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Abstract

I study an optimal design of monetary incentives in experiments where incentives are a

treatment variable. I introduce the Budget Minimization problem in which a researcher chooses

the level of incentives that allows her to detect a predicted treatment effect while minimizing

her expected budget. The Budget Minimization problem builds upon the power analysis and

structural modeling. It extends the standard optimal design approach by explicitly making the

budget a part of the objective function. I show theoretically that the problem has an interior

solution under fairly mild conditions. I illustrate the applications of the Budget Minimization

problem using existing experiments and offer a practical guide for implementing it. My approach

adds to the experimental economists’ toolkit for an optimal design, however, it also challenges

some conventional design recommendations.
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1 Introduction

Incentives are a cornerstone of experimental economics. The three main methodological questions

about the use of incentives are: whether subjects should be paid, how much subjects should be

paid, and how subjects should be paid. Over the years, the field has accumulated a voluminous

empirical literature in an attempt to inform the answers to these questions. The findings of that

literature are mixed.1 The theoretical work, on the other hand, has been scarce. Following the

early contributions on the first question on whether to pay subjects (Smith, 1976, 1982), the recent

literature has mostly been occupied with the third question about how to pay subjects, or incentive

compatibility of payoff mechanisms (Cox, Sadiraj, and Schmidt, 2014; Azrieli, Chambers, and

Healy, 2018, 2020; Li, 2021). The second question about how much to pay subjects so far has

received no theoretical treatment. I attempt to fill in this gap by offering three main contributions.

First, I use a simple utility-based framework to formalize the question about the optimal level of

incentives in case when incentives are a treatment variable. Second, I show theoretically that this

question is well-defined under fairly mild conditions. Third, I illustrate my approach using the data

from several existing experiments and offer a practical guide for implementing it.

The current approach to how much to pay subjects is typically ad hoc. It usually amounts to

setting incentives at some conventional level based on past experiments, a target hourly wage, or

lab policies. None of these conventions, however, are standard within the field (Cloos, Greiff, and

Rusch, 2020). In the trivial case when subjects’ behavior is not sensitive to incentives, it appears

reasonable to set them at the lowest possible value.2 In many cases, however, subjects’ behavior is

sensitive to incentives, and the question about the optimal level becomes non-trivial.3 The focus

1For reviews, see Camerer and Hogarth (1999), Hertwig and Ortmann (2001), Gneezy, Meier, and Rey-Biel (2011),
Cox and Sadiraj (2019), and Voslinsky and Azar (2021). See Kahneman and Tversky (1979) for an early example of
the argument in favor of hypothetical incentives. Some of the examples of studies showing no difference in behavior
under monetary and hypothetical incentives include Grether and Plott (1979) (preference reversals), Amir, Rand, and
Gal (2012) (ultimatum, trust, and public goods games), Brañas-Garza, Kujal, and Lenkei (2019) (cognitive reflection
test), and Enke et al. (2021) (cognitive reflection test, contingent reasoning, base rate neglect, and anchoring). The
counter-examples include Smith and Walker (1993) (auctions), Cox and Grether (1996) (preference reversals), Holt
and Laury (2002) (risk preferences), Amir, Rand, and Gal (2012) (dictator game), and Rousu et al. (2015) (classroom
experiments on prisoner’s dilemma), Kleinlercher and Stöckl (2018) (finance experiments).

2Indeed, some papers show no difference in behavior between small and large incentives: Fischbacher and Föllmi-
Heusi (2013) (dishonest behavior), Parravano and Poulsen (2015) (asymmetric coordination games), Thielmann,
Heck, and Hilbig (2016) (trust game), Araujo et al. (2016) (real-effort task), Pulford, Colman, and Loomes (2018)
(various two-player 3x3 and 4x4 games), and Larney, Rotella, and Barclay (2019) (meta-analysis of incentives in
ultimatum and dictator games).

3The examples of papers showing a difference in behavior between small and large incentives include Gibson,
Tanner, and Wagner (2013); Balasubramanian, Bennett, and Pierce (2017) (dishonest behavior), El Harbi et al.
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of the present paper is on the latter cases, in particular, when incentives are a treatment variable.

A key factor that enables studying the optimal level of incentives is that researchers are often

interested in testing qualitative hypotheses. A typical research question is whether a treatment

variable affects subjects’ behavior while the specific values of the treatment variable are nuisance

parameters.4 For example, a researcher studying performance pay is more likely to be interested

in whether a higher piece rate increases effort rather than whether a specific 2-cent bump in a

piece rate increases effort.5 The qualitative nature of hypotheses creates a degree of freedom that

I exploit to pick an “optimal,” in a sense precisely defined below, level of incentives.

I introduce a Budget Minimization problem in which a researcher chooses the level of monetary

incentives that allows her to find a predicted treatment effect for some conventional levels of signif-

icance and power while minimizing the total expected budget. The Budget Minimization problem

follows from a researcher’s utility function and relies on two key ingredients. First, it relies on the

power analysis to compute the required sample size for a predicted effect size. Second, it relies on

a theoretical model to predict the outcomes in the treatment and control groups for a given level

of incentives. The outcome of the Budget Minimization problem is the optimal level of incentives

in the treatment group relative to the control, a variable I refer to as the treatment strength. The

treatment strength pins down the required sample size, expected payoffs per subject, and the total

expected budget.

The key tension in the Budget Minimization problem is between a required sample size and

expected per-subject payoffs. On the one hand, increasing incentives leads to a higher expected

effect size, which in turn drives down the required sample size and hence the expected total budget

(the sample-size effect). On the other hand, increasing incentives leads to higher expected per-

subject payoffs, which, in turn lead to a higher expected total budget (the payoff effect). My main

theoretical result is that, under fairly mild assumptions, the Budget Minimization problem has a

(2015) (distributional choices), Parravano and Poulsen (2015) (symmetric coordination games), Yamagishi et al.
(2016) (prisoner’s dilemma), Schier, Ockenfels, and Hofmann (2016) (dictator game), Mengel (2017) (prisoner’s
dilemma), Bellemare, Sebald, and Suetens (2018) (psychological games), Leibbrandt and Lynham (2018) (common
pool games).

4This is not always the case, e.g., researchers might wish to vary the level of the treatment variable to estimate
a structural model (Andreoni and Miller, 2002; Holt and Laury, 2002; DellaVigna and Pope, 2018) or might be
interested in the treatment effect of a specific value of a treatment variable. I do not consider these cases in what
follows.

5Setting the appropriate level of a piece rate in performance pay experiments is notoriously difficult (Lazear, 2018;
Carpenter and Huet-Vaughn, 2019).
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non-trivial solution where the two effects are in the exact balance. I illustrate the properties of a

solution using existing experiments, sketch a practical guide for setting up the problem and solving

it in one’s own design, and provide a sample R code.6

My main contribution is to offer a disciplined economic approach to the problem of choosing

an optimal level of monetary incentives in experiments where incentives are a treatment variable.

Experimental budgets are rarely explicitly discussed by researchers. Money, however, is a scarce

resource, which makes it natural to ask what is an optimal way to use it. This question is of

particular concern to junior scholars and PhD students, whose budgets are usually quite small

while the pressure to produce significant results is high, as well as to researchers running expensive

large-scale interventions in the field. This question is relevant both for new experiments7 and

replications.8

The logic of the Budget Minimization problem is quite general and extends beyond monetary

incentives as a treatment variable. The approach applies to any treatment variable as long as

it “behaves like money:” the treatment variable should create a tension between the sample-size

effect and the payoff effect. The Budget Minimization problem is an alternative approach to an

optimal experimental design that expands experimental economists’ toolkit. The main point of

departure from the traditional approach to an optimal design is the explicit inclusion of budget

considerations. As an alternative approach, the Budget Minimization problem challenges some of

the received wisdom in experimental design. For example, a common statistical, as well as design,

recommendation is to set the values of a treatment variable as far apart as possible to ensure a

maximum separation between predictions or a maximum variation in the treatment (Friedman and

Sunder, 1994; List, Sadoff, and Wagner, 2011; Holt, 2019).9 My approach shows that it may not

be optimal to do this if separating the treatment values as much as possible leads to prohibitively

high payoffs. Maximizing treatment strength, in other words, is not equivalent to maximizing a

researcher’s utility.

6The code is at https://github.com/aalexee/power incentives.
7Even if a study is not a replication per se, it is common to replicate existing findings to establish a baseline before

introducing a new treatment.
8An important qualification is that the replication will necessarily be conceptual, rather than direct (Camerer,

Dreber, and Johannesson, 2019), in this case since the Budget Minimization problem will likely yield treatment values
that are different from the ones in an original study.

9While this is true in many cases, there are some important exceptions, such as non-linear models (Moffatt, 2015).
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2 Related Literature

The design of incentives has always been central to the methodology of experimental economics.

Recent years, in particular, have seen a surge of interest in the theoretical analysis of this issue

(Cox, Sadiraj, and Schmidt, 2014; Wilcox, 2018; Azrieli, Chambers, and Healy, 2018, 2020; Li, 2021;

Johnson et al., 2021). Incentive compatibility of payoff mechanisms, or how to pay subjects, has

so far dominated the analysis. The present work focuses instead on the optimal level of incentives,

or how much to pay subjects, in case when incentives are a treatment variable.

The literature on optimal experimental designs is voluminous. Here I focus only on a few most

closely related papers. In experimental economics, List, Sadoff, and Wagner (2011) and Vasilaky

and Brock (2020) are recent concise guides to designing experiments and power analysis, while

Moffatt (2015) and Holt (2019) are more comprehensive textbook treatments. The classic optimal

experimental design literature deals primarily with the question of choosing the optimal number of

subjects using the power analysis. More recent studies shift the focus to adaptive, or sequential,

designs (Imai and Camerer, 2018; Balietti, Klein, and Riedl, 2021; Kasy and Sautmann, 2021;

Johnson et al., 2021). A common theme among the more recent and classic works is that they

take a statistical approach to the problem: the goal is to minimize the number of subjects or to

maximize power, or to minimize the standard errors of an estimator. The power formula, in other

words, is the objective function. In the present paper, I complement the statistical approach with

the economic one. I make the power formula an input to a more general objective function—a

researcher’s utility function—that explicitly includes a budget.10

Several papers exploit structural models to guide experimental design. They typically use

stochastic discrete-choice models (Moffatt, 2007; Rutström and Wilcox, 2009; Woods, 2021). The

approach I take is similar to these works in that I also advocate for, and show the benefits of, using

structural models for experimental design. The main difference, however, is that I make budget

considerations explicitly a part of the optimization problem.

10List, Sadoff, and Wagner (2011) does discuss some cost considerations in designing an experiment, however, it
does not explicitly make costs a part of an optimization problem.
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3 Budget Minimization Problem

Consider a researcher planning a budget for an experiment. The expected total experimental

budget, π, depends on the number of subjects in the experiment and expected per-subject payoffs.

The researcher plans to use a standard between-subject design with two groups: control (C) and

treatment (T ). Let G = {C, T} denote the set of experimental groups and g ∈ G be its generic

element. The researcher plans to use the same number of participants, n, in each group.11 The

researcher uses a single treatment variable. I assume that the treatment variable is monetary

incentives.12 Depending on the nature of the choice variable in the experiment, the researcher

could use the difference in means or the difference in proportions as the outcome of interest.

Let τg denote the value of the treatment variable in group g. I denote the difference between

the values of the treatment variable in the treatment and control groups as τ ≡ τT − τC , τ ∈ R+

and refer to it as the treatment strength. In some cases it can be of interest to have the treatment

strength as a multiplicative factor rather than a difference. The above definition of the treatment

strength accommodates these cases by defining the values of the treatment variable on a logarithmic

scale. If one defines τ ≡ ln τ̃ , τg ≡ ln τ̃g, then τ̃ = exp(τ) = exp(τT )/ exp(τC) is the multiplicative

treatment strength. I assume that the treatment strength is the only lever the researcher uses to

optimize the budget.13

The researcher uses the power analysis to determine the required number of subjects in each

group. This number will depend on the statistical parameters (significance α and power 1 − β)

and on the expected outcomes in each group, µg. The researcher sets significance and power at

some conventional levels.14 The expected outcomes can be, e.g., the mean choices in each group in

case the choice variable is continuous or the proportions of subjects choosing a given alternative in

case the outcome is discrete.15 To predict the expected outcomes, the researcher uses a theoretical

model parametrized by a vector of behavioral parameters γ. These parameters can include, e.g.,

11This assumption is not required and made to simplify the exposition.
12The Budget Minimization problem applies to non-monetary treatment variables, too, as long as they satisfy

certain conditions. I discuss these conditions in Section 6.
13The researcher can exploit other design parameters to optimize the budget. However, those parameters are likely

to be specific to each experiment. Hence it would difficult to obtain general results in that case.
14While relying on standards of significance thresholds is commonplace, the practice is not without issues (Brodeur,

Cook, and Heyes, 2020; Brodeur et al., 2016).
15To be precise, I am calling a choice variable continuous if in the theoretical model it is a continuous function of

the treatment variable, and the experiment allows subjects to make their choices among a large set of alternatives.
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risk aversion, time preferences parameters, social preferences parameters, the curvature of the

cost-of-effort function, etc. The researcher takes the behavioral parameters as given based on

prior estimates. The expected outcomes will then depend on the treatment strength, behavioral

parameters, as well as any other potential parameters of the experiment lumped in a vector δ:

µg = µg(τ | γ, δ). Vector δ includes things that are not explicitly modeled but that can nevertheless

affect behavior, e.g., subject pool, number of rounds, framing of the instructions, whether a study is

done in the lab or in the field, etc. To make everything a function of τ only, I use a convention that

the level of incentives in the control group, τC , is included in vector δ. To summarize, the required

number of subjects in each group depends on the parameters as follows: n = n(τ | α, β, γ, δ). It is

worth emphasizing that the researcher does not pick n by itself, as is the case in a typical power

analysis. Instead, she picks τ that affects expected outcomes that in turn pin down n, conditional

on other parameters.

The expected per-subject payoffs in each group, πg, will depend on expected outcomes and

on the way the outcomes are translated into payoffs. I use a convention that these payoffs do

not include the participation payment w. For example, when the outcome is the mean number of

problems solved in a real-effort task and the treatment variable is a piece rate, the relationship

between outcomes and payoffs takes a separable form: πg(τ | γ, δ) = τgµg(τ | γ, δ).

Assume that the researcher derives utility u from finding a true effect and 0 in all other cases.16

The probability of finding a true effect is 1 − β. The researcher’s expected utility function from

conducting the experiment is

U(τ | α, β, γ, δ) = (1− β)u− π(τ | α, β, γ, δ). (1)

Maximizing the researcher’s utility function is equivalent to minimizing the Budget Minimization

problem.17

min
τ

π(τ | α, β, γ, δ) = n(τ | α, β, γ, δ) (2w + πC(γ, δ) + πT (τ | γ, δ)) . (2)

16The implicit assumption here is that the researcher is not nefarious and does not derive utility from finding a
false positive.

17I formulate this problem without any constraints for simplicity. I discuss constraints in Section 6.
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The intuition for why the Budget Minimization problem makes sense is the following. The

response of the budget to a change in the treatment strength depends on two effects: the sample-

size effect and the payoff effect. Increasing τ is expected to increase the difference in outcomes

between the treatment and control groups. The predicted effect size will increase, which in turn

will drive down the required number of subjects (the sample-size effect). On the other hand,

increasing τ will increase the expected per-subject payoff in the treatment group due to the direct

effect of higher incentives and the indirect effect of higher outcomes due to higher incentives (the

payoff effect). These two opposing effects can potentially lead to a point τ∗ where the expected

total budget is minimized.

Formally, the following first-order necessary condition must hold at the optimal point τ∗18

−n′(τ)

n(τ)
=

π′
T (τ)

2w + πC(τ) + πT (τ)
. (3)

The condition states, intuitively, that at the optimum the percentage decrease in the required

number of subjects due to the higher treatment strength (the sample-size effect) exactly offsets the

percentage increase in the per-subject payoffs (the payoff effect). The theoretical question is under

what conditions the Budget Minimization problem has a non-trivial solution. Before I turn to the

formal analysis of this question, I present two examples of the Budget Minimization problem at

work.

4 Budget Minimization in Practice

I illustrate the Budget Minimization problem in two common cases. In the first case, the choice

variable is continuous and the outcome of interest is the difference in mean choices. In the second

case, the choice variable is discrete. In this case, the outcome of interest can be either the difference

in proportions of subjects choosing a given alternative (binary choice) or the difference in mean

choices (more than two alternatives). I focus on the former case when the choice is binary and the

outcome of interest is the difference in proportions, although a similar logic would apply to the

latter case.

18To avoid notational clutter, I drop the dependence on the parameters α, β, γ, δ.
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4.1 Continuous Case

To illustrate the Budget Minimization problem in the continuous case, I use the experiment of

DellaVigna and Pope (2018). In the experiment, subjects perform a real-effort task in which

they have to repeatedly press two buttons for ten minutes. Subjects receive w = $1 for their

participation. The choice variable is the number of button presses, a proxy for a subject’s effort.

The outcome variable is the average number of button presses.

Suppose that the researcher is interested in testing whether introducing a piece rate in the

treatment group increases effort relative to the control group that receives no piece rate, τC = 0.

The expected per-subject payoff in group g is πg = τgµg. Subjects receive a piece rate for each

100 button presses. The goal is to determine the treatment strength τ that allows one to detect

an increase in effort for the conventional levels of significance (α = 0.05) and power (1− β = 0.8)

while minimizing the required budget.

DellaVigna and Pope (2018)[P. 1063] propose a model of effort choice that gives the following

closed-form solution for the mean effort:19

µg(τ | γ, δ) = 1

η
[ln(s+ τg)− ln k]. (4)

where η and k are the curvature and scale parameters of the cost-of-effort function, respectively, s

is an intrinsic reward for performing the task, and τg is a piece rate in group g. In the notation of

the Budget Minimization problem, the vector of behavioral parameters γ is then (η, k, s, σ).

Knowing the formula for the expected outcomes, one can find the required number of subjects

per group conditional on τ and other parameters for a two-sided t-test for the difference in means:20

n(τ | α, β, γ, δ) = 2
(
z1−α/2 + z1−β

)2( σ

µT (τ | γ, δ)− µC(γ, δ)

)2

. (5)

Then, using formula (2) one can find the expected total budget as a function of τ .

Figure 1 shows how the variables of the experiment change with τ . The total number of

19Specifically, I use the version of their model with the exponential cost of effort. I make several changes to the
authors’ original notation to make it consistent with the notation adopted in my paper. In their formula (13), I
substitute γ for η and p for τg.

20I use the following parameter estimates, η = 0.015641071, k = 1.70926702 × 10−16, s = 3.72225938 × 10−6, σ =
653.578104 (Supplementary Material “NLS results Table5 EXPON.csv:”).
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subjects across both groups, 2n, decreases in τ since higher incentives increase the expected effect

size. The expected payoff per subject across both groups, w + (πC + πT )/2, increases in τ since

higher incentives increase expected effort, as well as the payoff per unit of effort. The expected

total budget π reaches a minimum at τ∗ = 3 cents (the result is rounded to the nearest cent).

Conducting such an experiment would be extremely cheap: the experiment would require a total

of 42 subjects with an expected per-subject payoff across both groups of $1.28 and an expected

total budget of just $53.21 For comparison, the original experiment has 0 and 4 cents treatments,

although the total number of subjects in both groups is more than 1000. Changing the statistical

significance to α = 0.001 and power to 1 − β = 0.99 would still be highly affordable: it would

require a total sample size of 167 subjects and an expected total budget of $214.22

Figure 1: Variables of the DellaVigna and Pope (2018) Experiment as a Function of τ

Total Number of Subjects Payoff per Subject ($) Total Budget ($)
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Note: The figure shows how the three variables of the experiment change with the treatment strength τ .
The left panel shows the total number of subjects across both treatment groups (2n). The middle panel
shows the expected per-subject payoff (in $) across both treatment groups (w + (πC + πT )/2). The right
panel shows the expected total budget (in $) (π). The horizontal axis shows the treatment strength τ (in $)
on a logarithmic scale. The vertical solid line shows the budget-minimizing level of τ .

21While these numbers do appear small, they are not unreasonable given the large treatment effects found in the
data. For instance, the mean effort levels in the 0 and 4 cents treatments are 1521 and 2132, respectively, (DellaVigna
and Pope, 2018)[P. 1045, Table 3]. Assuming a common standard deviation of 650, the traditional power analysis
would yield 18 subjects per treatment group for the levels of significance (0.05) and power (0.8) assumed in my
calculation. Running an experiment with so few subjects, certainly, would not be advisable. The calculations made
here are done without any constraints on n or per-subject payoffs.

22Note that changing α or β only affects n and π, but does not affect the optimal level of incentives or per-subject
payoffs.
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The results, however, turn out to be highly sensitive to the level of incentives in the control

group. Suppose that the researcher wishes to test the hypothesis that increasing the piece rate from

τC = 1 cent can increase effort. Setting α = 0.05 and 1 − β = 0.8, the optimal level of incentives

in the treatment group would be 19 cents. The experiment would require a total of 376 subjects

with an expected per-subject payoff across both groups of $3.23 and an expected total budget of

$1213. The reason for such a steep increase in the budget is that raising the control group incentives

dramatically increases the expected effort µC .

4.2 Discrete Choice

To illustrate the Budget Minimization problem in the discrete-choice setting, I use the classic Holt

and Laury (2002) experiment on risk aversion. In this experiment, which popularized the multiple-

price-list elicitation method, subjects make a series of binary choices between a safe and risky

lotteries. The alternatives are ordered such that a risky lottery gradually becomes more attractive.

Experimental treatments involve changing the level of incentives by large factors to see whether

this affects the proportion of subjects choosing a safe lottery.

For illustrative purposes, suppose that the researcher is interested in testing whether scaling

the payoffs of each lottery up affects the proportion of subjects choosing a safe lottery in just one

pair.23 Suppose the researcher picks pair 5 (Holt and Laury, 2002)[P. 1645, Table 1] in which

the safe lottery pays $2 or $1.6 with equal chances and the risky lottery pays $3.85 or $0.1 with

equal chances in the control group, and in which the safe lottery pays $2×τ or $1.6×τ with equal

chances and the risky lottery pays $3.85×τ or $0.1×τ with equal chances in the treatment group.

Here τ is the multiplicative treatment strength. The expected per-subject payoff in group g is

πg = τg(µgEVA + (1 − µg)EVB), where EVA and EVB are the expected values of the safe and

risky lotteries, respectively, in the control group (τC = 1) and µg is the proportion of subjects

choosing the safe lottery in group g. The goal is to determine the treatment strength that allows

the researcher to detect a change in the proportion of subjects choosing the safe lottery for the

conventional levels of significance (α = 0.05) and power (1−β = 0.8) while minimizing the required

23Discrete choice does not necessarily imply that the relevant outcome is the proportion of subjects choosing a
given alternative. While it is true in the binary choice, in case when there are more than two alternatives a researcher
might consider the difference in mean choices. In the context of Holt and Laury (2002), this could be, e.g., the mean
switching point. The models of stochastic discrete choice, such as the one considered here, can still be used to derive
the expected outcomes in the case of more than two alternatives.

10



budget.

Holt and Laury (2002) use the stochastic choice model that specifies the probability of choosing

the safe lottery in group g as follows:24

µg(τ | γ, δ) ≡ P(A)g =
U

1/λ
Ag

U
1/λ
Ag

+ U
1/λ
Bg

, (6)

where UAg , UBg are the expected utilities of the safe and risky lotteries, respectively, in group g

and λ is the noise parameter. The expected utility uses an expo-power utility-of-money function

of the form25

u(x) =
1− exp(−ax1−r)

a
, (7)

where x is a monetary outcome, a is the constant risk aversion parameter, and r is the relative risk

aversion parameter. The vector of behavioral parameters γ is then composed of (a, r, λ).

Knowing the formula for the probability of choosing the safe option, one can find the required

number of subjects per group conditional on τ and other parameters for a test for the difference in

proportions:26

n(τ | α, β, γ, δ) = (z1−α/2 + z1−β)
2µT (1− µT ) + µC(1− µC)

(µT − µC)2
. (8)

Then using formula (2) and the formulas for expected per-subject payoffs, one can find the expected

total budget as a function of τ .27

Figure 2 shows how the variables of the experiment change with τ . The total number of subjects

across both groups decreases in τ , while the expected payoff per subject across both groups increases

in τ . The expected total budget reaches a minimum at τ∗ = 54 (rounded to the nearest digit).

This means that the payoffs need to be scaled by more than 50 times. The experiment would

require a total of 99 subjects with an expected per-subject payoff across both groups of $55.1
24A more common choice for the stochastic model would have been the Fechner model (Wilcox, 2008). I stick to

the original specification for comparability.
25I substitute α for a in the authors’ original specification ((Holt and Laury, 2002)[P. 1653, formula (2)]) to avoid

confusion with the significance level α. I also substitute µ for λ in formula (1).
26To avoid notational clutter, I drop the dependence of µT and µC on τ, γ, δ. I use the following parameter estimates

(Holt and Laury, 2002)[P. 1653]: a = 0.029, r = 0.269, λ = 0.134.
27While the participation payment is not explicitly mentioned in the text, I assume w = $5, which is a typical

amount for laboratory experiments.
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and an expected total budget of $5439. For comparison, the original experiment does have a 50x

treatment, although the number of subjects in this group is only 19.

Figure 2: Variables of the Holt and Laury (2002) Experiment as a Function of τ

Total Number of Subjects Payoff per Subject ($) Total Budget ($)
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Note: The figure shows how the three variables of the experiment change with the treatment strength. The
left panel shows the total number of subjects across both treatment groups (2n). The middle panel shows
the expected per-subject payoff (in $) across both treatment groups (w + (πC + πT )/2). The right panel
shows the expected total budget (in $) (π). The horizontal axis shows the multiplicative treatment strength
τ on a logarithmic scale. The vertical solid line shows the budget-minimizing level of τ .

4.3 Practical Guide

To facilitate the use of the Budget Minimization problem in practice, I sketch a recipe for how

to set it up and solve numerically. I provide the R code to reproduce the two examples above at

https://github.com/aalexee/power incentives.

• Define the outcome functions µC and µT (τ). These functions will come from a theoretical

model of choice.

• Use µC and µT (τ) to define the sample size as a function of τ , n(τ), using the relevant power

formula, e.g., (5) or (8).

• Use µC and µT (τ) to define the payoff functions πC and πT (τ).
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• Combine the functions n(τ), πC , and πT (τ) using formula (2) to get the function for the total

budget π(τ).

• Minimize π(τ) numerically, denote τ∗ the value that minimizes the budget. It usually helps

to plot the total budget with the logarithm of τ on the x-axis.

• Use τ∗ to compute the total required sample size 2n(τ∗), expected per-subject payoff across

both groups w + πC/2 + πT (τ
∗)/2, and total expected budget π(τ∗).

5 Budget Minimization in Theory

I make two assumptions about the outcome function µT (τ) to establish a theoretical result.

Assumption 1 (Continuous Differentiability). µT ∈ C1.

Assumption 2 (Regularity). limτ→τ low |µ′
T | < ∞ and limτ→∞ d lnµT /d ln τ < 1.28

The first assumption is a technical one. The second assumption takes care of the case when µT is

unbounded. In this case, it has to satisfy regularity conditions that require the outcome function a)

not to change too quickly when treatment increases from the lowest value and b) that the elasticity

of the outcome with respect to τ is small as the treatment strength gets large. Assumption 2 is

satisfied automatically if µT is bounded.

Proposition 1. If µT satisfies Assumptions 1 and 2 the Budget Minimization problem has an

interior solution.

Proof. See Appendix A.

The idea of the proof relies on the Intermediate Value Theorem and the properties of the two

components of the total budget: the sample size and expected payoffs.29 I consider the limiting

behavior of the derivative of the logarithm of the total budget with respect to τ . At the lower

limit, when the treatment strength approaches the lower bound, the derivative of the budget goes

28Here τ low denotes the lowest possible value of τ . It is 0 for additive treatment strength and 1 for multiplicative
treatment strength.

29One might wonder if the Weierstrass theorem would suffice instead. It would not: even if one is willing to impose
an upper bound on τ (which is a priori unclear), the Weierstrass theorem cannot say anything about an interior
solution, which is the interesting case.
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to negative infinity. The driver behind this result is the required sample size. When the treatment

strength is zero (additive case) or one (multiplicative case) the outcomes in the treatment and

control groups are identical, which makes the required sample size infinite. Even the smallest

increase in the treatment strength is enough to produce an infinitely large decrease in the required

sample size. At the lower limit, therefore, the negative sample-size effect dominates the positive

payoff effect.30 When the treatment strength is infinitely large, neither the required sample size

nor the expected payoffs change. The derivative of the total budget in the limit is zero. However,

one can always find a large enough value of the treatment strength at which the derivative of

the total budget is positive. At the upper limit, therefore, the positive payoff effect dominates

the negative sample-size effect.31 The derivative of the total budget is thus negative at the left

endpoint and positive at the right endpoint. Since µT is continuously differentiable by Assumption

1, the Intermediate Value Theorem implies that the derivative of the total budget must cross zero.

Since the first crossing will occur from below, the First Order Sufficient Condition for a Minimum

implies that the point τ∗ at which this happens must be a minimum point.

The result in Proposition 1 is surprisingly general. It applies both in the continuous and discrete

cases. The assumptions required for the result are fairly weak. The discrete case effectively only

requires Assumption 1, since the outcome is a proportion bounded between zero and one. The

continuous case would in addition require Assumption 2 only if the outcome function is unbounded.

Proposition 1 explains why the motivating examples work. In the discrete case example, only

Assumption 1 needs to be checked. Indeed, since the utility-of-money function (7) is continuously

differentiable, so are the expected utility and outcome (6) functions. Proposition 1 immediately

applies. In the continuous case example, the outcome function (4) is continuously differentiable

but unbounded, hence we need to check Assumption 2, as well. First, consider

lim
τ→0+

|µ′
T | = lim

τ→0+

1

η(s+ τ)
=

1

ηs
.

30If the outcome function is unbounded, the first part of Assumption 2 guarantees that.
31If the outcome function is unbounded, the second part of Assumption 2 guarantees that.
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The limit is finite, since the estimates of s and η are strictly positive. On the other hand,

lim
τ→∞

τ(lnµT )
′ = lim

τ→∞

τ

(s+ τ) ln
(
s+τ
k

) = lim
τ→∞

1

( sτ + 1) ln
(
s+τ
k

) = 0 < 1,

provided that k > 0, which is indeed the case given the model estimates. Hence, Proposition 1 also

applies.

A few remarks about the theoretical result are in order. The first remark is that Assumptions

1 and 2 are sufficient but not necessary. It might as well be that they are not satisfied but the

Budget Minimization problem has an interior solution. The second, and related, remark is that

Assumption 1 can have a bite in some cases. It might fail to hold in reference-dependent models,

which feature a discontinuity around a reference point. The budget, however, is still likely to have

a minimum. The third, and final, remark is that Proposition 1 guarantees the existence but not

the uniqueness of a solution. It is safe to assume that it should not cause any issues in practice.

If there are several minimum points, one can simply compute the budget at each of the candidate

solutions and pick the one giving the smallest budget.

6 Discussion

In this section, I propose some extensions of the Budget Minimization problem and show that its

applicability goes beyond the examples analyzed so far. I also highlight some of the limits of its

applicability.

Non-Monetary Treatment

The working assumption in setting up the Budget Minimization problem has been that the treat-

ment variable is money. The structure of the problem, however, does not require the treatment

variable to be money, it just has to “behave like money.” First, the treatment variable has to be

finely divisible. If the treatment variable can assume only a few possible values (e.g., the commu-

nication between subjects is either allowed or not), the question about optimizing the value of the

treatment variable is meaningless. Second, increasing the treatment variable has to increase the

expected payoff in the treatment group. If this condition does not hold, there is no tension between
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the sample-size effect and the payoff effect. The solution to the Budget Minimization problem

would be trivial: simply pick the highest possible value of τ . Those are the necessary conditions

for the Budget Minimization problem to be meaningful. The sufficient conditions will depend on

the exact way that the treatment variable and the outcome function µT affect the payoff πT .

Strategic Settings

Even though the examples I considered are from individual-choice settings, the logic of the Budget

Minimization problem carries over to strategic settings. The natural counterpart to the theoretical

outcome function µT , such as (6), in game theory is the Quantal Response Function (McKelvey

and Palfrey, 1995; Goeree, Holt, and Palfrey, 2005).

Parameter Uncertainty

The solution to the Budget Minimization problem relies on the estimates of the structural param-

eters of a model. These estimates will have standard errors. The analysis conducted in motivating

examples ignores this parameter uncertainty for simplicity. However, the budget-minimizing treat-

ment strength is a function of parameters and hence inherits the uncertainty in their estimates.

The optimal treatment strength is unlikely to have a closed-form solution in most cases, hence,

using the Delta method would be impossible. A practical solution to deriving the standard errors

of the treatment strength would be to use the bootstrap.

Parameter Estimates

A related, and more fundamental, point about parameter estimates is that they have to exist in

order to take advantage of the Budget Minimization problem.32 In the best-case scenario, these

estimates could be readily available from the literature. This is likely to be the case for the models

of risk and time preferences (Harrison and Rutström, 2008), lying aversion (Abeler, Nosenzo, and

Raymond, 2019), social preferences (Goeree, Holt, and Laury, 2002; Cox, Friedman, and Gjerstad,

2007; Bellemare, Kröger, and Van Soest, 2008), and real-effort tasks (DellaVigna and Pope, 2018).

But what should a researcher do when those estimates are not available or cannot be used? One

32This is an issue not just for the Budget Minimization problem but for optimal experimental design in general
(List, Sadoff, and Wagner, 2011; Moffatt, 2015).
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possibility is that a researcher can use an existing structural model but does not want to use existing

parameter estimates. Using existing estimates might not be reliable if, e.g., they are derived from

a subject pool that is very different from a researcher’s subject pool. In other words, a researcher

might worry about the portability of the existing estimates. A solution in this case is to run pilot

sessions on the subject pool of interest and estimate the parameters of the model using the pilot

data. Using pilots to conduct the power analysis is a standard practice in experimental economics,

and the only modification to that practice would be the way the data are used. Another possibility

is that an off-the-shelf structural model simply does not exist. In this case a researcher is left

with the option to come up with their own model to take advantage of the Budget Minimization

problem.

Constraints

I have presented and analyzed the Budget Minimization problem as an unconstrained problem. In

reality, a researcher might face constraints on subjects’ payoffs and/or a sample size. Suppose the

sample size at τ∗ is too low to be acceptable (the constraint binds), as we saw in the continuous

case example. A researcher can simply tweak the statistical parameters: decreasing α or β increases

the optimal sample size without changing the optimal treatment strength. Suppose now that the

expected per-subject payoffs are too low at τ∗. In this case the optimal treatment strength will

have to change. There are several possibilities to satisfy the constraint in that case. One possibility

is to change the level of the treatment variable in the control group, re-optimize, and check if the

constraint is satisfied. As we have seen in the continuous case example, adjusting τC can have a

large impact on τ∗. The benefit of this approach is that one can both satisfy the constraint and get

an optimal level of τ . Another possibility is to keep increasing τ until the constraint is satisfied.

This approach will distort τ away from the budget-minimizing level. However, it can be more

cost-effective than increasing τC . One might also consider changing the participation payment w,

which will change τ∗. The participation payment, however, is typically set by lab policies and

rarely tweaked for the purposes of a particular experiment.33 On the other end of the spectrum is

the case when the expected per-subject payoffs are too high. No simple solution exists in this case,

33A notable exception is when the participation payment is the treatment variable (Harrison, Lau, and Rutström,
2009).
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since τ∗ already minimizes the budget and any deviation will only increase it. A researcher would

likely have to reconsider other parameters of the design to bring down the budget.

Non-Parametric Tests

In practice, researchers often use non-parametric tests, such as the Wilcoxon-Mann-Whitney test,

to analyze treatment effects. The reason for relying on parametric tests in my analysis is that

they have simple analytical formulas for power calculations and require only minimal predictions

about outcomes, such as averages. Power analysis for non-parametric tests, on the other hand,

is based either on simulations (Bellemare, Bissonnette, and Kröger, 2016) in which case deriving

theoretical results is impossible, or on explicit formulas that require rich predictions about outcomes,

such as the entire distribution of outcomes (Rahardja, Zhao, and Qu, 2009; Happ, Bathke, and

Brunner, 2019). One can still pose a practical question about the optimal level of incentives for a

non-parametric test in a given experiment and use simulations to solve the Budget Minimization

problem.

7 Conclusion

I study an optimal design of incentives in experiments where incentives are a treatment variable.

Using a utility-based framework, I formulate a Budget Minimization problem. In the problem, a

researcher chooses a treatment strength such that it minimizes the expected budget while allowing

to find an effect for the given levels of statistical significance and power. The effect of the treatment

strength on the budget can be decomposed into two channels: the sample-size effect and the

payoff effect. Increasing the treatment strength decreases the required budget via the sample-size

effect but increases it via the payoff effect. At a minimum point, the two effects must be in the

exact balance. I show theoretically that such a point exists under fairly mild conditions, and

thus the Budget Minimization problem is guaranteed to have a non-trivial solution. I illustrate

how the Budget Minimization problem applies in practice using existing experiments. The Budget

Minimization problem also applies, under certain conditions, to designs where a treatment variable

is not monetary incentives.

The main challenge in taking advantage of my approach is having a structural model and reliable
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prior estimates of the model, in other words, good prior data, albeit this is true in general for any

optimal design. The main contribution of my analysis is that it takes the guesswork out of the

design of the level of incentives and replaces it with a disciplined economic approach. I believe

that my approach to the design of incentives will enrich experimental economists’ toolkit and help

guide future designs. Young researchers on tight budgets and researchers running expensive field

interventions will particularly benefit from using the Budget Minimization problem.
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Appendices

A Proofs and Derivations

Proof of Proposition 1 in Continuous Case.
I assume that the relevant outcome µg is the mean. The required sample size for the t-test for

a difference in means is

n = 2
(
z1−α/2 + z1−β

)2( σ

µT − µC

)2

. (A.1)

Taking the logarithms, we obtain

lnn = ln 2 + 2 ln
(
z1−α/2 + z1−β

)
+ 2 lnσ − 2 ln |µT − µC | . (A.2)

The derivative of the logarithm of n with respect to τ is

(lnn)′ = −2 [ln |µT − µC |]′ . (A.3)

I am assuming that σ does not depend on τ . Notice that if the treatment increases the outcome
in the treatment group, µ′

T > 0, then µT − µC ⩾ 0. On the other hand, if the treatment decreases
the outcome in the treatment group, µ′

T < 0, then µT − µC ⩽ 0. Therefore, regardless of whether
the treatment increases or decreases the outcome in the treatment group, we have

(lnn)′ = −2
µ′
T

µT − µC
< 0. (A.4)

Increasing the incentives makes the treatment effect larger, which reduces the required sample size.
I assume that the expected per-subject payoff in group g is multiplicative in the treatment and

outcome: πg = τgµg. The expected per-subject payoff in both groups is

πC + πT = τCµC + τTµT = τCµC + τCµT + τµT = τC(µC + µT ) + τµT , (A.5)

where I am assuming an additive treatment strength. The derivative of πT with respect to τ is

π′
T = (τTµT )

′ = µT + τTµ
′
T = µT + τCµ

′
T + τµ′

T . (A.6)

The derivative of the logarithm of per-subject payoff with respect to τ is

[ln (2w + πC + πT )]
′ =

π′
T

2w + πC + πT
(A.7)

=
µT + τCµ

′
T + τµ′

T

2w + τC(µC + µT ) + τµT
(A.8)

Having the derivatives in (A.4) and (A.7), we can write down the derivative of the logarithm of

A.1



the total expected budget34

(lnπ)′ = (lnn)′ + [ln(2w + πC + πT )]
′ (A.9)

= −2
µ′
T

µT − µC
+

µT + τCµ
′
T + τµ′

T

2w + τC(µC + µT ) + τµT
. (A.10)

Consider first the limiting behavior of the two components of (lnπ)′ as τ → 0+. First note
that limτ→0+ µT = µC . Also, if µT is bounded then limτ→0+ µ′

T < ∞ by definition, and if µT is
unbounded, then this is true by assumption. Then the limit of the first component, (lnn)′, is

lim
τ→0+

(lnn)′ = −
2 limτ→0+ µ′

T

limτ→0+ µT − µC
= −∞, (A.11)

which is true both when µ′
T is positive or negative.

The limit of the second component, [ln(2w + πC + πT )]
′, is

lim
τ→0+

[ln(2w + πC + πT )]
′ =

µC + τC limτ→0+ µ′
T

2w + 2τCµC
, (A.12)

which is finite. Combining the two results, we conclude that

lim
τ→0+

(lnπ)′ = −∞. (A.13)

By continuity of µ′
T , we can find a point a > 0 arbitrarily close to 0, such that the value of (lnπ)′

at a is also negative.
Now consider what happens as τ → ∞. It is useful to split further analysis by whether µ′

T is
positive or negative and whether µT is bounded or not. Suppose first that µ′

T > 0 and limτ→∞ µT <
+∞. This implies that limτ→∞ τ(lnµT )

′ = limτ→∞ d lnµT /d ln τ = 0. Consider the following limit:

lim
τ→∞

[ln(2w + πC + πT )]
′

µ′
T

= lim
τ→∞

µT

τµ′
T
+ 1 + τC

τ

2w
τ + τC

τ (µC + µT ) + µT
(A.14)

=

1
limτ→∞ τ(lnµT )′ + 1

limτ→∞ µT
= +∞ (A.15)

Plugging this result into the limit for (lnπ)′, we get

lim
τ→∞

(lnπ)′ =
(
lim
τ→∞

µ′
T

)[
− 2

limτ→∞ µT − µC
+ lim

τ→∞

[ln(2w + πC + πT )]
′

µ′
T

]
(A.16)

The term in brackets goes to +∞. By continuity of µ′
T , we can find a point b, such that a < b < ∞

and the value of the term in brackets is positive. The value of µ′
T at that point is also positive.

Therefore, the value of (lnπ)′ at b is positive.
Now suppose that µT is unbounded. Recall that in this case we assume that limτ→∞ τ(lnµT )

′ =

34It is easier to work with the logarithm of π than with π itself. The signs of the derivatives of lnπ and π with
respect to τ , as well as extremum points, are the same.
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limτ→∞ d lnµT /d ln τ < 1. Consider the following limit:

lim
τ→∞

[ln(2w + πC + πT )]
′

(lnµT )′
= lim

τ→∞

µT

τµ′
T
+ 1 + τC

τ

2w
τµT

+ τC
τ (µC

µT
+ 1) + 1

(A.17)

=
1

limτ→∞ τ(lnµT )′
+ 1 (A.18)

Plugging this result into the limit for (lnπ)′, we get

lim
τ→∞

(lnπ)′ = lim
τ→∞

(lnµT )
′

[
− 2

1− µC
µT

+
[ln(2w + πC + πT )]

′

(lnµT )′

]
(A.19)

=
(
lim
τ→∞

(lnµT )
′
)[

1

limτ→∞ τ(lnµT )′
− 1

]
(A.20)

The term in brackets is positive since limτ→∞ τ(lnµT )
′ < 1 by assumption. By continuity of µ′

T ,
we can find a point b, such that a < b < ∞ and the value of (lnµT )

′ at that point is also positive.
Therefore, the value of (lnπ)′ at b is positive.

Now suppose µ′
T < 0. I only consider the case when µT ⩾ 0. It is hard to imagine a relevant

economic choice variable that would be negative, let alone go to −∞ in the limit. Note that
τ(lnµT )

′ = d lnµT /d ln τ is negative and converges to 0 in the limit. Retracing the previous steps,
we can conclude that the limit in (A.14) is −∞. What would happen to the limit in (A.16)? The
term in the brackets would go to −∞. The term is parenthesis is negative but converges to 0. By
continuity of µ′

T , we can find a point b, such that a < b < ∞ and the value of the term in brackets
is negative. The value of µ′

T at that point is also negative. Therefore, the value of (lnπ)′ at b is
positive.

Now we can invoke the Intermediate Value Theorem. Since the value of (lnπ)′ is negative at
a and positive at b, a < b, and the function is continuous (since µT ∈ C1), there must be a point
τ∗ at which (lnπ)′ is exactly zero. Moreover, the First Order Sufficient Condition for a Minimum
requires the smallest such τ∗ to be the minimum point.

QED.
Proof of Proposition 1 in Discrete Case.
I assume that the relevant outcome µg is the proportion of subjects choosing a given alternative,

labeled A. The required sample size for the test for a difference in proportions is

n = (z1−α/2 + z1−β)
2µT (1− µT ) + µC(1− µC)

(µT − µC)2
. (A.21)

To simplify further notation, I denote σ2 ≡ µT (1 − µT ) + µC(1 − µC). Taking the logarithms on
both sides, we obtain

lnn = 2 ln(z1−α/2 + z1−β) + lnσ2 − 2 ln |µT − µC |. (A.22)

The derivative of the logarithm of n with respect to τ is

(lnn)′ = µ′
T

1− 2µT

σ2
− 2

µ′
T

µT − µC
(A.23)

= µ′
T

[
1− 2µT

σ2
− 2

µT − µC

]
. (A.24)
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This expression is valid both for the case when µ′
T < 0, µT < µC and when µ′

T > 0, µT > µC . If
µT < 1/2 (in case µ′

T < 0) or µT > 1/2 (in case µ′
T > 0) an increase in τ leads to a decrease in n.

The expected per-subject payoff in the control group is πC = µCVA + (1 − µC)VB, where VA

is the expected value of alternative A and VB is the expected value of all other alternatives. The
incentives in the treatment group can be introduced in different ways. One possibility is that only
the value of alternative A is scaled by τ ⩾ 1 (multiplicative treatment strength). Another possibility
is that the values of all alternatives are scaled, as in Holt and Laury (2002).

I begin by considering the former case first. In this case, the expected per-subject payoff in
the treatment group is πT = τµTVA + (1 − µT )VB. The expected per-subject payoff in both
groups is πC + πT = VA(µC + τµT ) + VB(2 − µC − µT ). The derivative of πT with respect to τ
is π′

T = µTVA + µ′
T (τVA − VB). The derivative of the logarithm of the total expected per-subject

payoff with respect to τ is

[ln(2w + πC + πT )]
′ =

π′
T

2w + πC + πT
(A.25)

=
µTVA + µ′

T (τVA − VB)

2w + VA(µC + τµT ) + VB(2− µC − µT )
. (A.26)

The derivative of the logarithm of the total expected budget is

(lnπ)′ = (lnn)′ + [ln(2w + πC + πT )]
′ (A.27)

= µ′
T

[
1− 2µT

σ2
− 2

µT − µC

]
+

µTVA + µ′
T (τVA − VB)

2w + VA(µC + τµT ) + VB(2− µC − µT )
. (A.28)

Consider first the limiting behavior of the two components of (lnπ)′ as τ → 1+. First note that
limτ→1+ µT = µC . Also note that limτ→1+ |µ′

T | < ∞ since µT ∈ [0, 1]. Then the limit of the first
component, (lnn)′, is

lim
τ→1+

(lnn)′ =

(
lim

τ→1+
µ′
T

)[
1− 2µC

2µC(1− µC)
− 2

limτ→1+(µT − µC)

]
. (A.29)

In case µ′
T > 0, µT > µC , the limit in parentheses is finite and positive, while the second term in

brackets goes to −∞. In case µ′
T < 0, µT < µC , the limit in parentheses is finite and negative,

while the second term in brackets goes to +∞. Therefore, limτ→1+(lnn)
′ = −∞.

The limit of the second component, [ln(2w + πC + πT )]
′, is

lim
τ→1+

[ln(2w + πC + πT )]
′ =

µCVA + limτ→1+(µT )
′(VA − VB)

2w + 2VAµC + 2VB(1− µC)
, (A.30)

which is finite. Combining the two results, we conclude that

lim
τ→1+

(lnπ)′ = −∞. (A.31)

By continuity of µ′
T , we can find a point a > 1 arbitrarily close to 1, such that the value of (lnπ)′

is also negative.
Now consider what happens as τ → ∞. First note that limτ→∞ µT is either 1 (in case µ′

T > 0) or
0 (in case µ′

T < 0). Also note that limτ→∞ µ′
T = 0 and limτ→∞ τ(lnµT )

′ = limτ→∞ d lnµT /d ln τ =
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0 since µT ∈ [0, 1]. Consider the following limit:

lim
τ→∞

[ln(2w + πC + πT )]
′

µ′
T

= lim
τ→∞

µT

µ′
T
VA + τVA − VB

2w + VA(µC + τµT ) + VB(2− µC − µT )
(A.32)

= lim
τ→∞

µT

τµ′
T
VA + VA − VB

τ

2w
τ + VA(

µC
τ + µT ) +

VB
τ (2− µC − µT )

(A.33)

= lim
τ→∞

1
τ(lnµT )′VA + VA − VB

τ

2w
τ + VA(

µC
τ + µT ) +

VB
τ (2− µC − µT )

. (A.34)

Suppose first that µ′
T > 0, µT > µC . Then the limit becomes

lim
τ→∞

[ln(2w + πC + πT )]
′

µ′
T

= lim
τ→∞

1
τ(lnµT )′VA + VA

VA
(A.35)

=
1

limτ→∞ τ(lnµT )′
+ 1 (A.36)

= +∞. (A.37)

In case µ′
T < 0, µT < µC ,

lim
τ→∞

[ln(2w + πC + πT )]
′

µ′
T

= −∞, (A.38)

since the denominator goes to 0 and the numerator goes to −∞.
Then from (A.27), we get

lim
τ→∞

(lnπ)′ = lim
τ→∞

(
µ′
T

[
1− 2µT

σ2
− 2

µT − µC
+

[ln(2w + πC + πT )]
′

µ′
T

])
. (A.39)

Suppose first that µ′
T > 0, µT > µC . Then the limit becomes

lim
τ→∞

(lnπ)′ = lim
τ→∞

(µ′
T )

[
− 1

µC(1− µC)
− 2

1− µC
+ lim

τ→∞

[ln(2w + πC + πT )]
′

µ′
T

]
. (A.40)

The term in brackets goes to +∞. By continuity of µ′
T , we can find a point b, such that a < b < ∞

and the value of the term in brackets is positive. The value of µ′
T at that point is also positive.

Therefore, the value of (lnπ)′ at b is positive.
On the other hand, if µ′

T < 0, µT < µC , the limit becomes

lim
τ→∞

(lnπ)′ = lim
τ→∞

(µ′
T )

[
1

µC(1− µC)
+

2

µC
+ lim

τ→∞

[ln(2w + πC + πT )]
′

µ′
T

]
. (A.41)

The term in brackets goes to −∞. Following the same logic, in this case we can find a point b, such
that a < b < ∞ and the value of the term in brackets is negative. The value of µ′

T at that point is
also negative. Therefore, the value of (lnπ)′ at b is positive. In both cases, therefore, we have that
the value of (lnπ)′ at b is positive.

Now we can invoke the Intermediate Value Theorem. Since the value of (lnπ)′ is negative at
a and positive at b, a < b, and the function is continuous (since µT ∈ C1), there must be a point
τ∗ at which (lnπ)′ is exactly zero. Moreover, the First Order Sufficient Condition for a Minimum
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requires the smallest such τ∗ to be the minimum point.
Another possibility for introducing incentives is to scale all alternatives by τ . In that case,

πT = τ(µTVA + (1 − µTVB)). This will lead to the following formula for the derivative of the
logarithm of the total expected per-subject payoff with respect to τ :

[ln(2w + πC + πT )]
′ =

π′
T

2w + πC + πT
(A.42)

=
VB +∆V (τµ′

T + µT )

2w + VB1 + τ) + ∆V (µC + τµT )
, (A.43)

where ∆V ≡ VA − VB. The limit of µT as τ → 1+ will still be equal to µC . However, the limit
as τ → ∞ will be 1/[number of alternatives], since scaling every alternative eventually will make
them equally attractive. Applying the same steps as we did previously, it is easy to show that the
limits of (lnπ)′ at each endpoint will still be of the opposite signs, and the result will hold.

QED.
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