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ABSTRACT

Comprehending the interplay between spatial and temporal characteristics of neural dynamics
can contribute to our understanding of information processing in the human brain. Graph
neural networks (GNNs) provide a new possibility to interpret graph-structured signals like
those observed in complex brain networks. In our study we compare different spatiotemporal
GNN architectures and study their ability to model neural activity distributions obtained in
functional MRI (fMRI) studies. We evaluate the performance of the GNN models on a variety
of scenarios in MRI studies and also compare it to a VAR model, which is currently often used
for directed functional connectivity analysis. We show that by learning localized functional
interactions on the anatomical substrate, GNN-based approaches are able to robustly scale
to large network studies, even when available data are scarce. By including anatomical
connectivity as the physical substrate for information propagation, such GNNs also provide a
multimodal perspective on directed connectivity analysis, offering a novel possibility to
investigate the spatiotemporal dynamics in brain networks.

AUTHOR SUMMARY

In our study we compare different spatial and temporal modeling techniques based on graph
neural networks (GNNs) for investigating the spatiotemporal dynamics in brain networks. We
show that a convolutional neural network and a recurrent neural network–based approach are
both very suitable to capture the temporal characteristics in functional activity distributions.
Further, we demonstrate that structural connectome embeddings can effectively reduce the
number of parameters in GNN models, by naturally including higher order topological
relations between brain areas within the structural network. We compare the prediction
accuracy of the GNN-based approaches to a vector autoregressive model, and we show that
GNNs remain considerably more accurate when brain networks become large and available
data are limited. Finally, we demonstrate how these spatiotemporal GNN models can provide
a multimodal perspective on directed connectivity in brain networks.
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INTRODUCTION

Distinct concepts of brain connectivity can provide different but complementary aspects of
information processing in the brain (Lang, Tomé, Keck, Górriz-Sáez, & Puntonet, 2012). On
the one hand, imaging modalities like functional magnetic resonance imaging (fMRI) allow
us to temporally resolve dynamic neural activity patterns in distinct spatial locations in the
human brain. Different statistical approaches that describe the coherency of activity profiles
in brain networks have been proposed based on the notion of functional connectivity (FC). On
the other hand, diffusion tensor imaging (DTI) can provide insights into the structural and rel-
atively static aspects of the brain. By reconstructing white matter tracks from DTI data, the
anatomical or structural connectivity (SC) between different brain areas can be estimated.
Also, directed and potentially causal relationships between regions become of interest in fMRI
and are studied with respect to directed functional or effective connectivity. The latter is most
often inferred from Granger causality or dynamic causal modeling (Bielczyk et al., 2019;
Friston, Moran, & Seth, 2013).

Based on these concepts, spatial and temporal relationships between brain areas can be
represented by graphical models, which have recently received increasing attention in the
field of machine learning (Bronstein, Bruna, LeCun, Szlam, & Vandergheynst, 2017; Wu
et al., 2021). So-called graph neural networks (GNNs) allow us to effectively process signals
in the non-Euclidean geometry of graphs, providing also novel possibilities for applications in
brain connectivity research (Arslan, Ktena, Glocker, & Rueckert, 2018; Kim & Ye, 2020; Ktena
et al., 2018; X. Li et al., 2019; Rosenthal et al., 2018; Wein, Malloni, et al., 2021). Given a
decomposition of the brain into specified areas, their spatiotemporal neural activity patterns
can be interpreted as graph-structured signal distributions. Nodes in brain networks can be
associated with variables like the temporal neuronal activity of neuron pools, while edges
in such networks reflect the strength of interactions between neural populations (Bullmore
& Bassett, 2011). As proposed in our recent study (Wein, Malloni, et al., 2021), these complex
signals exhibited in non-Euclidean geometries can be processed with a variant of GNN
denoted as spatiotemporal graph neural network (STGNN). Such STGNNs can allow us
to simultaneously model spatial and temporal dependencies in such graph structured signals
and thereby provide a new possibility to combine DTI with fMRI data. Activity propagation–
based approaches made already various interesting contributions to brain connectivity
research, and could, for example, explain how resting-state FC (Cole, Ito, Bassett, & Schultz,
2016) or SC (Yan et al., 2021) are related to cognitive task activations observed in task-based
fMRI. Moreover, they could give us insights into what way the hierarchical organization of
the brain is related to the propagation of information along structural connections (Vézquez-
Rodríguez, Liu, Hagmann, & Misic, 2020). In our study, we compare different approaches
based on GNNs to study the spatiotemporal propagation of information in brain networks from
a multimodal and data-driven perspective.

Recently, several different GNN architectures have been proposed to model the flow of
information across time and space in graphical signals (Wu et al., 2021). Convolution opera-
tions, often applied in deep learning, have recently been extended successfully to graphical
models and allow us to capture inherent spatial dependencies on non-Euclidean network
structures (Defferrard, Bresson, & Vandergheynst, 2016). They were later combined with recur-
rent neural networks (RNNs) (Rumelhart, Hinton, & Williams, 1986), which can detect sequen-
tial relations in signals. This combined spatiotemporal GNN framework was proposed in the
notion of diffusion convolution recurrent neural network (DCRNN) (Y. Li, Yu, Shahabi, & Liu,
2018). However, RNNs can have problems with long time series and, when combined with

Graph neural network:
A type of artificial neural network
that is used to extract features from
data with graph-like geometries.

Convolution:
Denotes in the context of artificial
neural networks a discrete
mathematical convolution operation
of the input of a neural network layer
with a localized filter kernel,
whereby the filter kernels are learned
during neural network training.

Deep learning:
Learning in an artificial neural
network that includes multiple
hidden representations of the neural
network input.
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graph convolution operations, their gradients are more likely to explode (exploding gradients)
or vanish (vanishing gradients) (Y. Li et al., 2018; Seo, Defferrard, Vandergheynst, & Bresson,
2018). This was the motivation for introducing approaches that combine spatial graph convo-
lutions with standard one-dimensional temporal convolutions (Wu et al., 2021). But their
receptive field size can only grow if many hidden layers are used (linear growth) or global
pooling is applied. To alleviate such shortcomings, so-called WaveNets (WNs) have been
introduced that employ stacked dilated temporal convolutions, which provide a long-term
temporal memory (van den Oord et al., 2016). They have recently been combined with graph
convolution operations in an architecture denoted as graph WaveNet (GWN) (Wu, Pan, Long,
Jiang, & Zhang, 2019). As an alternative method for the temporal processing, also attention
mechanisms have been recently included in STGNN architectures (Zheng, Fan, Wang, &
Qi, 2020). Attention mechanisms select, from all inputs, information that is critical to the task
at hand and modify edge connection strengths accordingly. They have been applied already to
natural language processing, speech recognition, and image processing (J. Liang et al., 2019;
Vaswani et al., 2017; K. Xu et al., 2015), but applications to analyze the dynamics in neural
signals are still missing. In this study we compare these different STGNN architectures with
each other and evaluate their effectiveness in replicating functional activity distributions
observed in brain networks. In addition to these distinct temporal models, we study different
approaches to model the spatial information exchange between brain regions. At first we
employ the structural connectivity as the substrate for information propagation between brain
regions. Further, we evaluate the effectiveness of employing connectome embeddings (CEs) of
the anatomical network to characterize the node relations. In a recent study, Rosenthal et al.
(2018) have shown that embeddings of nodes in the anatomical network can inherently
capture higher order topological relations between different structurally connected nodes in
this network. Finally, we compare it to the case when we incorporate no predefined spatial
layout into the GNN models, trying to learn the spatial structure by gradient descent–based
optimization during model training. We demonstrate that by modeling the functional informa-
tion exchange between regions in STGNNs based on structural connectivity, we can signifi-
cantly increase the accuracy of predicting future neural signals. This points out that STGNN
models are capable of learning informative functional interactions between areas in such brain
networks. Based on these different comparisons, we at first try to identify the most effective
STGNN architectures to investigate such spatial and temporal dynamics in brain networks.

In a subsequent step we then compare this STGNN-based approach to a currently popular
data-driven model for characterizing directed functional information exchange in brain net-
works. Until now, methods for the inference of directed functional or effective connectivity
are often based on Granger causality (Barnett & Seth, 2013) or dynamic causal modeling
(Friston et al., 2013) and its recent extensions (Frässle et al., 2018; Prando et al., 2020). In
addition various algorithmic and information theory–based methods have been developed
meanwhile in this field (Bielczyk et al., 2019; Ramsey, Hanson, & Glymour, 2011). In the
following, we compare the performance of the STGNN prediction models to the forecasting
model most often used in Granger causality analysis (Barnett & Seth, 2013). Granger causality
is based on the idea that if one event Awould cause another event B, then A should precede B
and the occurrence of event A should contain information about the occurrence of event B
(Friston et al., 2013). In the context of neuroimaging, this is realized in a predictive framework,
by testing if adding information on activity in a region A improves the prediction of activity in
region B. For practical applications of this idea, the underlying predictive model in Granger
causality is usually based on a vector autoregression (VAR) for multivariate time series infer-
ence (Barnett & Seth, 2013; Bielczyk et al., 2019; Friston et al., 2013). In a brain network with

Graph convolutions:
Denotes a discrete convolution
operation generalized to the non-
Euclidean geometry of graphs.
Similar to classical convolution
operations in CNNs, they entail
principles like sparse interactions
and parameter sharing.

Exploding gradients:
Describes the phenomenon when the
gradients of the neural network
model weights grow excessively
during backpropagation learning.

Vanishing gradients:
Describes the phenomenon when the
gradients of the neural network
model weights become very small
during backpropagation learning.

Receptive field:
Denotes the area in the artificial
neural network input a neuron is
(possibly via multiple layers)
connected to.

Spatial information exchange:
Describes in the context of
spatiotemporal graph signal
processing the exchange of
information along the edges of a
graph signal.
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N regions of interest (ROIs), the parameters in a VAR model grow with N2, so for larger brain
networks it can be challenging to accurately fit the model if only limited data are available.
This can be problematic in fMRI, where the temporal sampling rate is relatively low, while its
good spatial resolution would allow for a detailed, high-resolution network analysis. Therefore
it would be desirable to have a predictive model that can learn interactions between all brain
areas of interest and, in addition, naturally scales to larger brain networks. In our study we com-
pare the STGNN approaches to a classical VAR model and test their accuracy on a variety of
network sizes and data set sizes. We show that by learning localized functional interactions
based on the anatomical network, the prediction accuracies of STGNN models remain signifi-
cantly more accurate, even when brain networks become very complex and only limited data
are available to fit the models. This points out that the STGNN approaches are robust among a
large variety of MRI study scenarios, and are therefore also suitable for the analysis of smaller
subject cohorts, like in studies of patients with rare neurological diseases.

Finally, we analyze the spatial interactions between brain regions, which are learned by the
STGNN models. By integrating prior knowledge on the brain anatomy in form of structural
connectivity or based on connectome embeddings, such models can provide multimodal
perspective on directed relations between brain areas. So far, a variety of approaches were
proposed to study the structure-function relation in the human brain (Suárez, Markello, Betzel,
& Misic, 2020), which are based on computational modeling (Chen & Wang, 2018; Deco
et al., 2013; Deco, Senden, & Jirsa, 2012; Honey et al., 2009; Messé, Hütt, König, & Hilgetag,
2015; Messé, Rudrauf, Benali, & Marrelec, 2014), graph theory (Abdelnour, Dayan, Devinsky,
Thesen, & Raj, 2018; Becker et al., 2018; H. Liang & Wang, 2017; Lim, Radicchi, van den
Heuvel, & Sporns, 2019), and machine learning (Amico & Goñi, 2018; Deligianni, Carmichael,
Zhang, Clark, & Clayden, 2016; Rosenthal et al., 2018; Sarwar, Tian, Yeo, Ramamohanarao, &
Zalesky, 2021). Biophysically inspired models, for example, could describe how functional
connectivity patterns emerge from neural dynamics with static couplings characterized by
anatomical connections (Deco et al., 2013; Honey et al., 2009; Messé et al., 2014), and were
recently used to also study spatial heterogeneity of local circuit properties across the cortex
(Demirtaş et al., 2019; P. Wang et al., 2019). Methods from graph theory can supplement such
computational frameworks by specifically pointing out how indirect structural connections
contribute to the inference of FC strength (Becker et al., 2018; H. Liang & Wang, 2017). Also,
hybrid methods could demonstrate that the typology of structural brain networks supports in
neuromorphic networks their memory capacity (Suárez, Richards, Lajoie, & Misic, 2021). Such
insights into structural and functional connectivity can then provide a basis to better under-
stand the cognitive information processing in the human brain (Ito, Hearne, Mill, Cocuzza, &
Cole, 2020). The vast majority of studies on structure-function relations focuses currently on
inferring overall FC patterns from their SC, although static coherency–based measures of FC
might have limitations in their ability to capture the rich nature of dynamic brain activity
(Wein, Deco, et al., 2021). To the contrary, STGNNs are able to directly predict the measured
BOLD dynamics, and their interactions between brain regions, without relying on the indirect
representation of functional dynamics based on coherency. This characteristic of STGNNs
allows us to additionally investigate the structure-function coupling in brain networks from
a novel perspective. To study this relation further on the individual brain region level, we
demonstrate how a perturbation-based approach can be utilized to reconstruct how dynamic
functional interactions are mediated by their structural substrate in STGNN models. By infer-
ring how information is propagated between individual regions in STGNNs, these predictive
models have the potential to reveal directed relationships between individual areas in brain
networks from a multimodal perspective. In general, due to the low temporal sampling rate
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and physiological artifacts, fMRI can have several limitations in detecting directed relations in
brain networks (S. M. Smith et al., 2011; Webb, Ferguson, Nielsen, & Anderson, 2013). Still,
some recent fMRI studies and computational simulations could demonstrate that also
lag-based methods like Granger causality can be useful for detecting such directed dependen-
cies in fMRI data (Duggento et al., 2018; Mill, Bagic, Bostan, Schneider, & Cole, 2017; Seth,
Chorley, & Barnett, 2012; H. E. Wang et al., 2014).

The possibility to combine structural and functional imaging data in STGNNs can make
these models as well interesting for several practical applications in brain connectivity
research. For instance, they can be used to investigate differences in the structure-function
relationship between resting-state and task-based fMRI. Furthermore, in clinical applications
these models could be employed to study how lesions in the structural connectome affect the
functional organization of the brain network. In our current study we compare, therefore, such
mechanisms for spatial and temporal modeling in STGNNs, with the objective to establish
their methological foundation for brain connectivity research, and thereby providing a basis
for future applications of STGNNs in multimodal neuroimaging studies.

RESULTS

Graph Neural Network Models

In our context of MRI, the goal of the spatiotemporal GNNs will be to forecast the observed
BOLD signal as accurately as possible in order to precisely capture the spatiotemporal dynam-
ics of the underlying mechanisms in the brain. The learning objective can be formalized by
introducing a graph signal x(t ) 2 ℝN, representing the BOLD signal measured at time step t in N
different brain regions. The goal of the models is to predict from an input sequence of Tp past
neural activity states t = 1, . . ., Tp a sequences of future states t = 1, . . ., Tf . In addition to the
temporal information, also spatial dependencies are included in the GNN architectures. The
spatial relations between the N brain regions can be represented in the notion of a graph G =
(V, E, Aw), containing vertices (nodes) V, with |V| = N, and edges E. The structure of the graph
is characterized by a weighted adjacency matrix Aw 2 ℝN×N, where an entry wnn0 describes the
connection strength between brain region n and n0. An illustration of such a graphical repre-
sentation of a dynamic brain state is provided in Figure 1. Based on this concept, the task of the

Figure 1. The spatiotemporal representation of a signal in a brain network is illustrated. The temporal component of the graph-like signal is
given by the BOLD signal x(t) 2 ℝN in N brain regions sampled at different timesteps t, as shown on the left side. The strength of the edges in the
brain network are defined by a weighted adjacency matrix Aw 2 ℝN×N, as illustrated on the right side. One entry wnn0 of the matrix Aw char-
acterizes thereby the spatial relation between brain region n and n0 in the network.
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GNN models is to derive a function h(·) that best predicts Tf future activity states from an input
sequence of Tp past states:

x 1ð Þ; . . . ; x Tpð Þ;G
h i

→
h :ð Þ

x Tpþ1ð Þ; . . . ; x TpþTfð Þh i
(1)

Until now various spatiotemporal GNN architectures have been proposed to account for
spatial and temporal dependencies of such graph structured signals (Wu et al., 2021). An over-
view of different possibilities for the temporal modeling is given in Figure 2A. In time series

Figure 2. Overview on the different techniques used by spatiotemporal GNNs to learn the spatial and temporal dynamics in brain networks.
The temporal component of the STGNN tries to infer dependencies between the activity at different timesteps t = 1, 2, 3, . . . in a certain brain
region n, as illustrated in A. A recurrent neural network (RNN) architecture processes in a recursive manner the activity states at the different
time steps t (A1). In our study, this principle will be implemented in an RNN-based sequence-to-sequence architecture for time series fore-
casting. As an alternative, convolutional neural network (CNN) architectures employ one-dimensional convolutions in the time domain (A2).
This idea is picked up in the WaveNet (WN) architecture, which introduces dilated convolutions to obtain exponentially growing receptive
fields, as highlighted here in green. Following the idea of an attention mechanism, temporal relevance scores can be dynamically computed to
weight the importance of a temporal feature observed at time step t (A3). A temporal attention (TAtt) based architecture is thereby composed of
a multitude of stacked attention layers. Based on these temporal modeling approaches, STGNNs additionally detect spatial dependencies
between a node n and other interconnected nodes in the brain network, as illustrated in B. The substrate for the spatial interactions can
be based on the structural connectivity matrix ASC, as reconstructed from DTI data (B1). Alternatively, the node2vec algorithm can be used
to detect higher order relationships between brain regions in the structural connectome, for characterizing the spatial similarity based on
connectome embeddings ACE (B3). Finally, spatial connections can be tried to be learned by the model itself, by freely adapting the edges
in an adjacency matrix AAdap at different iterations i, i + 1, i + 1 . . . during the model training (B2).
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analysis, recurrent neural networks (RNNs) (Rumelhart et al., 1986) provide one efficient way to
detect patterns in sequential data structures, like in our context the BOLD signal, subsequently
sampled at different time steps t (Figure 2A1). This approach can be extended to a RNN-based
sequence-to-sequence architecture, whereby an encoder recursively processes an input
sequence of Tp past neural activity states x(t ) and encodes the temporal information into a hid-
den stateH(Tp ) (Sutskever, Vinyals, & Le, 2014). Next, a decoder network uses the information in
H(Tp ) to generate a prediction for Tf future activity states. To account for vanishing gradients
during training, the encoder and decoder consist of gated recurrent unit (GRU) cells (Chung,
Gulcehre, Cho, & Bengio, 2014). An alternative for detecting repetitive patterns in sequential
data is provided by convolutional neural networks (CNNs) (Figure 2A2). By employing one-
dimensional convolutions in the time domain, they are used in our context to process temporal
dynamics of neural activity. To more efficiently capture long-term dependencies in temporal
data the WaveNet (WN) architecture has been proposed (van den Oord et al., 2016). This
model introduces dilated causal convolution operations to generate a large receptive field
when using only relatively few network layers, which alleviates the processing of long temporal
input horizons. The growth of the receptive field of a neuron (marked in green) in a WN layer is
illustrated in Figure 2A2. More recently, also attention mechanisms have been proposed to
detect underlying hidden correlations in sequential data structures (Vaswani et al., 2017). In
time series analysis, the idea of a temporal attention (TAtt) architecture is thereby to adaptively
focus on the most important temporal features in a sequence (Figure 2A3).

These different fundamental approaches for temporal dependency modeling have been
recently combined with techniques to additionally capture spatial relationships in graph struc-
tured signals (Y. Li et al., 2018;Wu et al., 2019; Zheng et al., 2020). Graph convolutional neural
networks can be incorporated to model the propagation of information between adjacent nodes
in the graphical representation of the signal (Defferrard et al., 2016). The neighborhoods of the
vertices/nodes V in the network are characterized by the adjacency matrix Aw. In our study we
additionally investigate different possibilities for defining the spatial layout for the information
propagation between brain regions, as illustrated in Figure 2B. As a first choice for the adja-
cency matrix, we will employ the structural connectivity ASC between the N brain areas, as
it could be reconstructed from DTI data (Figure 2B1). This choice is motivated by the idea that
white matter connections obtained from this modality would establish the anatomical back-
bone for information exchange between brain areas. In a recent study, Rosenthal et al.
(2018) demonstrated that connectome embeddings (CE) can be utilized for projecting the struc-
tural connectome into a continuous vector space, which captures meaningful correspondences
between different brain areas. This technique can thereby allow us to additionally account for
long-range and interhemispheric homotopic connections, which are usually only weakly
expressed in DTI-based anatomical connectivity (Thomas et al., 2014). In our study, we utilized
this technique to represent the edge weight wnn0 in the adjacency matrix as the similarity
between the vector representations of two nodes n and n0, which will be denoted as ACE

(Figure 2B3). The information is accordingly propagated between brain regions that possess high
similarity based on their neighborhood role within the anatomical network. Finally, we compare
these techniques to the case when the model is given the freedom to learn spatial dependencies
between the N regions itself. In this setup, the adjacency matrix is represented by a self-adaptive
matrix AAdap 2 ℝN×N, which is learned during the model optimization (Figure 2B2). A detailed
formal description of the model architectures and the training involved is outlined in theMaterials
and Methods section. In the following, we will assess the effectiveness of the different spatial and
temporal modeling approaches by comparing their predictive performance on an MRI dataset
from the Human Connectome Project (HCP) (Van Essen et al., 2013).
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Data Description

For the different evaluations in this study, resting-state fMRI data provided by the HCP S1200
release was incorporated (S. M. Smith et al., 2013). To define the nodes of the brain network,
the multimodal parcellation proposed by Glasser et al. (2016) was applied, which is composed
of 180 segregated regions within each hemisphere. The average of the BOLD signal was
computed within each brain region, so for each resting-state session, N = 360 time courses
were obtained (180 per hemisphere). During one session, T = 1,200 fMRI images were col-
lected, so that the ROI time series can be represented by a data matrix X 2 ℝN×T. We filtered
the resting-state fMRI time series data with a 0.04–0.07 Hz Butterworth band-pass filter,
because this frequency band has shown to be most reliable and functionally relevant for gray
matter activity (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; B. B. Biswal, Yetkin,
Haughton, & Hyde, 1995; Buckner et al., 2009; Deco, Kringelbach, Jirsa, & Ritter, 2017;
Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012).

For learning the predictions of the BOLD signal, samples of input and output sequences
were generated from the time series data in X (Wein, Malloni, et al., 2021). This was achieved
by selecting windows of length Tp to obtain input sequences of neural activity states [x(1), . . .,
x(Tp )], and respective target sequences of length Tf denoted as [x(Tp+1), . . ., x(Tp+Tf )]. The time
index t was propagated through each fMRI session, where in total T − Tp − Tf + 1 input-output
pairs were generated per session. For each fMRI session, the first 80% of those time window
samples were used as the training data for the models, the subsequent 10% as a validation set,
and the last 10% were employed for testing. For the following comparisons, the length of the
input and output sequences were selected to be Tp = Tf = 60, which corresponds to a time
span of roughly 43 s, based on a sampling interval of TR = 0.72 s (Uğurbil et al., 2013). This
time window has been shown to be long enough to be sufficiently challenging for the models
and to make clear the differences in their performance. Likewise, the time window of 60 time
points is short enough for them to make reasonable nonrandom forecasts of the BOLD signal.

In addition to the functional dynamics in the different brain regions derived from fMRI, the
structural connectivity between those regions was reconstructed from DTI data. For this pur-
pose, the DTI dataset in the HCP S1200 release was processed using the multishell, multitissue
constrained spherical deconvolution model (Jeurissen, Tournier, Dhollander, Connelly, &
Sijbers, 2014), made available in the MRtrix3 software package (Tournier et al., 2019). White
matter tractography was performed to estimate the anatomical connection strength between
the regions defined by the multimodal parcellation atlas (Glasser et al., 2016). The number of
the streamlines that connect two atlas regions was used to determine the structural connectiv-
ity values between the N brain regions, which were then collected in a structural connectivity
matrix ASC 2 ℝN×N. A detailed description of the MRI datasets and their preprocessing is pro-
vided in the Dataset section. In addition, the embeddings of the nodes within the structural
network ASC 2 ℝN×N were generated using the node2vec algorithm (Grover & Leskovec,
2016). The parameters for this algorithm are outlined in detail in the Spatial Dependencies
section, and further Pearson correlation was used to quantify the degree of similarity of struc-
tural nodes in their connectome embedding space. The pairwise similarities between the N
nodes were then collected in the matrix ACE 2 ℝN×N.

Comparison of GNN Architectures

Before evaluating the performance of different models on a larger variety of MRI study scenar-
ios, we will first focus on the effects of different temporal and spatial modeling techniques. For
this purpose, a dataset with a sample size of a medium-sized fMRI study including 25 subjects
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will be incorporated. Each resting-state fMRI session was decomposed into pairs of input and
output samples, as discussed in the Data Description section, and the generated training, val-
idation, and test samples were then aggregated across the 25 fMRI sessions. The neural signal
in regions within the right hemisphere (Glasser et al., 2013), consisting of N = 180 ROIs, will
be included in the following comparison. At first we evaluate the prediction accuracy of the
different temporal modeling strategies. For this purpose, we compare the recurrent neural net-
work (RNN) model, with the WaveNet (WN) model and the temporal attention (TAtt) model.
The influence of the model hyperparameters, which are used in the following comparisons,
are described in the Model Training section and discussed in detail in Supporting Information I.
The BOLD signal data was scaled to zero mean and unit variance for the evaluations, to
obtain values of a magnitude that are easier to interpret. Figure 3A shows the test mean abso-
lute error (MAE) between the predicted and the true neural activity. By generating windowed
input-output pairs of activity values from the fMRI data, the last 10% of samples from each
session correspond to 108 of such input-output pairs per session for testing, each containing
60 output time points (corresponding to roughly 43 s of activity). The overall test errors were

Figure 3. (A) A comparison of different modeling strategies for temporal dynamics in the BOLD signal, comparing the test MAE of the recur-
rent neural network (RNN), the WaveNet (WN), and the temporal attention (TAtt) architecture. The overall test error was computed as an
average across samples, brain regions, and subject sessions. The error bars represent the standard deviation of the test MAE across subjects.
Due to their high accuracy in the temporal domain, we focus on RNN- and WN-based approaches for forecasting the spatiotemporal dynamics
in the following. Spatial relations are added to the temporal models in form of graph convolutions, and the spatiotemporal extension of the
RNN and WN models are respectively denoted as diffusion convolution recurrent neural network (DCRNN) and graph WaveNet (GWN) (Y. Li
et al., 2018; Wu et al., 2021). Spatial transitions are based on the relations of network nodes captured in a weighted adjacency matrix, which is
either based on structural connectivity (ASC), connectome embedding similiarity (ACE), or adapted during model training (AAdap). In (B) the
adjacency matrix ASC based on structural connectivity within the 180 regions of the right hemisphere is illustrated, together with the adjacency
matrix ACE derived from structural connectome embedding similarities. The regions in this illustration are ordered according to the atlas pro-
posed by Glasser et al. (2016). (C, D, and E) Prediction accuracies of the DCRNN and GWN model in dependence of the walk order K. In (C)
the overall test MAE is shown when incorporating the SC as an adjacency matrix ASC, (D) illustrates the test MAE when employing CEs in an
adjacency matrix ACE to define spatial relationships, and (E) displays the case when using a self-adaptive weight matrix AAdap.
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computed as the average across all these test samples from the 25 subjects and across all 180
brain regions. The comparison shows that RNN and WN have very similar capabilities in
predicting the BOLD signal, while the TAtt model exhibits a worse performance. To test
the significance of this difference between the models, we further computed the test MAE
of each individual subject as an average across predicted time points, brain regions, and test
samples per subject. By applying a paired t test, the differences between the WN and RNN
model to the TAtt model were shown to be both highly significant with p ≤ 0.0001 across
subjects (Cohen’s d = 10.68 and d = 10.66, respectively). In addition to the MAE, we eval-
uated these models in Supporting Information III using scale-free measures like R-squared (R2)
and the similarity of the predicted FC states. Despite their conceptual differences, the results
show that the RNN- and WN-based approach can both recover a comparable and consistent
amount of temporal information from the fMRI data. In comparison to these, the TAtt archi-
tecture appears to be less suitable to accurately predict the BOLD signal with this limited
amount of data. For this reason, in the following we will focus on RNN- and WN-based
approaches for identifying suitable models to model functional dynamics in brain networks.

In the next step, we will study the impact of adding information on spatial relations between
the different regions in the brain network. This will be implemented by invoking graph con-
volution operations in the predictive models, as outlined in detail in the Spatial Dependencies
section. The definition of an adjacency matrix determines how information is propagated
between the different nodes in our brain network, and in our evaluations we investigate three
conceptually different possibilities. In the first approach we use the structural connectivity as
derived from DTI as the substrate for information exchange between different ROIs. The SC-
based adjacency matrix ASC is illustrated in Figure 3B. The information can propagate along
direct connections in the graph (K = 1), but also higher orders (K = 2, 3, . . .) expressing the
influence of indirect connections can considerably contribute to interactions between different
areas in the brain (Becker et al., 2018; Bettinardi et al., 2018; H. Liang & Wang, 2017). Awalk
order of K = 0 denotes the case when including no spatial information exchange between
network areas, exclusively incorporating temporal information for the predictions. Figure 3C
depicts the test MAE in dependence of the walk order K when using the SC derived from DTI
as a basis for information propagation in space. The RNN-based model in combination with
graph convolution operations is referred to as DCRNN (Y. Li et al., 2018) and the MAE of its
predictions, averaged across test samples, brain regions, and predicted time points is depicted
in blue. Figure 3C shows that it has the lowest test MAE when incorporating walks on the
structural graph up to a order of K = 2. The WN incorporating graph convolution operations
is denoted as GWN (Wu et al., 2019), and its average test MAE is shown in red in Figure 3C.
The influence of the walk order K on the GWN accuracy suggests that its performance can be
successively improved by including first-order connections, followed by the second- and third-
order connections. As an alternative thereto, the structural similarity between ROIs can be
based on their CE similiarity ACE, as illustrated in Figure 3B. The comparison between ACE

and the structural connectivity matrix ASC highlights that in the adjacency relation defined
by the structural embeddings, long-range connections between brain regions are considerably
more pronounced. Figure 3D shows the test MAE of the models when incorporating ACE in the
graph convolution operations. In this case we can observe for both models a sharp drop in the
error at walk order K = 1. This suggests that the node embeddings already inherently capture
higher order relations between nodes in the brain network. Finally, in Figure 3E the test MAE is
shown when treating the connections between nodes as learnable weights. In this case, we do
not observe an improvement in the test error. This observation indicates that it is rather chal-
lenging to learn all N2 connections between brain regions without any prior knowledge. In
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general, both STGNN models could profit the most when using CEs to characterize the spatial
layout for functional interactions between brain regions. For the DCRNN, the test error was
MAE = 0.1388 when incorporating no information from other brain regions in the network,
and could be reduced to MAE = 0.1158 (for K = 1) when using CEs to model the information
exchange within the brain network. To test whether incorporating information about structural
connections significantly increases the prediction accuracy of our models, we at first recom-
puted the overall test MAE for each subject again. Then by using a paired t test, we find that,
for both STGNN models (DCRNN and GWN) and both adjacency types (ASC and ACE), the
impact of structural modeling is positive (Cohen’s d > 1 for all comparisons) and significant
(p ≤ 0.0001 for all comparisons), compared to the case in which it is not considered. Although
the performance differences between the GWN and DCRNN are quite small in general, the
DCRNN slightly outperformed with a test error of MAE = 0.1158 the GWN with a test error of
MAE = 0.1211 at K = 1 (significant with p ≤ 0.0001, Cohen’s d = 0.49). In addition, the dis-
tribution of the test error across subjects and ROIs, with and without the structural modeling in
STGNNs is illustrated in Supporting Information III in Figure S6. This demonstrates that around
17% more information on functional dynamics can be directly retrieved from nodes with sim-
ilar context within the structural network. Using the SC to model transitions could only reduce
the MAE of the DCRNN by 5% at K = 1. This observation supports the idea that structural node
embeddings can strengthen the relationship between structural data derived from DTI with
functional data observed in fMRI (Rosenthal et al., 2018). When applying a paired t test,
the improvement of the prediction accuracy when using the CE similarity in comparison to
the SC became for both, the DCRNN, and GWN model, significant with p ≤ 0.0001 at K =
1 (Cohen’s d = 1.45 for the DCRNN and d = 0.95 for the GWN). By inherently capturing
higher order transitions in ACE, only a low walk order K is required to capture information from
structurally connected ROIs. In this manner, this technique can help to efficiently reduce the
number of necessary parameters to account for spatial dependencies in STGNN models.

Model Accuracy and Network Scaling

In this section we study the prediction accuracy of the above introduced STGNN-based
approaches and compare it to the VAR model, which is currently most often used for directed
functional connectivity analysis (Barnett & Seth, 2013; Friston et al., 2013). In practicable
applications, the amount of available fMRI data may vary depending on the project size
and on the recruited subject cohort. Also, the size of the brain network of interest can range
from a few specific areas in a single functional network to a large-scale whole-brain analysis.
For this purpose we consider different scenarios in our following evaluations, by analyzing the
model accuracies in dependence of the brain network size and the fMRI dataset size. We
consider one larger subject dataset consisting of resting-state fMRI sessions from 50 different
subjects, one medium sized dataset of 25 subjects, and one small dataset including data from
10 subjects. In addition, we vary the size of the analyzed brain network. The first network
consists of 22 ROIs per hemisphere involved in visual processing as defined by the Glasser
parcellation (Glasser et al., 2016) (a complete list of selected ROIs is provided in the Support-
ing Information II). The second network includes the regions within one hemisphere, and for
that purpose the 180 regions within the right hemisphere included in the Glasser atlas were
selected (Glasser et al., 2016). Finally, the whole-brain network of 360 regions in total was
incorporated. As discussed in the Data Description section, windowed input and output time
sequence pairs were created from the data, and the goal of the different models is accordingly
to predict Tf = 60 TRs of neural activity from the past Tp = 60 activity values. We fitted the VAR
model using the ordinary least squares method as implemented in the multivariate Granger
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causality toolbox (Barnett & Seth, 2013), and for each dataset we selected the VAR model with
order p that achieved the best MAE on the test set, as outlined in more detail in the Vector
Autoregressive Model section. The hyperparmeters used for the STGNNs are described in
the methods part in the Model Training section. Further, for this comparison, the CE similarity
ACE with transition order of K = 1 was used to define the structural relations in the STGNN
models, which has shown to improve the GNNs forecasting accuracy with low computational
cost, as discussed in the section Comparison of GNN Architectures.

Figure 4 shows the test accuracy of the VAR, DCRNN, and GWN model in dependence on
the dataset size and brain network size. It can be observed in Figure 4A that if a large dataset of
50 subjects is available, all models are able to accurately predict the BOLD signal with a low
test MAE, and a notable increase in the test error only appears for the VAR model, when it is
fitted to the whole-brain network. Figure 4B shows the test MAE when data from 25 subjects is
incorporated. In this case, the test error of the VAR model starts to increase noticeably when
modeling activity distributions within one hemisphere and becomes quite large when includ-
ing the whole-brain network. In contrast to these, the prediction accuracies of the DCRNN and
GWN models remain stable in all cases. Finally, when only 10 subject datasets are available,
the test MAE of VAR model is highly dependent on the analyzed network size, as illustrated in
Figure 4C. The DCRNN and GWN models can still achieve a high accuracy, also when a
limited amount of data are available and the network size is relatively large. In addition, this
comparison of the models is replicated in Supporting Information IV using additional measures
like R2 and the similarity of predicted FC states. After applying a paired t test, the differences
between the DCRNN and GWN to the VAR were shown to be in all cases highly significant
with p ≤ 0.0001 (Cohen’s d ≫ 1), except when the VAR is only fitted to the single visual
network, where it still could make reliable forecasts.

To illustrate the prediction accuracies of the different models in more detail, an example of
the predictions using the dataset including 25 subjects, and modeling the activity within one
hemisphere, is shown in Figure 5. Figure 5A shows the MAE of the models computed as an
average across test samples and ROIs in dependence of the forecasting horizon. In this case,
within the first 15 predicted time steps all three models can generate very accurate predictions,
but after that period the error of the VAR model starts to accumulate, while the GNN-based
approaches remain considerably more stable and precise. The predicted BOLD signals of the

Figure 4. The figure shows a comparison of the model performances when varying the amount of data and the size of the network. The test
MAE of the VAR is here depicted in orange, the MAE of the DCRNN in blue, and the error of the GWN in red. The overall error was computed
as an average across brain regions, time steps and test samples. The error bars represent the standard deviation of the test error across subjects.
(A) The test MAE using a dataset of 50 subjects is shown for the visual network, the network within the right hemisphere and the whole-brain
network (Glasser et al., 2016). (B and C) The test performances in dependence of the network size using the 25 and 10 subject dataset,
respectively.
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different models in a few representative samples are shown in Figures 5B, C and D. Addition-
ally, the predicted FC states AFC 2 ℝN×N were computed as the Pearson correlation between
predicted BOLD signals of all N brain regions, and a comparison of representative predictions
with the true FC state is illustrated in Figure 5E. The average correlation of the predicted FC
state to the true FC state was for the VAR model rFC = 0.635 on this dataset, while the GWN
could achieve a correlation value of rFC = 0.948, and the DCRNN a value of rFC = 0.950. The
overall FC similarity for all different datasets of all prediction models is given in Supporting
Information IV Figure S8. Furthermore, in Supporting Information V in Figure S9 we performed
the analysis on the same dataset using a more liberal frequency filtering within the 0.01–
0.1 Hz frequency range. In this range, the signal dynamic becomes more complex, and we
can observe an increase in the prediction error of the different models accordingly.

In addition, we evaluated in more detail how the prediction errors are distributed across
different subjects and different ROIs. Figure 6 shows the distribution of the test MAE of the
DCRNN, GWN, and VAR model across subjects and in dependence of the brain region within

Figure 5. The prediction accuracy of the different models is presented in more detail for the 25 subject dataset and the brain network includ-
ing the ROIs within the right hemisphere (Glasser et al., 2016). (A) The test MAE in dependence of the forecasting horizon is shown, computed
as an average across test samples and brain regions. (B, C, and D) Examples of predictions generated by the VAR, GWN, and DCRNN model,
respectively. The examples were chosen to be representative for the whole test set, by selecting only examples in which errors maximally
deviate by 0.02 from the corresponding average test MAE of the models. (E) Examples of predicted FC states of the different forecasting models,
including the true FC state on the right side. These representative examples deviated maximally by 0.005 from their average correlation to the
true FC state.
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the right hemisphere. For all three models we observe a consistently greater prediction error in
the posterior cingulate cortex and medial orbitofrontal cortex, which could point toward a
more complex BOLD dynamic in those regions. Alternatively, the prediction accuracy might
also be affected by a lower signal-to-noise ratio observed in medial brain regions (Olman,
Davachi, & Inati, 2009).

Multimodal Directed Connectivity

In the Comparison of GNN Architectures section, different approaches have been investigated
to model functional interactions between segregated regions in the brain network. The results
showed that incorporating information on the spatial relation between ROIs in the form of the
structural connectivity or connectome embedding similarity could considerably improve the
prediction accuracy of the GNN models. This points out that the GNNs are able to learn rel-
evant and functional informative transitions of neural activity on their structural spatial layout.
Based on the idea of Granger causality (Granger, 1969) that the observation of one event A
carries information about the occurrence of a future event B, this might represent initial evi-
dence for a potentially causal relation between A and B. Due to the relatively low temporal
sampling rate and physiological artifacts in fMRI (S. M. Smith et al., 2011; Webb et al., 2013), it
still is a matter of discussion to what extent we can observe a causal relationship between
brain regions in this imaging modality (Bielczyk et al., 2019; Mill et al., 2017; H. E. Wang
et al., 2014). But the observation that activity in one region carries additional information

Figure 6. The distribution of the test error across subjects and brain regions is shown. (A) The MAE across subjects and brain regions of the
DCRNN is first visualized in a boxplot on the left side. Additionally on the right side of the figure, the MAE values are projected onto the
cortical surface within the right hemisphere, where the color map was linearly scaled between 0 and 0.18. (B) The distribution of the test MAE
of the GWN is shown. (C) The MAE distribution of the VAR model. For the VAR, the color map was adjusted to account for larger error values
by scaling it between 0 and 0.6.
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among activity in another region in the brain can also go beyond simple undirected FC or SC,
and we therefore refer to this kind of relation as directed connectivity in the following. Prop-
agating the information between ROIs related to their SC or structural CE similarity has the
potential to give us in this manner a multimodal perspective of such a directed relationship
between different brain areas. For this purpose, we choose a perturbation base approach
to reconstruct the amount of information individual ROI carries about other ROIs (Zeiler &
Fergus, 2014). By learning a function h(·), the GNN models try to infer from an input sequence
of neural activity states [x(1), . . ., x(Tp )] a sequence of future activity states [x̂(Tp+1), . . ., x̂(Tp+Tf )],
whereby x(t ) 2 ℝN denotes the activity at timestep t in all regions n = 1, . . ., N. To induce an
artificial perturbation into the system of neural dynamics, we remove all activity in a certain
ROI n0 by setting its activity values to the sample mean xn0 = 0. By using the perturbed time
series as an input for our trained model h(·) the model generates then a prediction [x̂0(Tp+1), . . .,
x̂0(Tp+Tf )]. To reconstruct the directed influence of ROI n0 on ROI n, we evaluate the overall
difference between the original prediction and the prediction with perturbation in the input:

In n0ð Þ ¼ 1
S

XS
s¼0

1
Tf

XTf
t¼0

x̂ tð Þ
n sð Þ − x̂0 tð Þ

n sð Þ
��� ��� (2)

where In(n
0) denotes the impact of ROI n0 on n. Further, x̂ tð Þ

n (s) and x̂0 tð Þ
n (s) denote the predictions

in ROI nwith and without the perturbation in n0 of one test sample s at time step t. Note that this
artificial perturbation approach has only the goal of making spatial relations between ROIs in
STGNN models explainable, and should not be equated with the effect of an experimental
perturbation applied to the human brain, like, for example, induced by transcranial
magnetic stimulation.

In the following we compare this proposed measure of directed influence I(n0) to the clas-
sical undirected types of brain connectivity. First, we compare it to structural connectivity as
derived from DTI, characterized by the number of fiber tracks connecting two brain regions.
Then, we incorporate functional connectivity, defined as the Pearson correlation of functional
activity time courses between two areas. We employ the above introduced GWN model to
obtain a multimodal measure of directed connectivity I(n0), first using the SC as substrate for
information propagation, captured in ASC, and then also employing the similarity of CEs, rep-
resented by ACE. In the following example, we study the connectivity of V1 within the right
hemisphere by incorporating data of 25 subjects. For this purpose, a perturbation was induced
into the target region V1, and the impact of this perturbation on all other 179 regions within
the right hemisphere was then characterized by computing the measure of directed influence I
(n0), as defined in Equation 2. These values for directed connectivity strength can then be visu-
alized by projecting them onto the 179 other areas of the cortical surface. For the following
comparison, all connectivity values were rescaled by normalizing them between 0 and 100. At
first, in Figure 7A the structural connectivity between V1 and all other 179 regions within the
right hemisphere is depicted. The target region V1 is marked here in light blue, and the
strength of connectivity to all other regions is encoded in red. Figure 7A shows that we can
mainly observe a pronounced structural connectivity between V1 and V2 and some structural
connections leading to V3. Figure 7B shows the undirected functional connectivity in resting
state. In this type of connectivity, we can observe predominantly correlations to the functional
activity in V2 and V3, but also a considerable connection strength to V3, V4, and V6. In
Figure 7C the directed connectivity strength I(n0) is depicted, when using the SC as spatial
backbone for the information exchange between brain regions in the GNN. In comparison
to the SC, in this variant of brain connectivity we can observe in addition to V2 also a more
pronounced relationship to areas V3 and V4, and to some anatomically more distant areas like
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V6 and the ventromedial visual area VMV1. This multimodal type of connectivity also reflects
the role of indirect structural connections by modeling higher order transitions on the struc-
tural scaffold captured by the STGNN model. As an alternative to the SC, in Figure 7D the
directed connectivity patterns when using CE similarity as the spatial layout in the GWN
are displayed. Here we can see an even stronger integrity of V1 within the visual network,
which is in agreement with the observation that CEs capture higher order topological informa-
tion of anatomical connectivity (Rosenthal et al., 2018). Figure S10 in Supporting Information
VI shows additionally the spatial relations learned by the DCRNN model. Here we can
observe a pronounced similarity to the directed connectivity pattern learned by the GWN
architecture, showing additionally strong relations to areas like V3 and V4. Based on this
observation, such a GNN-based connectivity approach can serve as a link between structural
and functional connectivity, and as such they can provide a multimodal perspective on

Figure 7. Different types of connectivity are illustrated between V1 and all other regions within the
right brain hemisphere. (A) The structural connectivity is shown, whereby the target region V1 is
marked in light blue and the connectivity strength is encoded in red. (B) The correlation-based func-
tional connectivity is illustrated, which was computed as an average across subjects. (C) The mea-
sures of influence I(n0), derived from the GWN model using the SC for information propagation. (D)
The influence when incorporating CEs for the information exchange between ROIs. The values of
the connectivity measure were linearly mapped between 0 and 100 (and between −100 and 100 for
FC). The default scaling of the color values provided by the connectome workbench (version 1.4.2)
was used, adjusting the color map between the 2th and 98th percentile of the values respectively.
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directed influences between individual areas in brain networks. So far, we have only studied
the effect of a single artificial perturbation in V1 directed to all other regions within the right
hemisphere. This approach can further be extended to sample a full connectivity network, by
systematically inducing perturbations into all regions of interest for the analysis, and then sys-
tematically observing the effect on the other network regions. In Figure S11 in Supporting
Information VI, we studied the effects of perturbations induced in some different additional
areas of the visual network based on this approach. In this manner, this technique can allow
us to reconstruct the directed spatial relations between brain areas captured in STGNN
models, and could be applied in practical applications by, for example, comparing these con-
nectivity patterns between different conditions in task-based fMRI, or studying the difference
between healthy and diseased brain states.

A study of Shinn et al. (2021) demonstrated that FC topology in resting-state fMRI is shaped
by and can be predicted from spatial autocorrelations and temporal autocorrelations, as typ-
ically observed in fMRI data. To also investigate to what extend STGNN-based connectivity
patterns are related to such correlations, we computed the temporal autocorrelation as the
Pearson correlation between the BOLD signal values and its lagged values with different lag
orders j, depicted in Figure S12 in Supporting Information VI. We could observe a relatively
high temporal correlation of 0.89 around lag order j = 14, and of 0.62 around lag order j = 27,
which shows that within these first 30 TRs of the signal, such temporal autocorrelations can
still be detected. In section Model Accuracy and Network Scaling we could show that
STGNNs were also able to make reliable long-term predictions of the BOLD signal up to a
horizon of 60 TRs, which demonstrates that STGNNs capture properties of neural activity
dynamics that go clearly beyond the range that is shaped by temporal autocorrelations. In
addition, spatial autocorrelations can also play a distinctive role in shaping FC network prop-
erties (Shinn et al., 2021). The analysis in section Comparison of GNN Architectures showed
that by modeling the information exchange between structurally connected brain regions in
the spatial domain, the prediction accuracy of the STGNNs could be significantly improved, in
comparison to the null models, which incorporated no spatial dynamics. The observation that
spatially connected regions contain some additional relevant information on functional
dynamics points out that spatial interactions captured in STGNNs go beyond simple
correlation-based spatial network relations. A more detailed comparison of the individual dif-
ferences and similarities between correlation-based FC and the STGNN-based connectivity
pattern is additionally provided in a bar plot in Supporting Information VI (Figure S13).

CONCLUSION

In this study we have compared different STGNN architectures for learning the spatiotemporal
dynamics in brain networks. First, in the section Comparison of GNN Architectures we studied
different mechanisms for learning the temporal dynamics in the BOLD signal. We could show
that an RNN-based model and a WN-based model exhibit very similar capabilities in learning
the temporal characteristics in neural activity time series. Despite their conceptual differences
in their architectures, they demonstrated almost the exact same prediction accuracy, which
indicates that they are both very consistent in capturing the temporal information in the data.
As an alternative, we also studied TAtt mechanisms to learn temporal characteristics of neural
signals. The TAtt model showed to be less suitable to model the dynamics in the BOLD signal
with a limited amount of fMRI data. Despite incorporating techniques into the TAtt model that
in general stabilize the learning, like residual connections and batch normalization (He,
Zhang, Ren, & Sun, 2016; Ioffe & Szegedy, 2015), its prediction error was considerably higher
in comparison to the RNN- and WN-based approach. This indicates that the geometric

Spatial autocorrelations:
The phenomenon in neuroscience
that activity in nearby areas tends to
be more strongly correlated than in
more distant areas.

Temporal autocorrelations:
Characterizes the smoothness of the
memory of neural activity time
courses in different brain regions.
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assumptions that are realized by the temporally structured inference in the RNNs and WNs
based on either recurrent computations or causal convolutions can contribute to the learning
of the temporal characteristics of the BOLD signal. We then studied the impact of adding spa-
tial dependencies to the temporal models, realized by invoking graph convolution operations.
We have compared different spatial layouts for information propagation between ROIs, and
therefore included either the structural connectivity (ASC), the CE similarity (ACE), or a self-
adaptive adjacency matrix (AAdap) into the STGNN models. While the model performance
of the GWN and DCRNN steadily improved with higher walk orders K on the anatomical sub-
strate, we could observe a more pronounced improvement already when using CEs with a
walk order of only K = 1. This embedding strategy turns out to be therefore also interesting
in applications of STGNNs, because it helps to effectively incorporate indirect structural con-
nections with low computational cost. In addition, the observed characteristics of CEs in our
application support the ideas of Rosenthal et al. (2018), which showed in their study that
embeddings of the structural network can naturally capture higher order topological relations
between ROIs within the structural layout. In our context of modeling spatiotemporal dynam-
ics, this method also proved to strengthen the relationship between brain structure and func-
tional dynamics. Learning all N2 connections of the underlying structural graph during the
model training has been shown to be challenging for the STGNN models, in case no prior
knowledge is provided to them in the form of the anatomical brain connectivity. While such
highly parameterized artificial neural network models can be in theory quite flexible in learning
complex relations (Brüel Gabrielsson, 2020; Hornik, Stinchcombe, & White, 1989), often the
decisive limitation is the successful optimization of the parameters during model training
(Dauphin et al., 2014). In the discussed applications of STGNNs in fMRI, where the amount
of training data is most often quite limited, prior knowledge in the form of the anatomical
graph structure has been shown to considerably support the learning of spatial relations
between brain areas captured in STGNN models.

So far, methods based on biophysical modeling (Deco et al., 2012, 2013; Honey et al.,
2009; Messé et al., 2014, 2015; Messé, Rudrauf, Giron, & Marrelec, 2015), graph theory
(Abdelnour et al., 2018; Becker et al., 2018; H. Liang & Wang, 2017; Lim et al., 2019), or
machine learning (Amico & Goñi, 2018; Deligianni et al., 2016; Rosenthal et al., 2018; Sarwar
et al., 2021) have contributed already numerous valuable insights into the structure-function
relation in brain networks, and could highlight the role and importance of the structural con-
nectome in shaping functional connectivity patterns. While the majority of approaches study-
ing the structure-function relationship infer brain dynamics by fitting the models to empirically
observed FC patterns, STGNNs provide us with a possibility to directly predict the observed
neural activity states. Similar to some other recently proposed predictive models (Singh,
Braver, Cole, & Ching, 2020; Suárez et al., 2021), this principle can allow us to investigate
additional interesting aspects of dynamic brain functions. As discussed in section Comparison
of GNN Architectures, this could enable us, for example, to study directly the amount of
information on the activity of one ROI that is contained in the activity of other structurally
connected ROIs. For a comparison with other currently used approaches investigating
SC-FC mappings, the predicted BOLD signal states of STGNN can be used then again to
reconstruct predictions for FC states, as shown in Figure 5E. The relatively high accuracy in
predicting empirical FC states already points out the potential of STGNNs in this field. More-
over, in comparison to other currently popular approaches used in this area (Messé et al.,
2015), by learning localized graph filters in STGNNs, their forecasting accuracy is also robust
with regards to the brain network size. While such highly parameterized artificial neural net-
work models appear to be promising for achieving high prediction accuracies of FC states
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(Sarwar et al., 2021), they cannot provide us with the same mechanistic insights into physio-
logical processes as biophysically inspired models. Still, they can be used to supplement
current biophysically inspired models, for studying different aspects of the structure-function
relationship from a novel data-driven perspective. A more comprehensive comparison of these
different new approaches, evaluating in detail their interrelations like in the study of Messé
et al. (2015), could be thereby interesting for future studies in this area.

In the Model Accuracy and Network Scaling section, we have compared the STGNN
models to a VAR model, which is currently most often used in Granger causality analysis
for inference of directed relationships between brain regions (Barnett & Seth, 2013). We eval-
uated the accuracy of the different approaches on a variety of brain network sizes and dataset
sizes to account for different possible scenarios in their application in fMRI studies. The results
showed that if a sufficiently large cohort of 50 subjects is available, also a VAR model is able to
make very reliable long-term predictions, and only for a large network consisting of N = 360
there is a notable increase in the prediction error. But the dependency of the accuracy on the
network size N becomes more apparent when data from only 25 subjects are used to fit the
VAR model, and when only 10 subjects are available, the error grows strongly with N. This
demonstrates that a VAR is a very reliable and fast model for fMRI studies with a sufficiently
large test subject size and for connectivity studies including a limited amount of predefined
regions. However, it can be desirable in some cases to include a larger amount of brain areas
into the connectivity analysis, in order to avoid omitting relevant areas in the network of inter-
est. Also, in MRI studies it can be very costly and time-consuming to collect a large amount of
data, which is, for example, especially challenging in studies on rare neurological disorders. A
classical VAR model fits a parameter for every possible connection between the N regions in a
network, so that the number of parameters in a VAR-based approach grow strongly with an
order of N2. In contrast thereto, STGNNs utilize prior information in the form of the anatomical
connectivity, and then model the functional information exchange based on this underlying
structural substrate. By incorporating graph convolution operations in STGNNs, the amount of
parameters only linearly scale with walk order K, which can even be chosen to be K = 1, if
higher order structural relations are already expressed in an adjacency matrix derived from
connectome embeddings (ACE). This property allowed STGNNs to make very robust inferences
also on large networks and when only limited data are available, thereby providing a flexible
method for various connectivity analysis scenarios.

Finally in the Multimodal Directed Connectivity section, we studied the individual spatial
interactions within the brain network that were learned by the STGNN models. By integrating
information on the anatomical connectivity into the GNN-based models, we could derive a
multimodal connectivity measure for directed relationships between brain regions. When
comparing this measure of influence to the original structural connectivity, we can observe
that STGNNs have learned to include transitions along higher order structural connections
in the network. The models could infer links between V1 and V2, but additionally strong con-
nections to V3 and V4. Especially when incorporating the CE-based similarity ACE to define
spatial node relations in the STGNN models, we can observe a high integration of V1 within
the visual system. However, due to the relatively low temporal sampling rate in fMRI (Friston
et al., 2013), and the indirect measurement of neural signals based on their hemodynamic
response (Webb et al., 2013), one should also be aware of these limitations in the inference
of directed and potentially causal connections in fMRI studies (S. M. Smith et al., 2011). Our
lag-based predictive approach based on STGNN models might therefore also be affected by
the same limitations as classical Granger causality in fMRI. On the other hand, a combined
fMRI-MEG study by Mill et al. (2017) and different computational simulations of fMRI data
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(Duggento et al., 2018; Seth et al., 2012; H. E. Wang et al., 2014; Wen, Rangarajan, & Ding,
2013) could establish evidence that Granger causality is still able to identify meaningful
directed relationships between brain areas in fMRI, despite the indirect measurements based
on the hemodynamic response. As an alternative, deconvolution-based approaches can have
the potential to infer from the measured BOLD signals the underlying neural time series (Bush
et al., 2015; Mill et al., 2017) for assessing effective brain connectivity, rather than only esti-
mating directed functional connectivity. But the estimation of the underlying hemodynamic
response from the data might come with the cost of introducing additional assumptions and
uncertainties (Bielczyk et al., 2019; Roebroeck, Formisano, & Goebel, 2011). A more detailed
discussion on considerations concerning Granger causality, and, in general, causal inference
in fMRI, is provided in the comprehensive review of Bielczyk et al. (2019), as well as in the
perspective on FC and its variants by Reid et al. (2019). Despite these current limitations in
fMRI, a multimodal GNN-based approach can allow us to join structural and functional imag-
ing data in a new manner, and reveals thereby potential for supplementing current analysis
methods in brain connectivity research by studying such directed relations under a novel
perspective (Reid et al., 2019).

In conclusion, in our study we found that the DCRNN and GWN architecture are both
suitable for the task of functional dynamics inference. Using CEs to characterize the structural
similarities between brain regions could further improve their prediction accuracy. Their
robust scaling properties and the possibility to combine the information in structural and func-
tional MRI data reveal the potential of STGNNs in the field of brain connectivity analysis.
Besides their applications in fMRI, other functional neuroimaging techniques like electroen-
cephalography (EEG) or magnetoencephalography (MEG) might be interesting for analyzing
temporal dynamics with STGNNs in the high-frequency range. While in this presented
approach we only incorporated a single temporal feature (the BOLD signal) into the STGNNs,
in general, such a flexible data-driven approach could be expanded to account for different
types of data and annotations. For example, the activity measured in a combined EEG-fMRI
experiment (Abreu, Leal, & Figueiredo, 2018; Mele et al., 2019) could be also simultaneously
integrated in STGNNs as different temporal features, or adding the temporal response of a sub-
ject could be helpful to better predict activity patterns in task-based fMRI. Also, alternative
structural imaging techniques like neurite orientation dispersion and density imaging (NODDI)
(Zhang, Schneider, Wheeler-Kingshott, & Alexander, 2012) might capture additional aspects of
the brain structure, which could be included as structural information in STGNN-based
models. In clinical applications multimodal STGNNs could be interesting for studying how
the relationship between structure and function is affected in the diseased brain (Panda
et al., 2021), or which impact a structural lesion might have on the functional organization
of the brain network (Alstott, Breakspear, Hagmann, Cammoun, & Sporns, 2009). Still,
research on GNNs is a relatively new field in machine learning, and recent developments
in this field can make interesting contributions to our understanding of information processing
in brain networks (de Haan, Cohen, & Welling, 2020; Schnake et al., in press).

MATERIALS AND METHODS

Dataset

The MRI dataset used in our study is provided by the HCP data repository (Hodge et al., 2015;
Van Essen et al., 2013). As part of the HCP protocol, the study participants gave written
informed consent to the HCP consortium. The MRI scanning protocols were approved by
the Institutional Review Board at Washington University in St. Louis. We incorporated data
of the S1200 release, which provides data from resting-state fMRI sessions, each with a
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duration of 14.4 minutes, whereby 1,200 volumes were sampled per session. The data was
acquired with customized Siemens Connectome Skyra magnetic resonance imaging scanners
with a field strength of B0 = 3T, using multiband (factor 8) acceleration (Feinberg et al., 2010;
Moeller et al., 2010; Setsompop et al., 2012; J. Xu et al., 2012). A gradient-echo echo-planar
imaging (EPI) sequence with a repetition time TR = 720 ms and an echo time TE = 31.1 ms was
used. The field of view of the fMRI sequence was FOV = 208 mm × 180 mm and in total Ns =
72 slices with a slice thickness of ds = 2 mm were collected, containing voxels with an iso-
tropic size of 2 mm. The preprocessing of the HCP fMRI data includes corrections of gradient-
nonlinearity-induced distortions, registration to a single-band reference image to account for
subject motion and registration to the structural T1w image (Fischl, 2012; Glasser et al., 2013;
Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson, Beckmann, Behrens, Woolrich, &
Smith, 2012). Further, ICA-FIX was applied to automatically classify and remove artifactual
components in the resting-state fMRI data (Griffanti et al., 2014; Salimi-Khorshidi et al.,
2014; S. M. Smith et al., 2013). Finally, the volumetric fMRI images are mapped into the CIFTI
grayordinate space and Gaussian surface smoothing with a FWHM of 2 mm is performed. A
detailed description of the standard minimal preprocessing pipelines of the HCP can be found
in Glasser et al. (2013). In a next step to define our brain network, the multimodal parcellation
proposed by Glasser et al. (2016) was applied, which divides the cortical surface into 180
segregated areas per hemisphere. The BOLD signal within each area was averaged, to obtain
the temporal activity evolution for each node in our brain network. For this study, we consid-
ered it useful to apply global signal regression in our preprocessing (Power, Plitt, Laumann, &
Martin, 2017). Firstly, in a systematic comparison of different preprocessing methods to
address motion artifacts Ciric et al. (2017) could show that an ICA-based denosing in combi-
nation with global signal regression is among the most effective methods to reduce movement
artifacts. This result is in line with the study of Burgess et al. (2016), investigating the effect of
ICA-FIX in combination with global/grayordinate signal regression on resting-state fMRI data
provided by the HCP. Furthermore, in our study of functional interactions between specific
brain regions, the objective was to extract the additional information, which certain regions
contain about the activity in other regions. Therefore, local interactions rather than global
modulations in the signal were the main interest for our analysis (Power et al., 2017). The time
courses were then band pass filtered in the 0.04–0.07 Hz frequency range. In a summary of
several different studies that account for different artifacts in the BOLD signal related to MRI
scanner drift in the frequency range below 0.015 Hz (A. M. Smith et al., 1999), respiratory and
cardiac frequencies around 0.3 Hz and 1–2 Hz respectively (B. Biswal, DeYoe, & Hyde,
1996), and fluctuations in arterial carbon dioxide level around 0.0–0.05 Hz (Wise, Ide, Poulin,
& Tracey, 2004), the study of Glerean et al. (2012) identified the 0.04–0.07 Hz frequency band
to be most reliable and relevant for gray matter activity in resting-state fMRI (Achard et al.,
2006; Buckner et al., 2009; Zou et al., 2008). To additionally ensure that the low-frequency
signals are not mainly related to respiratory artifacts, we studied the respiratory signals
recorded with a Siemens respiratory belt during resting-state fMRI, as provided by the HCP
(S. M. Smith et al., 2013). The average respiratory frequency spectrum is depicted in Support-
ing Information VII in Figure S14, and we can observe that respiratory fluctuations are mainly
present in the higher frequency range around 0.28 Hz in this resting-state fMRI dataset. In
addition, the different models were tested on data incorporating a more liberal frequency
filtering within the 0.01–0.1 Hz range, as presented in Supporting Information V.

In the S1200 release, diffusion MRI data was collected in six runs, whereby approximately
90 directions were sampled during each run, using three shells of b = 1,000, 2,000, and 3,000
s/mm2, with additionally 6 b = 0 images (Sotiropoulos, Jbabdi, et al., 2013). A spin-echo EPI
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sequence was incorporated with repetition time TR = 5,520 ms, echo time TE = 89.5 ms, using
a multiband factor of 3. In total Ns = 111 slices were collected, with field of view FOV =
210 mm × 180 mm and an isotropic voxel size of 1.25 mm. The minimal preprocessing pipe-
line of the HCP includes intensity normalization across runs, EPI distortion correction using the
FSL5 “topup” tool, correction of eddy current–induced field inhomogeneities and head motion
artifacts using the FSL5 “eddy” tool, and finally includes gradient nonlinearity corrections and
registration to the structural T1w image (Andersson, Skare, & Ashburner, 2003; Andersson &
Sotiropoulos, 2015a, 2015b; Glasser et al., 2013; Sotiropoulos, Moeller, et al., 2013). More
details on the minimal preprocessing of the HCP diffusion MRI are described in Glasser et al.
(2013). To reconstruct the anatomical connection strengths between regions within the multi-
modal parecellation (Glasser et al., 2016), the MRtrix3 software package was incorporated
(Tournier et al., 2019). Multishell multitissue-constrained spherical deconvolution (Jeurissen
et al., 2014) was applied to obtain response functions for fiber orientation distribution estima-
tion (Tournier, Calamante, & Connelly, 2007; Tournier, Calamante, Gadian, & Connelly,
2004). Then 10 million streamlines were created using anatomical constrained tractography
(R. Smith, Tournier, Calamante, & Connelly, 2012). Finally, spherical deconvolution–informed
filtering was used (R. Smith, Tournier, Calamante, & Connelly, 2013), reducing the number of
streamlines to 1 million. The strength of SC was defined as the number of streamlines connect-
ing two brain regions, normalized by the region volumes. The group structural connectivity
matrix ASC was obtained as the average SC across the first 10 subjects, because the variance
in the SC strength was relatively low across subjects (Zimmermann, Griffiths, Schirner, Ritter, &
McIntosh, 2018), while probabilistic tractography methods are computationally demanding.
For the HCP dataset, including only young healthy subjects, the similarity of the SC across
subjects was quite high, and the Pearson correlation coefficient between SC values of the
10 subjects was on average 0.91. But when comparing very different subject cohorts, like
healthy and diseased subjects, the anatomical connectivity can differ considerably between
those cohorts, and the SC matrix should then be computed for every studied group
individually.

Graph Neural Networks

Different brain areas communicate via bioelectrical signals transmitted along neuronal axons
and collected by neuronal dendrites. Spatiotemporal GNNs provide a novel possibility to
incorporate such a structural scaffold into a graph-based prediction model (Wein, Malloni,
et al., 2021). Due to cognitive information processing in the brain, the spatial interactions
of the activity distribution changes dynamically. Spatiotemporal GNNs thus encompasses both
the information about the layout of the physical scaffold encoded by the graph structure and
the dynamical information about temporal activity correlations. Recently, we used a DCRNN
architecture to model the spatiotemporal brain dynamics in resting-state fMRI (Wein, Malloni,
et al., 2021). In this study, spatial dependencies of brain activities were modeled via diffusion
convolution operations based on the anatomical connectivity and the temporal dynamics of
the graph signal were captured in an RNN-based model architecture (Y. Li et al., 2018). In our
current study, we evaluate some alternative spatial and temporal approaches to model dynam-
ics in brain networks. In addition to RNNs, a CNN-based architecture for temporal modeling
has been introduced by Wu et al. (2019). These authors built upon WaveNets (van den Oord
et al., 2016) and stack dilated causal convolution layers to capture long-range temporal
dependencies. Dilated convolutions support exponentially growing receptive fields in deeper
layers of the network and allow us to handle long-range temporal sequences efficiently (van
den Oord et al., 2016). In addition to the temporal processing based on RNNs and CNNs, we
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also follow ideas expressed in attention networks and incorporated a relevance score that was
computed in temporal attention layers (Vaswani et al., 2017; Zheng et al., 2020).

Based on these temporal approaches, we further study different concepts for representing
the spatial dependency between brain regions. First, we integrated the SC reconstructed from
DTI to represent the anatomical substrate for information propagation in graph convolution
operations. Then, we additionally incorporated CEs of the structural graph to inherently cap-
ture higher order relations between ROIs. Finally, we used no predefined spatial layout and
treated the spatial connection strengths between ROIs as free parameters. These different spa-
tiotemporal GNN architectures have to the best of our knowledge not been applied yet to
analyze the dynamics of brain networks, and in our study we investigate their effectiveness
in spatiotemporal modeling of functional MRI.

Preliminaries

Let us represent the brain network as a graph. Every specific brain area or region of interest
(ROI), then forms a node in the graph. Let these N ROIs form a graph G = (V, E, Aw) encom-
passing N vertices, that is, the meta-voxels or ROIs, and a set E of edges connecting the
vertices vn, vn0. The graph structure can then be captured in a weighted adjacency matrix
Aw 2 ℝN×N, whose entries wnn0 provide the connection strengths between vertices vn and
vn0 and implicitly define the spatial structure of the graph. As introduced above, in our study
we compared three different variants to define the spatial relationship between ROIs. Once we
incorporated the SC derived from DTI data as an adjacency matrix ASC, we next employed CE
to additionally capture higher order topological features in SC represented by ACE, and finally
we treated the spatial relations as adaptive learnable parameters AAdap in the GNN models.
The dynamics of the graph signal is then represented by the time-varying neural activity
obtained from functional imaging data. Let us first assume that each node of the graph is
associated with a single feature represented by the BOLD activity. By considering voxel time
series of brain activity maps, then all data can be collected into a data matrix X = (x(1), . . .,
x(T )) 2 ℝN×Twith x(t ) 2 ℝN. Given N ROIs, taken from a brain atlas and each represented by a
meta-voxel, and considering T time points for each meta-voxel time series, which represents
the activation time course of one of the ROIs, then we have, for the BOLD feature represented
at node n a related graph signal matrix or BOLD feature matrix:

X ::m ≡ X mð Þ ¼ x mð Þ
1 : : : x mð Þ

T

� �
¼

x mð Þ
11

: : : x mð Þ
1T

⋮ x mð Þ
nt ⋮

x mð Þ
N1

: : : x mð Þ
NT

0B@
1CA 2 ℝN�T (3)

Note that the columns x mð Þ
t 2 ℝN of the data matrix describe the activation of all ROIs at any

given time point 1 ≤ t ≤ T, while its rows ex mð Þ
n represent the meta-voxel time course of every

single ROI 1 ≤ n ≤ N. More generally, if nodes not only represent a single feature m, like
the input BOLD signal, but an M-dim feature vector Xnt: 2 ℝM, then we obtain a feature
tensor X 2 ℝN×T×M, whose frontal, lateral (vertical), and horizontal slices, respectively, read
X ::m 2 ℝN×T, X :t: 2 ℝN×M, and Xn:: 2 ℝT×M.

In addition to above frontal slices X ::m ≡ X(m) of the data tensor X, we thus have the lateral
tensor slices:

X :t : ≡ X tð Þ ¼ x tð Þ
1 : : : x tð Þ

M

� �
¼

x tð Þ
11

: : : x tð Þ
1M

⋮ x tð Þ
nm ⋮

x tð Þ
N1

: : : x tð Þ
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0B@
1CA 2 ℝN�M (4)
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and the horizontal tensor slices:

Xn:: ≡ X nð Þ ¼ x nð Þ
1 : : : x nð Þ

M

� �
¼

x nð Þ
11

: : : x nð Þ
1M

⋮ x nð Þ
mt ⋮

x nð Þ
T1

: : : x nð Þ
TM

0B@
1CA 2 ℝT�M (5)

Note that the column fibers of the data tensor X :tm, denoted as x mð Þ
t represent, at every time

point t, the distribution of the activity of feature m across all nodes n of the graph. Correspond-

ingly, the row fibers of the tensor Xn:m, denoted as x mð Þ
n , represent the time course of every

feature m at node n. Finally, the tube fibers of the tensor Xnt:, denoted as x nð Þ
t , represent the

distributions of features at every node n and time point t. This notation will in the following
provide the framework to introduce the different techniques to model either dependencies
between nodes n, time t, or features m.

Spatial Dependencies

Diffusion convolution. In the following we provide a short introduction on a variant of graph
convolution denoted as diffusion convolution in the context STGNNs (Y. Li et al., 2018;
Wu et al., 2021). The information flow in the underlying graph G = (V, E, Aw) is considered
as a stochastic random walk process modeled by a state transition matrix T = D−1Aw = (ŵ1 . . .
ŵN) where Aw represents a weighted adjacency matrix. The diagonal node degree matrix is
given by:

D ¼ diag Aw1ð Þ (6)

where ŵn = (ŵ1n . . . ŵNn)
T 2 ℝN ∀ n = 1, . . ., N with ŵnn0 = wnn0/�n0 wnn0 denoted normalized

edge strengths. State transitions were modeled as a diffusion process on an unstructured graph.
The former was represented by a random walk Laplacian:

Lrw ¼ I − T ¼ UΛ̂UT ¼ U I − Λð ÞUT ¼ I −UΛUT (7)

where the transition operator T was replaced by its eigen-decomposition with U the matrix of
eigenvectors and Λ the diagonal matrix of eigenvalues. Hence, the set of eigenvectors pro-
vided an orthogonal basis system for the spatial representation of the brain graph. With the
help of these eigenvectors un the spatial structure of the graph could be implemented. A spec-
tral representation in combination with the convolution theorem then provided a definition of
the graph convolution operator GC (Shuman, Narang, Frossard, Ortega, & Vandergheynst,
2013), which served to compute the spatial convolution of the input signal and a spatial filter
kernel to yield the output of the ‘-th convolution layer as:

y qð Þ
t ¼ UΘ qð Þ

ω x mð Þ
ω ¼ UΘ qð Þ

ω UTx mð Þ
t

≈
XK
k¼0

θ qð Þ
k ωð ÞTkx mð Þ

t
(8)

Here the approximation resulted from a power series expansion of the convolution kernel with
respect to the eigenvalue matrix Λ of the transition operator T (Defferrard et al., 2016; Wein,
Malloni, et al., 2021). Finally, considering a CNN architecture and applying the graph convo-

lution operator GC, the filtered input signal y qð Þ
t was transformed with an activation function σ(·)

to yield the output h qð Þ
t of each of the q 2 {1, . . ., Q} graph convolution layers as follows:

h qð Þ
t ¼ σ y qð Þ

t

� �
¼ σ

XK
k¼0

θ qð Þ
k ωð ÞTkx mð Þ

t

 !
(9)
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Hereby x mð Þ
t 2 ℝN denotes the m-th input feature component at time t, h qð Þ

t 2 ℝN the corre-

sponding output component of the q-th convolution channel,Θ qð Þ
k 2 ℝN parameterizes the q-th

convolutional kernel of order k and σ (·) denotes any suitable activation function. Note that for
deeper convolution layers ‘ > 1, ‘ = 1, . . ., L, the input to the convolution ‘ layer is given by
the output component of the convolution layer ‘ − 1 instead of the input signal. In summary,
these graph convolution layers can learn to represent graph-structured data and could be
trained with gradient descent–based optimization techniques.

Structural connectivity. One possibility to define the spatial layout of the brain network char-
acterized by the weighted adjacency matrix Aw is to directly incorporate the structural con-
nection strength as reconstructed from DTI data. The weights wnn0 in our adjacency matrix
would accordingly reflect the number of fibers connecting two brain regions n and n0, derived
from probabilistic fiber tracking (Tournier et al., 2004). This type of structural adjacency rela-
tion is denoted as ASC 2 ℝN×N. The acquisition parameters of the DTI data and the structural
connectome generation are outlined in detail in the Dataset section.

Connectome embeddings. As an alternative to the original SC, connectome embeddings (CEs)
can generate node embeddings that capture also higher order topological features of the struc-
tural layout (Rosenthal et al., 2018). The idea of such a graph embedding is to represent each
node in the graph by a M-dimensional feature vector. This technique is originally inspired by
the word2vec algorithm introduced by Mikolov, Sutskever, Chen, Corrado, and Dean (2013)
who proposed a technique to learn vector-valued representations for words in a text which
preserve linguistic regularities in their embedding space. Similarly the node2vec algorithm
can be used to embed vertices of a graph into a subspace where similar embeddings capture
the k-step (k = 1, 2, . . ., K ) relation between the vertices and their k-step neighbors (Grover &
Leskovec, 2016; Rosenthal et al., 2018). We used this technique to embed each brain region n
in the SC graph into a 64-dimensional vector representation. We therefore employed the gen-
sim python package (Řehůřek & Sojka, 2010) using the skip-gram model to learn the node
representations (Mikolov et al., 2013). Briefly, in this context the idea of the skip-gram model
is to predict from a target node in a network its neighboring nodes, whereby a sequence of
neighboring nodes is created by performing a biased random walk on the structural graph
(Grover & Leskovec, 2016). To generate the node sequences, in total 100 random walks were
performed for each node with walk a length of 80 nodes. The return parameter of the random
walk was set to p = 2 and the in-out parameter to q = 1. The similarity between the N brain
regions in their embedding space was computed using the Pearson correlation coefficient,
yielding a connectivity matrix denoted with ACE 2 ℝN×N. As illustrated in Figure 3B, the
embeddings could yield meaningful representations that revealed long-range connections
between regions that were not present in the original SC (Rosenthal et al., 2018).

Adaptive adjacency matrix. So far the spatial layout of the brain graph has been represented
with the help of the orthogonal eigenbasis system U of the transition operator proportional
to the random walk Laplacian. This presupposed a thorough knowledge about the spatial
structure of the underlying brain network that entered the related adjacency matrix. Remember
that the weights of the adjacency matrix were deduced from DTI measurements based on SC
or their CE similarity. However, there may exist hidden activity correlations that are not rep-
resented in the original adjacency matrix used to construct the random walk Laplacian.
Hence, one may wish to introduce an additional self-adaptive, normalized adjacency matrix
AAdap 2 ℝN×N (Wu et al., 2019). The latter has been constructed as a matrix of trainable
weights VAdap 2 ℝN×N, which were at first initialized as zero and then again optimized via
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gradient descent (Kingma & Ba, 2014). Inspired by the study of Wu et al. (2019), a normalized
self-adaptive adjacency matrix was computed as:

AAdap ¼
σ VAdap
� �
N

(10)

The transformation function σ(·) ≡ tanh(·) confined the adaptive weights to the range [−1, 1],
which then were normalized by the number of nodes N in the network. This self-adaptive
adjacency matrix can help to uncover any hidden, still unknown dependencies between ROIs
of a given graph structure. Thus it may extend any graph diffusion convolution layer to yield its
output activity as:

h qð Þ
t ¼ σ y qð Þ

t

� �
¼
XK
k¼0

θ qð Þ
k Tk þ θ qð Þ;Adap

k AAdap
� �kh i

x mð Þ
t (11)

Note that the normalized self-adaptive adjacency matrix AAdap may be considered as an addi-
tional transition operator here. In an attempt to decouple the temporal processing from any
underlying spatial layout of the graph connectivity, the first term within parentheses may be
skipped and the self-adaptive adjacency matrix may possibly identify the underlying graph
structure from the data alone. This may be applicable to situations where no predefined graph
structure is known or involved. The output of the q-th convolution channel can in this case be
obtained with:

h qð Þ
t ¼ σ y qð Þ

t

� �
¼ σ

XK
k¼0

θ qð Þ;Adap
k AAdap

� �k
x mð Þ
t

 !
(12)

Temporal Dependencies

Recurrent neural networks. In the DCRNNmodel, the temporal variations of the signal x mð Þ
t 2ℝN

in N brain regions at Tp past time points were explored with sequence-to-sequence learning
in RNNs (Sutskever et al., 2014), where an encoder network compresses the information into
a compact new representation. The latter is fed into a decoding network, which generates
predictions of the graph signal at Tf future time points representing the intended prediction
horizon, as illustrated in Figure 8A.

Given that the graph convolution operation accounts for the spatial layout of graph struc-
ture at any time point t, temporal dynamics on the graph can be modeled in the DCRNN via
GRUs (Chung et al., 2014). The idea is to replace convolution operations in the spatial domain
by corresponding matrix multiplications in the conjugate spatial-frequency domain employing
the diffusion convolution operator. This leads to the diffusion convolution gated recurrent unit
(DCGRU) (Y. Li et al., 2018):

r qð Þ
t ¼ σ GC Θ qð Þ

r ; x mð Þ
t ‖ h qð Þ

t−1

h i� �
þ br

� �
u qð Þ
t ¼ σ GC Θ qð Þ

u ; x mð Þ
t ‖ h qð Þ

t−1

h i� �
þ bu

� �
c qð Þ
t ¼ tanh GC Θ qð Þ

c ; x mð Þ
t ‖ r qð Þ

t � h qð Þ
t−1

� �h i� �
þ bc

� �
h qð Þ
t ¼ u qð Þ

t � h qð Þ
t−1 þ 1 − u qð Þ

t

� �
� c qð Þ

t

(13)

where x mð Þ
t , h qð Þ

t denote the m-th input and q-th output graph signal feature component of the

GRU, respectively, at time t, and [x mð Þ
t ‖ h qð Þ

t−1] denotes their concatenation. Also r qð Þ
t , u qð Þ

t rep-

resent reset and update gates at time t, and br, bu, bc, respectively, denote bias terms.
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Furthermore, Θ qð Þ
r , Θ qð Þ

u , Θ qð Þ
c denote the parameter sets of the corresponding filters. An illus-

tration of the complete sequence-to-sequence architecture incorporating DCGRU cells is pro-
vided in Figure 8.

WaveNets. Rather than incorporating diffusion convolution layers into RNNs, dilated causal
convolution (DCC) layers (van den Oord et al., 2016) have been instead employed in the
GWN architecture (Wu et al., 2019). The full GWN model is illustrated in Figure 9. The
DCC was defined through a dilated causal convolution operator DC:

DC Θ qð Þ
t ; x mð Þ

t

� �
¼
XR−1
r¼0

Θ qð Þ
r x mð Þ

t−d : r (14)

whereby d denoted the dilation factor and Θ qð Þ
t represented the filter kernel. DCC could be

implemented by sliding over the input time series x mð Þ
t while skipping input values while, from

Figure 8. (A) Overview of the complete DCRNN model. The RNN architecture consists of an encoder and decoder, which recursively pro-
cess the graph structured signals. The encoder receives a sequence of inputs [x(1), . . ., x(Tp )] and iteratively updates the hidden state h(t). The
final state of the encoder h(Tp ) is passed to the decoder branch, which then recursively predicts the output sequence of future signals [x(Tp+1), . . .,
x(Tp+Tf )]. The encoder, as well as the decoder (B) consists of multiple diffusion convolution gated recurrent unit cells (DCGRU). The first
DCGRU cell receives the input graph signal and then passes its hidden state to the subsequent cell. During decoding, the final cell of the
decoder then generates the predictions for the signal. For testing and validation, the decoder uses its own prediction as input for generating
the subsequent prediction. The first input of the decoding branch (< GO > symbol) is simply a vector of zeros. The processing steps in an
individual DCGRU cell are shown in (C). The input x mð Þ

t , as well as the previous hidden state h qð Þ
t−1 are concatenated and passed to the reset

gate r qð Þ
t , as well as to the update gate u qð Þ

t . The reset gate r qð Þ
t determines the proportion of h qð Þ

t−1, which enters c qð Þ
t , together with input x mð Þ

t .
Then the hidden state h qð Þ

t−1 is updated by c qð Þ
t , whereby the amount of new information is controlled by u qð Þ

t .
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layer to layer, increasing step size d · r. This procedure leads to an exponential growth of the
receptive field with increasing layer depth as is schematically illustrated in Figure 9C. The
information flow was controlled by a gated temporal convolution network (TCN) as shown
in Figure 9B, which is obtained as:

h qð Þ
t ¼ tanh DC Θ qð Þ

1 ; x mð Þ
t þ b1

� �� �
� σ DC Θ qð Þ

2 ; x mð Þ
t þ b2

� �� �
(15)

Here tanh(·) denotes the output activation function, and Θ qð Þ
1 , Θ qð Þ

2 , and b1, b2 represent the

convolution filers and bias terms, respectively. Further, DC represents the causal convolution
operator, � the Hadamard product and σ(·) denotes the logistic function, which controls the
information passed to the next layer. To achieve large receptive fields, the layers in a WN
architecture are organized in blocks, whereby in each block the dilation factor d is doubled
with d = 1, 2, 4, . . . up to a certain limit and then repeated in the same manner in the next
block (van den Oord et al., 2016). After each such dilated convolution layer, a diffusion con-
volution layer GC (Equation 9) is subsequently applied to account for the spatial dependencies,
as illustrated in Figure 9A.

Temporal relevance. Yet another approach to solve spatiotemporal time series prediction prob-
lems considers attention mechanisms in spatial and temporal domains to capture dynamic cor-
relations (Vaswani et al., 2017; Zheng et al., 2020). In this study, we therefore additionally
explore nonlinear temporal correlations via a temporal relevance mechanism for modeling

Figure 9. (A) An overview of the complete GWN model. The GWN model consists of L layers. For the temporal modeling, the GWN applies
first the gated TCN mechanism and then for the spatial aspects utilizes graph convolution operations (GC) in each layer. Each layer additionally
incorporates residual connections to stabilize the gradient during learning (He et al., 2016). The information in each layer is combined by
using skip connections, and the final predictions are generated by passing the output of the skip connections through two fully connected
layers. The gated temporal convolution network (TCN) mechanism (B) applies a dilated causal convolution (DC) in combination with a tanh(·)
and a σ(·) activation function to control the information flow. (C) The dilated causal convolutions are illustrated. In each layer a temporal
convolution is applied whereby the dilation factor can be increased in subsequent layers. These dilations lead to exponentially growing recep-
tive fields for neurons in higher layers. The receptive field of a neuron in layer is highlighted in blue.
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temporal fluctuations in the BOLD signal. Let the temporal state of the brain network be rep-
resented by the multivariate signal tensor X 2 ℝN×T×M such that the temporal states of any
node n be collected in the signal matrix Xn:: ≡ X(n) 2 ℝT×M. The activity at any node n and

at any time t was then represented by the tube fibers ex nð Þ
t 2 ℝM, where M denoted the number

of features characterizing the node activity. Temporal correlations between different node
states could be estimated by filtering the multivariate signals in a cascade of temporal rele-
vance blocks, as illustrated in Figure 10. The queries and keys are computed from the input

in the ‘-th block at time point t with a simple nonlinear transformation gr(ex nð Þ
t ) = ReLU(Wrex nð Þ

t +
br) with parameters Wr 2 ℝD×M and br 2 ℝD. For any node n and any time point ti the rele-

vance of its states ex nð Þ
ti at time points tj < ti with respect to the considered state ex nð Þ

tj could then

be assessed by computing the inner product between the queries and keys:

δ nð Þ
ti ;tj ¼

gr ex nð Þ
ti

� �� �
⋅ gr ex nð Þ

tj

� �� �T
ffiffiffiffi
D

p : (16)

A normalized temporal relevance score δ̂
nð Þ
ti ;tjð Þ could then be computed according to:

δ̂
nð Þ
ti ;tj ¼

exp δ nð Þ
ti ;tj

� �
P

tj<ti
exp δ nð Þ

ti ;tj

� � (17)

Finally, tj < ti, j 2 {1, . . ., Tp} denoted a set of time steps before time point ti. After computing

the temporal relevance score δ̂
nð Þ
ti ;tj , the hidden state of node n at time ti could be derived as:

ehti ¼ gr
X
tj<ti

δ̂
nð Þ
ti ;tj ⋅ gr ex nð Þ

tj

� � !
(18)

Figure 10. An overview over the temporal relevance or attention model. The single feature input
X(in), representing the BOLD signal, is first projected by a fully connected layer ontoM output features.
The temporal relevance scores are computed in each of the L attention layers, and to further account
for vanishing gradients, additional residual connects are incorporated (He et al., 2016). The output of
the final layer L is then projected back onto a single feature, representing the predicted neural signal.
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whereby gr(·) denotes a nonlinear projection again. Note that all parameters Wr and br to be
learned were shared across all nodes and time steps. In total, L layers of temporal attention
mechanisms were stacked to generate a final prediction for the BOLD signal. After each layer
batch, normalization was applied and additionally residual connections were incorporated to
stabilize the gradient (He et al., 2016).

Model Training

In this section we outline the training procedures that were used for the different neural net-
work models to learn the temporal and spatial dynamics in the BOLD signal. Before training,
the fMRI data of each session was linearly scaled between 0 and 1, to get gradients of a small
magnitude during the backpropagation learning, which facilitates the fine-tuning of the learn-
ing rate. For all models, the mean absolute error (MAE) was used as an objective function to
quantify the overall difference between the true BOLD signal x(t ) and predicted signal x̂(t ) in all
N brain regions:

MAE x; x̂ð Þ ¼ 1
N

XN
n¼1

1
Tf

XTf
t¼1

x tð Þ
n − x̂ tð Þ

n

��� ��� (19)

DCRNN. The DCRNN model, based on an RNN architecture, was trained with backpropa-
gation through time (Werbos, 1990), with the objective to maximize the likelihood of gener-
ating the target time series. To additionally account for a mismatch between training and
testing distributions of stimuli, a scheduled sampling strategy was used (Bengio, Vinyals,
Jaitly, & Shazeer, 2015). The probability of using a true label as a decoder input decayed
according to:

� ið Þ ¼ τ

τ þ exp i=τð Þ 2 0; 1ð Þ (20)

with τ > 0 the decay parameter and i 2  counting the iterations. During supervised learning,
instances to be predicted were, of course, known. For this optimization problem, the Adam
algorithm (Kingma & Ba, 2014) was employed, and the model was trained for 70 epochs on
minibatches of 16 training samples. To further improve convergence, an annealing learning
rate was used, initialized as η = 0.1, and decreased by a factor of 0.1 at epochs 20, 40, and
60, or if the validation error did not improve for more than 10 epochs. Before lowering the
learning rate, the weights with lowest validation error were restored, in order to avoid getting
stuck in local optima. For the training dataset including only 10 subjects used in the Model
Accuracy and Network Scaling section, the number of training epochs was increased to 140
and the learning rate decay applied at epochs 40, 80, and 120. The influence of the DCRNN
model hyperparameters are discussed in Supporting Information I (Figure S1) and were cho-
sen to yield a reasonable trade-off between accuracy and computational requirements. The
encoder and decoder of the sequence-to-sequence architecture consist to two diffusion con-
volution GRU layers each, and the hidden state size was set to 64. The computations were
performed on a Nvidia RTX 2080 Ti GPU, running on a desktop PC with an Intel(R) Core(TM)
i7-9800X CPU under Linux Ubuntu 20.04. With this setup one epoch on the dataset includ-
ing 25 subjects and predicting the activity within one hemisphere including 180 ROIs took
approximately 3.4 minutes. To have error values of a magnitudes that are easier to interpret,
for the evaluations in the Results section the whole dataset was rescaled to zero mean and
unit variance after the training of all STGNN models was finished.
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GWN. The GWN model was also trained incorporating the Adam optimizer (Kingma & Ba,
2014) to minimize the MAE defined in Equation 19. For the GWN model, it was sufficient
to train it 30 epochs with a batch size of eight, thereby initializing the learning rate with
η = 0.0001 and decreasing it by a factor of 0.1 at epochs 10 and 20. For the 10 subject dataset,
the number of epochs was also increased to 60 and the learning rate decay adapted to epochs
20 and 40 correspondingly. The influence of the hyperparameters of the GWN is evaluated in
Supporting Information I (Figure S2). A good trade-off between model accuracy and complex-
ity could be found using 32 neurons. The number of layers per block were defined as 2 with a
total number of 12 blocks. With this setup, one epoch on the 25 subjects’ dataset including
180 ROIs took around 12.2 minutes.

TAtt. The TAtt model was trained using the Adam optimizer (Kingma & Ba, 2014) for in total
40 epochs, minimizing the MAE defined in Equation 19, using a batch size of 16. The learning
rate was initialized with η = 0.1 and decreased by a factor of 0.1 at epochs 10, 20, and 30. The
influence of the hyperparmeters is evaluated in Supporting Information I (Figure S3). The num-
ber of neurons in the temporal attentions were set to 32 thereby using four attention heads in
the four TAtt layers. With this setup of hyperparameters one epoch of the TAtt model took
around 7.7 minutes.

Vector Autoregressive Model

Granger causality (Granger, 1969) is currently most often based on linear vector autoregres-
sive (VAR) models for stochastic time series data. Therefore we compare our GNN-based
approach with a VAR model, as implemented in the multivariate Granger causality (MVGC)
toolbox (Barnett & Seth, 2013). An autoregressive process is based on the idea that a signal
x(t) can be described as a linear superposition of the first Tp of its lagged values (Luetkepohl,
2005):

x tð Þ ¼ βþ α1x
t−1ð Þ þ α2x

t−2ð Þ þ : : : þ αpx
t−Tpð Þ þ u tð Þ (21)

with coefficients or weights α1, . . ., αp, an intercept β and the error term u(t ). This univariate
formulation can be then extended to a multivariate VAR model including N time series x(t ) =

[x tð Þ
1 , . . ., x tð Þ

N ] (Luetkepohl, 2005):

x tð Þ ¼ bþ A1x
t−1ð Þ þ A2x

t−2ð Þ þ : : : þ Apx
t−Tpð Þ þ u tð Þ (22)

whereby the coefficients are now collected in matrices A 2 ℝN×N, and intercepts and errors
are characterized by vectors b 2 ℝN and u(t) 2 ℝN, respectively. In our study, the multivariate
time series x(t ) reflect the BOLD signal strength in the N brain regions, sampled at different
timesteps t.

To estimate parameters of the VAR model, we used the ordinary least squares fit provided in
the MVGC toolbox (Barnett & Seth, 2013). As outlined in the Data Description section, we
used the first 80% of the data from each fMRI session to fit the model. Then for the comparison
to the GNN approaches in the Model Accuracy and Network Scaling section, we tested the
model order p in steps of five with p = 5, 10, . . ., Tp and chose the model with highest accu-
racy individually for each dataset. To check for stationarity of the signals, an augmented
Dickey-Fuller test for unit roots was applied to the BOLD time courses (Hamilton, 1994;
MacKinnon, 1994), using a p value of p < 0.01. For the 25 subject dataset, around 10.0%
of the BOLD time courses do not fulfill the stationarity criteria of the augmented Dickey-Fuller
test (p > 0.01) when using such a high lag order of Tp = 60. But as the objective criterion of the
evaluation in the Model Accuracy and Network Scaling section was to assess the capabilities

Network Neuroscience 695

Comparison of GNNs for spatiotemporal brain dynamics

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/6/3/665/2036019/netn_a_00252.pdf by U
N

IVER
SITAETSBIBLIO

TH
EK user on 28 Septem

ber 2022



of the models to predict empirically observed neural activity patterns, we chose the VAR
model with best prediction accuracy for comparisons with the GNNs.
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