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Abstract We study theoretically the relaxation of quasi-particle spins in graphene in proximity to an s-wave superconductor in
the presence of resonant magnetic and spin-orbit active impurities. It is well known that off resonance, the relaxation behaves
as predicted from superconducting coherence: with lower temperatures the spin relaxation increases when electrons scatter off
magnetic impurities (Hebel-Slichter effect), and decreases when the scatterers act via spin-orbit coupling. This distinct tempera-
ture dependence, not available in the normal state, can uniquely discriminate between the two scattering mechanisms. We have
shown [1] that the Hebel-Slichter picture breaks down when magnetic impurities act resonantly—the emergent Yu-Shiba-Rusinov
states inside the gap shift the spectral weight of the magnetic resonances and thus suppress their interaction with quasi-particle
states. As a consequence this leads to a significant decrease of the spin-relaxation rate at lower temperatures. Our findings are valid
for generic s-wave superconductors that host resonant magnetic impurities.
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INTRODUCTION

Superconducting spintronics strives at combining both spintronics [2] and superconductivity (SC) [3, 4, 5] to find new
phenomena. While the latter can be used as an efficient dissipationless source, the former exploits spin for logical
operations. Therefore one can hope to launch a superconducting spin-operating device that would be, on the one
hand, very efficient in terms of energy demands, but on the other hand, would offer complex logical performance and
fine-tuned functionality. A potentially versatile platform for that is offered by layered, high-mobility 2D materials that
are susceptible to superconductivity, while the reduced spatial dimensionality supports topological protection, non-
Abelian statistics, and switchable bulk/edge transport. Recent experimental demonstration of SC in twisted bilayer
graphene [6], 2D topological insulators [7, 8], and layered transition-metal dichalcogenides [9, 10, 11, 12, 13] drive
considerable theoretical and technological interests in that regard.

A limiting factor for spin-based logical performance is spin relaxation (SR) [14, 15, 16, 17, 18, 19, 20, 21, 22,
23]. In this paper we explore spin relaxation in superconducting graphene (SCG), focusing on magnetic resonant
impurities and impurities that locally enhance spin-orbit-coupling (SOC). Both are, per se, at the heart of intense
scientific discussions [24, 25, 26, 27, 28, 29, 30] about the dominant SR mechanism in graphene. We demonstrate that
s-wave SC in graphene could offer an ultimate possibility to discriminate between the possible SR mechanisms. This is
because, unlike in the normal phase, the proximity-induced superconducting gap, the strong temperature dependence
in carrier population, underlying coherence phenomena, and the potential appearance of bound states all heavily
influence the spin-flip dynamics in the superconducting phase. We believe that, despite its experimental challenge,
our predictions have the potential to drive forthcoming spintronics activities into the realm of SCG.

Theoretical studies of SCG started more than a decade ago [31, 32]. Soon, it became clear that weak electron-
phonon coupling and low electronic densities (at experimentally accessible dopings) are not sufficient to cause the
Cooper instability [33, 34, 35]. One possibility to overcome that would be the proximity to a superconductor [36,
37, 38], or alkaline intercalation [39, 40] that enhances the electronic density and also the coupling with phonons.
Theoretical models at elevated Fermi energies (µ > 1 eV), and especially at regions near the van-Hove singulari-
ties (µ > 2.7 eV), offer a plethora of ‘possible exotic superconducting pairing mechanisms’, that count: p-wave, ex-
tended s-wave, (singlet) chiral d-wave, (triplet) f -wave, and also their simultaneous co-existences; for details see [41,
42, 43, 44, 45, 46, 47, 48]. The first experimental demonstration of SCG [49] dates to 2007, where metallic contacts
in a lateral Josephson geometry induced SC in graphene through the proximity effect [50, 51, 52]. However, interfa-
cial geometries in which graphene grows directly on top of a superconductor [53, 54] bring a much higher degree of
functionality. At the same time, the predicted superconducting phase in alkaline-intercalated graphite structures was
successfully verified [55, 56, 57]. The reported experimental findings vary by method, but the typical magnitudes of
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Figure 1. DOS and QP-DOS. Panel (a) displays the DOS in normal graphene (black dots) as a function of the chemical poten-
tial (doping level) µ for 100 ppm of resonant impurities. A pronounced resonant peak emerges at µ = 24 meV; the background gray
line displays the DOS of the unperturbed system. Black, red, green, and blue vertical lines represent particular resonant and off-
resonant chemical potentials, at which we turn the system into its superconducting phase with the superconducting gap D0 = 5 meV.
The corresponding QP-DOS at those chemical potentials is shown in (b). Black x-symbols stand for µ = 24 meV, red triangles for
µ = 45 meV, green squares for µ = 90 meV, and blue circles for µ = 180 meV. Dashed lines with the same color serve as guides for
eyes and display the QP-DOS in the unperturbed SCG. QP resonant enhancement near the coherence peaks appears for chemical
potentials close to the resonances in the normal phase. Inset: adatom absorbed on SCG with its pictorial tight-binding description.
For all plots we used hybridization w = 5.5 eV and on-site energy e = 0.26 eV.

the induced superconducting gap range from few tens of µeV [49] up to 1 meV [58] (Tc ' 7 K). Also, both s-wave [49]
and p-wave [54] superconducting pairings were convincingly demonstrated; for more details see the comprehensive
review [59].

RATIONALE

SR of quasi-particles (QPs) in the superconducting phase depends on the underlying scattering mechanism, namely its
time-reversal parity. The latter determines how the electron and hole transition amplitudes combine, before squaring
them gives the final spin-flip rate. As pointed out by Yafet [60], the SR rate in the superconducting phase, 1/tSC

s ,
relates—within first-order perturbation theory—to its normal phase counterpart, 1/tN

s (E), by

1/tSC
s ⇠ h(ukuq ± vkvq)

2 1/tN
s i; (1)

for the explicit formula see Eq. (4). Here u and v are the conventional BCS coherence factors, entering the QP
wave functions, and h· · ·i represents thermal broadening over the QP energies. Consequently, the SR in the super-
conducting phase can either increase or decrease, depending on the relative sign between the coherence factors. The
plus (minus) sign applies to perturbations that are odd (even) w.r.t. time-reversal symmetry, e.g., magnetic impu-
rities (local SOC fields), giving rise to a larger (smaller) 1/tSC

s compared to 1/tN
s . As demonstrated later, those

differences for SCG vary with the chemical potential and temperature, and can change by a few orders of magnitude
giving an unprecedented experimental feasibility to disentangle the dominant SR mechanism by conducting the same
experiments in the normal and superconducting phases.
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Figure 2. QP-SR rates in SCG at different temperatures (symbols) for 1 ppm of hydrogen (a) and fluorine (b) magnetic impurities as
functions of µ . Outside of the resonances the SR rates in the superconducting phase increase in accordance with Yafet’s prediction,
whereas they decrease in the resonances. Rainbow arrows indicate increasing or decreasing trends of SR rates with lowered T when
compared to the normal phase. The insets show the corresponding Hebel-Slichter ratios—(1/tSC

s )
�
(1/tN

s ) as functions of T/Tc—
at two representative Fermi energies (indicated by black and red arrow ticks on the horizontal axis): resonant—µ =�80 meV for
hydrogen and µ = �300 meV for fluorine—black circled data (values at left logarithmic axis), and off-resonant—µ = 500 meV
for both cases—red circled data (values at right linear axis). Panels (c) and (d) show the DOS in the normal phase in the presence
of magnetic moments, and resonant (shaded) and off-resonant (white) doping regions; for the sake of visibility the impurity
concentrations were exaggerated. Panels (e) and (f) display the energies of the subgap Yu-Shiba-Rusinov states for hydrogen
and fluorine as functions of µ . Smaller SR rates in (a) and (b) are correlated with the resonances in the normal phase in (c) and (d),
and the bound states in (e) and (f) with energies deep inside the superconducting gap.

The qualitative physical arguments are rather intuitive. QPs have well defined spins, almost unchanged mass from
normal-phase carriers, but smaller effective charges, q = (u2 � v2)eel., especially in the coherence peaks (u2 ' v2)
occupied at T < Tc. Consequently, all charge-dominated effects would be less pronounced so that the ‘spin-spin
exchange’ interaction wins over the ‘charge-charge direct’ interaction and 1/tSC

s > 1/tN
s . This effect is experimentally

known as the Hebel-Slichter effect [61, 62]; for a detailed explanation see [63]. Not only charges of QPs diminish,
but also their group velocities, vSC ' |(u2 � v2)|vN, and hence their momenta. While the SOC couples spins with
momenta, the effective strength of the SOC interaction in the superconducting phase significantly decreases, which
implies 1/tSC

s < 1/tN
s . Recent experiments [64, 65] in layered superconducting aluminum reported on significantly

lowered SR and attributed that to a weakened SOC in the superconducting phase. For more details about the charge
and spin accumulation of QPs in a superconductor, their non-equilibrium separation and relaxation, see Refs. [66,
67, 68]. Despite it is intuitively sound, it is worth to comment on two main limitations of the Yafet relation. First, it
does not take into account SR processes that are specific to the superconducting phase, and which lack counterparts
above Tc, e.g., the formation of YSR states that can take away spectral weight. Second, Yafet’s formula a priori breaks
at resonances since those are beyond finite-order perturbation theory. Both limitations will be explicitly experienced
below.
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Figure 3. QP-SR rates in SCG at different temperatures (different symbols) due to locally enhanced SOC for 1 ppm of hydrogen
(a) and fluorine (b) impurities as functions of µ . With lowering T , the SR rates decrease almost uniformly, their decrease becomes
more steep, and would eventually saturate as T ! 0. Similarly to the normal phase, the SR rates at resonances are enhanced.
Rainbow arrows indicate the decreasing trend of the SR rates with lowered T compared to the normal phase.

MODEL AND METHODOLOGY

To describe the singlet SC in graphene in the proximity to a superconductor we use the established tight-binding
model [31]:

H0 =� Â
mns

(tdhmni+µdmn)c†
ms cns +DÂ

m
c†

m"c†
m#+h.c. (2)

Here t = 2.6 eV stands for the conventional nearest-neighbor hopping, µ for the underlying chemical potential (dop-
ing level) with reference at the Dirac point of the normal phase, and D for the T -dependent global on-site s-
wave-pairing. We assume the BCS temperature dependence of the induced superconducting gap in graphene,
D = D0 tanh [1.74

p
Tc/T �1], with the proximity relevant value of D0 = 1 meV and Tc ' 7 K. Operator c(†)ms an-

nihilates (creates) an electron with spin s at a graphene lattice site m, dmn represents the usual Kronecker symbol, and
dhmni its nearest-neighbor analog—that is unity for direct nearest neighbors and zero otherwise. The orbital interaction
with an adatom—annihilation and creation operators ds and d†

s —is governed by the hybridization w , on-site energy
e , and proximity pairing D on the impurity site [69]:

Vo = Â
s
[(e �µ)d†

s ds +wd†
s c0s ]+Dd†

"d†
# +h.c. (3)

For a pictorial definition of Vo see the inset in Fig. 1. The above orbital perturbation is completed by a local spin-
dependent term Vs. Our analysis covers two experimentally important cases: (1) exchange interaction, V (1)

s = �J S ·
s, between an itinerant spin s at the adatom level [70] and a non-itinerant 1

2 impurity spin S (e.g., inner shell or
Hubbard-like induced), and (2) local SOC in the vicinity of an adatom [71, 72, 73, 74, 75] with enhanced Rashba and
pseudospin-inversion asymmetry (PIA) strengths. For the explicit form of V (2)

s , see Appendix. To work with realistic
impurities we consider hydrogen and fluorine adatoms, as both give sizable SOC enhancement [71, 72] and can also
carry magnetic moments [76, 77, 78, 79, 80, 81, 82, 83].
Our methodology is standard: from H0 at given µ we compute: 1) the eigenspectrum Ek =

p
(ek �µ)2 +D2, where ek

are the known eigenvalues in the normal phase, 2) ‘in’ and ‘out’ scattering states |k,si—QP-Bloch levels normalized
to unity, and 3) the unperturbed (retarded) Green’s-function elements (normal and anomalous), G0. From G0 and
V = Vo +Vs we get the T-matrix, T = V · (1�G0 ·V )�1, which gives rise to the scattering amplitudes, hk," |T|q,#i,
and perturbed Green’s function G=G0 +G0 ·T ·G0. We assume dilute concentration of impurities not affecting the
pairing gap D [84], what liberates us from self-consistent calculations. Knowing G we compute the (L)DOS, bound
states, and other spectral features of the perturbed system, while from the scattering amplitudes we obtain the spin-flip
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scattering rates. Finally, to get SR, 1/tSC
s , at given µ and T for a concentration h (per carbon atom) of spin-active

impurities we evaluate the following integral over the 1st Brillouin zone:

1
tSC

s
=

2h Auc

h̄p

RR

BZ
dkdq |hk,"|T|q,#i|2 d (Ek �Eq)

⇣
∂g

∂Ek

⌘

R

BZ
dk

⇣
∂g

∂Ek

⌘ , (4)

where g= 1/(exp [ Ek
kBT ]+1) is the Fermi-Dirac distribution, and Auc is the area of the graphene unit cell. The Yafet for-

mula, Eq. (1), is as a special case of Eq. (4). Approximating T'V and plugging the exact expression for the QP-wave
functions in terms of the corresponding electronic states in the normal phase (Bogoliubov transformation) one gets
hk,"|V |q,#i = (ukuq ± vkvq)(Vs)kq, where the last term is the normal-phase matrix element for the spin-flip part of
V . Integration over q gives the SR rate at energy Ek, while integrating over k accounts for thermal smearing.

RESULTS

Adatoms on graphene give rise to resonances [85, 86, 87, 88]. Particularly those near the Dirac point strongly modify
transport properties [88, 89, 90, 91, 92, 93, 94]. Figure 1 demonstrates how resonances in the normal phase affect
the population of QP states in SCG. Panel 1(a) shows the density of states (DOS) of graphene covered by 100 ppm of
resonant non-magnetic impurities, and panel 1(b) displays the corresponding QP DOS in the superconducting phase
for several representative chemical potentials; we use w = 5.5 eV, e = 0.26 eV, and an enlarged D0 = 5 meV for better
resolution. We present resonant and off-resonant doping limits, and see that whenever µ approaches resonance in the
normal phase, the QP-DOS shows strong modification near the coherence peaks in the superconducting phase. This
is quite obvious from the BCS point of view; the E-dependence of the QP-DOS at doping level µ relates with the
normal DOS at µ via QP DOS(E) = Ep

E2�D2
DOS(µ), so enhanced DOS implies simultaneously enhanced QP-DOS.

Since the coherence peaks are important for the transport of QPs and their SR, we expect certain relaxation anomalies
at those doping levels that modify them.

Figure 2 shows various characteristics for spin-flip scattering off magnetic impurities in the normal and supercon-
ducting graphene for two representative impurities: hydrogen—panels 2(a),(c),(e), and fluorine—panels 2(b),(d),(f).
Particularly, Figs. 2(a) and (b) display the QP-SR rates in SCG at D0 = 1 meV at different temperatures in the presence
of 1 ppm of magnetic impurities. We are plotting values of Eq. (4) for H0 +Vo +V (1)

s , varying chemical potential µ ,
and superconducting gap D with temperature T . Hydrogen [70] with magnetic moment—w = 7.5 eV, e = 0.16 eV
and J = �0.4 eV—gives rise to a narrow resonant region near the Dirac point in the normal phase; see the corre-
sponding magnetic DOS in Fig 2(c) [concentration h = 0.1% is exaggerated for the purpose of resolution]. Contrary,
fluorine—w = 5.5 eV, e = �2.2 eV and J = 0.5 eV—develops [72, 82] a wide resonance region spreading down the
Dirac point; see the magnetic DOS in Fig 2(d) with concentration h = 1%. How those resonances impact the QP-
SR rates is seen in Figs. 2(a) and (b). There, the shaded regions show the SR rate in the normal phase (T = Tc) and
that lowering T in the superconducting phase reveals quite an intriguing behavior: for the off-resonant doping regions,
1/tSC

s > 1/tN
s in accordance with the Yafet formula, while at resonances, 1/tSC

s ⌧ 1/tN
s . To quantify those effects

we plot in the insets of Figs. 2(a) and (b) the corresponding Hebel-Slichter ratios, (1/tSC
s )

�
(1/tN

s ), as functions of
T/Tc. For the representative off-resonant value of µ = 500 meV, we get in both cases an enhancement of the SR rate
in the superconducting phase by almost a factor of 4 (graphs with red symbols), but in the resonant regions—for
hydrogen µ = �80 meV and for fluorine µ = �300 meV—we see a strong suppression of the SR rates (graphs with
black symbols) by almost three-orders of magnitude. This suggests a nice experimental tool—observing enhanced and
strongly depleted SR rates in the superconducting phase when varying µ and lowering T would signify the presence
of resonant magnetic impurities.

To explain this peculiar decrease of the SR in the resonances, which is at odds with its normal-phase behavior [70,
95], we calculate in Figs. 2(e) and (f) the corresponding energies (T-matrix singularities) of the Yu-Shiba-Rusinov
magnetic bound states [96, 97, 98] that emerge in the SCG [99]. We see that these are deep inside the superconducting
gap at resonances. This offers an explanation why the SR rates dropped down. The resonant spin-flip scattering
of QPs counts many contributions from multiple scatterings and virtual-state tunnelings. Schematically, they can
be written as Vaa +VaI

|IihI|
Ea�EI+i0+VIa + · · · , where EI represents the energy of any intermediate state—extended or

subgap—and Ea stands for the energy of an incident extended QP state. The dominant spin-flip matrix elements,
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VaI , are those for which the extended state a overlaps with the magnetic impurity level I=YSR, since only this gives
rise to QP-spin flips. While VaI=YSR’s are roughly the same for a-states at the coherence peaks, what matters are
the energy differences Ea �EI=YSR in the denominator. Those are small in the off-resonant region, since EI=YSR
are aligned with the edges of the superconducting gap, and are large in the resonances. That this would cause the
reduced SR is also clear from the T -dependence of the SR rates; for higher T the superconducting gap D gets smaller
and hence also the difference Ea �EI=YSR. It is worth to stress that from the original Yafet formula one would draw
the exactly opposite conclusion. This is because the formation of bound states inside the superconducting gap, as
well as their role in the virtual scattering processes, were not taken into account. At sub-Kelvin temperatures—data
for T = 100 mK are displayed by dashed lines in Figs. 2(a) and (b)—the SR rates at low dopings drop down, as
QP DOS(E) = Ep

E2�D2
DOS(µ)(� ∂g

∂E ) becomes substantially suppressed by the thermal Fermi-Dirac smearing. At

larger dopings this is countered by higher DOS(µ).

Figure 3 shows the SR rates at different temperatures as functions of chemical potential for the Elliott-Yafet [100,
101] SR mechanism—scattering off hydrogen (a) and fluorine (b) impurities in the presence of strong local SOC, V (2)

s ,
which incorporates realistic, first-principles motivated coupling strengths, see Appendix. As predicted by Yafet [60]
and quantitatively computed by our full T-matrix calculation, the SR rates for both considered cases decrease with
lowered T by an order of magnitude over the whole range of chemical dopings, giving rise to a sizeable signal. Despite
that uniform decrease, the SR rates in the resonances get enhanced, as it was also the case in the normal phase [102].
This is because a QP locked in the resonance has enough time to the experience SOC, which can, despite enfeebled
in the superconducting phase, flip the QP’s spin. As an experimental protocol, a global decrease of the SR rate with
lowered T over the whole range of µ would therefore signal SOC-dominated SRs.

CONCLUSIONS

We discussed the SR in graphene in proximity to an s-wave superconductor in the presence of resonant impurities.
We demonstrated that, compared to the normal phase, the spin-flip dynamics in the superconducting phase allows
to discriminate between the magnetic moment-dominated SR and SOC-dominated one. Our theory predicts that
reaching superconducting resonances the former would significantly decrease—alike the anti-Hebel-Slichter effect—
due to deep-lying subgap Yu-Shiba-Rusinov states. The predicted effect can reach three-to-four orders of magnitude,
making it robust and verifiable by experiment.

ACKNOWLEDGMENTS

Authors acknowledge supports from DFG SFB 1277 and the EU Seventh Framework Programme under Grant Agree-
ment No. 604391 Graphene Flagship.

APPENDIX

In the paper we use the local adatom-induced SOC Hamiltonian, V (2)
s , that is based on local symmetries [75] and

whose couplings are fitted to first-principles calculations; for details concerning hydrogen, see [71], and for fluo-
rine [72]. Since the weak SOC of pristine graphene does not play a significant role we focus on the locally induced

Adatom LA
I LB

I LR LA
PIA LB

PIA

Hydrogen -0.21 0 0.33 0 0.77
Fluorine 0 3.3 11.2 0 7.3

Table I. Spin-orbital tight-binding parameters (in meV) entering the model Hamiltonian V (2)
s .

SOC effects in the vicinity of adatoms. The defect region consists of the adatomized carbon (m = 0), and sets Cnn and
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Cnnn of its three nearest (nn) and six next-nearest (nnn) neighbors. A realistic effective SOC Hamiltonian based on
local symmetries reads:

V (2)
s =

iLA
I

3
p

3 Â
m2Cnnn

Â
s

c†
0s (ŝz)ss cms +h.c.

+
iLB

I

3
p

3 Â
m,n2Cnn

m6=n

Â
s

c†
ms nmn (ŝz)ss cns

+
2iLR

3 Â
m2Cnn

Â
s 6=s 0

c†
0s (ŝ⇥d0m)z,ss 0 cms 0 +h.c. (5)

+
2iLA

PIA
3 Â

m2Cnnn
Â

s 6=s 0
c†

0s (d0m ⇥ ŝ)z,ss 0 cms 0 +h.c.

+
2iLB

PIA
3 Â

m,n2Cnn
m6=n

Â
s 6=s 0

c†
ms (dmn ⇥ ŝ)z,ss 0 cns 0 .

Symbol ŝ represents an array of the Pauli matrices acting in spin space. The sign factor nmn equals �1 (+1) if the next-
nearest hopping n ! l ! m via a common neighbor l becomes (counter)clockwise and a unit vector dmn =

Rm�Rn
|Rm�Rn|

points from site n to m. The first two terms in Eq. (5) are the local intrinsic SOCs associated with sublattices A and B,
respectively, the third is the local Rashba SOC, and the last two terms are the local PIA-induced SOC for sublattices
A and B, respectively; for more details see [75]. The graphical representation of local SOC hoppings is depicted
in Fig. 4. The numerical values of these parameters for hydrogenated and fluorinated graphene are summarized in
Table I. We adopted those values in our numerical calculations of SR in the superconducting phase.
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