, diverse correlations 

with cortical functions were observed [75]. However, 

for unrevealing the functional role of these rhythms in 

major cognitive functions such as attention and multi-

modal coordination, the classification solely based 

on the frequency range has been shown to be too 

simple [76].  
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Table 1: EEG spectral bands. 

Rhythm  Frequency range [Hz] 

delta (δ) 1-4 

theta (θ) 4-8 

alpha (α) 8-12 

beta (β) 12-30 

gamma (γ) >30 

 

Nowadays, the dynamical system approach has 

become widespread in neuroscience and a fair 

amount of research suggests that nonlinear methods 

are more appropriate for EEG-analysis [77, 78, 79 

80]. Indeed, linear approaches rely on the 

assumption of stationary, whereas real biological 

time series are nonstationary, meaning that 

statistical properties such as its mean value, 

standard deviation, or correlation function change 

with time. Hence, these may yield faulty results. 

Whereas the dynamical system approach found its 

way into research and academic training [78], these 

methods have not yet been implemented into 

everyday clinical practice [81].  
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1.2.1 Dynamical systems and attractors  

A dynamical system depicts a model that determines 

the evolution in time solely based on the initial state, 

hence, implying that the system has memory. A 

variety of dynamical systems exist. For instance, 

there are linear systems, showing a relation between 

causes and effects. There also are nonlinear 

systems, in which small causes may have large 

effects. If quantities of the systems are preserved 

over time, nonlinear systems are termed 

conservative, whereas dissipative systems are 

thermodynamically open [77]. Mathematically 

dynamical systems are described by a coupled set of 

first-order ordinary differential equations [82]:  

𝑑�⃗�

𝑑𝑡
= �⃗�(�⃗�(𝑡))  (1) 

where the vectors �⃗� are the dynamical variables of 

the system evolving in continuous time. For detailed 

mathematical background the reader is referred to 

the work by Henry and colleagues (2001) as well as 

Kantz and Schreiber (2004) [83, 82]. Accordingly, the 

variables describe the state of a system. Each 
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possible state of a dynamical system can be 

represented by a point in a so-called phase space, 

an abstract multidimensional space. A sequence of 

points 𝑥(𝑡) solving the equations is termed a 

trajectory of the dynamical system. In cases of 

dissipative systems, the trajectory will converge to a 

subset of the phase space with proceeding time. The 

subspace is termed attractor as it ‘attracts’ 

trajectories from all possible initial conditions [77].  

Hereby, attractors can vary in their form. For 

instance, in linear deterministic dissipative systems 

the attractor is a simple point in state space (point 

attractor). The repertoire of nonlinear system 

dynamics also includes limit cycles, which represent 

closed loops corresponding to periodic dynamics, 

torus attractors corresponding to quasi-periodic 

dynamics as well as strange or chaotic attractors 

corresponding to deterministic chaos. A famous 

example for the latter is the Lorenz attractor as 

depicted in Figure 2 defined by the following 
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equations: 
𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥), 

𝑑𝑦

𝑑𝑡
= 𝑥(𝑝 − 𝑧) − 𝑦 and 

𝑑𝑧

𝑑𝑡
=

𝑥𝑦 − 𝛽𝑧 [84]:  

 

Figure 2: Numerical visualization of the Lorenz attractor as 

example of a three-dimensional nonlinear dynamical systems 

which shows chaotic behaviour with the parameters 𝑝 =28, 𝜎 = 

10, b= 
8

3
. Modified from [85]. 

To characterize the dynamics of a nonlinear system 

several techniques are used. For instance, the 

dimension of the attractor can be captured in degrees 

of freedom or the ‘complexity’ of the dynamics. In 

cases of point attractors this would be zero and for 

limit cycles one, whereas a torus would have an 

integer dimension in accordance to the number of 
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superimposed periodic oscillations. A strange or 

chaotic attractor would yield a fractal dimension, a 

non integer number (e.g. 2.16) [77]. In general, 

biological system are dissipative and 

thermodynamically open, exchanging entropy with 

the environment [86]. This accounts also for the 

brain, which has the capacity to form strange 

attractor with fractal properties [87].  

Further, in dynamical systems such as the brain, 

attractors can coexist [88]. In cases of one or more 

attractors in the dynamical structure of a system, the 

condition is termed bi- or multistability [89]. The 

systems’ coordination can be changed by different 

mechanisms. The first is called bifurction and 

describes a modulation of a control parameter on 

which the “attractor landscape” is based on beyond 

a critical threshold. In case neural networks these 

could include for instance the balance between 

excitation and inhibition dependent of certain 

concentration of neurotransmitters [90]. Secondly, 

perturbation, noise or energy can transiently 

destabilize the coordination dynamics and cause a 
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system to lose a pre-existing attractor (Figure 3A) 

[89]. Additionally, dynamical system can be 

metastable, meaning that there are no attractors In 

such regime, however, some traces of fixed points 

are still present, which are sometimes called ‘ghost’ 

attractors [91, 88]. These are successively visited in 

the time course, whereby no input or energy 

expenditure is required (Figure 3B) [89]. 

Figure 3: Coordinated system dynamics. (A) Multistable 

systems can switch between attractors. As the system is briefly 
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dwelling in each attractor basin, time series are characterized 

by long-tailed distributions (here shown on a logarithmic scale). 

(B) Metastable systems do not have attractors, rather a 

sequence of unstable fixed points and time series are 

associated with gamma distributions (here shown in linear 

coordinates). Modified from [92].  

 

1.2.2 Self-similarity of the EEG 

Generally, fractal geometry is associated with 

Euclidian objects, which reflect iterative processes, 

i.e. procedural repetitions and recursion, 

incorporating the previous state of the system as the 

input of a new iteration. Hence, these are dividable 

into identical segments, each reduced by a scaling 

factor (Figure 4). Such self-similarity cannot only be 

defined geometrically, but also statistically. Statistical 

self-similarity is also indicated with the term self-

affinity [93]. Moreover, fractal behaviour is not only 

evident in space, but also in the time domain [94].  
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Figure 4: Examples of geometrically self-similar fractals. (A) 

The Mandelbrot set. (A) the curve and (B) the snowflake 

described by Niels F.H. von Koch. (C) shows the Sierpinski 

triangle. Modofied from [93].  

For instance, the time evolution of a dynamical 

system is represented by the time series 𝑋(𝑡). 

Specified over a time interval 𝑇, the mean signal �⃗�(𝑡) 

is governed by: 

�⃗�(𝑡) =
1

𝑇
∫ 𝑋(𝑡)𝑑𝑡

1

0
  (2) 

Further, the time series can be described in the 

frequency domain 𝑓, represented by the amplitude 

𝐴(𝑓, 𝑇), which is given by the Fourier transform of 

𝑋(𝑡):  

𝐴(𝑓, 𝑇) = ∫ 𝑋(𝑡)𝑒2𝜋𝑖𝑓𝑡𝑑𝑡
∞

−∞
  (3) 
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The power spectral density is given by:  

𝑠(𝑓) = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
|𝐴(𝑓, 𝑇)| 2  (4) 

In case of a fractal time series, the power spectrum 

obeys a power law:  

𝑠(𝑓) ∝
1

𝑓𝛽
  (5) 

where f the frequency and β the spectral exponent 

[95]. Historically, the case of β= 0 was called white 

noise, according to the fact that its power spectral 

density is the same at all frequencies within a fixed 

bandwidth. Statistically, white noise depicts an 

uncorrelated process. The case β= 1 is referred to as 

pink noise and β= 2 is termed Brownian noise, also 

known as red noise, which is a highly correlated 

process (Figure 5). Importantly, in contrast to 

periodic phenomena, which would generate 

characteristic peaks in the power spectrum, a time 

series with 1/f power spectrum has no characteristic 

time scale. Therefore, fluctuations of a 1/f process 

would appear similar under temporal magnification 

such as fractal shapes remain identical in the spatial 



36 

 

domain. As a power-law function is indicative of 

scale-invariance, the arrhythmic brain activity 

contributing to this 1/f slope has been termed “scale-

free brain activity” [96, 97].  

 

 

Figure 5: Examples of noise processes. (A) white noise, (B) pink 

noise, (C) Brownian noise. Adapted from [98]. 

Several algorithms exist to extract complexity 

features from electrophysiological data [7, 99]. In this 

thesis, I will focus on two algorithms, namely 

Higuchi’s fractal dimension and the multiscale 
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entropy analysis, which are described in the 

following.  

 

1.2.3 Higuchi’s fractal dimension  

As mentioned above dynamical systems such as the 

brain can exhibit attractors with fractal properties. 

Most approaches characterizing attractors of 

nonlinear systems rely on the reconstruction of the 

systems dynamics in state space by a procedure 

called embedding [100], such as, for example, the 

calculation of the correlation dimension D2 [101] or 

the Lyapunov exponents [102]. However, the 

reconstruction of the phase space from a given 

observation in time is accompanied by time 

consumption as surrogate data testing is essential to 

justify conclusions and involves pitfalls such as 

biases by autocorrelation effects in the time series 

[77]. Therefore, algorithms were developed to 

calculate the fractal dimension directly in the time 

domain allowing to examine systems dynamic 

without reconstructing the attractor. Among existing 

algorithms such as Katz’s [103] or Petrosian’s 



38 

 

method [104], Higuchi’s fractal dimension (HFD) 

depicts the most accurate one [105, 106]. Originally 

introduced in 1988 as a nonlinear approach 

originating from chaos theory to capture natural 

phenomena such as the earth’s changing magnetic 

field [105], the measure has been implemented over 

time in biological and medical research. Nowadays, 

HFD is widely applied in basic and clinical 

neurophysiological research to measure the 

complexity of neuronal activity in different 

neurophysiological conditions [107]. The algorithm 

constructs 𝑘 new time series for 𝑚 = 1,2, … , 𝑘 from a 

starting time series of 𝑁 samples: 𝑦(1), 𝑦(2), …𝑦(𝑁): 

𝑦𝑘
𝑚: 𝑦(𝑚), 𝑦(𝑚 + 𝑘), 𝑦(𝑚 + 2𝑘),… , 

𝑦 (𝑚 + 𝑖𝑛𝑡 (
𝑁 − 𝑚

𝑘
)𝑘) 

(6) 

where 𝑚 indicates the initial time sample, 𝑘 denotes 

the time interval and int(r) is integer part of a real 

number r. 
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As an illustration, for 𝑘 = 4 and 𝑁 = 1000, the 

algorithm produces 4 times series [108]: 

𝑦41: 𝑦(1), 𝑦(5), 𝑦(9),… , 𝑦 (997), 

𝑦41: 𝑦(2), 𝑦(6), 𝑦(10),… , 𝑦 (998), 

𝑦41: 𝑦(3), 𝑦(7), 𝑦(11),… , 𝑦 (998), 

𝑦41: 𝑦(4), 𝑦(8), 𝑦(12),… , 𝑦 (1000), 

(7) 

 

Then, the average length 𝐿𝑚(𝑘) of each of the time 

series 𝑦𝑘
𝑚 is computed as follows: 

 

𝐿𝑚(𝑘) =
1

𝑘

[
 
 
 

𝑁 − 1

𝑖𝑛𝑡 (
𝑁 − 𝑚

𝑘
) 𝑘

(

 ∑ |𝑦(𝑚 + 𝑖 𝑘)

𝑖𝑛𝑡(
𝑁−𝑚

𝑘 )

𝑖=1

− 𝑦(𝑚 + (𝑖 − 1)𝑘)|

)

 

]
 
 
 

 

(8) 

where 𝑁 indicates the total length of the original data 

series. 
𝑁−1

𝑖𝑛𝑡(
𝑁−𝑚

𝑘
)𝑘

 is a normalization factor. The 

calculation is repeated for 𝑘 ranging from 1 to 𝑘𝑚𝑎𝑥., 

resulting in a sum of average lengths 𝐿(𝑘): 
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A fractal curve follows the relationship 

𝐿(𝑘)~ 𝑘−𝐻𝐹𝐷 (10) 

Hence, when plotting log (𝐿(𝑘)) against log (
1

𝑘
), 𝐻𝐹𝐷 

can be estimated as the slope using a least squares 

linear best fitting procedure: 

𝐻𝐹𝐷 =
𝑛 ∑(𝑥𝑘𝑦𝑘) − ∑𝑥𝑘 ∑𝑦𝑘

𝑛 ∑𝑥𝑘
2 − (∑𝑥𝑘)2

 (11) 

Where 𝑦𝑘 = log(𝐿(𝑘)) , 𝑥𝑘 = log(
1

𝑘
) , 𝑘 =

𝑘1 , 𝑘2 , … 𝑘𝑚𝑎𝑥, and  𝑛 depicts the number of 𝑘 values 

for which the linear regression is calculated (2 ≤ 𝑛 ≤

𝑘𝑚𝑎𝑥). 

Numerical values of HFD have the lower and upper 

limits of 1 and 2, respectively. Considering a curve 

that represents the amplitude of a given time series 

signal as a function of time on a 2D plane, a simple 

𝐿(𝑘) =
1

𝑘
∑ 𝐿𝑚

𝑘

𝑚=1

(𝑘) (9) 
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curve has a dimension equal 1 and a plane has a 

dimension equal 2. HFD can be imaged as a 

measure of the “degree of filling out” the plane by the 

curve and hence, its complexity [80]. Accordingly, 

HFD close to one would represent a smooth curve 

with low complexity, whereas HFD=2 would 

correspond to complex curve, such as white noise 

practically filling 100% of the plane. Hereby, the 

fractal dimension of a time series is related to the 

spectral exponent β: 

𝛽 = 5 − 2𝐻𝐹𝐷 (12) 

It has been shown that if 1 ≤ 𝛽 ≥ 3, then 𝐻𝐹𝐷 = (5 −

𝛽)/2 with the established limits if 𝛽 → 0 then HFD →

2 and if 𝛽 → 3 then HFD → 1 [105, 95]. Important to 

note, HFD gives no information of the systems nature 

generating the signal, e.g., it is not determinable 

whether the system behaves deterministic, chaotic or 

stochastic. Instead, HFD depicts a tool to 

demonstrate relative changes in the signals’ 

complexity, for instance, before and after an 

intervention [80; 74]. 
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The choice of this algorithm is motivated by several 

studies, showing that the HFD is promising for the 

discrimination of states of consciousness. For 

instance, it has been used to measure the depth of 

sedation in intensive care unit [109], showing that 

HFD values decrease with the depth of anaesthesia 

[110]. In the context of anaesthesia it has been found 

that HFD is accurate in estimating the bispectral 

index (BIS), a method which quantifies the degree of 

phase coupling between EEG components [111]. It 

has been concluded that HFD depicts an even more 

promising method for the assessment of anaesthesia 

depth [112], especially in combination with other 

measures such as the burst suppression ratio [113]. 

Further, it has been effectively used for the 

discrimination between sleep stages [114], even 

using a single EEG channel [115], as well as 

between sleep and propofol induced EEG spindles 

[116]. In the context of diseases, already over a 

decade ago, HFD has been applied in 

neurophysiology for the detection of epileptic 

seizure, providing better temporal resolution than 
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spectral analysis [117]. Especially in combination 

with other nonlinear features, HFD is suitable for 

epileptiform EEG analysis [118] and has been 

implemented in the development of diagnostic tools 

such as an automated classifier [119]. Further, it has 

been shown that HFD values are suitable serving as 

a biomarker for early detection of Alzheimer’s 

disease (AD) as the EEG signal of AD patients 

reveals significantly reduced HFD values in the 

parietal areas [120], as well as in temporal-occipital 

regions [121]. Staudinger and Polikar achieved a 

diagnostic accuracy of 78 % for AD, training a 

support vector machine with HFD combined with 

features of several nonlinear signal complexity 

measures [122]. Additionally, it is suggested that 

HFD is suitable to discriminate between normal and 

hypnotic states, as well as between relaxation and 

imagination tasks [123]. It was showed that HFD 

revealed differences between internal vs. external 

percepts and discriminates external visual from 

auditory percepts [124]. Also, HFD provided better 

results than linear measures as part of a system for 
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classification of subject’s hypnotic susceptibility [125] 

and a real-time fractal dimension based algorithm 

has been proposed for the recognition of emotions 

inducted via sound stimuli [126].  

 

1.2.4 Multiscale entropy  

Another approach to calculate the complexity of a 

time series are entropy measures. Generally, the 

entropy of a single discrete random variable is a 

measure of its average uncertainty. Multiple 

mathematical methods exist such as Shannon’s 

entropy [127] or the Kolmogorov-Sinai entropy [128, 

129]. However, the latter is limited in use of 

estimating the entropy of time series of finite length 

[130]. In 1991, Pincus introduced a parameter 

termed approximate entropy 𝐴𝐸, which applies for the 

analysis of “real-world” time series [131]. This has 

further been modified and termed sample entropy 𝑆𝐸, 

which allows an estimation less depending on the 

time series length describing the complexity more 

accurate with better consistency [132, 133]. The 

parameter 𝑆𝐸 has been defined by Richman and 
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Moorman, starting from the definition of the 𝐾2 

entropy, a lower bound of the Kolmogorov-Sinai 

entropy, suggested by Grassberger and Procaccia 

[129, 132]:  

𝑆𝐸(𝑚, 𝑟) =  lim
𝑁→∞

− 𝑙𝑛
𝐵𝑚+1(𝑟)

𝐵𝑚(𝑟)
, (13) 

estimated by the statistic: 

𝑆𝐸(𝑚, 𝑟, 𝑁) =  − 𝑙𝑛
𝐵𝑚+1(𝑟)

𝐵𝑚(𝑟)
 

(14) 

where 𝑁= data points of the time series  {𝑥(𝑖)|1 ≤ 𝑖 ≤

𝑁}, and 𝑚= length of the vector sequences 𝑋𝑚(𝑖) =

[𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1)], 1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1. 

𝑟 depicts the tolerated distance level, a percentage 

of the standard deviation serving as a similarity 

criterion. 𝐵𝑚(𝑟) defines the probability that other 

vectors are similar to vector 𝑋𝑚(𝑖) matching for 𝑚 

points, i.e., the number of vectors satisfying 

𝑑[𝑋𝑚(𝑖), 𝑑[𝑋𝑚(𝑗),≤ 𝑟, where 𝑑 is the Euclidean 

distance and thus, that any two vectors are within 𝑟 

of each other: 

𝐵𝑚(𝑟) =
1

𝑁 − 𝑚
∑ 𝐵𝑖

𝑚(𝑟)

𝑁−𝑚

𝑖=1

 
(15) 
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To illustrate the function of the algorithm, a simulated 

time series 𝑢[1], … , 𝑢[𝑁] is shown in Figure 6. Here, 

a two-component template sequence (𝑢[1], 𝑢[2]) and 

a three-component template sequence 

(𝑢[1], 𝑢[2], 𝑢[3]) are considered. The number of 

sequences matching these template sequences are 

calculated. In this example, the number would yield 

2 for the two-component template sequence 

(𝑢[13], 𝑢[14] and 𝑢[43], 𝑢[44]) and one for the three-

component template sequence (𝑢[43], 𝑢[44], 𝑢[45]). 

This procedure is then repeated for the next template 

sequences (𝑢[2], 𝑢[3] and 𝑢[2], 𝑢[3], 𝑢[4]), 

respectively. The number of matching sequences are 

summed up and added to the previous value. The 

calculations are repeated for all possible sequences 

(𝑢[3], 𝑢[4], 𝑢[5]),… , (𝑢[𝑁 − 2], 𝑢[𝑁 − 1], 𝑢[𝑁]). 

Finally, 𝑆𝐸 is determined as the natural logarithm of 

the ratio between the total number of two-component 

template matches and the number of three-

component- template matches. Hence the parameter 

reflects the probability that sequences that match 
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each other for the first data point will also match for 

the next point [130]. 

 

Figure 6: Simulated time series to illustrate the procedure of 

calculation the sample entropy for the case 𝑚 = 2 and a given 

positive real value 𝑟 [130]. 

This algorithm, however, was shown to assign a 

higher value of entropy to pathologic time series that 

are assumed to represent less complexity compared 

to time series derived from healthy participants [134, 

135]. Costa and colleagues suggested that such 

misleading results might be explainable by the fact, 

that these measures are based on a single scale 

[135] and advanced the algorithm further termining 

the introduced methods multiscale entropy. Given a 

one-dimensional discrete time series 

{𝑥1, … , 𝑥𝑖, … , 𝑥𝑁} of length 𝑁, the multiscale entropy 
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algorithm is based on the construction of a 

consecutive coarse-grained time series {𝛾(𝜏)}, 

determined by the scale factor 𝜏 [130]. Here, the 

original times series is divided into windows of the 

length 𝜏 and data points are averaged for each 

window according to: 

𝛾𝑗
(𝜏)

= 
1

𝜏
∑ 𝑥𝑖,

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

  1 ≤ 𝑗 ≤ 𝑁/𝜏. (16) 

Then, the entropy measure 𝑆𝐸 is calculated for each 

course-grained time series (Figure 7) and plotted 

[130]. For 𝜏 = 1, the time series {𝛾(1)} is the original 

time series. The length of each coarse-grained time 

series is equal to the original time series divided by 

the scale factor 𝜏 [130]. 
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Figure 7: Schematic illustration of the coarse-gaining 

procedure. Adapted from [130]. 

As 𝑆𝐸 values are based on a lower probability of 

repeated sequences in the data, higher values 

represent more complexity. For instance, higher 

scale one entropy values are representative of white 

noise series compared to 1/f time series (Figure 8).   
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Figure 8: MSE analysis of simulated white and 1/f noise time 

series. The value of the sample entropy is plotted against the 

scale factor, which specifies the number of data points 

averaged to obtain each element of the coarse-grained time 

series [130]. 

The MSE analysis was chosen as several studies 

demonstrated that the MSE is useful for quantifying 

neural complexity in the context of states of 

consciousness [136]. For instance, Miskovic and 

colleagues showed significant MSE changes across 

the human sleep cycle in the EEG [137]. Also, in one 

study MSE values were used as input data to train an 

artificial neural network for monitoring the depth of 

anaesthesia during surgery. The effectiveness of this 
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proposed new index was analysed by correlation 

analysis with the bispectral index (BIS), indicating an 

accurate and robust measurement of the depth of 

anaesthesia [138]. Regarding the potential of MSE 

values as biomarkers in the context of disease, 

Takahashi et al. recorded resting state EEG data of 

drug-naïve schizophrenia patients pre- and post-

treatment with antipsychotics. In comparison to 

healthy controls, patients showed higher complexity 

in fronto-centro-temporal brain regions. After 

antipsychotic treatment the signal complexity 

decreased to healthy control subject levels 

selectively in fronto-central regions, highlighting the 

usefulness of MSE to identify abnormal temporal 

dynamics [139]. Further, MSE was used to 

distinguish EEG data derived from Alzheimer’s 

disease patients and age- and sex-matched healthy 

controls. Here, significant negative correlations 

between the sample entropy averaged over all scales 

factors and cognitive decline as assessed with the 

Mini-Mental State Examination were reported [140]. 

A link between MSE values and memory 
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consolidation was also proposed by other studies 

[141]. As an example, significant MSE differences 

were reported in a visual memory task, which 

involved making the executive decision of 

remembering or forgetting the visual stimuli. Hereby, 

greater complexity in the prefrontal and frontal lobe 

was observed, when participants intentionally 

memorized a visual scene [142]. 

However, to understand the complexity of brain 

activity and its function, a comprehensive theoretical 

framework is required describing the multitude of 

interaction of billions of neurons. In the following I will 

elaborate on the concept of self-organized criticality, 

which has originally been introduced as an 

explanation of ubiquitous 1/f noise [143]. In recent 

years, the hypothesis arose that self-organized 

criticality is a fundamental property of neural systems 

[144]. As described in the following, the theory states 

that the brain state space dynamics self-organize 

towards a phase transition, an attractor termed the 

critical state. This premise is especially compelling, 

as the critical state has been associated with optimal 
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information processing functions [145] and has been 

handled as promising for quantifying consciousness 

[146]. 

 

“Who could ever calculate the path of a molecule?  

How do we know that the creations of worlds  

are not determined by falling grains of sand?” 

Victor Hugo, les Misérables 

 

1.3 Self-organized criticality 

Self-organized criticality, in the sense of statistical 

physics, is defined as a specific type of behavior, 

seen when a system undergoes a phase transition. 

During a phase transition, macroscopic properties of 

the system, termed the order parameters, change as 

a function of a so-called control parameter. For 

example, when water gets boiled, a phase transition 

from liquid to a vaporous phase occurs. Here, the 

order parameter would reflect the phase’s entropy 

(such as water or vapor), whereas the control 

parameter is the temperature. Modifying the control 

parameter gradually changes the order parameter 
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until a specific point, at which the values of the order 

parameter vary abruptly. Graphically, phase 

transitions are either marked by a discontinuity of the 

phase diagram (a jump of the order parameter) or by 

a point of non-differentiability reflected as a sharp 

corner. The latter is termed a continuous second 

order phase transition, which allows the system to be 

poised exactly between two phases. In that case the 

system is in the critical state, residing between two 

qualitative distinct types of behavior such as ordered 

and disorder. A system at criticality is therefore 

sometimes referred to as on the “edge of chaos”. If 

the control parameter is below the critical value, the 

state is called subcritical, whereas values above the 

critical state results in a supercritical state [147, 144, 

148]. Systems in a critical state show complex 

behavior with inherent characteristics such as scale-

invariance meaning that no scale in time or space 

dominates the behavioral pattern. This mode is 

reflected by spatial and temporal correlations scaling 

of a power law over several orders of magnitude. 

Hence, these give rise to self-similar fractal-like 
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structure over many scales [149]. Power laws refer 

to a probability density function expressed by p(x) =

C x−α, for x > x0 and α denoting the scaling 

exponent. The scale invariance is shown when 

power laws are plotted logarithmically, indicated as a 

straight line: log(f(x)) =  log ∝ (x−α) =  −α log(x). 

Multiplying the plotted coordinate units of such a 

graph with a common factor is not resulting in any 

change of the slope −α. A zooming in or zooming out 

produces a similar slope with a constant scaling 

exponent. For an illustration of the phenomenon, the 

two-dimensional Ising model, a classic example of 

the ferromagnetic-paramagnetic second-order phase 

transition is considered (Figure 9).  

The Ising model consists of a lattice in a piece of iron, 

whereby each site of the lattice corresponds to a 

dipole moment. Below the so-called Curie point 

(Tc=1043 K), iron is magnetized even in the absent 

of an external field. Here, nearest neighbour 

interactions dominate and almost all spins of the 

electrons are aligned in the same direction yielding 

an ordered state, which creates a net magnetization. 
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However, with increasing temperature, the thermal 

fluctuations dominate the tendency to align. Spins 

are pointed in different directions resulting in a more 

disordered state. At T> Tc permanent magnetic 

characteristics get lost, and iron becomes 

paramagnetic. During the critical phase at Tc where 

order and disorder is balanced, the correlation 

length, reflecting statistical correlations between any 

pair of elements in the systems, is maximized. 

Further, the averaged correlation length 𝛤 follows a 

power law: 𝛤~ (𝑇 − 𝑇𝑐)
−𝜉, with the critical exponent 

𝜉 > 0. Also, the order parameter of the system at 

criticality can be described with power laws. For 

instance, the magnetization 𝑀 is governed 

by: 𝑀~ (𝑇 − 𝑇𝑐)
−𝛽, with 𝛽 > 0. [147, 150, 148]. 
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Figure 9: (A) Diagram of the spins in the Ising model in an 

ordered state at low temperature, a complex state at critical 

temperature and a disordered state at high temperature, 

adapted from [150]. (B) Simulation of a 2D Ising model with 

length = 256 in subcritical, critical and supercritical states as 

temperatures increases from left to right panels. Black areas 
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reflect a spin pointed up and white square represent spins 

down, adapted from [148]. (C) modified from [151]. 

Alan Turing was probably the first one speculating 

that the brain could be in a critical regime in his 

seminal paper on the topic of artificial intelligence 

written in 1950 [152]. This was around the same time 

when Donald Hebb (1949) formulated his theory on 

cell assembly formation as a principle of cortical 

functions, often summarized as “Cells that fire 

together wire together ”[153]. A decade later 

advances in explaining the principles of self-

organization and nonequilibrium phase transitions 

such as Herman Haken’s pioneering work on 

synergetics and Stuart Kauffmann’s investigations 

paved the way for the understanding the brain in 

terms of a complex system [154–156]. Back then, the 

potential equivalence between neuronal networks 

and systems exhibiting a phase transition such as 

cellular automata, binary lattices evolving iteratively, 

was highlighted [157]. The field further progressed, 

when Christopher Langton, one of the founders of the 

field of artificial life, published an approach to 
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parametrize the space of cellular automata. In his 

work, Langton (1990) showed the occurrence of a 

phase transition between highly ordered, 

deterministic and highly disorder, chaotic dynamics. 

Further, he outlined that the vicinity of the transition 

point supported optimal processing, transmission 

and storage of information [158] (Figure 10).  

 

Figure 10: A binary cellular automaton represents an n-

dimensional array of binary cells. The states are update 

synchronously in discrete time steps, whereby each state t+1 

depends on the state of the cells at time t. Langton (1990) 

identified different classes corresponding to different dynamical 
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regimes characterized by the ratio of transitions to an arbitrary 

state selected as the “quiescent state” (parameter λ). Class IV 

depicts a transitional state analogous to complex behavior 

arising in the critical regime. Taken from Heiney et al (2021), 

adapted from Langton (1990) [149, 158].  

This so-called “computation at the edge of chaos” 

[159, 160], was in accordance with theories from Per 

Bak, who pioneered the science of self-organised 

criticality, promoting critical phase transitions as an 

ubiquitous mechanisms to generate complexity, 

ubiquitous 1/f noise and the preponderance of fractal 

structures in nature. In his book “How nature works” 

he uses the canonical example of a sand pile [143]. 

The sandpile model, which is analogous to a cellular 

automata, randomly placing chips on a finite grid, 

describes the process of a random positioning of 

sand grains on a pile. This results in a slope, which 

builds up until it reaches a specific, critical threshold 

value, the transition point. At this point the system is 

out of balance and from here on, the dropping of 

more sand grains leads to an avalanche. During an 

avalanche the site collapses transferring sand into 
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the adjacent site, extending their slope. This dynamic 

was found to be governed by power laws [161]. 

Importantly, the concept of criticality as proposed by 

Bak, Tang and Wiesenfeld fundamentally differs from 

the critical point at phase transitions in equilibriums 

statistical mechanics as no tuning of a parameter, for 

instance temperature, is required. Hence, the critical 

point is an attractor, to which the system self-

organized, whereby the scaling properties are 

insensitive to the parameters of the model [161].] 

However, after a rapid increase of publications in this 

field in the 1990s, interest slowly receded [144]. 

Hence, the conjecture of critical brain dynamics has 

come a long way before it was only recently put to 

experimental testing ground and revived [162]. 

 

1.3.1 Experimental findings and functional benefits 

In vitro cultures exhibit spontaneous dynamical 

activity, brief bursts of activity followed by longer 

intervals of quiescence [163]. In 2003, Beggs and 

Plenz hypothesized that the propagation of activity in 

networks of cortical neurons is describable by 
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equations that govern cascades indicative of a state 

of self-organized criticality. In their study, they 

recorded spontaneous negative local field potentials 

(LFP) of mature organotypical cultures and acute 

slices of rat cortex using a multielectrode array [164]. 

Indeed, the propagation of synchronized LFP 

followed a power law with a scaling exponent of -3/2 

as it would be predicted from a network of globally 

coupled nonlinear threshold elements [165]. The 

authors termed this new mode of network activity 

“neuronal avalanches” [164, 166]. Subsequently, 

avalanches were investigated in superficial layers of 

rat prefrontal cortex [167] and during development of 

cortical layer 2/3 [168]. Authors showed that nested 

beta/gamma oscillations organized as neuronal 

avalanches during up-states, which required an 

activation of the dopamine D1 receptor [168]. 

Homeostatic regulation of avalanche dynamic and 

the role of the excitation/inhibition (E/I) balance was 

then studied in a series of experiments, selectively 

blocking excitatory and inhibitory synaptic 

transmission by pharmacological means [169].  
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Further, in vivo experiments confirmed power law 

statistic and spontaneous activity in form of neuronal 

avalanches in cats under anaesthesia [170, 171], in 

awake monkeys [170, 172] and in rats traversing the 

wake-sleep cycle [173]. First signatures of criticality 

in the human brain were reported by Linkenkaer-

Hansen and colleagues, who focused on the 

temporal fluctuations employing a method called 

detrended fluctuation analysis (DFA) and reported 

scale-free temporal statistics in EEG data [174]. One 

more step towards evidencing criticality was 

achieved when Shriki and colleagues analysed 

resting-state brain activity from 124 participants 

using magnetoencephalography (MEG). Here, large 

deflections at single MEG sensors were identified 

and analysed as cascades. The authors reported that 

cascade size distribution obeyed power laws with an 

exponent of -3/2 at timescales where the branching 

parameter was close to 1. A scaling and coarse 

graining of the sensor array did not change this 

relationship [175]. Using intracranial depth 

recordings in humans it was further shown that 
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avalanche distributions follow a power law, whereby 

these differed between states of vigilance with larger 

and longer avalanches during rapid eye movement 

(REM) sleep [176]. Interestingly, Priesemann and 

colleagues analysed highly parallel spike recordings 

from animals and LFP from human, suggesting that 

the dynamic is self-organized towards a slightly 

subcritical brain state [177]. The authors suggest that 

potential advantages may be a safety margin from 

supercriticality and developed methods to precisely 

quantify the distance to the critical point [178, 179]. 

Subsequently, spatial critical dynamics were also 

described in whole brain functional neuroimaging 

(fMRI) data [180].  

Such studies provided proof-of-principle that SOC 

could be a unifying framework to understand 

complex patterns of activity in the brain and, by 

extension, cognition, behaviour and consciousness 

[92]. Work on criticality in physical systems suggest 

that systems in a critical state exhibit optimal 

computational properties [92] and it has been shown 

that critical dynamics in the brain would be 
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equivalently accompanied by functional benefits 

[145]. SOC implies a balanced signal propagation, 

which can have important implications for the 

dynamics of neural networks. Such balance is based 

on the likelihood that one spike causes each other  

neuron to fire and can be captured by the branching 

parameter σ, which is defined as the ratio of 

descendants, the number of events in a temporal 

interval t and the ancestors, the number of events in 

the following interval t+1 (Figure 11) [181, 145, 182]. 

Accordingly, experimental evidence suggest that 

critical dynamics emerge when excitation and 

inhibition is balanced [183–185]. Importantly, the 

balance between independence and 

interdependence among neurons is fundamental for 

the transmission and processing of information [186]. 

Computational advantages of criticality have been 

demonstrated in neural network models and 

empirical recordings. For instance, it has been shown 

that that the dynamic range of a neural network is 

maximized at a critical point [187, 188], which has 

also been suggested by an in vitro experiments 
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manipulating cultures pharmacologically close to 

criticality [189] as well in vivo recordings from rats 

[190]. Further, optimal information transmission, 

storage and capacity has been reported in neuronal 

models at criticality [191–193], in vivo [194] and in 

animal studies [195]. Importantly, the observed 

scale-free patterns close to a critical point of a phase 

transition imply the largest variability and thus, the 

largest number of configurations and repertoire of 

possible brain states [151]. 



67 

 

 

Figure 11: Schematic illustration of the branching ratio. Adapted 

from [149] and [181]. Blue nodes represent active ones and 

gray nodes are inactive. The middle regime of σ= 1 corresponds 

to the critical state, in which activity is self-sustained. The case 

of σ< 1 corresponds to a subcritical state in which activity will 

die out over time. A supercritical state is indicated by a σ> 1, in 

which activity will increase with time.  

To summarise, key experimental observations in 

support of the criticality hypothesis are (i) neuronal 

avalanches with power law distribution and (ii) long-

range temporal correlations in the amplitude of 
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neural oscillations [196]. These can be determined 

by analytical metrics as described in the following.  

 

1.3.2 Detrended fluctuation analysis 

The detrended fluctuation analysis (DFA) depicts a 

prominent method to quantify the scale-free nature of 

physiological time series by estimating long-range 

temporal correlations (LRTC), the scale-free decay 

of temporal (auto)correlations. The algorithm 

captures fluctuations of the signal at different time 

scales determining the statistical self-affinity of a 

signal [197–199]:  

𝑌(𝐿𝑡) ≡  𝐿𝐻𝑌(𝑡) (17) 

where 𝑌(𝐿𝑡) and 𝑌(𝑡) are values of a 1-dimensional 

process at time windows of length 𝐿𝑡 and t, 

respectively. L depicts the Window length factor and 

H denotes the Hurst parameter, a dimensionless 

estimator of self-affinity. The algorithm consists of 

two steps (Figure 12). First, the data series 𝑥(𝑡) is 

shifted by the mean of the time series 〈𝑦〉 and 

cumulatively summed:  
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𝑥(𝑡) =  ∑[𝑦(𝑘) − 〈𝑦〉

𝑡

𝑘=1

] (18) 

Then, the signal profile is divided into a set of non-

overlapping separate time “boxes” of various sizes 

Δ𝑛. Subsequently, in each segmentation the data is 

locally fit to a polynomial 𝑦Δ𝑛(𝑘). The local 

polynomial trends fit within each box are subtracted 

and the root-mean-square of the residuals 𝐹(Δ𝑛) 

(“fluctuations”) is calculated: 

𝐹(Δ𝑛) =  √
1

𝑁
∑[𝑦(𝑘) − 𝑦Δ𝑛

𝑁

𝑘=1

(𝑘)]2 
(19) 

 

Subsequently, the mean fluctuation per window size 

is plotted against the window size on a logarithmic 

scale. The scaling exponent α is estimated as the 

slope of the least-squares fit line. The resulting DFA 

exponent α can be interpreted as an estimation of the 

Hurst parameter. If 0< α< 0.5, the process is of a 

stationary nature, exhibits anti-correlations and has a 

memory. In the case of 0.5< α< 1, the process is 
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stationary, exhibits positive correlations and has a 

memory. A random process with no memory is 

governed by α = 0.5, whereas when 1< α< 2, then 

the process is non-stationary, meaning that the 

signal’s statistical characteristics change with time 

[199]. Stationary processes can be modelled as 

fractional Gaussian noise with H= α and non-

stationary processes can be modelled as fractional 

Brownian motion with H= α -1 [200]. 
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Figure 12: Stepwise explanation of the detrended fluctuation 

analysis. (A) shows an original time series taken from a 1/f 

signal sampled at 5 Hz with a duration of 100 s. (B) The 

cumulative sum of the time series. (C) Removal of the linear 

trend from the signal for each time window. (D) Plot of the mean 

fluctuation per window size against window size on a 
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logarithmic scale. In this example the scaling exponent is α=1, 

estimated as the slope of the best fit line. Adapted from [199]. 

 

1.3.3 Neuronal avalanches 

For the neuronal avalanche analysis, the time series 

is first z-scored. Then, a certain threshold is applied 

and negative and positive excursions beyond the 

threshold are identified as concrete event (Figure 

13A,B) [201]. Subsequently, the time series is 

discretized with time bins of the duration Δt. Neuronal 

avalanches are defined as a contiguous sequence of 

time bins of activity preceded, ending with at least 

one time bin of quiescence [175]. 
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.  

Figure 13: (A) Schematic illustration of the event identification 

process. Adapted from [175]. (B) Avalanche definition. 

Neuronal avalanches are defined as a contiguous sequence of 

time bins of activity preceded, ending with at least one time bin 

of quiescence. Modified from [202]. (C) Probability distribution 

of the relationship between size and likelihood of avalanches 

shown in double logarithmic coordinates. At criticality a scale-

free process yields a power law relationship with a critical 

exponent of -3/2. Adapted from [92].  



74 

 

A hallmark that a neural network operates near a 

critical point is given by a power law scaling of 

avalanche size distribution (𝑓𝑠(𝑆)) (Figure 13B), 

duration distribution (𝑓𝑑(𝑇)) and average size 

conditioned on given duration data (〈𝑆〉(𝑇)). The 

resulting critical scaling exponents  τ, 𝛼  and σνz show 

a relationship according to [203, 204]: 

𝑓𝑠(𝑆) ∝ 𝑆−τ (20) 

𝑓𝑑(𝑇) ∝ 𝑇−𝛼 (21) 

〈𝑆〉(𝑇) ∝ 𝑇
1

σνz (22) 

𝛼 − 1

𝜏 − 1
= 

1

σνz
 (23) 

 

Another method for establishing criticality involves 

investigating the averaged, scale-invariant profiles of 

cortical fluctuations. Typically, avalanche shapes are 

inverted parabolas, depicting fractal copies of each 

other when different avalanche sizes are examined. 

Hence, in a critical state mean temporal profiles of 

avalanches should be identical across scales, e.g. 

long duration avalanches are supposed to have the 
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same scaled mean shape as short avalanches (      

Figure 14) [203].  

 

     

Figure 14: Shape collapse procedure [149]. First, raw 

avalanche shapes are determined by averaging the profile of all 

avalanches with a given duration. Then, the avalanches are 

scaled to a uniform length and finally, the scaling parameter is 

estimated by using a quadratic polynomial. Adapted from [201]. 

 

1.3.4 Clinical relevance  

The concept of combining consciousness and 

criticality is promising for a wide range of clinical 

applications (Figure 15) [148]. For instance, findings 

suggest that criticality-based markers could 

potentially be used to assess the depth of 

anaesthesia [205]. An analysis of long-range 

temporal correlations (LRTC) combined with spectral 

data successfully differentiated between 
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wakefulness from induced unconsciousness. The 

authors suggesting that the loss of consciousness 

may be accompanied with an increase in regularity 

and a decrease in network repertoire limiting 

cognitive processing [206]. Further, signatures of 

criticality were applied to predict, localize, and 

characterize epileptic seizures. Whereas some 

studies identified power-law distribution during 

seizure intervals [207–209], others report a deviation 

from critical dynamics [210, 211]. Additionally, a few 

studies investigated criticality in neurodegenerative 

diseases such as Alzheimer’s disease (AD). Findings 

suggest that criticality inspired markers such as the 

level of autocorrelations and synchronization as well 

as differences in the power-law exponent in the 

frontal and pre-frontal lobes may be beneficial for 

disease monitoring and the diagnostic evaluation of 

early-onset [212]. Whereas in AD patients a scale-

free distribution of spontaneous fluctuations was 

maintained, Parkinson disease has been suggested 

to represent a situation of departure from a critical 

state, whereby motor symptom severity was found to 
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be positively correlated with the scaling exponent of 

an adaption of the detrended fluctuation analyses 

(DFA) [213]. As criticality implies optimal information 

capacity and transmission in models [193], the role 

of criticality in aspects of attention, cognition and 

learning has also been a topic of investigation. As an 

example, it has been shown that power law scaling 

decreases with increased cognitive load in a MEG 

study of children with high-functional autism, who 

underwent executive function tasks [214]. Further 

studies suggested that focused cognitive tasks 

induce subcritical dynamics [215]. In contrast, an 

EEG study of 210 neurotypical adults undergoing an 

object recognition tasks demonstrated that variation 

in 1/f noise robustly predicted cognitive processing 

speed [216]. Suggesting that critical state dynamics 

are important for language acquisition, Dimitriadis et 

al. carried out a MEG study of children with reading 

difficulties. Here, temporal correlations decreased in 

the left temporoparietal region at rest compared to a 

age and IQ matched control group [217]. In line with 

these findings, increased LRTC positively correlated 
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with language score was demonstrated in a high-

density EEG study of neurotypical children [218]. 

Also, high intelligence has been associated with 

near-criticality dynamics in a resting-state as shown 

in a recent functional magnetic resonance imaging 

(fMRI) study of neurotypical adults with varying IQ 

scores [219]. Furthermore, criticality-based markers 

were used to improve the understanding of 

psychiatric conditions. For instance, in one study 

MEG was recorded from patient with major 

depressive disorder (MDD) and healthy controls 

during an eyes-closed resting state. The magnitude 

of temporal correlations over the left- temporo-

central region was suitable to predict severity of 

depression assessed with the Hamilton Depression 

Rating Scale. In comparison to controls, patients with 

MDD exhibit absent LRTC in the theta frequency 

band, which was interpreted as a possible underlying 

defect in limbic-cortical networks [220]. The latter 

could not be confirmed in an EEG study of patients 

with MDD, whereas increased LRTC scaling 

exponents were correlated positively with depression 
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severity. Here, the authors concluded that rumination 

and psychomotor retardation may be the reason for 

the persistence of LRTC [221]. Also, higher LRTC 

scaling exponents were shown in patients with MDD 

at baseline compared to healthy controls in EEG 

data. The strength of LRTC decreased after an 

intervention consisting of stress reduction training or 

mindfulness training in both cohorts [222]. Other 

studies examined whether alterations in LRTC during 

sleep could be a signature of depression reporting no 

statistical significant differences through the sleep 

stages [223, 224]. Regarding schizophrenia and 

schizoaffective disorders, an attenuation of LRTC 

scaling exponents was found in alpha and beta 

frequency bands compared to healthy controls in an 

EEG study indicating decreased temporal correlation 

and precision [225]. These results have been 

confirmed in other studies [226] and have been 

associated with the ‘disconnection hypothesis’, 

considering that the core symptoms of schizophrenia 

are related to aberrant connectivity between distinct 

brain regions [227, 228]. Interestingly, first studies 
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with healthy participants provided evidence that 

neurofeedback can restore critical brain dynamics. It 

has been speculated that neurofeedback alters 

excitation associated with increases in temporal 

improvement and hence, could balance psychiatric 

conditions, which have been characterized by 

decreased LRTC [229, 230]. In summary, the 

concept of criticality has several domains of clinical 

application. While criticality-based markers are not 

yet part of clinical routine and despite some 

controversies, these could prove beneficial in 

diagnosis, prognosis or treatment of a variety of 

diseases and may pave an important avenue of 

future research for understanding brain-related 

disorders and the relationship between neural and 

cognitive flexibility [148]. 
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Figure 15: Illustration of long-range temporal correlations 

(LRTC) as a function of criticality in different conditions. 

Adapted from [231] and [148]. The grey area represents the 

physiological range of brain dynamics. Black arrays show the 

deviations towards a subcritical regime (left) or a supercritical 

regime (right) according to findings in the literature [148]. 

Double arrays imply contradictory evidence for both increases 

and decreases in LRTC.   
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2. Research questions and Aims 

 

I. Can signatures of self-organized criticality be 

found on the level of the EEG?  

For this purpose, electrophysiological data 

(64-channel EEG) will be analyzed in respect 

to the key experimental observations in 

support of the criticality hypothesis: (1) 

neuronal avalanches with power law 

distribution, (2) long-range temporal 

correlations (LRTCs) in the amplitude of 

neural oscillations. To note, in this thesis I will 

not aim at answering whether the brain is 

critical, rather than outline possible 

interpretations of experimental results. Many 

studies have been conducted and 

controversies emerged. To date, there is no 

study enabling to confirm or disprove the 

criticality hypothesis in neuronal networks. 

However, with this research, I aim to 

contribute to the expanding field suggesting 
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features of criticality to quantify 

consciousness.  

 

II. Are criticality features suitable to differentiate 

states in the spectrum of wakeful 

consciousness and to characterize 

electrophysiological correlates of altered 

states of consciousness?  

The framework of self-organized criticality 

seems promising for developing physiological 

markers of consciousness alterations. 

However, to identify their potential utility in 

monitoring neurophysiological changes in 

response to interventions as well as 

diagnostics, it has to be shown that EEG-

based criticality parameters are suitable to 

sufficiently differentiate mental states in the 

spectrum of wakelfulness. First, this will be 

tested on an EEG dataset of professional 

meditators performing three distinct 

meditative tasks. Second, it will be 
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investigated whether the measures are 

suitable to reflect state changes in the 

temporal course of a relaxation process.  

III. Can critical dynamics be induced by 

psychophysical (mind-body) interventions? 

Critical dynamics are associated with brain 

activity tuned towards optimized information 

processing functions, such as input 

susceptibility, maximized dynamic range, 

storage capacity and computational power. In 

other words, the optimal brain state. Here, 

criticality measures are proposed as general 

gauges of information processing. At the 

same time, findings suggest that 

psychological self-regulation techniques such 

as mindful focused attention during meditation 

enhance allocation of attentional resources 

and thereby, information processing 

capacities. However, how critical dynamics 

relate to cognitive function is poorly 

understood. Therefore, I aim at testing 
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whether altered states of consciousness, here 

specifically induced by distinct meditation 

tasks and a vibroacoustic relaxation process 

represent neuronal activity exhibiting 

dynamics closer the critical point of a phase 

transition compared to a baseline task-free 

condition.  

 

IV. Can an explicit relationship to other nonlinear 

complexity features power spectral density 

parameter be identified?  

This thesis is based on the contemporary 

proposal that consciousness represents a 

dynamic process of self-sustained 

coordinated brain-scale activity of 

simultaneous integration and differentiation 

and thus, might be quantifiable by the degree 

of neural complexity. Whereas self-organized 

criticality can be seen as a theoretical 

framework for the emergence of complex 

patterns of activity in the brain, to date, the 
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relationship between complexity and criticality 

in neural systems has not been determined 

experimentally. Therefore, besides applying 

analytical tools from criticality theory to EEG 

data recorded during meditative tasks and a 

relaxation process as well as sampled from a 

cohort with different levels of sensory 

processing sensitivity, also nonlinear methods 

to quantify neural complexity, namely fractal 

dimension analysis, and multiscale entropy 

analysis will be used. In addition, the standard 

methods using spectral decomposition will be 

applied to the datasets. The resulting EEG-

based features will then be evaluated with 

respect to their comparability in the 

discrimination of brain states. In this stance, 

correlations between criticality and complexity 

measures as well as spectral data will be 

analysed.  
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V. Do EEG-based complexity and criticality 

features reflect individual temperament traits?  

For this purpose, it will be determined whether 

EEG complexity and criticality features 

correlate with the temperament traits 

absorption defined as the individual’s capacity 

for engaging attentional resources in sensory 

and imaginative experiences (study 2) as well 

as the individual level of sensory processing 

sensitivity (study 3).  
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3. Material and Methods 

3.1: Mediation states  

3.1.1 Data acquisition and participants 

An EEG data set, which has been recorded and 

previously analysed by T. Hinterberger in the spectral 

domain was used for reanalysis [232]. Data were 

recorded from 30 participants (mean age 47 years, 

11 females/19 males) with a meditation experience 

of at least 5 years practice or more than 1000 h of 

total meditation time. On average, participants had 

meditated for 20 years and 6498 hours. Participants 

were associated with different kinds of spiritual 

traditions. For instance, six participants were Zen 

Buddhist monks in Japan. Based on these 

backgrounds, the subjects developed an individual 

‘idiosyncratic’ meditation style. 

Data were recorded using a 72-channels QuickAmp 

amplifier system (BrainProducts GmbH, Munich, 

Germany). EEG was measured with a 64-channel 

ANT Waveguard electrode cap (ANT B.V., 

Enschede, The Netherlands) with active shielding 
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and Ag/AgCl electrodes, which were arranged 

according to the international 10/10 system with 

grounding at the participant’s shoulder. To note, the 

data was provided by Prof. Dr. Hinterberger for a re-

analysis.  

The experimental procedure started with an initial 15 

min baseline resting, including 5min with eyes open, 

5 min with eyes closed and 5 min silently reading a 

neutral text from a book or a computer screen. Then, 

after a short break, participants were asked to 

meditate in their own preferred style (idiosyncratic 

meditation) for 20- 30 min. Next, three specific 

meditative tasks were instruction lasting 2 min each 

(Figure 16). These were in accordance to 

classification categories established by Travis and 

Shear [233].  

 

i) presence monitoring (instruction: “Try to 

be in a state of high presence at the place 

you are in this room at each moment of 

time.”) 
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ii) thoughtless emptiness (instruction: “Try to 

maintain the state of emptiness from all 

thought as well as possible.”) 

iii) focused attention (instruction: “Direct your 

attention on a sport in the middle of the 

forehead above your eyes.”) 

 

Instructions were spoken by the same experimenter. 

Participants kept their eyes closed during the 

meditation tasks. Afterwards, all meditators reported 

that they were able to reach and maintain the 

instructed mental states [234, 232]. 
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Figure 16: Experimental procedure. Modified from [232]. 

 

3.1.2 EEG data processing 

Matlab (MathWorks, Natrick, USA) was used for data 

processing. Data was sampled at 250 samples/sec 

in a range from DC to 70 Hz with a notch filter at 50 

Hz. After detrending the 64 EEG channels, a 

correction for eye movement was done using a linear 

correction algorithm, which detects eye blinks as well 
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as movement events and uses those periods for 

determining a correction factor for each channel. 

Then, the EOG was multiplied with this factor and 

subtracted from the EEG. The efficiency of the 

algorithm was previously demonstrated [235]. 

Subsequently, the following analysis tools were 

applied to the data as described in the following. 

 

Power spectral density (PSD): A power spectrum 

time series was calculated using the Fast Fourier 

Transform (FFT) for the following frequency bands:  

• Delta: 1-3.5 Hz  

• Theta: 4-7.5 

• Alpha1: 8-10 

• Alpha2: 10.5-12 Hz 

• Beta1: 12.5–15 Hz 

• Beta2: 15.5–25 Hz 

• Gamma1: 25.5–45 Hz 

• Global: 1–45 Hz 
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To obtain a measure of the power spectral density 

(PSD) FFT values were squared and all FFT bins 

within a frequency band range were averaged. EEG 

PSD was calculated for each participant, task, 

electrode, and frequency band. 

 

Neuronal avalanches: For the neuronal avalanche 

analysis the NCC toolbox was used [201]. First, the 

signal from each electrode was z-scored. A threshold 

of ±3 SD was applied [175]. Negative and positive 

excursions beyond the threshold were identified as 

concrete events. The time series obtained from each 

electrode was discretized with time bins of the 

duration Δt=5s. Neuronal avalanches are defined as 

a contiguous sequence of time bins of activity 

preceded, ending with at least one time bin of 

quiescence. Avalanche properties were determined 

using the function avprops.m, which calculates the 

duration 𝑇 (number of active time bins), the size 𝑆 

(total number of events) as well as the shape 

(number of events at each time at each time bin). The 

average size given duration distribution (〈𝑆〉(𝑇)) was 



94 

 

calculated using the build in function 

sizegivdurwls.m, which computes the scaling 

parameter 𝑆𝑁𝑍 and standard deviation using the 

weighted least squares method (see equations (20 to 

(23) [203, 204]. Mean temporal profiles of avalanche 

shapes were calculated using the function 

avgshapes.m and an avalanche shape collapse has 

been performed (avshapecollapse.m), determining 

the shape collapse scaling parameter [201]. 

Subsequently, differences between the value of the 

obtained critical exponent 𝑆𝑁𝑍 and the shape 

collapse scaling parameter were calculated, as these 

should be identical for brain dynamics operating in a 

critical regime [204]. The resulting variable was 

termed 𝑆𝑁𝑍𝑑𝑖𝑓𝑓. 

 

Detrended fluctuation analysis: To estimate long-

range temporal correlations (LRTC), detrended 

fluctuation analysis (DFA) was used, an algorithm 

which, captures fluctuations of the signal at different 

time scales determining the statistical self-affinity of 

a signal [199]. Here, an algorithm described by 
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Colombo and colleagues (2016) was used [231]. 

First, the cumulative sum of the time series was 

calculated. Then, the signal profile was divided into a 

set of non-overlapping separate time “boxes” of 

length 𝑡. Subsequently, local polynomial trends fit 

within each box were subtracted and the root-mean-

square of the residuals was calculated. Here, the 

detrend order, specifying the degree of polynomials 

was set to 2. The local detrending was repeated for 

50 automatically determined box sizes and the 

power-law relationship between root-mean-square 

fluctuations and box sizes was determined by means 

of regression. The resulting exponent was termed α 

(see equations (18(19).  

 

Fractal dimension: As a measure of signal complexity 

in the time domain the algorithm proposed by Higuchi 

was applied to calculate the fractal dimension (see 

equations (6, and 8 to (11) [105]. The value of 𝑘𝑚𝑎𝑥, 

the maximum number of sub-series composed from 

the original, can be determined by examining the 

data and plotting the fractal dimension over a range 
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of k. For k greater than 𝑘𝑚𝑎𝑥 the fractal dimension 

plateaus, reaching a saturation point [107]. In this 

work that was the case for 𝑘𝑚𝑎𝑥= 5. 

 

Multiscale entropy: The multiscale entropy was 

calculated using an algorithm described by Costa 

and colleagues (2005), which is based on the 

construction of a coarse-grained time series by 

averaging the data points within non-overlapping 

windows (see equations (13 to (16) [130]. For the 

template length 𝑚 a value of 2 was chosen and the 

similarity criteria 𝑟 was set to 0.2. MSE was 

measured for six different time scales (sf= 1, 3, 5, 7, 

10, 20) over 5s time windows.  

 

For an overview, the workflow is visualized in Figure 

17. 
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Figure 17: Scheme of the analysis workflow. PSD= power 

spectral density, DFA= detrended fluctuation analysis, HFD= 

Higuchi’s fractal dimension, MSE= multiscale entropy, SE= 

sample entropy, sf=scale factor.  
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3.1.3 Merging of topographic brain regions 

After calculation of complexity, criticality and spectral 

features, the 64-channel data was merged into the 

13 topographic brain regions prefrontal (PF), left 

frontal (Fl), right frontal (Fr), frontal (Fz), central (Cz), 

left central (Cl), right central (Cr), left temporal (Tl), 

right temporal (Tr), parietal (Pz), left parietal (Pl), 

right parietal (Pr) and occipital (O) (Figure 18). 

 

Figure 18: Reduction scheme into 13 major topographic 

regions. Adapted from [232]. 
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3.1.4 Comparison between conditions 

Due to high individual differences, the idiosyncratic 

meditation task was excluded in the analysis. Hence, 

the following six comparisons were calculated:  

1. Eyes open vs. eyes closed 

2. Reading vs. eyes open 

3. Presence vs. eyes closed 

4. Emptiness vs. eyes closed 

5. Focused attention vs. eyes closed 

6. Emptiness vs. presence 

7. Emptiness vs. focused attention  

8. Focused attention vs. presence 

3.1.5 Statistics 

To determine whether the resulting features are 

significantly influences by the task condition, a 

Kruskal-Wallis-Test was calculated for the temporal 

means of each feature averaged over electrodes, 

participants, and conditions. 

For state comparison on a global level, effect sizes 

defined as standardized mean differences (Cohen’s 

d) were estimated according to Cohen (1988) [236]: 



100 

 

𝑑 = 
𝑥1 − 𝑥2

√(𝑠1
2 + 𝑠2

2)/2
 (24) 

With 𝑥1 and 𝑥2being the mean PSD value or mean 

complexity/criticality feature, respectively and 𝑠1 and 

𝑠2 the estimated variances.  

Effect sizes of all participants were submitted to a 

paired two-tailed t-test calculated across 

participants, and features. Considering 17 extracted 

EEG features and 11 comparisons, this results in 187 

variables. The t-values were corrected for multiple 

testing using false discovery rate (FDR) adjustment, 

which gives the proportion of false discoveries 

among all discoveries [237]. FDR was applied across 

conditions and features. 

For a detailed analysis, estimated effect sizes were 

compared with a paired two-tailed t-test calculated 

across participants for each of the 13 topographic 

areas, complexity, criticality and spectral features, 

respectively. T-values were corrected using FDR 

adjustment over brain regions, conditions, 

complexity, criticality and spectral features.  
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To calculate correlations between the features, 

Spearman’s rank correlation was applied after 

determining that the distribution was not appropriate 

for parametric testing by the Shapiro-Wilk test. 

Correlations were calculated from the median of the 

time series across participants after averaging over 

channels for each condition, respectively.  

To analyze the classification performance, partial 

least squares regression as a cross between multiple 

linear regression and principal component analysis 

was chosen. Basically, partial least squares 

regression is an iterative process used to exploit 

fundamental relations between to matrices X and Y 

[238]. Here Y reflected the conditions and X the EEG 

features (function plsregress.m). Then, receiver 

operating characteristics (ROC) analysis was applied 

and the area under the curve (AUC) was determined 

[239].    

The level of significance was set at p< 0.01. 
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3.2 Singing bowl experience 

3.2.1 Data acquisition and participants 

Electrophysiological data (64 channels of EEG, 

EOG, ECG, skin conductance, and respiration) was 

recorded from 34 participants (mean age 36.03 

±13.43 years, 24 females/ 10 males). The study was 

approved by the institutional ethics committee of the 

University Clinic of Regensburg according to the 

Helsinki Convention (file number: 20-1995-101). All 

gave their informed consent according to the 

university ethics standards and filled in an 

introductory questionnaire assessing demographical 

data and prior experiences concerning singing bowl 

massages as well as altered states of 

consciousness. Further psychometric data was 

assessed using the Tellegen-Absorption Scale (TAS-

D) [240]. After the recording, participants ensued the 

PCI-K, a modified German version of the 

Phenomenology of Consciousness Inventory [38] 

and the CSP-14 [241]. 

TAS-D: The Tellegen-Absorption Scale (TAS-D) 

contains 34 true/false self-report items [240]. High 
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levels of internal reliability and test-retest reliability 

were reported [242]. The absorption capacity (i.e. the 

individual’s capacity for engaging attentional 

resources in sensory and imaginative experiences) is 

measured by the sum of “true” responses and has 

been suggested to be an effective predictor of 

outcomes in mind-body interventions [243]. 

PCI-K: The Phenomenology of Consciousness (PCI) 

[38] is a self-report measure to quantify states of 

consciousness associated with a specific stimulus 

condition. Originally, the questionnaire consists of 53 

items, grouped into the following 12 major and 14 

minor dimensions. The items, including five 

Reliability Item Pairs, were rated on a 7-point Likert 

scale on a continuum between two poles. The 

internal consistency has been validated with an alpha 

coefficients between 0.69 and 0.92, [38]. Here, a 

modified version of the PCI has been applied (PCI-

K), reducing the number of items to 27, taking at least 

one question of the above-mentioned dimensions.  

CSP-14: The CSP-14 allows for the assessment of 

changes in body sensation, emotional state and 
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mental state consisting of three factor, namely (1)  

Integration, (2) Balance and (3) Vitality [241] The 

questionnaire contains 14 items, which are rated on 

a scale ranging from -3 to +3.  

 

Electrophysiological data was recorded using a 72 

channels QuickAmp amplifier system (BrainProducts 

GmbH, Munich, Germany). EEG was measured with 

a 64-channel ANT Waveguard electrode cap (ANT 

B.V., Enschede, The Netherlands) with active 

shielding and Ag/AgCl electrodes, which were 

arranged according to the international 10/10 

system.  

The experimental procedure started with an initial 10 

min baseline resting, including 5 min with eyes open 

and 5 min with eyes closed. Then, a singing bowl 

massage was conducted by professionals trained 

according to the Peter Hess®-method with a duration 

of 20 minutes. Afterwards 10 min of silence were 

given to integrate the experience. Directly after a 

second resting state took place, during which 

participants kept their eyes closed for 5 min and 
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subsequently opened their eyes for 5 min (Figure 

19). This final resting phase will be termed 

postresting in the following. During the whole 

procedure participants lay comfortably on a massage 

table.  

 

 

Figure 19: Experimental procedure. 

3.2.2 EEG data processing 

Matlab (MathWorks, Natrick, USA) was used for data 

processing. Data was sampled at 250 samples/sec 

in a range from DC to 70 Hz with a notch filter at 50 

Hz. After detrending the 64 EEG channels, a 
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correction for eye movement was done using a linear 

correction algorithm as described previously [235]. 

Then, the power spectral density, the neuronal 

avalanche analysis, the detrended fluctuation 

analysis, the fractal dimension analysis and the 

multiscale entropy analysis were applied as 

described in the preceding chapter “EEG data 

processing” under study 1. Topographic brain 

regions were merged according to Figure 18. 

3.2.3. Comparison between conditions 

The following three phases of the experimental 

course were compared:  

1. sound vs resting  

2. postresing vs. sound 

3. postresting vs. resting 

3.2.4 Statistics 

For comparison on a global level, effect sizes defined 

as standardized mean differences (Cohen’s d) were 

estimated according to equation (24. Then, a paired 

two-tailed t-test was calculated across participants 

for each complexity, criticality and spectral feature, 
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respectively. T-values were corrected for multiple 

testing using false discovery rate (FDR) adjustment 

[237] across conditions and complexity, criticality and 

spectral features. 

For a detailed analysis, estimated effect sizes were 

compared with a paired two-tailed t-test calculated 

across participants for each of the 13 topographic 

areas, complexity and criticality features as well as 

frequency bands, respectively (Figure 18). T-values 

were corrected using FDR adjustment over brain 

regions, conditions, and EEG features.  

To calculate correlations between the EEG features, 

Spearman’s rank correlation was applied after 

determining that the distribution was not appropriate 

for parametric testing by the Shapiro-Wilk test. 

Correlations were calculated from the mean of the 

time series across participants after averaging over 

channels for each condition, respectively.  

To evaluate whether the EEG features reflect the 

individual level of trait absorption, Spearman’s rank 

correlation was applied determining relations 
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between the EEG features and the TAS-D summary 

score.  

Significance was set at p< 0.01. 

 

3.3 Sensory processing sensitivity   

3.3.1 Data acquisition and participants 

Electrophysiological data (64 channels of EEG, 

EOG, ECG, skin conductance, and respiration) was 

recorded from 116 participants (mean age 39.95 

±13.43 years, 83 females/ 33 males). The 

measurements took place in a laboratory of the 

department of Clinical Psychology and 

Psychotherapy, Bundeswehr University Munich.  

Before the recording all participants filled in the 

questionnaire ‘High Sensitive Person Scale’ (HSPS-

G) [244]. 

HSPS-G: The HSPS-G (HSP scale, original version 

Aron & Aron, 1997 [245]; German version Konrad & 

Herzberg, 2017 [244]) is a 26-item self-reported 

questionnaire that measures the degree of sensitivity 

in a 5-point Likert rating scale ("0" does not apply at 

all - "4" applies completely) (Appendix II). For this 
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purpose, the measurement instrument is divided into 

the subscales of Ease of Excitation (EOE), Aesthetic 

Sensitivity (AES), and a Low Sensory Threshold 

(LST). The HSPS-G was normed and standardized 

on individuals from the general population and was 

found to have good reliability (Cronbach's α of .93 to 

.95) [244].  

Electrophysiological data was recorded using a 72 

channels QuickAmp amplifier system (BrainProducts 

GmbH, Munich, Germany). EEG was measured with 

a 64-channel ANT Waveguard electrode cap (ANT 

B.V., Enschede, The Netherlands) with active 

shielding and Ag/AgCl electrodes, which were 

arranged according to the international 10/10 

system. The experimental procedure consisted of a 

10 min baseline resting, including 5 min with eyes 

open and 5 min with eyes closed. 

 

3.3.2 EEG Data processing 

Matlab (MathWorks, Natrick, USA) was used for data 

processing. Data was sampled at 250 samples/sec 

in a range from DC to 70 Hz with a notch filter at 50 
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Hz. After detrending the 64 EEG channels, a 

correction for eye movement was done using a linear 

correction algorithm as described previously. Then, 

the power spectral density, the neuronal avalanche 

analysis, the detrended fluctuation analysis, the 

fractal dimension analysis and the multiscale entropy 

analysis were applied as described the chapter “EEG 

data processing” in study 1 of this thesis.  

3.3.3 Statistics 

To calculate correlations between the EEG features 

and the HSPS-G summary score as well as 

subscales, Spearman’s rank correlation was applied 

after determining that the distribution was not 

appropriate for parametric testing by the Shapiro-

Wilk test. Correlations were calculated from the 

mean of the time series across participants. Then, 

according to a latent class analysis performed by 

Lionetti et al. determining a frequency distribution of 

approximately 30% in the low-sensitivity, 40% in the 

medium-sensitivity and 30% in the high-sensitivity 

group, the cohort was grouped in regard to the 

HSPS-G summary score into highly sensitive (77-
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104) and not sensitive (0-43) participants [246]. EEG 

features were compared between the two groups 

applying a Wilcoxon signed-rank test. Significance 

was set at p< 0.05. 
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4. Results 

4.1 Meditation states 

4.1.1 Kruskal-Wallis Test 

To test whether features of criticality, neuronal 

complexity and power spectra were significantly 

influenced by the task conditions, a Kruskal-Wallis-

Test was performed. The analysis revealed a 

significant main effect for state on a p<0.001 level 

concerning SE sf=1, SE sf=7, SE sf=10, SE sf=20, 

DFA and SNZ. For the power spectral density, 

significant effects were found for delta and alpha 1 

(Table 2, Figure 20). However, when calculating the 

Kruskal-Wallis- Test only over the meditation 

conditions, no significant effect for state was 

observed (Table 3, Figure 21). 
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Table 2: Chi-Square values for each complexity, criticality and 

spectral feature resulting from the Kruskal-Wallis-Test 

calculated over all conditions. **p<.001, *p<.01 

 Chi square  p-value  

Delta 39.02** <0.001 

Theta 10.22 0.069 

Alpha 1 21.87** <0.001 

Alpha 2 17.02* 0.005 

Beta 1 1.28 0.937 

Beta 2 1.93 0.858 

Gamma 18.32* 0.003 

Global 5.89 0.217 

SE sf=1 56.82** <0.001 

SE sf=3 18.41* 0.003 

SE sf=5 7.16 0.209 

SE sf=7 42.89** <0.001 

SE sf=10 64.48** <0.001 

SE sf=20 24.06** <0.001 

HFD 20.13* 0.001 

α (DFA) 43.17** <0.001 

SNZ  53.42** <0.001 
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Table 3: Chi-Square values for each complexity, criticality and 

spectral feature resulting from the Kruskal-Wallis-Test 

calculated over the three meditation conditions. 

 Chi square  p-value  

Delta 0.424 0.809 

Theta 0.050 0.976 

Alpha 1 1.170 0.5572 

Alpha 2 0.385 0.825 

Beta 1 0.3543 0.938 

Beta 2 0.933 0.659 

Gamma 0.451 0.798 

Global 0.564 0.754 

SE sf=1 1.481 0.477 

SE sf=3 1.172 0.556 

SE sf=5 1.184 0.553 

SE sf=7 0.127 0.939 

SE sf=10 2.226 0.329 

SE sf=20 0.161 0.923 

HFD 0.760 0.684 

α (DFA) 0.454 0.797 

SNZ  1.482 0.477 
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Figure 20: Topographical maps of chi-square values resulting 

from the Kruskal-Wallis test over all conditions for the 

complexity and criticality features.  

 

 

Figure 21: Topographical maps of chi-square values resulting 

from the Kruskal-Wallis test over all conditions for the spectral 

bands. 
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4.1.2 Global comparisons of complexity parameter 

For state comparisons, effect sizes were estimated 

for each complexity and criticality feature and 

frequency band. Significant differences were 

determined by a two-tailed t-test corrected for 

multiple comparisons by the false discovery rate. 

The resting state with eyes open was associated with 

higher complexity in comparison to resting with eyes 

closed. Here, largest effect size was found for SE 

sf=1 (d= 1.47) and SE sf=10 (d= 0.93), whereby the 

HFD yielded a low effect size (d= 0.33). The DFA as 

an index of long-range temporal correlations (LRTC) 

was significantly higher in the eyes open resting 

condition with moderate effect size (d= 0.73), 

whereas the critical scaling exponent was reduced 

compared to eyes closed with a large effect size (d= 

-0.96). Further, alpha 1 and alpha 2 decreased 

during eyes open compared to eyes closed with 

small to moderate effect sizes (d= -0.58 and d= -

0.37). 

Compared to resting with eyes open, the reading 

condition further increased the neuronal complexity 
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as captured by SE sf=1, SE sf=3, SE sf=7, SE sf=10 

and HFD. Regarding the spectral data, an increase 

in the theta band and a decrease in alpha 1 and alpha 

2 was found.  

For the presence meditation condition, the increase 

of SE sf=1 and HFD did not reach statistical 

significance. However, LRTC were decreased shown 

by the DFA exponent yielding a medium effect size 

(d= -0.49) in comparison to resting with eyes closed. 

Delta, and theta band PSD were significantly 

reduced with a small effect size (d= -0.33; d= -0.22). 

In contrast comparing emptiness with the eyes 

closed resting state resulted in slightly higher 

complexity with a small effect size as shown by the 

HFD (d= 0.23), whereby less LRTC were measured 

with the DFA, also with a small effect size (d= -0.37). 

Delta (d= -0.38), theta (d= -0.25) and beta 1 band 

PSD (d= -0.12) were reduced. A similar pattern was 

observed in the comparison focused attention vs. 

eyes closed. Here, the neuronal complexity was 

higher as captured by SE sf=1 (d= 0.61) and SE sf=3 

(d= 0.48) with moderate effect sizes. The DFA and 
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the critical exponent were reduced with small effect 

sizes (d= -0.28 and d=-0.26). Further, a decrease in 

delta (d= -0.36) and theta band power (d= -0.21) was 

observed, whereas gamma band power was 

significantly enhanced (d=0.32).  

Contrasting the meditation states against each other 

revealed slightly higher complexity in emptiness 

compared to presence, whereas the global PSD was 

lower (d= -0.28). Also, alpha 1, alpha 2, beta 1, beta 

2 band power was reduced. However, in comparison 

with the focused attention meditation, the state of 

emptiness was associated with reduced complexity 

according to SE sf=1 (d= -0.33) and SE sf=3 (d= -

0.24) as well as reduced gamma band power (d= -

0.28). Also, focused attention was characterized by 

higher complexity compared to presence as captured 

by SE sf=1, SE sf=3, SE sf=5, SE sf=7 and SE sf=10, 

whereas alpha 1 band power was significantly lower 

during focused attention compared to presence (d= -

0.27). Also, here, the SNZ was lower during focused 

attention yielding a small effect size of d= -0.32 

(Figure 22, Figure 23, Table 4, Table 5).  
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Figure 22: Color-coded differences of complexity parameters 

shown as effect sizes (Cohen's d) of the meditation task 

comparisons on a global level averaged over all electrodes. 

Fields marked with a white circle were significant on the 0.05 

level after FDR adjustment. 

 

Figure 23: Color-coded differences of power spectral density 

shown as effect sizes (Cohen's d) of the task comparisons on a 

global level averaged over all electrodes. Fields marked with a 
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white circle were significant on the 0.01 level after FDR 

adjustment over conditions and frequency bands.  

 

Table 4: Values of the effect size and p-values resulting from 

the comparison between conditions. All p-values were 

corrected for multiple comparison.  
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Table 5: Values of the effect size and p-values resulting from 

the comparison between conditions. All p-values were 

corrected for multiple comparison.  
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4.1.3 Local comparisons 

In general, the detailed topographical analysis of the 

different states illustrated in Figure 24 reveals 

highest effect sizes in the comparison eyes open vs. 

eyes closed, whereby seven of the eight analyzed 

EEG features showed significance in all 13 brain 

areas. The sample entropy sufficiently discriminates 

the four comparisons eyes open vs. eyes closed, 

reading vs. eyes open, emptiness vs. eyes closed 

and emptiness vs. focused attention. SE sf=3 

showed significance in all 13 brain areas regarding 

the comparisons eyes open vs. eyes closed and 

emptiness vs. eyes closed, whereby SE sf=7 

distinguishes eyes open vs. eyes closed and reading 

vs. eyes open. SE sf=5 as the only one not showing 

significance in the brain areas prefrontal and right 

central regarding the comparison eyes open vs. eyes 

closed, however, differentiates the comparisons 

presence vs. eyes closed and emptiness vs. 

presence in all brain regions. For SE sf=10 only in 

the comparison eyes open vs. eyes closed significant 

effect size differences could be found in all brain 



123 

 

areas. Though, reading vs. eyes open and presence 

vs. eyes closed were distinguishable in 12 brain 

areas except of the left frontal and the right temporal 

region, respectively. SE sf=20 revealed significant 

effect sizes in the comparison eyes open vs. eyes 

closed in all regions and discriminated readings vs. 

eyes open in 10 areas, whereas presence vs. eyes 

closed only showed significant results in the left 

temporal area and emptiness vs. eyes closed only 

right central. HFD sufficiently differentiates eyes 

open vs. eyes closed as well as emptiness vs. eyes 

closed in all areas. For the comparison reading vs. 

eyes open effect sizes reached significance in 11 

areas and for presence vs. eyes closed in 8 areas, 

whereas emptiness vs. presence and emptiness vs. 

focused attention seem not to be discriminable by the 

fractal dimension. The scaling exponent resulting 

from the DFA distinguishes eyes open vs. eyes 

closed, presence vs. eyes closed and emptiness vs. 

eyes closed in all brain regions. Taken together, the 

sample entropy seems the best for the discrimination 

of the distinct states with 66 significant differences 
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summed up for all comparisons, whereas the DFA 

gives 60 significant brain areas and the HFD 45 

(Figure 25, Figure 26).  

Regarding the frequency bands, the comparison 

between eyes open vs. eyes closed revealed only 

one significant difference in effect size for the delta 

band in the prefrontal area, whereas effects for the 

theta band were found for the frontal and central 

area. Alpha 1 and alpha 2 discriminated the 

conditions in all 13 brain areas. Beta 1 showed 

significances in the occipital and parietal areas as 

well as central and frontal, whereas beta 2 also 

sufficiently discriminated the two states in the 

occipital and parietal, temporal prefrontal and frontal 

areas. For the gamma band, significant effects were 

revealed for all 13 topographical regions, except for 

occipital. On a global frequency band, the resting 

state task were distinguishable in the prefrontal, the 

left and right frontal, the temporal, the left central and 

central area. Contrasting reading with eyes open 

mainly resulted in significant effects regarding the 

alpha 1 and alpha 2 band power. The theta and the 
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gamma band differentiated the conditions in the 

occipital and right parietal regions, whereby theta 

also revealed an effect in the left parietal region and 

gamma in the central parietal region. Beta 1 only 

showed a significance in the parietal region, whereas 

beta 2 sufficiently discriminated the tasks in the left 

central and left temporal area. On a global level, the 

comparison of effect sizes was only significant in the 

occipital and left temporal region. Comparing the 

presence meditation with the eyes closed resting 

state resulted in significant differences in all 13 brain 

ares regarding the delta and theta band. Alpha 1 and 

alpha2 both distinguished the tasks in the right 

parietal region, whereby the latter also showed a 

significance in the occipital region. Beta 1 did was not 

suitable to discriminate the states, whereas for beta 

2 significant differences could be observed in the 

right and left parietal region as well as in the right 

temporal area. Main effects for the gamma band 

were found in the left and right temporal region. On a 

local level, only the right temporal area was 

significantly different. Emptiness vs. eyes closed 



126 

 

revealed a similar pattern for the delta and theta band 

with significant differences in effect size in all brain 

areas. Both alpha bands were not suitable to 

discriminate the states. Beta 1 was superior 

compared to beta 2, with significant effects in the 

occipital, left and central parietal, central, frontal and 

prefrontal areas. The latter distinguished the 

conditions in the parietal, the central and frontal 

region. Gamma was only able to discriminate the 

tasks in the right temporal region, whereas on a 

global level discriminability was given in the parietal 

and central area. The meditation conditions 

presence and emptiness showed significant 

differences in the right and left temporal as well as in 

the right frontal regions in the delta band, whereas no 

significance was observed for the theta band. In the 

alpha 1 band, all areas were distinguishable. This 

was also the case for the alpha 2 band, except for the 

frontal region. Beta 1 discriminated 11 of the 13 

areas and beta 2 revealed significant differences in 

all regions apart from the prefrontal and left frontal 

area. The same pattern was observed on a global 
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level, whereas differences in the gamma band were 

only found for the right and central parietal, the 

central, the right temporal and the right frontal region. 

Contrasting emptiness and focused attention 

showed mainly effects for the gamma band, with 

significances in the occipital, prefrontal, central, left 

temporal, left frontal and prefrontal area. On a global 

frequency band, the conditions were suitable 

discriminated in the right parietal, the right and left 

central, the left temporal as well as the left frontal 

region. Neither the delta, alpha 1 nor beta 1 band 

were able to sufficiently distinguish the tasks. A 

difference in the theta band was only observed in the 

right temporal area, whereas alpha 1 was distinct in 

the occipital, left and right parietal as well as the 

central and frontal region (Figure 25, Figure 27). 
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Figure 24: Color-coded feature differences shown as effect 

sizes (Cohen's d) resulting from the task comparisons. (A) 

Comparison between eyes open and eyes closed, (B) reading 

vs. eyes open, (C) presence vs. eyes closed, (D) emptiness vs 

eyes closed, (E) focused attention vs. eyes closed, (F) 

emptiness vs. presence, (G) emptiness vs focused attention, 

(H) focused attention vs. presence. T-tests were calculated 

from each participant for each location and complexity 

parameter. Fields marked with a white circle were significant on 

the 0.05 level after FDR adjustment. 
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Figure 25: Color-coded power spectral density differences 

shown as effect sizes (Cohen's d) resulting from the task 

comparisons. (A) Comparison between eyes open and eyes 

closed, (B) reading vs. eyes open, (C) presence vs. eyes 

closed, (D) emptiness vs eyes closed, (E) focused attention vs. 

eyes closed, (F) emptiness vs. presence, (G) emptiness vs 

focused attention, (H) focused attention vs. presence. T-tests 

were calculated from each participant for each location and 

complexity parameter. Fields marked with a white circle were 

significant on the 0.05 level after FDR adjustment. 
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Figure 26: Topographical maps of differences in the effect sizes 

calculated for each complexity and criticality feature, 

respectively. (A) Comparison between eyes open and eyes 

closed, (B) reading vs. eyes open, (C) presence vs. eyes 

closed, (D) emptiness vs eyes closed, (E) focused attention vs. 

eyes closed, (F) emptiness vs. presence, (G) emptiness vs 

focused attention, (H) focused attention vs. presence. 
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Figure 27: Topographical maps of differences in the effect sizes 

calculated for each frequency band, respectively. (A) 

Comparison between eyes open and eyes closed, (B) reading 
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vs. eyes open, (C) presence vs. eyes closed, (D) emptiness vs 

eyes closed, (E) focused attention vs. eyes closed, (F) 

emptiness vs. presence, (G) emptiness vs focused attention, 

(H) focused attention vs. presence. 

 

4.1.4 Complexity, criticality, and spectral features for 

each condition 

For the sample entropy and HFD higher mean values 

are observed for the individual meditation and the 

tasks presence, emptiness and focused attention in 

comparison to the resting condition with eyes closed, 

whereby the scaling exponent resulting from the DFA 

declined (Figure 28, Figure 29A and B). The critical 

exponent showed the lowest values for the 

conditions eyes open (1.371± 0.09) and reading 

(1.352± 0.07) (Figure 29C). Accordingly, the 

differences between the critical exponent resulting 

from the neuronal avalanches analysis and the 

scaling parameter obtained from the shape collapse 

function (SNZdiff) were closest to zero in the 

conditions eyes open (0.429± 0.218) and reading 

(0.322± 0.196) (Figure 29D). Regarding the power 
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spectral density, delta was slightly reduced in the 

meditation conditions. However, differences were 

small. For instance, lowest power was found for 

emptiness (4.868± 0.147) compared to highest 

power for the condition eyes open (5.059± 0.130). 

Theta activity did not show a clear trend. Alpha 1 and 

alpha 2 were lowest during the reading condition 

(4.381± 0.230 and 4.358± 0.273) with highest value 

in during the presence meditation task (4.821± 0.553 

and 4.653± 0.373). Neither beta 1 nor beta 2 activity 

revealed differences between the conditions. 

Gamma was slightly increased in the reading 

condition (3.701± 0.275) (Figure 30).  
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Figure 28: Resulting sample entropy (SE) values for the distinct 

scale factors (sf) are shown for each condition (A-F). 
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Figure 29: (A) Resulting Higuchi fractal dimension (HFD) values 

are shown for each condition. (B) Values from exponent 

resulting from detrended fluctuation analysis (DFA) are 

illustrated. (C) The critical exponents obtained from the 
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neuronal avalanches analysis are shown for each condition. 

The hypothetical value is illustrated by the dark green dotted 

line. (D) SNZdiff depicts the difference between the critical 

exponent resulting from the neuronal avalanches analysis and 

the scaling parameter obtained from the shape collapse 

function for each condition, respectively. The hypothetical value 

is illustrated by the dark green dotted line. 
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Figure 30: Power spectral density for each frequency band and 

condition, respectively. (A) shows the delta band, (B) the theta 

band, (C) alpha 1, (D) alpha 2, (E) beta 1, (F) beta 2, (G) the 

gamma band and (H) results on a global level.  
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4.1.5 Correlations between complexity, criticality, 

and spectral features 

Further, correlations were calculated from the mean 

of the time series across participants after averaging 

over channels for each condition, respectively (Table 

6-Table 11). Here, it becomes evident that the SNZ 

was significantly negatively correlated with the 

sample entropy, the scaling exponent resulting from 

the DFA as well as the HFD in each condition. Thus, 

the correlation seems to be condition independent. 

The scaling exponent from the DFA showed highest 

negative correlations with the alpha 1 and alpha 2 

frequency bands.  
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Table 6: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the condition 

eyes open across participants after averaging over channels; 

n=30. **p<0.001, *p<0.01 
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Table 7: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the condition 

eyes closed across participants after averaging over channels; 

n=30. **p<0.001, *p<0.01 
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Table 8: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the reading 

condition across participants after averaging over channels; 

n=30. **p<0.001, *p<0.01 
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Table 9: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the presence 

meditation condition across participants after averaging over 

channels; n=30. **p<0.001, *p<0.01 
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Table 10: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the emptiness 

meditation condition across participants after averaging over 

channels; n=30. **p<0.001, *p<0.01 
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Table 11: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the focused 

attention meditation condition across participants after 

averaging over channels; n=30. **p<0.001, *p<0.01 
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4.1.6 Discrimination analysis 

To determine the discrimination accuracy, ROC 

analysis was applied. Regarding the frequency 

bands, highest accuracy was found for the gamma 

band (0.83-0.98) followed by the global PSD (0.78-

0.96) (Table 12). The sample entropy was slightly 

superior to the HFD and DFA analysis in 

discriminating the meditation conditions (0.86-0.90 

vs. 0.73-0.75 and 0.74.-0.77) (Table 17). This was 

also reflected when plotting the ROC curve two-

dimensional with the false positive rate on the x-axis 

and the true positive rate on the y-axis and 

calculating the area under the curve (AUC) (Table 

14, Table 15).  
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Table 12: Accuracy of classification of the frequency bands 

determined by partial least square regression and ROC 

analysis.  
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Table 13: Accuracy of the complexity and criticality features in 

classification determined by partial least square regression and 

ROC analysis. 
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Table 14: Values of the area under the curve (AUC) for ROC 

analysis for the frequency bands.  
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Table 15: Values of the area under the curve (AUC) for ROC 

analysis for the complexity parameter.  
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4.2 Singing bowl experience 

4.2.1 Kruskal-Wallis Test 

A Kruskal-Wallis-Test was performed to analyse 

whether criticality, neuronal complexity and power 

spectra were significantly influenced by the course of 

the experiment. No significant main effect was found 

(Table 16).  

 

Table 16: Chi-Square values for each complexity, criticality and 

spectral features resulting from the Kruskal-Wallis-Test. 

 Chi square  p-value  

SE sf=1 2.05 .360 

SE sf=3 0.25 .884 

SE sf=5 0.38 .828 

SE sf=7 0.21 .899 

SE sf=10 0.84 .656 

SE sf=20 1.22 .544 

HFD 2.34 .311 

α (DFA) 0.15 .927 

SNZ  4.23 .120 

Delta 0.32 .853 
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Theta 0.051 .975 

Alpha 1 0.01 .998 

Alpha 2 0.18 .912 

Beta 1 0.20 .905 

Beta 2 0.68 .713 

Gamma 0.92 .632 

Global 0.57 .750 

 

4.2.2 Global comparisons 

For a comparison between the three conditions, 

effect sizes were estimated for each complexity and 

criticality feature as well as frequency band. 

Significant differences were determined by a two-

tailed t-test corrected for multiple comparisons by the 

false discovery rate. Comparing the distinct phases 

of the course of the singing bowl massage 

experiment, statistically significant differences in the 

effect size of the complexity measures are only found 

for the HFD exponent in the condition postresting vs. 

resting (d= -.11). However, the critical scaling 

exponent was suitable to discriminate all three 
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conditions sound vs. resting (d= .21), postresting vs. 

sound (d= .38) and postresting vs. resting (d= .14) 

(Figure 31, Table 17).  

The comparison of frequency bands for the 

experimental tasks on a global level revealed that 

there was less significant overall EEG power during 

the sound condition compared to the first resting 

state (d= -.30). The decrease of EEG activity was 

specifically significant for the frequency bands alpha 

2 (d= -.17), beta 1 (d= -.16), beta 2 (d= -.24), and 

gamma (d= -.35). The comparison between the 

second resting state and the sound condition 

revealed a decrease in the beta 2 (d= -.15) and the 

gamma frequency band (d= -.06). Hence, further 

reduction in global EEG power was observed during 

the second resting states compared to the first 

resting state (d= -.46), also with significantly effects 

for alpha 2 (d= -.21), beta 1 (d= -.14), beta 2 (d= -.40) 

and gamma (d= -.21) (Figure 32, Table 18).  
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Figure 31: Color-coded differences of complexity and criticality 

features shown as effect sizes (Cohen's d) of the comparisons 

between the phases of the experiment on a global level 

averaged over all electrodes. Fields marked with a black circle 

were significant on the 0.05 level after FDR adjustment. 

 

 

Figure 32: Color-coded differences of power spectral density 

shown as effect sizes (Cohen's d) of the task comparisons on a 

global level averaged over all electrodes. Fields marked with a 

black circle were significant on the 0.05 level after FDR 

adjustment over conditions and frequency bands.  
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Table 17: Values of the effect size and p-values resulting from 

the comparison of complexity and criticality features between 

the three phases of the experiment. All p-values were corrected 

for multiple comparison. 

 

 

 

 

 

 

 

 

 

 



161 

 

Table 18: Values of the effect size and p-values resulting from 

the comparison of frequency band power between the three 

phases of the experiment. All p-values were corrected for 

multiple comparison. 

 

4.2.3 Local comparisons 

In the comparison sound vs. resting the scale factors 

1, 3, 5, 7, and 10 of the MSE did not yield significant 

differences in the effect size. Highest effect sizes 

were found for the SE sf=20 in the occipital and left 

central region. The HFD effect size were only 

significant different in the occipital area, whereas the 

DFA showed significances in the prefrontal, left 

frontal, right frontal, left temporal and central brain 

region. Comparing the second resting state with the 

sound phase, the sample entropy showed the lowest 
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effect size in the right temporal region. For the SE 

sf=5 significant differences were observed in the left 

temporal, left central and left parietal area, whereas 

the SE sf=10 discriminated the conditions in the right 

temporal, left central and right central region. Neither 

the scaling exponent resulting from the DFA nor the 

HFD yielded big effect sizes. The comparison of the 

second resting state with the first resting state 

showed highest effect size differences in the left 

temporal, right temporal and left central area for the 

sample entropy. Here, the HFD yielded significant 

differences in 7 brain areas, whereas the scaling 

exponent from the DFA was not able to discriminate 

the conditions on the local level (Figure 33). 

Regarding the frequency bands, for the comparison 

sound vs. resting, highest effect sizes were found in 

the right temporal, the left temporal and left central 

area in the beta 2, gamma and the global frequency 

band. The gamma band yielded statistically 

significant differences in all brain areas, whereas 

theta and alpha 1 were not able to discriminate the 

two phases of the course of the experiment. 
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Comparing the second resting state with the sound 

phase, resulted also in highest effect sizes in the beta 

2, gamma and the global frequency band with 

significant differences in all brain regions. A similar 

picture was observed contrasting the second with the 

first resting state (Figure 34). Topographical plots of 

the condition comparisons are shown in Figure 35 

and Figure 36. 

 

Figure 33: Color-coded complexity and criticality feature 

differences shown as effect sizes (Cohen's d) resulting from the 

task comparisons (A-C). T-tests were calculated from each 

participant for each location and complexity parameter. Fields 

marked with a white circle were significant on the 0.05 level after 

FDR adjustment. 
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Figure 34: Color-coded power spectral density differences 

shown as effect sizes (Cohen's d) resulting from the task 

comparisons (A-C). T-tests were calculated from each 

participant for each location and frequency band. Fields marked 

with a white circle were significant on the 0.05 level after FDR 

adjustment. 
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Figure 35: Topographical maps of differences in the effect sizes 

calculated for each complexity and criticality feature, 
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respectively. (A) Comparison between sound vs. resting, (B) 

postresting vs. sound, (C) postresting vs. resting.  

 

Figure 36: Topographical maps of differences in the effect sizes 

calculated for each frequency band, respectively. (A) 
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Comparison between sound vs. resting, (B) postresting vs. 

sound, (C) postresting vs. resting. 

4.2.4 Complexity, criticality, and spectral features for 

each condition 

For the distinct phases during the course of the 

singing bowl massage experiment, the sample 

entropy slightly decreased during the singing bowl 

massage (mean 1.479± 0.31) compared to the first 

resting state (mean 1.491± 0.37. The complexity 

captured with the entropy was further reduced in the 

second resting state (mean 1.459± 0.30). The same 

trend can be observed for the scale factor 3 and 10 

of the multiscale entropy analysis (Figure 37). A 

decrease of complexity during the sound intervention 

was also found with the parameters SE sf=7 and SE 

sf=20, whereas here the complexity increased 

between the sound phase and the second resting 

state. Only the scale factor 5 of the sample entropy 

showed a different behaviour, with slightly increased 

value during the intervention compared to the first 

baseline (from a mean 0.131± 0.07 to 0.132± 0.06), 

while during the second resting state values further 
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decreased to 0.123± 0.05) (Figure 37). As depicted 

in Figure 38, the parameter HFD seems not be 

affected by the intervention with a mean value of 1.98 

for all three phases The scaling exponent resulting 

from the DFA slightly decreased from a mean of 

0.336± 0.09 to 0.325± 0.08 between the first resting 

and the sound intervention, whereas no difference is 

found between the first and second resting state. The 

critical scaling exponent SNZ was higher during the 

intervention phase than in the first resting state 

(1.417± 0.08 compared to 1.379± 0.114) and further 

increased in the second resting state (1.433± 0.1) 

(Figure 38). Regarding the frequency bands, no 

differences in delta, theta and alpha 1 power was 

observed. Alpha 2 slightly decreased during the 

sound phase. For beta 1 values were slightly 

increased in the second resting state, whereas beta 

2 power decreased. Gamma power slightly 

decreased during the course of the experiment from 

4.061±0.71 to 3.91±0.60 (Figure 39).  
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Figure 37: Resulting sample entropy (SE) values for the distinct 

scale factors (sf) are shown for each phase of the course of 

experiment (A-F). 
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Figure 38: (A) Resulting Higuchi fractal dimension (HFD) values 

are shown for each condition. (B) Values from exponent 

resulting from detrended fluctuation analysis (DFA) are 

illustrated. (C) The critical exponents obtained from the 

neuronal avalanches are shown for each phase of the course 

of experiment. The hypothetical value is illustrated by the dark 

green dotted line (D) SNZdiff depicts the difference between the 

critical exponent resulting from the neuronal avalanches 

analysis and the scaling parameter obtained from the shape 

collapse function for each condition, respectively. The 

hypothetical value is illustrated by the dark green dotted line 
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Figure 39: Power spectral density for each frequency band and 

condition, respectively. (A) shows the delta band, (B) the theta 

band, (C) alpha 1, (D) alpha 2, (E) beta 1, (F) beta 2, (G) the 

gamma band and (H) results on a global level. 

 

4.2.5 Correlations between complexity, criticality, 

and spectral features 

Spearman’s rank correlations were calculated from 

the mean of the time series across participants after 

averaging over channels for each condition, 

respectively. Here, similar trends as shown in the first 

study (Table 6-Table 11) can be observed. The SNZ 

was significantly negatively correlated with the 

sample entropy, the scaling exponent resulting from 
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the DFA as well as the HFD in each condition. Also, 

a significant negative correlation with the gamma 

power was found (Table 19-Table 21). 

Table 19: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the first resting 

state across participants after averaging over channels; n=30. 

**p<0.001, *p<0.01   
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Table 20: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of singing bowl 

massage condition across participants after averaging over 

channels; n=30. **p<0.001, *p<0.01 
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Table 21: Spearman correlations of complexity and spectral 

parameter from the mean of the time series of the second 

resting state across participants after averaging over channels; 

n=30. **p<0.001, *p<0.01 
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4.2.6 Phenomenological data 

Regarding the subjective effects of the singing bowl 

massage, 91.2% of the participants felt more 

integrated, 97.1% more balanced and 76.5% more 

vitalized. The bodily feeling was rated as wider 

(85.3%), more intense (91.2%), more relaxed 

(91.2%), more comfortable (88.2%) as well as more 

powerful (70.6%). The emotional state appeared to 

be calmer for 82.4% of the participants and more 

balanced (97.1%). Further after the singing bowl 

application, participants reported to be happier 

(79.4%), satisfied (88.2%), more secure (82.4%) and 

connected (88.2%). Mentally, the majority of 

participants felt clearer (73.5%). Further, 47.1% of 

the participants were more extroverted and 76.5% 

satisfied. In total, 94.1% rated the contact with the 

singing bowl massage conductor as good and 32.4% 

stated that the duration of time was too short (Figure 

40).  

The mean TAS score was 69.4 ± 27.5. The total TAS 

scores did not correlate significantly with age 

(Spearman's ρ= .19, p= .271), gender (Spearman's 
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ρ= -.144, p= .417) or the frequency of experiencing 

an altered state of consciousness (Spearman's ρ= 

.317, p= .067). However, significant positive 

correlations between the TAS score and the following 

items of the CSP-14 were found: body sensation 

narrow-wide (Spearman's ρ= .340, p= .049), body 

sensation uncomfortable-comfortable (Spearman's 

ρ= .370, p= .031), emotional state sad-happy 

(Spearman's ρ= .414, p= .015) and emotional state 

unsatisfied-satisfied (Spearman's ρ= -.395, p= .021). 

Figure 40: Results of the CSP-14 shown as percentages 

 

Concerning the phenomenology of consciousness, 

participants scored highest in the dimensions 
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“openness”, “memory”, “introversion”, 

“timelessness”, “imagination” and “cognitive clarity” 

(Figure 41). The total TAS score was significantly 

correlated with the dimension “insights” (Spearman's 

ρ= .457, p= .028) and “introversion” (Spearman's ρ= 

.472, p= .027) of the PCI-K questionnaire. 

Interestingly, the mean TAS score was significantly 

negatively correlated with the SNZ during the first 

resting state as well as the second resting state 

(Figure 42, Figure 43).  

 

Figure 41: Results of the PCI-K shown as mean ± SD for each 

dimension. 
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Figure 42: Spearman correlations of the TAS scores with the 

EEG features calculated from the mean of the time series of the 

first resting state averaged across participants. 

 

Figure 43: Spearman correlations of the TAS scores with the 

EEG features calculated from the mean of the time series of the 

second resting state averaged across participants.   
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4.3 Sensory processing sensitivity   

4.3.1 Correlations between sensory processing 

sensitivity, complexity, criticality, and spectral 

features 

To determine whether the scores on the HSPS-G 

scale are significantly associated with the estimated 

EEG features, Spearman’s rank correlation was 

applied. Here, the summary scores did not 

significantly correlate with any of the spectral 

parameter nor with the complexity or criticality 

values. This was also observed for the subscale 

Ease of Excitation (EOE). However, the dimension 

Low Sensory Threshold (LST) was positively 

correlated with the scale factor 7 of the multiscale 

entropy (Spearman's ρ= .20, p= .032) and the HFD 

(Spearman's ρ= .22, p= .021). The subscale 

Aesthetic Sensitivity (AES) showed a positive 

correlation with beta 2 power (Spearman's ρ= .20, p= 

.038) (Table 22).  
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Table 22: Spearman correlations of complexity, criticality, and 

spectral parameter from the mean of the time series of the eyes 

closed resting state across participants after averaging over 

channels; n=116. *p<0.05. 
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4.3.2 Differences in frequency power spectra, 

complexity, and criticality features between highly 

sensitive and not sensitive participants  

To examine whether highly sensitive and not 

sensitive participants show differences in frequency 

power spectra, complexity and criticality features, the 

cohort was grouped regarding the HSPS-G summary 

scores according to a latent class analysis performed 

by Lionetti et al. determining a frequency distribution 

of approximately 30% in the low-sensitivity, 40% in 

the medium-sensitivity and 30% in the high-

sensitivity group [246]. EEG features were compared 

between the two groups applying a Wilcoxon signed-

rank test. 

The first group (highly sensitive, HS) consisted of 

n=47 participants (mean age 41.75± 12.7 years, 24 

females/ 23 males), who scored in the range of 74- 

104 on the HSPS-G summary scale. The mean 

HSPS-G summary score was 85.14± 7.7. The 

second group (not sensitive, NS) comprised n=32 

participants (mean age 38.15 ±5.1 years, 20 females/ 

12 males) with a mean HSPS-G summary score of 
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22.97± 10.35 (range: 1- 40). The groups did not differ 

in respect to age (p= 0.869) and gender (p= 0.649). 

The NS group revealed lower beta 2 power (4.21± 

0.17 vs. 4.38± 0.32, p= .014), lower power in the 

gamma frequency band (4.00± 0.25 vs. 4.21± 0.37, 

p= .010) as well as lower global EEG power (4.25± 

0.17 vs. 4.38± 0.29, p= .041) (Figure 44).  

Regarding the complexity and criticality features, the 

only significant differences were found for the mean 

SE sf=1, which was lower in the NS group (1.77± 

0.13 vs. 1.83± 0.10, p= .018) and the mean SE sf=5, 

which was higher in the NS group (0.13± 0.05 vs. 

0.08± 0.01, p= .004) (Figure 45).  
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Figure 44: Comparison of power spectral density for each 

frequency band during resting with eyes closed between the 

highly sensitive and the not sensitive group. (A) shows the delta 

and the theta band, (B) alpha 1 and alpha 2, (C) beta 1 and beta 

2 (D) the gamma band and results on a global level. *HS= highly 

sensitive, NS= not sensitive, n.s.= not significant.  
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Figure 45: Comparison of complexity and criticality EEG 

features during resting with eyes closed between the highly 
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sensitive and the not sensitive group. (A) shows the results of 

the multiscale entropy, (B) HFD (C) scaling exponent resulting 

from the DFA (D) the critical exponent SNZ and the distance to 

the critical point (SNZdiff). *HS= highly sensitive, NS= not 

sensitive, n.s.= not significant.  
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5. Discussion 

Consciousness has fascinated humankind since its 

very beginning and the question of how physical 

processes in the brain give raise to conscious 

experience still is a baffling for many researchers all 

over the world. Regarding the quest for specifying 

processes that underpin normal human 

consciousness, the nonlinear dynamical system 

approach has brought forward a variety of 

hypotheses on the relation between dynamics of 

neural activity and consciousness experiences. 

Hereby, contemporary proposals are that the 

complexity of brain dynamics is a fundamental 

property of consciousness. Thus, states of 

consciousness are quantifiable by the degree of 

neural complexity [247–249, 7]. In recent years, 

special attention has been given to the premise that 

neural dynamics might be governed by the 

phenomenon of self-organized criticality, referring to 

the ability of complex systems to dynamically evolve 

towards a second-order phase transition at which 
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interactions between system components give raise 

to scale-invariant behaviour. The premise of self-

organized criticality is especially appealing as the 

observed scale-free patterns close to a phase 

transition imply the largest variability and thus, the 

largest number of configurations and repertoire of 

possible brain states. Accordingly, critical state 

dynamics have been attributed with optimized 

network functions of information processing such as 

input susceptibility, maximized dynamic range, 

storage capacity as well as computational power. 

Hence, critical dynamics were proposed as general 

gauges of information processing and features of 

healthy brain dynamics [250, 148, 251].  

This thesis was based on the proposal that distinct 

states of consciousness are quantifiable by 

complexity and criticality measures serving as an 

index of the brain’s information processing capacity. 

Such empirical measures suitable to discriminate 

states of consciousness could be important, inter 

alia, for clinical diagnostics and therapy [63, 61, 148, 

51]. Here, a task-free baseline resting, a reading 
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condition and three meditation conditions (first 

study), a singing bowl experience (second study) as 

well as a task-free baseline resting obtained from 

participant with different sensory processing 

sensitivity (third study) were analysed applying 

analytical tools from criticality theory (detrended 

fluctuation analysis, neuronal avalanche analysis), 

complexity measures (multiscale entropy, Higuchi’s 

fractal dimension) and power spectral density. Task 

conditions were contrasted, and effect sizes were 

compared to determine to what degree these EEG 

features reflect changes in the state of wakeful 

consciousness as well as temperament traits 

associated with information processing capacities.  

 

5.1 The neurophysiology of meditative states  

The results showed that state discriminations on the 

level of global field power could separate the 

meditation condition emptiness from focused 

attention and presence. Here, emptiness was 

associated with the highest reduction of overall EEG 

power. Delta and theta band power was significantly 
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decreased in all three meditation conditions 

compared to eyes closed resting. Also, beta band 

power was reduced during emptiness and focused 

attention meditation in comparison to resting, 

whereas gamma band power was significantly 

enhanced during focused attention. In line with these 

findings Cahn et al. associated meditation with a 

decrease in frontal delta power in long-term 

Vipassana meditators [252]. In contrast, Berman and 

Stevens reported significantly higher power in the 

delta, theta and alpha band during a nondual 

meditation compared to resting [253]. Also, Ahani et 

al. measured a cohort aged 50-75 years with high 

stress levels (perceived stress scale score ≥ 9 [254]) 

and no prior meditation experience. The authors 

reported increased beta and theta band power during 

meditation, whereas the alpha band had a slight 

increase in power in the right lateral and posterior 

locations during a sitting mindfulness meditation 

[255]. An evaluation of a Buddhist concentrative 

meditation revealed alpha power increases and 

enhanced theta power in a deep meditative state 
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[256]. Lagopoulos and colleagues carried out a 

nondirective meditation study. Compared to rest, 

they observed higher theta and alpha power during 

meditation on a global brain level. On a local level, 

the first was significantly increased in frontal and 

temporal-central brain areas, whereas the alpha 

band effect was found in the posterior region [257]. A 

comparison of novice and experienced meditators 

revealed a more integrated functional network 

topology determined based on a phase-lag index and 

a minimum spanning tree approach. For the theta 

and beta frequency bands no significant differences 

was found between the groups [258]. The observed 

increase in gamma power during focused attention 

meditation is in line with other studies. For instance, 

Lutz et al measured EEG in long-term Buddhist 

meditation practitioners and observed high amplitude 

gamma band oscillations and phase synchrony in 

frontoparietal electrodes. The authors concluded that 

their results suggest that meditation involves 

temporal integrative mechanism and may contribute 

to short- and long-term neural plasticity [259]. It has 
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also been suggested that the level of expertise 

significantly influences changes in the EEG. For 

instance, a positive correlation between gamma 

power during mind wandering and hours of practice 

was reported. However, such relationship could not 

be confirmed in other studies [260]. Here, only highly 

experienced meditators with an average of 20 years 

and 6498 hours of practice were included. 

Nonetheless, the practice duration and the level of 

proficiency are not necessarily proportional. In a 

systematic review Lomas et al. noted that no meta-

analysis was possible as no more than three studies 

employed the same processing procedure [261]. In 

their work they found that enhanced alpha and theta 

power was associated with meditation in comparison 

to a eyes closed resting state, however such 

outcomes were not uniformly observed [261]. This 

emphasized the need of standardized approaches in 

meditation research as considerable inconsistencies 

in the literature hinder generalizations [262].  

Further, higher neuronal complexity was found 

during the meditation conditions emptiness and 
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focused attention compared to resting with eyes 

closed as captured by the sample entropy and HFD 

values. The results also revealed significantly 

reduced LRTC in all three meditation conditions 

compared to the resting state. The critical scaling 

exponent yielded lower values for focused attention. 

SNZ values were further reduced during the reading 

condition compared to the meditation conditions, 

which may indicate a link between sustained 

attention and the critical regime.   

It has previously been suggested that higher entropy 

states may represent an increased repertoire of 

potential configurations [263, 136, 249, 264] and that 

a loss of brain complexity may be associated with 

cognitive impairments [265]. In line with the 

presented results, Kakamanua et al., analysed EEG 

data of participants with different proficiencies during 

a Vipassana meditation and report increased HFD 

and permutation entropy in teachers and novices 

[266]. In addition, Huang and Lo estimated a higher 

complexity index, especially at occipital, temporal 

and anterior areas during Zen-meditation in 
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experienced practitioners compared to a control 

group, resting for the same amount of time [267]. 

Further, increased fractal dimension as determined 

by Sevcik’s method was found in a calming 

meditation task [268]. Also, Vivot et al. analyzed an 

EEG dataset of experienced meditators following 

three different traditions. The meditation styles 

included Himalayan Yoga and Vipassana, which can 

be classified as focused attention, as well as Isha 

Yoga, classifiable as open monitoring. The authors 

reported an increase in the sample entropy during all 

practices [269]. In contrast, Young et al., obtained 

EEG from highly skilled meditators engaging in six 

different meditation styles. They reported lower 

Lempel-Ziv complexity scores during all meditation 

styles compared to a mind-wandering task, however 

no difference in the power spectra was observed 

[270]. Further, Aftanas and Golocheikine analyzed 

data of twenty experienced meditators during rest 

and Sahaja Yoga meditation, categorized as an open 

monitoring practice, using non-linear dimensional 

complexity (DCx). They report decreased DCx 
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estimates over midline frontal and central areas and 

a negative correlation with the alpha and theta 

frequencies bands, concluding that irrelevant 

networks might be deactivated for the maintenance 

of the focused internalized attention [271]. In 

accordance with these results, two studies showed 

decreased wavelet entropy during a mindful 

breathing meditation compared to an eyes closed 

resting state [272, 273].  

On the other hand, the decline of LRTC was 

consistent in our findings among all three 

meditations. Also, Irrmischer et al. showed that 

meditation practitioners exhibit weaker long-range 

temporal correlations during a focused attention 

meditation compared to rest by applying DFA to EEG 

data. The suppression of LRTCs could not be 

detected in participants without previous meditation 

experience. The authors interpreted the results as a 

shift towards a subcritical regime and argued that the 

reduced autocorrelation within the signal may be 

associated with fewer distractions from the task 

[274]. Here, the critical exponent was significantly 
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negatively correlated with the sample entropy, the 

HFD and the scaling exponent of the DFA 

consistently across the conditions. Thus, according 

to the critical exponent, our findings indicate a shift 

towards a subcritical regime during reading and the 

focused attention meditation. Also, Fagerholm et al. 

analysed neuronal avalanches during a visuomotor 

cognitive finger-tapping task in comparison to rest 

associating the task state and increased attentional 

load with a shift towards subcritical dynamics [215]. 

Further, Tomen and colleagues associated 

marginally subcritical dynamics with enhanced 

stimulus discriminability under attention. In their 

network model, entropy was maximized at the 

subcritical border under the assumption of a coarse 

observation scale [275]. Considering these nuances, 

post hoc interpretations of stronger LRTC as neural 

dynamics closer to the critical point [183] and 

subcritical dynamics as reduced information 

processing [274] require some caution. This finding 

is especially important for theories of consciousness, 

in which the concepts of complexity and criticality are 
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often used equivalently. For instance, in his entropic 

brain hypothesis informed by psychedelic research 

Carhart-Harris proposed that the entropy of brain 

activity indexes the informational richness of 

conscious states and equates higher entropic states 

with more flexible cognition and a shift towards 

supercritical dynamics. The author further entertain 

the idea that a supercritical regime may favor positive 

mood and creative thinking [276, 249]. To note, the 

proposal has been challenged [277] and the 

significant negative correlation between the critical 

scaling exponent and the sample entropy value in 

each meditation condition reported here, clearly 

shows that higher entropic state do not necessarily 

imply an attunement of brain activity towards the 

critical point. Thus, the relationship between different 

complexity and criticality features as a function of 

states of consciousness should be investigated 

meticulously, putting recent theories to experimental 

testing ground. Hereby, applying a combination of 

nonlinear methods seem to be of utmost importance 

[278]. Further, it has theoretically hypothesized that 
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meditation tunes the brain dynamics closer to a 

critical state [279], which has recently been 

supported by experimental research reporting that 

focused attention meditation shifts the scale-free 

dynamics towards the critical point [280]. These 

results seem to contrast the findings presented here, 

which may be explained by differences in the study 

design, e.g. experienced meditators measured with 

EEG vs. novices measured with MEG. Additionally, 

Dürschmid and colleagues used a frequency-specific 

criticality analysis, whereas in this study the data was 

not filtered into distinct frequency bands.  

Additionally, our analysis showed significant 

correlations between that the complexity, criticality, 

and spectral measures. To date, the relationship 

between the complexity of EEG signals and their 

spectral properties is not fully understood [281]. The 

classification analysis revealed that the sample 

entropy, the HFD and the DFA yielded an accuracy 

over 70% in discriminating the conditions. Also, the 

global PSD and the gamma ban reached an 

accuracy of more than 75%. Addressing the question 
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to what extent nonlinear techniques capture 

phenomena that could not be assessed by spectral 

analysis, Mediano and colleagues performed a 

decomposition of spectral and phasic differences in 

the Lempel-Ziv complexity of an MEG dataset 

between a task and rest condition, reporting that the 

effect is mostly driven by spectral changes [282]. 

Further attempts have been made to determine 

whether observed complexity changes go beyond 

what would be expected from changes in the power 

spectrum. For instance, Schartner et al. (2017) 

measured lower dynamical complexity during non-

rapid eye movement sleep compared to rapid eye 

movement sleep and wakeful rest. The differences 

could not be solely attributed to power spectral 

density changes between the conditions [283]. It has 

emphasized that each complexity measure gives 

additional information about the underlying data 

[278] and hence, the combination of EEG complexity 

and traditional measures such as power spectral 

density are deemed as fruitful for further 

investigations [281]. For a further discrimination and 
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classification of mental states, also other machine 

learning algorithms may yield promising results 

[284]. For instance, Hinterberger et al. successfully 

applied a linear classifier for staging of individual 

meditation sessions into a variety of predefined 

meditation states, whereby 83% of the epochs could 

be correctly classified to their originating task [234]. 

Also, Ahani et al established a classifier by applying 

a Support Vector Machine (SVM) algorithm to EEG 

data collected from novice meditators after a six-

week meditation intervention. The authors further 

associated EEG with respiration, which resulted in a 

higher accuracy (85%) in the discrimination between 

meditation and control conditions compared to a 

classifier solely based on the EEG signal (78%) 

[285]. Additionally, Lee and colleagues reported an 

approach using SVM and an artificial neuronal 

network (ANN) to quantify meditation experience. 

Based on spectral features they classified three 

meditation groups categorized as novice, junior and 

senior achieving an accuracy rate >98% [286]. 

Further, Sharma et al aimed at discriminating 
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meditators and non-meditators. For this purpose, 

they collected EEG data before and after three 

months of regularly practice of combined yoga and 

meditation. Data was analysed by discrete wavelet 

transform. By applying ANN to statistical features of 

the frequency bands, 87% accuracy was achieved 

for classification [287]. Besides, approaches with 

fuzzy c-means and K-Nearest Neighbours algorithms 

for a classification of meditation states were reported 

[288, 289]. Goshvapour et al. compared the accuracy 

of different classification methods on EEG data 

recorded pre and post an meditation intervention, 

showing that Fisher discriminant and Parzen 

classifier yielded the best results [290].  

 

5.2 Effects of a singing bowl experience 

The intervention of a singing bowl massage found its 

way into various fields of applications such as 

prevention, therapy, wellness and education. In this 

study, neurophysiological effects as well as 

subjective changes of wellbeing were evaluated. The 

results showed an overall decrease of EEG power 
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during the singing bowl massage as well as 

afterwards. The effects were most pronounced in the 

beta 2 and gamma frequency band.  

The neurophysiological changes may be interpreted 

as a refrain from specific cognitive processing such 

as mental conceptualization, which would be 

commensurate with the essential aspect of 

mindfulness, namely non-judgmental awareness of 

the moment-to-moment-experience [291]. This 

would be in line with the findings of the first study 

showing global decreased EEG activity as well as 

decreases in frontal beta and central and parietal 

gamma band, when highly experienced meditators 

entered a state of thoughtless emptiness [232]. 

Further, a decrease in power over all frequency 

bands was detected during a meditation 

characterized as “sacred, unified, egoless, and 

blessed” [288]. Also, Dor-Ziderman et al. 

distinguished between a state of “narrative” self-

awareness and a “minimal” self-awareness in a MEG 

neurophenomenological study. The authors reported 

that the first involved frontal and medial prefrontal 
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gamma band power decrease while the latter was 

related to a beta band power decrease in a network 

including ventral medial prefrontal, medial posterior 

and lateral parietal regions. Furthermore, the authors 

linked an attenuation of beta band activity in the right 

inferior parietal lobule to a state of selflessness [292].  

Compared to the findings of the meditation states 

study reported here, changes in neuronal complexity 

and criticality features due to the experimental 

condition were less pronounced (Table 17). Whereas 

the meditation states were associated with higher 

neuronal complexity, effect sizes of the sample 

entropy and fractal dimension were decreased in the 

second study, which was most pronounced in the 

comparison of the second and first resting state. 

Interestingly, the critical scaling exponent SNZ was 

suitable to discriminate all three phases of the course 

of the experiment, whereby values were closest to 

the critical point in the postresting condition. Also 

here, correlations revealed a significant negative 

correlation between the critical scaling exponent and 

the sample entropy, fractal dimension and the DFA 
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exponent and thus, verified the findings of the first 

study. 

The reported positive psychological effects are in line 

with other findings in the literature. For instance, 

Goldsby et al. reported less tension, anger, fatigue, 

and depressed mood (p<.001) after a meditation with 

Tibetan singing bowl in healthy participants. Also, the 

feeling of spiritual well-being was significantly higher 

[293]. In addition, improvement in positive affect and 

a reduction in negative affect as captured by the 

Positive And Negative Affect Schedule (PANAS) 

questionnaire [294] was reported after a 40-minute-

long sound meditation with singing bowls [295]. In the 

presented study, participants also reported to feel 

more vitalized, which is in accordance with another 

study determining that subjective sleepiness was 

lower after a 20-minute relaxation in during singing 

bowl sound compared to a silent relaxation (p=.041) 

[296]. Further, listening to singing bowl sound was 

shown to be an useful strategy to reduce anxiety in 

patients waiting for urologic surgery [297], which is 

consistent with high percentages of participants 
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reporting to be more relaxed, calm and balanced in 

this study. In addition, in a randomized controlled trial 

Landry compared the effects of a directed relaxation 

session with and without the use of Himalayan 

singing bowl sound, reporting a decline in systolic 

blood pressure (p=.044) and heart rate (p=.003) in 

the first group [298]. Also, a significant increase in 

heart rate variability was observed when applying 

singing bowl sound during a relaxation session 

compared to silent relaxation [299].  

The presented findings suggest that the application 

of a singing bowl massage is beneficial on a physical 

and psychological level. Addressing the question 

whether the effects are also therapeutical, Wepner 

and colleagues investigated singing bowl massage 

interventions in patients with chronic unspecific pain. 

In their study, participants were divided into three 

groups, either receiving singing bowl therapy, a 

placebo intervention or no treatment. Both the 

placebo and the treatment group showed less pain 

intensities [300]. However, in a recent review it was 

concluded that more evidence is required to 
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recommend singing bowl therapies as numbers of 

studies eligible for inclusion were small (n=4) [301].  

The revealed positive correlation between the TAS 

scores and psychological outcomes are in line with 

other findings suggesting that absorption, as a 

personality characteristic may be a predictor of 

outcomes in mind-body interventions [243, 318]. For 

instance, fibromyalgia patients with high levels of 

absorption reported more clinically relevant 

improvements after a guided imagery intervention in 

a randomized, controlled trial [302]. Interestingly, the 

critical exponent was significantly negatively 

correlated with the total TAS score. In line with this 

finding, Irrmischer et al. demonstrated that 

participants with higher trait absorption showed more 

suppression of LRTC during a meditation task [274]. 

Also, it has been shown that persons scoring higher 

on the absorption scale are enabled to reach deeper 

meditative states faster [303]. Thus, trait absorption 

seems to contribute to a stable focus of attention 

reflected by a shift in critical brain dynamics.  
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5.3 Criticality and sensory processing sensitivity 

Under the umbrella of theoretical frameworks on 

environmental sensitivity, providing models to 

elucidate individual differences in the capacity to 

process environmental stimuli, in the last 20 years 

sensory processing sensitivity (SPS) emerged as a 

topic of research [304]. As a continuum across 

humans, SPS reflects inter-individual differences in 

trait sensitivity to experiences [305, 245]. Hereby, 

SPS is proposed as a temperament trait defined by 

greater depth of information processing, enhanced 

awareness of environmental subtleties as well as an 

ease of overstimulation [306, 305, 307]. Importantly, 

according to the classification systems ICD-10 and 

DSM-5, high sensitivity does not constitute a 

psychopathological health disposition. Initially, Aron 

and Aron developed the Highly Sensitive Person 

Scale (HSPS) in 1997, a 27-item questionnaire 

designed to measure high sensitivity. In a series 

qualitative and quantitative of studies, high sensitivity 

was conceptualised as an unitary psychological 

construct composed of perceptual sensitivity as well 
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as cognitive and emotional responses to 

environmental stimuli [245]. Later, Smolewska et al. 

examined the questionnaire and obtained three 

factors, which they called Ease of Excitation (EOE), 

reflecting being easily overwhelmed by stimuli, Low 

Sensory Threshold (LST), characterising unpleasant 

sensory arousal in response to external stimuli, and 

Aesthetic Sensitivity (AES), e.g. being deeply moved 

by arts or music [308, 309, 304]. Consequently, the 

HSPS has been translated into several languages 

[305]. The German version of the HSPS-G 

questionnaire, which was used in this thesis, was 

evaluated by Konrad and Herzberg. Here, the three-

factorial solution was essentially confirmed, although 

with a reduced number of items [244]. Other studies 

showed an association between EOE and LST with 

negative emotionality, anxiety and depression [310], 

whereas AES was reported to correlate with positive 

emotionality including positive affect and self-esteem 

as well as openness to experience and 

conscientiousness [311, 312]. It has been estimated 

that approximately 20-30% of the general population 
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score have a heightened sensory sensitivity [313, 

246, 307]. Recently, a latent class analysis has been 

applied to HSPS results obtained from two samples 

consisting of n= 451 and n= 540 participants, 

respectively. The authors identifying a low, a medium 

and a highly sensitive group with a distribution of 

29%- 40%- 31% [246]. The cut-off scores applied 

here for the grouping of participants was based on 

this finding, which was consistent across ages [246].  

However, whereas SPS is captured based on 

questionnaires or behavioral observational 

assessment, its neurobiological basis has only been 

scarcely investigated. So far, no EEG study has been 

carried out determining neurophysiological 

signatures of SPS. 

Nonetheless, to date, a few fMRI studies were 

conducted [314–318]. Taken together, the results 

support depths of information processing as an 

essential key feature to characterize SPS with 

increased activity in brain areas such as the 

precuneus, prefrontal cortex and the inferior frontal 

gyrus [305]. In addition, enhanced resting state 
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connectivity within the ventral attention, dorsal 

attention and limbic network was shown in 

association with higher SPS [319]. 

From a theoretical perspective, neural network 

models have shown that the critical brain state 

maximizes information processing capacities 

including enhanced input sensitivity to changes in 

external inputs [320, 321, 251, 187]. Explanations for 

the phenomenon include that nodes are more 

excitable in critical subpopulation and hence, can 

more effectively amplify weak stimuli [322].  

Such findings led to the hypothesis, that scores on 

the HSPS-G scale might correlate with the dynamical 

regime captured by the critical scaling exponent and 

the DFA. However, the results of the third study did 

not validate this proposal, and an association 

between the critical state and SPS could not be 

proven.  
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5.4 Self-organized criticality as a neurodynamical 

correlate of consciousness 

The conceptual nonlinear dynamical system 

framework in Neuroscience has produced a variety 

of approaches and hypotheses on the relation 

between dynamics of neural activity and conscious 

experience [323, 324]. Such notions are appealing 

considering that consciousness reflects an 

intrinsically dynamical phenomenon, a temporal 

process in its nature, notably described as the 

“stream of consciousness” [325].  

Over the years an abundance of conceptual 

proposals with distinct philosophical foundations 

were published and straightforward comparisons can 

be challenging. Thus, hitherto, no current framework 

is univocally accepted on either theoretical or 

empirical grounds [326]. However, whereas all 

theories on how consciousness relates to the 

physical domain start from different premises, an 

explicit complexity-related framework is recently 

embraced [7]. Therefore, in the following the view of 

the brain’s function operating at the brink of criticality 
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will be cross linked to a “family resemblance” of 

theories of consciousness [324].  

5.4.1 Consciousness as an order parameter 

To start, the conjecture of self-organized criticality 

goes hand in hand with a huge body of literature 

published by Walter J. Freeman since the 1970s. 

According to Freeman, consciousness can be seen 

as an order parameter. Thus, it is measurable by the 

level of emergent global coherent neuronal activity. 

In his view “awareness is basically akin to the 

intervening state variable in a homeostatic 

mechanism, which is both a physical quantity, a 

dynamical operator, and the carrier of influence from 

the past into the future that supports the relation 

between a desired set point and an existing state” 

[327]. These thoughts were based on experiments 

including electrophysiological recordings of the 

olfactory system of rabbits. Here, scale-free 

dynamics and spatial patterns in amplitude and 

phase modulations of oscillations were observed. 

Interpreted within the framework of dynamical 

system theory, it was suggested that these are 
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generated by state transitions consistent with a 

critical regime and that sensory information are 

encoded in the spatiotemporal patterns [328–330]. 

The authors go further by proposing that the 

mechanism of self-organized local domains 

preceding the formation of global domains underlies 

Gestalt formation in perception [329]. 

Another proposal in this direction has been 

formulated by Francisco J. Varela, who worked on 

the “biophysics of being” until his death in 2001 [331]. 

Close to the notion of reverberant cell assemblies, 

labile sets of neurons transiently oscillating at the 

same frequency [323] formulated by Hebb (1949), 

which have been hypothesized to be the basis for 

short-term memory [153], Varela and colleagues 

pursued the idea of resonant cell assemblies [332]. 

By addressing how neural mechanisms account for 

“the flow of adapted and unified cognitive moments” 

[333, p. 229], the authors hypothesized that “for 

every cognitive act, there is a singular and specific 

large cell assembly that underlies its emergence and 

operation” [332]. In their “brain web” proposal the 
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authors argue that synchrony over multiple 

frequency bands, in particular the beta and gamma 

range, would be the most plausible candidate for 

temporal binding and large-scale integration across 

spatially distributed local brain regions [333]. 

Interestingly, the transient nature of the neural 

assemblies implies that the systems would represent 

metastable patterns of activity instead of attractor 

states [323]: “In the brain, there is no ‘settling down’ 

but an ongoing change marked only by transient 

coordination among populations, as the attractor 

itself changes owing to activity-dependent changes 

and modulations of synaptic connections” [333, p. 

237]. Similarly to the work by Freeman, here, the 

balance of segregation and integration is considered 

to be a hallmark of the brain’s complexity and a 

plausible prerequisite for consciousness [323]. 

Interestingly, even though Varela and Thompsons’ 

proposal insinuates that conscious awareness can 

be mapped at the level of spatiotemporal patterns as 

an order parameter, the authors placed their work in 

a “radical embodiment” framework. Stating that 
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“consciousness depends crucially on the manner in 

which brain dynamics are embedded in the somatic 

and environmental context of the animal’s life” [334, 

p.425], they suggested that “processes crucial for 

consciousness cut across the brain–body–world 

divisions, rather than being brain-bound neural 

events“ [334, p.418].  

 

5.4.2 Oscillatory synchrony 

Alongside with the “brain web” proposal, extensive 

work was carried out over the last decades on 

oscillatory synchrony, defined as positive correlation 

between the spike timing of a neuronal population, as 

type of transient interaction between neural 

assemblies [323]. For instance, Treisman and 

Gelade (1980) published the hypothesis that 

neuronal synchrony might be a mechanism for 

mediating feature binding and attention [335]. Also, 

Von der Malsburg and Schneider (1986) suggested 

that the binding problem, the question how separate 

features are bound into a unified perceptual 

representation, is solvable by neurons firing 
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synchronously to encode and combine information 

[336]. From there on synchronous activity of neuronal 

assemblies and temporal binding was extensively 

explored as a candidate mechanism for conscious 

perception [337–339]. In particular, the working 

group of Wolf Singer brought forward the idea that 

there is a “temporary association of neurons into 

functionally coherent assemblies that as a whole 

represent a particular content whereby each 

individual neuron is tuned to one of the elementary 

features of composite perceptual objects” [340, 

p.1381]. Further, the “communication-through-

coherence” hypothesis emerged with the idea of 

phase-locking amongst oscillations of neuronal 

assemblies as a gating mechanisms enabling 

effective communication by acting as windows of 

frequency-specific interactions [341]. Especially, the 

relation between synchrony in the gamma range and 

consciousness received much attention and has 

been regarded to be the “crowd’s favourite” [323, p. 

733]. For instance, the highly influencing paper 

“Towards a neurobiological theory of 
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consciousness”, by Francis Crick and Christoph 

Koch (1990), proposing a theory of visual 

consciousness based on gamma band oscillations 

[47], sparked a new section of research on the neural 

correlates of consciousness, defined as “the minimal 

neuronal mechanisms jointly sufficient for any one 

consciousness percept” [342]. Also, transient phase 

locking during gamma oscillation was observed 

when participants reported perceiving a “gestalt” in 

figures [343]. Multiple studies were published 

associating attentional mechanisms with activity in 

the gamma frequency range. For example, Landau 

et al. reported effects on the gamma band (30-70 Hz) 

distinguishing between voluntary and involuntary 

attention measured with EEG [344]. Sokolov et al. 

measured MEG in the task of shifting selective 

attention between visual and auditory stimuli, 

showing an increased high gamma frequency 

response in cortical areas, observing a peak at 40 Hz 

[345]. An intracranial EEG study showed an increase 

of gamma band activity in the range of 60-200 Hz in 

the premotor cortex in the task of shifting attention 
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towards upcoming targets [346]. Intriguingly, as in 

this study enhanced gamma frequency in the context 

of reduced SOC during focused attention was found, 

an activity of 140-200 Hz was observed in rats at 

timepoints where the GABA system is switching from 

excitation to inhibition [347]. Additionally, in working 

memory task synchronous gamma oscillations are 

maintained even when the stimulus disappears. The 

phase-specific synaptic input of gamma frequency 

oscillations was suggested to facilitate synaptic 

plasticity and encoding of long-term memory [348]. 

Also, the degree of memory specify was found to 

correlate with the magnitude of gamma activity [349] 

and Wespatat et al. reported that synaptic plasticity 

is modulated in respect to the phase of gamma 

frequency oscillation [350]. Stronger synaptic 

strengthening through neuronal synchronization in 

sensory and attentional areas was found to promote 

synaptic plasticity and a better flow of neural 

information [351]. However, it was shown that 

gamma synchronization can also occur in the 

absence of consciousness. For instance, gamma 
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synchrony was shown to increase during NREM 

sleep, anaesthesia or seizures [55–57]. Therefore, it 

has been concluded that “while synchronization and 

oscillatory patterning may be necessary conditions 

for activities to participate in generating awareness, 

they are certainly not sufficient” [352, p.492]. Also, it 

was suggested that oscillations, mostly studied in 

association with stationary and potential nonzero 

phase locking between cortical areas, are a rather 

rigid framework for such transient process. Instead, 

propagating waves [353, 354] or wave packets [355] 

were deemed as more natural for encoding temporal 

sequences [162]. In his manuscript “Corticonics”, 

Moshe Abeles coined the term “synfire chain” 

describing a particular type of neural synchronization 

characterized by the sequential activation of 

neuronal populations, similarly to a wave without any 

particular spatial ordering [356]. Thus, with “synfire 

chains” the neuronal avalanches at the level of 

spiking were described and this view basically 

outlined the idea of activity propagation in neuronal 

networks as the essential dynamical property [162]. 
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However, if critical dynamics are in fact alternatives 

to “bind” features in cortical information processing 

through cascading activity, this opens up a few 

questions on how the dynamical concepts of 

oscillatory activity and neuronal avalanches can be 

brought together. For a reconciliation it has to be 

demonstrated that they coexist or even complement 

each other to improve information processing 

functions [162]. Indeed, the hypothesis that cortical 

dynamics resides at a critical point of optimized 

information processing, has refocused attempts to 

explain the tremendous variability in neuronal activity 

patterns observable in the brain [184, 250]. In the 

literature there seem to be a consensus that the 

cortical network is organizing close to a critical point 

with all temporal scales contributing to the dynamic 

[196, 357] and a fair amount of research has shown 

that neuronal avalanches and oscillations are related 

[250]. However, some aspects on the connection 

between oscillations and neuronal avalanches still 

need to be explored further. For instance, it is not 

fully understood yet how an avalanche can fit into a 
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continuous oscillation. If it would be the case that 

multiple cycles contribute to an avalanche, the 

cascades would represent recurrent activation of 

single cortical areas. This would be in contrast with 

findings showing that recurrent activations of sites 

are scarce [358, 162]. An emerging view is that 

transient phase locking of oscillations reflects the 

underlying organization of neuronal avalanches.  

Cortical neurons often propagate activity during 

nested oscillations, which occur during a coupling of 

the amplitude of a faster rhythm to the phase of a 

slower rhythm [359]. One study showed that nested 

theta and beta/ gamma oscillations organized as 

neuronal avalanches, as these were synchronized 

across cortical sites with a size distribution governed 

by a power law with a slope of −1.5. Hence, nested 

oscillations seem to co-occur with neuronal 

avalanches [168]. Further, experimental findings 

suggest that neuronal avalanches seem to be a 

result of the alternation between Up and Down states 

[360]. It was found that the critical dynamic reflects 

Up states [361] and that Down states are 
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characterized by subcritical dynamic [362]. Hereby, 

the consequence of a large avalanche would be a 

hyperpolarization of the neurons involved, leading to 

a Down state, whereas small avalanches maintain 

the depolarization and the Up state, considering the 

Up state as a metastable state [360, 363]. 

Furthermore, it is suggested that small amplitude 

depolarizing potentials, resulting for example from 

spontaneous miniature synaptic release, emerge at 

higher frequencies, which can generate larger 

depolarization events and transitioning the network 

to the Up state [364, 365]. For instance, Lombardi et 

al. observed that the size of an avalanche and the 

silent time bins between avalanches are correlated 

and displayed the intermittency of oscillations, 

suggesting that neuronal avalanches exhibit 

characteristics of the frequency band oscillations 

[363]. Experimental findings also suggest that the 

diversity in broadband phase locking is maximized at 

criticality [366]. Here, Kitzbichler et al. investigated 

data recorded with MEG and fMRI, proposing a 

criticality as a broadband phenomenon. They found 
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critical dynamics during the phase lock interval and 

the duration of synchronization between a specific 

pair of time series in the low frequency measured 

with fMRI [367]. In this thesis neuronal avalanches 

analysis was consistently based on peaks and 

troughs identified on the broadband signal. To note, 

in a recent MEG study, it was asked whether the local 

minima of negative excursions or local maxima of 

positive excursions of the broadband signal are 

sufficiently sensitive events to detect certain phases 

of oscillations in narrow frequency bands. Hence, do 

these events represent only certain phases of certain 

frequency bands, or certain phases of all frequency 

bands? To outline whether peaks and troughs in the 

broad band signal are generated by band-limited 

processes, the authors filtered the broadband signal 

in 39 narrow frequency bands after events identifies 

as peak and trough time points beyond a threshold in 

the z-transformed time series were stored. Their 

results indicated that troughs and peaks derived from 

the broad band signal are more sensitive to troughs 

and peaks of low and high frequency bands but not 
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of intermediate frequencies as neuronal avalanches 

were only phase locked to oscillations in the 

frequency range <50Hz and >100Hz. The authors 

then further analyzed cascade characteristics with a 

frequency-specific approach and reported a better 

goodness of fit to power-law scaling in the high 

frequency range (>100Hz) of the MEG, proposing 

high frequency activity as an ideal carrier of neural 

avalanches [280]. Also, it was demonstrated that the 

removal of gamma oscillations by bandpass filtering 

abolished the critical avalanche profile in high-

density microelectrode array recordings from awake 

nonhuman primates. Thus, there seem to be an 

interdependence and coexistence of critical 

dynamics during intermittent oscillation periods 

[368].  

To summarize, neuronal avalanches are suggested 

as a theoretical construct for the dynamic selection 

of neuronal groups into cell assemblies. However, 

the organizing principles of neuronal avalanches 

giving rise to cell assemblies has yet to be proven. 

However, based on several features such as the 
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large diversity of patterns and the stable recurrence 

in time critical dynamics as indicated by neuronal 

avalanches governed by power law behaviour are 

attractive as a candidate for the representation of cell 

assemblies [369].  

 

5.4.3 Coordination dynamics  

Groundwork for the self-organized criticality 

hypothesis was further laid by J.A. Scott Kelso, who 

developed the framework of coordination dynamics 

[370, 89, 88, 371]. Inspired by fundamental principles 

of synergetics [154], self-organized pattern formation 

pattern dynamics are in the focus of this approach. In 

the coordination dynamics’ notion the brain is viewed 

as “a pattern forming self-organized system 

governed by potentially discoverable nonlinear 

dynamic laws [370, p. 257]. In this stance, cognitive 

processes “arise as metastable spatiotemporal 

patterns of brain activity that themselves are 

produced by cooperative interactions among neural 

cluster” (ibid). Further, it was proposed that “an order 

parameter isomorphism connects mind and body, 
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will and brain, mental and neural events. Mind itself 

is a spatiotemporal pattern that molds the metastable 

dynamic patterns of the brain” [370, p. 288]. Thus, 

with the framework of coordination dynamics it was 

aimed “to identify the key variables of coordination 

(defined as a functional ordering among interacting 

components) and their dynamics (rules that govern 

the stability and change of coordination patterns and 

the nonlinear coupling among components that give 

rise to them)” proposing that “ a crucial aspect of 

cognitive function, which can both integrate and 

segregate the activities of multiple distributed areas, 

is large-scale coordination governed by way of 

metastable dynamics” [372, p. 26, 30]. As illustrated 

in Figure 3B, metastability corresponds to a 

dynamical structure devoid of attractors and thus, 

any phase- and frequency-locking behaviour. 

However, segregation and integration tendencies still 

coexist [89]. To note, metastability as a basis for 

rapid switches among distinct operational modules is 

also the topic of multiple studies conducted by 

Fingelkurts and Fingelkurts [373, 374, 44]. Here, 
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metastability was associated with the assumption 

that each homogeneous segment within EEG 

frequency bands represents a temporary stable, also 

called “quasistable” microstate, which are suggested 

to be separable by sudden transitions in the vector of 

the maximal EEG global field power [324, 375, 376]. 

Importantly, Kelso and co-workers proposed that the 

switching between coordination states may be 

facilitated by criticality [89]. In favour of this 

interpretation, it was observed that metastable states 

are most numerous when the dynamics are tuned to 

the critical point in a computational neural network 

[192].  

At the heart of theory of self-organized criticality in 

the brain lies the argument that nervous systems 

have to balance two seemingly opposing 

requirements. At the one hand, a certain degree of 

disorder is essential to enable flexibility and the 

capability of quick reorganization in order to 

efficiently interact with the environment and adapt in 

response. At the other hand a certain degree of order 

is needed to ensure coherent functioning and 
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maintain a resilience to external perturbations [377]. 

This goes hand in hand with the current two main 

theories of consciousness, namely the global 

workspace theory and the integrated information 

theory [378].  

 

5.4.4 The global workspace theory  

In the first formulation of the global workspace theory 

(GWT) in 1988 Bernard Baars used the metaphor of 

the theatre of the mind to describe a cognitive 

architecture. Here, the stage is the working memory 

with a spotlight on it representing consciously 

experienced event. The spotlight is controlled by 

selective attention with limited capacity [379]. Distinct 

to the Cartesian theatre with the implicit assumption 

of someone viewing, the audience as well as the 

director behind the scenes are in the dark and thus, 

unconscious in Baars’ model. Hence, the central 

notion behind the GWT is that conscious content is 

globally available for diverse cognitive (unconscious) 

processes such as memory and attention and that 

consciousness might be a gateway enabling access 



229 

 

between otherwise separate neuronal functions 

(Figure 46) [380]. Thus, it posits that the function of 

conscious awareness is the broadcasting of 

information in the brain [381]. Later, Stanislas 

Dehaene and colleagues build on this fundament 

under the working title of “neuronal global 

workspace” [382]. At first, the authors emphasized 

the importance of distinguishing between the two 

related processes of conscious access and selective 

attention [383] citing William James’ definition of 

attention: “the taking possession by the mind, in clear 

and vivid form, of one out of what seem several 

simultaneously possible objects or trains of thought” 

[15]. Hereby, the authors refer access to the first part 

of the definition, consciously “taking possession of 

the mind”. Posing the question of conscious access, 

e.g. “How does an external or internal piece of 

information gain access to conscious processing, 

defined as a reportable subjective experience?” led 

to a number of empirical studies applying 

experimental paradigms such as masking, binocular 

rivalry, and inattentional blindness to investigate a 
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minimal contrast between conscious and 

nonconscious (i.e. subliminal or preconscious) 

stimuli [383]. Dehaene et al. go further by postulating 

that information becomes conscious by the activation 

of long-distance connectivity of “workspace 

neurons”, which can make the information available 

to other modular cerebral networks processing 

information in an unconscious manner. Hence, in this 

view “this global availability of information (…) is what 

we subjectively experiences as a conscious state” 

[382]. Intriguingly, this stance comprises similarities 

to the idea of a “Dynamic Core” proposed by 

Edelman and Tononi: “When we become aware of 

something … it is as if, suddenly, many different parts 

of our brain were privy to information that was 

previously confined to some specialized subsystem”  

[384 p. 148]. Whereas Edelman and Tononi 

hypothesized thalamocortical and corticocortical 

reentry as the basic mechanism facilitating the 

interaction among distant regions of the brain, GWT 

assumes that a non-linear network ignition 

associated with recurrent processing amplifies and 
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sustains a neural representation, which allows the 

global accesses by local processors [385]. The GWT 

further describes ignition as a sudden activation, 

which may be triggered by an external stimulus or 

may occur spontaneously and stochastically at rest 

[386]. Intriguingly, it has been suggested that the 

moment of ignition, when locally modular processing 

becomes generalized by the formation of a global 

workspace represents a phase transition driving 

cortical systems to the critical point [387]. More 

generally, Kitzbichler and colleagues proposed that 

“it may be that the self-organized criticality of 

spontaneous cortical dynamics favors rapid 

transitions between different states of the system, 

supporting the adaptive emergence and 

disappearance of global workspaces in response to 

changing demands, without tuning of an external 

driving parameter such as ascending 

neuromodulatory input” [387]. Thus, the abrupt 

activation facilitating conscious access may be 

attributed to self-organized criticality [388, 389].  
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Figure 46: The global workspace theory. (A) Reproduced from 

[390], (B) reproduced from [391]. 

 

5.4.5 The integrated information theory  

The integrated information theory (IIT) was 

historically the first theory that proposed precise 

quantitative predictions on the content and level of 

consciousness [392, 247]. Groundwork for the IIT 

can be traced back to early work on complexity and 

consciousness by Gerald Edelman, Giulio Tononi 

and Olaf Sporns [2, 377]. Due to its level of 

formalization as a theory, and especially “a calculus 

to evaluate whether a physical system is conscious” 
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[393], the IIIT has triggered a lot of responses, 

debates, and criticisms. Therefore, it has been 

revised continently over the years [392, 394–396, 

248]. Whereas two decades ago, Edelman and 

Tononi assigned the subtitle “how matter becomes 

imagination” to the book on their theory of 

consciousness [384], in later publications Tononi and 

colleagues emphasized that “IIT does not start from 

the brain and ask how it could give rise to experience; 

instead, it starts from the essential phenomenal 

properties of experience, or axioms, and infers 

postulates about the characteristics that are required 

of its physical substrate” [62, p. 450]. For Tononi, 

“every experience is whole, and the entire set of 

concepts that make up any particular experience – 

what makes the experience what it is and what it is 

not – are maximally interrelated” and that a “local 

maximum of integrated information is indeed 

identical with consciousness” [397, p.296]. Thus, 

according to the IIT, consciousness emerges from 

the interconnectedness of neural networks, i.e. more 

interaction among the neurons, the more one feels 



234 

 

conscious, even without sensory input [398]. 

Mathematically, the theory predicts a function which 

outputs are the contents of consciousness as an 

element of an experience space and the level of 

consciousness represented by a scalar value Φ 

[247]. In his formulation Tononi adopts a structural 

point of view, imagining three phases defined by the 

degree of regularity in the interactions. The 

intermediate regime in which segregation and 

integration occur simultaneously at its maximum 

would correspond to the conscious state. From a 

dynamical perspective, the three regimes are 

generated by changes in correlations. Accordingly, 

the structure of the brain connectivity will be the 

same, whereas completely different correlations can 

be exhibited. Thus, the conscious state would 

correspond to the critical state, whereas a loss of 

consciousness would be consistent with subcritical 

dynamics (Figure 47) [151, 247, 62]. 
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Figure 47: Consciousness as a function of (A) regularity and 

complexity and (B) self-organized criticality. Adapted from 

[151]. 

Recently, a few studies emerged connecting the IIT 

with the concept of criticality by investigation the 

explicit relationship between critical exponents and 

the amount of integrated information (Φ). For 

instance, Kim and Lee pursued three different 

approaches in their work [399]. First, they 

computated a large-scale human brain network 

model implementing a Kuramoto model on the 

scaffold of an anatomically informed human brain 
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network structure constructed from diffusion tensor 

imaging. The parameters for the models were set to 

simulate alpha oscillations in the brain. Arguing that 

criticality is associated with heightened susceptibility 

to external stimuli, the pair correlation function (PCF) 

was calculated as a surrogate measure for 

susceptibility [400] and defined as a parameter for 

criticality. Going further, the authors proposed a 

metric for Φ, defining integrated information as the 

effective information of the minimum information 

partition in a system, i.e. the partition of the system 

at which information loss caused by partitioning is 

minimized [401]. Then, the network model was 

modulated by systematically changing the coupling 

strength. The authors demonstrated that the Φ value 

was maximized at the point of maximized PCF. 

Second, they analysed previously published EEG 

data recorded from seven healthy participants [402]. 

During the recordings, sevoflurane, an anaesthetic 

agent, was applied, whereby the concentration was 

first increased from 0.4% to 0.6% to 0.8% and then 

gradually decreased. The level of consciousness 
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was assessed as the response rate to verbal 

commands. In comparison to the anaesthetic state, 

conscious resting states showed higher PCF and Φ. 

The authors concluded that a neural network in a 

critical regime is a necessary condition for 

information integration in the human brain [399]. 

Also, Popiel et al., simulated an Ising model on 159 

randomly generated, positive weighted n=5 nodes 

network, which was tuned to a critical point. The 

parameter Φ was calculated as the effective 

information of the minimum information partition. The 

results indicated that subcritical regimes can 

generate high Φ values, whereby values were largest 

near the critical point. The authors concluded that the 

system would be most conscious, according to the 

definition given by the 3rd version of the IIT [248], in 

the critical regime [403]. 

Whereas the GWT and the ITT address distinct 

aspects of consciousness, the first conscious access 

closely related to the function of conscious 

awareness and the latter the phenomenology of 

consciousness, one notable study combined both in 
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the context of criticality [146]. Enzo Tagliazucchi 

constructed an anatomical connectivity network 

inferred from diffusion tensor imaging.data. Their 

computational model represented a variant of the 

Greenberg-Hastings cellular automaton of excitable 

dynamics [404]. Hereby, each node of the network 

can be either be in an inactive, an active or a 

refractory state. Thus, the model only comprises two 

parameters, a threshold 𝑇, determining the difficulty 

of the activity to spread and the probability of 

transitioning from the refractory to the inactive state. 

For a given of value of 𝑇 (𝑇𝑐) the model depicts a 

phase transition. Following the argument that Tononi 

et al. proposed the complexity as an indirect marker 

of the level of consciousness, the authors calculated 

neural complexity with the Lempel-Ziv algorithm 

[405]. Also, the amount of integrated information (Φ) 

was determined as the minimum amount of 

information that is lost when splitting the system into 

two- subsystems introduced by Barrett and Seth 

(2011) [406]. Further, metastability, defined as the 

repertoire of configurations that a system explores 
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throughout its temporal evolution was calculated by 

quantifying the level of global cohesion of the 

average time series. Then, to model the effect of 

backward masking, regions of interest chosen from 

998 network nodes were serially activated with 

different delays between the activations. Here, both 

activations propagated at a certain 𝑇𝑐 , whereby the 

probability of the second activation percolating 

through the network increased with the delay. Also, 

they simulated competing stimuli as in the paradigm 

of binocular rivalry by modelling the propagation 

threshold of each region of interest. The results 

reveal that the stimuli did not simultaneously 

percolate through the network, which the authors 

interpreted as a dichotomous access to the global 

network. Important to note, at the critical point of the 

model, maximal Φ and metastability was observed. 

This findings led the authors to conclude that the two 

influential theories GWT and IIT could be compatible 

and that the criticality hypothesis offers a framework 

in which experimental predications from both can co-

exist [146].  
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5.5 Limitations  

In all three EEG datasets, neuronal avalanches with 

power law distribution and long-range temporal 

correlations (LRTCs) in the broadband were 

identified. Recently, the quality of power-law fits to 

empirical data has been scrutinized by 

demonstrating that some claims of scale-free 

dynamics lack statistical significance. Hence, 

stringent statistical tests have been advocated in the 

detection of critical dynamics [71]. As an answer to 

these critiques, Clauset et al. provided a statistical 

framework combining maximum-likelihood fitting 

methods with goodness-of-fit tests which are based 

on Kolgomorov- Smirnov statistic and the analysis of 

likelihood ratios [407]. This was applied in this thesis 

to evidence power-law distribution in the EEG data. 

However, despite a growing body of research 

supporting the hypothesis of SOC in the brain and 

asserting the existence of scale-free statistics across 

a range of in vitro as well as in vivo neural recordings, 

the criticality still remains controversial [150, 408, 
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409]. The main pitfalls and caveats can be 

summarized as the following:  

The universality of power laws: Debates on the 

significance of power laws have been hold for a long 

time in diverse areas of research [71, 410] and it 

remains discussable to what extent the idea of 

criticality can be generalized to biology [411]. 

Whereas at the one hand power laws were given the 

significance of universal and fundamental 

mechanisms, at the other hand these were regarded 

as largely uninformative [412] or even “more normal 

than normal” [413]. Importantly, power laws are one 

of the hallmarks of SOC but not a sufficient condition 

[150]. Hence, whereas all critical systems should 

exhibit 1/f noise, however not all 1/f noise is indicative 

of criticality [144, 148]. Also, power laws can emerge 

through several mechanisms and non-critical 

systems are also reported to display power law 

behaviour [414–416]. For instance, Friedman and 

Landsberg reported features of critical dynamics 

such as power-law distributions of avalanche sizes 

and durations in a network with hierarchical modular 
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structure even though underlying dynamical 

processes were not critical [417]. Further models of 

neural dynamics suggest that diverse neuronal 

avalanches can coexist simultaneously, although, 

the network does not operate in a regime at the edge 

of a phase transition [418]. Additionally, it might be 

the case that power law regimes may co-exist with 

others suggesting metastability [88] and that it might 

be possible that brain areas are driven to the critical 

point separately [144]. Addressing the issue that 

power laws are not unique to critical systems and the 

critique that power-law scaling may be a generic 

property of thresholded stochastic processes [419], 

Priesemann and Shriki elegantly investigated 

whether neuronal avalanches emerge when a 

common time-varying external drive is applied to a 

set of Poisson units. The authors showed that 

homogenous Poisson activity cannot give rise to 

power law distribution, whereas inhomogeneous 

Poisson activity generated approximate power laws 

with cutoffs [202]. Recently, Destexhe and Touboul 

reanalysed neural data recorded in various species, 
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which has previously been interpreted to represent a 

critical regime, based on a common scaling, even 

though the data ranged from freely moving to 

anesthetized animals and cultured slices of reptile 

and rat cortex [420]. Using two non-critical models, 

the Brunel network [421] and a stochastic surrogate 

[416], the authors confirmed the previous findings, 

underlining that the criticality hypothesis is yet to be 

established [409].   

The choice of parameter: The main limitation is the 

issue of extracting binary data from the EEG (Figure 

48). In the neuronal avalanche analysis, peaks and 

troughs beyond an applied threshold are identified as 

events. Based on these, the avalanche 

characteristics are calculated. Hence, the neuronal 

avalanches analysis is sensitive to the chosen 

threshold as a low value might lead to the detection 

of events related to noise and a larger one might not 

detect enough real events. The chosen threshold in 

this study is motivated by a previous publication, 

reporting a threshold of ±3 SD to amount to ~0.1% 

false-positive detection probability [175]. Further, the 
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neuronal avalanche analysis depends on the chosen 

time bin for clustering the events and defining the 

size of the cascades. Even though it was shown that 

the power law fitting of the cascade size distribution 

is robust to varying time bins, the scaling exponent 

changes within the value of Δt. In their original 

publication, firstly reporting neuronal avalanches in 

neocortical circuits, Beggs and Plenz measured 

extracellular signals from acute coronal slices using 

time bins Δt = 1, 2, 4, 8, or 16 ms and reported a 

dependence of the scaling exponent α on Δt in the 

relationship α(Δt)  ∼  Δt −0.16 ± 0.01 [164]. 

 

Figure 48: Schematic representation of one strategy for 

estimating temporal complexity as utilized in this work. Patterns 

of neuronal activity are directly extracted from the time series 

by applying methods such as signal binarization. Then, the 

degree if complexity and characteristics of neuronal avalanches 
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are estimated based on the extracted temporal patterns. 

Reproduced from [7]. 

Our understanding of the phenomenon of critical 

phase transitions is mostly informed by 

computational models of dynamic systems. The main 

classical models of criticality comprise the Ising 

model (Figure 9) and the Kuramoto model of phase 

coupled oscillators [422, 367, 423, 196]. In both 

models, the dynamics can be controlled by the 

manipulation of one parameter. For instance, the 

Ising model is tuned towards the critical point by 

changes of the temperature, whereby for the 

Kuramoto model increasing or decreasing the 

strength of coupling between oscillators led the 

system pass through a phase transition [367]. 

Instead by driving the system by an external 

modulation of a control parameter, self-organized 

critical systems spontaneously evolve towards a 

critical state without fine-tuning as explained in the 

original sandpile model from Bak, Tank and 

Wiesenfeld:” The scaling properties of the attractor 

are insensitive to the parameters of the model. This 
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robustness is essential in our explaining that no fine 

tuning is necessary to generate 1/f noise (and fractal 

structure) in nature” [161, p.381]. However, while 

some physical systems might be large enough that 

an asymptotically behaviour near the thermodynamic 

limit is assumable, it has been emphasized that 

biological systems would need to readjust a control 

parameter according to its size [424, 425]. Also, 

following the nonlinear dynamical system approach, 

changes from a control parameter would result in one 

or more bifurcations due to which a phase transition 

is likely to occur [426]. In later work of Bak’s group it 

has been established that self-organized criticality 

does not exclusively refer to self-tuning [427]. 

However, this opens up questions of potential control 

parameter, the biological mechanisms underlying the 

emergence of scale-free dynamics, and thus, how 

the critical state can be reached or remained [425, 

428]. Addressing the first Chialvo and colleagues 

stated:” For a complex system like the brain, one 

might imagine that its control parameters be hard-

wired genetically, selected by a long evolutionary 
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process to a critical point that is biologically most 

advantageous for survival” [425]. The authors further 

argued that “Darwinian evolution instead of 

furnishing a set of specific values for the control 

parameter must allow for a control mechanism such 

that systems can reach and stay close to a critical 

point” [425]. 

A biologically plausible control mechanisms would be 

a model of avalanche-related criticality with plastic 

connections [428]. Thus, it has been speculated that 

the target mechanisms might be neuromodulators, 

such as serotonin shifting the dynamic toward 

excitability or GABA, on the other hand, inducing 

inhibition [274]. In favour of this proposal are 

experimental findings suggesting that enhancement 

of inhibition or excitation is altering the dynamic of a 

neuronal network at criticality [365, 183, 429, 360]. 

Specifically, the level of inhibition has been 

investigated as a biological constraint for the 

branching parameter [149] (Figure 11). For instance, 

Massobrio et al. investigated ranges of E/I ratios on 

scale-free networks, reporting that critical dynamics 
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are achieved with 20-30% inhibitory nodes [184]. 

Further, Girardi-Schappo et al. used an in silico 

model observing the system’s dynamic near the 

critical point when adding short-term depression in 

inhibitory synapses and firing threshold adaptation 

[430. Simulating a 10,000 neuron, deterministic, 

plastic network of spiking neurons Stepp et al. also 

concluded that “the interplay of opposing forces from 

excitatory and inhibitory plasticity create a balance 

that allows self-tuning to take place” [431]. Zeraati et 

al. reported that applying short-term plasticity rules 

was generally resulting in hovering around the critical 

point. Also, long-term homeostatic plasticity created 

a global attractor at the critical state for some settings 

[428]. A number of studies explored how different 

types of plasticity may contribute to the tuning to the 

critical state in network models [432–434]. The 

current state of the art provides evidence that 

Hebbian plasticity produces critical dynamics, 

whereas homeostatic plasticity was shown to 

maintain the network activity [149, 361, 434, 435].  
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Terminology: In general, precise and clear 

terminology is important in every area of research. 

Especially, in the field of criticality, semantic issues 

and an inconsistent use of the term “critical” has been 

noted by several authors. In this thesis, criticality has 

been exclusively referred to avalanche dynamics of 

brain activity. However, variants of criticality and 

multiple paradigms such as “extended criticality”, 

“intermittent criticality”, “statistical criticality” or 

“quasi-critical” exist in the literature, leading to 

confusion. Therefore, the investigated concepts 

should be strictly defined in future to ensure 

comparability of findings [71, 408, 148]. Hence, it is 

important, that “criticality should not become a catch-

all term for everything that is complex or variable” 

[92, p. 29].  

6. Summary 

In this thesis, I have explored the potential of the 

physics-derived concept of self-organized criticality 

as a neurodynamical correlate for consciousness. 
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The theoretical framework was tested in combination 

with nonlinear complexity measures and spectral 

analysing using two 64 channel EEG datasets 

comprising the induction of altered states of 

consciousness and one 64 channel EEG dataset 

obtained from participants with distinct degrees of 

sensory processing sensitivity. 

To use the words of Dante Chialvo: “Understanding 

the brain is among the most challenging problems to 

which a physicist can be attracted. As a system with 

an astronomical number of elements, each one 

known to have plenty of nonlinearities, the brain 

exhibits collective dynamics that in many aspects 

resemble some of the classic problems well studied 

in statistical physics” [436]. In recent years the 

premise arose that self-organized criticality is a 

fundamental property of neural system and that “all 

human behaviors, including thoughts, undirected or 

goal oriented actions, or simply any state of mind, are 

the outcome of a dynamical system -the brain- at or 

near a critical state” [437]. Such framework is 

especially compelling as principles such as self-
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organized criticality describing outcomes of collective 

phenomena in any complex dynamical system, 

provide a theory suitable to situate the phenomenon 

of consciousness within universal laws of the 

physical world [438]. Over the years some authors 

have claimed that consciousness is entirely beyond 

the reach of science and that “a purely materialist 

analysis of a living being, which focuses only on the 

structure and the function of the physical brain, will 

never reveal the content nor the origin of our 

consciousness” [439]. Even Galileo should have said 

that we have to put consciousness outside of the 

domain of physical science to then capture 

everything else in the language of mathematics and 

quantities [440]. Also, William James in his 

fundamental work on altered states of consciousness 

takes on a perspective in which consciousness does 

not originate in this physical world. Instead, it exits in 

another transcendental sphere and access to higher 

aspects of consciousness depends on an individual 

“threshold of consciousness”, which determines 

whether various characteristics of enhanced 
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consciousness are experienced [441]. While the 

pernicious perspective of ‘mysterianism’, the notion 

that a naturalized account of consciousness may 

exist but is inaccessible to humans as well as the 

notion of panpsychism, that consciousness is a 

fundamental feature in form of a ubiquitous field 

pervading the universe cannot be ruled out as a 

possibility [442, 443], within this thesis I hypothesize 

that consciousness is a biological phenomenon 

within the confines of the brain (although, not 

localized in some particular areas of the brain). 

Hereby, consciousness differs from other biological 

phenomena as it has a subjective or first-person 

ontology, but this does not prevent researchers from 

having an epistemically objective science of 

consciousness [444]. Thus, taking the view that the 

level of the brains organization is functionally 

isomorphic (i.e. a different realizations of the same 

kind) to consciousness [438], offers the possibility of 

empirically testing mathematical measures as 

neurophysiological indices for consciousness.  
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In this thesis, signatures of self-organized criticality 

in the form of neuronal avalanches with power law 

distribution and long-range temporal correlations in 

the amplitude of neural oscillations were identified on 

the level of the EEG in three distinct datasets. It was 

shown that criticality features are suitable to 

differentiate states in the spectrum of wakefulness 

consciousness and thus, to characterize 

electrophysiological correlates of altered states of 

consciousness. Further, the datasets were analyzed 

with two additional algorithms, multiscale entropy 

and Higuchi’s fractal dimension, which quantify the 

self-similarity of the signal and hence, provide 

information about the degree of complexity of the 

brain dynamics. Also, traditional power spectral 

density analysis was carried out. In conclusion, 

electrophysiological correlates of three meditation 

categories, specifically thoughtless emptiness, 

presence monitoring and focused attention as well as 

of a singing bowl experience were determined. It was 

shown that the states of consciousness could be 

discriminated with nonlinear measures and 
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quantified by the degree of neuronal complexity, 

long-range temporal correlations, and power law 

distributions in neuronal avalanches. The results 

revealed an explicit relationship between nonlinear 

complexity, critical brain dynamics and spectral 

features. Finally, it was shown that the brain 

dynamics can be modified and shifted towards the 

critical point of a phase transition associated with 

optimized information processing functions by the 

practice of self-regulation and relaxation techniques. 

The framework of self-organized criticality as a 

neurodynamical correlate for consciousness is 

promising and in agreement with the current most 

influencing theories in the field of consciousness 

research.  
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7.a Appendix I: t-statistics 

 

Figure A1: Color-coded differences of complexity parameters 

shown as t-values of the meditation task comparisons on a 

global level averaged over all electrodes. Fields marked with a 

white circle were significant on the 0.01 level after FDR 

adjustment. 

 

Figure A2: Color-coded differences of power spectral density 

shown as t-values of the task comparisons on a global level 

averaged over all electrodes. Fields marked with a white circle 

were significant on the 0.01 level after FDR adjustment over 

conditions and frequency bands. 
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Figure A3: Color-coded complexity measure differences shown 

as t- values resulting from the task comparisons. (A) 

Comparison between eyes open and eyes closed, (B) reading 

vs. eyes open, (C) presence vs. eyes closed, (D) emptiness vs 

eyes closed, (E) focused attention vs. eyes closed, (F) 

emptiness vs. presence, (G) emptiness vs focused attention, 

(H) focused attention vs. presence. Fields marked with a white 

circle were significant on the 0.01 level after FDR adjustment 

over conditions and frequency bands.  
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Figure A4: Color-coded complexity measure differences shown 

as t-values resulting from the task comparisons (A) Comparison 

between eyes open and eyes closed, (B) reading vs. eyes open, 

(C) presence vs. eyes closed, (D) emptiness vs eyes closed, 

(E) focused attention vs. eyes closed, (F) emptiness vs. 

presence, (G) emptiness vs focused attention, (H) focused 

attention vs. Presence. T-tests were calculated from each 

participant for each location and complexity parameter. Fields 

marked with a white circle were significant on the 0.05 level after 

FDR adjustment. 
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Figure A5: Topographical maps of differences in the t- values 

calculated for each complexity measure, respectively. (A) 

Comparison between eyes open and eyes closed, (B) reading 

vs. eyes open, (C) presence vs. eyes closed, (D) emptiness vs 

eyes closed, (E) focused attention vs. eyes closed, (F) 
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emptiness vs. presence, (G) emptiness vs focused attention, 

(H) focused attention vs. presence.  
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Figure A6: Topographical maps of differences in the t- values 

calculated for each frequency band, respectively. (A) 

Comparison between eyes open and eyes closed, (B) reading 

vs. eyes open, (C) presence vs. eyes closed, (D) emptiness vs 

eyes closed, (E) focused attention vs. eyes closed, (F) 
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emptiness vs. presence, (G) emptiness vs focused attention, 

(H) focused attention vs. presence. 

 

Figure A7: Color-coded differences of complexity parameters 

shown as t-values of the state comparisons on a global level 

averaged over all electrodes. Fields marked with a white circle 

were significant on the 0.05 level after FDR adjustment. 

 

Figure A8: Color-coded differences of power spectral density 

shown as t-values of the state comparisons on a global level 

averaged over all electrodes. Fields marked with a white circle 

were significant on the 0.05 level after FDR adjustment over 

conditions and frequency bands. 
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Figure A9: Color-coded complexity measure differences shown 

as t-values resulting from the task comparisons on a local level 

(A-C). T-tests were calculated from each participant for each 

location and complexity parameter. Fields marked with a white 

circle were significant on the 0.05 level after FDR adjustment. 

 

Figure A10 Color-coded power spectral density differences 

shown as t-values resulting from the task comparisons on a 

local level (A-C). T-tests were calculated from each participant 

for each location and complexity parameter. Fields marked with 
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a white circle were significant on the 0.05 level after FDR 

adjustment 

 

Figure A11: Topographical maps of differences in the t-value 

calculated for each complexity measure, respectively. (A) 
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Comparison between sound vs. resting, (B) postresting vs. 

sound, (C) postresting vs. resting. 

 

Figure A12: Topographical maps of differences in the t-value 

calculated for frequency band, respectively. (A) Comparison 

between sound vs. resting, (B) postresting vs. sound, (C) 

postresting vs. resting. 
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7.b Appendix II: Questionnaires  

Inventar zur Phänomenologie des Bewusstseins  
(PCI-D-K)  

 

Sehr geehrte Studienteilnehmerin, sehr geehrter 

Studienteilnehmer,  

Bitte bewerten Sie Ihre Erfahrungen während der 

durchgeführten Intervention. Kreuzen Sie dazu im Fragebogen 

auf der Skala an, wie sehr die folgenden Aussagen auf Ihr 

Erleben zutreffen. 
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Feedback- Fragebogen (CSP-14) 

Sehr geehrte Studienteilnehmerin, sehr geehrter 

Studienteilnehmer,  

Bitte bewerten Sie Ihr jetziges Befinden im Vergleich zu Ihrem 

Befinden vor Beginn der durchgeführten Sitzung.  

Bitte tragen Sie dazu den entsprechenden Wert in das 

Kästchen ein. Je nachdem, wie sich ihr Zustand nach der 

Sitzung im Vergleich zu vorher verändert hat, kreuzen Sie bitte 

die Kästen von -3 (wesentlich schlechter) bis +3 (wesentlich 

besser) an. Haben Sie keine Veränderung festgestellt, kreuzen 

Sie bitte die „0“ an. Hier ist die Antwort +2 dargestellt. 
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Nachfolgende Daten werden nur pseudonymisiert 

weiterverwendet. 

Geschlecht:        □ männlich       □ weiblich    

Alter: _______________ 
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Vielen Dank für Ihre Teilnahme! 

 

TAS-D 

  
Sehr geehrte Studienteilnehmerin, sehr geehrter 
Studienteilnehmer, 

 

die folgenden Aussagen betreffen bestimmte Bereiche des 

Wahrnehmens und Erlebens. Diese können erfahrungsgemäß 

bei verschiedenen Personen sehr unterschiedlich ausgeprägt 

sein. 

Bitte geben Sie zu jeder Aussage an, in welchem Ausmaß sie 

für Ihre Person zutrifft oder nicht zutrifft. Hierfür sind fünf 

Antwortmöglichkeiten vorgegeben, bitte entscheiden Sie sich 

bei jeder Aussage für eine davon. Behalten Sie dabei im Kopf, 

dass es letztlich keine richtigen oder falschen Antworten gibt. 
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Hochsensibilitäts-Skala (HSPS-G) 
 

Sehr geehrte Studienteilnehmerin, sehr geehrter 

Studienteilnehmer,  

im Folgenden finden Sie 26 Aussagen, die das Ausmaß der 

Feinfühligkeit einer Person erfassen.  

Wenn eine Aussage gar nicht auf Sie zutrifft, dann kreuzen Sie 

die Zahl 0 an, nur wenig auf Sie zutrifft, dann kreuzen sie die 

Zahl 1 an, doch teilweise auf Sie zutrifft, dann kreuzen Sie die 

Zahl 2 an, ziemlich gut auf Sie zutrifft, dann kreuzen Sie die 

Zahl 3 an, völlig auf Sie zutrifft, dann kreuzen Sie die Zahl 4 an.  

Bitte achten Sie darauf, dass Sie alle Aussagen zügig und 

aufrichtig beantworten. Es gibt keine „richtigen“ oder „falschen“ 

Antworten, sondern nur solche, die mehr oder weniger auf Sie 

zutreffen. 
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Figure 1: Neuroscientific approach to measure altered states of 

consciousness. To associate phenomenological changes to 

underlying neuronal mechanisms, ASCs can be induced 

experimentally. For this, besides substance-based approaches, 

a variety of non-pharmacological induction methods such as 

breathing techniques, meditation practices or sensory 

deprivation can be utilized. By investigating phenomenological 

states and electrophysiological patterns simultaneously, 

subjective experience can be mapped onto brain functions. 

Comparisons across studies capturing a broad range of ASC 

experiences may lead to the identification of common structures 

shared by differently induced ASCs. Modified from [54]. .......20 

Figure 2: Numerical visualization of the Lorenz attractor as 

example of a three-dimensional nonlinear dynamical systems 

which shows chaotic behaviour with the parameters 𝑝 =28, 𝜎 = 

10, b= 83. Modified from [85]. ...............................................30 

Figure 3: Coordinated system dynamics. (A) Multistable 

systems can switch between attractors. As the system is briefly 

dwelling in each attractor basin, time series are characterized 

by long-tailed distributions (here shown on a logarithmic scale). 

(B) Metastable systems do not have attractors, rather a 

sequence of unstable fixed points and time series are 

associated with gamma distributions (here shown in linear 

coordinates). Modified from [92]. ..........................................32 

Figure 4: Examples of geometrically self-similar fractals. (A) 

The Mandelbrot set. (A) the curve and (B) the snowflake 
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described by Niels F.H. von Koch. (C) shows the Sierpinski 

triangle. Modofied from [93]. .................................................34 

Figure 5: Examples of noise processes. (A) white noise, (B) pink 

noise, (C) Brownian noise. Adapted from [98]. ......................36 

Figure 6: Simulated time series to illustrate the procedure of 

calculation the sample entropy for the case 𝑚 = 2 and a given 

positive real value 𝑟 [130]. ....................................................47 

Figure 7: Schematic illustration of the coarse-gaining 

procedure. Adapted from [130]. ............................................49 

Figure 8: MSE analysis of simulated white and 1/f noise time 

series. The value of the sample entropy is plotted against the 

scale factor, which specifies the number of data points 

averaged to obtain each element of the coarse-grained time 
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