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Abstract. Understanding uncertainties and sensitivities of
projected ecosystem dynamics under environmental change
is of immense value for research and climate change policy.
Here, we analyze sensitivities (change in model outputs per
unit change in inputs) and uncertainties (changes in model
outputs scaled to uncertainty in inputs) of vegetation dynam-
ics under climate change, projected by a state-of-the-art dy-
namic vegetation model (LPJ-GUESS v4.0) across European
forests (the species Picea abies, Fagus sylvatica and Pinus
sylvestris), considering uncertainties of both model parame-
ters and environmental drivers. We find that projected forest
carbon fluxes are most sensitive to photosynthesis-, water-,
and mortality-related parameters, while predictive uncertain-
ties are dominantly induced by environmental drivers and
parameters related to water and mortality. The importance
of environmental drivers for predictive uncertainty increases
with increasing temperature. Moreover, most of the inter-
actions of model inputs (environmental drivers and param-
eters) are between environmental drivers themselves or be-
tween parameters and environmental drivers. In conclusion,
our study highlights the importance of environmental drivers
not only as contributors to predictive uncertainty in their own
right but also as modifiers of sensitivities and thus uncertain-
ties in other ecosystem processes. Reducing uncertainty in
mortality-related processes and accounting for environmen-

tal influence on processes should therefore be a focus in fur-
ther model development.

1 Introduction

Terrestrial ecosystem models have emerged in the last 3
decades as a central tool for decision making and basic re-
search on vegetation ecosystems (Cramer et al., 2001; Fisher
et al., 2018; IPCC, 2014; Smith et al., 2001; Snell et al.,
2014). Projections from different vegetation models, how-
ever, often disagree on important details, for example regard-
ing the observable past (Bastos et al., 2020) or the future
carbon uptake of forest ecosystems (Huntzinger et al., 2017;
Krause et al., 2019). Among the possible reasons for such
differences is the uncertainty in climate scenarios (Saraiva
et al., 2019), model structural uncertainty (Bugmann et al.,
2019; Oberpriller et al., 2021a; Prestele et al., 2016), ini-
tial condition uncertainty (Dietze, 2017b), and uncertainty
about the model parametrization (Grimm, 2005), which in
turn make models’ projections themselves uncertain (Dietze,
2017a). It is widely appreciated that understanding which
exact factors drive these uncertainties is of immense value
for directing research (Tomlin, 2013) and also for interpret-
ing and understanding projections (Dietze et al., 2018). For
example, the IPCC started in its Fifth Assessment Report
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to systematically analyze uncertainties and attribute them to
model inputs (IPCC, 2014) similar to other predictive sci-
ences (e.g., nuclear reactor safety (Chauliac et al., 2011), en-
ergy assessment for buildings (Tian et al., 2018), or policy
analysis (Maxim and van der Sluijs, 2011).

The two main tools to understand how uncertainties in
model inputs (drivers, parameters, and model structure) af-
fect model outputs are sensitivity analysis (SA) and uncer-
tainty analysis (UA) (Cariboni et al., 2007; Caswell, 2019;
Saltelli, 2002; Saltelli et al., 2008). The key difference be-
tween these two methods is that in a UA the central starting
point is the quantification of uncertainty in the model inputs
(e.g., parameters, typically determined via expert elicitations
and previous studies Matott et al., 2009). This uncertainty is
then propagated to the model outputs and back-attributed to
the different inputs. An SA, on the other hand, calculates how
the model output changes per unit or percentage of change
in the respective input (Jørgensen and Bendoricchio, 2001).
This calculation is primarily independent of the inputs’ un-
certainties, although local SAs can be affected by the refer-
ence point, and global SAs can be affected by the range over
which the sensitivity is calculated. Overall, however, both
methods share the goal of identifying inputs with a high in-
fluence on model outputs, with the underlying idea that better
constraining these will increase robustness and reliability of
model projections (Balaman, 2019).

Although the benefits for understanding model behavior
and predictive uncertainties are obvious, relatively few SAs
and UAs have been applied to complex ecosystem mod-
els and especially the widely used dynamic global vegeta-
tion models (DGVMs) that project terrestrial ecosystem re-
sponses to climate change or land management (see, e.g.,
Courbaud et al., 2015; Cui et al., 2019; Huber et al., 2018;
Reyer et al., 2016; Tian et al., 2014; Wang et al., 2013).
A reason for this is arguably the complex structure of most
DGVMs (Fer et al., 2018), which makes SAs and UAs com-
putationally demanding and difficult to interpret, especially
when performing state-of-the-art global SAs and UAs that
compute sensitivities and uncertainties across the entire pa-
rameter space (Saltelli et al., 2008) rather than just locally
around a reference parameter set (see, e.g., Hamby, 1994).
Moreover, several studies highlight that sensitivities and un-
certainties of DGVMs also exist with respect to environmen-
tal drivers (Barman et al., 2014; Wu et al., 2017, 2018), espe-
cially solar radiation (Barman et al., 2014; Wu et al., 2018),
temperature (Barman et al., 2014), and precipitation (Wu et
al., 2017), and it is reasonable to expect that there can be
interactions between parameter and environmental sensitiv-
ities, meaning that certain parameters are more sensitive in
some environments than in others. It therefore seems impor-
tant to investigate parametric sensitivities in conjunction with
their environmental sensitivities in one combined analysis.

In this study, we concentrate on a well-established and
widely applied DGVM, the Lund–Potsdam–Jena General
Ecosystem Simulator (LPJ-GUESS) (Gerten et al., 2004;

Sitch et al., 2003; Smith et al., 2001). Three previous SAs
or UAs for the LPJ family identified the intrinsic quantum
efficiency of CO2 uptake (alpha_C3) and the photosynthe-
sis scaling parameter (from leaf to canopy) (alpha_a) as the
main contributors of sensitivity for net primary production
(NPP) (about 50 %–60 % of the overall sensitivity, Zaehle
et al., 2005; Pappas et al., 2013) or foliage projective cover
(Jiang et al., 2012). Additionally, these previous studies show
that LPJ-GUESS projections of NPP and vegetation carbon
pools showed high sensitivity to tree-structure-related (sap-
wood to heartwood turnover rate, longevity of trees; Pappas
et al., 2013; Wramneby et al., 2008; Zaehle et al., 2005),
establishment-related (maximum sapling establishment rate,
minimum forest floor photosynthetically active radiation for
tree establishment; Jiang et al., 2012; Wramneby et al., 2008;
Zaehle et al., 2005), mortality-related (threshold for growth
suppression mortality; Pappas et al., 2013) and water-related
parameters (minimum canopy conductance not associated
with photosynthesis, maximum daily transpiration; Pappas
et al., 2013; Zaehle et al., 2005). Regarding uncertainties,
strong impacts on LPJ-GUESS projections of NPP and veg-
etation carbon pools (FPC in Jiang et al., 2012) were found
for photosynthesis-related parameters (Jiang et al., 2012; Za-
ehle et al., 2005) but also for water-related (minimum canopy
conductance not associated with photosynthesis; Zaehle et
al., 2005) and structure-related parameters (tree leaf to sap-
wood area ratio, crown area to height function Jiang et al.,
2012), whereas soil hydrology parameters were not identi-
fied as very sensitive in earlier studies (Pappas et al., 2013).

Since the publication of these studies, however, the struc-
ture of the LPJ-GUESS model changed substantially. The
most important changes are the inclusion of the nitrogen cy-
cle (Smith et al., 2014) and new management modules (Lin-
deskog et al., 2021). Since these changes, no study has sys-
tematically examined how model sensitivities and uncertain-
ties were affected by the new model structure. Moreover, pre-
vious SAs and UAs ignored management parameters, which
are expected to have large impacts on carbon pools and fluxes
(Lindeskog et al., 2021).

A further limitation of most previous studies for LPJ-
GUESS and other models (e.g., Mäkelä et al., 2020) is that
they either analyzed sensitivities and uncertainties to param-
eter changes or changes in the environmental drivers (but not
both). As discussed earlier, however, there are good reasons
to expect that the sensitivity of parameters will change if en-
vironmental drivers change. Given that previous sensitivity
analyses used different choices for these boundary conditions
(different sensitivities for the climate scenarios and sites in
Jiang et al., 2012; for different elevations in Pappas et al.,
2013; different sites in Wramneby et al., 2008), this not only
limits the comparability between studies but also questions
the generality of the results for all climatic conditions. Only
Jiang et al. (2012) combined parameter and driver sensitivi-
ties but used for the latter only a number of fixed climate sce-
narios instead of a range of possible values, which prohibits
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a systematic joint analysis. Moreover, it would be interesting
to compare the relative importance of drivers and parame-
ters for the predictive uncertainty of model simulations and
how these change between environmental zones (here we use
the classification of Metzger et al., 2005) and thus on an en-
vironmental gradient. When sensitivities or uncertainties of
parameters belonging to a specific process increase on an en-
vironmental gradient, this indicates that the process itself be-
comes more important on the gradient (Saltelli, 2002). By
comparing such changes to existing ecological hypotheses,
we can test if model sensitivities and thus process descrip-
tions are in line with ecological expectations.

To answer these questions, we analyzed sensitivities and
uncertainties in LPJ-GUESS for 200 randomly distributed
sites across Europe (see Appendix A1.1). We address the
issue of interactions between environmental and parametric
sensitivities by simultaneously investigating uncertainty in
environmental drivers (precipitation, temperature, solar ra-
diation, CO2, and nitrogen deposition) with parametric un-
certainty in the most important processes (photosynthesis,
establishment, nitrogen, water cycle, mortality, disturbance
and management, and growth) for dynamic climate change
from 2001–2100 and steady climate from 2100–2200. We
simulated the most abundant tree species in Europe (Fagus
sylvatica Pinus sylvestris, and Picea abies) individually and
in mixed stands, as these species are suffering from climate
change (e.g., Buras et al., 2018; Walentowski et al., 2017)
and could benefit from mixed stands (e.g., Pretzsch et al.,
2015). To test climate change impacts, we randomly sam-
pled climate projections within the boundaries of RCP2.6
and RCP8.5. Thereby, our key objectives were to understand
the sensitivities and uncertainties of LPJ-GUESS due to envi-
ronmental drivers and parameters. We were especially inter-
ested in (1) overall sensitivities and uncertainties across Eu-
ropean forests, (2) uncertainties per environmental zone, and
(3) uncertainties on a temperature gradient. Moreover, we in-
vestigated (4) if and how environmental conditions change
the uncertainties of environmental processes.

2 Methods and material

2.1 The LPJ-GUESS vegetation model

LPJ-GUESS is a process-based ecosystem model that simu-
lates vegetation growth, vegetation dynamics, biogeography,
and biogeochemical (e.g., nitrogen and carbon) and water cy-
cles (Lindeskog et al., 2013; Olin et al., 2015; Smith et al.,
2014). Ecosystem dynamic processes in the model include
establishment; growth; mortality; and competition for light,
space, and soil resources. To simulate these processes, the
model combines time steps on different scales from daily
(e.g., phenological and photosynthesis processes) to yearly
(e.g., allocation of net primary production to tree carbon
components). LPJ-GUESS includes forest gap dynamics suc-

cession of cohorts (each represented by an average individ-
ual) of different plant functional types (PFTs) or species.
Each PFT and species has a unique parameter set.

In this study, we use a model version that was slightly
modified from Lindeskog et al. (2021), which is based on
the LPJ-GUESS 4.0 version, with a re-parameterization for
spruce (Picea abies), pine (Pinus sylvestris), and beech (Fa-
gus sylvatica) (see Appendix A1.2 for Pin. syl. and Pic. abi.).
To account for the stochastic components of establishment,
mortality, and patch-destroying disturbances, LPJ-GUESS
simulates several replicate patches (25 for the simulation
with the reference parametrization and 1 for each simula-
tion in the SA and UA) representing “snapshots” of the grid
cell. In this model version, fire is based on the BLAZE model
(Rabin et al., 2017). Thus, annually burned area is generated
based on fire weather and fuel continuity and distributed to
monthly intervals based on climatology (Giglio et al., 2010).
Tree mortality is then estimated by computing fire lines based
on weather and is converted into height-dependent survival
probabilities (see Haverd et al., 2014) depending on empiri-
cal biome-specific parameters.

A first set of key parameters from our expert elicitation
(see below) for establishment are the bioclimatic limits (i.e.,
minimum growing degree days (gdd5min_est), minimum 20-
year coldest month (tcmin_est), maximum 20-year coldest
month (tcmax_est), and minimum forest photoactive radia-
tion at forest floor (parff_min)), which build the environmen-
tal envelope for establishment. Given that the bioclimatic
limits are fulfilled, at regular intervals new PFTs are estab-
lished (here 1 year) given enough space, light, soil, water,
and photoactive radiation are all available for establishment
at the forest floor (Smith et al., 2001). Moreover, each of our
three investigated species has a maximum establishment rate
(est_max) (Smith et al., 2001).

The structure of trees in the model is mainly linked to the
simulated growth of trees, which is triggered by allocating
all net primary production (NPP) besides a reproduction debt
of 10 % (reprfrac) to tree components, thereby satisfying the
mechanical balance, e.g., the allometric equation for the rela-
tionship between height and diameter with allometric param-
eters (k_allom2, k_allom3; e.g., Huang et al., 1992), the rela-
tionship between tree leaf to sapwood area (k_latosa; e.g.,
Robichaud and Methven, 1992), the relationship between
crown area and height (k_rp or packing constraint; Zeide,
1993), the maximum crown area (crownarea_max), and leaf
longevity (leaflong), and functional balance, as well as de-
mographic constraints (Sitch et al., 2003). Each living tissue
is assigned a turnover rate transferring sapwood into heart-
wood (turnover_sap) and leaves (turnover_leaf) and fine
roots (turnover_root) to litter. Investment into aboveground
and belowground growth is influenced by the resource stress
as individuals are competing for light, space, nitrogen, and
water. Competition for light is determined by the photosyn-
thetic response and light extinction in the canopy. Compe-
tition for space (self-thinning) is represented in the model
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via allometric equations between crown area and stem diam-
eter (Sitch et al., 2003). Competition for nitrogen and wa-
ter is determined by individual tree demand for nitrogen and
water, soil availability of nitrogen and water, and the PFT-
specific root profile. Competition between species will favor
certain life history strategies in particular situations, for ex-
ample shade-tolerant (e.g., Fagus sylvatica and Picea abies)
or intermediate-shade-tolerant (e.g., Pinus sylvestris) growth
responses and dynamically changing root-to-shoot ratios.

Tree mortality (natural or via harvest) in the model re-
sponds to growth efficiency (ratio of annual NPP to leaf
area) being too low over a 5-year period, e.g., due to
light competition, maximum longevity of a PFT, or changes
in environmental conditions (e.g., tolerance to drought
(drought_tolerance) changes water uptake) exceeding the
species suitable range. Light competition is modeled us-
ing the foliage projective cover (FPC), defined as the area
of ground with foliage directly above it using Beer’s Law
(Smith et al., 2011). The resulting shading mortality is dis-
tributed proportional to species’ FPC growth in the respec-
tive year due to their biomass increase. Mortality is mod-
eled inversely proportional to the growth efficiency (with
a given species-specific threshold (greff_min), e.g., War-
ing, 1983). Moreover, negative NPP of a species kills all
individuals of the respective cohort. Background mortality
probability increases with tree age, reaching 1 at the max-
imum longevity (longevity). Mortality has also a stochas-
tic component. Natural disturbances are implemented in the
model as process-based wildfires (with a given fire resis-
tance for each species (fireresist)) and as patch-destroying
disturbances (e.g., windthrow and landslides) with the same
yearly occurrence probability for all patches (inverse of dis-
tinterval). Additional mortality arises from forest manage-
ment activities, determined by thinning intensity (percent-
age of all trees cut, thinning_intensity) and cutting intervals
(cut_interval), which can be set for each species individually.
For a more detailed description of the management module
and the additional management parameters, see Lindeskog et
al. (2021).

Nitrogen input is implemented in the model through nitro-
gen deposition (prescribed) and biological nitrogen fixation.
The latter is simulated empirically as a linear function with
intercept (nfix_a) and slope (nfix_b) of the 5-year-averaged
actual evapotranspiration (Cleveland et al., 1999). The result-
ing amount of nitrogen accumulates in the ecosystem equally
over the year and directly adds to the available mineral soil
nitrogen pool. When nitrogen is in living tissue, a fraction
(nrelocfrac) is re-translocated before leaf and root shedding.

Photosynthesis is modeled as a function of absorbed pho-
tosynthetically active radiation, temperature (optimum tem-
perature range for photosynthesis determined by pstemp_low
and pstemp_high, Larcher, 1983), intercellular CO2 (i.e.,
non-water stressed ratio of intercellular to ambient CO2
(lambda_max)), and canopy conductance, and thus it con-
siders species-specific respiration coefficients (respcoeff)

(Smith et al., 2001) and nitrogen availability. The photosyn-
thesis scheme is a modified version of the Farquhar photo-
synthesis model, but instead of prescribed values for the Ru-
BisCO capacity it is optimized for maximum net CO2 assim-
ilation at the canopy level (Smith et al., 2014).

Water availability for plants is based on precipitation and
snowmelt in the two-layer soil hydrology submodule (for de-
tails, see Hickler et al., 2004; Smith et al., 2001). Vegeta-
tion transpiration and evaporation (with a maximum evap-
otranspiration rate (emax)) from bare ground and leaves
both reduce water availability and runoff from saturated soil
(Sitch et al., 2003). Water vapor exchange by the vegetation
canopy is calculated on a daily basis within the photosyn-
thesis scheme (e.g., minimum canopy conductance not as-
sociated with photosynthesis (gmin)). The water supply and
transpiration demand are calculated on a daily basis and con-
verted into a drought stress coefficient. Given this coefficient,
the investment in roots at the costs of leaves is calculated.

2.2 Simulation setup

We selected 200 study sites (see Appendix A1.1) spatially
and environmentally stratified over Europe by applying ran-
dom stratified sampling (using the R package splitstack-
shape, Mahto, 2019) with longitudinal and latitudinal coor-
dinates and mean precipitation, solar radiation, and tempera-
ture as categories based on IPSL-CM5 Earth System Model
CMIP5 (Dufresne et al., 2013) climate data. We chose 200
sites as a compromise between the high computational de-
mand of running LPJ-GUESS multiple times for all sites
and a good spatial and environmental coverage of Europe.
For these sites, we performed simulations for each of the
three most common species in Europe (Fagus sylvatica, Pi-
nus sylvestris, and Picea abies) as monospecific stands and
additionally all three species together as mixed stands.

The simulation period was from 1861 to 2199. To start
the simulations with equilibrium carbon pools and fluxes,
we spun up LPJ-GUESS vegetation and soil carbon and ni-
trogen pools to pre-industrial equilibrium by recycling the
1861 to 1900 climate, the 1861 CO2 concentration (Mein-
shausen et al., 2011), and nitrogen deposition. For the tran-
sient and future simulation runs, we used the bias-corrected
monthly IPSL-CM5 Earth System Model CMIP5 (Dufresne
et al., 2013). From this data set, we extracted temperature,
precipitation, number of wet days per month, and incom-
ing solar radiation from 1861 to 2099 for RCP4.5 as base
scenario and RCP2.6 (RCP8.5) as lower (upper) boundaries
for the climate ranges (see below). In addition to these data,
monthly nitrogen deposition was extracted from Lamarque
et al. (2013), and soil texture data was taken from Bat-
jes (2005). All of these driving data have a spatial resolution
of 0.5◦× 0.5◦. We recycled detrended data from 2090–2099
for all environmental drivers except CO2 and nitrogen de-
position and used these as potential stable climates for the
2100–2199 period.
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2.3 Selection of parameters and drivers and their
ranges

The a priori selection of the most influential parameters that
can be specified in the parameter file and their ranges was
based on our expert knowledge (following the SHELF ex-
pert elicitation protocol; see Gosling, 2018) and a literature
review. The resulting 11 (33 %) parameters common for all
species and 22 (20 %) species-specific parameters (see Ta-
ble 1) were grouped to the specific processes they contribute
most to (Table 1, Grouping).

From the environmental drivers of the model, we selected
incoming solar radiation, temperature, precipitation, atmo-
spheric CO2, and nitrogen deposition for our analysis. To
obtain uncertainties for temperature, precipitation, and so-
lar radiation, we calculated the mean deviations of RCP8.5
(RCP2.6) to our base scenario RCP4.5 plus (minus) 1 stan-
dard deviation as maximal (minimal) values per site. As
the CO2 data are global and not site specific, we calcu-
lated ranges from the global data set (RCP2.6 as minimum,
RCP8.5 as maximum) averaged over time and plus or mi-
nus a standard deviation. For nitrogen deposition, we used
RCP6.0 as the maximum value and RCP2.6 as the minimum
value with the same procedure as for the other drivers.

2.4 Sensitivity analysis and uncertainty analysis

LPJ-GUESS predicts a substantial number of output vari-
ables, which could all be examined regarding their sensitiv-
ities and uncertainties. Here, we concentrate on carbon out-
puts (gross primary production, GPP; total standing biomass,
TSB; and net biome productivity, NBP) because of forests’
role for carbon cycling (Bonan, 2008), their large contribu-
tion to the land carbon sink (Pugh et al., 2019), and the eco-
nomic importance of tree growth for forest owners (Pearce,
2001).

Sensitivities and uncertainties were calculated by Monte
Carlo sampling from the assumed multivariate parameter and
climate uncertainty. For the monospecific and mixed simula-
tions, we randomly drew 10 000 and 50 000 parameter and
climate combinations, respectively, randomly from the pre-
specified uncertainty ranges and ran the model based on these
combinations for each of the 200 sites. For the mixed simula-
tions we individually drew parameter combinations for each
species for each simulation, meaning that the same parameter
could be different for different species. In total, this means
that 16 million (200× (50000+ 3× 10.000)) LPJ-GUESS
simulations were run.

We quantified sensitivity and uncertainty indices by run-
ning multiple linear regressions with the model output aver-
aged over time as a response and parameters and drivers, as
well as their second-order interactions, as predictors. With
200 sites, each having three monospecific and one mixed
stand setup, we ran 200× (3+ 1)= 800 linear regressions
overall. This analysis corresponds to a global SA and UA in

the context of regression analysis and has been applied to
other system models (e.g., Sobie, 2009). The estimated ef-
fects from the regression can be interpreted as sensitivities,
as the effect of a unit change of the driver on the response
(model output) is estimated. By scaling the predictors to the
range [−0.5, 0.5], we obtained the corresponding uncertain-
ties. To check whether we missed nonlinear effects, we ad-
ditionally applied a random forest and extracted the vari-
able importance (following Augustynczik et al., 2017; see
Appendix A1.3). To calculate mean sensitivities and uncer-
tainties for each species, we averaged site-specific sensitivi-
ties over all sites with an average annual biomass production
greater than 2 tC ha−1. We have chosen this threshold be-
cause smaller values indicate that the environment is not suit-
able for the species; however, for each site at least one species
was able to establish. For the mixed stands, we first averaged
the three species-specific sensitivities and uncertainties per
site and then averaged them over all sites. Mean percentual
sensitivities were calculated by dividing by the mean model
output, while mean uncertainty contributions were calculated
by dividing by the entire uncertainty budget. Thereby, posi-
tive values mean that the respective output increases with in-
creasing parameter values, while negative values mean that it
decreases.

It is important to note that uncertainties and sensitivi-
ties have different interpretations, and which of these two is
more relevant strongly depends on the purpose. The calcu-
lated percentual sensitivities can be interpreted as percentage
change in the corresponding output when changing a param-
eter value 1 % in the prespecified range. The calculated un-
certainties per parameter or driver can be interpreted as rela-
tive proportion of the overall uncertainty budget coming from
environmental drivers and parameters. For scenario analy-
sis, e.g., comparing different cut intervals of forests, sensi-
tivities provide a direct estimate of the model response, e.g.,
how much biomass changes when the cut interval is changed.
For a comparison of different model forecasts, uncertain-
ties are usually more relevant. If a reduction of uncertainty
via a model–data comparison is the purpose, both measures
are important, as parameters with high sensitivities can con-
tribute more or less predictive uncertainty depending on their
input uncertainty.

3 Results

3.1 Mean sensitivities over Europe

Regardless of the output variable, LPJ-GUESS was most
sensitive to photosynthesis-related parameters (respcoeff,
lambda_max), parameters controlling the wood turnover
(turnover_sap) and tree allometry (k_rp), water-related pa-
rameters (emax), mortality-related parameters (greffmin),
and environmental drivers (temperature, CO2 and solar radi-
ation) (Fig. 1). When looking at differences in the strength
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of sensitivities for different outputs, TSB was most sensi-
tive to the respiration coefficient (respcoeff), the growth sup-
pression mortality threshold (greff_min), and solar radiation,
while NBP projections showed negative sensitivity to wood
turnover rates (turnover_sap) and longevity and positive sen-
sitivity to temperature, CO2, and the ratio of intercellular
to ambient CO2 (lambda_max). GPP was negatively sensi-
tive to the respiration coefficient (respcoeff), growth suppres-
sion mortality threshold (greffmin), tree allometry (k_rp), and
temperature and positive to CO2, solar radiation, and the
maximum transpiration rate (emax). Establishment and ni-
trogen showed the smallest sensitivities for all three carbon-
related projections (Fig. 1). Note that NBP also had higher
percentual sensitivities than GPP and TSB.

Mixed stands were less sensitive to changes in parameters
than monospecific stands (Fig. 1). For monospecific simu-
lations, species sometimes showed different magnitudes and
even directions of sensitivities. In comparison to the other
species, Fag. syl. was more strongly affected by bioclimatic
limits, while Pin. syl. showed higher sensitivity to environ-
mental drivers (temperature and solar radiation). Moreover,
TSB and GPP are negatively sensitive to temperature, except
for Fag. syl. For NBP, the direction of sensitivities changes
between species for the non-water-stressed ratio of intercel-
lular to ambient CO2 (lambdamax), the respiration coeffi-
cient (respcoeff), the root turnover (turnoverroot), an allo-
metric constant (krp), and the maximum evapotranspiration
rate (emax).

3.2 Mean uncertainties over Europe

Looking at uncertainties, we found that environmental
drivers contributed most of all processes and drivers to the
predictive uncertainty (Fig. 2), regardless of the considered
model output. For TSB projections, CO2, solar radiation,
and temperature contributed substantial uncertainty (Fig. 2a).
Additionally, large uncertainty contributions arose from
growth-suppression mortality thresholds (greffmin) and the
respiration coefficient (lambda_max). Uncertainty in NBP
projections was substantially affected by model parameters
(longevity (mortality process), tcmax_est (establishment pro-
cess), turnover_sap (tree structure process), greffmin (mor-
tality process), emax (water process), and the high contri-
butions of temperature and CO2 (Fig. 2b). For GPP pro-
jections, solar radiation and CO2 contributed the most to
climate-induced uncertainty, while the threshold for growth
suppression mortality (greffmin) and maximum evaporation
rate (emax) contributed the most to parameter-induced un-
certainty (Fig. 2c). Notably, nitrogen-fixation-induced un-
certainty was also substantial (7 %–9 %) for TSB and GPP.
Most tree-structure-related parameters except the sapwood
to heartwood turnover rate (turnoversap) and the fraction
of NPP allocated to reproduction (repfrac) contributed only
small uncertainties (Fig. 2). Uncertainty contributions ana-

Geosci. Model Dev., 15, 6495–6519, 2022 https://doi.org/10.5194/gmd-15-6495-2022
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Figure 1. Relative sensitivities (percent output change per percent parameter change) of the individual parameters and environmental drivers
regarding (a) total standing biomass, (b) net biome productivity, and (c) gross primary production. Sensitivities were not substantially
different between Fag. syl. (green squares), Pic. abi. (blue circles), and Pin. syl. (red triangles), but parameter sensitivities were stronger
for monospecific stands than mixed stands (purple asterisks). The height of the bar reflects the mean over monospecific and mixed stands.
Positive values for points and bars indicate a positive and negative values a negative relationship with the corresponding output.

lyzed by a random forest are similar to linear regression re-
sults (see Appendix 1.3).

By analyzing uncertainty contributions on a species level,
a more diverse picture emerged. Fag. syl. was more affected
by temperature and less affected by solar radiation than the
other species. Additionally, we found that uncertainty con-
tributions of environmental drivers were substantially higher
for mixed stands than for monospecific stands.

3.3 Geographic variation in uncertainties of TSB
across Europe

To project the uncertainties of TSB (for GPP and NBP, see
Appendix 1.4) into the European environmental space, we
filtered stands according to environmental zones and then
calculated mean uncertainties per environmental zone and
aggregated these per process.

The broad pattern of TSB uncertainty contributions for all
three monospecific and mixed stands remains similar in all

environmental zones. On average across all environmental
zones, stands and species about 45 % of the uncertainty was
due to environmental drivers, 15 % was due to mortality-
related parameters, 14 % was due to photosynthesis-related
parameters, 12 % was due to structure-related parameters,
7 % was due to water-related parameters, and 7 % was due
to nitrogen-related parameters (Fig. 3).

For the individual environmental zones, however, there
were subtle differences. In the Mediterranean mountain
(MDN) and Pannonian (PAN) zones, environmental-driver-
induced uncertainty was higher than on average, especially
for monospecific stands (Fig. 3). In the Boreal (BOR), At-
lantic central (ATC), and Atlantic north (ATN) zones, tree-
structure-related uncertainty increased compared to the aver-
age pattern (Fig. 3). In the Atlantic central (ATC) and At-
lantic north (ATN) zones, nitrogen-related uncertainty in-
creased for all species and stands (Fig. 3).

To examine this spatial pattern further, we investigated the
change of uncertainties across a temperature gradient. To this

https://doi.org/10.5194/gmd-15-6495-2022 Geosci. Model Dev., 15, 6495–6519, 2022
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Figure 2. Uncertainty contributions in percent of the individual parameters and environmental drivers regarding (a) total standing biomass,
(b) net biome productivity, and (c) gross primary production showed no strong differences between Fag. syl. (green squares), Pic. abi. (blue
circles), and Pin. syl. (red triangles) and were stronger for monospecific stands than mixed stands (purple asterisks). The height of the bars
reflects the mean over monospecific and mixed stands. Positive values for points and bars indicate a positive and negative values a negative
relationship with the corresponding output.

end, we aggregated the uncertainties per site and process or
driver and then fitted a linear regression with the process or
driver as a predictor and the aggregated uncertainties as de-
pendent variables.

For TSB, we found that increasing mean annual tempera-
ture increased the uncertainty contributions of environmen-
tal drivers and water and establishment parameters, while the
uncertainty due to nitrogen-related and tree-structure-related
parameters decreased (Fig. 4a). Thereby, the uncertainty con-
tributions of environmental drivers (≈ 0.4 % ◦C−1) increased
the most (measured in percentage points per ◦C) and un-
certainty contributions of nitrogen fixation decreased most
(≈−0.5 % ◦C−1). Mortality and photosynthesis stayed ap-
proximately constant on the gradient (Fig. 4b).

Looking in more detail at the environmental drivers, un-
certainty induced by temperature (≈+0.75 % ◦C−1), CO2
(≈+0.2 % ◦C−1), and precipitation (≈+0.25 % ◦C−1) in-
creased with mean annual temperature, while the uncer-

tainty contribution of solar radiation (≈−0.75 % ◦C−1) de-
creased with mean annual temperature (Fig. 4c). Nitrogen-
deposition-induced uncertainty contributions stayed approx-
imately constant on a mean annual temperature gradient.

The above geographical and correlative observations of
changing uncertainties across Europe receive further support
when looking at the interactions between uncertainties of
different drivers and parameters (Fig. 5). Interaction indices
were calculated by averaging the interactions found in the
linear regression over all sites and species (Fig. 5b). More-
over, to investigate the overall influence on other parameters
or drivers we summed the absolute individual interaction in-
dices of each parameter together (Fig. 5a).

We found that environmental drivers (temperature, solar
radiation, CO2 and precipitation) had the highest sum of in-
teractions for TSB (Fig. 5a). Moreover, the respiration co-
efficient (respcoeff), growth suppression mortality threshold
(greffmin), longevity, sapwood to heartwood turnover rate

Geosci. Model Dev., 15, 6495–6519, 2022 https://doi.org/10.5194/gmd-15-6495-2022
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Figure 3. The aggregated relative uncertainties of total standing biomass per environmental zone (with more than five sites) show a higher
importance of drivers in the south than in the north. The environmental zones are from Metzger et al. (2005) and are defined as follows:
ALN, Alpine north; ALS, Alpine south; ANA, Anatolian; ATC, Atlantic central; ATN, Atlantic north; BOR, Boreal; CON, Continental;
LUS, Lusitanian; MDM, Mediterranean mountains; MDN, Mediterranean north; MDS, Mediterranean south; NEM, Nemoral; and PAN,
Pannonian. In the radar plots of each environmental zone, the color and percentage value of the process label indicates which simulation
setup (monospecific with corresponding species or mixed stands) has contributed most uncertainty and how much.

(turnover_sap), and maximum evaporation rate (emax) had
a lower but still high sum of interactions (Fig. 5a). Estab-
lishment and nitrogen-related parameters had only a few
weak interactions (Fig. 5). Strong interaction effects oc-
curred mostly with environmental drivers (Fig. 5b). A main
part of these interactions was between the different environ-
mental drivers themselves, i.e., solar radiation–CO2 and solar
radiation–temperature. Additionally, we found interactions
of parameters and environmental drivers, i.e., temperature–
sapwood to hardwood turnover (turnover_sap), temperature–
threshold for growth suppression mortality (greffmin), and
temperature–respiration coefficient (respcoeff) (Fig. 5b), and
moderate parameter–parameter interactions, i.e., longevity
(mortality process) and greffmin (mortality process), re-
spcoeff (water process) and longevity (mortality process)

(Fig. 5b)). Similar patterns were present for the other two
carbon outputs (see Appendix A1.4).

4 Discussion

In this study, we analyzed sensitivities and uncertainties
of the LPJ-GUESS vegetation model due to environmental
driver and parameter variations across European forests. We
found that the model is most sensitive to relative (percent-
age) changes in photosynthesis-related parameters, structure-
related parameters controlling the wood turnover and tree al-
lometry, water-related parameters, mortality-related parame-
ters, and environmental drivers (Fig. 1), irrespective of the
considered output variable. When considering the different
uncertainties (i.e., the entire plausible range) in these pa-
rameters and the environmental inputs, we found that en-
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Figure 4. The uncertainty contributions to total standing biomass projections of parameters and environmental drivers change across a
mean annual temperature gradient across Europe from north to south (with p values and R2 for the processes and drivers). With increasing
temperature, the importance of drivers and establishment became higher for total standing biomass, while the uncertainty contributions
from nitrogen and structure declined (a). The uncertainty contributions due to temperature increased on the temperature gradient, and the
contributions from solar radiation decreased (c).

Figure 5. The induced uncertainty of environmental drivers and mortality- and photosynthesis-related parameters changed the most depend-
ing on other parameters (a). Strong individual interactions between parameters and environmental drivers in monospecific projections of
total standing biomass were rare (b). If strong interactions occurred, these were mainly between two environmental drivers or environmental
drivers and parameters and only rarely between two parameters (b).
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vironmental drivers and parameters controlling evapotran-
spiration, background mortality, and nitrogen cycling con-
tribute most to predictive uncertainty (Fig. 2). When cor-
related against a temperature gradient and thus geographi-
cally from north to south, uncertainty contributions to TSB
increased for environmental drivers and decreased for tree-
structure- and nitrogen-related parameters (Figs. 3, 4). Inter-
actions between the uncertainty contributions were mainly
between different drivers or between model parameters and
drivers, whereas only a few parameter–parameter interac-
tions were present (Fig. 5).

Our finding that average sensitivities of carbon-related
projections across European forests were highest for
photosynthesis-related parameters amplifies the evidence
from earlier studies (Pappas et al., 2013; Zaehle et al., 2005),
although we have used different parameter ranges. In ad-
dition, the finding about high sensitivity of LPJ-GUESS to
parameters controlling tree structure and especially carbon
turnover (turnover_sap) (Fig. 1) is in line with results re-
ported for a previous version of LPJ-GUESS (Pappas et al.,
2013) and its important role for carbon allocation in trees
found in empirical studies (e.g., Herrero de Aza et al., 2011).
The finding that carbon-related projections are very sensi-
tive to mortality-related parameters (greffmin) is also sup-
ported by previous studies on the sensitivity of vegetation
models and underlines the importance of improving mor-
tality submodules for generating precise projections of veg-
etation dynamics (Bugmann et al., 2019; Hardiman et al.,
2011). Moreover, sensitivities in mixed stands were lower
than in monospecific stands for NBP and GPP (Fig. 1) (in line
with Wramneby et al., 2008). The reason for that imbalance
may be that other species can dampen and even benefit from
non-optimal life history strategies of an individual species
(Loehle, 2000). Another reason might be that we sampled pa-
rameters for each species individually for mixed simulations,
which reduces the influence of each parameter on stand-level
carbon projections.

We found that uncertainty contributions of environmen-
tal drivers were comparable to the uncertainty contributions
of all parameters together (Figs. 2–5; see also Snell et al.,
2018, for the FLMs model; in addition, see Petter et al., 2020,
who found that most uncertainty is induced by the choice of
the forest model). Particularly high uncertainty contributions
arose from temperature (negative effect for TSB, GPP posi-
tive for NBP), CO2 (positive effect for all variables) and so-
lar radiation (positive effect for all variables). These results
are supported by the earlier studies on the effect of environ-
mental drivers in DGVMs (Barman et al., 2014; Wu et al.,
2017, 2018). The positive effect of CO2 could be explained
by increased water-use efficiency and the CO2 fertilization
effect (also found for other DGVMs Keenan et al., 2011;
Galbraith et al., 2010), which in LPJ-GUESS is an emerging
property of the formulation of photosynthesis and respiration
(see Hickler et al., 2008). However, empirical studies do not
find such an effect (Körner, 2006), which could be linked to

the fact that LPJ-GUESS does not model phosphor cycling,
which could be the limiting nutrient (for a DVGM study, see
Fleischer et al., 2019). We speculate that the negative effect
of temperature (also found for multiple DGVMs; see Gal-
braith et al., 2010) arises from decreased photosynthetic ef-
ficiency and increased respiration rates with higher tempera-
tures (see the empirical study of Gustafson et al., 2018, here
confirmed by the negative relationship between temperature
and the respiration coefficient). This effect, however, differed
in magnitude and direction between tree species (Fig. 2),
while there was a strong effect for Pic. abi. and Pin. syl.,
Fag. syl. was less affected, which could be a sign of its
higher resistance to increasing drought (Buras and Menzel,
2019; Tegel et al., 2014; Charru et al., 2010). From the pa-
rameters, water-, nitrogen- and mortality-related parameters
in particular contributed a substantial amount of uncertainty.
The uncertainty contributions from mortality parameters (see
Bugmann et al., 2019, for a variety of DGVMs) and water
(Pappas et al., 2013, with different parameter ranges for LPJ-
GUESS) were already highlighted by earlier studies.

4.1 Geographical and environmental patterns in
sensitivities and uncertainties

Several of our results suggest that environmental context in-
fluences the sensitivity of LPJ-GUESS model parameters.
First, we found changing uncertainties across different veg-
etation zones (Fig. 3) and on an environmental gradient
(Fig. 4) and that most interactions occurred with environ-
mental drivers (Fig. 5). Moreover, uncertainty contributions
analyzed by a random forest were similar to the linear regres-
sion results but assign higher importance to environmental
drivers (see Appendix A1.3). All of these findings indicate
that environmental context can change the importance of dif-
ferent processes in the model, which is in line with the bio-
logical expectation that the environment affects the physiol-
ogy of organisms directly, and thus indirectly affects fitness
and biotic interactions (e.g., Seebacher and Franklin, 2012;
Tylianakis et al., 2008), and the expectation that environmen-
tal responses can be particularly nonlinear (e.g., Burkett et
al., 2005) or show higher-order interactions.

Interestingly, our results of decreased uncertainty contri-
butions of structure-related parameters and increased contri-
butions of environmental drivers on the temperature gradient
(Fig. 4) also seem in line with the stress-gradient hypoth-
esis (Maestre et al., 2009), an empirically observed pattern
that states that in stressful environments, positive interac-
tions should occur more often than in benign environments
(e.g., Callaway, 2007). For the ecosystem that we consider,
we interpret increasing temperature as increasing stress (e.g.,
Ruiz-Pérez and Vico, 2020) and structure as the best indica-
tor for competitive interactions as the structure dictates re-
source allocation (e.g., bigger crown but identical stem di-
ameter leads to more photosynthesis, or more sapwood to
heartwood turnover requires less NPP). With this interpreta-
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tion, one would conclude that under increasing stress the im-
portance of competition-related parameters decreases in the
model, as expected from the stress-gradient hypothesis. We
acknowledge that a fair amount of interpretation is needed to
arrive at this conclusion, and we do not claim that this result
lends evidence to the empirical discussion about the general-
ity of the stress-gradient hypothesis, but we find it notewor-
thy that such a large-scale pattern emerges in the model from
lower-level processes without having been imposed (see also
Levin, 1992).

4.2 Associated uncertainties of previous changes in
model structure and implications for future model
development

The management and the nitrogen cycling module are the
most recent improvements of the LPJ-GUESS model (Smith
et al., 2014; Lindeskog et al., 2021). Compared to previous
sensitivity and uncertainty analysis, the high contributions of
the nitrogen fixation to the predictive uncertainty of TSB and
GPP (Fig. 2a, c) are novel (albeit not surprising), as nitrogen
is an important factor for the productivity of most temperate
and boreal ecosystems (Vitousek and Howarth, 1991). The
main reason why few earlier studies report those uncertain-
ties is that vegetation models have only recently begun to
integrate nitrogen cycling and limitation (e.g., Smith et al.,
2014). The management module showed only small uncer-
tainties, which could be due to the narrow parameter ranges
for the cut interval and thinning intensity reflecting typical
forest owners’ choices. As forest owners usually try to max-
imize their profits (Johansson, 1986; Brazee and Amacher,
2000) and thus biomass production, the low sensitivity of the
management module is not surprising. A more suitable and
important test case and application of the management mod-
ule would be a historical reconstruction of foliage projective
cover data or similar outputs of the LPJ-GUESS model.

Our study helps to guide the model application, discussion
of uncertainties, and model development of LPJ-GUESS and
other DGVMs. First, future model applications and model
comparisons should focus on mortality as this process con-
tributes high uncertainties for carbon-related projections (see
Figs. 1–3; see also Fisher et al., 2018). Thereby, it should be
investigated if these uncertainties stem from the intra-specific
variability of the parameters itself (Bolnick et al., 2011) or
the parameters not being identifiable (see Marsili-Libelli et
al., 2014) or if a model–data comparison could reduce un-
certainties in the parameters (e.g., Hartig et al., 2011; Dietze,
2017b). Using time series inventory data might help as they
are informative for constraining mortality modules (Cailleret
et al., 2020). Second, lower sensitivities of establishment-
related parameters are surprising as we know that not all
three investigated species can effortlessly establish across all
of Europe, e.g., Fag. syl. can only establish in locations with
no extreme drought and heat and no extreme winter frosts
(Bolte et al., 2007). Thus, either we missed important pa-

rameters of this module or the parametrization of the model
needs to be updated. Third, when introducing new processes
or coupling with other models (e.g., Forrest et al., 2020) cal-
culating interactions helps to get a first impression as to how
these new processes influence other model processes and to
potentially detect missing links. Moreover, future model ap-
plications can interpret their results with regard to the sensi-
tivities in different factors (Saltelli et al., 2019) and discuss
uncertainties and the causing factors when used in policy ad-
vice (Laberge, 2013).

4.3 Limitations

We caution that our results regarding the importance of dif-
ferent factors for predictive uncertainties (but not sensitivi-
ties) depend on the a priori-defined uncertainty range of the
contributing factors (see Wallach and Genard, 1998), as well
as on several other technical choices in our study. For de-
termining uncertainty ranges of the drivers, we used RCP
scenarios; however, these were not created as probabilistic
minimum and maximum ranges. For the model parameters,
we relied on expert guesses, reducing subjectivity as far as
possible by following the SHELF expert elicitation protocol
(Gosling, 2018). Future studies could include more experts
and their opinion on parameter distributions to reduce vari-
ability in this protocol. As the model is sensitive to parame-
ters and environmental drivers and these elements influence
each other, we treated them in a combined sensitivity and
uncertainty analysis (Saltelli et al., 2019); however, when in-
terpreting it should be kept in mind that the one group re-
lates to uncertainties in the model, while the other is exter-
nal, meaning that the two are conceptually very different (see
also Dietze, 2017b). A certain ambiguity also arises from
the definition of the indicators: here, we calculated sensitiv-
ities and uncertainties by capturing only linear components
and second-order interactions, and we may therefore miss
highly nonlinear (and in particular hump-shaped) responses
in LPJ-GUESS (Roux et al., 2021). However, our compar-
ison to uncertainties calculated with random forest variable
importance, a method that would also capture nonlinearities,
did not reveal any qualitative differences in the ranking of
parameter importance (Appendix A1.3). Overall, while we
acknowledge that a certain amount of subjectivity exists in
the choice of input uncertainty and calculation of indices,
we believe that our results are quantitatively robust to those
choices.

Moreover, we acknowledge that LPJ-GUESS is known to
be sensitive to the scaling parameters alpha_a and alpha_C3
(Pappas et al., 2013; Zaehle et al., 2005), which we have
omitted from our analysis. However, these parameters are not
accessible in the parameter input file. Instead, they are hard
coded in the model’s source code, and therefore a normal
user would not change them. We argue that these parameters
should thus be counted towards the more general and here
neglected contribution of structural uncertainty (i.e., the un-
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certainty regarding the functional form of processes or even
to entire modules) to the joint model uncertainty. Several pre-
vious studies suggest that the sensitivity of vegetation models
to structural changes can be large and often larger than that
to parameters (e.g., Bugmann et al., 2019), and it would cer-
tainly be useful (although very complicated) to explore these
uncertainties together with the factors considered here in a
joint analysis. In the present study, however, we considered
only the parameters that would be accessible to normal LPJ-
GUESS users and neglect structural uncertainty that could be
explored by changing the source code.

5 Conclusions

Our findings highlight the relative importance of paramet-
ric uncertainties in different processes and their interactions
with uncertainties in environmental drivers for carbon pro-
jections with LPJ-GUESS. Our results demonstrate that envi-
ronmental context changes uncertainty contributions of other
processes across the European environmental gradient. The
pattern of decreasing importance of competition towards
the warmer areas is in line with the stress-gradient hypoth-
esis, which posits that the importance of competition de-
creases with increasing environmental stress. Our findings
improve our understanding of forest ecosystem models, en-
able pathways for future ecosystem model development, and
thus build a basis for more realistic projections. In the fu-
ture, parametric uncertainties could be reduced by model–
data fusion (e.g., Trotsiuk et al., 2020) of LPJ-GUESS, con-
centrating on the parameters contributing most uncertainty
in each geographic region (Fig. 3). Reducing uncertainties
in the drivers is more difficult. To some extent, environ-
mental drivers are themselves influenced by the vegetation
(Strengers et al., 2010), and thus model–data fusion on a fully
coupled model including feedback loops between vegetation
and climate and a general improvement of climate models
could reduce driver uncertainty to some degree. However,
much of the uncertainty in this section effectively arises from
potential greenhouse gas emission trajectories, for which a
probabilistic assignment is difficult due to their dependency
on human decision-making.

Appendix A

A1 Site selection

We sampled 200 geographically and environmentally strati-
fied sites over Europe and thereby avoided sites near the sea.
The corresponding sites with their average temperatures are
shown in Fig. A1 and cover most European climates and veg-
etation zones.

Figure A1. Our 200 sampled sites, which were geographically and
environmentally stratified over Europe to cover the most important
countries and climate and temperature zones.

A2 Re-parametrization for better fit to observed data

There are several technical and methodological reasons re-
quiring a re-parametrization of LPJ-GUESS for our study.
First, most European forests are managed and species are
planted far outside of their natural distribution. Second,
the introduction of the nitrogen cycle (Smith et al., 2014)
changed the model structure, and thus the parameters require
an adjustment. Third, the productivity of trees in managed
forests did not fit to the reported inventory data (Fig. A2). To
account for all these issues, we adjusted the parametrization
of (Hickler et al., 2012) to allow species growing according
to their actual (i.e., caused by forest management) distribu-
tion instead of their natural distribution.

Picea abies and Pinus sylvestris are planted especially far
outside their natural distribution (Fig. A2). Therefore, we
specifically adjusted bioclimatic limits, drought tolerances,
longevity, leaf turnover, disturbance intervals, and allometry
for these species.

https://doi.org/10.5194/gmd-15-6495-2022 Geosci. Model Dev., 15, 6495–6519, 2022



6510 J. Oberpriller et al.: Climate and parameter sensitivity and induced uncertainties

Table A1. Differences in parametrization of Hickler et al. (2012) and our study for the investigated species (Fag. syl., Pic. abi. and Pin. syl).

Parameters Fag_syl Pic_abi Pin_syl

Hickler et al. (2012) Our study Hickler et al. (2012) Our study Hickler et al. (2012) Our study

drought_tolerance 0.3 0.3 0.43 0.48 0.25 0.25

fireresist 0.1 0.1 0.1 0.1 0.2 0.4

leaflong 0.5 0.5 4 7 2 4

turnover_leaf 1 1 0.33 0.1429 0.5 0.25

turnover_sap 0.085 0.085 0.05 0.065 0.065 0.085

est_max 0.05 0.1 0.05 0.1 0.2 0.2

alphar 3 10 2 4 6 10

parff_min 1 250 000 1 000 000 1 250 000 1 000 000 2 500 000 2 500 000

tcmin_surv (min. 20-year coldest-
month mean temperature for survival)

−3.5 −7.5 −30 −30 −30 −30

tcmin_est (min. 20-year coldest-month
mean temperature for establishment)

−3.5 −6.5 −29 −29 −30 −29

tcmax_est (max. 20-year coldest-month
temperature for establishment)

6 7 −1.5 3 −1 5.5

twmin_est (min. warmest-month mean
temperature for establishment)

5 −1000 5 −1000 5 8

k_chillb 600 600 100 100 100 100

sla 43? 43.08 11 11.52 8 8.56

k_allom2 40 60 40 60 40 60

wooddens 200 293 200 185 200 211

longevity 500 400 500 300 500 500

ga (aerodynamic conductance) 0.04 0.04 0.14 0.14 0.14 0.14

gdd5min_est 1500 1300 600 350 500 500
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Figure A2. Simulated (black points), observed (blue), and natural distributions (green) of the adjusted parametrization (b, d) compared to
applying the parametrization from Hickler et al. (2012) (a, c) for Picea abies and Pinus sylvestris. EUFO indicates data from EUFROGEN
(2008 and 2013), Mauri indicates data from Mauri et al. (2017), and Caudullo indicates data from Caudullo (2017). The simulations were
run from 1600 to 2010 without management and without competition between species. The plotted biomasses were averages over the last
20 years.
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A3 Random forest results

To check the consistency of the results obtained via linear
regressions, we compare them to the variable importance of
random forest. The variable importance measures addition-
ally nonlinear effects, and thus it should be able to deal with
nonlinear models like DGVMs. We calculated the variable
importance the same way as we did for the linear regression
by fitting a random forest with all parameters against the sum
of differences between model outputs with default values and
model outputs with sampled parameters. As our parameters
were sampled from a uniform distribution with no correla-
tion between the individual parameters, random forest vari-
able importance can be compared to linear regression results.

The ranking is very similar to the ranking of the parame-
ters and environmental drivers obtained via linear regression
(Fig. A3). There is, however, a difference in the magnitude
of the uncertainty induced by drivers, which is higher com-
pared to linear regression (Fig. A3). The higher uncertainty
due to drivers is thus a nonlinear effect and stresses our con-
clusion that environmental conditions change the uncertainty
contributions of other parameters.

Figure A3. Results of the random forest uncertainty contributions. The uncertainties due to environmental drivers are higher than the uncer-
tainties due to parameters compared to linear regression results, but the ranking of parameters is similar to linear regression results.
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A4 Interactions of GPP and NBP

Interactions of gross primary production (Fig. A4a, b) and
net biome production (Fig. A4c, d) are similar to the interac-
tions of total standing biomass. These interactions are mostly
between environmental drivers and environmental drivers or
between environmental drivers and parameters (Fig. A4).
Some strong interactions are between parameters and param-
eters, however, in such interactions there are always parame-
ters included that have strong interactions with environmen-
tal drivers (Fig. A4).

Figure A4. Interactions of uncertainty contributions of GPP and total standing biomass are similar to net biome productivity, with most
interactions arising from environmental drivers.

High sums of strong interactions arise from temperature,
precipitation, solar radiation, greffmin, emax, and respcoeff
(Fig. A4a, b).
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and maintained in a permanent repository at Lund Univer-
sity, Sweden. Source code is made available on request. The
model version presented in this paper is identified by the per-
manent revision number r10207 in the code repository. There
is no DOI associated with the code. Code to perform the
sensitivity and uncertainty analysis can be found on Zen-
odo under https://doi.org/10.5281/zenodo.5873672 (Oberpriller,
2022). Results from the LPJ-GUESS runs are available under
https://doi.org/10.5281/zenodo.4670295 (Oberpriller et al., 2021b).
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B. R., Nadal-Sala, D., Rammer, W., Rammig, A., Reineking, B.,
Roedig, E., Sabaté, S., Steinkamp, J., Suckow, F., Vacchiano,
G., Wild, J., Xu, C., and Reyer, C. P. O.: Tree mortality sub-
models drive simulated long-term forest dynamics: assessing 15
models from the stand to global scale, Ecosphere, 10, e02616,
https://doi.org/10.1002/ecs2.2616, 2019.

Buras, A. and Menzel, A.: Projecting Tree Species Com-
position Changes of European Forests for 2061–2090 Un-
der RCP 4.5 and RCP 8.5 Scenarios, Front. Plant Sci., 9,
https://doi.org/10.3389/fpls.2018.01986, 2019.

Buras, A., Schunk, C., Zeiträg, C., Herrmann, C., Kaiser, L.,
Lemme, H., Straub, C., Taeger, S., Gößwein, S., Klemmt, H.-J.,
and Menzel, A.: Are Scots pine forest edges particularly prone
to drought-induced mortality?, Environ. Res. Lett., 13, 025001,
https://doi.org/10.1088/1748-9326/aaa0b4, 2018.

Burkett, V. R., Wilcox, D. A., Stottlemyer, R., Barrow, W., Fa-
gre, D., Baron, J., Price, J., Nielsen, J. L., Allen, C. D., Pe-
terson, D. L., Ruggerone, G., and Doyle, T.: Nonlinear dy-
namics in ecosystem response to climatic change: Case stud-

Geosci. Model Dev., 15, 6495–6519, 2022 https://doi.org/10.5194/gmd-15-6495-2022

https://doi.org/10.5281/zenodo.5873672
https://doi.org/10.5281/zenodo.4670295
https://doi.org/10.1016/j.foreco.2017.06.061
https://doi.org/10.1016/B978-0-12-814278-3.00005-4
https://doi.org/10.1111/gcb.12474
https://doi.org/10.1029/2019GB006393
https://www.isric.org/sites/default/files/isric_report_2005_08.pdf
https://www.isric.org/sites/default/files/isric_report_2005_08.pdf
https://doi.org/10.1016/j.tree.2011.01.009
https://doi.org/10.1093/forestry/cpm028
https://doi.org/10.1126/science.1155121
https://academic.oup.com/forestscience/article/46/1/132/4617376
https://academic.oup.com/forestscience/article/46/1/132/4617376
https://doi.org/10.1002/ecs2.2616
https://doi.org/10.3389/fpls.2018.01986
https://doi.org/10.1088/1748-9326/aaa0b4


J. Oberpriller et al.: Climate and parameter sensitivity and induced uncertainties 6515

ies and policy implications, Ecol. Complex., 2, 357–394,
https://doi.org/10.1016/j.ecocom.2005.04.010, 2005.

Cailleret, M., Bircher, N., Hartig, F., Hülsmann, L., and Bugmann,
H.: Bayesian calibration of a growth-dependent tree mortality
model to simulate the dynamics of European temperate forests,
Ecol. Appl., 30, e02021, https://doi.org/10.1002/eap.2021, 2020.

Callaway, R. M.: Positive Interactions and Interdependence in Plant
Communities, 1st edn., Springer Netherlands, Hardcover ISBN
978-1-4020-6223-0, Softcover ISBN 978-90-481-7573-4, eBook
ISBN 978-1-4020-6224-7, https://doi.org/10.1007/978-1-4020-
6224-7, 2007.

Cariboni, J., Gatelli, D., Liska, R., and Saltelli, A.: The role of sen-
sitivity analysis in ecological modelling, Ecol. Model., 203, 167–
182, https://doi.org/10.1016/j.ecolmodel.2005.10.045, 2007.

Caswell, H.: Introduction: Sensitivity Analysis – What and Why?,
in: Sensitivity Analysis: Matrix Methods in Demography and
Ecology, edited by: Caswell, H., Springer International Pub-
lishing, Cham, 3–12, Print ISBN 978-3-030-10533-4, On-
line ISBN 978-3-030-10534-1, https://doi.org/10.1007/978-3-
030-10534-1_1, 2019.

Caudullo, G., Welk, E., and San-Miguel-Ayanz, J.: Chorological
maps for the main European woody species, Data in Brief, 12,
662–666, https://doi.org/10.1016/j.dib.2017.05.007, 2017.

Charru, M., Seynave, I., Morneau, F., and Bontemps, J.-D.: Re-
cent changes in forest productivity: An analysis of national
forest inventory data for common beech (Fagus sylvatica L.)
in north-eastern France, Forest Ecol. Manag., 260, 864–874,
https://doi.org/10.1016/j.foreco.2010.06.005, 2010.

Chauliac, C., Aragonés, J.-M., Bestion, D., Cacuci, D. G.,
Crouzet, N., Weiss, F.-P., and Zimmermann, M. A.: NURESIM
– A European simulation platform for nuclear reactor
safety: Multi-scale and multi-physics calculations, sensitivity
and uncertainty analysis, Nucl. Eng. Des., 241, 3416–3426,
https://doi.org/10.1016/j.nucengdes.2010.09.040, 2011.

Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher,
H., Howarth, R. W., Hedin, L. O., Perakis, S. S., Latty,
E. F., Fischer, J. C. V., Elseroad, A., and Wasson, M. F.:
Global patterns of terrestrial biological nitrogen (N2) fixation
in natural ecosystems, Global Biogeochem. Cy., 13, 623–645,
https://doi.org/10.1029/1999GB900014, 1999.

Courbaud, B., Lafond, V., Lagarrigues, G., Vieilledent, G., Cor-
donnier, T., Jabot, F., and de Coligny, F.: Applying eco-
logical model evaludation: Lessons learned with the for-
est dynamics model Samsara2, Ecol. Model., 314, 1–14,
https://doi.org/10.1016/j.ecolmodel.2015.06.039, 2015.

Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts,
R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend,
A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S.,
Smith, B., White, A., and Young-Molling, C.: Global response
of terrestrial ecosystem structure and function to CO2 and cli-
mate change: results from six dynamic global vegetation models,
Global Change Biol., 7, 357–373, https://doi.org/10.1046/j.1365-
2486.2001.00383.x, 2001.

Cui, E., Huang, K., Arain, M. A., Fisher, J. B., Huntzinger, D. N.,
Ito, A., Luo, Y., Jain, A. K., Mao, J., Michalak, A. M., Niu, S.,
Parazoo, N. C., Peng, C., Peng, S., Poulter, B., Ricciuto, D. M.,
Schaefer, K. M., Schwalm, C. R., Shi, X., Tian, H., Wang, W.,
Wang, J., Wei, Y., Yan, E., Yan, L., Zeng, N., Zhu, Q., and Xia, J.:
Vegetation Functional Properties Determine Uncertainty of Sim-

ulated Ecosystem Productivity: A Traceability Analysis in the
East Asian Monsoon Region, Global Biogeochem. Cy., 33, 668–
689, https://doi.org/10.1029/2018GB005909, 2019.

Dietze, M. C.: Ecological Forecasting, 1st edn., Princeton Univer-
sity Press, 284 pp., ISBN 9780691160573, 2017a.

Dietze, M. C.: Prediction in ecology: a first-principles framework,
Ecol. Appl., 27, 2048–2060, https://doi.org/10.1002/eap.1589,
2017b.

Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L.,
Hooten, M. B., Jarnevich, C. S., Keitt, T. H., Kenney, M.
A., Laney, C. M., Larsen, L. G., Loescher, H. W., Lunch, C.
K., Pijanowski, B. C., Randerson, J. T., Read, E. K., Tre-
dennick, A. T., Vargas, R., Weathers, K. C., and White, E.
P.: Iterative near-term ecological forecasting: Needs, opportuni-
ties, and challenges, P. Natl. Acad. Sci. USA, 115, 1424–1432,
https://doi.org/10.1073/pnas.1710231115, 2018.

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O.,
Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila,
R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule,
P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet,
N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni,
S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E.,
Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Jous-
saume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahel-
lec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd,
J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S.,
Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio,
C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray,
P., Viovy, N., and Vuichard, N.: Climate change projections us-
ing the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-
012-1636-1, 2013.

EUFORGEN: Distribution map of norway spruce (Picea abies),
https://www.euforgen.org/species/pinus-sylvestris/ (last access:
20 August 2020), 2013.

EUFORGEN: Distribution map of scots pine (Pinus sylvestris),
https://www.euforgen.org/species/picea-abies/ (last access:
21 August 2020), 2008.

Fer, I., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E.
M., and Dietze, M. C.: Linking big models to big data: efficient
ecosystem model calibration through Bayesian model emulation,
Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-
5801-2018, 2018.

Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B.
O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox,
R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A.
M., Medvigy, D., Muller-Landau, H. C., Powell, T. L., Serbin, S.
P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari,
T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., and Moor-
croft, P. R.: Vegetation demographics in Earth System Models: A
review of progress and priorities, Global Change Biol., 24, 35–
54, https://doi.org/10.1111/gcb.13910, 2018.

Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P.,
Domingues, T. F., Fuchslueger, L., Garcia, S., Goll, D. S., Gran-
dis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J. A., Kruijt,
B., Leung, F., Medlyn, B. E., Mercado, L. M., Norby, R. J., Pak,
B., von Randow, C., Quesada, C. A., Schaap, K. J., Valverde-
Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S., Zhu, Q., and
Lapola, D. M.: Amazon forest response to CO2 fertilization de-

https://doi.org/10.5194/gmd-15-6495-2022 Geosci. Model Dev., 15, 6495–6519, 2022

https://doi.org/10.1016/j.ecocom.2005.04.010
https://doi.org/10.1002/eap.2021
https://doi.org/10.1007/978-1-4020-6224-7
https://doi.org/10.1007/978-1-4020-6224-7
https://doi.org/10.1016/j.ecolmodel.2005.10.045
https://doi.org/10.1007/978-3-030-10534-1_1
https://doi.org/10.1007/978-3-030-10534-1_1
https://doi.org/10.1016/j.dib.2017.05.007
https://doi.org/10.1016/j.foreco.2010.06.005
https://doi.org/10.1016/j.nucengdes.2010.09.040
https://doi.org/10.1029/1999GB900014
https://doi.org/10.1016/j.ecolmodel.2015.06.039
https://doi.org/10.1046/j.1365-2486.2001.00383.x
https://doi.org/10.1046/j.1365-2486.2001.00383.x
https://doi.org/10.1029/2018GB005909
https://doi.org/10.1002/eap.1589
https://doi.org/10.1073/pnas.1710231115
https://doi.org/10.1007/s00382-012-1636-1
https://doi.org/10.1007/s00382-012-1636-1
https://www.euforgen.org/species/pinus-sylvestris/
https://www.euforgen.org/species/picea-abies/
https://doi.org/10.5194/bg-15-5801-2018
https://doi.org/10.5194/bg-15-5801-2018
https://doi.org/10.1111/gcb.13910


6516 J. Oberpriller et al.: Climate and parameter sensitivity and induced uncertainties

pendent on plant phosphorus acquisition, Nat. Geosci., 12, 736–
741, https://doi.org/10.1038/s41561-019-0404-9, 2019.

Forrest, M., Tost, H., Lelieveld, J., and Hickler, T.: Including veg-
etation dynamics in an atmospheric chemistry-enabled general
circulation model: linking LPJ-GUESS (v4.0) with the EMAC
modelling system (v2.53), Geosci. Model Dev., 13, 1285–1309,
https://doi.org/10.5194/gmd-13-1285-2020, 2020.

Galbraith, D., Levy, P. E., Sitch, S., Huntingford, C., Cox, P.,
Williams, M., and Meir, P.: Multiple mechanisms of Ama-
zonian forest biomass losses in three dynamic global vegeta-
tion models under climate change, New Phytol., 187, 647–665,
https://doi.org/10.1111/j.1469-8137.2010.03350.x, 2010.

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terrestrial vegetation and water balance – hydrological evalua-
tion of a dynamic global vegetation model, J. Hydrol., 286, 249–
270, https://doi.org/10.1016/j.jhydrol.2003.09.029, 2004.

Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P.
S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assess-
ing variability and long-term trends in burned area by merging
multiple satellite fire products, Biogeosciences, 7, 1171–1186,
https://doi.org/10.5194/bg-7-1171-2010, 2010.

Gosling, J. P.: SHELF: The Sheffield Elicitation Framework, in:
Elicitation: The Science and Art of Structuring Judgement, 1st
edn., edited by: Dias, L. C., Morton, A., and Quigley, J., Springer
International Publishing, Cham, 61–93, ISBN 978-3-319-65052-
4, https://doi.org/10.1007/978-3-319-65052-4_4, 2018.

Grimm, V.: Pattern-Oriented Modeling of Agent-Based Com-
plex Systems: Lessons from Ecology, Science, 310, 987–991,
https://doi.org/10.1126/science.1116681, 2005.

Gustafson, E. J., Miranda, B. R., and Sturtevant, B. R.: Can Future
CO2 Concentrations Mitigate the Negative Effects of High Tem-
perature and Longer Droughts on Forest Growth?, Forests, 9, 664
, https://doi.org/10.3390/f9110664, 2018.

Hamby, D. M.: A review of techniques for parameter sensitivity
analysis of environmental models, Environ. Monit. Assess., 32,
135–154, https://doi.org/10.1007/BF00547132, 1994.

Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S., and Curtis,
P. S.: The role of canopy structural complexity in wood net pri-
mary production of a maturing northern deciduous forest, Ecol-
ogy, 92, 1818–1827, https://doi.org/10.1890/10-2192.1, 2011.

Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T., and
Huth, A.: Statistical inference for stochastic simulation mod-
els – theory and application, Ecol. Lett., 14, 816–827,
https://doi.org/10.1111/j.1461-0248.2011.01640.x, 2011.

Haverd, V., Smith, B., Nieradzik, L. P., and Briggs, P. R.: A
stand-alone tree demography and landscape structure module
for Earth system models: integration with inventory data from
temperate and boreal forests, Biogeosciences, 11, 4039–4055,
https://doi.org/10.5194/bg-11-4039-2014, 2014.

Herrero de Aza, C., Turrión, M. B., Pando, V., and Bravo, F.: Car-
bon in heartwood, sapwood and bark along the stem profile in
three Mediterranean Pinus species, Ann. For. Sci., 68, 1067,
https://doi.org/10.1007/s13595-011-0122-y, 2011.

Hickler, T., Smith, B., Sykes, M. T., Davis, M. B., Sugita,
S., and Walker, K.: USING A GENERALIZED VEGETA-
TION MODEL TO SIMULATE VEGETATION DYNAM-
ICS IN NORTHEASTERN USA, Ecology, 85, 519–530,
https://doi.org/10.1890/02-0344, 2004.

Hickler, T., Smith, B., Prentice, I. C., Mjöfors, K., Miller, P., Arneth,
A., and Sykes, M. T.: CO2 fertilization in temperate FACE exper-
iments not representative of boreal and tropical forests, Global
Change Biol., 14, 1531–1542, https://doi.org/10.1111/j.1365-
2486.2008.01598.x, 2008.

Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B.,
Costa, L., Giesecke, T., Fronzek, S., Carter, T. R., Cramer, W.,
Kühn, I., and Sykes, M. T.: Projecting the future distribution
of European potential natural vegetation zones with a gener-
alized, tree species-based dynamic vegetation model, Global
Ecol. Biogeogr., 21, 50–63, https://doi.org/10.1111/j.1466-
8238.2010.00613.x, 2012.

Huang, S., Titus, S. J., and Wiens, D. P.: Comparison of nonlinear
height–diameter functions for major Alberta tree species, Can.
J. Forest Res., 22, 1297–1304, https://doi.org/10.1139/x92-172,
1992.

Huber, N., Bugmann, H., and Lafond, V.: Global sensi-
tivity analysis of a dynamic vegetation model: Model
sensitivity depends on successional time, climate and
competitive interactions, Ecol. Model., 368, 377–390,
https://doi.org/10.1016/j.ecolmodel.2017.12.013, 2018.

Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King,
A. W., Fang, Y., Schaefer, K., Wei, Y., Cook, R. B., Fisher, J.
B., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Lu, C.,
Maignan, F., Mao, J., Parazoo, N., Peng, S., Poulter, B., Ricci-
uto, D., Shi, X., Tian, H., Wang, W., Zeng, N., and Zhao, F.:
Uncertainty in the response of terrestrial carbon sink to environ-
mental drivers undermines carbon-climate feedback predictions,
Sci. Rep., 7, 4765, https://doi.org/10.1038/s41598-017-03818-2,
2017.

IPCC: Climate Change 2014: Synthesis Report, Contribution of
Working Groups I, II and III to the Fifth Assessment Re-
port of the Intergovernmental Panel on Climate Change, edited
by: Core Writing Team, Pachauri, R. K., and Meyer, L.
A., IPCC, Geneva, Switzerland, 151 pp., https://epic.awi.de/id/
eprint/37530/1/IPCC_AR5_SYR_Final.pdf (last access: 13 Jan-
uary 2021), 2014.

Jiang, Y., Zhuang, Q., Schaphoff, S., Sitch, S., Sokolov, A., Kick-
lighter, D., and Melillo, J.: Uncertainty analysis of vegetation
distribution in the northern high latitudes during the 21st cen-
tury with a dynamic vegetation model, Ecol. Evol., 2, 593–614,
https://doi.org/10.1002/ece3.85, 2012.

Johansson, P. O.: The economics of forestry and natural resources,
1st edn., Basil Blackwell Ltd., ISBN 9780631141624, 1986.

Jørgensen, S. E. and Bendoricchio, G.: Fundamentals of Ecolog-
ical Modelling, 4th edn., Elsevier, 544 pp., Hardcover ISBN
9780444535672, eBook ISBN 9780444535689, 2001.

Keenan, T., Serra, J. M., Lloret, F., Ninyerola, M., and
Sabate, S.: Predicting the future of forests in the Mediter-
ranean under climate change, with niche- and process-based
models: CO2 matters!, Global Change Biol., 17, 565–579,
https://doi.org/10.1111/j.1365-2486.2010.02254.x, 2011.

Körner, C.: Plant CO2 responses: an issue of definition,
time and resource supply, New Phytol., 172, 393–411,
https://doi.org/10.1111/j.1469-8137.2006.01886.x, 2006.

Krause, A., Haverd, V., Poulter, B., Anthoni, P., Quesada,
B., Rammig, A., and Arneth, A.: Multimodel Analy-
sis of Future Land Use and Climate Change Impacts

Geosci. Model Dev., 15, 6495–6519, 2022 https://doi.org/10.5194/gmd-15-6495-2022

https://doi.org/10.1038/s41561-019-0404-9
https://doi.org/10.5194/gmd-13-1285-2020
https://doi.org/10.1111/j.1469-8137.2010.03350.x
https://doi.org/10.1016/j.jhydrol.2003.09.029
https://doi.org/10.5194/bg-7-1171-2010
https://doi.org/10.1007/978-3-319-65052-4_4
https://doi.org/10.1126/science.1116681
https://doi.org/10.3390/f9110664
https://doi.org/10.1007/BF00547132
https://doi.org/10.1890/10-2192.1
https://doi.org/10.1111/j.1461-0248.2011.01640.x
https://doi.org/10.5194/bg-11-4039-2014
https://doi.org/10.1007/s13595-011-0122-y
https://doi.org/10.1890/02-0344
https://doi.org/10.1111/j.1365-2486.2008.01598.x
https://doi.org/10.1111/j.1365-2486.2008.01598.x
https://doi.org/10.1111/j.1466-8238.2010.00613.x
https://doi.org/10.1111/j.1466-8238.2010.00613.x
https://doi.org/10.1139/x92-172
https://doi.org/10.1016/j.ecolmodel.2017.12.013
https://doi.org/10.1038/s41598-017-03818-2
https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf
https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf
https://doi.org/10.1002/ece3.85
https://doi.org/10.1111/j.1365-2486.2010.02254.x
https://doi.org/10.1111/j.1469-8137.2006.01886.x


J. Oberpriller et al.: Climate and parameter sensitivity and induced uncertainties 6517

on Ecosystem Functioning, Earth’s Future, 7, 833–851,
https://doi.org/10.1029/2018EF001123, 2019.

Laberge, Y.: Simulating nature: a philosophical study of
computer-simulation uncertainties and their role in climate
science and policy advice, J. Appl. Stat., 40, 919–920,
https://doi.org/10.1080/02664763.2012.749047, 2013.

Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw,
M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S.,
Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H.,
MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B.,
Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen,
D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean
nitrogen and sulfur deposition from the Atmospheric Chem-
istry and Climate Model Intercomparison Project (ACCMIP):
evaluation of historical and projected future changes, Atmos.
Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-
7997-2013, 2013.

Larcher, W.: Ökophysiologische Konstitutionseigenschaften von
Gebirgspflanzen, Ber. Deut. Bot. Ges., 96, 73–85, 1983.

Levin, S. A.: The Problem of Pattern and Scale in Ecology: The
Robert H. MacArthur Award Lecture, Ecology, 73, 1943–1967,
https://doi.org/10.2307/1941447, 1992.

Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J.,
Olin, S., and Smith, B.: Implications of accounting for land
use in simulations of ecosystem carbon cycling in Africa, Earth
Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-
2013, 2013.

Lindeskog, M., Smith, B., Lagergren, F., Sycheva, E., Ficko, A.,
Pretzsch, H., and Rammig, A.: Accounting for forest man-
agement in the estimation of forest carbon balance using the
dynamic vegetation model LPJ-GUESS (v4.0, r9710): imple-
mentation and evaluation of simulations for Europe, Geosci.
Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-
6071-2021, 2021.

Loehle, C.: Strategy Space and the Disturbance Spectrum: A Life-
History Model for Tree Species Coexistence, Am. Nat., 156, 14–
33, https://doi.org/10.1086/303369, 2000.

Maestre, F. T., Callaway, R. M., Valladares, F., and Lortie,
C. J.: Refining the stress-gradient hypothesis for competition
and facilitation in plant communities, J. Ecol., 97, 199–205,
https://doi.org/10.1111/j.1365-2745.2008.01476.x, 2009.

Mahto, A.: splitstackshape: Stack and Reshape Datasets After Split-
ting Concatenated Values, CRAN R package, https://github.com/
mrdwab/splitstackshape (last access: 22 July 2022), 2019.

Mäkelä, J., Minunno, F., Aalto, T., Mäkelä, A., Markkanen,
T., and Peltoniemi, M.: Sensitivity of 21st century simulated
ecosystem indicators to model parameters, prescribed climate
drivers, RCP scenarios and forest management actions for two
Finnish boreal forest sites, Biogeosciences, 17, 2681–2700,
https://doi.org/10.5194/bg-17-2681-2020, 2020.

Marsili-Libelli, S., Beck, M. B., Brunner, P., Croke, B., Guil-
laume, J., Jakeman, A., Jakeman, J., Keesman, K. J., and
Stigter, H.: Practical identifiability analysis of environmental
models, in: International Environmental Modelling and Soft-
ware Society (iEMSs) 7th International Congress on Environ-
mental Modelling and Software San Diego, California, USA,
15–19 June 2014, edited by: Ames, D. P. and Quinn, N., http://
www.iemss.org/society/index.php/iemss-2014-proceedings (last
access: 21 July 2021), 2014.

Matott, L. S., Babendreier, J. E., and Purucker, S. T.: Evalu-
ating uncertainty in integrated environmental models: A re-
view of concepts and tools, Water Resour. Res., 45, W06421,
https://doi.org/10.1029/2008WR007301, 2009.

Mauri, A., Strona, G., and San-Miguel-Ayanz, J.: EU-Forest, a
high-resolution tree occurrence dataset for Europe, Sci. Data, 4,
160123, https://doi.org/10.1038/sdata.2016.123, 2017.

Maxim, L. and van der Sluijs, J. P.: Quality in environmen-
tal science for policy: Assessing uncertainty as a compo-
nent of policy analysis, Environ. Sci. Policy, 14, 482–492,
https://doi.org/10.1016/j.envsci.2011.01.003, 2011.

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma,
M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper,
S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van
Vuuren, D. P. P.: The RCP greenhouse gas concentrations and
their extensions from 1765 to 2300, Climatic Change, 109, 213,
https://doi.org/10.1007/s10584-011-0156-z, 2011.

Mencuccini, M. and Bonosi, L.: Leaf/sapwood area ratios in Scots
pine show acclimation across Europe, Can. J. Forest Res., 31,
442–456, 2001.

Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher,
C. A., and Watkins, J. W.: A climatic stratification of the en-
vironment of Europe, Global Ecol. Biogeogr., 14, 549–563,
https://doi.org/10.1111/j.1466-822X.2005.00190.x, 2005.

Oberpriller, J.: JohannesOberpriller/SensitivityAnaly-
sisLPJ: Release for revision (v1.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.5873672, 2022.

Oberpriller, J., Cameron, D. R., Dietze, M. C., and Hartig, F.: To-
wards robust statistical inference for complex computer models,
Ecol. Lett., 24, 1251–1261, https://doi.org/10.1111/ele.13728,
2021a.

Oberpriller, J., Anthoni, P., Herschlein, C., Arneth, A., Krause,
A., Rammig, A., and Hartig, F.: Parameters and model results
for sensitivity and uncertainty analysis of LPJ-GUESS, Zenodo
[data set], https://doi.org/10.5281/zenodo.4670295, 2021b.

Olin, S., Schurgers, G., Lindeskog, M., Wårlind, D., Smith, B.,
Bodin, P., Holmér, J., and Arneth, A.: Modelling the response
of yields and tissue C : N to changes in atmospheric CO2 and
N management in the main wheat regions of western Europe,
Biogeosciences, 12, 2489–2515, https://doi.org/10.5194/bg-12-
2489-2015, 2015.

Pappas, C., Fatichi, S., Leuzinger, S., Wolf, A., and Burlando,
P.: Sensitivity analysis of a process-based ecosystem model:
Pinpointing parameterization and structural issues, J. Geophys.
Res.-Biogeo., 118, 505–528, https://doi.org/10.1002/jgrg.20035,
2013.

Pearce, D. W.: The Economic Value of Forest Ecosystems,
Ecosyst. Health, 7, 284–296, https://doi.org/10.1046/j.1526-
0992.2001.01037.x, 2001.

Petter, G., Mairota, P., Albrich, K., Bebi, P., Brůna, J., Bug-
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