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Immune checkpoint inhibitors have revolutionized treatment of advanced

melanoma, but commonly cause serious immune-mediated complications.

The clinical ambition of reserving more aggressive therapies for patients least

likely to experience immune-related adverse events (irAE) has driven an

extensive search for predictive biomarkers. Here, we externally validate the

performance of 59 previously reported markers of irAE risk in a new cohort of

110 patients receiving Nivolumab (anti-PD1) and Ipilimumab (anti-CTLA-4)

therapy. Alone or combined, the discriminatory value of these routine clinical

parameters and flow cytometry biomarkers was poor. Unsupervised clustering

of flow cytometry data returned four T cell subsets with higher discriminatory

capacity for colitis than previously reported populations, but they cannot be

considered as reliable classifiers. Although mechanisms predisposing some

patients to particular irAEs have been described, we are presently unable to

capture adequate information from pre-therapy flow cytometry and clinical

data to reliably predict risk of irAE in most cases.

KEYWORDS

biomarker, checkpoint inhibition, irAEs, immune-related adverse events, validation, prediction
Abbreviations: AUC, Area-under-the-curve; BMI, body mass index; CMV, cytomegalovirus; EBV,

Epstein-Barr virus; FDR, false discovery rate; g-GT, gamma-glutamyltransferase; GOT, glutamic

oxaloacetic transaminase; GPT, glutamic pyruvic transaminase; HHV, human herpesvirus; ICI, Immune

Checkpoint Inhibitor; irAE, immune-related adverse event; KSHV, Kaposi’s sarcoma-associated virus;

LDH, lactate dehydrogenase; LOOCV, leave-one-out cross-validation; MLR, monocyte-to-lymphocyte

ratio; ROC, receiver operating characteristic.
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Introduction

Combined checkpoint blockade with anti-PD-1

(Nivolumab) and anti-CTLA-4 (Ipilimumab) antibodies is

now a standard treatment for inoperable metastatic melanoma.

The clinical efficacy of dual therapy is evident from the excellent

clinical response rate, progression-free survival and overall

survival (1–3). However, immune-related adverse events

(irAE) complicate immune checkpoint inhibitor (ICI)

treatment in a high proportion of patients, which significantly

impacts their quality of life (4). Although life-threatening irAEs

are infrequent, even moderate reactions lead to interruption of

immunotherapy, multidisciplinary management and treatment

with immunosuppressive medication (5). Disruption of ICI

treatment, and costs associated with monitoring or treatment

of irAEs, are burdensome; therefore, reliable prognostic methods

to assess an individual’s risk of irAE prior to therapy would

greatly impact patient care.

Factors predisposing individual patients to irAE are

incompletely understood. ICI therapy can worsen autoimmune

conditions and patients with pre-existing autoimmune diseases

stand a greater risk of developing other immune-mediated

adverse reactions after treatment (6–8). Immunogenetics also

play a role in irAE susceptibility (9–11). Prior exposure to

viruses has recently surfaced as a significant predisposing

factor in some patients (12). Infection with human

herpesviruses (HHV) may play a particularly important role in

the context of malignant melanoma. Our own studies revealed

that chronic or recurrent cytomegalovirus (CMV; HHV-5)

reactivation drives proliferation of virus-specific CD4+ effector

memory T cells (TEM) in patients with metastatic melanoma

before starting immunotherapy. These expanded TEM cells are

responsible for hepatitis after combined Nivolumab and

Ipilimumab treatment (13–15). Similarly, others have

implicated Epstein-Barr virus (EBV; HHV-4)-specific memory

T cells in a case of fatal encephalitis after anti-PD-1 therapy (16).

An unexpectedly high rate of seropositivity against Kaposi’s

sarcoma-associated virus (KSHV; HHV-8) has been reported in

Stage IV melanoma patients, again hinting at a peculiar

susceptibility to HHV infections (17). Beyond ICI therapy,

autoimmunity may be triggered by persistent T cell immunity

against various herpesgroup viruses; for example, Hashimoto’s

thyroiditis has been associated with seroconversion to

roseolovirus (HHV-6) (18, 19).

Recently, many groups have reported biomarkers associated

with irAE risk, which include leucocyte subsets measured in

peripheral blood by flow cytometry. We systematically searched

for these reports to independently assess the discriminatory value

of biomarkers they identified. We found 20 relevant articles

published between 2006 and 2022 that examined a range of

tumor entities, treatment strategies and analytical methods (20–

39). Here, we tested the general validity of these biomarkers by
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asking whether they predicted irAEs in a related, but non-identical

clinical setting. Specifically, we asked whether any reported

biomarkers measured prior to starting combined Ipilimumab

and Nivolumab therapy predicted the incidence of hepatitis,

colitis or thyroiditis in patients with advanced melanoma.
Materials and methods

Patients

This single-center, non-interventional clinical study was

conducted in accordance with the Declaration of Helsinki and

all applicable German and European laws and ethical standards.

Blood samples were obtained from patients with Stage III/IV

melanoma enrolled in an observational trial authorized by the

Ethics Committee of the University of Regensburg (approval 16-

101-0125) and registered with clinicaltrials.gov (NCT04158544).

All participants gave full, informed written consent. The first

reported case was recruited in OCT-2016 and the last reported

case was recruited in JUN-2021. Patients received standard-of-

care treatment according to local guidelines. Patients with

unresectable metastatic disease who received first- or second-

line checkpoint inhibitor therapy were initially treated with

Nivolumab (aPD-1; 1 mg/kg; Bristol-Myers Squibb) plus

Ipilimumab (aCTLA-4; 3 mg/kg; Bristol-Myers Squibb) for

four cycles at 3 week intervals. Thereafter, patients received 3

mg/kg Nivolumab monotherapy at 3 week intervals.
irAE grading

All irAE were assessed by an expert Dermatological

Oncologist (Supplemental Figure 1A). ICI-related hepatitis was

diagnosed when: (i) GOT, GPT, g-GT or total bilirubin

substantially deviated from pretreatment values; (ii) this

change was not attributable to other causes, such as co-

medication or viral disease; and (iii) liver injury was

sufficiently severe that ICI therapy was suspended or stopped,

or immunosuppression was given. Colitis was diagnosed

according to stool frequency and consistency, abdominal

discomfort, suspension or cessation of ICI therapy, and

introduction of immunosuppressive treatment. Thyroiditis was

diagnosed based on decreased T3/T4 and elevated TSH levels

measured at routine clinic visits.
Routine investigations

Hematological , Biochemical and Microbiological

investigations were performed by accredited diagnostic

laboratories at University Hospital Regensburg.
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Literature search

We searched Medline at the National Library of Medicine

through the NCBI website on 11-JUN-2022. Our search terms

were ‘immunotherapy’, ‘immune checkpoint inhibitor’, ‘irAEs’,

‘biomarkers’, ‘prediction’ and synonyms. We followed-up on

relevant citations from articles returned in our original search.

We identified 20 articles (Supplemental Table I) describing 59

unique biomarkers (Supplemental Table II).
Flow cytometry

Step-by-step protocols for preparing and analyzing clinical

samples by flow cytometry can be accessed through Nature

Protocol Exchange (40). Briefly, blood was collected into EDTA-

vacutainers by peripheral venepuncture before delivery to the

immune monitoring lab at ambient temperature. Samples were

stored at 4°C for up to 4 h until processing. Whole blood samples

were stained using DURAClone reagents (DURAClone IM

Phenotyping Basic Tube, B53309; DURAClone IM T Cell

Subsets Tube, B53328; DURAClone IM TCRs Tube, B53340;

DURAClone IM Treg Tube, B53346; DURAClone IM B Cell

Tube, B53318; DURAClone IM Dendritic Cell Tube, B53351;

DURAClone IM Granulocytes Tube, B88651; all from Beckman

Coulter, Krefeld, Germany). For the flow cytometry anaylsis of

exhausted T cells the following liquid antibodies were used

(EXH_CD8 panel): CD49b FITC, 359306, BioLegend,

Amsterdam, Netherlands; CD160 PE, IM3657; CD27 ECD,

B26603; CD244 PC5.5, B21171; CD279 (PD-1) PC7, A78885;

CD127 APC, B42026; CD8 AA700, B49181; CD3 AA750,

A94680; CD4 PB, B49197 and CD45 KrO, B36294; all from

Beckman Coulter, Krefeld, Germany. Data were collected with a

Navios™ cytometer running Cytometry List Mode Data

Acquisition and Analysis Software version 1.3 (Beckman

Coulter). An experienced operator performed blinded analyses

of all datasets in Kaluza version 2.1, as far as possible replicating

gating strategies described in the original reports.
Statistics

Our main dataset comprised 110 samples and 59 features

extracted from publications and 9 routine clinical parameters;

one missing value for GOT was imputed with the median “25”

from all other 109 samples. In the extended analysis of

DURAClone IM Tube panels, we extracted 80 cell population

frequencies by manual gating. Additionally we included 8

clinical parameters, 9 clinical biochemistry values and 18 cell

counter values in this extended feature set. One missing value of

the presence of liver metastases was imputed with the median

“no presence” from all other samples. Univariate analysis was
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performed for each condition per feature. P-values were

calculated using a two-sample Wilcoxon test using a

significance level of 0.05 (41). For false discovery rate (FDR)

correction (42) of the p-values we used a significance level of 0.1.

Discriminatory capability of the features was additionally

assessed using ROC-curves and the corresponding area under

the curves (AUCs). We report features with AUC > 0.65 as

discriminatory. All calculations and plots were made with R

4.2.0 (43).

Models were built in leave-one-out cross-validation and the

predictions for each left-out sample were gathered to report the

final performance of each model. The penalized logistic

regression models were built with glmnet (44) using the

elastic-net (45) with an alpha=0.9, and 250 lambda steps in

inner cross-validation. The random forest model was built using

mlr3 (46) for each binary classification problem with alpha=0.5,

num.trees=500, replace=True and splitrule=gini. We also

assessed ROC-curves and the AUCs here. AUC ≃ 0 were

obtained when penalization of the linear model excluded all

features in multiple cross-validation steps, leading to a null-

model of only the intercept.

Clustering was performed using FlowSOM (47) in CytoBank

on CD45+ CD3+ T cells (DURAClone IM T Cell Subsets Tube)

and CD45+ CD19+ B cells (DURAClone IM B Cell Tube). All

channels were used as clustering markers except for CD3 or

CD19, CD45, FSC, SSC and time. We used hierarchical

consensus clustering with 10 metaclusters and 100 (T Cell

Tube) or 49 (B Cell Tube) clusters. Feature standardization

was applied.
Results

Reported biomarkers are weak
predictors of irAE

Our first objective was to test the predictive performance of

reported biomarkers of irAE risk in our cohort of 110 metastatic

melanoma patients treated with dual checkpoint blockade.

Patient characteristics are shown in Table 1. Reviewing the

literature, we catalogued 20 publications that reported

associations between irAE risk and the frequencies of 55

unique cell populations in peripheral blood or 4 routine

clinical parameters (Supplemental Table I) (20–39). In

addition, we selected another 9 routine clinical parameters

with possible prognostic relevance – namely, sex, CMV

seropositivity, GOT, GPT, g-GT, total bilirubin, LDH, Protein-

S100 and presence of liver metastases. Although many of these

biomarkers were identified in different clinical contexts, such as

anti-PD-1 monotherapy or other malignancies, we reasoned that

any robust, mechanistically relevant biomarker could be

reasonably expected to have some predictive capacity in
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closely related situations. Hence, our aim was not to directly

confirm or refute any previous findings through replication, but

to test whether they could be generalized.

To externally validate these 55 flow cytometry and 13 clinical

features as predictors of irAEs, we performed uni- and

multivariate analyses. We particularly focused on 3 common

irAE – hepatitis (44%), colitis (36%) and thyroiditis (37%). Each

complication was treated as an separate outcome, but we also

considered the occurrence of (i) hepatitis and/or colitis, and (ii)

hepatitis and/or colitis and/or thyroiditis (henceforth, “any

irAE”). Hence, we tested the value of 68 features in predicting
Frontiers in Immunology 04
5 clinical outcomes in our dataset of 110 cases (Supplemental

Table II).

Considering all five clinical outcomes, significant associations

were discovered for 16 features using the Wilcoxon test without

correcting for multiple comparison (Supplemental Table IIIA).

However, after adjustment for multiple testing using the false

discovery rate (FDR) (42), no associations with hepatitis, colitis,

thyroiditis, or “hepatitis and/or colitis” were significant. Four

features remained significantly associated with “any irAE” –

notably, these were all B cell subsets. Next, we assessed the

discriminatory capacity of all 68 features using the area under

Receiver-Operating-Characteristics (ROC) curves (Figure 1A). An

area under the curve (AUC) of 0.5 implies no discrimination,

whereas a maximumAUC of 1 implies perfect discrimination. We

found 7 features with AUC > 0.65 (Supplemental Table IIIA).

Next, we asked whether these discriminatory features were

capturing similar information by grouping them into

immunologically relevant classes (Figure 1B). The most

discriminatory marker for hepatitis was CD4+ T cell frequency

(AUC=0.630) (Supplemental Table IV). Discriminatory markers

of colitis risk related primarily to T cells, especially the frequency

of CD4+ T cells (AUC = 0.652). The most discriminatory feature

for thyroiditis risk was the platelet count (AUC = 0.659). The five

most discriminatory features of “any irAE” were B cell markers

(best AUC = 0.727). Unfortunately, no single biomarker was

powerful enough to reliably identify predisposed individuals.
Combining features does not improve
discriminatory power

We next asked whether combining previously reported

features predicted irAEs better than single features alone.

Therefore, we generated simple penalized logistic regression

models (44) and random forest (48) analyses in leave-one-out

cross-validation (LOOCV). Neither approach found reliable

predictive models (Figure 2). AUC ≃ 0 were obtained when

penalization of the linear model excluded all features in multiple

cross-validation steps, leading to a null-model of only the

intercept. The prediction of each left-out sample is then the

mean prediction of all other samples, which always leads to

incorrect class prediction.

Our inability to find a reliable predictive model combining

different discriminatory biomarkers could be explained in several

ways: (i) There may be no immunological predisposition to

particular irAEs; (ii) immunological factors might be only partly

responsible for any such predisposition; (iii) hepatitis or colitis may

be the end-result of more than one immune aetiology; (iv) although

we may be capturing predictive information, we might be unable to

extract the signal from background noise; or (v) our selection of

biomarkersmight not capture all phenotypic information necessary

for a reliable prediction. Importantly, the hope offinding predictive
TABLE 1 Characteristics of study cohort.

Patient cohort characteristics

Total number of cases 110

Female 37 (33.6%)

Male 73 (66.4%)

Baseline characteristics

Age (years) 62 (22-84)

BMI 26.6 (15.4-54.6)

Stage III 8 (7.3%)

Stage IV 102 (92.7%)

Liver metastases present 30 (27.3%)

CMV seropositive 52 (47.3%)

ANA positive 65 (59.1%)

Pretreatment

None 3 (2.7%)

Surgical excision 102 (92.7%)

Radiosurgery 3 (2.7%)

Radiation 42 (38.2%)

Monotherapy 17 (15.5%)

IFNa therapy 9 (8.2%)

Braf/Mek inhibitor therapy 21 (19.1%)

T-VEC therapy 7 (6.4%)

Chemotherapy 6 (5.5%)

Rounds of Ipi/Nivo

1 round 13 (11.8%)

2 rounds 24 (21.8%)

3 rounds 20 (18.2%)

4 rounds 53 (48.2%)

Complications

Hepatitis 48 (43.6%)

Colitis 40 (36.4%)

Thyroiditis 41 (37.3%)

No complication 23 (20.9%)

1 complication 50 (45.5%)

2 complications 32 (29.1%)

3 complications 5 (4.5%)
110 patients with Stage III/IV melanoma were enrolled into the study cohort. For Age and
BMI, median values were calculated. Minimum and maximum values are given in
brackets. Baseline characteristics were obtained before start of Ipi/Nivo therapy.
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biomarkers of irAE risk that could drive personalized treatment

decisions rests upon there being measurable predisposing factors of

irAE. There is now good mechanistic evidence for immunological

predisposition to irAEs in some cases. For instance, our group and

others reported that irAE risk is predicted by oligoclonal expansion

of T cells prior to immunotherapy, likely as a consequence of

chronic or recurrent viral exposure (13, 20).

To investigate whether our selection of features or analytical

methods were limiting the performance of our predictive

models, we extended our set of biomarkers by making a finer

manual re-gating of our flow cytometry data before repeating
Frontiers in Immunology 05
our uni- and multivariate analyses. After correction for multiple

testing, no extended-set features were significantly associated

with hepatitis, colitis, thyroiditis or “hepatitis and/or colitis” risk.

However, three B cell subpopulations were significant markers of

“any irAE” (Supplemental Table IIIB). The extended-set feature

that returned the highest AUCs in prediction of hepatitis was

CD4+ TEM (AUC = 0.677), whereas colitis was weakly predicted

by immature neutrophils (AUC = 0.670) (Supplemental Table

IV). Unfortunately, combining the extended-set features did not

return a more stable predictive model for any of the outcomes

(Supplemental Figure 1B).
FIGURE 2

ROC-curves for linear models and random forests with previously reported biomarkers and clinical parameters. ROC-curves in LOOCV for
penalized logistic regression and random forest models predicting hepatitis (AUC 0 and 0.50), colitis (AUC 0.57 and 0.39), thyroiditis (AUC 0.41
and 0.57), hepatitis and/or colitis (AUC 0 and 0.43) and hepatitis and/or colitis and/or thyroiditis (AUC 0.53 and 0.61).
FIGURE 1

ROC-curves and AUCs for previously reported biomarkers and clinical parameters per condition. (A) ROC-curves for all 68 features regarding
each dependent variable are shown. For each dependent variable, the features with highest AUC is highlighted in red. (B) AUCs from ROC-
curves in subfigure (A) grouped according to immunological classes. The y-axis represents the AUC. Orange dots denote AUC ≤ 0.65; green
dots denote AUC > 0.65.
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ICI-related hepatitis may have more than
one cause

We previously reported that CD4+ TEM expansion in CMV-

seropositive patients before therapy is a strong predictor of

hepatitis risk after combined Nivolumab and Ipilimumab

treatment (13). We were able to rederive this result in a subset

of patients comprising the validation set from our original

publication (n=45) plus an additional 30 patients added in this

study: The AUC for CD4+ TEM (%) was 0.729. In addition, we

used the full dataset to discover another 12 markers of CMV

IgG+ hepatitis with AUC > 0.65, which were mainly T cell

subsets (Supplemental Table IIIC). Interestingly, for the CMV

IgG- samples, monocyte frequency (AUC = 0.705) and absolute

numbers (AUC = 0.657) predicted hepatitis risk, suggesting

there may be more than one aetiological route to ICI-related

liver inflammation (Supplemental Table IIID & Supplemental

Table IV).
Unsupervised clustering returns new
predictive features

It is conceivable our flow cytometry dataset captured

predictive information about irAE risk, but that our manual

gating strategy failed to identify the most informative cell

subsets. Therefore, we applied an unsupervised clustering

algorithm (FlowSOM) to samples stained with B cell or T cell

markers, then used clusterwise cell abundances as predictive
Frontiers in Immunology 06
features (47). Univariate analyses after clustering of B cell

markers identified no new features with greater discriminatory

value than previously considered features (Supplemental Tables

IIIE, F). Furthermore, the top-performing models after

combining B cell (meta-)clusters in LOOCV were not superior

to single features alone (Supplemental Table IV, Supplemental

Figures 2A, B).

Likewise, clustering T cells revealed no better discriminatory

features for hepatitis, thyroiditis, “hepatitis or colitis” or “any

irAE” (Supplemental Tables IIIG, H, Supplemental Table IV &

Supplemental Figure 2C). Surprisingly, 4 clusters (C45, C50, C56

and C63) were significantly associated with colitis after FDR

correction. These clusters returned AUCs of 0.690, 0.709, 0.711

and 0.713, respectively – hence, they showed greater

discriminatory value than previously considered features

(Supplemental Table IIIH). Unfortunately, combining C45,

C50, C56 and C63 in LOOCV did not improve their predictive

performance (Supplemental Figure 2D).

We next asked why these particular T cell clusters might

encode more information about colitis risk than other T cell

subsets. C63, C56 and C45 were CD4+ memory T cells with a

CD45RA- CCR7int/- CD27+ CD28+ CD57- phenotype, possibly

representing transitional states between recently activated

central memory (TCM) and TEM cells (Figure 3). Apart from

CCR7 expression, these T cell clusters differed only in PD-1

expression. C50 was a minor population of CD8+ CD45RA+

CCR7- CD27+ CD28- PD-1- CD57+ TEMRA cells. We speculate

that C50 overlaps with a non-exhausted, recirculating subset of

CD8+ TEMRA cells that others have reported as important for
FIGURE 3

Phenotype of cells in FlowSOM clusters associated with colitis. Dot plots show the phenotype of the cells in each cluster (color) and all gated
cells for reference (grey). Clusters 63 and 56 are CD4+ CD45RA- CCR7int CD27+ CD28+ CD57- T cells that differ only in expression of PD-1.
Cluster 45 is CD4+ CD45RA- CCR7low/- PD-1int CD27+ CD28+ CD57- T cell population. Cluster 50 represents a CD8+ CD45RA+ CCR7- CD27+

CD28- PD-1- CD57+ TEMRA subpopulation. Data from one representative patient.
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maintaining anti-viral immunity (49). Our results suggest that

patients at risk of ICI-related colitis might have on-going

immune responses – possibly against subclinical viral

infections – and that our predictive features actually capture

information about the rate of TCM to TEM differentiation.
Discussion

Reproducibility studies using external data are an important

validation step in clinical biomarker development. Here, we

showed that previously reported flow cytometry-based

biomarkers of irAE are not generally reliable enough to predict

hepatitis, colitis or thyroiditis as a basis for clinical decision-

making. Promisingly, however, unsupervised clustering revealed

four T cell subpopulations associated with risk of colitis that

returned AUC > 0.65, which we take as a sign that better

predictions of irAE risk might be possible with a refined

marker selection and more sophisticated computational

methods. We conclude that deeper phenotyping of monocytes

and CD4+ memory T cells transitioning between TEM and TCM

might lead to more informative biomarkers in future.
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