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Introduction

Einstein’s general relativity theory has attracted interest from both mathematicians and
physicists. Over the years, the problem of understanding the solutions to its underlying
field equations has been tackled from different sides: First insight into the nature of its
solutions was gained by constructing explicit solutions. Such solutions are known under
restrictive assumptions on the matter involved, for example vacuum or a single type of
matter as an electromagnetic field, and typically possess a lot of symmetry. In contrast
to this, cosmological considerations do not rely on the knowledge of concrete solutions.
Instead, the necessary simplification here stems from the fact that virtually all known
kinds of matter satisfy certain physically motivated energy conditions. Assuming that
all matter does, the matter term in the field equations can be estimated, turning the
field equations into an inequality. This then allows, for example, to derive bounds on
singularity formation.

An intuitive way of thinking about solutions to the field equations is the following:
A time-oriented solution spacetime can be foliated into spacelike hypersurfaces, at least
locally around a chosen spacelike hypersurface. The leaves of this foliation can be thought
of as representing the state of the universe at a certain point of time. Then the field
equations decompose into a system of evolution equations for the dynamical quantities
and a set of constraint equations that have to be satisfied by these quantities on every
leaf. So, on a chosen leaf called initial hypersurface the solution spacetime determines
initial data subject to the constraints. The converse is also true: It can be shown that
the evolution equations admit a short-time solution if the initial data comply with the
constraints, and that this solution satisfies the constraints on every leaf. Thus, initial
data satisfying the constraints determine a solution spacetime of the field equations.

With this in mind, analyzing solutions of the field equations amounts to studying solu-
tions of the constraints. As with the field equations, significant progress has been made
in the cases of vacuum or simple matter models, leading, for example, to a complete
classification of constant mean curvature solutions to the vacuum constraints by Isen-
berg [Ise95]. In contrast, the inequality obtained by abstracting from specific matter via
the dominant energy condition seems to be scarcely studied. Whereas a solution to this
inequality is seen to always exist by simply increasing mean curvature, it is an interest-
ing question whether its space of solutions is contractible. This question is approached
in the following by comparing it to the space of positive scalar curvature metrics and
invoking recent results by Crowley, Steimle and Schick [CSS18] as well as Botvinnik,
Ebert and Randall-Williams [BER14] on the non-contractibility of the latter.

This thesis is organized in the following way: The first chapter provides a rough sketch
of the dynamical formulation of general relativity, just enough to establish a connection
between the strict dominant energy condition for spacetimes and the corresponding
notion for initial values. Then, a comparison map between the space of positive scalar
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curvature metrics and the space of initial values satisfying the strict dominant energy
condition is constructed. This map induces a homomorphism on homotopy groups and
it is the aim to show that the homomorphism has non-trivial image.

The second chapter starts with an introduction of Cln,k-linear Fredholm operators along
the example of the Cln-linear Dirac operator. Afterwards, the family version of the KO-
valued index map for these operators is discussed in some detail. The index map is then
used to construct the α-invariant. In [CSS18] and [BER14], this particular invariant was
shown, under certain assumptions on the manifold, to be non-trivial, so it witnesses that
the homotopy groups of the space of positive scalar curvature metrics are non-trivial.

The last chapter mainly deals with the construction of a similar invariant for the space
of initial values. It begins with a detailed analysis of the Cln,1-linear hypersurface
spinor bundle and its Dirac-Witten operator: It is necessary to observe that these struc-
tures fit into the framework of Cln,1-linear Fredholm operators in order to be able to
apply the index map. Moreover, a special focus is laid on comparing the hypersur-
face spinor bundle to the ordinary spinor bundle and the Dirac-Witten operator to the
Dirac operator as this will be needed in the proof of the main theorem. The chap-
ter concludes with the definition of the α-invariant for initial values and the proof of
the main theorem. This theorem states that the classical α-invariant factors over the
new one, via the comparison map from the first chapter. Together with the non-triviality
results for the classical α-invariant mentioned above, this implies that, under suitable as-
sumptions on the hypersurface, the space of initial values satisfying the strict dominant
energy condition must be homotopically non-trivial.
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1. The dominant energy condition for initial values

1.1. Energy conditions in general relativity

According to general relativity theory, the universe can be modeled by a Lorentzian 1

manifold (N, g) and its large-scale behavior is governed by the Einstein equation 2

ricg −1
2 scalg g = T,

where T is the energy-momentum tensor, a quantity determined by the distribution
of matter and fields. For many purposes, it is more appropriate to adopt the following
point of view: From a given initial distribution of matter and fields the Einstein equation
together with specific matter equations determines the future and the past.

We want to make this more precise. We assume that N is time-oriented and foliated
into spacelike hypersurfaces, the foliation being given by Mt = f−1(t) for a function
f : N → R with grad(f) past-timelike. At least locally, around an initial spacelike
hypersurface M = M0, such a function can always be found by patching together the
time-variables of Fermi coordinates. Globally, this imposes a condition on N that, for
example, rules out closed causal curves.

The Gauß, Codazzi and Mainardi equations compute the curvature of N in terms of
quantities of the leaves Mt. For n = dimMt ≥ 2, this leads to a reformulation of the
Einstein equation (cf. [BI04]):

Proposition 1.1 (Dynamical formulation of the Einstein equation). Let e0 be the future-
directed unit normal on Mt, g the induced metric and II = Ke0 its vector-valued second
fundamental form. Furthermore, we split up the energy-momentum tensor into compo-
nents:

energy density ρ = T (e0, e0),
momentum density j = T (e0,−)|TMt

and
T̂ = T|TMt⊗TMt

.

The Einstein equation is equivalent to the following: The constraint equations

2ρ = scalg +(trK)2 − ‖K‖2

j = divK − d trK

hold on every leaf Mt and the evolution equation

Le0K = T̂ − 1
n−1 tr(T )g − ricg +2K2 − tr(K)K + L−1 Hess(L).

1We will use the signature convention (−, +, . . . , +).
2In the literature, there exist various conventions for constants in front of T . As they do not play a
role in the mathematical theory, we subsume them under T .
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holds at all Mt. Thereby, L =
√
−g(grad f, grad f) is the lapse function and K2 =

K(K](−),−).

For the vacuum case (i.e. T = 0), this leads to the following solution strategy: Given a
solution (g0,K0) of the vacuum constraints

0 = scalg0 +(trK0)2 − ‖K0‖2

0 = divK0 − d trK0

on the initial hypersurface M = M0, one tries to solve the system of the evolution
equations3

d
dtKt = − ricgt +2K2

t − tr(Kt)Kt

d
dt gt = 1

2Kt

(1)

on an open neighborhood N ofM×{0} inM×R. Once one has shown that the solution
(gt,Kt) of (1) to the initial values (g0,K0) solves the vacuum constraints for all t, the
above Proposition 1.1 shows that (N,−dt2 + gt) solves the vacuum Einstein equation.

With presence of matter, a similar procedure can be thought of. The matter equations
will result in additional evolution equations for the fields and there might be further
constraints (cf. [Ise95] for constraints in Einstein-Maxwell theory). However, it seems
to be impossible to include all kinds of matter, let alone to solve the resulting system.
Hence, for cosmological considerations, as the famous singularity theorems of Hawking
and Penrose [HE73, Sec. 8.2], a common property of (almost) all matter models is
exploited: The energy-momentum tensor satisfies certain energy conditions. An often
considered energy condition is the dominant energy condition:

Definition 1.2. The energy-momentum tensor T satisfies the dominant energy condition
if T (V,W ) ≥ 0 for all future-causal vectors V , W .

We also define two strict versions of the dominant energy condition.

Definition 1.3. The energy-momentum tensor T satisfies the strict dominant energy
condition if T (V,W ) > 0 for all future-causal vectors V ,W with g(V,W ) < 0. It satisfies
the very strict dominant energy condition if T (V,W ) > 0 holds for all future-causal V
and W .

Remark 1.4. By the Einstein equation, the energy-momentum tensor is given as a
curvature term. So the ((very) strict) dominant energy condition is a curvature condition
for (N, g).

No classical matter model satisfies either of the strict conditions as the special case of
vacuum does not. Yet, under the additional condition that the matter density nowhere

3Apart from T = 0, we fixed the gauge by L ≡ 1 resulting in a particularly simple equation.
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vanishes, solid matter satisfies the strict dominant energy condition as the following
example (adapted from [Mül16]) shows.

Example 1.5. Solid matter is described by a field Φ and its energy-momentum tensor
is given by

T (V,W ) = ∂V Φ∂WΦ− 1
2(g(grad Φ, grad Φ) +m2Φ2)g(V,W )

for a constant m > 0 (cf. [HE73, (3.6)]). We show that for all p ∈ N , all causal vectors
V,W ∈ TpN with g(V,W ) ≤ 0 and any X ∈ TpN

2g(V,X)g(W,X) ≥ g(X,X)g(V,W ) (2)

holds. Then, setting X = gradp Φ,

T (V,W ) ≥ −1
2m

2Φ2(p)g(V,W ) > 0

if Φ(p) 6= 0 and g(V,W ) < 0.

It suffices to prove (2) for timelike V , then it holds true for all causal vectors by continuity.
Moreover, by scaling invariance, we can assume without loss of generality that g(V, V ) =
−1. For a vector X, we define its parallel and perpendicular part to be X‖ = −g(X,V )V
and X⊥ = X −X‖, respectively. Then

2g(V,X)g(W,X)− g(X,X)g(V,W ) = −2g(X,V )2g(V,W ) + 2g(X,V )g(X⊥,W )
+ g(X,V )2g(V,W )− g(X,X⊥)g(V,W )

= −g(X,V )2g(V,W ) + 2g(X,V )g(X⊥,W⊥)
− g(X⊥, X⊥)g(V,W ).

As V is timelike, the Lorentzian inner product restricts to a Riemannian one on the
orthogonal complement. In particular, we can use the Cauchy-Schwarz inequality along
with

0 ≥ g(W,W ) = g(W ‖,W ‖) + 2g(W ‖,W⊥) + g(W⊥,W⊥)
= −g(W ‖,W ‖) + 2g(W ‖,W ) + g(W⊥,W⊥)
= g(V,W )2 − 2g(V,W )2 + g(W⊥,W⊥)
= −g(V,W )2 + g(W⊥,W⊥)

to get

g(X⊥,W⊥)2 ≤ g(X⊥, X⊥)g(W⊥,W⊥) ≤ g(X⊥, X⊥)g(V,W )2.

Thus

2g(V,X)g(W,X)− g(X,X)g(V,W ) ≥ −g(X,V )2g(V,W )− g(X⊥, X⊥)g(V,W )

+ 2|g(X,V )|g(X⊥, X⊥)
1
2 g(V,W )

= −
(
g(X⊥, X⊥)

1
2 − |g(X,V )|

)2
g(V,W ) ≥ 0.
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The importance of the very strict dominant energy condition lies in the fact that it
is an open condition: If it is satisfied in some point p ∈ N , then it is satisfied on a
neighborhood of p. First, we examine why this does not hold for either of the other two
dominant energy conditions.

Example 1.6. Let (M, g) be a Riemannian manifold of dimension n > 1 with constant
Ricci curvature ric = λg for some λ > 0 that will be determined later. For example,
(M, g) could be a rescaled standard sphere. We consider the manifold N = M ×R with
the Lorentzian metric g = −dt2 +f(t)2g with f(t) = 1+ 1

2at
2 for a > 0. By the formulae

for the curvature of warped product metrics [ONe83, Cor. 7.43]

ricg = −nf
′′(t)
f(t) dt2 +

(
λ

f(t)2 −
f ′′(t)
f(t) − (n− 1)f

′(t)2

f(t)2

)
f(t)2g.

The scalar curvature then computes to

scalg = n
λ

f(t)2 − n(n− 1)f
′(t)2

f(t)2 .

This implies that the energy-momentum tensor is given by

T = ricg −1
2 scalg g = −A(t)dt2 +B(t)f(t)2g

for

A(t) = n
f ′′(t)
f(t) −

n

2
λ

f(t)2 + n

2 (n− 1)f
′(t)2

f(t)2

B(t) = −f
′′(t)
f(t) + 2− n

2
λ

f(t)2 + n− 2
2 (n− 1)f

′(t)2

f(t)2 .

Setting

λ = 2(n+ 1)
n(n− 1) and a = 2

n(n− 1) ,

provides A(0) = −1 and B(0) = −1. Thus, T = −g onM×{0}, so the (strict) dominant
energy condition is satisfied there. As

f(t)2(A(t)−B(t)) = (n+ 1)f ′′(t)f(t)− λ+ (n− 1)f ′(t)2

= (n+ 1)a
(

1 + 1
2at

2
)
− λ+ (n− 1)a2t2

= 3n− 1
2 a2t2,

A(t) − B(t) > 0 for t 6= 0. For p ∈ M and t 6= 0, let V ∈ T(p,t)N be a future-lightlike
vector. Then

T (V, V ) = −(A(t)−B(t))dt2(V, V ) +B(t)g(V, V ) = −(A(t)−B(t))dt2(V, V ) < 0,

but if T satisfied the (strict) dominant energy condition in (p, t), then T (V, V ) ≥ 0 would
hold by continuity.
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Lemma 1.7. If the very strict dominant energy condition is satisfied in a point p ∈ N ,
then it is satisfied on a neighborhood of p.

Proof. Without loss of generality, we can, by restricting on a small neighborhood of p,
assume that TN is trivial. We choose a positive definite scalar product on TpN and
consider the associated compact unit sphere S ⊆ TpN . Then

J :=
{

(V,W ) ∈ S × S
∣∣∣V, W are future-causal with respect to gp

}
⊆ S × S

is compact as a closed subset of a compact one and

ε := min
(V,W )∈J

Tp(V,W ) > 0

by the very strict dominant energy condition. Now, we define the compact set

C := T−1
p ((−∞, ε2 ]) ∩ (S × S).

Hence the map

T ∗pN ⊗ T ∗pN −→ R

h 7−→ min
V,W∈C

max{h(V, V ), h(W,W ), h(V,W )}

is well-defined and continuous. We observe the following: If there is a pair (V,W ) of
vectors in C which is future-causal with respect to h, then h is mapped to a non-positive
number. Conversely, if h is in the preimage of R≤0, then there is a pair (V,W ) of causal
vectors in C lying in the same component of the light cone and using the symmetry of
C under (V,W ) 7→ (−V,−W ), we can assume that they are both future-directed. So a
metric h maps to a positive number iff all pairs of future-causal vectors are contained in
(S × S) \ C.

The way ε and C are defined, gp is mapped to a positive number and by continuity the
same holds for all metrics in an open neighborhood. Moreover, the energy-momentum
tensors T in a sufficiently small neighborhood of Tp satisfy |T (V,W ) − Tp(V,W )| < ε

2
for all (V,W ) ∈ S × S. In particular,

T (V,W ) > 0 for all (V,W ) ∈ (S × S) \ C.

Hence, on the intersection of these neighborhoods, the very strict dominant energy con-
dition holds.

We now study the following question: Given a spacetime that satisfies the dominant
energy condition, what can be said about the initial value pairs (g,K) arising as induced
metric and second fundamental form on some spacelike hypersurface?
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Definition 1.8. A pair of initial data (g,K) satisfies the dominant energy condition if
ρ ≥ ‖j‖ holds. Thereby,

2ρ = scalgt +(trK)2 − ‖K‖2

j = divK − d trK.

It satisfies the strict dominant energy condition if this inequality holds strictly.

Lemma 1.9. If (N, g) satisfies the strict dominant energy condition, then for any space-
like hypersurface M ⊆ N the induced pair (g,K) satisfies the strict dominant energy
condition. The same holds true for the (non-strict) dominant energy condition.

Proof. Let p ∈ M be an arbitrary point. First, we study the case jp = 0. As the unit
normal e0 is future-causal, the dominant energy condition implies

ρp = Tp(e0, e0) ≥ 0 = ‖jp‖

with strict inequality if the strict dominant energy condition is satisfied by (N, g).

So we are left with the case jp 6= 0. Then the vector V = e0 −
j]

p

‖jp‖ is well-defined. As

g(V, V ) = g(e0, e0)− 2
‖jp‖

g(e0, j
]
p) + 1

‖jp‖
g(j]p, j]p) = −1 + 1 = 0

g(e0, V ) = g(e0, e0)− 1
‖jp‖

g(e0, j
]
p) = −1,

V is causal and future-directed. So

0 ≤ Tp(e0, V ) = Tp(e0, e0)− 1
‖jp‖

Tp(e0, j
]
p) = ρp − ‖jp‖.

Furthermore, this inequality holds strictly if the strict dominant energy condition is
satisfied.

Proposition 1.10. Let (g,K) be a pair of initial data on M satisfying the strict dom-
inant energy condition. Then there is a spacetime (N, g) that contains M as spacelike
hypersurface, induces (g,K) on M and satisfies the very strict dominant energy condi-
tion.

Proof. We set N = M × R and identify M with M × {0}. In the end, N will be an
open neighborhood of M in N . The strategy is now the following: For a good choice of
a symmetric (0, 2)-tensor H, we define

gt = g + 2tK + t2H

g(p,t) = −dt2 + gt|p.
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Then the induced metric on M is g0 = g and the induced second fundamental form
is 1

2
d
dt |t=0gt = K (for the choice of f(p, t) = t as time function), as required. As g is

positive definite, g defines a Lorentzian metric in a neighborhood of M . The choice of
H will be made in such a way that T satisfies the very strict dominant energy condition
all over M . Lemma 1.7 then implies that we can find a neighborhood N of M on which
the very strict dominant energy condition is satisfied.

It remains to choose H appropriately. First, we show that if we set T̂ = 1
ρj ⊗ j, where

ρ and j are determined by (g,K), then

T = ρdt2 + j ⊗ dt+ dt⊗ j + T̂

satisfies the very strict dominant energy condition on M . Note, that the condition
ρ > ‖j‖ ≥ 0 ensures that T̂ is well-defined and smooth. Let p ∈ M and V,W ∈ TpN
be future-causal. We write V = αe0 + X, W = βe0 + Y for X,Y ∈ TpM . As they are
future-causal, α, β > 0 and α ≥ ‖X‖, β ≥ ‖Y ‖. Then

T (V,W ) = 1
ρ(ρα+ j(X))(ρβ + j(Y ))

= 1
ρ

(
(ρ− ‖j‖)α+ ‖j‖α+ j(X)

)(
(ρ− ‖j‖)β + ‖j‖β + j(Y )

)
≥ 1

ρ

(
(ρ− ‖j‖)α+ ‖j‖(α− ‖X‖)

)(
(ρ− ‖j‖)β + ‖j‖(β − ‖Y ‖)

)
> 0.

We now set

H = T̂ − 1
n−1 tr(T̂ )g + 1

n−1ρg − ricg +2K2 − tr(K)K

with T̂ = 1
ρj ⊗ j as above. This has the following reason: Let T0 = (ricg −1

2 scalg g)|M .
By Proposition 1.1

H = 1
2

d2

dt2 |t=0gt = T̂0 − 1
n−1 tr(T̂0)g + 1

n−1ρg − ricg +2K2 − tr(K)K.

Comparing these expressions, we obtain

T̂ − 1
n−1 tr(T̂ )g = T̂0 − 1

n−1 tr(T̂0)g

and it follows that T̂0 = T̂ . So at M , the energy-momentum tensor is presicely the one
we want.

We have seen that the initial data pairs satisfying the strict dominant energy condition
are the ones that give rise to spacetimes with strict dominant energy condition. In the
remainder of this work, we want to draw our attention towards the space of such initial
data pairs. We will study this space by comparing it to the space of metrics of positive
scalar curvature. The comparison map will be established in the next section.
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1.2. Positive scalar curvature and initial values

In the following,M is a compact smooth manifold of dimension n ≥ 2. Let R(M) be the
space of smooth metrics endowed with C∞-topology and R+(M) the (possibly empty)
subspace of positive scalar curvature metrics. Furthermore, we denote by I(M) the
C∞-space of pairs (g,K) consisting of a metric g and a symmetric (0, 2)-tensor K and
by I+(M) the subspace of those pairs satisfying the strict dominant energy condition
defined in the previous section. The aim of this section is to construct a continuous
map

Φ: ΣR+(M) −→ I+(M)

such that Φ|R+(M)×{0} is the inclusion g 7→ (g, 0).

Lemma 1.11. For every C > 0, the function

τ : R(M) −→ R

g 7−→
√

n

n− 1 max{0, sup
x∈M
− scalg(x)}+ C

is continuous.

Proof. It suffices to show that the assignment g 7→ supx∈M scalg(x) is continuous.
This breaks into two pieces: Firstly, the function C0(M) → R, f 7→ supx∈M f(x) is
(Lipschitz-)continuous, because for all f, g ∈ C0(M)

sup
x∈M

f(x)− sup
x∈M

g(x) = sup
x∈M

(
f(x)− g(x) + g(x)− sup

y∈M
g(y)

)
≤ sup

x∈M
(f(x)− g(x)) ≤ ‖f − g‖C0 .

and analogously supx∈N g(x) − supx∈N f(x) ≤ ‖f − g‖C0 . Secondly, the continuity of
R(M) → C0(N), g 7→ − scalg follows from the fact that the scalar curvature can be
expressed locally as a function of the coefficients of the metric and their first and second
derivatives (cf. Theorem A.7).

Proposition 1.12. For any C > 0 and I = [−1, 1], the following is a well-defined
continuous map of pairs4:

φ : (R(M),R+(M))× (I, ∂I) −→ (I(M), I+(M))

(g, t) 7−→
(
g,
τ(g)
n

tg

)
.

Moreover, its homotopy class [φ] ∈ [(R(M),R+(M)) × (I, ∂I) , (I(M), I+(M))] is in-
dependent of C > 0.

4For two pairs (X, A) and (Y, B), we write (X, A)× (Y, B) := (X × Y, X ×B ∪ Y ×A).
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Proof. Continuity directly follows from the lemma above. Moreover, varying the param-
eter C > 0 defines a continuous homotopy between different such maps. Thus, it only
remains to prove that R(M)× ∂I ∪R+(M)× I is mapped into I+(M). To this aim, we
first observe that for a pair of the form (g, τng) with τ ∈ R

2ρ = scal +n− 1
n

τ2

j = 1− n
n

grad τ = 0

holds. Hence, such a pair fulfills the strict dominant energy condition if and only if

τ2 > − n

n− 1 scal .

But by definition of the function τ , this is the case for
(
g,± τ(g)

n g
)
, which shows that

R(M) × ∂I maps into I+(M). Moreover, the condition is automatically satisfied if g
has positive scalar curvature, so R+(M)× I is sent to I+(M) as well.

Proposition 1.13. Let C > 0 and h ∈ R(M) a Riemannian metric. Then the compo-
sition

Φ: ΣR+(M) −→ R(M)× ∂I ∪R+(M)× I φ−→ I+(M),

where the first map is given by

[g, t] 7−→


((−2t− 1)h+ 2(1 + t)g,−1) t ∈ [−1,−1

2 ]
(g, 2t) t ∈ [−1

2 ,
1
2 ]

((2t− 1)h+ 2(1− t)g, 1) t ∈ [1
2 , 1],

is a well-defined, continuous map. Its homotopy class is independent of C > 0 and
h ∈ R(M).

Proof. By the previous proposition, we just need to study the first map: Plugging in
t = ±1

2 , we see that the different definitions agree on the intersections, and for the special
values t = ±1 we observe that the result is independent of g, i.e. the map descends to
the suspension. This shows well-definedness. Continuity can now be checked on each
domain of definition, where it is obvious. Moreover, this map continuously depends on
h ∈ R(M), so by connectedness of R(M), its homotopy class is independent of h.

Corollary 1.14. The inclusion R+(M) → I+(M), g 7→ (g, 0) is null-homotopic. In
particular, if there exists a metric g0 ∈ R+(M), the induced map on homotopy groups
πk(R+(M), g0)→ πk(I+(M), (g0, 0)) is the zero-map for all k.

13



Proof. Using the map defined above, we get a factorization of the inclusion map as
follows

R+(M) ↪→ CR+(M) ↪→ ΣR+(M) Φ−→ I+(M),

where the first two maps are the canonical inclusions of a space into the its cone and of
the cone into the suspension as upper half. As cones are contractible, the composition
is null-homotopic.

This shows that we cannot find non-trivial elements of homotopy groups in the space
initial data with strict dominant energy condition by simply considering the space of
positive scalar curvature metrics as subspace. However, the map Φ defined above allows
for a better construction: We will show that under certain conditions the composition

πk(R+(M), g0) Σ−→ πk+1(ΣR+(M), [g0, 0]) Φ∗−→ πk+1(I+(M), (g0, 0))

has non-trivial image. First, though, we will take a look at the map that witnesses that
there are non-trivial elements in πk(R+(M), g0): the α-invariant.
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2. The classical α-invariant

2.1. KO-theory via Fredholm operators

In this section, we introduce certain spaces of Clifford-linear Fredholm operators and
relate them to KO-theory. The tools and examples developed here, will be needed later
to define the α-invariant. In this presentation, we basically follow Ebert [Ebe13].

Definition 2.1. For n, k ∈ Z≥0, a Z/2Z-graded Cln,k-Hilbert space is a separable, real
Hilbert space H together with a bounded linear operator ι : H → H called grading
operator and a linear map c : Rn+k → B(H) called Clifford multiplication satisfying the
following properties:

ι2 = 1

c(v)2 = (−〈v1, v1〉+ 〈v2, v2〉) 1

ιc(v) = −c(v)ι
ι∗ = ι

c(v1 + v2)∗ = c(−v1 + v2)

for all v = v1 +v2 ∈ Rn+k = Rn⊕Rk with v1 ∈ Rn⊕0 and v2 ∈ 0⊕Rk. Thereby, 〈−,−〉
denotes the standard Euclidean scalar product. Z/2Z-graded Cln,k-Hilbert spaces form
a category, with morphisms F : (H1, ι1, c1) → (H2, ι2, c2) being bounded linear maps
of the underlying Hilbert spaces that are even (i.e. ι2F = Fι1) and Cln,k-linear (i.e.
c2(v)F = Fc1(v) for all v ∈ Rn,k). A finite-dimensional Z/2Z-graded Cln,k-Hilbert
space is called Z/2Z-graded Cln,k-module.

For simplicity, we will often write Cln instead of Cln,0. As we do not consider the
ungraded notions normally, we will drop the term Z/2Z-graded for convenience.

Example 2.2. The Clifford algebra Cln,k is a Cln,k-module in the following way:

• The scalar product 〈−,−〉 on Cln,k is defined by the requirement that the standard
basis (ei1 · · · eil)0≤l≤n, 1≤i1<···<il≤n+k is orthonormal.

• The grading operator ι = α : Cln,k → Cln,k is given by the Cliffordization of the
map Rn+k → Rn+k, v 7→ −v.

• The Clifford multiplication c = R : Rn+k → End(Cln,k) is given by multiplication
from the right: v 7→ (α 7→ α · v).

It is clear that α is an involution, R satisfies the Clifford relations and that they anti-
commute. As α is diagonal with respect to the standard basis, we have α∗ = α. For the
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last property, we observe that given a standard basis vector eI ∈ Cln,k not containing
ej then

R(ej)eI = (−1)leJ

for another standard basis vector eJ and l being the number of swaps necessary to bring
ej to the right position. Then

R(ej)eJ = (−1)lR(ej)2eI = −εj(−1)leI

where εj = 1 for j ∈ {1, . . . n} and εj = −1 for j ∈ {n + 1, . . . , en+k}. So we see that
with the right ordering of basis vectors, R(ej) is of block diagonal form with blocks(

0 (−1)l
−εj(−1)l 0

)
.

In the case j ∈ {1, . . . , n}, this is anti-symmetric, thus R(ej)∗ = R(−ej), and if j ∈
{n+ 1, . . . , n+ k}, then R(ej)∗ = R(ej).

Note, that the same works with the left multiplication L. In particular,

〈L(ej)Φ,Ψ〉 = −εj〈Φ, L(ej)Ψ〉 (3)

for all Φ,Ψ ∈ Cln,k. The use of right multiplication was motivated by the next exam-
ple.

Example 2.3. Let (M, g) be an n-dimensional Riemannian spin manifold with a spin
structure PSpin(n)M . Then the Cln-linear spinor bundle is the associated bundle

ΣClM = PSpin(n)M ×Spin(n) Cln,

where Spin(n) acts on Cln via Clifford multiplication from the left. As left multipli-
cation by elements of Spin(n) commutes with both α and R, they give rise to bundle
homomorphisms

α : ΣClM −→ ΣClM

R : Rn −→ End(ΣClM).

Furthermore, (3) implies that 〈−,−〉 extends to a bundle metric on ΣClM . All these
structures along with their relations derived for Cln extend to the Hilbert space H =
L2(M,ΣClM) of L2-sections, making it a Cln-Hilbert space.

The following Morita equivalences play an important role in the classification of Cln,k-
modules.
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Lemma 2.4. For all n, k ≥ 0, the categories of

1. Cln,k-Hilbert spaces and Cln+1,k+1-Hilbert spaces

2. Cln+4,k-Hilbert spaces and Cln,k+4-Hilbert spaces

are equivalent.

Proof. For the first part, we identify Rn+1+k+1 = Rn+1⊕Rk+1 with Rn+k⊕ span{e, ε},
where e is the last basis vector of Rn+1 and ε the last basis vector of Rk+1. On objects
a functor in the one direction is given by mapping a Cln,k-Hilbert space (H, ι, c) to
(H ⊕H, ι̃, c̃), where

ι̃ =
(
ι 0
0 −ι

)

c̃(v) =
(
c(v) 0

0 −c(v)

)
for all v ∈ Rn+k ⊕ 0

c̃(e) =
(

0 −1
1 0

)

c̃(ε) =
(

0 1
1 0

)
,

and on morphisms by mapping F to

F̃ =
(
F 0
0 F

)
.

It is easily checked that this defines a Cln+1,k+1-Hilbert space and a morphism of such,
respectively.

For the converse direction, we map a Cln+1,k+1-Hilbert space (H, ι, c) to (H0, ι0, c0),
whereby H0 = ker(c(ε)c(e) − 1) is the 1-eigenspace of the involution c(ε)c(e) and
ι0 : H0 → H0 and c0 : Rn+k → B(H0) are appropriate restrictions of ι and c, respec-
tively. Also, a morphism F : H → H ′ is mapped to its restriction F0 : H0 → H ′0. All of
these restrictions are well-defined, because the operators commute with c(ε)c(e).

We need to see that these functors are mutually inverse up to natural isomorphism.
Starting in the category of Cln,k-Hilbert spaces, we note that

H̃0 = ker(c̃(ε)c̃(e)− 1) = ker
(

0 0
0 −2 1

)
= H ⊕ 0

and ι̃0 = ι as well as c̃0 = c under the identification H ⊕ 0 ∼= H. In the same way,
F̃0 = F holds.
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Now we start with a Cln+1,k+1-Hilbert space (H, ι, c). Since c(ε)c(e) is a self-adjoint
involution, the spectral theorem implies that there is an eigenspace decomposition

H = ker(c̃(ε)c̃(e)− 1)⊕ ker(c̃(ε)c̃(e) + 1) = H0 ⊕ c(ε)H0,

where the last equality results from the fact that c(ε) interchanges the eigenspaces.
Under the obvious isomorphism H0 ⊕ c(ε)H0 ∼= H0 ⊕H0,

ι =
(
ι|H0 0

0 ι|c(ε)H0

)

gets mapped to (
ι0 0
0 c(ε)ιc(ε)|H0

)
=
(
ι0 0
0 −ι0

)

and this, along with the same argument for c, implies that (H, ι, c) ∼= (H̃0, ι̃0, c̃0). In the
same way a morphism F is identified with F̃0.

The second equivalence is easier to describe. Let us regard Rn+k+4 as Rn ⊕ Rk ⊕
span{e1, e2, e3, e4}, where e1, . . . e4 are meant to change their role from being the last four
basis vectors of Rn+4 to being the last four basis vectors of Rk+4 and vice versa. Now,
we map a Cln+4,k-Hilbert space (H, ι, c) to (H, ι, c̃) with c̃ defined by c̃|Rn+k = c|Rn+k

along with c̃(ei) = ηc(ei) for η = c(e1) · · · c(e4). It can be checked that η2 = 1 and
that (H, ι, c̃) defines a Cln,k+4-Hilbert space. A morphism is mapped to the morphism
defined by the same underlying bounded linear map.

Conversely, for a Cln,k+4-Hilbert space (H, ι, c̃) we define the corresponding Cln+4,k-
Hilbert space (H, ι, c) by c|Rn+k = c̃|Rn+k and c(ei) = η̃c̃(ei) for η̃ = c̃(e1) · · · c̃(e4).
Again, the image of a morphism is defined by the same underlying bounded linear map.
Since in both cases η = η̃, these functors are seen to be mutually inverse.

Proposition 2.5. If n − k 6≡ 0 mod 4, there is an irreducible Cln,k-module, unique
up to isomorphism. If n − k ≡ 0 mod 4, there are two isomorphism classes of irre-
ducible Cln,k-modules, and they are distinguished by whether the volume element ωn,k =
ιc(e1) . . . c(en+k) acts as +1 or −1.

Proof. This is the statement of [LM89, Thm I.5.7] along with the discussion of [LM89,
Thm I.5.9]. Note that in this reference, Cln,k-modules are ungraded, which results in
an index shift: Z/2Z-graded Cln,k-modules correspond to ungraded Cln,k+1-modules
setting c(en+k+1) = ι.

Definition 2.6. A Cln,k-Hilbert space is called ample, if it contains each irreducible
Cln,k-module with infinite multiplicity.

18



Example 2.7. Let H = L2(M,ΣClM) with the Cln-Hilbert space structure defined in
Example 2.3. H is ample if n = dim(M) > 0: Let U ⊆ M be a non-empty open subset
such that there exists a non-vanishing vector field X ∈ X(U) (e.g. U can be a chart
neighborhood of a point). We can assume that X is a unit vector field. Let us now
consider the inclusion

H ′ = L2(U,ΣClM|U ) ↪→ H

defined by zero continuation. Note that H ′ is infinite-dimensional and each eigenspace
of ωn,0|H′ includes into the corresponding eigenspace of ωn,0. The operator

L(X) : H ′ → H ′

induced by left Clifford multiplication with X is invertible as L(X)2 = −1. Left and
right Clifford multiplication commute, thus we have

L(X)ωn,0 = L(X)αR(e1) · · ·R(en) = −αL(X)R(e1) · · ·R(en) = −ωn,0L(X).

This implies that L(X) maps the 1-eigenspace of ωn,0|H′ to the −1-eigenspace and vice
versa. So these eigenspaces both must be infinite-dimensional.

Definition 2.8. Let (H, ι, c) be an ample Cln,k-Hilbert space. Then a Cln,k-Fredholm
operator is a (bounded) Fredholm operator on H that is self-adjoint, odd with respect to
ι, Cln,k-linear and, in the case n−k ≡ −1 mod 4, satisfies the additional condition that
ωn,kFι is neither essentially positive nor essentially negative. We denote by Fredn,k(H)
the space of Cln,k-Fredholm operators with operator norm topology. Furthermore, we
write Gn,k(H) ⊆ Fredn,k(H) for the subspace of invertible elements.

Remark 2.9. Assume that F is a self-adjoint, odd, Cln,k-linear Fredholm operator
on an infinite-dimensional Cln,k-Hilbert space H. If n − k ≡ 1 or 2 mod 4, then
F ∈ Fredn,k(H). In the case n − k ≡ 0 mod 4 we have to additionally check that
H is ample and in the case n − k ≡ −1 mod 4 the condition concerning the essen-
tial spectrum needs to be checked. Now assume that the Clifford action extends, so
that H is a Cln+1,k- or a Cln,k+1-Hilbert space. Then the additional generator C of
the Clifford action satisfies ωn,kC = −Cωn,k for n − k ≡ 0 mod 4, so H is ample as
Cln,k-Hilbert space. If, furthermore, F is Clifford-linear with respect to the extended
Clifford multiplication, then ωn,kFι anti-commutes with C for n − k ≡ −1 mod 4 and
so its spectrum is neither essentially positive nor essentially negative. Thus, in any case,
Fredn+1,k(H) ⊆ Fredn,k(H) and Fredn,k+1(H) ⊆ Fredn,k(H).

Example 2.10. Let H = L2(M,ΣClM) be defined as above and assume additionally
thatM is compact. The Levi-Civita connection on M induces a connection on PSpin(n)M ,
which defines a connection ∇ on ΣClM . The composition

D : Γ(ΣClM) ∇−→ Γ(T ∗M ⊗ ΣClM) ]⊗1−→ Γ(TM ⊗ ΣClM) L−→ Γ(ΣClM)
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of connection, musical isomorphism and (left) Clifford multiplication defines the Cln,k-
linear Dirac operator, which extends to an unbounded operator D : H → H. It is imme-
diate that D is odd and Cln-linear. Moreover, general results for Dirac operators imply
that D is formally self-adjoint and admits a spectral decomposition D =

∑∞
i=0 λiπEi with

finite dimensional eigenspaces Ei and discrete eigenvalues λi (cf. [Roe99, Thm. 5.27]).
Hence the bounded transform

F = D√
1 +D2

=
∞∑
i=0

λi√
1 + λ2

i

πEi

is a well-defined, self-adjoint Fredholm operator that is odd and Cln-linear. In the case
n 6≡ −1 mod 4 this already shows F ∈ Fredn,0(H).

For the remaining case, we study the operator D̃ = ωn,0Dι = R(e1) · · ·R(en)D. As
R(e1) · · ·R(en) and D commute, each eigenspace of D can be further decomposed into a
1- and a −1-eigenspace of R(e1) · · ·R(en). So the eigenvalues of the product D̃ accumu-
late at least at ∞ or −∞. If we can show that both of them are accumulation points,
then

D̃√
1 + D̃2

= R(e1) · · ·R(en) D√
1 +D2

= ωn,0Fι

is neither essentially positive nor essentially negative, as needed.

In order to do so, we adopt the argument of [Amm17, Prop 7.21]: We assume that ∞ is
the only accumulation point for contradiction, the argumentation for −∞ being analo-
gous. Let λ0 be the smallest eigenvalue. We coverM by chart neighborhoods U1, . . . , UN
and choose a partition of unity Ψ2

1, . . . ,Ψ2
j subordinate to the cover, where Ψi ∈ C∞≥0(M)

for all i. Using Gram-Schmidt orthonormalization, there exists an orthonormal frame
ei1, . . . , e

i
n over Ui for each i. Now, let D̃φ = λφ. As Ψie

i
j is a smooth function, L(Ψie

i
j)φ

is in the domain of D̃ and∑
i,j

(
D̃L(Ψie

i
j)φ,L(Ψie

i
j)φ
)
≥
∑
i,j

λ0
(
L(Ψie

i
j)φ,L(Ψie

i
j)φ
)

=
∑
i,j

Ψ2
iλ0(φ, φ) = nλ0‖φ‖2.

On the other hand,∑
i,j

(
D̃L(Ψie

i
j)φ, L(Ψie

i
j)φ
)

=
∑
i,j,k

(
L(eik)R(e1) . . . R(en)∇ei

k
L(Ψie

i
j)φ, L(Ψie

i
j)φ
)

=
∑
i,j,k

(
L(eik)R(e1) . . . R(en)L(∇ei

k
Ψie

i
j)φ, L(Ψie

i
j)φ
)

+
∑
i,j,k

(
L(eik)R(e1) . . . R(en)L(Ψie

i
j)∇ei

k
φ, L(Ψie

i
j)φ
)
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≤
∑
i,j,k

Ψi‖∇ei
k
Ψie

i
j‖C0‖φ‖2

−
∑
i,j,k

Ψ2
i

(
L(eij)R(e1) . . . R(en)L(eik)∇ei

k
φ, L(eij)φ

)
+ 2

∑
i,j=k

Ψ2
i

(
L(eij)R(e1) . . . R(en)L(eik)∇ei

k
φ, L(eij)φ

)
≤ C‖φ‖2 −

∑
i,j

Ψ2
iλ (φ, φ) + 2

∑
i

Ψ2
iλ (φ, φ)

= (C − (n− 2)λ)‖φ‖2

for some C independent of φ and λ. Putting those inequalities together,

nλ0 + (n− 2)λ ≤ C

for all eigenvalues λ. As n ≥ 3 (if n ≡ −1 mod 4) and ∞ is an accumulation point, this
is a contradiction. Thus, F ∈ Fredn,0(H) for all n > 0.

Furthermore, if g is a metric of positive scalar curvature, then the Schrödinger-Lichne-
rowicz formula (cf. [Roe99, Props. 3.18 and 4.21])

D2 = ∇∗∇+ scal
4 1

implies that kerD = 0 and so F ∈ Gn,0(H).

The following consequence of Kuiper’s theorem is proven in [Ebe13]:

Proposition 2.11. The space Gn,k(H) is contractible for all n, k ≥ 0.

Proposition 2.12. The Morita equivalences induce homeomorphisms of pairs

(Fredn,k(H), Gn,k(H)) −→ (Fredn+1,k+1(H ⊕H), Gn+1,k+1(H ⊕H))

F 7−→
(
F 0
0 F

)

and

(Fredn+4,k(H), Gn+4,k(H)) −→ (Fredn,k+4(H), Gn,k+4(H))
F 7−→ F.

In particular, there is a homoemorphism

(Fredn,k(H), Gn,k(H)) −→ (Fredn+8,k(H ⊗R16), Gn+8,k(H ⊗R16))
F 7−→ F ⊗ 1R16 .
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Proof. We use the same notation as in the proof of Lemma 2.4. The first thing to check
is that H ⊕H is ample iff H is ample. In the case n− k 6≡ 0 mod 4, this is just the fact
that H is infinite-dimensional iff H ⊕H is. In the other case, we note that ωn+1,k+1 is
up to sign given by (

ωn,k 0
0 ωn,k

)
.

Hence, the 1- and −1-eigenspaces of ωn+1,k+1 are both infinite-dimensional iff those of
ωn,k are. It is easily checked that if F is a self-adjoint, odd and Cln,k-linear Fredholm
operator, then its image is a self-adjoint, odd and Cln+1,k+1-linear Fredholm operator
and if F is invertible, so is its image. This shows the well-definedness of the first map
up to the additional condition in case n− k ≡ −1 mod 4. For this, we note that(

ωn,k 0
0 −ωn,k

)(
F 0
0 F

)(
ι 0
0 −ι

)
=
(
ωn,kFι 0

0 ωn,kFι

)

is neither essentially positive nor essentially negative iff ωn,kFι satisfies this condition.
Clearly the map is continuous and we have to construct a continuous inverse. For this,
let

F =
(
F0 F1
F2 F3

)
∈ Fredn+1,k+1(H ⊕H).

As it has to commute with (
0 1
1 0

)
and

(
0 −1
1 0

)

we must have F0 = F3 and F1 = F2 = 0. So the assignment F 7→ F0 defines a continuous
map of pairs, inverse to the first map.

For the second part, it suffices to note that under the performed change of the Clifford
structure, c̃(ei) = ηc(ei), Clifford-linearity of F is left unchanged and the volume element
ω changes at most its sign.

The last part is obtained by applying four times the first map and then once the inverse
of the second one.

We now turn our attention to KO-theory. Classically, KO is defined as follows.

Definition 2.13. Let X be a compact space. The KO-group of X, denoted by KO(X),
is the Grothendieck group associated to the abelian monoid

({real vector bundles overX}/vector bundle isomorphisms , ⊕).
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If x0 ∈ X is a base point, then the reduced KO-group of (X,x0) is

K̃O(X) = ker(KO(X)→ KO({x0})),

where the map is induced by pullback via {x0} ↪→ X. If Y ⊆ X is closed, then the
relative KO-group of the pair (X,Y ) is KO(X,Y ) = K̃O(X/Y ) where X/Y is defined
by the pushout

Y {∗}

X X/Y

and the base point is given by the canonical map {∗} → X/Y . Moreover, for n ≥ 0, we
define higher KO-groups by

KO−n(X,Y ) = K̃O(Σn
redX/Y )

KO−n(X) = KO−n(X,∅),

where Σred is the reduced suspension of a pointed space.

There is much that can be said about these groups. For instance, they are homotopy
invariant and the tensor product turns KO−∗({∗}) into a graded ring and KO−∗(X,Y )
into a KO−∗({∗})-module. Hence the following theorem (cf. [LM89, Thms. 9.21 and
9.22]) tells much about the structure of KO-theory.

Theorem 2.14 (Bott periodicity).

KO∗({∗}) ∼= Z[η, y, x]/(2η, η3, ηy, y2 − 4x)

with deg(η) = −1, deg(y) = −4, deg(x) = −8. In particular, for n ≥ 0

KO−n({∗}) ∼=


Z n ≡ 0, 4 mod 8
Z/2Z n ≡ 1, 2 mod 8
0 n ≡ 3, 5, 6, 7 mod 8

.

Moreover, multiplication by the generator x ∈ KO−8({∗}) induces an isomorphism

KO−n(X,Y )
∼=−→ KO−n−8(X,Y )

for all compact pairs (X,Y ).

This allows us to extend the definition of KO to positive degrees in such a way that
KO∗ is 8-periodic, i.e. KOn(X,Y ) ∼= KOn−8k(X,Y ) as abelian groups.
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Definition 2.15. With abuse of notation, letKO∗({∗}) be the localization of the version
from Definition 2.13 at the generator x ∈ KO−8({∗}) and KO∗(X,Y ) be the KO∗({∗})-
module obtained by localizing the previously defined version at x.

The connection between KO-groups and the spaces of Fredholm operators is given by
the index map.

Theorem 2.16 (Index map). If H is an ample Cln,k-Hilbert space, then Fredn,k(H)
represents KO-theory: For compact relative CW-complexes (X,Y ), there is a natural
bijection

ind: [(X,Y ), (Fredn,k(H), Gn,k(H))] −→ KOk−n(X,Y )

called index map. In particular, the class of null-homotopic maps is mapped to zero.
Moreover, ind is invariant under Cln,k-Hilbert space isomorphisms, i.e. if U : H → H ′

is an isomorphism of Cln,k-Hilbert spaces, then

[(X,Y ), (Fredn,k(H), Gn,k(H))] [(X,Y ), (Fredn,k(H ′), Gn,k(H ′))]

KOk−n(X,Y )

∼=

ind ind

commutes, where the upper map is induced by Fredn,k(H) 3 F 7→ UFU−1.

The theorem is a consequence of the following two results.

Theorem 2.17. For compact spaces X, there is a natural bijection

ind: [X,Fred0,0(H)] −→ KO(X),

which induces, for compact CW-pairs (X,Y ), a natural bijection

ind: [(X,Y ), (Fred0,0(H), G0,0(H))] −→ KO0(X,Y ).

Moreover, ind is invariant under Cl0-Hilbert space isomorphisms.

Proof. The first part of this theorem can be found in [AS69], with the difference that,
instead of Fred0,0(H), the space of all (bounded) Fredholm operators F (H0) on a separa-
ble, infinite-dimensional real Hilbert space H0 is considered there. But those two spaces
can be easily identified: The ampleness condition for H implies that both eigenspaces
of the involution ι are infinite-dimensional. So we can choose an isometric isomorphism
H ∼= H0 ⊕H0 for H0 = ker(ι− 1) ∼= `2 such that ι is given by(

1 0
0 −1

)
.
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Then F is of the form (
F0 F1
F2 F3

)
.

Since F anti-commutes with ι, we must have F0 = F3 = 0. Moreover, F ∗ = F implies
F2 = F ∗1 . So F is of the form (

0 F1
F ∗1 0

)
with F1 : H0 → H0 being a Fredholm operator. Conversely, a Fredholm operator on a
separable, infinite-dimensional Hilbert space H0 defines a Cl0,0-Fredholm operator on
H = H0 ⊕H0 by the above formula.

Let us take a short look at how the index map is constructed: Given a map F1 : X →
F (H0), by compactness of X, a closed subspace V ⊆ H0 of finite codimension can be
found such that V ∩ ker(F1(x)) = 0 for all x ∈ X. Then

ind([F1]) = [kerF1PV ]− [cokerF1PV ] ∈ KO(X)

with PV being the orthogonal projection on V (cf. [Ati67], particularly for well-defined-
ness). Noting that cokerF1PV ∼= ker(F1PV )∗ = kerPV F ∗1 , we conclude that in the
Z/2Z-graded picture the index of F : X → F (H) is given by

ind([F ]) = [ker(PV FPV )|H0 ]− [ker(PV F1PV )|H⊥0 ] ∈ KO(X)

where the closed subspace V ⊆ H0 ⊆ H of finite codimension in H0 is chosen such that
V ∩ ker(F (x))|H0 = 0 for all x ∈ X. From this description, we see that the index map is
invariant under Cl0-Hilbert space isomorphisms.

For the second part, we note that for the one-point space {x0}, we can take V = ker(F1)⊥,
so the map is given by

[{x0}, F (H0)]→ KO({x0}) ∼= Z
[F1] 7→ indexF1 = dim kerF1 − dim cokerF1.

This implies that it is the path component containing the identity (and all invertible
operators) that is mapped to zero. Now, let X be a compact space with non-degenerate
base point x0 ∈ X. We consider

[(X,x0), (F (H0),1)] K̃O(X)

[X,F (H0)] KO(X)

[{x0}, F (H0)] KO({x0}).

res

∼=

res

∼=
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By definition, K̃O(X) is the fiber over 0 with respect to the restriction map. Hence, if
we can show that on the left hand side [(X,x0), (F (H0), {1})] is preimage of the identity
component under the restriction map, the dashed map exists and is a bijection.

As x0 ∈ X is non-degenerate, the preimage under the restriction map is given by

{[f ] ∈ [X,F (H0)] | ∃g ∈ [f ] : g(x0) = 1} ⊆ [X,F (H0)].

This is almost the set in the left-hand upper corner of the diagram. Indeed, there is a
canonical comparison map

[(X,x0), (F (H0),1)] −→ {[f ] ∈ [X,F (H0)] | ∃g ∈ [f ] : g(x0) = 1} ,

which is surjective. For injectivity, we need to show that whenever two pointed maps
f, g : (X,x0) → (F (H0),1) are homotopic, then they are also pointed homotopic. Let
H : X × [0, 1] → F (H0) be the homotopy. We set γ = H(x0,−) : [0, 1] → F (H0), this
is a path in F (H0) from 1 to 1. We remember that under the projection p : B(H0) →
B(H0)/K(H0) to the Calkin algebra, Fredholm operators are mapped to invertible el-
ements. Moreover, according to the theorem of Bartle and Graves [BG52], p has a
continuous (though not linear) section σ. Then t 7→ σ(p(γ(t))−1)γ(t) agrees with the
identity up to a compact operator. So

H̃ : (X,x0)× [0, 1]→ (F (H0),1),
(x, t)→ σ(p(γ(t))−1)H(x, t) + 1−σ(p(γ(t))−1)γ(t)

is a well-defined pointed homotopy from f to g.

Now, the claim follows from the following line of natural isomorphisms:

[(X,Y ), (Fred0,0(H), G0,0(H))] ∼=
[
(X,Y ),

(
Fred0,0(H0 ⊕H0),

{(
0 1
1 0

)})]
∼= [(X,Y ), (F (H0), {1})]
∼= [(X/Y, Y/Y ), (F (H0), {1})]
∼= K̃O(X/Y ) = KO0(X,Y )

Note that the first isomorphism uses that G0,0(H) is contractible (Proposition 2.11)
along with the fact that Y ↪→ X is a cofibration.

Theorem 2.18 (Bott map). For compact CW-pairs (X,Y ), the map

[(X,Y ), (Fredn+1,k(H), Gn+1,k(H))] −→ [(X,Y )× (I, ∂I), (Fredn,k(H), Gn,k(H))]
[x 7→ Fx] 7−→ [(x, t) 7→ Fx + tc(e)ι]

is a natural bijection. Thereby, e is the additional basis vector of Rn+1+k = R ⊕Rn+k

and I = [−1, 1].
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Proof. In essence, this is the statement of [AS69, Thm A(k)]. In this source, however,
the spaces of Fredholm operators are denoted by Fn∗ (H0) and defined slightly differently:
If n = 0, F 0

∗ (H0) = F (H0) is the space defined in the previous proof and we have already
seen, how this relates to Fred0,0(H0 ⊕H0).

If n > 0, for an ample ungraded Cln−1-Hilbert spaceH0, the space Fn∗ (H0) is the space of
skew-adjoint, Cln−1-anti-linear Fredholm operators F0 on H0 that satisfy the additional
condition that c(e1) · · · c(en−1)F0 is neither essentially positive nor essentially negative
if n ≡ −1 mod 4. This corresponds to the Fredn,0(H)-spaces by a construction similar
to the first Morita equivalence: If F0 ∈ Fn∗ (H0), then

F =
(

0 F0
−F0 0

)
∈ Fredn,0(H0 ⊕H0),

where the Cln-Hilbert space structure on H0 ⊕H0 is defined by

ι =
(

0 1
1 0

)
, c(en) =

(
0 −1
1 0

)
, c(ei) =

(
c(ei) 0

0 −c(ei)

)
for i = 1, . . . , n− 1.

Conversely, an F ∈ Fredn,0(H) defines on H0 = ker(ιc(en) − 1) an operator F0 =
c(en)F|H0 ∈ Fn∗ (H0). These two procedures are mutually inverse.

With these translations at hand, the main theorem of [AS69] together with the con-
tractibility of Gn,0(H) implies that

[X,Fredn+1,0(H)] −→ [X × (I, ∂I), (Fredn,0(H), Gn,0(H))] (4)

[x 7→ Fx] 7−→
[
(x, t) 7→ cos

(
π

2 t
)
Fx + sin

(
π

2 t
)
c(e)ι

]
is an isomorphism for all X. This is the map from the claim, as (x, t) 7→ Fx + tc(e)ι
and (x, t) 7→ cos

(
π
2 t
)
Fx + sin

(
π
2 t
)
c(e)ι are homotopic as maps of pairs via the linear

homotopy connecting those. This works as aFx + bc(e)ι is invertible if a 6= 0 and Fx is
invertible or simply b 6= 0, since (aFx + bc(e)ι)2 = a2F 2

x + b2 1.

The occurrence of the term c(e)ι in (4) is explained as follows: If n > 1, then the
corresponding term on H0-level (i.e. in [AS69]) is given by −c(e), which translates into(

0 −c(e)
c(e) 0

)
= −

(
c(e) 0

0 −c(e)

)(
0 1
1 0

)
= −c(e)ι.

Precomposition with the homeomorphism X × (I, ∂I) → X × (I, ∂I), (x, t) 7→ (x,−t)
corrects the sign. In the case n = 1, the situation is more delicate. On H0, the term in
[AS69] is given by −1, which corresponds to(

0 −1
−1 0

)
= −ι

27



by the identification for n = 0. However, this construction of the Cl0-Hilbert space from
H0 yields (

H,

(
1 0
0 −1

))
= (H, ιc(e))

instead of (H, ι), which would be the result of just forgetting the c(e)-action of the Cl1-
Hilbert space (H, ι, c). Hence we apply the isomorphism of (Z/2Z-graded) Cl0-Hilbert
spaces given by 1√

2(ι+ ιc(e)). This transforms the Fredholm operator −ι into

1
2(ι+ ιc(e))(−ι)(ι+ ιc(e)) = −1

2(ι+ ιc(e) + ιc(e)− ι) = c(e)ι.

The generalization to compact CW-pairs (X,Y) works as in the previous theorem. First,
we consider the case of a compact pointed space (X,x0) with non-degenerate base point.
Then in the diagram

[(X,x0), (Fredn+1,0(H), Gn+1,0(H))] [(X,x0)× (I, ∂I), (Fredn,0(H), Gn,0(H))]

[X,Fredn+1,0(H)] [X × (I, ∂I), (Fredn,0(H), Gn,0(H))]

[{x0},Fredn+1,0(H)] [{x0} × (I, ∂I), (Fredn,0(H), Gn,0(H))]

res

∼=

res

∼=

the upper spaces can be identified with fibers of the restriction maps. More precisely, they
are seen to be the preimages of the subsets defined by those homotopy classes that contain
a representative mapping into Gn+1,0(H) or Gn,0(H), respectively. As before, this re-
quires to show that unpointed homotopies of maps (X,x0)→ (Fredn+1,0(H), Gn+1,0(H))
can be turned into pointed homotopies. This can be done as in the previous proof, replac-
ing B(H) and K(H) by their subspaces of Z/2Z-graded Cln+1-linear operators. By the
same procedure, homotopies of maps (X,x0)× (I, ∂I)→ (Fredn,0(H), Gn,0(H)) relative
X × ∂I give rise to homotopies relative X × ∂I ∪ {x0} × I.

Now, the commutativity of

[(X,Y ), (Fredn+1,0(H), Gn+1,0(H))] [(X,Y )× (I, ∂I), (Fredn,0(H), Gn,0(H))]

[(X/Y, Y/Y ),
(Fredn+1,0(H), Gn+1,0(H))]

[(X/Y, Y/Y )× (I, ∂I),
(Fredn,0(H), Gn,0(H))]

∼= ∼=

∼=

shows that the upper map is a bijection. Note that the vertical maps are bijective as
Gn+1,0(H) is contractible and Y ⊆ X satisfies the homotopy extension property.
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The generalization to arbitrary k works by induction, using that the Morita equivalences
(Proposition 2.12) induce the commutative diagrams

[(X,Y ),
(Fredn+1,k(H ⊕H), Gn+1,k(H ⊕H))]

[(X,Y )× (I, ∂I),
(Fredn,k(H ⊕H), Gn,k(H ⊕H))]

[(X,Y ),
(Fredn,k−1(H), Gn,k−1(H))]

[(X,Y )× (I, ∂I),
(Fredn−1,k−1(H), Gn−1,k−1(H))]

∼= ∼=

and

[(X,Y ), (Fredn+5,k(H), Gn+5,k(H))] [(X,Y )× (I, ∂I), (Fredn+4,k(H), Gn+4,k(H))]

[(X,Y ),
(Fredn+1,k+4(H), Gn+1,k+4(H))]

[(X,Y )× (I, ∂I),
(Fredn,k+4(H), Gn,k+4(H))].

∼= ∼=

Proof of Theorem 2.16. The case (n, k) = (0, 0) is Theorem 2.17. From this, we can
define the map for all (n, 0) recursively using the map from Theorem 2.18:

[(X,Y ), (Fredn,0(H), Gn,0(H))]
∼=−→ [(X,Y )× (I, ∂I), (Fredn−1,0(H), Gn−1,0(H))]
∼=−→ KO−(n−1)((X,Y )× (I, ∂I))
= K̃O(Σn−1

red (X × I)/(Y × I ∪X × ∂I))
∼= K̃O(Σn

redX/Y ) = KO−n(X,Y )

The first Morita equivalence allows to further generalize the definition to all (n, k) with
0 ≤ k ≤ n inductively:

[(X,Y ), (Fredn+1,k+1(H), Gn+1,k+1(H))]
∼=−→ [(X,Y ), (Fredn,k(H0), Gn,k(H0))]
∼=−→ KOk−n(X,Y )

Lastly, we extend inductively to all pairs (n, k) ∈ Z≥0 × Z≥0 via

[(X,Y ), (Fredn,k(H), Gn,k(H))]
∼=−→ [(X,Y ), (Fredn+8,k(H ⊗R16), Gn+8,k(H ⊗R16))]
∼=−→ KOk−n−8(X,Y ) ∼= KOk−n(X,Y ),

where the last map is the multiplication with the periodicity element x−1 ∈ KO8({∗}).

Note that all the maps involved are natural in (X,Y ). The “in particular” part then
follows from the fact that for a map being null-homotopic means that it factors up to
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homotopy over ({∗}, ∗). Hence, its class is in the image of the upper left corner in the
commutative diagram

[({∗}, ∗), (Fredn,k(H), Gn,k(H))] KOk−n({∗}, ∗) = 0

[(X,Y ), (Fredn,k(H), Gn,k(H))] KOk−n(X,Y ).

Since right hand map is a group homomorphism, its image is zero.

In the case (n, k) = (0, 0), the index map was seen to be invariant under isomorphisms
of Cl0-Hilbert spaces. Now, we observe that the property of being invariant under Cln,k-
Hilbert space isomorphisms is preserved in each inductive step – giving invariance for
all (n, k) ∈ Z≥0 × Z≥0.

Remark 2.19. Looking at the proof of Theorem 2.16, we see that

[(X,Y ), (Fredn,k(H), Gn,k(H))] KOk−n(X,Y )

[(X,Y ), (Fredn+8,k(H ⊗R16), Gn+8,k(H ⊗R16))] KOk−n−8(X,Y )

∼= ·x

commutes by definition if n < k. The same is true for k ≤ n provided that the right
generator x ∈ KO−8({∗}) is chosen. This follows from the last remark in [AS69]. We
will not make use of this fact.

Example 2.20. The index map can be used to define an interesting invariant for a
compact Riemannian spin manifold (M, g) of dimension n > 0 with chosen spin structure,
the so-called α-index. As explained above, the bounded transform of the Cln-linear Dirac
operator

F = D√
1 +D2

: H = L2(M,ΣClM)→ H

defines an element of Fredn,0(H). So we can define

α = ind(F ) ∈ KO−n({∗}).

If g has positive scalar curvature, then F is invertible and so α = 0. It can be shown that
α does only depend on the spin-bordism class of the spin manifold M . In particular,
it is independent of the metric chosen. Thus α 6= 0 is an obstruction to positive scalar
curvature on M .

The α-index allows to detect that R+(M) is empty. In the next section, we will define
a more refined invariant that is able to detect non-trivial homotopy groups of R+(M),
provided that this space is non-empty.
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2.2. Construction of the α-invariant

Let M be a compactl spin manifold of dimension n > 0 that has a positive scalar
curvature metric g0. The α-invariant is the map α : πk(R+(M), g0) → KO−n−k−1({∗})
that arises in the following way: As R(M) is contractible, the long exact sequence for
homotopy groups implies πk(R+(M), g0) ∼= πk+1(R(M),R+(M), g0). For each metric g,
the Cln-linear Dirac operator Dg defines a Cln-linear Fredholm operator

Fg = Dg√
1 +D2

g

,

which is invertible if g ∈ R+(M). The assignment g 7→ Fg gives rise to a map
(R(M),R+(M))→ (Fredn,0, Gn,0), which induces a map to πk+1(Fredn,0, Gn,0, Fg0). Ap-
plying the index map from the last section, we obtain an element in KO−n(Dk+1, Sk) ∼=
KO−n−k−1({∗}).

In this outline, however, we glossed over the detail that the Cln-linear spinor bundles
and hence the L2-spaces, on which the Fredholm operators Fg act, depend on the metric
g. These L2-spaces form a Hilbert bundle over R(M), which, by Kuiper’s theorem,
can be trivialized. Such a trivialization allows to define the map (R(M),R+(M)) →
(Fredn,0, Gn,0). We will make this more explicit: The Cln-linear spinor bundles for
different metrics can be identified using the method of generalized cylinders due to Bär,
Gauduchon and Moroianu [BGM05]. This gives rise to a specific trivialization of the
Hilbert bundle of L2-spaces.

Let us start with this construction by fixing a topological spin structure on M , i.e. a
double covering

P
G̃L

+
(n)
M → PGL+(n)M

over the principal bundle of positively oriented frames of TM . This defines, for any
g ∈ R(M), a spin structure for (M, g) by pullback

PSpin(n)(M, g) P
G̃L

+
(n)
M

PSO(n)(M, g) PGL+(n)M,

where PSO(n)(M, g) is the principal bundle of positively oriented orthonormal frames
with respect to g. Moreover, pulling back over the canonical projection M × [0, 1]→M ,

31



we obtain
P
G̃L

+
(n)
M × [0, 1] P

G̃L
+

(n)
M

PGL+(n)M × [0, 1] PGL+(n)M

M × [0, 1] M.

This gives rise a topological spin structure P
G̃L

+
(n+1)

M × [0, 1] → PGL+(n+1)M × [0, 1]
on M × [0, 1] by extension along the standard embedding

GL+(n) −→ GL+(n+ 1)

A 7−→
(
A 0
0 1

)

and its double covering.

Now, given a metric g ∈ R(M), we can define a family of metrics by gt = (1− t)g0 + tg.
Such a family in turn defines the generalized cylinder (M × [0, 1], gt + dt2), t being
the variable in [0, 1]-direction. As above, the topological spin structure induces a spin
structure PSpin(n+1)(M×[0, 1], gt+dt2)→ PSO(n+1)(M×[0, 1], gt+dt2) on the generalized
cylinder. This has the property that for all t0 ∈ [0, 1] it restricts to the spin structure of
(M, gt0) in the sense that

PSpin(n)(M, gt0) PSpin(n+1)(M × [0, 1], gt + dt2)

PSO(n)(M, gt0) PSO(n+1)(M × [0, 1], gt + dt2)

is a pullback, where the lower map is the inclusion (e1, . . . , en) 7→ (e1, . . . , en,
∂
∂t).

The reason, why we do this is that on PSpin(n+1)(M × [0, 1], gt + dt2) the Levi-Civita
connection induces a canonical connection ∇, which provides parallel transports

P∇γx
: PSpin(n+1)(M × [0, 1], gt + dt2)|(x,0) −→ PSpin(n+1)(M × [0, 1], gt + dt2)|(x,1)

along the curves γx : [0, 1] → M × [0, 1], t 7→ (x, t) for all x ∈ M . These assemble into
an isomorphism of principle bundles

P∇ : PSpin(n+1)(M × [0, 1], gt + dt2)|M×{0}
∼=−→ PSpin(n+1)(M × [0, 1], gt + dt2)|M×{1}.

The fact that ∂
∂t is parallel along the curves γx implies that P∇ restricts to

P∇ : PSpin(n)(M, g0)
∼=−→ PSpin(n)(M, g),
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and this induces an isomorphism on the associated Cln-linear spinor bundles

P∇ : ΣCl(M, g0)
∼=−→ ΣCl(M, g).

[ε̃, φ̃] 7−→ [P∇ε̃, φ̃]

Furthermore, it is immediate that P∇ is a point-wise isometry with respect to the scalar
product 〈−,−〉 defined in Example 2.3.

We want to promote this to a unitary transformation between the associated L2-spaces.
As the L2-norm also depends on the volume element, we first compare those: There exists
a positive function β ∈ C∞(M) such that dvolg = β dvolg0 . Then

√
βP∇ : ΣCl(M, g0)→

ΣCl(M, g) induces a unitary transformation

Φg : H := L2(M,ΣCl(M, g0))
∼=−→ L2(M,ΣCl(M, g))

as

(Φg(φ),Φg(ψ))L2 =
∫
M
〈
√
βP∇(φ),

√
βP∇(ψ)〉dvolg =

∫
M
〈φ, ψ〉 dvolg0 = (φ, ψ)L2 .

Moreover, the following compatibilities with the structures from Example 2.3 are imme-
diate:

Lemma 2.21. The isometric Hilbert space isomorphism Φg commutes with the Z/2Z-
grading and the right Clifford multiplication. The left Clifford multiplication satisfies

Φg(X · φ) = P∇(X) · Φg(φ),

where P∇(X) is the vector field obtained from X by parallel transport along the curves
(γx)x∈M .

The following is the main statement of this section:

Theorem 2.22. The map

(R(M),R+(M)) −→ (Fredn,0(H), Gn,0(H))

g 7−→ Φ−1
g ◦

Dg√
1 +D2

g

◦ Φg

is well-defined and continuous with respect to the C1-topology on the space of smooth
metrics R(M). In particular, it is continuous if R(M) carries the C∞-topology.
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Proof. The well-definedness follows from Example 2.10, so we need to check continuity.
We split this up into the following steps: Firstly, we reduce to showing continuity in
g0 by estimating the difference of parallel transports. Secondly, we establish continuity
of g 7→ Φ−1

g DgΦg in B(H1, L2)-norm. Lastly, we show that the bounded transform
promotes this to continuity in B(L2)-norm.

For the first step, we note that∥∥∥∥∥∥Φ−1
g

Dg√
1 +D2

g

Φg − Φ−1
h

Dh√
1 +D2

h

Φh

∥∥∥∥∥∥ =

∥∥∥∥∥∥ΦhΦ−1
g

Dg√
1 +D2

g

ΦgΦ−1
h −

Dh√
1 +D2

h

∥∥∥∥∥∥
≤

∥∥∥∥∥∥Φ−1
hg

Dg√
1 +D2

g

Φhg −
Dh√

1 +D2
h

∥∥∥∥∥∥+

∥∥∥∥∥∥Φ−1
hg

Dg√
1 +D2

g

Φhg − ΦhΦ−1
g

Dg√
1 +D2

g

ΦgΦ−1
h

∥∥∥∥∥∥
where Φhg : L2(M,ΣCl(M,h))

∼=−→ L2(M,ΣCl(M, g)) is defined as Φg, but with h instead
of g0. The first term tends to zero for g → h if continuity holds in the base point of
R(M). This, we will establish in steps two and three. To show that the second term goes
to zero, it suffices to show that Φhg−ΦgΦ−1

h converges to zero as the bounded operators
form a Banach algebra. If dvolg = β dvolg0 and dvolh = γ dvolg0 , then dvolg = β

γ dvolh,
so we need to provide an appropriate estimate for

‖P∇hgP∇h − P∇g ‖.

We do so by adapting the proof of [Wit17, Lem 4.2].

We form5 (M × 4, gst + ds2 + dt2), where 4 =
{
(s, t) ∈ [0, 1]2

∣∣ s+ t ≤ 1
}
⊆ R2 and

gst = (1− s− t)g0 + sh+ tg. In the same way as we did for (M × [0, 1], gt + dt2), we can
define a spin structure on (M ×4, gst + ds2 + dt2) that restricts to the spin structure
of (M, gst) at M × {s} × {t} for all (s, t) ∈ 4. Then Pg, Ph and Phg can be obtained
by parallel transport along the curves γx : [0, 1] → M × 4 defined by τ 7→ (x, 0, τ),
τ 7→ (x, τ, 0) and τ 7→ (x, 1− τ, τ), respectively.

Now let x ∈ M , φ ∈ ΣCl(M, g0)|x and ψ ∈ ΣCl(M, g)|x. We define φ(s, 0) by parallel
transport along τ 7→ (x, τ, 0) and φ(s, t) ∈ ΣCl(M, gst)|x by transporting φ(s + t, 0)
parallelly along τ 7→ (x, s + t − τ, τ). Note that φ(1, 0) = P∇h φ and φ(0, 1) = P∇hgP

∇
h φ.

Furthermore, let ψ(0, t)ΣCl(M, gt)|x be defined by parallel transport along τ 7→ (x, 0, 1−
τ) and ψ(s, t) ∈ ΣCl(M, gst)|x by transporting ψ(0, s+ t) parallelly along τ 7→ (x, τ, s+
t− τ). Then ψ(0, 0) = (P∇g )−1ψ.

54 is neither a submanifold nor a submanifold with boundary of R2, it has corners. But this does not
cause problems: The metric can be extended to a small neighborhood of M ×4 that can be taken
to be a submanifold of M ×R2. All the operations that we are going to perform can then be defined
in terms of this manifold.
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Using the parallelism of the scalar product 〈−,−〉, we can calculate〈
P∇hgP

∇
h φ− P∇g φ, ψ

〉
= 〈φ(0, 1), ψ(0, 1)〉 − 〈φ(0, 0), ψ(0, 0)〉

=
∫ 1

0
d
dy 〈φ(0, y), ψ(0, y)〉 dy

=
∫ 1

0

〈
∇ ∂

∂t
φ(0, y), ψ(0, y)

〉
dy −

∫ 1

0

〈
∇ ∂

∂s
φ(y, 0), ψ(y, 0)

〉
dy

=
∫ 1

0

∫ 1

0
d
dz

〈
∇(1−z) ∂

∂s
+z ∂

∂t
φ((1− z)y, zy), ψ((1− z)y, zy)

〉
dzdy

=
∫ 1

0

∫ 1

0

〈
∇−y ∂

∂s
+y ∂

∂t
∇(1−z) ∂

∂s
+z ∂

∂t
φ((1− z)y, zy), ψ((1− z)y, zy)

〉
dzdy

=
∫ 1

0

∫ 1

0

〈
R(−y ∂

∂s + y ∂∂t , (1− z)
∂
∂s + z ∂∂t)φ((1− z)y, zy), ψ((1− z)y, zy)

〉
dzdy

=
∫ 1

0

∫ 1

0

〈
yR( ∂∂t ,

∂
∂s)φ((1− z)y, zy), ψ((1− z)y, zy)

〉
dzdy.

We will show that the curvature operator of the tangent bundle satisfies an estimate of
the form

‖R( ∂∂t ,
∂
∂s)‖gst ≤ C‖g − h‖C0

for all g in a sufficiently small neighborhood of h. Then by the well-known formula for
the curvature of the spinor bundle (e.g. [LM89, II.(4.37)]), a similar estimate holds for
the spinorial curvature operator. The calculation above then yields the desired estimate

‖P∇hgP∇h − P∇g ‖ ≤ C‖g − h‖C0 .

So let Y (s, t), Z(s, t) ∈ X(M) be vector fields of M smoothly depending on (s, t) ∈ 4.
As such, they define vector fields on M ×4, and the Koszul formula implies

gst(∇ ∂
∂t
Y,Z) = 1

2
d
dt
(
gst(Y, Z)

)
− 1

2gst(Y, [
∂
∂t , Z])− 1

2gst(Z, [Y,
∂
∂t ])

= 1
2
∂gst
∂t

(Y,Z) + 1
2gst(

∂Y
∂t , Z) + 1

2gst(Y,
∂Z
∂t )− 1

2gst(Y,
∂Z
∂t ) + 1

2gst(Z,
∂Y
∂t )

= 1
2
∂gst
∂t

(Y,Z) + gst(∂Y∂t , Z) (5)

and similarly

gst(∇ ∂
∂s
Y,Z) = 1

2
∂gst
∂s

(Y,Z) + gst(∂Y∂s , Z). (6)
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If Y,Z are constant in s and t, then this implies

gst(∇ ∂
∂t
∇ ∂

∂s
Y, Z) = d

dtgst(∇ ∂
∂s
Y,Z)− 1

2
∂gst
∂t

(∇ ∂
∂s
Y,Z)

= 1
2

d
dt
∂gst
∂s

(Y,Z)− 1
2
∂gst
∂t

(∇ ∂
∂s
Y,Z)

= −1
2(g − g0)(∇ ∂

∂s
Y, Z)

and

gst(∇ ∂
∂s
∇ ∂

∂t
Y, Z) = −1

2(h− g0)(∇ ∂
∂t
Y,Z).

Defining Z̃(s, t) by (h − g0)(−, Z) = gst(−, Z̃(s, t)) and Ẑ(s, t) by (h − g)(−, Z) =
gst(−, Ẑ(s, t)) and using (5) and (6) again, we get

gst(R( ∂∂t ,
∂
∂s)Y,Z) = −1

2(g − g0)(∇ ∂
∂s
Y,Z) + 1

2(h− g0)(∇ ∂
∂t
Y,Z)

= 1
2gst(∇ ∂

∂s
Y, Ẑ)− 1

2gst(∇ ∂
∂s
Y, Z̃) + 1

2gst(∇ ∂
∂t
Y, Z̃)

= 1
4
∂gst
∂s

(Y, Ẑ)− 1
4
∂gst
∂s

(Y, Z̃) + 1
4
∂gst
∂t

(Y, Z̃)

= 1
4(h− g0)(Y, Ẑ)− 1

4(h− g)(Y, Z̃).

Hence,

|gst(R( ∂∂t ,
∂
∂s)Y, Z)| ≤ 1

4‖h− g0‖‖Y ‖‖Ẑ‖+ 1
4‖h− g‖‖Y ‖‖Z̃‖

≤ 1
4‖Y ‖

(
‖h− g0‖‖g−1

st ‖‖h− g‖‖Z‖+ ‖h− g‖‖g−1
st ‖‖h− g0‖‖Z‖

)
= 1

2‖Y ‖‖g
−1
st ‖‖h− g0‖‖Z‖‖h− g‖,

where all norms are taken with respect to g0. Now, it only remains to control the norm of
the induced metric on co-vectors g−1

st . Viewing metrics as maps from vectors to co-vectors
and dual metrics as maps from co-vectors to vectors, this amounts to controlling the
norm of the inverse of the endomorphism g−1

0 gst. For C = maxs∈[0,1] ‖g−1
s,0‖ (which only

depends on g0 and h), we consider the neighborhood U =
{
g ∈ R(M)

∣∣∣ ‖h− g‖ < 1
2C

}
of h. Then for all g ∈ U and (s, t) ∈ 4

‖g−1
s+t,0(gst − gs+t,0)‖ ≤ ‖g−1

s+t,0‖‖(tg − th)‖ < 1
2 .

The geometric series now shows that 1 +g−1
s+t,0(gst − gs+t,0) = g−1

s+t,0gst is invertible with
‖(g−1

s+t,0gst)−1‖ < 2. Therefore,

‖g−1
st ‖ = ‖(g−1

0 gst)−1‖ = ‖(g−1
0 gs+t,0g

−1
s+t,0gst)−1‖

= ‖(g−1
s+t,0gst)−1(g−1

0 gs+t,0)−1‖ ≤ 2C.

This completes the first step.
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For the second step, we first observe that if X ∈ X(M) and ψ ∈ Γ(ΣCl(M, g0)), then

(
∇gXP

∇ − P∇∇g0
X

)
ψ =

∫ 1

0

d
dt
(
P∇t,1∇

gt

XP
∇
0,tψ

)
dt

=
∫ 1

0
P∇t,1∇ ∂

∂t
∇gt

X P
∇
0,tψ dt

=
∫ 1

0
P∇t,1R( ∂∂t , X)P∇0,tψ dt

where P∇s,t denotes the obvious parallel transport in M × [0, 1] from M ×{s} to M ×{t}.
Here, from the first to the second line, we used the definition of the covariant derivative
in terms of parallel transport.

Again, we estimate the corresponding curvature term of the tangent bundle as this gives
rise to an estimate of the spinorial curvature. For vector fields X,Y, Z ∈ X(M), that
are regarded as vector fields on M × [0, 1], constant in t-direction, equation (5) allows
to calculate

gt(R( ∂∂t , X)Y, Z) = gt(∇ ∂
∂t
∇gt

XY,Z)− gt(∇gt

X∇ ∂
∂t
Y, Z)

= gt(∇ ∂
∂t
∇gt

XY,Z) + gt(∇ ∂
∂t
Y,∇gt

XZ)− ∂Xgt(∇ ∂
∂t
Y,Z)

= gt

( d
dt∇

gt

XY,Z

)
+ 1

2
∂gt
∂t

(∇gt

XY,Z) + 1
2
∂gt
∂t

(Y,∇gt

XZ)− 1
2∂X

∂gt
∂t

(Y, Z)

= gt

(
lim
s→0

1
s

(∇gt+s

X −∇gt

X)Y,Z
)
− 1

2(g − g0) ((∇g0
X −∇

gt

X)Y,Z)

− 1
2(g − g0) (Y, (∇g0

X −∇
gt

X)Z)− 1
2(∇g0

X (g − g0)).(Y,Z)

As the difference of two covariant derivatives is a tensor, we can calculate its C0-norm
in local coordinates. Thus, from the local formula

Γkij = 1
2g
kl(∂igjl − ∂jgil − ∂lgij)

it follows that

‖∇gt −∇gs‖C0 ≤ C‖gt − gs‖C1 = C‖g − g0‖C1 |t− s|

for all g in a small neighborhood of g0. Here, the neighborhood is chosen so small that
the geometric series allows us to control ‖g−1

t −g−1
s ‖C0 by ‖gt−gs‖C0 . Hence, we obtain

|gt(R( ∂∂t , X)Y, Z)| ≤ (C‖gt‖C0 + C‖g − g0‖C0 + 1
2)‖X‖C0‖Y ‖C0‖Z‖C0‖g − g0‖C1 ,

which implies

‖R( ∂∂t , X)‖C0 ≤ C̃‖X‖C0‖g − g0‖C1
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and ∥∥∥√βg (∇gXP∇ − P∇∇g0
X

)
ψ
∥∥∥
L2
≤ C̃‖X‖C0‖g − g0‖C1‖ψ‖L2

for some constant C̃ depending on the choice of neighborhood of g0.

This serves to show that Φg maps H1 to H1: As

∇XΦgψ = ∂X(
√
βg)P∇ψ +

√
βg∇gXP

∇ψ

= 1
4∂X

(
log

(
(βg)2

))
Φgψ +

√
βg
(
∇gXP

∇ − P∇∇g0
X

)
ψ + Φg∇g0

Xψ,

we are only left to control ∂X(log (βg)2). But it follows from the local expression

(βg)2 = det((gik0 gkj)i,j) = det(1 +(gik0 (gkj − g0kj))i,j)

and the fact that x 7→ 1
x is bounded in a neighborhood of 1 that

∥∥∥∂X log
(
(βg)2

)∥∥∥
C0

=
∥∥∥∥∥∂X(βg)2

(βg)2

∥∥∥∥∥
C0

≤ C‖X‖C0‖g − g0‖C1

holds for all g within a certain C1-neighborhood of g0.

Now we turn our attention to Dirac operators. We fix an open cover M =
⋃
j∈J Uj and

a subordinate partition of unity (θj)j∈J such that for each j ∈ J there exists a local
frame (ej1, . . . , ejn), orthonormal with respect to g0. Then (P∇ej1, . . . , P∇ejn) is a local
orthonormal frame with respect to g and for any ψ ∈ H1(M,ΣCl(M, g0))

DgΦgψ − ΦgD
g0ψ =

∑
j∈J

θj

(∑
i

L(P∇eji )∇
g

P∇ej
i

Φgψ −
∑
i

ΦgL(eji )∇
g0
ej

i

ψ

)

=
∑
j∈J

θj
∑
i

L(P∇eji )
(
∇g
P∇ej

i

Φgψ − Φg∇g0
ej

i

ψ

)

=
∑
j∈J

θj
∑
i

L(P∇eji )
(

1
4∂P∇ej

i
(log (βg)2)Φgψ

+
√
βg
(
∇g
P∇ej

i

P∇ − P∇∇g0
P∇ej

i

)
ψ + Φg∇g0

P∇ej
i−e

j
i

ψ

)
.

By the estimates obtained above, it only remains to show

‖P∇eji − e
j
i‖C0 ≤ C̃‖g − g0‖C0

in order to obtain

‖Φ−1
g DgΦgψ −Dg0ψ‖L2 = ‖DgΦgψ − ΦgD

g0ψ‖L2 ≤ C‖g − g0‖C1‖ψ‖H1 .
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But by setting Y = P∇eji in (5)

P∇eji − e
j
i =

∫ 1

0

∂P∇t e
j
i

∂t
dt = −1

2

∫ 1

0
g−1
t ((g − g0)(eji ,−)) dt

holds, where g−1
t is viewed as mapping 1-forms to vector fields. From this, the desired

estimate is easily obtained.

We now turn towards the last step. Let D = Dg0 , D′ = Φ−1
g DgΦg, F = f(D) and

F ′ = f(D′) = Φ−1
g f(Dg)Φg

for a function f : R→ R with

|f(λ′)− f(λ)| ≤ c

1 + |λ| |λ
′ − λ| (7)

for all λ, λ′ ∈ R and a fixed constant c ∈ R. Of course, we are interested in the case
f(λ) = λ√

1+λ2 and we will finish this proof by showing that f is of that kind. The third
step now consists of proving that there is a constant C only depending on f such that
whenever the Dirac operators satisfy ‖D′ −D‖B(H1,L2) ≤ ε, then ‖F ′ − F‖B(L2) ≤ Cε.

Let (φi)i∈N be an orthonormal Hilbert basis of H consisting of eigenvectors of D with
corresponding eigenvalues (λi)i∈N. Similarly, let (ψi)i∈N be an orthonormal Hilbert
basis of eigenvectors of D′ corresponding to the eigenvalues (λ′i)i∈N. For φ, ψ ∈ H with
‖φ‖ = ‖ψ‖ = 1 we then have

|〈ψ, (F ′ − F )φ〉| =

∣∣∣∣∣∣
∑
i,j

〈ψ,ψj〉〈φi, φ〉(f(λ′j)− f(λi))〈ψj , φi〉

∣∣∣∣∣∣
≤
∑
i,j

c

1 + |λi|
|λ′j − λi| |〈ψ,ψj〉〈φi, φ〉〈ψj , φi〉|

≤
∑
i,j

c

1 + |λi|
|λ′j − λi| |〈ψ, φi〉〈φi, ψj〉〈φi, φ〉〈ψj , φi〉|

=
∑
i,j

|〈ψ, φi〉〈φi, φ〉||〈φi, ψj〉|
c

1 + |λi|
|〈ψj , (D′ −D)φi〉|

≤
∑
i

|〈ψ, φi〉〈φi, φ〉|ε
2
∑
j

〈φi, ψj〉2 + 1
2ε
∑
j

(
c

1 + |λi|
〈ψj , (D′ −D)φi〉

)2


by Young’s enquality.
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Now, the desired estimate is obtained as follows:

|〈ψ, (F ′ − F )φ〉| ≤
∑
i

|〈ψ, φi〉〈φi, φ〉|
(
ε

2‖φi‖
2 + 1

2ε

(
c

1 + |λi|

)2
‖(D′ −D)φi‖2

)

≤
∑
i

|〈ψ, φi〉〈φi, φ〉|
(
ε

2 + 1
2ε

(
c

1 + |λi|

)2
ε2‖φi‖2H1

)

≤
∑
i

|〈ψ, φi〉〈φi, φ〉|
(
ε

2 + ε

2c
2C2

)

≤ 1 + c2C2

2 ε.

The second but last inequality thereby used the Gårding inequality:

‖φi‖H1 ≤ C(‖φi‖+ ‖Dφi‖) = C(1 + |λi|).

It now remains to show that f(λ) = λ√
1+λ2 is subject to (7). Since the absolute value of

d
dλ
√

1 + λ2 = λ√
1+λ2 is bounded by 1∣∣∣√1 + λ2 −

√
1 + λ′2

∣∣∣ ≤ |λ′ − λ|,
and thus

|λ||f(λ′)− f(λ)| = |λ|
∣∣∣∣∣λ′
√

1 + λ2 − λ
√

1 + λ′2
√

1 + λ2
√

1 + λ′2

∣∣∣∣∣
≤ |λ||λ′|

∣∣∣√1 + λ2 −
√

1 + λ′2
∣∣∣

√
1 + λ2

√
1 + λ′2

+ |λ| |λ
′ − λ|√
1 + λ2

≤
∣∣∣√1 + λ2 −

√
1 + λ′2

∣∣∣+ |λ′ − λ|
≤ 2|λ′ − λ|.

Boundedness of d
dλf(λ) = (1 + λ2)−

3
2 by 1 implies

|f(λ′)− f(λ)| ≤ |λ′ − λ|.

Adding up those two inequalties, we obtain the required one:

|f(λ′)− f(λ)| ≤ 3
1 + |λ| |λ

′ − λ|.

Remark 2.23. The first step of the proof also shows that for g′0 ∈ R(M)

R(M) −→ B(H,L2(ΣCl(M, g′0)))
g 7→ Φ−1

g′0g
Φg
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is continuous, i.e. the Hilbert bundle structure defined on L2(M,ΣCl(M,−)) → R(M)
using g0 is independent of the choice of g0. Moreover, the continuity of this map ensures
that the α-invariant defined next does not depend on g0.

Definition 2.24. The map from Theorem 2.22 gives rise to the composition

α : πk(R+(M), g0) ∼= πk+1(R(M),R+(M), g0)→ [(Dk+1, Sk), (R(M),R+(M))]
→ [(Dk+1, Sk), (Fredn,0, Gn,0)] ∼= KO−n−k−1({∗})

called α-invariant.

The α-invariant allows to detect non-trivial homotopy groups in the space of metrics
of positive scalar curvature. The following two results of this kind were independently
obtained by different methods:

Theorem 2.25 (Crowley, Schick, Steimle [CSS18]). Let (M, g0) be a compact Rieman-
nian spin manifold of positive scalar curvature and n = dim(M) ≥ 6. For all k ≥ 0 with
k + n+ 1 ≡ 1, 2 mod 8, the α-invariant

α : πk(R+(M), g0) −→ KO−n−k−1({∗}) ∼= Z/2Z

is split surjective.

Theorem 2.26 (Botvinnik, Ebert, Randal-Williams [BER14]). Let (M, g0) be a compact
Riemannian spin manifold of positive scalar curvature and n = dim(M) ≥ 6. For all
k ≥ 0 with k + n+ 1 ≡ 1, 2 mod 8, the α-invariant

α : πk(R+(M), g0) −→ KO−n−k−1({∗}) ∼= Z/2Z

is surjective, and for all k ≥ 0 with k + n+ 1 ≡ 0, 4 mod 8, the localized α-invariant

α⊗ 1Q : πk(R+(M), g0)⊗Q −→ KO−n−k−1({∗})⊗Q ∼= Q

is surjective.

We will use these results to construct non-trivial homotopy groups in the space of initial
value pairs satisfying the dominant energy condition. The detection of these groups then
uses a kind of α-invariant for initial values that will be defined in the next chapter.
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3. An α-invariant for initial values

3.1. The Cln,1-linear hypersurface spinor bundle

In this section, we want to study the bundle obtained by restricting the Cln,1-linear
spinor bundle of a space- and time-oriented Lorentzian spin manifold (N, g) to a spacelike
hypersurface M ⊆ N . Especially, we want to describe it intrinsically, only in terms of
quantities ofM , the induced metric g and the second fundamental form. This will be use
later, when defining the α-invariant for initial values and comparing it to the classical
α-invariant.

The first step is to construct compatible spin structures on M and N . Fixing a spin
structure on (N, g), we obtain a spin structure on (M, g) by pulling back the one from
N :

PSpin(n)(M) PSpin0(n,1)(N)|M

PSO(n)(M) PSO0(n,1)(N)|M .

(8)

Thereby, the lower map is given by (e1, . . . , en) 7→ (e0, e1, . . . , en), where e0 is the future-
pointing unit normal on M . As the right-hand map is a double covering, so is the
left-hand one, and it suffices to construct a compatible Spin(n)-action. This, we obtain
by pulling back the action maps. More explicitly, there is a commutative diagram

PSpin(n)(M)× Spin(n) PSpin0(n,1)(N)|M × Spin0(n, 1)

PSO(n)(M)× SO(n) PSO0(n,1)(N)|M × SO0(n, 1).

(9)

and the desired map is the unique map from its upper-left corner to the upper-left
corner of (8) building, together with the other action maps, a commutative cube out
of (8) and (9). Note, that this commutative cube shows that PSpin(n)(M) is not only a
Spin(n)-reduction of PSO(n)(M) but also a reduction of PSpin0(n,1)(N)|M with respect to
the inclusion i : Spin(n) ↪→ Spin0(n, 1).

Next, we study associated bundles. The Cln,1-linear spinor bundle

ΣClN = PSpin0(n,1)(N)×` Cln,1

is defined via the representation induced by left multiplication on Cln,1:

` : Spin0(n, 1) ↪→ Cln,1 −→ End(Cln,1).
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As noted above, PSpin(n)(M) → PSpin0(n,1)(N)|M is a Spin(n)-reduction. Hence, from
the theory of principal bundles (e.g. [Bau14, Satz 2.18]), it follows that

ΣClN|M = PSpin0(n,1)(N)|M ×` Cln,1 ∼= PSpin(n)(M)×`i Cln,1, (10)

so the bundle ΣClN|M → M only depends on the Riemannian manifold (M, g) and its
chosen spin structure.
Definition 3.1. The bundle ΣClN|M from above is called Cln,1-linear hypersurface
spinor bundle and denoted by ΣClM .
Remark 3.2. Going a step futher, we can express ΣClM in terms of the Cln-linear
spinor bundle on M defined by ΣClM = PSpin(n)(M) ×`′ Cln (cf. Example 2.3) with `′
the left multiplication of Spin(n) on Cln. For this we note that

Spin(n) Spin0(n, 1)

End(Cln) End(Cln ⊗Cln Cln,1) End(Cln,1)

`′

i

`
−⊗Cln 1Cln,1 ∼

commutes and so

ΣClM ∼= PSpin(n)(M)×`i Cln,1
∼= (PSpin(n)(M)×`′ Cln)⊗Cln (PSpin(n)(M)×1Cln,1

Cln,1)
∼= ΣClM ⊗Cln Cln,1,

because the constant representation 1Cln,1 defines the trivial Cln,1-bundle. The last term
is to be understood in the way that Cln acts by right multiplication on ΣClM and by
left multiplication on Cln,1.

We need more structure on this bundle to be in the setting of the Fredholm model for
KO-theory. The structures we shall define and study in the remainder of this section
all arise in a similar way: We first define them on Cln,1 and then show that they are
Spin-invariant in the right way so that they generalize to the spinor bundle. They are:
The involution

α : Cln,1 −→ Cln,1

arising as the Cliffordization of the map Rn+1 → Rn+1, v 7→ −v, the left and the right
Clifford multiplication

L : Rn+1 −→ End(Cln,1)
R : Rn+1 −→ End(Cln,1)

as well as the (positive definite) scalar product

〈−,−〉 : Cln,1 × Cln,1 −→ R

defined by the requirement that the basis consisting of ei1ei2 · · · eik for 0 ≤ k ≤ n and
0 ≤ i1 < · · · < ik ≤ n is orthonormal.
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Lemma 3.3. The structures satisfy the following:

1. Both Clifford multiplications are grading reversing, i.e.

α ◦ L(X) = −L(X) ◦ α
α ◦R(X) = −R(X) ◦ α

for all X ∈ Rn+1.

2. Left and right Clifford multiplication commute.

3. The grading operator is self-adjoint with respect to 〈−,−〉.

4. The adjoints of the Clifford multiplications are given by

L(βe0 +X)∗ = L(βe0 −X) (11)
R(βe0 +X)∗ = R(βe0 −X)

for β ∈ R and X ∈ span{e1, . . . , en}.

Proof. The second part is immediate and all the other parts were covered in Example 2.2.

From the lemma it is clear that both α and R commute with the left Clifford multipli-
cation by elements in Spin0(n, 1). So we get an induced involution

α : ΣClM → ΣClM

and an induced right Clifford multiplication

R : Rn+1 → End(ΣClM).

As vectors in TN|M transform via Y 7→ σY σ−1 for σ ∈ Spin0(n, 1), L descends to a left
Clifford multiplication

L : TN|M → End(ΣClM).

For the scalar product, the situation is a bit more subtle. It follows from equa-
tion (11) that for n > 0 the scalar product is not Spin0(n, 1)-invariant (e.g. consider
e0(cosh(t)e0 + sinh(t)e1) ∈ Spin0(n, 1) for t 6= 0). However, it is Spin(n)-invariant, and
as PSpin0(n,1)(N)|M reduces to PSpin(n)(M) this is sufficient to get a well-defined scalar
product

〈−,−〉 : ΣClM ⊗ ΣClM → R.
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Remark 3.4. From the viewpoint of semi-Riemannian spin geometry, this scalar prod-
uct can be understood in the following way. As discussed in [Bau81], in the semi-
Riemannian case, the Spin-invariant non-degenerate symmetric bilinear forms on a rep-
resentation space are no longer positive definite in general. In our case, the bilinear form
〈e0 · −,−〉 on Cln,1 is Spin0(n, 1)-invariant, as can be seen with equation (11). So this
bilinear form extends to6

(−,−) : ΣClM ⊗ ΣClM → R.

Despite not being positive definite, this has the property that, if T is a timelike vector
field, then (T · −,−) is positive definite. In our situation, there is a canonical choice
of such a vector field: the future-pointing unit normal e0. The resulting scalar product
(e0 ·−,−) is precisely 〈−,−〉 constructed above. This is because e0 defines the reduction
to Spin(n).

The lemma above immediately implies

Lemma 3.5. The structures satisfy the following:

1. Both Clifford multiplications are grading reversing.

2. Left and right Clifford multiplication commute.

3. The grading operator is self-adjoint with respect to 〈−,−〉.

4. The adjoints of the Clifford multiplications are given by

L(βe0 +X)∗ = L(βe0 −X)
R(βe0 +X)∗ = R(βe0 −X)

for β ∈ R and X ∈ TM or X ∈ span{e1, . . . , en}, respectively.

In particular, α and R define a Cln,1-structure on the Hilbert space L2(M,ΣClM), where
the L2-scalar product is induced by 〈−,−〉. We can do even better:

Proposition 3.6. Setting

Ψ · en+1 := e0 · α(Ψ)

for all Ψ ∈ ΣClM , R extends to a Cln+1,1-multiplication

R̃ : Rn+2 → End(ΣClM).

that commutes with left multiplication by any X ∈ TM . Moreover, (L2(M,ΣClM), α, R̃)
is an ample Cln+1,1-Hilbert space.

6It even extends to a bilinear form on ΣClN .
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Proof. At first, we have to show that R̃(en+1) is skew-adjoint, anticommutes with α and
R̃(ei) for all i < n+ 1 and squares to −1. This is immediately checked:

R̃(en+1)∗ = (L(e0)α)∗ = α∗L(e0)∗ = αL(e0) = −L(e0)α = −R̃(en+1)
R̃(en+1)α = L(e0)αα = −αL(e0)α = −αR̃(en+1)

R̃(en+1)R(ei) = L(e0)αR(ei) = −R(ei)L(e0)α = −R(ei)R̃(en+1)
R̃(en+1)2 = L(e0)αL(e0)α = −L(e0)2α2 = −1

The left multiplication with a vector X ∈ TM commutes with R̃ as this is true for R and
L(X)L(e0)α − L(e0)αL(X) = (L(X)L(e0) + L(e0)L(X))α = −2g(X, e0)α = 0 because
e0 is a normal vector. Ampleness follows literally as in Example 2.7 replacing ΣClM by
ΣClM .

As a consequence of (10), the Cln,1-linear hypersurface spinor bundle possesses two natu-
ral connections: On the one hand, the Levi-Civita connection (N, g) induces a connection
∇ on PSpin0(n,1)N|M and ΣClM . On the other hand, as bundle associated to PSpin(n)M

the bundle ΣClM carries a connection∇ induced by the Levi-Civita connection of (M, g).
They are related by the Weingarten map (also known as shape operator):

Lemma 3.7. For all X ∈ TM and ψ ∈ Γ(ΣClM)

∇Xψ = ∇Xψ −
1
2e0 ·W (X) · ψ

holds, where W (X) = ∇Xe0 is the Weingarten map7.

Proof. Let ε̃ be a local section of PSpin(n)M , and (e1, . . . , en) its projection to PSO(n)M .
Writing a spinor locally as ψ = [ε̃, ψ̃] and using the local formula for the spinorial
connection, we perform the following local calculation:

∇Xψ −∇Xψ =

ε̃, ∂X ψ̃ + 1
2
∑

0≤i<j
εig(∇Xei, ej)ei · ej · ψ̃


−

ε̃, ∂X ψ̃ + 1
2
∑

1≤i<j
g(∇Xei, ej)ei · ej · ψ̃


=

ε̃, 1
2
∑
0<j

(−1)g(∇Xe0, ej)e0 · ej · ψ̃


= −1

2e0 ·W (X) · ψ.

7The sign of W is different than in Riemannian geometry. It is chosen such that for all X, Y ∈ T M ,
K(X, Y ) = −g(II(X, Y ), e0) = −g(∇XY, e0) = g(Y,∇Xe0) = g(Y, W (X)) holds, so W = K].
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The next question is, how these connections interact with the structures defined on
ΣClM .

Lemma 3.8. 1. The grading operator α is both ∇- and ∇-parallel.

2. For all v ∈ Rn+1, the right Clifford multiplication R(v) is both ∇- and ∇-parallel.

3. The left Clifford multiplication L : TN|M ⊗ΣClM → ΣClM is ∇-parallel. Both the
restricted left Clifford multiplication L : TM ⊗ ΣClM → ΣClM and the endomor-
phism L(e0) : ΣClM → ΣClM are ∇-parallel.

4. The scalar product 〈−,−〉 is ∇-parallel and satisfies

∂X〈φ, ψ〉 = 〈∇Xφ, ψ〉+ 〈φ,∇Xψ〉+ 〈e0 ·W (X) · φ, ψ〉

for all X ∈ TM , φ, ψ ∈ Γ(ΣClM).

Proof. Let X ∈ TpM and U ⊆M a neighborhood of p such that there is a local section
ε̃ ∈ Γ(PSpin0(n,1)N|U ) with ∇X ε̃ = 0. For any ψ ∈ Γ(ΣClM), we can write ψ|U = [ε̃, ψ̃]
with ψ̃ : U → Cln,1. As α and R(v) for v ∈ Rn+1 are induced by linear maps on Cln,1,

∇Xα(ψ) = [ε̃, ∂Xα(ψ̃)] = [ε̃, α(∂X ψ̃)] = α(∇̃Xψ)
∇XR(v)(ψ) = [ε̃, ∂X(ψ̃ · v)] = [ε̃, (∂X ψ̃) · v] = R(v)(∇̃Xψ)

hold. For Y ∈ Γ(TN|M ), we can write Y|U = [ε̃, Ỹ ] with Ỹ : U → Rn+1, as TN|M is
associated to PSpin0(n,1)N|M . Then

∇XL(Y )(ψ) = [ε̃, ∂X(Ỹ · ψ̃)] = [ε̃, (∂X Ỹ ) · ψ̃ + Ỹ · ∂X ψ̃] = L(∇XY )(ψ) + L(Y )(∇Xψ)

shows that L is ∇-parallel.

Using that ΣClM is associated to PSpin(n)M , a similar reasoning works for ∇ as well.
More concretely, we simply have to choose ε̃ ∈ Γ(PSpin(n)M|U ) with ∇X ε̃ = 0 and the
calculations are literally the same ones. Note, however, that the connection induced on
TN|M = TM ⊕Re0 by ∇ (as bundle associated to PSO(n)M , or PSpin(n)M) is the sum
of Levi-Civita connection on TM and the trivial connection8 on Re0, which gives the
third part.

8I.e. trivial with respect to the trivialization defined by e0. The reason, why e0 appears here, is that
this vector field was used to define the reduction to PSO(n)M .
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In the same way, we can prove the ∇-parallelism for 〈−,−〉: Writing φ ∈ Γ(ΣClM) as
φ|U = [ε̃, φ̃], we have

∂X〈φ, ψ〉 = ∂X〈φ̃, ψ̃〉
= 〈∂X φ̃, ψ̃〉+ 〈φ̃, ∂X ψ̃〉
= 〈[ε̃, ∂X φ̃], [ε̃, ψ̃]〉+ 〈[ε̃, φ̃], [ε̃, ∂X ψ̃]〉
= 〈∇Xφ, ψ〉+ 〈φ,∇Xψ〉.

This argument does not translate to the ∇-case as the pointwise scalar product 〈−,−〉
on Cln,1 is not Spin0(n, 1)-invariant in general. Yet, we can use the previous lemma to
obtain

∂X〈φ, ψ〉 = 〈∇Xφ, ψ〉+ 〈φ,∇Xψ〉
= 〈∇Xφ+ 1

2e0 ·W (X) · φ, ψ〉+ 〈φ,∇Xψ + 1
2e0 ·W (X) · ψ〉

= 〈∇Xφ, ψ〉+ 〈φ,∇Xψ〉+ 1
2〈e0 ·W (X) · φ, ψ〉+ 1

2〈(−W (X)) · e0 · φ, ψ〉
= 〈∇Xφ, ψ〉+ 〈φ,∇Xψ〉+ 〈e0 ·W (X) · φ, ψ〉.

In view of the Cln+1,1-structure defined on ΣClM , this lemma implies:

Corollary 3.9. R̃ : ΣClM ⊗Rn+2 −→ ΣClM is ∇-parallel.

In the following section we will use the connection ∇ to define the Dirac-Witten operator
and compare it to the Dirac operator defined in terms of ∇. The Dirac-Witten operator
will be used later to construct a kind of α-invariant for initial value pairs, and the
comparison results will be a key ingredient in the main theorem, where we relate both
kinds of α-invariant.
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3.2. The Cln,1-linear Dirac-Witten operator

As before, let M be a spacelike hypersurface of a space- and time-oriented Lorentzian
spin manifold (N, g). The Dirac-Witten operator is a kind of Dirac operator on the
hypersurface spinor bundle. In the case of classical spinor bundles, it was first defined
by Witten [Wit81] in order to give his spinorial proof of the positive mass theorem
and later studied in more detail by Hijazi and Zhang [HZ03]. We are interested in its
Cln,1-linear version and compare it to the Cln,1-linear Dirac operator:

Definition 3.10. The composition

D : Γ(ΣClM) ∇−→ Γ(T ∗M ⊗ ΣClM) ]⊗1−→ Γ(TM ⊗ ΣClM) L−→ Γ(ΣClM)

defines the Cln,1-linear Dirac-Witten operator. The composition (with ∇ replaced by
∇)

D : Γ(ΣClM) ∇−→ Γ(T ∗M ⊗ ΣClM) ]⊗1−→ Γ(TM ⊗ ΣClM) L−→ Γ(ΣClM)

is the Cln,1-linear Dirac operator.

The results of Lemmata 3.5 and 3.8 and Corollary 3.9 from before immediately imply
the following lemma, which justifies the names of these operators.

Lemma 3.11. D and D are both Cln,1-linear with respect to the right Clifford multipli-
cation R and odd with respect to α. Furthermore, D is Cln+1,1-linear with respect to the
extended right Clifford multiplication R̃.

Lemma 3.12. D = D − 1
2τL(e0) holds, where τ = trW = trK is the mean curvature

of M in N . Both D and D are formally self-adjoint.

Proof. For ψ ∈ Γ(ΣClM) and a local orthonormal frame e1, . . . , en we perform the
following local calculation:

Dψ −Dψ =
n∑
i=1

ei · (∇ei −∇ei)ψ

= −1
2

n∑
i=1

ei · e0 ·W (ei) · ψ

= 1
2

n∑
i,j=1

g(W (ei), ej)ei · ej · e0 · ψ

= −1
2

n∑
i=1

g(W (ei), ei)e0 · ψ

= −1
2τe0 · ψ.
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Here, we used that g(W (ei), ej) = K(ei, ej) is symmetric in i and j. Being a Dirac
operator, D is formally self-adjoint. As L(e0) is self-adjoint by Lemma 3.5, the same
holds true for D.

The utility of the Dirac-Witten operator to general relativity results from following
observation due to Witten [Wit81]:

Proposition 3.13. The Dirac-Witten operator satisfies the Schrödinger-Lichnerowicz
type formula

D
2 = ∇∗∇+ 1

2(ρ− L(e0)L(j])),

with

2ρ = scal +τ − ‖K‖2

j = −dτ + divK.

Proof. By the previous lemma, we have

D
2
ψ =

(
D − 1

2τL(e0)
)(

D − 1
2τL(e0)

)
ψ

= D2ψ − 1
2D(τe0 · ψ)− 1

2τe0 ·Dψ + 1
4τ

2ψ

= D2ψ + 1
2e0 · grad τ · ψ + 1

4τ
2ψ.

The last step of the calculation used that D(τe0 · ψ) = grad τ · e0 · ψ + τD(e0 · ψ) along
with the fact that D anti-commutes with L(e0) = R̃(en+1)α. Applying the Schrödinger-
Lichnerowicz formula for D2, we obtain

D
2
ψ = ∇∗∇ψ + 1

4 scalψ + 1
2e0 · grad τ · ψ + 1

4τ
2ψ. (12)

Next, we express ∇∗ in terms of ∇∗. Calculating point-wise,

〈e0 ·W (−) · φ,Ψ〉T ∗M⊗ΣClM
=

n∑
i=1
〈e0 ·W (ei) · φ,Ψ(ei)〉 =

n∑
i=1
〈φ, e0 ·W (ei) ·Ψ(ei)〉

holds for all p ∈M , φ ∈ ΣClN|p, Ψ ∈ T ∗pM⊗ΣClN|p and an orthonormal basis e1, . . . en ∈
TpM . Thus defining

W̃ : T ∗M ⊗ ΣClM
]⊗1−→ TM ⊗ ΣClM) W⊗1−→ TM ⊗ ΣClM

L−→ ΣClM,

the adjoint of ∇ is given by

∇∗ =
(
∇− 1

2L(e0)L(W (−))
)∗

= ∇∗ − 1
2L(e0)W̃ .
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Hence we get

∇∗∇ψ =
(
∇∗ − 1

2L(e0)W̃
)(
∇− 1

2L(e0)L(W (−))
)
ψ

= ∇∗∇ψ − 1
2∇
∗(e0 ·W (−) · ψ)− 1

2e0 · W̃ (∇ψ) + 1
4e0 · W̃ (e0 ·W (−) · ψ).

The last term can be calculated point-wise to be

1
4e0 · W̃ (e0 ·W (−) · ψ) = 1

4

n∑
i=1

e0 ·W (ei) · e0 ·W (ei) · ψ = 1
4

n∑
i=1
‖W (ei)‖2ψ = 1

4‖K‖
2ψ.

The middle two terms can be simplified using a local calculation, e1, . . . , en being a local
orthonormal frame:

∇∗(e0 ·W (−) · ψ) + e0 · W̃ (∇ψ)

= −
n∑
i=1

(∇ei(e0 ·W (−) · ψ))(ei) +
n∑
i=1

e0 ·W (ei) · ∇eiψ

= −
n∑
i=1

e0 · ((∇eiW )(ei) · ψ +W (ei) · ∇eiψ −W (ei) · ∇eiψ)

= −e0 · div(W ) · ψ.

So we find

∇∗∇ψ = ∇∗∇ψ + 1
2e0 · div(K)] · ψ + 1

4‖K‖
2ψ

and inserting this into (12), we obtain

D
2 = ∇∗∇ψ − 1

2e0 · div(K)] · ψ − 1
4‖K‖ψ + 1

4 scalψ + 1
2e0 · grad τ · ψ + 1

4τ
2ψ

= ∇∗∇+ 1
4(scal +τ2 − ‖K‖2)ψ − 1

2e0 · (div(K)− dτ)] · ψ

as claimed.

From now on, we assume that M is compact.

Corollary 3.14. If the pair (g,K) satisfies the strict dominant energy condition, i.e. if
ρ > ‖j‖, then D has empty kernel.

Proof. For any ψ ∈ Γ(ΣClM) with ψ 6≡ 0

‖Dψ‖2L2 = (ψ,DDψ) = ‖∇ψ‖2L2 + 1
2(ψ, ρψ)− 1

2(ψ, e0 · j] · ψ)

≥ 1
2(ψ, ρψ)− 1

2(ψ, ‖j‖ψ) = 1
2(ψ, (ρ− ‖j‖)ψ) > 0

holds as |〈ψ, e0 · j] · ψ〉| ≤ ‖j‖‖ψ‖2. Here, ‖ − ‖ (without subscript L2) denotes the
pointwise norm.
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Proposition 3.15. D and D extend to densely defined operators

D,D : L2(M,ΣClM) ⊇ H1(M,ΣClM)→ L2(M,ΣClM)

admitting a spectral decomposition with discrete spectrum and finite dimensional eigen-
spaces.

Proof. Recall that a generalized Dirac operator on a vector bundle Σ→M in the sense
of Roe [Roe99] is a formally self-adjoint operator D̃ with

D̃ = ∇∗∇+A

for a metric connection ∇ on Σ and some bounded operator A : L2(M,Σ)→ L2(M,Σ).
D is such an operator by (12) and D is by the Schrödiger-Lichnerowicz formula. Now
the proposition is just a special case of the corresponding statement for generalized Dirac
operators [Roe99, Thm 5.27].

Corollary 3.16. If n = dim(M) > 0 and H := L2(M,ΣClM), then there are well-
defined elements

F := D√
1 +D

2
∈ Fredn,1(H)

and

F := D√
1 +D2

∈ Fredn+1,1(H) ⊆ Fredn,1(H).

Furthermore, F is invertible if (g,K) satisfies the strict dominant energy condition and
F is invertible if g has positive scalar curvature.

Proof. H is ample as Cln+1,1-Hilbert space by Proposition 3.6 and any infinite dimen-
sional Cln+1,1-Hilbert space is ample as Cln,1-Hilbert space with the restricted Clifford
action. As D is odd and Cln,1-linear, so is F . From the proposition above, we see that
kerF = kerD is finite dimensional and that F | ker(F )⊥ : ker(F )⊥ → ker(F )⊥ is invert-
ible, so imF = ker(F )⊥ is closed and cokerF = kerF is finite dimensional. Thus F is a
Fredholm operator. The additional condition in the case n−1 ≡ −1 mod 4 follows as in
Example 2.10. Note that for the argument to work, n ≥ 3 is needed, which follows from
n > 0 and n − 1 ≡ −1 mod 4. Invertibility for (g,K) satisfying the strict dominant
energy condition follows from Corollary 3.14 and cokerF = kerF .

The argumentation for F is completely analogous. Invertibility here uses the classical
Schrödinger-Lichnerowicz formula as in Example 2.10.
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If the mean curvature τ is constant, we can relate the spectral decompositions of D and
D and refine the invertibility result.

Proposition 3.17. The spectral decomposition of D can be written as

D =
∞∑
k=0

λkπEk
+
∞∑
k=0

(−λk)πα(Ek)

where all λk > 0 are pairwise disjoint and πEk
and πα(Ek) are the orthogonal projections

on the finite dimensional subspaces Ek and α(Ek), respectively. If the mean curvature τ
is constant, then there are decompositions Fk ⊕ α(Fk) = Ek ⊕ α(Ek) for all k ≥ 0 and
K ⊕ α(K) = kerD such that the spectral decomposition of D is given by

D =
∞∑
k=0

√
λ2
k + 1

4τ
2 πFk

+
∞∑
k=0

(
−
√
λ2
k + 1

4τ
2

)
πα(Fk) + 1

2τπK −
1
2τπα(K)

In particular, D is invertible for all constants τ 6= 0.

Proof. As α anti-commutes with D, for any eigenvector φ to the eigenvalue λ

Dα(φ) = −α(Dφ) = −α(λφ) = −λα(φ).

So α(φ) is an eigenvector to the eigenvalue −λ. This implies that the spectral decompo-
sition can be written in the stated form. With the same argument, we also expect the
spectral decomposition of D to be of that form.

R̃ anti-commutes with D, so the eigenspaces are invariant under R̃(v) for all v ∈ Rn+2.
In particular,

α(Ek) = R̃(en+1)α(Ek) = L(e0)(Ek)

for all k ≥ 0. Thus we can identify Ek with α(Ek) via the map Ek → α(Ek), φ 7→
L(e0)(φ) and get Ek ⊕ α(Ek) ∼= Ek ⊕ Ek ∼= Ek ⊗ R2. Under this identification, by
Lemma 3.12, the restriction of the Dirac-Witten operator corresponds to

1Ek
⊗
(
λk −1

2τ
−1

2τ −λk

)
.

The characteristic polynomial of the 2×2-matrix is x2−λ2
k−

1
4τ

2, so it is diagonalizable
with eigenvalues ±

√
λ2
k + 1

4τ
2. This gives rise to a diagonalization of D|Ek⊕αEk

with the
same eigenvalues, and we call the positive eigenspace Fk.

Now, we turn our attention to kerD. As L(e0) = R̃(en+1)α anti-commutes with D,
L(e0) operates on kerD. This operation is self-adjoint and squares to 1kerD, so by the
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spectral theorem L(e0)| kerD is diagonalizable and its eigenvalues must be contained in
{1,−1}. Let K be the −1-eigenspace. Then α(K) is the 1-eigenspace. Due to

D| kerD = −1
2τL(e0)| kerD,

K and α(K) become the 1
2τ - and −

1
2τ -eigenspaces of D, respectively.

Remark 3.18. That D is invertible for constant mean curvature τ 6= 0, can also be
seen directly from the fact that D anti-commutes with L(e0): As L(e0)2 = 1,

D
2 =

(
D − 1

2τL(e0)
)2

= D2 + 1
4τ

2 1

and so cokerD = kerD = 0.

With this knowledge at hand, we can turn towards the definition of the α-invariant for
initial values, and prove the comparison result with the classical α-invariant. This will
be carried out in the remaining section.
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3.3. Comparing the α-invariants

Let M be a compact spin manifold of dimension n > 0 and (g0,K0) ∈ I+(M) an initial
value pair satisfying the strict dominant energy condition. The aim of this section is
to define an α-invariant-like map α : πk(I+(M), (g0,K0)) → KO−n−k({∗}). Then we
use the map from Proposition 1.13 to relate this to the classical α-invariant, which then
leads to a non-triviality result for πk(I+(M), (g0,K0)).

In analogy to the case of the classical α-invariant, we need to compare the spaces of
L2-sections of the hypersurface spinor bundles for different initial value pairs (g,K). In
fact, the Cln,1-linear hypersurface spinor bundle ΣCl(M, g) ∼= ΣCl(M, g)⊗Cln Cln,1 (cf.
Remark 3.2) depends the metric g only, K solely effects its connection ∇. So adopting
the notation from Section 2.2 there is a bundle map√

βP∇ ⊗ 1Cln,1 : ΣCl(M, g0)⊗Cln Cln,1 → ΣCl(M, g)⊗Cln Cln,1,

which induces

Φg : H := L2(M,ΣCl(M, g0))
∼=−→ L2(M,ΣCl(M, g)).

This allows to produce a continuous map from initial values to the space of Fredholm
operators.

Theorem 3.19. The map

(I(M), I+(M)) −→ (Fredn,1(H), Gn,1(H))

(g,K) 7−→ Φ−1
g ◦

D(g,K)√
1 +D

2
(g,K)

◦ Φg

is well-defined and continuous with respect to the C1-topology on the space of smooth
initial value pairs I(M). In particular, it is continuous if I(M) carries the C∞-topology.

Proof. The well-definedness follows from Corollary 3.16. For the continuity statement we
argue as in the proof of Theorem 2.22. The first and third step immediately carry over to
the current situation, and the second step provides us with a proof that Φ−1

g DgΦg → Dg0

in B(H1, L2)-topology if g → g0 in C1-topology. But as L(e0) commutes with P∇ and
thus with Φg, this implies that

Φ−1
g D(g,K)Φg = Φ−1

g DgΦg −
1
2 trg(K)Φ−1

g L(e0)Φg = Φ−1
g DgΦg −

1
2 trg(K)L(e0)

−→ Dg0 −
1
2 trg0(K0)L(e0) = D(g0,K0)

in B(H1, L2)-topology if (g,K) −→ (g0,K0) in C1-topology.
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Definition 3.20. The α-invariant for initial values is defined by the composition

α : πk(I+(M), (g0,K0)) ∼= πk+1(I(M), I+(M), (g0,K0))
→ [(Dk+1, Sk), (I(M), I+(M))]
→ [(Dk+1, Sk), (Fredn,1(H), Gn,1(H))] ∼= KOn−k({∗}).

Theorem 3.21 (Main Theorem). For g0 ∈ R+(M) and all k ≥ 0, the diagram

πk(R+(M), g0) πk+1(ΣR+(M), [g0, 0]) πk+1(I+(M), (g0, 0))

KOn−k−1({∗})
α

Σ Φ∗

α

commutes. Here, Σ is the suspension homomorphism and Φ is the map from Proposi-
tion 1.13.

Note that Φ is well-defined since the existence of g0 ∈ R+(M) implies n ≥ 2.

Proof. We begin by identifying H in terms of H := L2(M,ΣClM): By the first Morita
equivalence (Lemma 2.4), the Cln+1,1-Hilbert space H corresponds to the Cln,0-Hilbert
space H0 = ker(R̃(e0)R̃(en+1)− 1) = ker(R(e0)L(e0)α− 1) with the structure obtained
by restriction. R(e0)L(e0)α is induced by a map Cln+1 → Cln+1, which in turn is
induced by the endomorphism

Rn+1 −→ Rn+1

v 7−→ −e0ve0

reflecting at the hyperplane orthogonal to the line Re0. So the 1-eigenspace of the map
on Cln+1 is given by Cln ⊆ Cln+1 and the −1-eigenspace is R(e0)Cln ⊆ Cln+1, where
Cln is viewed as the subalgebra generated by e1, . . . , en. This implies that

H0 = L2(M, ker(R(e0)L(e0)α− 1)) = L2(M,PSpin(n)M ×` Cln) = H.

So H and H correspond to each other under the first Morita equivalence.

Let us now explore the effect of the composition

πk(R+(M), g0) Σ−→ πk+1(ΣR+(M), [g0, 0]) Φ∗−→ πk+1(I+(M), (g0, 0)).
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The claim is that

πk(R+(M), g0) πk+1(ΣR+(M), [g0, 0]) πk+1(I+(M), (g0, 0))

πk+1(R(M),R+(M), g0) πk+2(I(M), I+(M), (g0, 0))

[(Dk+1, Sk), (R(M),R+(M))] [(Dk+1, Sk)× (I, ∂I), (I(M), I+(M))]

Σ Φ∗

∼= ∼=

(13)
commutes, where the middle and the lower map are both induced by

φ : (R(M),R+(M))× (I, ∂I) −→ (I(M), I+(M))

(g, t) 7−→
(
g,
τ(g)
n

tg

)
.

Note that φ preserves the base point, if the base point of (Dk+1, Sk)× (I, ∂I) is chosen
to be (∗, 0) when ∗ is the base point of Sk, so the middle map is well-defined. The
lower square obviously commutes. For the upper square, we start with a class [g] ∈
πk(R+(M), g0). Then the preimage under the boundary isomorphism is represented by

g̃ : (Dk+1, Sk, ∗) −→ (R(M),R+(M), g0)
rx 7−→ (1− r)g0 + rg(x)

for r ∈ [0, 1] and x ∈ Sk. Applying the horizontal map and restricting to the boundary
yields the class of

(∂(Dk+1 × I), (∗, 0)) −→ (I+(M), (g0, 0))

(x, t) 7−→
(
g̃(x),−τ(g̃(x))

n
tg̃(x)

)
.

Using the homeomorphism

(ΣSk, [∗, 0]) ∼= (∂(Dk+1 × I), (∗, 0))

[x, t] 7→


(2(1 + t)x,−1) t ∈ [−1,−1

2 ]
(x, 2t) t ∈ [−1

2 ,
1
2 ]

(2(1− t)x, 1) t ∈ [1
2 , 1],

this precisely gives the formula for Φ ◦ Σg (cf. Proposition 1.13).
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The core of the proof is showing that the following diagram commutes:

[(Dk+1, Sk), (R(M),R+(M))] [(Dk+1, Sk)×(I, ∂I), (I(M), I+(M))]

[(Dk+1, Sk), (Fredn,0(H), Gn,0(H))] [(Dk+1, Sk)×(I, ∂I), (Fredn,1(H), Gn,1(H))]

[(Dk+1, Sk), (Fredn+1,1(H), Gn+1,1(H))].

∼= ∼=

(14)
The lower maps are the ones from Proposition 2.12 and Theorem 2.18, with e = −en+1.

Before doing so, let us show that

[(Dk+1, Sk)×(I, ∂I), (Fredn,1(H), Gn,1(H))]

[(Dk+1, Sk), (Fredn+1,1(H), Gn+1,1(H))]

[(Dk+1, Sk), (Fredn,0(H), Gn,0(H))] [(Dk+1, Sk)×(I, ∂I), (Fredn,1(H), Gn,1(H))]

[(Dk+1, Sk)×(I, ∂I), (Fredn−1,0(H), Gn−1,0(H))]

KO−n(Dk+1, Sk) KO−n+1((Dk+1, Sk)×(I, ∂I))

KO−n−k−1({∗})

∼=

∼=

∼=∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

(15)
commutes, where the maps forming the central diamond are the Bott maps associated
to e = en along with the maps induced by the Morita equivalences, and the topmost
right hand map is induced by a Cln,1-Hilbert space isomorphism to be defined later.
Notice that the right hand vertical composition is the index map, which follows from
the invariance of the index map under Cln,1-Hilbert space isomorphisms. So stitching
the diagrams (13)-(15) together, we obtain the diagram from the claim.

Looking at the proof of Theorem 2.16, we see that the lower half of (15) commutes by
definition of the index map. The middle diamond commutes as well, this is obvious from
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the way its constituting maps are defined. We are left with the upper triangle. Note
first that we are dealing with two different Cln,1-Hilbert space structures on H: Since
the map from the center upwards is the Bott map for e = −en+1, the Cln,1-structure is
the one obtained by forgetting the R̃(en+1)-action, whereas in the lower Hilbert space,
we forget the multiplication by en. These are connected by the Cln,1-Hilbert space
isomorphism

U : H −→ H

φ 7→ 1√
2
R̃(en+1)R̃(en + en+1).

Indeed, ι ∈ B(H) corresponds via U to ι = UιU−1, R̃(ei) to R̃(ei) for i < n and R̃(en)
to R̃(en+1). The right hand map in the triangle is defined to be the map inducd by
Fredn,1(H) 3 F 7→ UFU−1. As the analogous map on Fredn+1,1(H) is the identity, the
diagram relating the Bott maps gets the shape of a triangle rather than a square. Its
commutativity follows from

UR̃(−en+1)U−1 = 1
2R̃(en+1)R̃(en + en+1)R̃(−en+1)R̃(en + en+1)R̃(en+1)

= 1
2(R̃(en+1) + R̃(en) + R̃(en)− R̃(en+1)) = R̃(en).

It only remains prove that (14) commutes. The first two maps of the lower composition
map [g] ∈ [(Dk+1, Sk), (R(M),R+(M))] to the class of

(Dk+1, Sk) −→ (Fredn+1,1(H), Gn+1,1(H))

x 7−→ Φ−1
g(x)

Dg(x)√
1 +D2

g(x)

Φg(x).

This is because it restricts to the correct map on H = ker(R(e0)L(e0)α− 1) ⊆ H. The
remaining map sends it to the class of

(Dk+1, Sk)× (I, ∂I) −→ (Fredn,1(H), Gn,1(H))

(x, t) 7−→ Φ−1
g(x)

Dg(x)√
1 +D2

g(x)

Φg(x) − tR̃(en+1)α

= Φ−1
g(x)

 Dg(x)√
1 +D2

g(x)

− tL(e0)

Φg(x).

In contrast, the result of the upper composition is represented by

(Dk+1, Sk)× (I, ∂I) −→ (Fredn,1(H), Gn,1(H))

(x, t) 7−→ Φ−1
g(x)

D(g(x),K(x,t))√
1 +D

2
(g(x),K(x,t))

Φg(x)

with K(x, t) = τ(g(x))
n tg(x).
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Remembering that D(g,K) = Dg − 1
2τL(e0), these do not look too much different, and

we show that the following is a well-defined homotopy between them:

(Dk+1, Sk)×(I, ∂I)×[0, 1]→ (Fredn,1(H), Gn,1(H))

(x, t, s) 7→ Φ−1
g(x)

(
a(x,t,s)(Dg(x))Dg(x) − b(x,t,s)(Dg(x))tL(e0)

)
Φg(x)

for

a(x,t,s)(λ) = s√
1 + λ2

+ 1− s√
1 + λ2 + 1

4 t
2τ(g(x))

b(x,t,s)(λ) = s+
(1− s)1

2τ(g(x))√
1 + λ2 + 1

4 t
2τ(g(x))

.

As this operator family is obtained by linearly interpolating between two continuous
operator families, it is again continuous. So it remains to see that its target is indeed
(Fredn,1(H), Gn,1(H)). It is clear, that all the operators are bounded, self-adjoint, odd
and Cln,1-linear. To show that the operator F(x,t,s) associated to (x, t, s) is Fredholm, we
use the spectral decomposition of Dg(x) from Proposition 3.17: The restriction of F(x,t,s)
to Ek ⊕ α(Ek) ∼= Ek ⊗R2 is given by

1Ek
⊗
(
a(x,t,s)(λk)λk −b(x,t,s)(λk)t
−b(x,t,s)(λk)t −a(x,t,s)(λk)λk

)
.

This is diagonalizable with eigenvalues ±
√
a(x,t,s)(λk)2λ2

k + b(x,t,s)(λk)2t2. Note that due

to
√
a(x,t,s)(λk)2λ2

k + b(x,t,s)(λk)2t2 ≥ a(x,t,s)(λk)|λk| their absolute values, for any t ∈ I
and s ∈ [0, 1], are bounded away from zero by

λ0√
1 + λ2

0 + 1
4τ(g(x))

> 0,

where λ0 > 0 denotes the smallest positive eigenvalue of Dg(x). A similar consideration
as in Proposition 3.17 shows that F(x,t,s) restricted to ker(Dg(x)) is diagonalizable as
well, with eigenvalues ±b(x,t,s)(0)t. Putting this together, we find that F(x,t,s) has finite
dimensional kernel, co-kernel and closed image (for this, the boundedness away from
zero is needed). Furthermore, F(x,t,s) is invertible if Dg(x) is invertible or t > 0, one of
which is the case on ∂(Dk+1 × I).

In the case n − 1 ≡ −1 mod 4 one more tiny bit of thought is necessary. The space
self-adjoint Cln,1-linear Fredholm operators has three components (cf. [AS69]): Those
F for which ωn,1Fι is essentially positive, those for which it is essentially negative and
the rest. As for s = 0 (or s = 1) all operators F(x,t,s) fall into the last category, the same
has to be true for all s ∈ [0, 1] by continuity.
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Together with the non-triviality results for the classical α-invariant from Theorems 2.25
and 2.26, we obtain the following conclusions:

Corollary 3.22. If M is a closed spin manifold of dimension n ≥ 6 that carries a
metric g0 of positive scalar curvature, then for all k ≥ 1 with k + n ≡ 1, 2 mod 8 the
α-invariant for initial values α : πk(I+(M), (g0, 0)) → KO−n−k({∗}) ∼= Z/2Z is split
surjective.

Corollary 3.23. If M is a closed spin manifold of dimension n ≥ 6 that carries a
metric g0 of positive scalar curvature, then for all k ≥ 1 with k+n ≡ 1, 2 mod 8 the α-
invariant for initial values α : πk(I+(M), (g0, 0))→ KO−n−k({∗}) ∼= Z/2Z is surjective
and for all k ≥ 1 with k + n ≡ 0, 4 mod 8 the localized α-invariant for initial values
α⊗ 1Q : πk(I+(M), (g0, 0))⊗Q→ KOn−k({∗})⊗Q ∼= Q is surjective.

In particular, under the assumptions of the corollaries above, πk(I+(M), (g0, 0)) 6= 0.
Moreover, the main theorem provides an explicit construction of its non-trivial elements
provided that in πk−1(R+(M), g0) the non-trivial elements detected by the α-invariant
are known.
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A. On Ck-topologies

In this chapter, we will show that there is a well-defined notion of Ck-topology for
sections of a vector bundle E over a compact manifold M . Furthermore, we will prove
a criterion that allows us to check the continuity of a map

Ck(M,E) −→ C l(M,F )

by looking at local expressions, where F is another vector bundle overM . We start with
two definitions of a Ck-norm.

Definition A.1. Let (Ui)i∈I be an open cover by chart neighborhoods of M such that
E|Ui

is trivial for all i ∈ I. Let φi : Ui → Wi ⊆ Rm be corresponding charts and
Φi : E|Ui

→ Ui ×Rn be chosen trivializations. Furthermore, let (ψi)i∈I be a partition of
unity subordinate to (Ui)i∈I . Then we define the Ck-norm with respect to φ, Φ and ψ
of a section s ∈ Ck(M,E) by

‖s‖Ck :=
∑
i∈I
‖(ψis)|Ui

‖Ck(Ui) :=
∑
i∈I
‖ prRn ◦Φi ◦ (ψis) ◦ φ−1

i ‖Ck(Wi)

where ‖ − ‖Ck(Wi) denotes the usual Ck-norm on functions Rm ⊇Wi → Rn.

Definition A.2. Let g be a Riemannian metric on M , < −,− > be a bundle metric on
E and ∇ be a connection on E. Then we define the Ck-norm with respect to g, < −,− >
and ∇ of a section s ∈ Ck(M,E) by

‖s‖Ck :=
k∑
i=0

sup
p∈M
|∇is|p|

where | − | is the point-wise norm on T 0,iM ⊗ E induced by g and < −,− >.

These definitions depend on a number of choices. Nonetheless, as we will see, they define
equivalent norms and hence a unique notion of Ck-topology.

Lemma A.3. Let (ψi)i∈I be as in Definition A.1. Then there is an ε > 0 such that
Vi := {x ∈ Ui |ψi(x) > ε} ⊆ Ui define an open cover of M . Furthermore, all but finitely
many Vi’s are empty.

Proof. Due to local finiteness of a partition of unity, we can choose for any x ∈ M an
open neighborhood Vx such that {i ∈ I |Vx ∩ suppψi 6= ∅} is finite. Compactness of M
allows us to take a finite sub-cover (Vx)x∈J of (Vx)x∈M . This shows that {i ∈ I |ψi 6≡ 0} =⋃
x∈J {i ∈ I |Vx ∩ suppψi 6= ∅} is finite.
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Set N = #{i ∈ I |ψi 6≡ 0} and ε = 1
2N . Then, for every x ∈ M , there is an i ∈ I such

that x ∈ Vi = {x ∈ Ui |ψi(x) > ε} as otherwise

1 =
∑
i∈I

ψi(x) ≤
∑

{i∈I |x∈suppψi}

1
2N ≤ N

1
2N = 1

2 .

From the finiteness of {i ∈ I |ψi 6≡ 0} it immediately follows that almost all Vi’s are
empty.

Lemma A.4. Suppose we are in the setting of Definition A.1 and choose ε and Vi as
in the previous lemma. We equip

∏
i∈I C

k(Vi, E|Vi
) with the product norm (note that all

but finitely many factors are zero) of the norms ‖ − ‖Ck(Vi) defined in the same way as
the norm ‖ − ‖Ck(Ui). Denote by

∏′
i∈I C

k(Vi, E|Vi
) (notice the prime after the product

sign) the subspace defined by those families of sections that coincide on all intersections
Vi ∩ Vj. Then the vector space isomorphism

Ck(M,E) −→
∏
i∈I

′
Ck(Vi, E|Vi

)

s 7−→ (s|Vi
)i∈I

is continuous.

Proof. The argument is that, on Vi, ψi is bounded away from zero by definition. Hence,∥∥∥∥ 1
ψi|Vi

∥∥∥∥
Ck(Vi)

is bounded, and thus

∑
i∈I
‖s|Vi
‖Ck(Vi) =

∑
i∈I

∥∥∥∥∥ 1
ψi|Vi

(ψis)|Vi

∥∥∥∥∥
Ck(Vi)

≤
∑
i∈I

∥∥∥∥∥ 1
ψi|Vi

∥∥∥∥∥
Ck(Vi)

‖(ψis)|Vi
‖Ck(Vi)

≤ C
∑
i∈I
‖(ψis)|Vi

‖Ck(Vi) ≤ C
∑
i∈I
‖(ψis)|Ui

‖Ck(Ui) = C‖s‖Ck

for a constant C > 0 independent from s.

Remark A.5. By showing that Ck(M,E) and
∏′
i∈I C

k(Vi, E|Vi
) are Banach spaces, we

could conclude that the map above is a homeomorphism. Yet, we argue differently: We
will show that different choices of φ, Φ and ψ in Definition A.1 lead to equivalent norms.
Then we can assume that ‖ − ‖Ck is defined in terms of the restrictions of φi and Φi to
Vi and a partition of unity (ψi)i∈I subordinate to (Vi)i∈I . The estimate

‖s‖Ck =
∑
i∈I
‖(ψis)|Vi

‖Ck(Vi) ≤
∑
i∈I
‖ψi|Vi

‖Ck(Vi)‖s|Vi
‖Ck(Vi) ≤ C

∑
i∈I
‖s|Vi
‖Ck(Vi)

then shows the continuity of the inverse directly.
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Theorem A.6. The norms defined in Definitions A.1 and A.2 are equivalent. In par-
ticular, the induced topology, the Ck-topology, is independent of the choices made.

Proof. To begin, let φ : U → W be a chart, Φ: E|U → U ×Rn be a local trivialization,
∇ a connection on E and s ∈ Γ(U,E|U ) be a local section. We write Φ̃ = prRn ◦Φ. Then
we prove by induction on|α| ∈ N the following formula:

∂α(Φ̃ ◦ s ◦ φ−1) =
∑
l≤|α|

∑
i1,...,il∈{1,...,m}

Ci1···ilα · Φ̃ ◦ ∇ls
(

∂

∂φi1
, . . . ,

∂

∂φil

)
◦ φ−1), (16)

where Ci1···ilalpha ∈ Γ(W,Rn×n) for all l ≤ |α| and all i1, . . . , il ∈ {1, . . . ,m} .

The case k = 0 is trivial and the case k = 1 follows from

Φ̃ ◦ ∇is ◦ φ−1 = ∂xi(Φ̃ ◦ s ◦ φ−1) + Γi · Φ̃ ◦ s ◦ φ−1,

where Γi ∈ Γ(W,Rn×n) is a kind of Christoffel symbol for the chosen connection.

Assume now that the formula (16) holds for k ∈ N and that |α| = k + 1. Let i be the
smallest index such that αi 6= 0 and α′ be chosen such that ∂α = ∂xi∂

α′ . Then

∂α(Φ̃ ◦ s ◦ φ−1) =
∑
l≤|α′|

∑
i1,...,il∈{1,...,m}

∂xi

(
Ci1···ilα′ · Φ̃ ◦ ∇ls

(
∂

∂φi1
, . . . ,

∂

∂φil

)
◦ φ−1

)

=
∑
l≤|α′|

∑
i1,...,il

(∂xiC
i1···il
α′ ) · Φ̃ ◦ ∇ls

(
∂

∂φi1
, . . . ,

∂

∂φil

)
◦ φ−1

−
∑
l≤|α′|

∑
i1,...,il

Ci1···ilα′ · Γi · Φ̃ ◦ ∇ls
(

∂

∂φi1
, . . . ,

∂

∂φil

)
◦ φ−1

+
∑
l≤|α′|

∑
i1,...,il

Ci1···ilα′ · Φ̃ ◦ ∇l+1s

(
∂

∂φi
,
∂

∂φi1
, . . . ,

∂

∂φil

)
◦ φ−1

+
∑
l≤|α′|

∑
i1,...,il

l∑
a=1

m∑
j=1

ΓjiiaC
i1···il
α′ · Φ̃ ◦ ∇ls

(
∂

∂φ1 , . . . ,
∂

∂φj
, . . . ,

∂

∂φil

)
◦ φ−1,

where in the last term ∂
∂φj replaces ∂

∂φia and Γjiia is the Christoffel symbol of the Levi-
Civita connection. This is seen to be of the desired form.
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Having this formula at hand, we can show that the locally defined norm can be estimated
by the globally defined one:∑
i∈I
‖ψis‖Ck(Ui) ≤ C̃

∑
i∈I
‖s‖Ck(suppψi) = C̃

∑
i∈I

∑
|α|≤k

sup
x∈suppψi◦φi

‖∂αΦ̃i ◦ s ◦ φ(x)‖

≤ C̃
∑
i∈I

∑
|α|≤k

∑
l≤|α|

sup
p∈suppψi

∑
i1,...,il

∥∥∥∥∥Ci1···ilα · Φ̃i ◦ ∇ls
(

∂

∂φi1
, . . . ,

∂

∂φil

)
|p

∥∥∥∥∥
≤ Ĉ

∑
i∈I

∑
l≤k

sup
p∈suppψi

∑
i1,...,il

∥∥∥∥∥Φ̃i ◦ ∇ls
(

∂

∂φi1
, . . . ,

∂

∂φil

)
|p

∥∥∥∥∥
≤ C

∑
i∈I

∑
l≤k

sup
p∈suppψi

√
< ∇ls|p,∇ls|p >

≤ C #{i ∈ I |ψi 6≡ 0}
∑
l≤k

sup
p∈M

√
< ∇ls|p,∇ls|p >.

Here we used in the second but last inequality that all norms on a finite dimensional
space are equivalent and that, furthermore, there is a uniform estimate if the families of
norms on (Ep)p∈suppψi

are continuous.

For the opposite direction, we argue analogously. First, by a similar inductive argument
as in the beginning, we get for all i1, . . . , il ∈ {1, . . . ,m} the formula

Φ̃ ◦ ∇ls
(

∂

∂φi1
, . . . ,

∂

∂φil

)
◦ φ =

∑
|α|≤l

Cαi1···il · ∂
α
x (Φ̃ ◦ s ◦ φ−1),

where Cαi1···il ∈ Γ(W,Rn×n) for all |α| ≤ l.

Then, we can establish the estimate∑
l≤k

sup
p∈M

√
< ∇ls|p,∇ls|p > ≤

∑
i∈I

∑
l≤k

sup
p∈Vi

√
< ∇ls|p,∇ls|p >

≤ C̃
∑
i∈I

∑
l≤k

sup
p∈Vi

∑
i1,...,il

∥∥∥∥∥Φ̃i ◦ ∇ls
(

∂

∂φi1
, . . . ,

∂

∂φil

)
|p

∥∥∥∥∥
≤ C̃

∑
i∈I

∑
l≤k

∑
i1,...,il

∑
|α|≤l

sup
x∈φ−1

i (Vi)

∥∥∥Cαi1···il · ∂αΦ̃i ◦ s ◦ φ(x)
∥∥∥

≤ C
∑
i∈I

∑
|α|≤k

sup
x∈φ−1

i (Vi)

∥∥∥∂αΦ̃i ◦ s ◦ φ(x)
∥∥∥ = C

∑
i∈I
‖s|Vi
‖Ck(Vi).

Here Vi is defined as assumed in Lemma A.4. Using the statement of this lemma, we
get the desired result.
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Theorem A.7. Let F be another vector bundle over M and D : Ck(M,E)→ C l(M,F )
a local operator. If there is an atlas of charts φi : Ui → Wi such that E|Ui

and F|Ui
can

be trivialized and the local expressions D|Ui
: Ck(Ui, E|Ui

)→ C l(Ui, F|Ui
) are continuous

for all i ∈ I, then D : Ck(M,E)→ C l(M,F ) is continuous.

Proof. We define Vi as in Lemma A.4 and look at the decomposition

D : Ck(M,E)→
∏
i∈I

′
Ck(Vi, E|Vi

)
(D|Vi

)i∈I−→
∏
i∈I

′
C l(Vi, F|Vi

)→ C l(M,F ).

The first map is continuous by Lemma A.4, the last one by Remark A.5. The middle
map is well-defined (i.e. lands in the primed product) by the locality condition. As
φ−1
i (Vi) = (ψi ◦ φi)−1((ε,∞)) ⊆ Wi can be assumed to have a smooth boundary (by

slightly varying ε and Sard’s theorem), the theory of function spaces on Rn implies that
there exists a continuous extension operator Ck(Vi, E|Vi

)→ Ck(Ui, E|Ui
). The continuity

of D|Ui
implies the continuity of the middle map, since it is given by

D|Vi
: Ck(Vi, E|Vi

)→ Ck(Ui, E|Ui
)
D|Ui−→ C l(Ui, F|Ui

)→ C l(Vi, F|Vi
).
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