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Abstract
Background Polymorphous light eruption (PLE) is a common, immunologically mediated, photosensitive skin disease.

After ultraviolet-B (UV-B) irradiation, patients with PLE show reduced Langerhans cell (LC) depletion in the epidermis,

which results in a non-suppressive microenvironment in the skin. Interestingly, severe acute graft-versus-host disease

(aGvHD) occurred in stem cell transplanted patients that showed no or incomplete depletion of LCs after UVB irradiation.

Genetic variation in nucleotide-binding oligomerization domain 2 (NOD-2) and toll-like receptor 5 (TLR-5) genes also con-

fers susceptibility to aGvHD.

Objectives We hypothesized that PLE is associated with genetic variation in the NOD-2 and TLR-5 genes.

Methods We investigated single-nucleotid polymorphisms (SNPs) of NOD-2 (R702W, G908R, 3020Cins) and TLR-5

(A592S, P616L, N392STOP) in skin biopsies of patients with PLE (n = 143) and in healthy controls (n = 104) using

restriction fragment length polymorphism analysis.

Results The frequency of NOD-2 alleles with the SNP R702W was significantly higher in PLE than in controls (31.8%

vs. 6.3%; P < 0.0001), and homozygous carriers of this mutation were more common in PLE (27.9% vs. 0%;

P < 0.0001). For SNP 3020Cins, the allele frequency (7.3% vs. 0.7%; P = 0.0025) and the number of heterozygotes

(14.7% vs. 1.3%; P = 0.0019) were higher in PLE. The frequency of alleles with the N392STOP SNP of the TLR5 gene,

which is associated with a truncated, non-functional receptor, was significantly higher in PLE (21% vs. 5%; 7% vs. 1%

homozygotes, 28% vs. 8% heterozygotes; P < 0.0001). The other SNPs did not differ significantly.

Conclusions This study yielded a high frequency of functional SNPs in the NOD-2 and TLR-5 genes in PLE. The same

SNPs are associated with aGvHD and there are similarities in the reaction of LCs after UVB irradiation between aGvHD

and PLE. This leads to the hypothesis that patients with PLE may be more susceptible to developing GvHD after stem

cell transplantation, an assumption that needs to be investigated further.
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Introduction
Polymorphous light eruption (PLE) is an ultraviolet-A (UV-A)

and ultraviolet-B (UV-B) light-induced photodermatosis with

an estimated prevalence of up to 10–20% in Western Europe

and the United States.1–3 PLE most commonly affects women in

the third and fourth decades of life but varies among skin types

and ethnic racial groups.1,4–7 Pruritic, urticarial, or erythema-

tous papules, plaques, or vesicles appear mainly in spring within

hours to days after intensive sun exposure and then fade within

a few days after the discontinuation of sun exposure.3 PLE

lesions have highly variable morphology but generally occur

monomorphically in the individual patient.8 In summer, a

‘hardening’ phenomenon can be observed, resulting in the toler-

ance of more intensive sunbathing. Hardening can also be

achieved artificially by prophylactic desensitization with pho-

totherapy in spring.4,7 Areas that are continuously sun-exposed

throughout the year such as the face are often unaffected by

PLE.

The pathogenesis of PLE is not yet fully understood. A genetic

predisposition is considered to play a role.9 The concordant

prevalence of PLE was shown to be 21% in monozygotic and

18% in dizygotic twins.10 Another study demonstrated familial
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clustering with a prevalence of photosensitivity in first-degree

relatives of patients with PLE of 20.9% compared with that of

13.6% in the general population.11 Besides genetics, decreased

UV-induced immunosuppression is also assumed to play a role.

The pathogenesis of PLE involves the production of UV-induced

neo-antigens, which in combination with the lack of cutaneous

immunosuppressive capacity results in a delayed-type hypersen-

sitivity reaction in the skin.7 Normally, UV radiation induces

cytokine production and the influx of several cell types into the

dermis and epidermis.12 In contrast to healthy people, however,

patients with PLE have decreased neutrophil infiltration into the

skin after exposure to UV radiation. This lack of neutrophil infil-

tration is associated with impaired cytokine release, suppressed

macrophage infiltration, and Langerhans cell (LC) resistance.13–

15 As bone marrow-derived dendritic cells are located within the

epidermis, LCs represent the primary antigen-presenting cells in

the skin, which play an important role in local defence, contact

sensitivity reactions, autoimmunity, and cancer surveillance. LCs

have the capacity to initiate the development of effector T-cell

responses to foreign antigens encountered in the skin by translo-

cating from the epidermis to the regional lymph nodes. In

healthy people, LCs disappear from the epidermis after UV-B

exposure and migrate to draining lymph nodes to activate T cells

located in the skin.16 In patients with PLE, however, the capacity

to deplete LCs from the skin after UV exposure is reduced17

(Fig. 1). These immunological changes result in a non-

suppressive microenvironment in the skin of patients with

PLE.13,18

Besides their role in PLE, LCs are also important in the patho-

genesis of graft-versus-host disease (GvHD). Persistent recipient

LCs that survive the conditioning therapy contribute to the

development of acute GvHD (aGvHD) after allogeneic
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Figure 1 Frequency of R702W, G908R, and 3020Cins mutations of the NOD-2 gene in patients with polymorphic light eruption. (a–c)
Allele frequency and (d–f) genotype of patients with polymorphous light eruption and controls in % of SNPs R702W, G908R, and 1007 fs/
3020Cins in the NOD-2 gene. The chi-square or Fisher’s exact test was used to determine the differences in genotype and allele frequen-
cies. Tests of statistical significance were two-sided and considered significant when the P-value was <0.05. Significant differences in
alleles between patients with polymorphous light eruption and healthy controls are marked with *. A: adenine; G: guanine; C: cytosine;
T: thymine; WT: wild-type; insC: cytosine insertion.
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haematopoietic cell transplantation (allo-HCT) by activating

donor T cells.19 To prevent the development of aGvHD by

depleting epidermal LCs, patients were irradiated with UV-B at

the time of transplantation. After UV-B irradiation, patients

with complete depletion of LCs in the skin had less severe or no

aGvHD than patients with incomplete or no LC depletion.19

This finding led to our hypothesis that patients with PLE who

are unable to deplete LCs after UV exposure may have a higher

risk of developing GvHD after allo-HCT. Certain polymor-

phisms of the nucleotide-binding oligomerization domain 2

(NOD-2) and the toll-like receptor 5 (TLR-5) genes have also

been associated with more severe aGvHD after allo-HCT. NOD-

2 and TLR-5 belong to the pattern recognition receptors (PRRs),

which recognize microbes trying to break through the surface

barrier of the innate immune system.20

NOD-2, previously known as caspase recruitment domain 15

(CARD-15), is an intracellular pattern recognition receptor, which

is important for immune defence against intracellular

microbes.21,22 Single-nucleotide polymorphisms (SNPs) in NOD-

2-like R702W, G908R, and 3020Cins have been linked to

aGvHD23–25 and to inflammatory bowel disease.26,27 SNPs in

NOD-2 are associated with the inhibition of nuclear factor j B

(NF-jB), reducing the production of cytokines, such as inter-

leukin IL-4, IL-10, tumour necrosis factor-alpha (TNF-a), or

tumour necrosis factor beta (TNF-ß).28–30 The expression of these

cytokines is also reduced in patients with PLE, which led to our

assumption that SNPs in NOD-2 may also play a role in PLE.13

Toll-like receptors (TLRs) on immunocompetent cells such as

epidermal LCs or other dendritic cells, macrophages, and

endothelial or epithelial cells recognize pathogen-associated

molecular patterns present on the surface of both pathogens and

commensal microorganisms.31,32 TLRs are also germline-

encoded sensors of the innate immune system associated with

the expression of inflammatory mediators, major histocompati-

bility complex proteins, and costimulatory molecules by the

above-mentioned cells.33 The SNP N392STOP within TLR-5 is

linked to severe GvHD.34

We hypothesized that genetic NOD-2 and TLR-5 polymor-

phisms may also play a pathogenic role in patients with PLE. For

this reason, we investigated SNPs in the NOD-2 receptor

(R702W, G908R, and 3020Cins) and TLR-5 (A592S, P616L, and

N392STOP) in patients with PLE and compared the frequency

of these SNPs with that in healthy controls.

Materials and methods

Study population
We retrospectively used paraffin-embedded skin biopsies that

had been taken consecutively between 1997 and 2016 from 143

patients with PLE for DNA isolation. We used only biopsies

from patients with a clinically suspected diagnosis of PLE (based

on patient history and clinical presentation) which had been

confirmed histologically by a dermatohistopathologist. The rou-

tine biopsies of patients with PLE were used anonymously. Fre-

quency of genotypes in PLE samples was compared with that of

104 healthy controls that had already been described in previous

studies.35 DNA from healthy controls had been isolated from

blood samples. The total number of PLE and control samples

used for the analysis of each SNP varied and is indicated as (n)

for each SNP in Tables 1 and 2.

Genomic DNA isolation
Genomic DNA was extracted from paraffin-embedded skin biop-

sies from patients with PLE using the blackPREP FFPE DNA kit

(Analytik Jena GmbH, Jena, Germany) or from peripheral blood

of healthy donors using the NucleoSpin FFPE DNA kit (Machery-

Nagel�, D€uren, Germany) according to the manufacturer’s proto-

col. Since formalin fixation and paraffin extraction may lead to

fragmented DNA, we had excluded in advance paraffin-

embedded samples that had failed to generate technically flawless

results for further restriction fragment length analysis.

Analysis of restriction fragment length polymorphism
(RFLP)
Polymorphisms were analysed using polymerase chain reaction

(PCR) followed by nested PCR reaction (nPCR) with subsequent

analysis of restriction fragment length polymorphism (RFLP) of

three SNPs within the NOD-2 gene (R702W, G908R, and

3020Cins) and of three SNPs within the TLR-5 gene (A592S,

P616L, and N392STOP) of patients with PLE and healthy con-

trols. PCR was performed with a total reaction volume of 50 lL
containing 10 ng of genomic DNA under conditions and with

PCR primers (Sigma-Aldrich GmbH; Taufkirchen, Germany) as

indicated in Table S1. For DNA enrichment, a nested PCR with

nPCR primers (Sigma-Aldrich GmbH; Taufkirchen, Germany)

as indicated in Table S1 was supplemented with 2 lL of poly-

ethylene glycol (PEG) precipitated PCR product. Consequently,

10 lL of the nested PCR amplified product was digested by

restriction enzymes36–40 as indicated in Table S2 and analysed

via electrophoresis on a 12% polyacrylamide gel. Length of PCR

products for determining the genotype of indicated SNPs in

NOD-2/TLR-5 are indicated in Table S2.

Statistical analysis
The observed genotype frequencies in cases and controls were in

agreement with Hardy–Weinberg equilibrium, suggesting no

population stratification. Frequencies of alleles and genotypes

are reported with their group percentages. The chi-square or

Fisher’s exact tests were used to determine differences in allele

and genotype frequencies. Tests of statistical significance were

two-sided and were considered significant when the P-value was

<0.05. All statistical analyses were performed with the GraphPad

prism software package (GraphPad Software Inc. 9.01, San

Diego, CA, USA).
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Results

Frequency of R702W, G908R, and 3020Cins mutations of
the NOD-2 gene
The allele frequency of the R702W mutation (T-allele)

differed significantly between patients with PLE (31.8%) and

controls (6.3%) (v2 = 47.07, 1; P < 0.0001) (Fig. 1a;

Table 1). The allele frequency of the G908R mutation (C-

allele) did not differ significantly between patients with PLE

(4.8%) and controls (1.5%) (v2 = 3.799, 1; P = 0.0513)

(Fig. 1b; Table 1). The allele frequency of the 3020Cins

mutation was significantly higher in patients with PLE

(7.3%) than in controls (0.7%) (v2 = 9.153, 1; P = 0.0025)

(Fig. 1c; Table 1).

Table 1 Allele distribution and genotype of NOD-2 in patients with polymorphic light eruption and control subjects

Gene/SNP Genotype/Allele Patients with PLE Controls

n = genotype (%)/n = allele (%) n = genotype (%)/n = allele (%)

R702W

C > T

n = 140 (%)/n = 280 (%) n = 104 (%)/n = 208 (%)

CC 90 (64.2) 91 (87.5)

CT 11 (7.9) 13 (12.5)

TT 39 (27.9) 0

C 191 (68.2) 195 (93.7)

T 89 (31.8) 13 (6.3)

G908R

G > C

n = 115 (%)/n = 230 (%) n = 102 (%)/n = 204 (%)

GG 104 (90.4) 99 (97.1)

GC 11 (9.6) 3 (2.9)

CC 0 0

G 219 (95.2) 201 (98.5)

C 11 (4.8) 3 (1.5)

3020Cins n = 143 (%)/n = 286 (%) n = 75 (%)/n = 150 (%)

WT/WT 122 (85.3) 74 (98.7)

WT/3020Cins 21(14.7) 1 (1.3)

3020Cins/3020Cins 0 0

WT 265 (92.7) 149 (99.3)

Cins 21 (7.3) 1 (0.7)

Table 2 Allele distribution and genotype of TLR-5 in patients with polymorphic light eruption and control subjects

Gene/SNP Genotype/Allele Patients with PLE Controls

n = genotype (%)/n = allele (%) n = genotype (%)/n = allele (%)

A592S

rs2072493 A > G

n = 143 (%)/n = 286 (%) n = 103 (%)/n = 206 (%)

AA 81 (56.6) 56 (54.4)

AG 56 (39.2) 37 (35.9)

GG 6 (4.2) 10 (9.7)

A 218 (76.2) 149 (72.3)

G 68 (23.8) 57 (27.7)

P616L

rs5744174 T > C

n = 143 (%)/n = 286 (%) n = 104 (%)/n = 208 (%)

TT 34 (23.8) 31 (29.8)

TC 76 (53.1) 53 (51)

CC 33 (23.1) 20 (19.2)

T 144 (50.3) 115 (55.2)

C 142 (49.7) 93 (44.7)

N392STOP

rs5744168

n = 100 (%)/n = 200 (%) n = 100 (%)/n = 200 (%)

CC 65 (65) 91 (91)

CT 28 (28) 8 (8)

TT 7 (7) 1 (1)

C 158 (79) 190 (95)

T 42 (21) 10 (5)
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Analysis of the genotype of the R702W SNP mutation with the

Chi-square test yielded significant differences between the two

groups (v2 = 34.61, 2; P < 0.0001). Of the patients with PLE,

27.9% had a homozygous genotype and 11% a heterozygous

genotype in contrast to controls (0% = homozygous; 12.5%

heterozygous) (Fig. 1d; Table 1). We also found significant differ-

ences in the G908R SNP (v2 = 3.930, 1; P = 0.0474): None of the

two groups had a homozygous genotype, but 9.6% of the patients

with PLE (n = 115) had a heterozygous genotype in contrast to

only 2.9% of the controls (n = 102) (Fig. 1e; Table 1). Neither of

the two groups had a homozygous genotype in the SNP

3020Cins, but 14.7% of the patients with PLE (n = 143) had a

heterozygous genotype in contrast to 1.3% of the controls

(n = 75). Again, the difference between the two groups was signif-

icant (v2 = 9.666, 1; P = 0.0019) (Fig. 1f; Table 1).

Incidence of A592S, P616L, and N392STOP mutations of
the TLR-5 gene
The allele frequency of the A592S mutation (G-allele) was lower

in patients with PLE (23.8%) than in controls (27.7%)

(v2 = 0.9579, 1; P = 0.3277) (Fig. 2a; Table 2). In contrast, the

allele frequency of the P616L mutation (C-allele) was higher in

patients with PLE (49.7%) than in controls (44.7%), but the

result was not statistically significant (v2 = 1.178, 1; P = 0.2778)

(Fig. 2b; Table 2). The allele frequency of the N392STOP muta-

tion (T-allele) was significantly higher in patients with PLE

(21%) than in controls (5%) (v2 = 22.63, 1; P < 0.0001)

(Fig. 2c; Table 2).

The genotypes of the A592S SNP showed no significant differ-

ence between the two groups (v2 = 3.020, 2; P = 0.2210). The

homozygous genotype was more common in controls (9.7%)

than in patients with PLE (4.2%). The heterozygous genotype,

however, was more common in patients with PLE than in con-

trols (39.2% vs. 35.9%) (Fig. 2d; Table 2). The genotypes of the

P616L SNP showed no significant difference between the two

groups (v2 = 1.302, 2; P = 0.5214), but, again, more patients

with PLE had a homozygous (53.1%) and heterozygous (23.1%)

genotype than controls (51% and 19.2%). Overall, the heterozy-

gous genotype was more frequent in patients with PLE (53.1%)

and controls (51%) than the wild type (WT) (PLE 23.8%;
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Figure 2 Frequency of A592S, P616L, and N392STOP mutations of the TLR-5 gene in patients with polymorphic light eruption. (a–c)
Allele frequency and (d–f) genotype of patients with polymorphic light eruption and controls in % of SNPs A592S, P616L, and N392STOP
in the TLR-5 gene. The chi-square or Fisher’s exact tests were used to determine the differences in genotype and allele frequencies.
Tests of statistical significance were two-sided and considered significant when the P-value was <0.05. Significant differences in alleles
between patients with polymorphic light eruption and healthy controls are marked with *. A: adenine; G: guanine; C: cytosine; T: thymine;
WT: wild-type; insC: cytosine insertion.
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controls 29.8%) (Fig. 2e; Table 2). The N392STOP SNP also

differed significantly between the two groups (v2 = 19.94, 2;

P < 0.0001). The homozygous and heterozygous genotypes were

statistically more frequent in patients with PLE (7% and 28%)

than in controls (1% and 8%) (Fig. 2f; Table 2).

Discussion
This is the first study to examine the SNPs in the NOD-2 and

TLR-5 genes in patients with PLE. We hypothesized that SNPs

in the NOD-2 receptor (R702W, G908R, 3020Cins) and TLR-5

(A592S, P616L, N392STOP) in individuals with PLE respec-

tively, may differ from those in control subjects.

In accordance with this hypothesis, the mutated allele fre-

quencies in NOD-2 differed significantly in the SNP R702W

between patients with PLE and controls. In addition, all investi-

gated SNPs (R702W, G908R, and 3020Cins) differed in terms of

the genotype. We showed that patients with PLE were more

likely to have mutated genotypes than controls. The percentage

distribution of the genotypes of SNPs in NOD-2 in patients with

PLE was similar to the distribution of these SNPs in patients

with inflammatory bowel disease in Caucasians and in patients

with severe aGvHD after stem cell transplantation (SCT).40–42

Many studies refer to NOD-2 polymorphisms. For instance,

the SNPs in NOD-2, especially the 3020Cins SNP, have been

shown to be associated with the activation or inhibition of

nuclear factor j B (NF-jB). NOD-2 activates NF-jB after intra-

cellular stimulation by bacterial products and mitogen-activated

protein kinase signalling pathways, leading to a series of immune

responses.29,43,44 NF-jB is also activated by UV radiation and

regulates genes involved in a variety of inflammatory and

immune processes, including cytokine production, induction of

inflammatory enzymes, and activation of adhesion molecules.45

Cells with SNPs in NOD-2 do not activate NF-jB when stimu-

lated with the NOD-2 ligand muramyl dipeptide. The SNP

3020Cins results in a shortened protein lacking large parts of its

muramyl dipeptide-binding portion.30,46 Therefore, this defect

in the NOD-2 protein structure may impair NF-jB activation

and reduce or enhance the production of pro-inflammatory

cytokines.29 Netea et al.28 showed that in patients with Crohn’s

disease, the 3020Cins frameshift mutation in the NOD-2 gene is

associated with impaired release of interleukin 10 (IL-10) from

blood mononuclear cells after stimulation with the TLR-2

ligands peptidoglycan and Pam3Cys-KKKK. The SNP generates

a loss of function phenotype at this point. Patients with PLE

irradiated with UV-B also show reduced expression of IL-10 as

well as of interleukin 4 (IL-4) and TNFa. This reduction may be

caused by a lack of neutrophils or be a consequence of reduced

LC migration and T-helper-2 displacement.13 Yet, this reduction

may also be due to the SNP 3020Cins, which disrupts NF-jB
activation and may thus reduce the expression of IL-10, IL-4,

and TNFa. In the study by Netea et al., the release of transform-

ing growth factor beta (TGF-b) was also impaired after

mononuclear cells of patients with Crohn’s disease carrying the

3020Cins mutation had been stimulated with peptidoglycan.28

Patients with PLE showed decreased TGF-b1 immunoreactivity

in lesional epidermis, which might have been influenced by the

3020Cins SNP.47 Based on these findings, it is conceivable that

among other factors, defective NF-jB regulation leads to an

insufficient immune response or incorrect immune suppression.

It would be interesting to investigate in further studies whether

patients with PLE and such SNPs, in particular, the 3020Cins

SNP mutation, show impaired NF-jB expression.

In the SNPs A592S and P616L of the TLR-5 receptor, neither

the mutated allele frequency nor the genotype differed signifi-

cantly between patients with PLE and controls. However, there

was an increased frequency of mutant alleles in SNP N392STOP

(21% vs. 5%) and the mutant genotype was more frequent in

patients with PLE compared with controls (7% vs. 1% homozy-

gotes and 28% vs. 8% heterozygotes). The average percentage

distribution of the genotypes of the SNP N392STOP in TLR-5 in

the analysed patients with PLE was similar to that in

haematopoietic stem cell recipients with severe aGvHD.34 Sev-

eral SNPs within the TLR genes have been linked to infectious,

inflammatory, and carcinogenic processes. The N392STOP SNP

showed a trend toward a higher incidence of severe aGvHD in

patients with SCT,34 and the SNPs A592S and P616L have

already been investigated in correlation with inflammatory

bowel disease39,48 and colorectal cancer.49 We focused the dis-

cussion particularly on the N392STOP polymorphism due to the

significant differences found between patients with PLE and con-

trols. The stop codon polymorphism renders the truncated

ligand-binding domain incapable of mediating flagellin sig-

nalling, thus increasing the susceptibility to infection. Flagellin

has been shown to be the main stimulator of Legionella pneu-

mophila for IL-8 production in lung epithelial cell lines.50 In

peripheral mononuclear blood cells of people who are heterozy-

gous for TLR-5 N392STOP, IL-6 production is significantly

reduced when stimulated with flagellin. PLE is characterized by

lymphocyte-rich inflammatory infiltrates. Therefore, suction

blister fluid samples from patients with PLE were analysed for

the presence of cytokines, which induce peripheral blood lym-

phocyte migration in vitro. Norris et al.51 demonstrated that IL-

6 and IL-8 may be involved in the induction of peripheral blood

lymphocytes in PLE. It is conceivable that people with

N392STOP polymorphisms tend to have reduced IL-6 secretion.

Patients with PLE do not adequately deplete LCs after UV

exposure. This reduced depletion of LCs after UV-B irradiation

has been shown to increase the likelihood of aGvHD develop-

ment in patients after allo-HCT. Since polymorphisms in the

NOD-2 receptor and TLR-5 of the recipient and the donor are

also made responsible for the development of aGvHD in SCT

patients, we hypothesized that patients with PLE may have the

same mutations. The risk factors for aGvHD are numerous, such

as human leukocyte antigen (HLA) mismatch/unrelated

� 2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd
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donors,52 or total body irradiation.53 UV-B irradiation after

allogeneic haematopoietic cell transplantation (allo-HSCT) has

been shown to protect patients from developing aGvHD, but

patients with incomplete LC depletion in the epidermis after

UV-B irradiation developed a more severe form of aGvHD.19

The NOD-2 SNPs investigated in our study are also discussed

as risk factors for developing aGvHD.23–25,42,54,55 The

N392STOP SNP in TLR-5 showed a trend towards a more

severe type of GvHD.34 This SNP may also be a risk factor

for invasive aspergillosis, which is particularly common in

severe GvHD after SCT.56 The SNPs A592S and P616L have

not yet been studied in relation to aGvHD but in inflamma-

tory bowel disease39,48 and colorectal cancer.49 In mice, pre-

treatment with the TLR-5 ligand flagellin reduced the severity

of GvHD.57 TLR-5 may be associated with attenuating the

activation of antigen-presenting cells and hence be responsible

for late LC depletion in patients with PLE.

The question arises whether patients with PLE in particu-

lar, those with defined SNPs in the NOD-2 and TLR-5 genes

have a higher risk of developing aGvHD after allo-HCT

(Fig. 3). PLE may thus be another risk factor for aGvHD.

This question cannot be answered by means of our study

results and has to be addressed in more detail in further

studies. Because the SNPs in NOD-2 in particular are associ-

ated with chronic inflammatory bowel diseases, it would also

be interesting to examine such patients for the presence of

PLE or vice versa.

Conclusion
Our study showed that mutant allele frequencies differed signifi-

cantly in the NOD-2 SNPs R702W and 3020Cins as well as in

the TLR-5 SNP N392STOP between patients with PLE and con-

trols. Patients with PLE also showed significantly more homozy-

gous and heterozygous genotypes in the NOD-2 SNPs R702W,

G908R, and 3020Cins as well as in the TLR-5 SNP N392STOP

than controls. These SNPs may alter the NF-jB signalling path-

way in patients with PLE, resulting in changes in the immune

response. The lack of LC depletion from the epidermis in UV-

irradiated patients with PLE, which indicates failure of UV-

induced immunosuppression, may be a sign of altered immune

tolerance. These findings will inspire further studies in this

under investigated field, which should aim at validating and

extending these initial results.

Limitations
This study did not investigate the clinical relevance of SNPs, and

no genotype–phenotype correlation could be performed because

of the lack of clinical data of patients with PLE (anonymized

biopsies).

Further investigations, especially with regard to the depletion

of LCs and the involvement of the NF-jB pathway and antimi-

crobial peptides, could not be carried out because of the lack of

biopsy material. These questions should be the objective of fur-

ther studies.

Another limitation of this study is the fact that no further

clinical data were available from the patients with PLE since the

biopsies were used anonymously. To overcome this limitation

and to confirm the interesting results of this retrospective study,

we are planning a prospective study using blood from patients

with PLE that will include also all other relevant clinical patient

data.
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Figure 3 Potential hypothesis of acute graft-versus-host reaction
in patients with polymorphous light eruption. Patients with poly-
morphous light eruption irradiated with ultraviolet-B do not deplete
Langerhans cells from the epidermis. Patients with incomplete
Langerhans cell depletion have experienced severe acute graft-
versus-host disease after haematopoietic stem cell transplanta-
tion. Patients with graft-versus-host disease have also a higher
number of SNPs in NOD-2/TLR-5 than controls. Patients with poly-
morphous light eruption who have to undergo stem cell transplan-
tation and have single-nucleotide polymorphisms in the NOD-2
and TLR-5 gene may have an increased likelihood of developing
acute graft-versus-host disease.
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