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Abstract: (1) Background: The properties of CAD/CAM resin-based composites differ due to differ-
ences in their composition. Instrumented indentation testing can help to analyze these differences
with respect to hardness, as well as energy-converting capabilities due to viscoelastic behavior.
(2) Methods: Eleven materials were investigated using instrumented indentation testing. Indentation
depth (hr), Martens hardness (HM), indentation hardness (HIT), indentation modulus (EIT), the
elastic part of indentation work (ηIT), and indentation creep (CIT) were investigated, and statistical
analysis was performed using one-way ANOVA, Bonferroni post-hoc test, and Pearson correla-
tion (α = 0.05). (3) Results: All of the investigated parameters revealed differences between the
analyzed materials. Besides the differences in hardness-associated parameters (hr, HM, and HIT),
instrumented indentation testing demonstrated differences in energy-converting properties. The
subsequent one-way ANOVA revealed significant differences (p < 0.001). A significant (p < 0.01,
Pearson correlation >0.576) correlation between the materials and HM, HIT, or EIT was identified.
(4) Conclusions: Due to the differences found in the energy-converting properties of the investigated
materials, certain CAD/CAM resin-based composites could show superior stress-breaking capabili-
ties than others. The consequential reduction in stress build-up may prove to beneficial, especially
for implant-retained restorations or patients suffering from parafunctions.

Keywords: CAD/CAM; resin composite; hardness; instrumented indentation testing

1. Introduction

Due to their clearly deviating properties, resin-based CAD/CAM (computer-aided
design/computer-aided manufacturing) composites are an interesting clinical alternative
to dental ceramics [1]. Similar to direct resin-based composites, resin-based CAD/CAM
composites consist of inorganic fillers embedded in an organic polymer matrix, commonly
using silanes as coupling agents. Their mechanical properties such as modulus of elasticity
or flexural strength are improved due to the standardized polymerization process under
industrial conditions compared to chair-side light-curing polymerization [2]. A variation
of resin-based composites is the so-called polymer-infiltrated ceramic network (PICN),
which comprises a structure-sintered ceramic matrix and a reinforcing polymer network
(ceramic content: 86 wt%; polymer content: 14 wt%). Resin-based CAD/CAM composites
and resin-infiltrated ceramic networks are used for inlays, onlays, and veneers, as well as
tooth- and implant-retained crowns. Some composites are even approved for bridges and
for use in patients suffering from bruxism.

One key benefit of these resin-based materials—as advertised by many manufacturers
—is the dentine-like modulus of elasticity of approximately 10–30 GPa. Although composites
do not reach the high aesthetics of ceramics, they are commonly regarded as less hard
and brittle, and they cause less wear and stress in antagonistic teeth [3]. These qualities
may be beneficial for the rehabilitation of patients suffering from parafunctions such as
bruxism. Energy-dissipation capabilities might also be increased by the utilization of resin-
based CAD/CAM composites with a low modulus of elasticity [4–7]. Implant-supported
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restorations, with their lower tactility and elasticity of the osseointegrated implants, might
benefit from less stress build-up during normal mastication. For example, there is evidence
for improved implant osseointegration with low-modulus titanium implants [8,9]. This
phenomena is mostly attributed to the so-called stress-shielding effect, which is caused by
the differences of the elastic moduli between implant and bone. The mismatch leads to an
insufficient transfer of force and therefore inadequate stimulation of bone remodeling [10].
It is suggested that the stimulation of bone growth may be enhanced by reducing or
adjusting the elastic modulus of the restorative material.

Yet, with respect to the mechanical properties of CAD/CAM resin-based compos-
ites, previous research suggests a fairly inhomogeneous class of materials [11]. This
is mostly attributed to different types, sizes, and amounts of inorganic fillers (approx-
imately 60–85 wt%), as well as the organic matrix [12]. The significant differences in
CAD/CAM resin materials, e.g., flexural strength (150–330 MPa) and modulus of elas-
ticity (10.3–30.0 GPa), may have impacts under clinical conditions. To properly evaluate
the available materials and perhaps even choose certain materials for specific clinical in-
dications, detailed information on their mechanical behavior is essential. One method
for evaluating elastic and viscoelastic behavior is indentation hardness testing. Surface
hardness is defined as the resistance against plastic and therefore permanent deformation
by indentation. Hardness is commonly measured with methods such as Vickers, Rockwell
or Brinell hardness testing. However, indentation testing encompasses more than just
permanent deformation, as elastic or even viscoelastic components can also be determined
by the measurement. These properties can be measured using instrumented indentation
testing, also called Martens hardness (HM) testing. HM is derived from the applied force (F)
divided by the indentation surface (As), which is a function of the indentation depth (h)
(Equation (1)).

HM =
F

AS(h)
(1)

Furthermore, the constant measurement of force and indentation depth provides a
force–indentation depth curve, as well as the fundamentals for additional analysis.

The indentation modulus (EIT), which is determined in the compression mode, is
related but not identical to the modulus of elasticity, which is determined in the flexure
mode [13]. The elastic part of the indentation (expressed by ηIT) could help in the as-
sessment of the use of resin-based CAD/CAM composites for use as stress-breakers for
implant-supported restorations. The time-dependent response to the indentation of a vis-
coelastic material [14] can be expressed as indentation creep (CIT), expressing the relative
increase of strain under constant force application, e.g., due to the rearrangement of polymer
chains. As the deformation caused by creep is of plastic character, CIT can help to estimate
the long-term dimensional and mechanical stability of a material [15–18]. Materials that
significantly differ in these properties could therefore be used for different applications.

The hypothesis of this study was that different CAD/CAM resin-composite materials
show no similarities regarding indentation depth (hr), Martens hardness (HM), indentation
hardness (HIT), indentation modulus (EIT), the elastic part of indentation work (ηIT), and
indentation creep (CIT). The obtained results can help to estimate the energy-conversion
behavior and therefore the clinical performance of the significantly different materials
under masticatory loads, as well as their stress-breaking capabilities.

2. Materials and Methods

Eleven resin-based CAD/CAM materials (n = 6 per material) were investigated using
instrumented indentation testing according to ISO 14577-1 [19]. Table 1 provides an
overview over the tested materials, as well as some of their properties (modulus of elasticity
E (GPa), filler content wt. (%), and fracture strength FS (MPa)) for the better interpretation
of the results of this study. Rectangular specimens (10 × 10 × 2 mm) were produced
in CAD/CAM dental milling machine (98 milling blank, Inlab MC X5, Dentsply Sirona,
Germany) and polished (1000 grit sandpaper, Tegramin 25, Struers, Germany).
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Table 1. Materials, manufacturers, abbreviations (Abbr.), modulus of elasticity (E), filler content (wt.),
fracture strength (FS) according to manufacturer’s specifications or literature: a [20], b [21], c [22], and
d [11]). Filler content classification: low-fill ≤ 74% wt. ≤ compact.

Material Manufacturer Abbr. E [GPa] wt. [%] d FS [MPa]

Cerasmart GC Corp., Tokyo, JP CS 12.1 a 66.9 231
Brilliant Crios Coltene Holding AG, Altstätten, CH BC 10.3 72.0 198
Estelite Tokuyama Dental, Chiyoda, JP EL 13.8 72.4 225
Block HC Shofu Dental GmbH, Ratingen, GER BL 9.5 b 64.1 191
Katana Avencia Kuraray Noritake, Tokyo, JP KA 12.4 58.6 190
KZR CAD Yamakin Co. Ltd., Kochi, JP KC 10.4 69.0 235

Experimental EX 20.0 78.3 200
Lava Ultimate 3M Deutschland GmbH, Neuss, GER LU 12.7 75.4 204 c

Grandio bloc VOCO GmbH, Cuxhaven, GER GB 18.0 84.5 330
VOCO Experimental VOCO GmbH, Cuxhaven, GER VO n/a 79.7 n/a

Vita Enamic VITA Zahnfabrik, Bad Säckingen, GER VE 30.0 85.1 150–160

Testing was carried out with a universal hardness-testing machine (ZwickiLine Z2.5,
ZwickRoell, Germany; see Figure 1).
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Figure 1. (a) ZwickiLine Z2.5 and (b) schematic test procedure with maximum indentation
depth (hmax) at application of maximum force (Fmax) and residual indentation depth (hmin) after
stress relaxation.

The Martens hardness (HM) is the ratio of the maximum force to the associated contact
area (N/mm2). Other material parameters, such as indentation modulus, indentation creep,
and plastic and elastic work of deformation, can be characterized from a force–indentation
depth curve. In this study, force, depth and time during the indentation of the diamond
pyramid were continuously recorded. The contact area under load was calculated from
the maximum indentation depth. The indentation depth was constantly monitored at a
loading speed of 0.5 mm/min to a maximum force of Fmax = 10 N using a Vickers indenter
and dwell-time of 10 s. Unloading was performed at 0.1 mm/min. The recorded force–
indentation depth curves were used to calculate indentation depth (hr), Martens hardness
(HM), indentation hardness (HIT), indentation modulus (EIT), the elastic part of indentation
work (ηIT), and indentation creep (CIT) as defined in ISO 14577-1. The Poisson’s ratio of the
diamond indenter was set to νi = 0.07, and that of the resin-based composite materials was
set to νs = 0.3 [23]. The Young’s modulus of the indenter was Ei = 1140 GPa.

Calculations and statistical analyses were performed using SPSS 25.0 for Windows
(IBM, Armonk, NY, USA). The normal distribution of data was controlled using the Shapiro–
Wilk test. Means and standard deviations were calculated and analyzed using ANOVA
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and the Bonferroni test for post-hoc analysis. Pearson correlations were calculated. The
level of significance was set to α = 0.05.

3. Results

The Shapiro–Wilk test confirmed the normal distribution of the tested parameters. The
one-way ANOVA revealed significant differences (p < 0.001) within the parameters. Table 2
shows mean results and statistical Bonferroni post-hoc comparison. Force–indentation-
curves of the investigated materials are shown in Figure 2.

Table 2. Material, abbreviation (Abbr.), mean and standard deviation (in brackets) for indentation
depth (hr), Martens hardness (HM), indentation hardness (HIT), indentation modulus (EIT), elastic
part of indentation work (ηIT), and indentation creep (CIT). Identical superscript letters indicate
column-wise non-significant (Bonferroni post hoc test, p > 0.05) differences between the materials.

Material Abbr. hr [µm] HM [N/mm2] HIT [N/mm2] EIT [kN/mm2] ηIT [%] CIT [%]

Cerasmart CS 22.8 a,b,d,f

(1.7)
441.3 a,b,d,f

(60.1)
688.5 a,b,c,d,f,g

(88.8)
10.2 a,b,d,f,g,h

(1.9)
48.3 a,b,c,d,f,g,h,i,j

(7.0)
4.7 a,b,c,d,e,f,g

(0.5)
Brilliant Crios BC 22.7 a,b,d,f

(0.5)
438.5 a,b,d,f

(40.4)
689.5 a,b,c,d,f,g

(40.0)
10.0 a,b,d,f,h

(1.6)
44.1 a–k

(2.1)
4.9 a,b,c,d,e,f,g

(0.3)
Estelite EL 19.4 c,d,e,g,h,j,k

(0.7)
602.8 c,e,g,h,k

(47.9)
940.2 a,b,c,d,e,f,g,h,j,k

(66.8)
13.9 c,f,g

(1.5)
45.2 a–k

(1.6)
4.5 a,b,c,d,e,f,g,j

(0.3)
Block HC BL 22.1 a,b,c,d,f,g

(0.7)
457.3 a,b,d,f,g,h

(27.4)
724.0 a,b,c,d,f,g

(46.1)
10.2 a,b,d,f,g,h

(0.6)
48.5 a,b,c,d,f,g,h,i,j

(0.7)
4.5 a,b,c,d,e,f,g,h,j

(0.2)
Katana
Avencia

KA 23.0 a,b,d,f

(1.4)
410.8 a,b,d,f

(55.8)
666.5 a,b,c,d,f,g

(88.2)
8.8 a,b,d,f

(1.4)
50.0 a,b,c,d,f,g,h,i

(2.3)
5.0 a,b,c,d,e,f,g

(0.2)
KZR CAD KC 19.7 c,d,e,g,j,k

(1.6)
584.0 c,d,e,g,j,k

(45.1)
920.5 a,b,c,d,e,f,g,h,j,k

(141.6)
13.5 a,c,d,g,h

(0.6)
45.6 a–k

(7.4)
5.1 a,b,c,d,e,f,g

(0.4)

Experimental EX 18.7 c,e,g,h,j,k

(0.1)
694.7 c,e,g,h,j,k

(8.5)
1034.5 c,e,g,h,j,k

(12.3)
17.8 e,j,k

(0.3)
40.5 b,c,e,g,j,k

(0.3)
4.8 a,b,c,d,e,f,g

(0.4)
Lava Ultimate LU 19.1 c,e,g,h,j,k

(3.3)
588.3 c,d,e,g,h,k

(122.6)
1008.7 c,e,g,h,j,k

(331.2)
12.2 a,b,c,d,g,h

(2.2)
50.4 a,b,c,d,f,g,h,i

(4.3)
3.8 d,h,i,j,k

(0.4)
Grandio bloc GB 17.4 c,e,g,h,j,k

(0.8)
771.2 e,j,k

(73.7)
1184.8 c,e,g,h,j,k

(107.8)
18.4 e,j,k

(2.0)
42.7 a,b,c,d,e,g,i,j,k

(1.5)
4.0 c,d,h,j,k

(0.2)
VOCO
Experimental

VO 18.7 c,e,g,h,j,k

(0.3)
692.0 c,e,g,h,j,k

(212.0)
1036.8 c,e,g,h,j,k

(32.3)
17.5 e,j,k

(0.8)
40.2 b,c,e,g,j,k

(0.5)
3.8 h,i,j,k

(0.2)

Vita Enamic VE 13.9
(0.7)

1143.3
(124.7)

1834.2
(198.0)

25.3
(3.0)

49.2 a,b,c,d,f,g,h,i,j

(0.7)
3.2 h,i,k

(0.1)

The mean Martens hardness (HM) ranged from 410.8 ± 55.8 N/mm2 (KA) to
1143.4 ± 124.7 N/mm2 (VE). The ANOVA showed significant (p ≤ 0.001) differences be-
tween the results (Table 2). The residual indentation depth (hr) was between 13.9 ± 0.7 µm
(VE) and 23.0 ± 1.4 µm (KA), with significant differences between the results (ANOVA:
p ≤ 0.001). The indentation hardness (HIT) varied between 666.5 ± 88.2 N/mm2 (KA) and
1834.2 ± 198.0 N/mm2 (VE). The ANOVA confirmed significant (p ≤ 0.001) differences
between the results. The indentation modulus (EIT) ranged from 8.8 ± 1.4 kN/mm2 (KA)
to 25.3 ± 3.0 kN/mm2 (VE), with significant differences between the results (ANOVA:
p ≤ 0.001). The mean elastic part of indentation (ηIT) varied between 40.2 ± 0.5% (VO)
and 50.4 ± 4.3% (LU) (Figure 3). The ANOVA confirmed significant differences between
the mean values (p ≤ 0.001). The indentation creep (CIT) ranged from 3.2 ± 0.1% (VE)
to 5.1 ± 0.4% (KC). The ANOVA showed significant (p ≤ 0.001) differences between
the values.

A highly significant (p < 0.01, Pearson correlation >0.576) correlation between the
materials and HM, HIT or EIT was identified. Negative correlations were established
for hr (−0.623), and CIT (−0.584). No correlation could be determined for ηIT (−0.151,
p = 0.227). A significant (p < 0.001) impact of the material was found on HM (η2 = 0.914),
HIT (η2 = 0.867), EIT (η2 = 0.910), CIT (η2 = 0.771), ηIT (η2 = 0.544), and hr (η2 = 0.814).
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4. Discussion

The hypothesis that different CAD/CAM resin-composite materials show no simi-
larities regarding indentation depth (hr), Martens hardness (HM), indentation hardness
(HIT), indentation modulus (EIT), the elastic part of indentation work (ηIT), and indentation
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creep (CIT) could be partly confirmed. The novelty of this study is that the data were
used not only to evaluate the material hardness but also to differentiate the elastic and
viscoelastic surface parameters. In addition, possible clinical consequences of the results
and applications were discussed.

Figure 4 shows the force–indentation depth curves, which highlight individual pa-
rameters investigated in this study. In comparison to research on the Martens hardness of
CAD/CAM resin-based materials, the published HM values for the PICN material (VE)
are distinctly higher (1524–1555 N/mm2) compared to the results of this investigation
(1143 N/mm2) [24,25]. Differences here were due to the transverse contraction number
required for the calculations. With respect to the resin-composite materials with a filler
content of more than 70%, the HM values found in the literature (667–1089 N/mm2) are in
line or above the results of this study (588–771 N/mm2) [24–27]. The HM values reported
in the literature for composites with a filler content below 70% are distinctly below (BC*:
151 N/mm2) [24] or in line (477–573 N/mm2) [25,27] with the values obtained in this
investigation (411–603 N/mm2). The EIT values found in the literature (2.5–30 kN/mm2)
are lower or in line with the results of this study (9–25 kN/mm2) [24]. The CIT values
obtained in this study (3.2–5.1%) were slightly higher compared to those of the literature
(2.6–3.4%) [26,27].
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Figure 4. Showcase force–indentation depth curve. Wplastic/elastic = plastic/elastic indentation work;
dF/dh = contact stiffness S; Fmax = maximum force; hmax = maximum indentation depth; hr = depth
at contact stiffness tangent.

Creep and therefore CIT values are characterized by the short horizontal parts of a
depth curve at peak force. EIT values are determined by the slope of the ascending part of
the curve. The curve of VE indicates low CIT and high EIT values, which indicates a low
susceptibility to creep and high resistance against elastic deformation. The curve of KA
in comparison shows a longer horizontal movement at peak force and a less steep slope
of the ascending curve, indicating higher CIT and lower EIT values. In this study, the HM
values started at about 400 N/mm2 for the composite with the lowest filler content and
were almost twice as high for the composite with the highest filler content. Three times
higher values were even identified for PICN, although the inorganic weight content was
slightly comparable to that of the highly filled composite. These results confirm previous
research that indicated at a positive correlation between inorganic filler content and surface
hardness for resin-based composites [28–30]. However, our results also confirm the special
position of PICN [24,31]. As expected, a comparable behavior was also observed for results
of hr, with an approximately 25% lower indentation depth for the highly filled composite or
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even 40% for the PICN. However, there were also exceptions in the resin-based composite
group, since, e.g., materials with the same filler content (BC and ES; approximately 72%)
showed differences of up to 25%. Filler type and size, as well as polymer composition
or the chemical bonding of the fillers, may also affect materials’ surface properties and
explain the differences in materials with similar filler contents [12,32–34]. A correlation
between surface hardness and inorganic filler content [11] could also be observed for the
materials investigated in this study. The relative differences in standard deviations can
be attributed to the uneven filler distribution and the resulting different filler content on
the material surface. Since the composition and topography of a material’s surface have
decisive influence on hardness measurements, results may vary accordingly. In addition, a
different polymerization of the matrix due to a distinct manufacturing process can influence
results [27]. Resin-composite materials are considered to be less hard and brittle and to
cause less stress build-up in antagonistic teeth compared to ceramics. The present material’s
properties were within the range of data of human dentine from literature (indentation
hardness of 0.4–1.1 GPa and indentation modulus of 12.2–22.9 GPa) [35–37]. As the elastic
modulus also resembles that of dentin (approximately 15 GPa) [38], CAD/CAM composites
could be considered when looking for a biomimetic approach for a dentine replacement [39].

With mean indentation creep CIT values between 3.2% and 5.1%, the analyzed resin
composite materials were more resistant to creep compared to human dentine at 8.6 to
10.7% [37]. However, CIT is difficult to interpret in the context of dental materials and their
clinical application, as the duration of teeth contact in a physiological masticatory cycle
is only about 0.1 to 0.2 s [40], whereas the application time is 10 s during instrumented
indentation testing. Assuming only intermittent tooth contact, e.g., while chewing or
swallowing, as well as the natural energy-dissipation capabilities of hard dental tissues
and the periodontal ligament, the differences in CIT seem to be negligible. However,
clenching or bruxism, perhaps even in combination with reduced resiliency in implants or
ankylosed teeth, could increase the significance of creep behavior because the magnitude
and, especially, the duration of stress application may increase. In these cases, creep will
be more relevant for the long-term stability and integrity of the restoration, as stress will
also be induced at the intaglio surface [41,42]. This phenomena could lead to debonding,
permanent deformation, and perhaps ultimately to an insufficient fit of the restoration.
At the tooth–restoration interface, creep could lead to over-contouring or the formation
of gaps, which could significantly reduce clinical performance. The energy-dissipating
capabilities (“damping effects”) are associated with the conversion of energy (storage
and energy dissipation). The obtained ηIT values indicate the work that is converted into
potentially stored elastic energy (welastic), whereas the other part of indentation work is
mostly dissipated throughout plastic deformation or heat (wplastic).

Based on the current data, an indication-driven selection of the investigated materials
could improve clinical performance. For example, the reduced resiliency and tactility of
implants could be compensated for by a material that causes less stress build while being
creep resistant. Such a material must therefore have low EIT and CIT values. The finite
element analysis of inlay or partial crowns with higher elastic moduli points to higher stress
build-up within the restoration while simultaneously causing less stress build-up in the
cement layer and hard dental tissue [43–45]. Materials with high EIT and fracture strength
values yet low CIT values could therefore show superior clinical performance when used for
partial or inlay crowns. Materials with high CIT values should be considered with caution
for permanent restorations. However, the ability to gradually deform under constant stress
could be useful in cases where a certain self-balancing effect is desired. These materials
could therefore be considered for long-term temporary crowns during pre-prosthodontic
treatment, as the viscoelastic behavior could help to self-equilibrate the occlusion. The
parameters presented in this study can be regarded as a relevant contribution to established
parameters such as flexural strength, wear, and filler content.
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5. Conclusions

The authors of this study investigated the mechanical properties (indentation depth
(hr), Martens hardness (HM), indentation hardness (HIT), indentation modulus (EIT), elastic
part of indentation work (ηIT), and indentation creep (CIT)) of CAD/CAM resin-based
composites with instrumented indentation testing. The Martens hardness and energy-
conversion capabilities of eleven different CAD/CAM composites were investigated with
a reference to clinical application. Within the limitations of this study, the following
conclusions can be drawn:

• The clinical behavior of dental restorations can be influenced by selecting materials
based on different elastic and viscoelastic surface parameters.

• Hardness, indentation modulus, and creep vary significantly between different CAD/
CAM resin-based composites.

• Individual CAD/CAM resin-composites show different stress-breaking capacities for
implant-retained crowns. The reduced resiliency and tactility of implants might be
compensated for by a material with low EIT and CIT values.

• Materials with high EIT and low CIT values might be beneficial for partial or inlay
crown applications.
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