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Abstract
Biological data are often intrinsically hierarchical (e.g., species from different genera, 
plants within different mountain regions), which made mixed-effects models a com-
mon analysis tool in ecology and evolution because they can account for the non-
independence. Many questions around their practical applications are solved but one 
is still debated: Should we treat a grouping variable with a low number of levels as a 
random or fixed effect? In such situations, the variance estimate of the random effect 
can be imprecise, but it is unknown if this affects statistical power and type I error 
rates of the fixed effects of interest. Here, we analyzed the consequences of treating 
a grouping variable with 2–8 levels as fixed or random effect in correctly specified and 
alternative models (under- or overparametrized models). We calculated type I error 
rates and statistical power for all-model specifications and quantified the influences 
of study design on these quantities. We found no influence of model choice on type I 
error rate and power on the population-level effect (slope) for random intercept-only 
models. However, with varying intercepts and slopes in the data-generating process, 
using a random slope and intercept model, and switching to a fixed-effects model, 
in case of a singular fit, avoids overconfidence in the results. Additionally, the num-
ber and difference between levels strongly influences power and type I error. We 
conclude that inferring the correct random-effect structure is of great importance to 
obtain correct type I error rates. We encourage to start with a mixed-effects model 
independent of the number of levels in the grouping variable and switch to a fixed-
effects model only in case of a singular fit. With these recommendations, we allow for 
more informative choices about study design and data analysis and make ecological 
inference with mixed-effects models more robust for small number of levels.

K E Y W O R D S
fixed effects, generalized linear models, hierarchical models, mixed-effects models, multilevel 
models, random effects
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1  |  INTRODUC TION

Many biological data from experimental or observational stud-
ies have hierarchical grouping (or blocking, or clustering) struc-
tures that introduce dependencies among observations (Bolker 
et al.,  2009; Harrison et al.,  2018; McMahon & Diez, 2007; Zuur 
et al.,  2009). A statistical analysis must account for these depen-
dencies to ensure consistency of statistical properties (e.g., type 
I error rate) (Arnqvist,  2020), a task for which linear and gener-
alized mixed-effects models (LMMs or GLMMs) were designed 
(Chen & Dunson, 2003; Laird & Ware, 1982). Mixed-effects mod-
els have replaced ANOVAs as the common tool for variance anal-
ysis (Boisgontier & Cheval, 2016; Bolker et al., 2009; Wainwright 
et al., 2007) because they allow simultaneous analysis of variance 
at different hierarchical levels (Boisgontier & Cheval, 2016; Krueger 
& Tian, 2004), handle unbalanced study designs better (Lindstrom 
& Bates,  1988; Littell,  2002; Pinheiro & Bates,  1995; Swallow & 
Monahan, 1984), and have better statistical properties for missing 
data (Baayen et al., 2008).

Mixed-effects models have the ability to adapt to different data 
structures, but the flexibility (see Box 1; Wainwright et al., 2007) 
that comes with them also leads to discussions about their chal-
lenging application (Dixon, 2016; Nakagawa & Schielzeth, 2013). 
This includes data-related properties such as the best way to han-
dle overdispersion (Harrison,  2014, 2015), small sample sizes in 
the individual blocks (Gelman & Hill, 2007), technical aspects such 
as robustness to wrong distributional assumptions of the random 
effects (Schielzeth et al., 2020), and to questions about how to 
compare different mixed-effects models (e.g., using R2, Nakagawa 
& Schielzeth,  2013). Additionally, there are application-oriented 
issues (Harrison et al., 2018; Meteyard & Davies, 2020) such as 
the question about the complexity of the random-effect structure 
(Barr et al., 2013; but see Matuschek et al., 2017), the interpre-
tation of random effects (e.g., Dixon, 2016), or when a grouping 
variable should be treated as random or fixed effect (Harrison 
et al., 2018).

A priori, modeling a grouping variable as fixed or random effect 
are for balanced study designs equally well suited for multilevel 
analysis (Kadane, 2020; Townsend et al., 2013). There are no strict 
rules, because the best strategy generally depends on the goal of the 
analysis (Gelman & Hill, 2007, see Box 2), however, for unbalanced 
designs there are some subtilities. For instance, random-effect esti-
mates incorporate between and within group information, whereas 
the corresponding fixed-effects model (grouping variable is speci-
fied as a fixed effect) only within group information which leads to 
different weighting of the individual level estimates (not in balanced 
study designs) (McLean et al., 1991; Dixon, 2016; Shaver, 2019; but 
see Giesselmann & Schmidt-Catran, 2020).This is important when 
one is interested in the actual-level effects themselves (narrow-
sense inference analysis), but also when only interested in the 
population-level effect (broad-sense inference analysis), i.e., where 
the individual levels of the grouping variable are not of interest and 
one uses a non-linear model. For this type of analysis, for a fixed-
effect model, we cannot simply build the weighted average over the 

individual levels to obtain the population-level effect, because the 
non-linearity does not commute with the expectation value.

The different inferential conclusions that result from fixed- and 
random-effect modeling are due to the different assumptions un-
derlying these two options (Millar & Anderson, 2004). Modeling a 
grouping variable as random effect implicitly assumes that the indi-
vidual levels of the grouping variable are realizations of a common 
distribution, usually a normal distribution, for which the variance 
and the mean (the population-level effect) need to be estimated 
(e.g., DerSimonian & Laird, 1986). As random effects are commonly 
parametrized so that the random-effect has a zero mean, this as-
sumption shrinks the estimates of each random-effect level to zero. 
In contrast, treating a grouping variable as a fixed effect makes no 
distributional assumptions about the individual level estimates (i.e., 
treating the levels separately of each other and, thus, no between-
level information is used to estimate the level effects). The random-
effect model has fewer effective parameters than the fixed-effects 
model because of the shrinkage (e.g., Gelman & Hill, 2007) which 
can lead in balanced designs to higher statistical power to detect 
significant population-level effects at the cost of higher compu-
tational and numeric demand (Bolker et al., 2009), discussions on 
how to correctly calculate p-values in unbalanced designs (Bolker 
et al., 2009; see Nugent & Kleinman, 2021) and a bias towards zero 
of the random-effect estimates (Johnson et al., 2015).

So, if we are not interested in each individual-level effect (broad-
sense inference), random-effect modeling seems preferable over 
fixed-effects modeling. It is, however, unclear if these advantages 
remain when the number of levels in the grouping variable is small 
(cf. also Harrison et al., 2018), because this might cause an imprecise 
and biased random-effects variance estimate (Harrison et al., 2018), 
which then could influence the population-level effect estimate of 
the mixed-effects model (Hox et al., 2017).

The ecological literature suggests, as a rule of thumb, that an ap-
proximately precise estimate of the random-effect variance requires 
at least five, sometimes eight, levels (Bolker, 2015; Harrison, 2015; 
Harrison et al.,  2018). With four or fewer levels in the grouping 
variable, the preferred alternative is to include it as a fixed-effect 
(Bolker, 2015; Bolker et al., 2009; Gelman & Hill, 2007). But this 
threshold seems to be arbitrarily chosen as it varies by discipline, 
e.g., 10–20 in psychology (McNeish & Stapleton, 2016), or 30–50 in 
sociology (Maas & Hox, 2005). To our knowledge, however, none of 
these values were based on a systematic analysis of how the model-
ing choice of the grouping variable affects statistical properties such 
as the type I error rate and power of the estimated population-level 
effects (i.e., the weighted average slope or intercept over a grouping 
variable).

Here, we analyze a situation where an analyst wants to infer the 
population-level effect and decided to use a mixed-effects model 
but is confronted with a low number of levels in the grouping vari-
able. For this scenario, we simulated an unbalanced study design on 
the height of a plant on a temperature gradient to compare empir-
ical power and type I error with a varying number of levels (two to 
eight mountains). To represent the challenge of correctly specifying 
the model structure and the consequences if the structure is not 
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correctly specified, we additionally tested mis-specified models 
(overparametrized or underparametrized versions of the fixed and 
mixed-effects models). To quantify the effect of these modeling 
choices on the population-level effect, we compared: type I error 
rates and statistical power. Based on our results and in the context of 
broad-sense inference, we give practical recommendations on when 
to include grouping variables as random effect or as fixed effect.

2  |  METHODS

2.1  |  Simulated example and scenarios of data and 
model complexity

To compare random- and fixed-effects modeling of a grouping vari-
able with small number of levels, we simulated data based on our 
hypothetical example from Box  1. We hypothesized, that higher 

temperatures increase the average height of plants. We simulated 
an unbalanced study design –  a common scenario in ecology and 
evolution (Schielzeth et al., 2020) – with two to eight mountains and 
a varying number of plants for each mountain (expected range be-
tween 40–360 plants per mountain) while keeping the overall num-
ber of plants constant (on average 200 plants per mountain) along 
altitudinal transects. For each case, we simulated 5000 datasets.

2.1.1  |  Scenario A - random intercepts per mountain

In scenario A, we assumed mountains only differ in their intercepts 
(mean height), and the effect of temperature (slope) is the same for 
each mountain (constant slope over the levels of the grouping vari-
able, Table 1, Equation M1). We tested two different mixed-effects 
model structures: a correctly specified model which corresponds 
to the data-generating process (Table  1, Equation M4) and an 

BOX 1 Scenario of an ecological study design with grouping/blocking variables

Sampling design. Suppose we want to understand the 
population-level effect of temperature on the height of a 
plant species that grows in different mountains. We 
hypothesize that higher temperature (lower altitude) 
increases the height of flowering plants. To do so, we 
establish altitudinal transects in many mountains and 
collect information from a certain number of plants. In 
this idealized scenario, we assume that the temperature 
predictor variable is colinear with altitude and not 
confounded with any other predictors like soil type, 
moisture, or ph.  

Sampling design 

Problem. The transects are not in the same 
geographical alignment, the type of soil varies in each 
mountain, and the plants are genetically very distinct 
among populations. All these factors introduce 
differences among populations that are not exactly of our 
interest (given our hypotheses), but statistically, plants of 
the same mountain are non-independent observations. 
The mountains can be considered as grouping, blocking 
or control variable. 

Modeling options. We may use a mixed-effects model 
with a random intercept and slope (Box 2) for mountain 
to account for the differences among populations (grey 
lines in Fig. I while still modeling the relationship of 
interest as fixed-effects (blueline). An alternative may be 
to use a fixed-effects model, i.e., to include mountain as 
a categorical predictor (Box 2). 

Hypothesis - The height of flowering plants 
increases with temperature: 

Figure I: Individual realizations of the height 
dependence on temperature (grey lines) and the 
overall realization (blue line). 
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overparametrized model (Table 1, Equation M5) with an additional 
random slope for each mountain. Since in real studies the true under-
lying data-generating process is unknown, it is useful to understand 
if an overparametrized model correctly estimates the variances of 
the random effects to zero and predicts all random slope levels to 
zero (or nearly zero) and, thus, approximate the data-generating pro-
cess (Table 1, Equation M1).

As fixed-effect alternatives, we tested the correctly specified 
model with mountain as fixed intercept together with temperature 
as slope (Table1, Equation M3), and an underparametrized model 
omitting mountain at all (Table  1, Equation M2). This last model 

corresponds to a mixed-effects model that estimates the variances 
of the random effect to be zero and thus predicts the random ef-
fects to be zero.

2.1.2  |  Scenario B - random intercepts and random 
slopes per mountain

In scenario B, we assumed the data-generating process contained a 
random intercept and a random slope (without correlation among the 
random slopes and intercepts) for each mountain (Table 1, Equation 

BOX 2 Modeling a grouping variable as random or fixed-effect

Fixed or random effect? The question of whether to 
include a grouping (blocking) variable as random or fixed-
effect in the analysis depends on several factors. Fixed-
effects are usually used when the analysts are interested 
in the individual level estimates of a grouping variable 
(Bolker et al., 2009) and these are independent, mutually 
exclusive, and completely observed (e.g. control and 
treatment in experiments, male and female when 
analyzing differences between sex) (e.g. Hedges & 
Vevea 1998; Gunasekara et al., 2014). Random-effects 
are modeling choices when the variance between the 
different levels (Bolker et al., 2009) and not the exact 
estimates of the different levels are of interest (e.g. 
DerSimonian & Laird 1986). Additionally, random-effects 
can be used when not every realization of the underlying 
mechanism can be observed (e.g. species across a 
number of observational sites in different geographic 
areas) but the analysts want to control for its influence 
(i.e. pseudo-replication, see Arnqvist 2020). The two 
options differ in their interpretation, mixed-effects models 
use between- and within-group information whereas 
fixed-effects models use only within-group information. 
This subtle difference is important when for instance 
treatment or group differences are the goal of the 
analysis. Another important difference is that when 
modeling the categorical variable as fixed-effect 
conclusions apply to the levels used in the study, while 
when modeling as random-effect conclusions apply to the 
population of levels from where the studied levels were 
randomly sampled. However, in our example (Box 1), we 
are mainly interested in the population-level effect and 
not in the group differences which makes the inferential 
distinction negligible. See Gelman (2005) or Gelman & 
Hill (2007) for more decision criteria for whether an effect 
is random or fixed. 

Technical differences between random and fixed-
effects. When specifying a grouping variable as fixed-
effect, the model with a default contrast in R estimates 
the effect of one reference level (see Schielzeth 2010) 
differences between the reference level and possible 
linear combinations of other levels (Fig. B1a,c). Thus, it is 
not possible for fixed-effects models to estimate mean 
effect over groups (i.e., the population-level effect), but it 
can be calculated using e.g. bootstrapping (see 

Supporting Information S1), with sum-to-zero contrasts, or 
follow-on packages such as emmeans (Lenth 2021). 
Mixed-effects models estimate the population-level effect 
and its variance and from a Bayesian perspective each 
individual level effect or from a frequentist perspective 
predict future realizations of the individual random-effect 
levels – Best Unbiased Linear Predictor (Fig. IIb, d). 
Blocking variables may not only imply different intercepts 
(Fig II a, b), but also different slopes (Fig II c, d - the 
temperature “ecological” effect). In fixed-effects models, 
this is done by introducing an interaction between the 
population level effect and the grouping variable. With 
mixed-effects models the choice of modeling different 
slopes and their correlation to intercepts for each group is 
related to the study design and may have impact on 
modeling structure and inference. Such correlations 
between random slopes and random intercepts are fitted by 
default but can be disabled.  

Figure II: Fixed- and mixed-effects models fit to simulated data 
with random intercept (a,b) and random intercept and slope (c,d) 
for each mountain in the example from H2  Box 1. Lines 
represent the individual estimates for each mountain. The blue 
line is the estimated population-level effect of mixed-effects 
models.
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M6). Here, the population-level effect (temperature) differs among 
levels of the grouping variable (mountain). We tested three different 
mixed-effects model structures: a correctly specified model corre-
sponding to the data-generating process (Table 1, Equation M 10), 
an overparametrized model containing an extra term for the correla-
tion of the random intercept and random slope (Table 1, Equation M 
11), and an underparametrized model with only a random intercept 
for each mountain (Table 1, Equation M 9). We used the underpara-
metrized model to test the effect of not accounting for important 
contributions to the data-generating process. Note, however, only in 
case of balanced designs and linear models the population-level ef-
fect estimate from the underparametrized model is consistent with 
the full model, because of different weighting schemes (for unbal-
anced designs), and the fact that the expected value of a non-linear 
transformation of estimates is not the same as the non-linear trans-
formation of the expected value of these estimates.

As fixed-effect alternatives, we tested the correctly specified 
model with the main effects of temperature, mountain, and their in-
teraction (Table 1, Equation M 8), and the underparametrized model 
without mountain as predictor (Table 1, Equation M 7). We tested 
the last model because mixed-effects models that estimate zero 
variance for both random effects are virtually the same as fixed-
effects models that omit the grouping variable.

2.2  |  Model fitting

We fitted linear mixed-effects models to our simulated data with 
the lme4 R package (Bates et al., 2015) together with the lmerTest 
(Kuznetsova et al., 2017) package, which uses the Kenward-Rogers 
approximation to get the p-values of the fixed-effects. For fixed-
effects models, we used the lm() function of the R stats package 
(Version 4.1, R Core Team, 2021). For fixed-effects models in sce-
nario A, we extracted p-values from the summary() function and, for 
scenario B, we used the fitted variance–covariance matrix and the 
individual-level effects to bootstrap the population-level effect and 
its standard error (see Supporting Information S1).

Obtaining p-values for mixed-effects models is intensively dis-
cussed in the statistical community and they are only exact for sim-
ple designs and balanced data (Kuznetsova et al., 2017). One reason 
is that in order to calculate p-values in mixed-effects models, de-
nominator degrees of freedom must be calculated, which generally 
can only be approximated (Kuznetsova et al., 2017). For best prac-
tice in which situations one should use which approximation see 
(Bolker et al., 2009; see also Nugent & Kleinman, 2021). The lmerTest 
package uses the Satterthwaite method to approximate the degree 
of freedoms of the fixed effects in the linear mixed-effect model.

We used the restricted maximum likelihood estimator (REML) 
(for a comparison of REML and maximum likelihood estimator [MLE] 
see Appendix and Supporting Information S1). All results of mixed-
effects models presented in scenarios A and B are for the datasets 
without singular fits (see Section on Variances of random-effects 
and singular fits). Technically, singular fits occur when at least one 
of the variances (diagonal elements) in the Cholesky decomposition 

of the variance–covariance matrix are exactly zero, or correlations 
between different random effects are estimated close to −1 or 1.

We repeated the analysis for the glmmTMB R-package because 
it uses a different implementation to estimate mixed-effect models 
(see Appendix for methods and results).

2.3  |  Statistical properties and simulation setup

We used type I error rate and statistical power of the population-
level effects (average height and temperature) to compare the mod-
eling options. For example, type I error rate for the temperature 
(slope) is the probability to identify a temperature effect as statisti-
cally significant although the effect is zero. Statistical power in this 
case is the probability to detect the temperature effect as significant 
if the effect is truly greater than zero. For a correctly calibrated sta-
tistical test, the type I error is expected to be equal to the alpha-level 
(in our case 5%).

To investigate type I error rates of the models on the intercept 
(average height) and average slope (temperature effect), we simu-
lated data with no effects, i.e., the effects of temperature and moun-
tain on height is zero. To additionally investigate statistical power, 
we simulated an example with a weak effect which corresponds to 
an average increase in size per unit step of the standardized tem-
perature (linear scale) of 0.4 cm.

For scenarios A and B, the individual effects for each mountain 
were drawn from a normal distribution with variance of 0.01 and 
0.25 around the average effects: 0.4 cm average height (intercept), 
and 0.4  cm average increase in size with temperature (slope). We 
chose to run and compare simulations with these two values for the 
variance of the random effects to understand better how a larger or 
smaller variance may interfere in type I and power.

2.4  |  Variances of random effects and singular fits

To understand how the number of levels affected random-effects 
variance estimates, we compared the variance estimates for random 
intercepts and slopes from the correctly specified mixed-effects 
model in scenario B (Table  1, Equation M10). We also compared 
optimization routines (REML and MLE) in terms of estimating zero 
variances (singular fits, see below) (see Supporting Information S1). 
For bounded optimizations, which most R packages apply for the 
variance, it has been shown that the null distribution of a random 
effect's variance is a combination of a point mass at zero and a chi-
squared distribution (Stram & Lee, 1994). For the sampling distribu-
tion with a true variance unequal to zero there are no proofs, but one 
would expect a similar distribution.

While singular fits do not signal a convergence issue, the con-
sensus is that the results of such models are not reliable. However, 
we decided to use non-singular fits and additionally non-singular 
and singular fits combined for calculating power and type I error 
for the mixed-effects models, and to infer the effect of singular 
fits on the averaged statistical properties. We classified a dataset 

 20457758, 2022, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9062 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [06/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7 of 15OBERPRILLER et al.

as singular or non-singular if the mixed-effects model ran in lme4 
reported a singular fit warning message. For fixed-effects mod-
els, we used estimates from non-singular and singular datasets 
combined.

Using only non-singular fits for calculating power and type I 
error impacts these statistical properties (e.g., type I error) be-
cause they are conditional on this selection and thus likely not to 
be at the nominal level (e.g., 5% for type I error rate). However, as 
our main intention is to report the type I error rates from the point 
of the analyst who may adjust the model structure to dispose of 
the singular fit, our reported rates represent empirical type I error 
rates.

2.5  |  Quantifying the influences of study design on 
power and type I error

Power and type I error of the population-level effect may depend 
not only on the number of levels (mountains) but also on the random-
effect variance, the overall number of observations and the balance 
of observations among levels. To further quantify the impact of 
these study design factors on statistical power and type I error rate 
of the population-level effect, we additionally ran 1,000 iterations 
(each with 1,000 non-singular model fits) with the data-generating 
process from scenario B for our ecological example. Thereby, we 
sampled the number of mountains from 2 to 20 with equal probabil-
ity for each number, the random-effects variances from 10−4 to 4, 
the overall number of observations from 10 to 500 times the number 
of mountains. Additionally, to create different degrees of unbalance 
in data, we sampled for each mountain the average share of total ob-
servations from 0.1 to 0.9, which corresponds to at least 3 observa-
tions per mountain. We used the difference between the largest and 
the lowest proportion as proxy for the degree of unbalance.

For the so-generated data, we fitted the correctly specified lin-
ear mixed-effects and fixed-effects models from scenario B (Table 1, 
Equations M8 and M10) and calculated type I error rate and statis-
tical power of the population-level effect. We then fitted a quantile 
regression using the qgam R-package (Fasiolo et al., 2020), with the 
statistical property (power and type I error rate) as response and 
variance, number of levels, total number of observations and the un-
balance proxy as splines. We used a quantile regression with splines 
as we expect a non-linear relationship.

3  |  RESULTS

3.1  |  Scenario A - random intercepts per mountain

When the effect of the temperature predictor was the same among 
mountains, irrespectively of the number of levels (mountains), all 
models except for the overparametrized model (random intercept 
and slope) showed an average type I error rate of 5% (Figure 1a–d). 
Average power increased (Figure 1e-h) with the number of moun-
tains from 90% (2 mountains) to 100% (5–8 mountains). Note that 

the model omitting the grouping variable presented similar proper-
ties as the other models for small variances in the random effect. 
However, when increasing the variance of the random intercept in 
the simulation, the model omitting the grouping variable showed 
lower power (Figure 1g,h).

For the overparametrized model, we found, on average, a lower 
type I error rate of less than 5% (Figure 1a-d), and lower average sta-
tistical power to detect the temperature effect for a small number of 
mountains (Figure 1e-h). When combining singular and non-singular 
fits, the overparametrized model had more average power compared 
to only non-singular fits and an average type I error closer to the 
nominal level (Figure 1).

The results for the intercept for the different models (see Figure 
S9) are similar to the results for the slope in scenario B (see below).

3.2  |  Scenario B - random intercepts and slopes 
per mountain

In scenario B, where the effect of the temperature differed among 
levels, the modeling decision influenced the average power and av-
erage type I error (Figure 2). We found that average type I error rate 
of the correctly specified mixed-effects model (Table  1, Equation 
M10) slightly increased (Figure 2a) with the number of levels towards 
the nominal value (0.05) (Figure 2a). The increase was stronger for 
larger variances (0.25) in the random effects (Figure 2c). With sin-
gular fits, the mixed-effects models showed a higher average type 
I error rate than the nominal level for lower number of mountains 
(Figure 2b, d). With a higher variance in the random effects, the av-
erage type I error rate was only increased for two levels (Figure 2d). 
The overparametrized model with correlated random intercept and 
random slope (Table 1, Equation M11) presented similar properties, 
but with decreased average power (Figure 2e-h).

For the correctly specified fixed-effects model, average type I 
error (≈ 2%) stayed constant with the number of levels (Figure 2c) 
and a low variance in the random effects but increased stronger to 
the nominal level with a higher variance (Figure 2d). Average power 
increased with the number of mountains (Figure 2e-h). The mixed-
effects model showed higher average power than the fixed-effects 
model irrespective of the number of mountains (Figure 2e-h).

The underparametrized model without the grouping variable had 
a higher average type I error rate (0.2) and higher average power 
than the other models (Figure 2e-h). With a higher variance, the av-
erage type I error rate was even higher (0.8; Figure 2c, d).

3.3  |  Variance estimates of random effects and 
singular fits

We found, for the models (singular and non-singular fit results 
combined) in Scenario B (random intercept and slope) that random-
effects' variance estimates of the correctly specified model (Table 1, 
Equation M10) approximately distributed as a chi-squared dis-
tribution around the correct value (0.01) and a point mass at zero 
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8 of 15  |     OBERPRILLER et al.

(Figure  3a,b median is near to zero). The point mass at zero de-
creased in height with increasing number of levels, i.e., less models 
estimated a variance of zero with an increasing number of moun-
tains (Figure 3a,b, see also Table S1). There was smaller bias for the 
random intercept variance estimates than for the random slope 
variance estimates, which were still biased for eight levels. When 
looking at models without singular fits, the variance estimates were 
chi-squared distributed (Figure 3c,d). The bias towards larger values 
was stronger compared to estimates with singular fits, especially for 
the random slope estimates (Figure 3d).

By comparing the fitting algorithms, we found that using MLE 
led to more zero-variance estimates, i.e., singular fits, (Figure S3, 
S4) than REML. Additionally, using MLE, non-singular variance es-
timates were strongly biased (Figure S3, S4), but the bias decreases 
with increasing number of levels. As expected, for both optimization 
routines, increasing the number of levels reduced the number of sin-
gular fits (Table S1).

We found that singular fits led to different type I error rates and 
statistical power (Figure  4) in mixed-  and fixed-effects models. For 
singular fits, the type I error rate of the correctly specified mixed-
effects model was constant around 10% (like the model omitting the 
grouping variable), while with non-singular fits it was 1% for two levels 
and increased towards 3% with eight levels (Figure 4a). In comparison, 
the fixed-effects model had similar type I error rates (no distinction 
between singular and non-singular fits because fixed-effects models 
do not estimate the variance of the individual level estimates), both 
increasing from 0% (two levels) towards 1% (eight levels) (Figure 4c).

We also found differences in power for the mixed-effects mod-
els between singular and non-singular fits (Figure 4b, d). The power 
of the mixed-effects model with correct structure was higher for 
singular than non-singular fits especially for a low number of moun-
tains (Figure 4b).

3.4  |  Quantifying the influences of study design on 
power and type I error

We found that the average type I error of mixed-effects models is 
slightly closer to the nominal value than its fixed-effect counterpart 
(Figure 5a). Additionally, we found that the number of levels most 
strongly influences the type I error rate for mixed- as well as fixed-
effects model (Figure  5c). With five or more levels, however, the 
influence of the number of levels becomes negligible. Differences 
between the mixed-  and fixed-effects models arose for the vari-
ance and the total number of observations. Here, the mixed-effects 
model was less influenced by a small random-effects variance and 
a low number of total observations than the fixed-effects model 
(Figure 5b,d). Balance, following our definition, (see Methods) did 
not influence the population-level effect in both models (Figure 5e).

For power, we found no difference between a fixed- and mixed-
effects model (Figure 5f-j). For both models, an increase in vari-
ance decreased the power, while increasing the number of levels 
increased the power (Figure 5g,i). The total number of observations 
and the balance between groups had less influence (Figure 5h,j).

F I G U R E  1 Average type I error rates and average power for linear fixed- and mixed-effects models fitted to simulated data with 2–8 
mountains (random intercept for each mountain - Scenario A). For each scenario, 5,000 simulations and models were tested; (a, b, e, f) show 
results for simulated data with a variance of 0.01 in the random effects; (c, d, g, h) show results for simulated data with a variance of 0.25 in 
the random effects; (a, c, e, g) show results for mixed-effects models only from datasets in which mixed-effects models converged without 
presenting singular fit problems and (b, d, f, h) results for mixed-effects models for all datasets. Results for fixed-effects (a-h) model are from 
all datasets. (a-d) the dotted line represents the 5% alpha level
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    |  9 of 15OBERPRILLER et al.

4  |  DISCUSSION

Ecological data collections or experiments produce data with group-
ing structures, and mixed-effects models can account for these de-
pendencies. The main questions we explored in this article were: 
“should analysts stick to the mixed-effects model or fall back to a 
fixed-effects model, when the grouping variable has few levels?”, and 
“how does this decision influence statistical power and type I error 
rate of the population-level effect?” Here, we showed with simula-
tions that mixed-effects models with a small number of levels in the 
grouping variable are technically robust (Figure 2), and that the deci-
sion between random and fixed effect matters most when the effect 
size of the ecological predictor variable differs among levels (Figure 2).

When the effect of the ecological predictor is the same for 
each level of the grouping variable (scenario A, random intercept 
model), almost all models presented the same average power and 
average type I error (see also Gomes,  2021) (Figure  1a-d). The 
only exception was the overparametrized model that presented 
too low average type I errors and lower average power (Figure 1). 
We speculate that the model was unable to correctly predict the 
additional random effects to zero. Notably, for scenario A, the 
underparametrized model omitting the grouping variable pre-
sented correct average type I error rate (Figure 1a-d). However, 
this is illusive because average power decreased with increasing 
effect sizes of the random effects (Figure  1g, h). This confirms 
that the grouping variable needs to be included to correctly parti-
tion the variance among the different predictors (Bell et al., 2019; 

Gelman, 2005; Gelman & Hill, 2007). Also, including the grouping 
variable is mandatory if one is interested in the average intercept, 
otherwise it would cause inflated average type I error rates (see 
Figure S1; see the following section).

When the effect size of the ecological predictor differs for 
each level of the grouping variable (scenario B; random intercept, 
and random slope model), the average type I error and power were 
influenced by both model choice and the presence of singular fit 
warnings. The mixed-effects models had a better average type I 
error than the fixed-effects models, especially for a larger number 
of mountains (Figure  2). Power was comparable between mixed- 
and fixed-effects models. But with non-singular and singular fits 
combined, the mixed-effects model had higher type I error rates 
and power than the fixed-effects models. In both cases, the mixed-
effects models showed good type I error rates (about more or less 
than 5%) for a small number of levels.

Overparametrized mixed-effects models presented in both sce-
narios slightly lower average type I error and average power com-
pared to the correctly parameterized mixed-effects model (Figures 1 
and 2). This trade-off between type I error and power is in line with 
Matuschek et al.  (2017) for different model complexities. Overall, 
the overparametrized models are more conservative but have less 
power than the simplified models. We think these more conservative 
estimates are preferable over anti-conservative estimates, because 
some analysists tend to try a variety of analyses and only report sig-
nificant ones (Simmons et al., 2011), and more conservative average 
type I error counteract this procedure.

F I G U R E  2 Average type I error rates and average power for linear (mixed-effect) models fitted to simulated data with 2–8 mountains 
for scenario B (random intercept and random slope for each mountain range). For each scenario, 5,000 simulations and models were tested; 
(a, b, e, f) show results for simulated data with a variance of 0.01 in the random effects; (c, d, g, h) show results for simulated data with a 
variance of 0.25 in the random effects; (a, c, e, g) show results for mixed-effects models only from datasets in which mixed-effects models 
converged without presenting singular fit problems and (b, d, f, h) results for mixed-effects models for all datasets. Results for fixed-effects 
(a-h) model are from all datasets. In (a-d) the dotted line represents the 5% alpha level
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10 of 15  |     OBERPRILLER et al.

However, dropping the correlation structure between ran-
dom effects should be carefully considered. It is possible that 
the type I error rate increases when no correlation in the model 
is assumed although there is one in the data-generating process. 
Group-mean centering of the population-level effect may mitigate 
the requirement of assuming a correlation, but it also changes the 
interpretation of the model because the individual levels are not 
referenced to the population-level effect anymore (they are now 
independent).

In scenario B, underparametrized models exhibited inflated type 
I errors (in line with Schielzeth & Forstmeier, 2009; Barr et al., 2013; 
Bell et al., 2019) but very high average power (Figure 2). We spec-
ulate that additional variance coming from the difference between 
levels in the grouping variable, which is not accounted, is attributed 
to the population-level effect and causes overconfident estimates.

4.1  |  Variances of random effects and singular fits

The rate of singular fits was very high for the small number of levels 
(Figure 3; Table S1). In our simulations, singular fits corresponded to 
zero variance estimates of the random effects. The resulting distri-
bution of variance estimates consisted of a right skewed chi-squared 
distribution and a point mass at zero (many zeros corresponding 
to the singular fits) as expected (see Stram & Lee, 1994). The vari-
ance estimates were biased and imprecise with a small number of 

levels, but the bias decreased with the number of levels towards zero 
(McNeish, 2017). Removing the singular fits led to even more bias in 
the variance estimates (Figure 3c,d).

The biased variance estimates are caused by ensuring positive 
variances in the optimization routines (Bates et al., 2015; Brooks 
et al., 2017). In case of a singular fit, the correctly specified mixed-
effects model had similar power and type I error as a fixed-effects 
model dropping the grouping variable (Figure 4): no difference be-
tween the levels, which corresponds to a fixed-effects model with-
out the grouping variable. However, the models still differed in their 
number of parameters (and degrees of freedom) which might explain 
the slight differences in power and type I error (Figure  4).When 
switching to fixed-effects models for singular fits in the random 
effect, the type I error rate and power were similar to the random-
effect model with non-singular fits (Figure 4).

4.2  |  Connection to study design

Earlier studies reported mixed recommendations about important 
study design factors. While some studies only stressed the im-
portance of the total number of observations (Martin et al., 2011; 
Pol, 2012), we found, in accordance with Aarts et al. (2014), that 
the number of levels and the variance between levels have a strong 
influence on type I error rates and power. Due to our simulation 
design, which automatically increases the number of observations 

F I G U R E  3 Variance estimates of 
random intercepts (a, c) and random 
slopes (b, d) for linear mixed-effects 
models (LMM, Table 1. Equation M10) in 
Scenario B, fitted with lme4 using REML 
to simulated data with 2–8 mountains. 
Figures (a) and (b) show the results for all 
models (singular and non-singular fits) and 
figures (c) and (d) show the results for only 
non-singular fits. For each scenario, 5,000 
simulations and models were tested. 
The blue dotted lines represent the true 
variance used in the simulation (0.01), 
and the red lines the average variance 
estimates
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    |  11 of 15OBERPRILLER et al.

when increasing the number of levels, we however, cannot perfectly 
separate the effects of number of observations and levels from each 
other.

The influence of the variance on power and type I error is mixed. 
On the one hand, increasing the variance had a positive effect on the 
type I error for both models but the fixed-effects model was more 
strongly affected (Figure 5). The different distributional assumptions 
might explain this different behavior: the mixed-effects model as-
sumes the levels to be normally distributed and estimates the vari-
ance of the levels’ flexibly, whereas the fixed-effects model makes 
no distributional assumptions. We speculate that the mixed-effects 
model benefits from this informative distribution assumption in this 
edge case with less than five levels. On the other hand, increasing 
the variance over a certain value (Figure 5g) decreased the power of 
both models because more variance is explained by the difference 
between levels, and this increases the uncertainty of the slope ef-
fect estimate.

Given the strong influence of the number of mountains on type 
I error rates, we encourage to design a study with at least eight 
levels because with more than eight levels, the type I error rate was 
approximately not affected by the number of levels (Figure 5c). In 
our scenarios, the influence of the unbalanced number of obser-
vations between levels was small (Figure 5) confirming the robust-
ness of mixed-effects to unbalanced data (Pinheiro & Bates, 1995; 
Schielzeth et al.,  2020; Swallow & Monahan,  1984). However, if 
possible one should try to balance the groups because despite 
the robustness of mixed-effect models to an unbalanced design, 
it impacts the interpretation of the random effects and balanced 
studies create the least problems regarding the model option 
(Dixon, 2016). Moreover, the impact of study design on type I error 
and power stresses the importance of pre-experiments and power 
analyses (e.g., Brysbaert & Stevens, 2018; Green & MacLeod, 2016; 
Johnson et al.,  2015) to maximize the meaningfulness and effi-
ciency of a study.

F I G U R E  4 Type I error rate and power of the correctly specified linear fixed and mixed-effects models in scenario B. We separated the 
datasets based on if when fitted they presented a singular fit (red lines) or non-singular fit (blue lines) warning. Figure (a) and (b) are results 
for the linear mixed-effects models, and (c) and (d) for the linear fixed-effects models. For comparisons, we show also results for the fixed-
effects model that omits the grouping variable (mountain)
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4.3  |  Practical suggestion

Before giving practical advice, we must recall the exact situation in 
which this manuscript acts. We assume that an analyst is interested 
in a population-level effect, and that they have already decided to 
use a mixed-effects model (broad-sense analysis, not interested in 
the individual levels effects), but faces a small number of levels, so 
that our recommendations only apply to such situations.

In this situation, the variance estimates of the random effects sta-
bilizes in a reasonable manner with at least five levels in a grouping 
variable (Figure 2). With less than five levels, variance estimates are 
biased to zero (Figure 3) though without an effect on the observed 
average type I error rates of the population-level effect (Figures 1, 2). 
We rather found that the question of how to deal with a singular fit 
in the mixed-effects model is more crucial than the actual number of 
levels. If there is a singular fit warning, switching to the fixed-effects 
model leads to more conservative average type I error rates (Figure 2). 
Acknowledging that most singular fits occur with a small number of 
levels (Table S1), this might also explain the common rule of thumb to 
not fit a grouping variable as random effect if it has fewer than five 
levels (Bolker, 2015; Bolker et al., 2009; Gelman & Hill, 2007).

Our recommendations are summarized in Figure  6. We rec-
ommend starting with the mixed-effects model, regardless of the 
number of levels, and switching to a fixed-effects model only in case 
of a singular fit warning. How to deal with singular fits is a topic 
of ongoing discussion. While Barr et al.  (2013) states to start with 
the maximum model and simplify the model in case of convergence 

issues and singular fits, Matuschek et al., 2017 suggests to think a 
priori about using simpler models because of higher power in return 
of increased type I error rate. However, we disagree with the view 
of (Matuschek et al., 2017) that trading a small increase in type I 
error rate for higher power is favorable, even though it could still 
be an interesting solution with the often-small number of obser-
vations in ecological studies, when the increase in power prevails 
upon the increase in type I error rate. We follow the position of Barr 
et al. (2013), and thus recommend starting with correlated random 
slope and intercept, when the population-level effect differs among 
levels. If obtaining a singular fit, switch to uncorrelated random-
effects (following Matuschek et al., 2017), and in case of another 
singular fit, switch to a fixed-effects model.

Our recommendations assume that the random effect structure 
(e.g., random slope or not) is known a priori, which is often difficult in 
practice. Although model selection is theoretically possible for ran-
dom effects (e.g., simulated (restricted) LRTs (Wiencierz et al., 2011) 
or by residual checks (as facilitated by Hartig, 2019), the frequentist 
point of view recommends sticking closely to the a priori-derived hy-
pothesis, otherwise the risks such as they arise from multiple testing 
increase. Moreover, if the grouping variable was included as a con-
founder, this erroneous omission can cause a high type I error and 
wrong estimates. If there is uncertainty about the random-effect 
structure or concern about the statistical power, more time should 
be invested up front in hypothesis design and appropriate power 
analyses for mixed-effects models (e.g., Brysbaert & Stevens, 2018; 
Green & MacLeod, 2016).

F I G U R E  5 Comparing the influence of study design factors on the type I error rate (b - e) and power (g - j) of linear mixed- (blue lines) and 
fixed-effects models (red lines) with their respective average values (a, f). We found that the variance of the random-effects and the number 
of levels (number of mountains) are the most important values to get correct type I error. For this analysis, we used the plant height example 
for Scenario B (random intercept and random slope). Results for mixed-effects models are only from datasets in which mixed-effects models 
converged without presenting singular fit problems, while results for fixed-effects model are from all datasets
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5  |  CONCLUSION

In conclusion, we showed that mixed-effects models are more robust 
than previously thought, despite the biased variance estimates for 
low number of levels in the grouping variable. We found that power 
and type I error of the population-level effect are robust against the 
model choice when the ecological effect is the same among the lev-
els of the grouping variable, however, the model matters when the 
ecological effect differs among levels. When in doubt about the data-
generating process, we encourage starting with a simplified model 
(random intercept only) and consult model diagnostics and simulated 
LRTs to check for evidence of random slope effects. When finding ev-
idence for random slopes in these tests, we recommend starting with 
the mixed-effects model and switching only to a fixed-effects model 
in case of a singular fit problem. With this work, we provide a practical 
guideline, which helps analysts in the study design, the data analysis, 
and thus, making ecological inference more informative and robust.
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