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Abstract: Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are
cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have
been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive
hardware. We aimed to overcome these barriers and programmed an automated grading system for
FP patients utilizing the House and Brackmann scale (HBS). Methods: Image datasets of 86 patients
seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital
Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and
evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm. Results: The
algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the
direct form displayed superior accuracy levels when compared to the modular classification form
(n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in
comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%). Conclusions:
Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness.
Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s
workflow.

Keywords: Bell’s palsy; idiopathic facial paralysis; facial palsy; machine learning; grading systems;
automated grading; artificial intelligence

1. Introduction

As the most common cranial nerve disease, facial palsy (FP) has various aetiologies
with idiopathic forms (Bell’s palsy; BP) accounting for 60–75% of cases [1–3]. FP shows
an annual incidence rate of up to 40 cases per 100,000 population with equal rates in male
and female patients [4–6]. The mean age of onset ranges from 45–56 years of age [7,8].
Depending on the lesion localization, FP can be caused by trauma, or following viral
or bacterial infections (e.g., HSV-1, VZV, Lyme disease), neoplasms, or surgery [9,10].
Additionally, autoimmune diseases, such as Sjögren- or Guillan–Barre syndrome, are
associated with FP [11]. Yet, the exact etiology in acute FP cases remains the subject of
ongoing research [12]. Based on the complex course of the facial nerve and the diverse
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quality of fibers, FP patients may present with a plethora of symptoms including disfiguring
facial asymmetry, involuntary mimic movements, insufficient mouth and lip tonus, as well
as inappropriate emotional expression [10,13]. Further, incomplete eyelid closure leads to
the pathognomonic Bell’s phenomenon (i.e., visible upward and outward movement of
the eye during eye closure) [14]. Whereas loss of the stapedius muscle is associated with
hyperacusis, impairment of the visceral and sensory function of the facial nerve and the
stapedius muscle reduces saliva flow, causes dry eye disease, and results in atypical taste
sensations [5,15]. Besides these physical symptoms, which can even extend to exposure
keratopathy and vision loss, FP patients suffer from social withdrawal and physiological
stress and report decreased quality of life [15–17]. Despite complete remission in 70–80% of
FP patients within the first year after onset, FP symptoms can persist in varying severity
levels and coincide with muscular hypo- and hyperactivity, synkinesis (i.e., involuntary
muscle contractions), or postparalytic facial nerve syndromes [5,9,18].

To trace the time course of FP disease more accurately, FP practitioners differentiate
acute, subacute, and chronic phases of FP [19]. FP guidelines commonly outline the
key role of rapid and reliable diagnosis and treatment decisions for successful disease
control [20]. However, the FP diagnosis is one by exclusion, requiring the investigation
of potential risk factors and eventual medical history of previous FP, but also includes
clinical neurological investigation, lumbar puncture, and blood chemical examination,
as well as diagnostic imaging, such as X-ray or MRI examination [12]. To categorize
the level of nerve damage and facial dysfunction, electroneuromyography and different
clinical as well as computer-aided scoring systems, such as eFACE, can be utilized [21–
23]. Such classification frameworks are valuable tools in the initial examination of FP
patients and in ensuing treatment [11,23]. The six-point House and Brackmann scale
(HBS) comprises scores from I (i.e., physiological facial movements) to VI (i.e., complete
paralysis) and, since its introduction in 1985, has been the most commonly applied FP
grading system [24]. Over the last three decades, more advanced classification systems have
enlarged the FP examiner’s diagnostic repertoire, namely the Sunnybrook facial grading
system, the eFACE system, and the Emotrics platform [25–27]. Implementing more detailed
clinical parameters, the Sunnybrook facial grading system combines robust reliability
and high-level sensitivity [28,29]. Whereas previously mentioned grading systems are
limited by their subjectivity, novel computer-aided assessment tools using machine learning
algorithms for quick and accurate localization of facial landmarks constitute a state-of-the-
art option for objective FP measurements given their high-throughput capacity and digital
availability [23].

FP therapy is multimodally conceptualized [30–32]. The conservative treatment land-
scape for FP ranges from immunosuppressive drug regimens to alternative complementary
therapies, such as acupuncture and physical therapy [33]. Randomized controlled trials
have confirmed the beneficial use of oral corticosteroids in acute FP, yet the clinical effects of
antiviral medication and insulin-like-growth-factor-1, as well as surgical decompression of
the facial nerve, are contentiously discussed [34–37]. By weakening the overactive face-side
to target synkinesis and facial imbalances, Azizzadeh et al., as well as Labbe et al., intro-
duced novel surgical techniques, namely selective modified neurectomy and myectomy [38].
The most common mimic muscles treated with myectomy are the Depressor labii inferioris
and Depressor anguli oris muscles, which hinder a full-effort patient smile. The marginal
mandibular branch of the facial nerve represents the most frequently addressed neural
structure in selectively modified neurectomy [39,40]. Dynamic rehabilitation is considered
the current gold standard in facial nerve rehabilitation including neurotization procedures,
such as direct nerve regeneration, cranial nerve transfer (e.g., masseteric-to-facial nerve
transposition), and cross-face nerve grafts [41–43]. Moreover, patients with long-term (i.e.,
≥18 months after onset) uni- and bilateral facial paralysis may undergo free and regional
(microsurgical) muscle transfer. In particular, masseter nerve-innervated gracilis muscle
transfer yields promising functional and aesthetic outcomes by imitating the function of
the Zygomaticus major muscle [44,45].
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There is no all-embracing guideline, so treatment decisions remain an individual
case-to- case process, in which clinicians have to meticulously assess surgical or medicinal
risks and weigh up aesthetic ideals and functional requirements. Thus, reliable diagnosis
and disease classification are mandatory for effective and substantial treatment selection.
Given the increased necessity for time- and resource-effective clinical workflows, prompt
and reliable grading of FP disease is imperative. Computer-aided FP grading systems are
set to become clinical routine in FP scoring. Therefore, we aimed to develop an easy-to-use,
rapid, and highly reliable automated machine learning algorithm to classify images of FP
patients according to the HBS.

2. Materials and Methods

Image datasets of 86 patients seen at the Department of Plastic, Hand, and Recon-
structive Surgery at the University Hospital Regensburg, Germany, between June 2017
and May 2021 were used to train the neural network. Each case comprised nine images;
these were frontal images of the following nine poses: (1) Face in repose; (2) raising the
eyebrows; (3) smile with mouth closed; (4) full-denture smile; (5) pursing the lips; (6) gentle
eye-closure; (7) forced eye-closure; (8) wrinkling the nose; and (9) depressing the lower lip.

The first pose focused on the facial symmetry at rest, while the second image depicted
the forehead to capture the function and movement of the muscles around the forehead
area (i.e., intentional wrinkling). Eyelid closure was captured statically, and insufficient eye
closure was recognized when the sclera was visible. The facial expressions in the remaining
images showed the mouth in different positions to visualize asymmetries between the two
sides of the face.

The images were divided into two non-overlapping datasets (i.e., training set and
validation set) used either for training the neural networks or evaluating their performance.
Given that classes I, II, III, and V of the HBS were underrepresented in our study popu-
lation, the corresponding images were inserted multiple times into the training data (i.e.,
oversampling) to resolve this imbalance and yield more refined outcomes. The validation
set remained unaltered.

The modular form and the direct form were used to test two different classification
approaches. In the modular form, the different factors of the HBS were considered as single
modules, which are expert systems, each optimized to focus its classification efforts on one
of four key features: Face symmetry, eyelid closure, mouth, and forehead. To improve the
neural network’s performance, (i) the data were pre-processed by first removing irrelevant
image sections (e.g., background, neck, and torso) and (ii) then using marker points to
divide the nine images into subregions that (iii) finally served as input to the modules.

By using an automaton (i.e., a set of rules) or the row sum of the predicted probabilities
per module for each degree of HBS (e.g., symmetry score for HBS I + forehead score for
HBS I + eyelid closure score for HBS I + mouth score for HBS I = row sum for HBS I), the
individual predictions of the four facial modules were combined to predict the HBS value
as output. The direct form assigned an HBS value ranging from I to VI directly to the FP.

Different procedures were utilized to process the patient image series including the
nine aforementioned photos. In the sequential method, the nine patient images were
entered stepwise into the neural networks. By additionally applying Early Fusion means,
the images were joined in advance and inserted into the neural networks as one package.
When performing Late Fusion, each image was assigned its own network for each module.
The evaluation of results was performed based on precision and recall criteria, which
were calculated to obtain the F1-score (i.e., the harmonic mean of precision and recall).
Precision describes the fraction of true positive samples among the samples that the model
classified as positive, while recall/sensitivity is the fraction of samples classified as positive
among the total number of positive samples. Utilizing the Phyton—and Fsolve—program,
approximative values of true positive, true negative, false positive, and false negative were
calculated in order to determine accuracy rates. Rebuilding and comparison of F1-scores
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were performed for control purposes showing deviation values of 0.5–1.5%. The entire
workflow is illustrated in Figure 1.
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Figure 1. Schematic workflow including neural network training and validation process.

3. Results
3.1. Direct Classification Approach Yielded Significantly Enhanced Outcomes

The direct classification form yielded significantly superior results compared to the
modular form in 100% (n = 86) of cases. Further details are summarized in Table 1.
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Table 1. F1-scores compared by classification approach without oversampling.

(A) Processing Method Oversampling F1-Score Accuracy

Module form

sequential no 0.355 0.621
yes 0.330 0.600

Early Fusion no 0.980 0.990
yes 0.967 0.983

Late Fusion
no 0.817 0.900
yes 0.808 0.895

3.2. Early Fusion Showed Refined Results

In comparison to the Late Fusion technique or the sequential method, Early Fusion
yielded significantly refined results (F1-scores: Early Fusion = 1.000 vs. Late Fusion = 0.927
vs. sequential method = 0.914; accuracy scores: Early Fusion = 1.000 vs. Late Fusion = 0.963
vs. sequential method = 0.968) across all samples. An in-depth outcome comparison is
provided in Table 2.

Table 2. F1-scores for module form and direct form for different processing methods, with and
without oversampling for classification on validation set.

(B) Processing Method Oversampling F1-Score Accuracy

Direct form

sequential no 0.884 0.942
yes 0.914 0.968

Early Fusion no 1.000 1.000
yes 1.000 1.000

Late Fusion
no 0.895 0.964
yes 0.927 0.963

3.3. Oversampling Technique Did Not Influence Classification Performance of the Neural Networks

Using the oversampling technique did not significantly enhance the classification
performance, as the maximal positive differences in F1-scores and accuracy achieved by
oversampling were +0.032 (direct form vs. Late Fusion: 0.895 vs. 0.927) and +0.026 (direct
form vs. sequential method: 0.968 vs. 0.942) (Table 2). The maximum negative differences
in F1-scores were −0.025 (module form vs. sequential method: 0.355 vs. 0.330) and in
accuracy were −0.021 (module form vs. sequential method: 0.621 vs. 0.600).

3.4. Combination of Early Fusion and Direct Form Yielded Optimized Classification Scores

F1 and accuracy scores of 1.000 were achieved by combining the direct form with Early
Fusion. In this case, all samples of the validation set were classified correctly, regardless of
whether oversampling was used or not.

3.5. External Databases and Recently Used- (LRU-) Caches Accelerated Runtimes

Processing time was 151 ms for all nine images per patient using external databases
and increased LRU-caches up to 55.

3.6. Direct Classification Approach Yielded Enhanced Outcomes

The direct classification form yielded significantly superior results compared to the
modular form in 100% (n = 86) of cases. Further details are summarized in Table 1.

3.7. System Evaluation with F1-Score and Accuracy

Variables based on recall and precision criteria have been used to evaluate our grading
system in order to make the introduced tool comparable to other state-of-the-art automated
grading algorithms. The original patient data (n = 86) were subdivided into training (75%;
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n = 65) and validation (25%; n = 21) sets, resulting in two different cohorts. Approximative
values of true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
results were calculated by analyzing the validation set after training our algorithm with the
training dataset. The accuracy and sensitivity of the classification system are determined by
the accuracy score and the F1-Score. Both were calculated for different processing methods
(i.e., sequential, Early fusion, Late fusion) in combination with or without oversampling.
The F1-Score is defined by the harmonic mean of precision and recall. Recall measures
the extent of errors caused by FN, whereas precision measures the error caused by FP.
The proximity of measurement results to the true HBS grading value is described as the
accuracy, which was calculated as the proportion of TP and TN in all evaluated cases.

4. Discussion

Over the past decade, technical applications on handheld devices have developed
into an integral part of the clinical workflow across different specialties. Such applications
range from weight-loss support and the management of Diabetes-Mellitus Type II and
hypertension, to app-based diagnosis protocols [46–49]. Particularly in FP patients, timely
and reliable diagnosis is crucial for effective therapy and positive patient outcomes. Prompt
decision-making has been shown to limit permanent sequelae including axonal loss and
muscle atrophy [50,51]. The first 72 h after onset represent the most crucial timeframe in FP
therapy including the diagnostic option of intraoperatively stimulation of the distal facial
nerve segments, as well as the beneficial prescription of corticosteroids [21,52]. Even in this
early disease stage, ocular dryness and insufficient eye closure (i.e., lagophthalmos) can
induce corneal microlesions finally resulting in keratitis, corneal ulceration, and permanent
vision loss [53–55]. Here, the implementation of automated FP grading algorithms in the
clinical workflow, as well as in home-diagnosis for laypersons, can increase time-efficient
disease evaluation in order to ensure timely treatment initiation [56]. Our machine learning
(ML) algorithm may also address the persisting undertreatment of FP patients who face
waiting times of several months and insufficient referral to specialized care—only 7% of
patients are reported to be referred to specialized care [57]. Utilizing our approach as a
first-gate strategy, the necessity for timely evaluation by FP specialists can be better gauged,
limiting medical resource wastage.

The proposed ML algorithm is compatible with both thick client systems (i.e., a
networked computer system with most resources installed locally) and thin clients (i.e.,
a networked computer system with most resources distributed over a network), which
offers the advantages of low maintenance costs, simple usage, and widely available access
on Android and IOS operating systems. Consequently, a mobile-based application of
our approach can be realized without complex and expensive hardware, in contrast to
standard clinical intervention systems [58]. Each measurement tool required, such as
the camera and processor, is already included in a conventional mobile phone, so the
possibility of visual self-diagnosis of laypersons and clinicians with minimal experience
in FP treatment/diagnosis comes into clinical reach [59]. Moreover, the omnipresence of
various mobile devices, as well as our highly accurate algorithm free of development costs,
make the automated grading system a promising low-budget and easy-to-use application.

The HBS is still the most commonly used clinical grading scale for FP patients in
the US [60]. Yet, the emergence of other classification systems indicates the need for
more (technologically) advanced platforms [61]. Our algorithm builds upon the clinically
established HBS and automatizes the workflow toward a high-throughput system yielding
reliable outcomes. Further, we overcome the ongoing challenge of subjective clinical
FP scoring, caused by variedly trained or skilled clinicians and by a broad scope for
interpretation. Our objective automated assessment tool may allow for clinician staff
release, reduction in misdiagnoses, interindividual comparability, and consistency in FP
scoring [62,63]. Indeed, an app-based version of our algorithm would be the first of its
kind in the clinical classification process of FP [49,64]. In contrast to maintenance and cost-
intensive measurement tools for clinical diagnosis, laser speckle contrast imaging (LSCI)
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and detailed 3-dimensional recording RGB-D cameras, let alone 3D-based techniques,
we aimed for cost-efficiency, as well as layperson-friendly usability for patients at home,
private practices, and clinics [57,64,65]. Consequently, efficient FP monitoring, as well as
the prevention of recurrent FP, in- and outside of clinical institutions and private practice
can be realized.

The outputs of neural network measurements showed further benefits versus algo-
rithms that recognize action units (AU) qualified by the Facial Action Coding System
(FACS) [66]. Such systems require tedious recording procedures. For example, the 1992-
developed OSCAR-system necessitates a 20-min video recording for FP assessment [67,68].
Furthermore, in 1999, Frey et al. introduced a computer-aided system for FP assessment
that requires analysis durations of more than three hours per patient (including manually
patient marking, video recording and processing, and data analysis with Facialis soft-
ware), and the results have been tracked with an accuracy of nearly 99% [69]. In contrast,
the proposed approach allows for saving single images in a cache to achieve real-time
computation in outputs, as well as time-efficient diagnosis options in the hectic clinical
routine. We can, therefore, ensure decreased computational costs due to the implementa-
tion of external databases or last recently used- (LRU-) caches [70]. The processing time
of 151 ms is comparable to the processing time reported by Haase et al. (108 ms) who
used low-dimensional AAM-parameters as features instead of high-dimensional descrip-
tions [66]. Alternative evaluation concepts, such as the Facegram 3D and the mentioned
3-Dimensional Video System by Frey et al., perform FP assessment via clinician-marked
anatomical landmarks [65,69]. Yet, utilizing anatomical landmarks for the assessment of
facial functions entails the risk of subjective and random landmark positioning. With our
marker-free evaluation system, we reduce inter- and intraobserver variability and promote
reproduceable results [71]. The present automated scoring system is trained to recognize
the accurate FP degree scoring only nine images, which benefits user-friendly performance
and suitability for a routine examination, taking into consideration that it is much easier
(and faster) to take nine standardized photographs than reproducible videos.

Compared to previously proposed automated FP grading systems, our algorithm
yields an optimal accuracy of 100% in the early fusion mode. Previous research work
on Active Appearance Models (AAMs) reported accuracy levels of 88% and up to 94%
utilizing Multiresolution Local Binary Patterns (MLBP) [71,72]. The present algorithm
also outperformed state-of-the-art interventions, such as the concept proposed by Azuma
et al. yielding accuracy values of 97% [64,70]. A 2018 study featuring convolutional neural
networks (CNNs) calculated accuracy values between 89 and 96%, depending on the
identification of different FP severity degrees [73].

There are three main prerequisites in FP evaluation: (1) Time-efficiency, (2) robust
inter- and intraobserver reliability, and (3) user-friendly application. When combining these
attributes, the implementation of an application based on the proposed ML algorithm can
easily be translated into a clinical reality. Further, the algorithm can be directly integrated
into broader mobile Health (mHealth) applications, which associate FP classification as part
of a universal examination protocol gathering information on various clinically relevant
parameters (e.g., sleep tracking, nutritional scores, and psychological wellbeing). This
dataset may provide a comprehensive picture of the patient’s status and allow for more
refined therapy decisions. In this project, we aimed for a novel method of ML-based FP
classification accumulating all relevant benefits of a real-world automated examination tool.

In summary, our algorithm may enlarge the FP surgeon’s diagnostic arsenal commonly
consisting of clinical examination, blood tests, and diagnostic imaging [11,74,75] (Figure 2).
In the preoperative setting, our algorithm may help to reduce overall waiting times for
FP patients by accelerating the FP surgeon’s workflow. In the senior author’s experience,
thorough grading of FP patients based on the HBS can take up to five minutes or even
longer in complex FP patient subsets (e.g., neurofibromatosis patients). It is not unusual for
FP specialists to examine more than 30 FP patients per day. The algorithm could sufficiently
perform this task. Given the structured simplicity of our model, the classification process
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could be assigned to technical assistants, saving the FP surgeon even more work time. This
way, FP surgeons could dedicate more time toward individualized patient information.
Intraoperatively, the algorithm may enable direct objective measurements. Based on these
measurements, FP surgeons could, for example, readjust the placement of free muscle
transplants before final wound closure to ensure feasible postoperative outcomes. In
the postoperative follow-up, our algorithm could provide objective and intercomparable
evaluations (theoretically even in the hand of FP patients). For interdisciplinary treatment
in FP therapy, the objective classifications of our algorithm could serve as a common ground
and facilitate joint therapeutic efforts.
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5. Limitations

The results of this study ought to be interpreted in light of the following limitations.
In our patient population, severe degrees of FP diseases were more prevalent than minor
FP cases. However, we included the most common typical scenarios to generate a repre-
sentative patient cohort and performed oversampling to balance the neural network input.
Furthermore, our patient sample was limited to 86 individuals with FP. While this sample
size allows for reliable proof of principle, further larger-scale studies would elucidate the
strengths and limitations of the present algorithm. Over the four years of data collection,
the authors have made consistent efforts toward uniform photographic documentation.
New cameras for patient image documentation were purchased in 2021. Yet, it is unlikely
that the marginal differences in the high-quality patient images of different cameras may
have influenced the algorithm output since each patient image was computed using stan-
dardized pixel sizes (e.g., 640 × 300 for the oral region). In comparison to other models
we developed for the purpose of automated grading, we anecdotally found the algorithm
of the present study to outperform the other models. Yet, such performance differences
remain to be corroborated in larger-scale studies.

6. Conclusions

We present an ML-based and easy-to-use evaluation tool for FP with high classification
accuracy and rapid automated grading of FP images. This combination is a promising step
toward optimized FP diagnosis.
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