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Abstract
Causal fermion systems are a candidate for a unified physical theory, giving rela-
tivistic quantum mechanics, general relativity and quantum field theory as limiting
cases. They are based on the Dirac equation, a first order differential equation,
which describes the fermions, the particles matter consists of. Fundamental for
causal fermion systems is the so-called causal action principle. This determines
the physically admissible objects like spacetimes defined in the setting of causal
fermion systems, similar to the way the Einstein equations determine the relevant
Lorentzian manifolds in general relativity. In this thesis the mass and energy
of black holes are investigated in the theory of causal fermion systems based on
the Euler-Lagrange equations and so-called surface layer integrals. More explic-
itly, the main goal of this thesis is to introduce the notions ”mass” (and to this
end ”area”), ”momentum” and ”energy” in the setting of causal fermion systems,
where ”energy” is given by an energy-momentum four-vector with the energy as
first component and momentum in the three spatial directions as the other compo-
nents. Moreover we will show an analogy to the ”Positive Mass Theorem” adapted
to the theory of causal fermion systems. Finally these notions are made manifest
by calculating the energy vector for a boosted Schwarzschild black hole and we
discuss how to generalize these calculations to Lorentzian Manifolds.

Zusammenfassung
Kausale Fermionensysteme sind ein Kandidat für eine vereinheitlichte physikalis-
che Theorie, da sie relativistische Quantenmechanik, allgemeine Relativitätstheorie
und Quantenfeldtheorie als Grenzfälle liefert. Sie basieren auf der Dirac-Gleichung,
die die Fermionen beschreibt - den Teilchen, aus denen Materie besteht. Grundle-
gend für kausale Fermionensysteme ist das sogenannte kausale Wirkungsprinzip.
Es bestimmt die physikalisch zulässigen Objekte (wie z.B. Raumzeiten) in der The-
orie kausaler Fermionensysteme, ähnlich wie die Einsteingleichungen die relevanten
Lorentz-Mannigfaltigkeiten in der allgemeinen Relativitätstheorie ermittelt.
Diese Arbeit beschäftigt sich mit der Masse und der Energie Schwarzer Löcher
in der Theorie kausaler Fermionensysteme auf der Grundlage der Euler-Lagrange-
Gleichungen und sogenannten Oberflächenschichtintegralen. Präziser formuliert
ist das Ziel dieser Arbeit, die Konzepte „Masse“ (und dafür „Fläche“), „Impuls“
und „Energie“ (in Form eines Energie-Impuls-Vektors mit der Energie in der er-
sten Komponente und den Impulsen in die drei räumlichen Richtungen als die
anderen drei Komponenten) für kausale Fermionensysteme zu definieren und eine
Entsprechung des „Positive-Masse-Theorems“ in der Theorie kausaler Fermionen-
systeme zu untersuchen. Schließlich werden diese Konzepte greifbarer gemacht,
indem explizit der Energie-Vektor für eine geboostete Schwarzschild-Raumzeit bes-
timmt und die Verallgemeinerung auf Lorentz-Mannigfaltigkeiten diskutiert wird.
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1 Introduction
In general relativity [ADM] Arnowitt, Deser and Misner defined the mass, mo-
mentum and energy of a system only depending on the asymptotics of the metric
tensor at infinity. Therefore the system had to describe a so-called asymptotically
flat spacetime which nearly looks like the Minkowski spacetime in the sense that
the deviation of the metric at infinity had to fall off fast enough. They also proved
that this energy is non-negative if the local energy density is non-negative. In the
static case this energy density is given by the scalar curvature of the metric.
The theory of causal fermion systems describes fundamental physical structures
and in a limiting case the Euler-Lagrange equations give the Einstein equations (up
to correction terms) making it possible to do general relativity. Therein, space-
time is defined as the support of a measure fulfilling certain constraints instead of a
Lorentzian manifold. The ADM mass resp. energy is defined as a surface integral
at spatial infinity, measuring the non-linear gravitation, given by this asymptotic
deviation of the metric from the flat Minkowski metric. One issue is that for
causal fermion systems we do not have the local notion of an induced volume form
on the hypersurface, hence we cannot just define the mass as a surface integral.
However, in the theory of causal fermion systems there is an equivalent to surface
integrals, the so-called surface layer integrals where we integrate over a thickened
layer around the hypersurface instead.
For static causal fermion systems in [PMT] a notion of mass is introduced, based
on the model of the ADM mass. Not only the surface layer integrals over spheres
going to spatial infinity replaced the surface integrals, but lacking the locality of a
metric tensor the notion of asymptotical flatness had to be adapted to the causal
fermion setting. Then the gravitation as deviation of the metrics at infinity is
displaced by comparing the measure for the asymptotically flat spacetime with
the measure describing Minkowski spacetime.
However, the notion of mass introduced in [PMT] only works for static causal
fermion systems. This thesis wants to generalize this notion to time-dependent
causal fermion systems, i.e. systems changing with time like e.g. with moving
or rotating black holes. Since for the static causal fermion systems, looking the
same at each point in time, there is the possibility of decomposing the measure
describing the asymptotically flat spacetime into the change of time and a spatial
measure. Anyway, this is not possible for time-dependent spacetimes as there is
no such strict separation between space and time, hence the spatial measure for
such a decomposition depends on the considered time. This makes it necessary
to replace the inner volume constraint in [PMT]. Instead, since the surface area
and the volume of balls in Schwarzschild spacetime depend on each other, in this
thesis it is replaced by the so-called area constraint.
For causal fermion systems we also prove a statement corresponding to the Positive
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Mass Theorem for the ADM mass: Given a certain local condition, i.e. if there is
something like non-negative mass density, the spacetime has non-negative mass.
Furthermore, in the setting of time-dependent causal fermion systems spacetimes
do not only have mass anymore, it is possible to introduce a notion of momentum
and energy therein. This momentum is defined by surface layer integrals like for
the mass but with contributions on thickened hypersurfaces of a constant spatial
coordinate. The energy is defined as a vector consisting of energy and momentum,
transforming as a four-vector like the ADM energy and momentum.
These notions are shown to coincide with the corresponding notions from Arnowitt,
Deser and Misner (up to a constant) in special cases like Minkowski, Schwarzschild
or boosted Schwarzschild spacetimes (i.e. boosting the black hole from Schwarzschild
spacetime).
Finally we give a short overview over the content of each section:

§2: In Section 2 we will recall causal fermion systems and all basic notions con-
cerning causal fermion systems.

§3: Section 3 will introduce preliminaries for the spacetimes to causal fermion
systems as well as the important so-called linearized field equations therein
and discuss the freedom in the solutions of these equations.

§4: Section 4 is the main section of this thesis. Here we will recall the definition
of the ADM mass from Arnowitt, Deser and Misner (cf. [ADM]) and the
mass definition for static causal fermion systems (cf. [PMT]). (Static causal
fermion systems describe time-independent spacetimes.)
Then, based on the idea of how the ADM mass is defined and based on
the model of the mass for static causal fermion systems, the mass for time-
dependent spacetimes will be defined.
Then we will prove a positive mass theorem for this mass definition.

§5: In Section 5 we will introduce a notion of energy for causal fermion systems.
To this end we define a momentum vector of causal fermion systems. Then
the mass and the momentum together build the energy in form of an energy-
momentum vector.

§6: Section 6 will make all these definitions more tangible. In this Section we will
consider a Schwarzschild black hole moving in a fixed direction with a fixed
velocity. We then will calculate all these notions applied to this example.

§7: In Section 7 we discuss how the calculation of the energy-momentum vector
for Lorentzian Manifolds differs from the one for symmetric spacetimes like
Schwarzschild spacetime.

§8: Section 8 concludes with a short summary of the results of this thesis.
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2 Preliminaries to Causal Fermion Systems
Causal fermion systems can be used to investigate black holes and their associated
basic concepts. We will first recall the crucial notions in the theory of causal
fermion systems:

2.1 Causal Fermion Systems
The following basic definitions are taken from [FF]:

Definition 2.1 (Causal Fermion System). A causal fermion system is a triple
(H,F , ρ) consisting of:

i) a separable, complex Hilbert space (H, 〈·, ·〉H) of dimension f ∈ N ∪ {∞}

ii) the set F of all linear, self-adjoint operators of finite rank on H, which
have at most n positive and at most n negative eigenvalues (counted with
multiplicity)

iii) a positive measure ρ on a σ-algebra of subsets of F .

n is then called spin dimension and ρ is called universal measure.

Definition 2.2 (Spectral Weight). For x, y ∈ F define the spectral weight of the
operator products xy resp. (xy)2 by

|xy| :=
n∑

i=1

|λxyi | resp. |(xy)2| :=
n∑

i=1

|λxyi |2,

where λxyi ∈ C are the non-trivial eigenvalues of xy (counted with multiplicity).

Definition 2.3 (Lagrangian and Causal Action). The Lagrangian is defined by

L : F × F → R, L(x, y) := |(xy)2| − 1

2n
|xy|2.

The Causal Action is defined by

S : B → R, S(ρ) :=
∫∫

F×F
L(x, y)dρ(x)dρ(y),

where B denotes the space of regular Borel measures on F .
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Definition 2.4 (Constraints). To avoid trivial minimizers of the causal action
one considers the following constraints:
In the case dim H <∞ the constraints are:

Volume Constraint: ρ(F) = constant

Trace Constraint:
∫
F
tr(x)dρ(x) = constant

Boundedness Constraint:
∫∫

F×F
|xy|dρ(x)dρ(y) ≤ C,

where C is a given parameter (and tr denotes the trace of a linear operator on H).
In the case dim H = ∞ one has to replace the volume constraint by

|ρ− ρ̃|(F) <∞ and (ρ− ρ̃)(F) = 0

for all variations ρ̃ of ρ, where |.| denotes the total variation of the measure.
Definition 2.5 (Causal Action Principle). The causal action principle means to
minimize the causal action by varying the measure ρ under the constraints from
Definition 2.4, where ρ is a regular Borel measure on F .
A measure ρ is said to be a minimizer of the causal action, if ρ fulfills

S(ρ̃)− S(ρ) ≥ 0

for all ρ̃ satisfying the constraints from Definition 2.4. For a minimizer ρ of the
causal action the spacetime M is defined as its support M := supp ρ.
Definition 2.6 (Lagrange Multiplier). In order to take the boundedness constraint
into account by positive Lagrange multipliers, one defines the Lagrangian Lκ by
adding a Lagrange multiplier term, κ ∈ R, to the causal Lagrangian,

Lκ : F × F → R, Lκ(x, y) := L(x, y) + κ|xy|2.

2.2 Euler-Lagrange Equations
For a minimizer ρ of the causal action one can derive very important equations,
the so-called Euler-Lagrange equations.
Definition 2.7 (Functions ℓ and ℓκ). For a reasonable definition of the variation
the following assumptions have to be made:

i) The measure ρ is locally finite, i.e. every x ∈ F has an open neighborhood U
with ρ(U) <∞. The topology on F is the one induced by the operator norm

‖x‖ := sup{‖xu‖H with ‖u‖H = 1}

(with ‖.‖H denoting the norm on H induced by the scalar product 〈·, ·〉H on
H). We will always consider M = supp ρ endowed with the induced topology.
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ii) The function Lκ(x, .) is ρ-integrable for all x ∈ F , giving a bounded contin-
uous function on F .

The bounded and lower semi-continuous functions ℓ and ℓκ can then be defined by

ℓ(x) :=

∫
F
L(x, y)dρ(y)− s

resp.
ℓκ(x) :=

∫
F
Lκ(x, y)dρ(y)− s

(for taking the volume constraint into account) with s ∈ R as specified below.

Definition 2.8 (Euler-Lagrange Equations). For every minimizer ρ of the causal
action one has

ℓκ|supp ρ ≡ inf
F
ℓκ.

Choosing the parameter s ∈ R s.t. this infimum is zero one obtains

ℓκ|supp ρ ≡ inf
F
ℓκ = 0. (1)

These are called the Euler-Lagrange equations.

Definition 2.9 (Weak Euler-Lagrange Equations). Physically restricting the at-
tention to ℓκ in a small neighborhood of M = supp ρ, one has

ℓκ|M ≡ 0 and hence Dℓκ|M ≡ 0, (2)

where Dℓκ(p) : TpF → R is the derivative. To combine these, define:
A jet is a pair u := (a, u) ∈ J∞ := C∞(M,R) ⊕ C∞(M,TF) of a real-valued
function a on M and a vector field u on TF along M and the related derivative is
defined by

∇uℓκ(x) := a(x)ℓκ(x) + (Duℓκ)(x).

By equation (2) then ∇uℓκ(x) vanishes for all x ∈ M and one obtains the weak
Euler-Lagrange equations

∇uℓκ(x)|M = 0 ∀u ∈ Jtest, (3)

where the subset Jtest ⊂ J∞ of test jets is defined in detail in [PMT, Section 2.1.1].
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2.3 Surface Layer Integrals
In the setting of causal fermion systems the usual integrals over hypersurfaces in
spacetime are undefined due to the lack of an induced volume form on the hyper-
surface. Instead, one considers so-called surface layer integrals, integrals over a
thickened surface:

For a given differential operator (...) acting on the Lagrangian Lκ, a surface layer
integral is a double integral of the form∫

Ω

dρ(x)

∫
M\Ω

dρ(y) (...)Lκ(x, y),

where Ω ⊂M .

Surface layer integrals correspond to the notion of surface integrals for causal
fermion systems in the following sense (cf. [NLT, Section 2.3]):
Assume that Lκ is of short range, i.e. it decays on length scale δ ∈ R and vanishes
on distances larger than δ: Let d be the metric on M induced by the operator
norm on M . Then we assume that

∀x, y ∈M d(x, y) > δ ⇒ Lκ(x, y) = 0.

This way one only gets a contribution to the double integral if x and y are close
together, i.e. close to the boundary ∂Ω, hence the contribution to the integral
comes from integrating the a bit expanded surface ∂Ω.

Ω

M \ Ω

∂Ω

Figure 1: L(x, y) vanishes, if x or y is not in the strong green resp. blue domain.

Example 2.10. Four-dimensional Minkowski spacetime can be regarded as a causal
fermion system. This is explained in detail in [FF, Section 1.2]. We will always
consider Minkowski spacetime with the signature (−,+,+,+).
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3 Preliminaries to the Area, Mass and Energy of
Causal Fermion Systems

After having recapped the basic notions for causal fermion systems in Section 2,
we now will recall important notions needed for the definition of the mass such as
the notion of time and important equations for causal fermion systems.

Situation 3.1. Let (H,F , ρ) be a causal fermion system with spacetime denoted
by M = supp ρ. We will always consider the situation that

1. the spacetime M is a four-dimensional smooth submanifold of F .

2. the measure ρ is of the form dρ = h(x) d4x for some h ∈ C∞(U,R+) in local
coordinates (for local charts U).

Let Ω ⊂ M be compact with smooth boundary ∂Ω. On the boundary define the
measure dρ(v, x) as the contraction of the volume form on M with a vector field
v, i.e. in local charts

dρ(v, x) = hϵijklv
idxjdxkdxl,

where ϵijkl is the totally anti-symmetric Levi-Civita symbol (which is normalized
by ϵ0123 = 1).

3.1 Past
In this section we will define the notion of time in the setting of causal fermion sys-
tems as well as the past of a given time. We will need this e.g. for a representation
of the mass using spacetime integrals.

Definition 3.2 (Past). Let (H,F , ρ) be a causal fermion system. Under the
smoothness assumption 3.1, after choosing a folitation M = R×N of the spacetime
M = supp ρ the measure ρ on M can be decomposed as

dρ = dt dµt (4)

on R × N (where the subscript t means that the measures µt depend on the first
component, the time), where µt is in local coordinates (t, x1, x2, x3) given by

dµt = h(t, x1, x2, x3)dx1dx2dx3

for h from Situation 3.1. This implies that spacetime points can hence be written as
x = (tx, x⃗) ∈ R×N , where tx can be interpreted as the time component. Denoting
the projection on the time component by

T :M → R, (tx, x⃗) 7→ tx,
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the time hypersurface for a fixed time t0 ∈ R (i.e. a constant-time-hypersurface)
can be defined as

Nt0 := T−1(t0)

and the past of the fixed time t0 by
Ωt0 := {x ∈M |T (x) ≤ t0}.

We then have the relation Nt0 = ∂Ωt0.

Nt0
Ωt0

M

Figure 2: Time hypersurface and past for the time t0 ∈ R

We can generalize this to spatial coordinates:
Definition 3.3 (Spatial Hypersurfaces and Halfspaces). Let M be a spacetime
from Situation 3.1. Like for the decomposition in Definition 3.2 we can fix another
direction xi, i ∈ {1, 2, 3} and we can as well consider a decomposition of the form
M = R× {xi = constant} by constant-xi-hypersurfaces. Analogous to Section 3.2
considering the corresponding projections Xi : M → R, i ∈ {1, 2, 3}, define the
lower-xi-halfspace Hxir

of the fixed spatial xi-coordinate xir ∈ R by
Hxir

:= {x ∈M |Xi(x) ≤ xir}.

3.2 Linearized Field Equations
We now give the linearized field equations. However, in the theory of causal
fermion systems these are obtained by varying the measure in order to vary the
field strengh. For more details on that see [PMT, Section 2.1.2].
Convention 3.4. A variable provided with a prime always refers to the second
component of the Lagrangian Lκ.
Definition 3.5 (Linearized Field Equations). A jet v ∈ J∞ is called a solution of
the linearized field equations with inhomogenity w ∈ J∞ if

∆v = w,

i.e. if for all test jets u ∈ Jtest and for all spacetime points x ∈ M we have with
the notation from Definition 3.2

〈u,∆v〉(x) := ∇u

∫ ∞

−∞
dt′
∫
Nt′

dµt′(y⃗) (∇1,v +∇2,v)Lκ(x, (t
′, y⃗))−∇u∇vs = ∇uw,

where the subscripts 1 resp. 2 refer to the corresponding component of Lκ.
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3.3 Inner Solutions
Next we will define a special class of jets which satisfy the linearized field equations.
These will allow us to shift solutions of the linearized field equations and obtain
solutions with any possible scalar component:

Definition 3.6 (Divergence). Under the assumptions in Situation 3.1 one can
define the divergence of a vector field v ∈ C∞(M,TF) by

div(v) := 1

h
∂i(hv

i)

(using the Einstein summation convention) as in common differential geometry.
A jet v ∈ J∞ is called inner solution if its scalar component is the divergence of
its vector field component, i.e. if it is of the form

v := (div(v), v).

Lemma 3.7. Every inner solution v = (div(v), v) ∈ J∞ is a solution of the
homogeneous linearized field equations, i.e.

∆v = 0.

Proof. We again use the notation from Definition 3.2. We slightly adapt the proof
of [PMT, Lemma 2.6]: Integrating by parts in y⃗ we have for all x ∈M that

〈u,∆v〉 = ∇u

(∫ ∞

−∞
dt′
∫
Nt′

dµt′(y⃗) (∇1,v +∇2,v)Lκ(x, (t
′, y⃗))−∇vs

)

= ∇u

(∫ ∞

−∞
dt′
∫
Nt′

dµt′(y⃗)∇1,vLκ(x, (t
′, y⃗))−∇vs

)
= ∇u∇vℓ(x) = ∇v∇uℓ(x) = 0

by the weak Euler-Lagrange equations (3). (For further details on integrating by
parts in this setting see [BFS, Equation (3.3)].)

Lemma 3.8. For a spacetime M as in Situation 3.1 let I ⊂ M be a relatively
compact subset and

Φ :M \ I → R4 \BR

be a diffeomorphism (where BR ⊂ R4 denotes the open ball of radius R ≥ 0). Then
for every a ∈ C∞(M,R) there is a vector field u ∈ C∞(M,TF), s.t. div(u) = a.
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Proof. We closely follow the proof from [PMT, Lemma 2.7]. Choosing a partition
of unity (ϕn)n∈N on M with

supp ϕ1 ⊂ I ∪ Φ−1(BR+2)

supp ϕn+1 ⊂ Φ−1(BR+n+1 \BR+n−1) for n ≥ 2,

by Situation 3.1 there is a volume form ψ ∈ Λk(M), s.t.

ρ(U) =

∫
U

ψ for all compact U ⊂M.

Also there is a representation of the measure aρ by a volume form ω ∈ Λk(M), i.e.∫
U

a(x)dρ(x) =

∫
U

ω for all compact U ⊂M.

Choosing c1 ∈ R, s.t. ∫
M

(ϕ1ω − c1ϕ1ψ) = 0,

[FDG, Theorem 1.2 in Section XVIII] then yields a compactly supported form
η1 ∈ Λk−1

0 (M) with
ϕ1ω − c1ϕ1ψ = dη1.

Inductively by choosing cn+1 ∈ R, s.t.∫
M

(ϕn+1ω + cnϕnψ − cn+1ϕn+1ψ) = 0,

for every n ∈ N, we obtain forms ηn+1 ∈ Λk−1
0 (M) with

ϕn+1ω + cnϕnψ − cn+1ϕn+1ψ = dηn+1. (5)

By theorem [FDG, Theorem 1.2 in Section XVIII] we can demand that the sup-
port of this ηn+1 is always contained in the corresponding connected annulus
Φ−1(BR+n+1\BR+n−1) (resp. I∪Φ−1(BR+2) for supp η1). Adding up the equations
of the form (5), we get that

η :=
∞∑
n=1

ηn satisfies dη =
∞∑
n=1

ϕnω = ω

(where the sum converges because of the local finiteness). In order to find a
vector field v, s.t. div(v)dρ = dη, choose a Riemannian metric g on M and apply
a conformal transformation s.t. the corresponding volume form and ρ coincide.
Then the vector field given by

vα = gαβ(⋆η)β

(with ⋆ : Λk−1(M) → Λ1(M) the Hodge operator) satisfies the claim.
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Corollary 3.9. By the Lemmas 3.7 and 3.8 we can restrict all considerations to
solutions of the linearized field equations with a certain scalar component later on:
Since for every solution v = (a, v) ∈ J∞ of the linearized field equations by Lemma
3.8 and any scalar component b ∈ C∞(M,R) there is a vector field ṽ together
with a corresponding inner solution ṽ = (b − a, ṽ) ∈ J∞ and by Lemma 3.7 then
v+ ṽ = (b, v+ ṽ) is a solution of the linearized field equations with this given scalar
component.

Convention 3.10. For inner solutions to a vector field the contraction of a mea-
sure with this inner solution always means the contraction with that vector field.

4 Mass of Causal Fermion Systems
The basic idea for the mass definition for causal fermion systems comes from the
so-called ADM mass, hence we will shortly recall its setting and definition:

4.1 Motivation: ADM Mass and the Mass of Static Causal
Fermion Systems

First we will mention the definition of the ADM mass in [ADM] giving the idea for
the definition of the mass of causal fermion systems and afterwards we will recall
the mass definition from [PMT] for causal fermion systems in the static setting:

4.1.1 ADM Mass

Arnowitt, Deser and Misner defined in [ADM] mass and energy for spacetimes
which in some sense asymptotically look like the Minkowski spacetime. For this
they measure the deviation of the geometry at infinity between Minkowski and the
other spacetime. We will shortly recall this definition:

Situation 4.1. Let

• (N, g) be a four-dimensional Lorentzian manifold with metric g of signature
(−,+,+,+) and denote the induced Levi-Civita connection by ∇

• M ⊂ N be an oriented spacelike hypersurface with induced metric gij

• ν be a normal vector field on M and denote the second fundamental form by
hij = (∇iν)j.

Definition 4.2 (Energy, Momentum and Mass). i) (M, g) is called asymptot-
ically flat if

11



a) there is a compact subset K ⊂ M and for some closed ball in R3 of
radius r > 0 a diffeomorphism Φ :M \K → R3 \Br(0).

b) under Φ the metric has the form

gij(x) = δij + aij(x)

for x ∈ R3 \Br(0) with the decay properties for the remainder

aij = O
(

1

‖x‖

)
, ∂kaij = O

(
1

‖x‖2

)
and ∂k∂laij = O

(
1

‖x‖3

)
(where ‖.‖ denotes the Euclidean norm on R3) as well as for the second
fundamental form

hij = O
(

1

‖x‖2

)
and ∂khij = O

(
1

‖x‖3

)
.

ii) For R > r from i) let SR ⊂ R3 denote the sphere with radius R. Then the
total energy E of an asymptotically flat manifold (M, g) is defined as

E :=
1

16π
lim
R→∞

3∑
i,j=1

∫
SR

(∂jgij − ∂igjj) ν
idΩ

with ν resp. dΩ the outward normal resp. area form on SR and the total
momentum P is with the components Pk, k ∈ {1, 2, 3} defined by

Pk :=
1

16π
lim
R→∞

3∑
i,j=1

∫
SR

(∂jh0k − ∂0hjk + δjk∂0hii − δjk∂ih0i) ν
idΩ.

For so-called static manifolds, i.e. if the second fundamental form hij van-
ishes, so does the momentum P . In this case the energy is then called ADM
mass.

With the concept of the ADM mass in mind, following [PMT, Section 1] we
shortly recall the mass definition for static spacetimes which we will adapt to the
time-dependent causal fermion system setting afterwards. Here, static spacetime
means a globally hyperbolic spacetime, where a foliation (Nt)t∈R can be chosen
so that the timelike vector field ∂t is a Killing field which is orthogonal to the
hypersurfaces Nt (cf. [PMT, Section 2.3.2]).

12



4.1.2 Mass of Static Causal Fermion Systems

Definition 4.3 ([PMT], Definition 3.1). Let (Ut)t∈R be a strongly continuous one-
parameter group of unitary transformations on the Hilbert space H (i.e. for all
t, t′ ∈ R we have UtUt′ = Ut+t′ and limt′→t Ut′ = Ut). Then the causal fermion
system (H,F , ρ) is called static w.r.t. (Ut)t∈R if:

i) The spacetime M := supp ρ is a topological product M = R × N , allowing
to denote spacetime points x ∈M by x = (t, x⃗) ∈ R×N .

ii) ρ is (Ut)t∈R-invariant, i.e.

∀t ∈ R,Ω ⊂ F ρ-measurable ρ(UtΩU−1
t ) = ρ(Ω)

and additionally

∀t, t′ ∈ R, (t, x⃗) ∈ R×N Ut′(t, x⃗)U−1
t′ = (t+ t′, x⃗).

We will then call the spacetime M static as well. In this case ρ induces a measure
µ on N by µ(Ω) := ρ ([0, 1]× Ω) for Ω ⊂ N which then fulfills

dρ = dtdµ. (6)

Example 4.4. The Minkowski spacetime (cf. Example 2.10) is static.

For the (static) spacetime M̃ = supp ρ̃ of a static causal fermion system
(H̃, F̃ , ρ̃), where ρ̃ minimizes the causal action with the same constants s and
κ as ρ on M , the mass was as well defined by integrating the deviation of the
geometry at infinity of this spacetime M̃ from the flat spacetime M of the causal
fermion system (H,F , ρ) representing Minkowski (cf. 2.10). We exhausted both
spacetimes by sets of finite measure giving a definition of the form

M (µ̃) = lim
Ω↗N

lim
Ω̃↗Ñ

(
−s
(
µ̃(Ω̃)− µ(Ω)

)
+

∫
Ω̃

dµ̃(x)

∫
N\Ω

dµ(y)Lκ(x, y)−
∫
Ω

dµ(x)

∫
Ñ\Ω̃

dµ̃(y)Lκ(x, y)

)
(with M̃ = R×Ñ with dρ̃ = dtdµ̃ as M̃ is static) for the static Lagrangian (for more
information cf. [PMT, Section 3.2]), where the quantities without tilde always refer
to Minkowski spacetime while the ones with tilde refer to the spacetime whose mass
is calculated. (In the mass definition for time-dependent causal fermion systems
we will later on denote elements of the exhaustion by U as we will denote pasts
by Ω.)
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Considering only exhaustions Ω ↗ M resp. Ω̃ ↗ M̃ with the same inner volume,
i.e. µ(Ω) = µ̃(Ω̃) for the elements of the exhaustions, then doing the Taylor
expansion and taking the difference of the highest order terms the inner volumes
drop out and the next order terms give the mass

M(µ̃) = lim
Ω↗N,Ω̃↗Ñ with µ(Ω)=µ̃(Ω̃)(∫

Ω̃

dµ̃(x)

∫
N\Ω

dµ(y)Lκ(x, y)−
∫
Ω

dµ(x)

∫
Ñ\Ω̃

dµ̃(y)Lκ(x, y)

)
= lim

Ω↗N

∫
Ω

dµ(x)

∫
N\Ω

dµ(y) (∇1,v −∇2,v)Lκ(x, y)

for some jet v ∈ J∞ describing the gravitation.

Ñ := supp µ̃

N := supp µ

Ω̃n

Ωn

yx

x
y

Figure 3: The surface layer integral for the mass in [PMT]

Example 4.5. By [PMT, Theorem 1.10] for the Schwarzschild spacetime this mass
definition coincides with the ADM mass of the Schwarzschild spacetime up to a
constant.

However, in the time-dependent setting there is no longer an obvious notion of
inner volume because then the measure µ from a decomposition as in equation (6)
depends on the time t (other as in equation (4)), hence the inner volume condition
has to be replaced. Since the surface area of balls in Schwarzschild spacetime is
related to their mass this suggests to demand that the exhausting subsets have
the same surface area instead of the same inner volume.

4.2 Area for Causal Fermion Systems
In this section we will introduce a notion of surface area for causal fermion systems:

Definition 4.6 (Area). Let (H,F , ρ) again be a causal fermion system with four-
dimensional critical measure ρ and smooth spacetime M = supp ρ. Additionally
let Ω, U ⊂ M be open, s.t. their boundaries ∂Ω and ∂U intersect transversally,
giving a two-dimensional surface ∂Ω ∩ ∂U . Then define its area by

A (Ω, U) =

∫
Ω∩U

dρ(x)

∫
M\(Ω∪U)

dρ(y)Lκ(x, y). (7)
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Here we integrate in x over the green and in y over the blue domain, where the
main contribution comes from integrating over x and y close to the two-dimensional
surface ∂Ω ∩ ∂U (marked by the slightly darker regions):

U ∂U M \ U

Ω

∂Ω

M \ Ω

Figure 4: Integration domains for the area in the time-dependent case

Lemma 4.7. In Definition 4.6 let M be static (cf. Definition 4.3) and Ω ⊂M be
the past of a time t ∈ R in M . Then the area (7) does not depend on the chosen
time t. (Hence we will often drop the chosen time in Minkowski in definitions.)

Proof. For static spacetimes we can consider the decomposition from Definition 4.3
and shift the time using the one-parameter group (Ut)t∈R: Consider an arbitrary
time s ∈ R, its past Ωs = (−∞, s] × N ⊂ M and let Ω0 = (−∞, 0] × N ⊂ M
denote the past for time 0 ∈ R. Then we can calculate the area at time s and any
U ⊂ N (as in the static setting, for more details see [PMT]) with boundary ∂U
intersecting N = ∂Ω transversally:

A (Ωs, U) =

∫
Ωs∩U

dρ(x)

∫
M\(Ωs∪U)

dρ(y)Lκ ((t, x⃗), (t
′, y⃗))

=

∫
Ωs∩U

dρ(x)

∫
M\(Ωs∪U)

dρ(y)Lκ

(
Us(t− s, x⃗)U−1

s , (t′, y⃗)
)

=

∫
Ωs∩U

dρ(x)

∫
M\(Ωs∪U)

dρ(y)Lκ

(
U−1
s Us(t− s, x⃗)U−1

s Us,U−1
s (t′, y⃗)Us

)
=

∫
Ωs∩U

dρ(x)

∫
M\(Ωs∪U)

dρ(y)Lκ

(
(t− s, x⃗),U−s(t

′, y⃗)U−1
−s

)
=

∫
Ωs∩U

dρ(x)

∫
M\(Ωs∪U)

dρ(y)Lκ ((t− s, x⃗), (t′ − s, y⃗))

=

∫
Ω0∩U

dρ(x)

∫
M\(Ω0∪U)

dρ(y)Lκ ((t, x⃗), (t
′, y⃗)) = A (Ω0, U) ,
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where we used the transformation formula in the penultimate step.
Hence we can conclude that in static spacetimes the area is the same w.r.t. the
past of any time s ∈ R.

4.3 Mass of Time-Dependent Causal Fermion Systems
We will define the mass of a spacetime also using surface layer integrals measuring
the deviation of this spacetime from Minkowski spacetime. The notion of asymp-
totic flatness will ensure that the geometry of this spacetime approaches Minkowski
geometry at infinity and is asymptotically close enough to Minkowski, s.t. these
surface layer integrals converge and can be calculated by some linearization.

Convention 4.8. While defining mass, momentum and energy of time-dependent
causal fermion systems we will often refer to spacetimes M and M̃ . This will always
mean we consider two causal fermion systems (H,F , ρ) resp. (H̃, F̃ , ρ̃) with the
spacetimes M = supp ρ resp. M̃ = supp ρ̃ (and decompositions as in Definition
3.2), which are minimizers of the same causal action, i.e. with the same constants
s and κ. Moreover, M will from now on always denote the Minkowski spacetime
(cf. 2.10) with decomposition M = R×N , dρ = dtdµ from Section 4.3.

4.3.1 Asymptotic Flatness

First we will express decay properties as in Definition 4.2,i),b) in the theory of
causal fermion systems:

Definition 4.9 (Asymptotically Flat). (This definition follows closely [PMT, Def-
inition 1.5].) In the situation of Convention 4.8 the spacetime M̃ = supp ρ̃ is called
asymptotically flat (we then also say ρ̃ is asymptotically flat) if

i) ρ(M) = ρ̃(M̃) = ∞

ii) There is a mapping F :M → M̃ , s.t.

ρ̃ = F∗ρ

(with F∗ρ denoting the pushforward measure of ρ under F ), F is a diffeo-
morphism onto its image outside of a relatively compact open subset I ⊂M
and the surface layer integral

lim
Un↗M,Ũn↗M̃ with A(Un)=Ã(Ω̃t′ ,Ũn)

×(∫
N\Un

dµ(x)

∫
Ũn

dρ̃(y)−
∫
N∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y)

)
Lκ(x, y)
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(where Ω̃t′ ⊂ M̃ is the past for a time t′ ∈ R for a decomposition as in
Definition 3.2) can be linearized, s.t. in the limit we have(∫

N\Un

dµ(x)

∫
Un

dρ̃(y)−
∫
N∩Un

dµ(x)

∫
M\Un

dρ(y)

)
Lκ(x, F (y))

=

(∫
N\Un

dµ(x)

∫
Un

dρ(y)−
∫
N∩Un

dµ(x)

∫
M\Un

dρ(y)

)
∇2,wLκ(x, y) (8)

for some jet w ∈ J∞. (This limit will in the next section define the mass of
a causal fermion system.)

iii) For the inner solution u ∈ J∞ to the vector field ∂
∂t

(resp. ∂
∂x
, ∂

∂y
or ∂

∂z
) on

Minkowski spacetime M there is an inner solution ũ to the corresponding
vector field ∂

∂t
(resp. ∂

∂x
, ∂

∂y
or ∂

∂z
) on the spacetime M̃ , s.t.

(∇1,u +∇2,ũ)L(x, y) ∈ L1(N × M̃)

(where N denotes a constant-time-hypersurface or a constant-xi-hypersurface,
cf. Definition 3.2 and Definition 3.3).

4.3.2 Mass Definition for Time-Dependent Causal Fermion Systems

Having a notion of area, we can now define the mass as follows, using the notation
from Convention 4.8:

Definition 4.10 (Mass). In the situation of Convention 4.8 let ρ̃ be asymptotically
flat. Then the mass of ρ̃ is defined as

M(ρ̃) := lim
Un↗M,Ũn↗M̃ with A(Ω,Un)=Ã(Ω̃t′ ,Ũn)

O(ρ̃, Un, Ũn) (9)

with

O(ρ̃, Un, Ũn) :=

(∫
N\Un

dµ(x)

∫
Ũn

dρ̃(y)−
∫
N∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y)

)
Lκ(x, y),

where Un ↗ M resp. Ũn ↗ M̃ means we exhaust M resp. M̃ by sets of finite
measure and Ω ⊂ M resp. Ω̃t′ ⊂ M̃ are the pasts for times t ∈ R resp. t′ ∈ R for
decompositions as in Definition 3.2.

Remark 4.11. Since ρ̃ is asymptotically flat, we can linearize the surface layer
integrals to obtain in the limit

O(ρ̃, Un, Ũn) =

(∫
N\Un

dµ(x)

∫
Un

dρ(y)−
∫
N∩Un

dµ(x)

∫
M\Un

dρ(y)

)
∇2,wLκ(x, y).
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The integration domains for ∇2,wL are then in Minkowski spacetime and can be
pictured as follows:

N N

Un
∂Un M \ Un Un

∂Un M \ Un

Figure 5: Integration domains for the mass: minuend (left) and subtrahend (right)

Here we again integrate in x over the green and in y over the blue domain,
where the main contribution comes from integrating over x and y close to the
two-dimensional surface ∂Ω ∩ ∂U marked by the slightly darker regions.

Like the ADM mass this mass definition only depends on the geometry of the
spacetime M̃ at infinity. Moreover we will show that this definition does neither
depend on the chosen exhaustions U ↗M resp. Ũ ↗ M̃ nor on the choice of the
time nor on the chosen pasts Ωt and Ω̃t′ , hence we can denote the mass by M(ρ̃).

4.3.3 Rewritten Definition of the Mass

In order to replenish the mass with a notion of momentum to obtain a definition
of energy of causal fermion systems we will rewrite the term of the mass. We will
also use this to show that the mass from Definition (9) is time-independent.

Lemma 4.12. In the situation of Definition 4.10 we could also define the mass
as follows:

M(ρ̃) := lim
Un↗M,Ũn↗M̃ with A(Un)=Ã(Ω̃t′ ,Ũn)

O1(Ω̃t′ , Un, Ũn)
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with

O1(Ω̃t′ , Un, Ũn) :=

−

(∫
Ωt∩Un

dρ(x)

∫
M̃\(Ω̃t′∪Ũn)

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn\Ω̃t′

dρ̃(y)

)
∇1,uLκ(x, y)

+

(∫
Un\Ωt

dρ(x)

∫
Ω̃t′\Ũn

dρ̃(y)−
∫
M\(Ωt∪Un)

dρ(x)

∫
Ω̃t′∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y),

where Ωt is the past of the time hypersurface N from Definition 4.10 w.r.t. a time
t ∈ R (cf. Definitions 4.3 and 3.2) and u is the inner solution corresponding to
the time derivative ∂

∂t
. (O1 depends on ρ̃, but we drop ρ̃ for the shorter notation.)

By Lemma 4.7 the mass does not depend on the choice of Ωt. Moreover, we will
show in Proposition 4.14 that this definition is independent of the chosen past Ω̃t′,
hence we can drop Ωt and Ω̃t′ in the notation of O1 resp. the mass M.

Proof. Using u =
(
div
(

∂
∂t

)
, ∂
∂t

)
and integrating by parts in the first component

yields integrals over the Minkowski time hypersurface N = Nt = ∂Ωt:

−

(∫
Ωt∩Un

dρ(x)

∫
M̃\(Ω̃t′∪Ũn)

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn\Ω̃t′

dρ̃(y)

)
∇1,uLκ(x, y)

+

(∫
Un\Ωt

dρ(x)

∫
Ω̃t′\Ũn

dρ̃(y)−
∫
M\(Ωt∪Un)

dρ(x)

∫
Ω̃t′∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

= −

(∫
N∩Un

dρ(x)

∫
M̃\(Ω̃t′∪Ũn)

dρ̃(y)−
∫
N\Un

dρ(x)

∫
Ũn\Ω̃t′

dρ̃(y)

)
Lκ(x, y)

+

(
−
∫
N∩Un

dρ(x)

∫
Ω̃t′\Ũn

dρ̃(y) +

∫
N\Un

dρ(x)

∫
Ω̃t′∩Ũn

dρ̃(y)

)
Lκ(x, y)

=

(∫
N\Un

dµ(x)

∫
Ũn

dρ̃(y)−
∫
N∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y)

)
Lκ(x, y),

hence O1(Ω̃t′ , Un, Ũn) coincides with O(ρ̃, Un, Ũn) from Section 4.3 for the past Ω̃t′

of any time t′ ∈ R.

4.3.4 Independence of the Choice of the Exhaustions

In this Section we will prove the following statement:

Proposition 4.13. The mass from Definition 4.10 is independent of the chosen
exhaustions U ↗M resp. Ũ ↗ M̃ .
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Proof. As in Definition 4.10 we consider exhaustions Ur ↗ M, Ũr ↗ M̃ and let
v denote the inner solution corresponding to the vector field ∂

∂r
on Minkowski

spacetime. Since ρ̃ is asymptotically flat, there is an inner solution ṽ to the vector
field ∂

∂r
on the spacetime M̃ , s.t. the integrability condition(

∇1,v +∇2,ṽ

)
L(x, y) ∈ L1(N × M̃) (10)

is fulfilled. An infinitesimal change of the exhausting sets yields

d

dr
O(ρ̃, Ur, Ũr)

=
d

dr

(∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)−
∫
N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)

)
Lκ(x, y)

=

(∫
N\Ur

dµ(x)

∫
∂Ũr

dρ̃(v, y) +

∫
N∩Ur

dµ(x)

∫
∂Ũr

dρ̃(y)

−
∫
N∩∂Ur

dµ(v, x)

∫
Ũr

dρ̃(y)−
∫
N∩∂Ur

dµ(v, x)

∫
M̃\Ũr

dρ̃(y)

)
Lκ(x, y)

=

(∫
N

dµ(x)

∫
∂Ũr

dρ̃(v, y)−
∫
N∩∂Ur

dµ(v, x)

∫
M̃

dρ̃(y)

)
Lκ(x, y) (11)

(for dµ(v, x) resp. dρ̃(v, y) denoting the contraction of µ with ∂
∂r

on Minkowski
resp. ρ̃ with ∂

∂r
on the spacetime M̃ (for the definition of contraction see Situation

3.1)), where we used integration in parts in the second step.
Next we want to write this with integrand

(
∇1,v +∇2,ṽ

)
L(x, y) in order to use the

integrability condition from equation (10). Therefore we first rewrite∫
N∩∂Ur

dµ(v, x)

∫
M̃

dρ̃(y)Lκ(x, y),

which will then also cancel out the term
∫
N
dµ(x)

∫
∂Ũr

dρ̃(v, y)Lκ(x, y). Using
integration by parts (in the second and forth step) and adding a zero (in the third
step), we can rewrite this second term as follows:∫

N∩∂Ur

dµ(v, x)

∫
M̃

dρ̃(y)Lκ(x, y)

=

(∫
N∩∂Ur

dµ(v, x)

∫
M̃\Ũr

dρ̃(y) +

∫
N∩∂Ur

dµ(v, x)

∫
Ũr

dρ̃(y)

)
Lκ(x, y)

=

(∫
N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)

)
∇1,vLκ(x, y)
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=

(∫
N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)

)(
∇1,v +∇2,ṽ

)
Lκ(x, y)

−
(∫

N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)

)
∇2,ṽLκ(x, y)

=

(∫
N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)

)(
∇1,v +∇2,ṽ

)
Lκ(x, y)

+

(∫
N∩Ur

dµ(x)

∫
∂Ũr

dρ̃(v, y) +

∫
N\Ur

dµ(x)

∫
∂Ũr

dρ̃(v, y)

)
Lκ(x, y)

=

(∫
N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)

)(
∇1,v +∇2,ṽ

)
Lκ(x, y)

+

∫
N

dµ(x)

∫
∂Ũr

dρ̃(v, y)Lκ(x, y).

Plugging this into equation (11), we obtain

d

dr
O(ρ̃, Ur, Ũr)

=

(∫
N

dµ(x)

∫
∂Ũr

dρ̃(v, y)−
∫
N

dµ(x)

∫
∂Ũr

dρ̃(v, y)

)
Lκ(x, y)

−
(∫

N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)

)(
∇1,v +∇2,ṽ

)
Lκ(x, y)

= −
(∫

N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)

)(
∇1,v +∇2,ṽ

)
Lκ(x, y).

Now we can apply the integrability condition (10) in order to show that both these
terms vanish in the limit r → ∞. We begin with the first term:

0 ≤
∣∣∣∣− ∫

N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)
(
∇1,v +∇2,ṽ

)
Lκ(x, y)

∣∣∣∣
≤
∫
N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)
∣∣(∇1,v +∇2,ṽ

)
Lκ(x, y)

∣∣
≤
∫
N

dµ(x)

∫
M̃\Ũr

dρ̃(y)
∣∣(∇1,v +∇2,ṽ

)
Lκ(x, y)

∣∣ .
As this last line converges to 0 in the limit r → ∞ by the integrability condition
(10) this implies that

−
∫
N∩Ur

dµ(x)

∫
M̃\Ũr

dρ̃(y)
(
∇1,v +∇2,ṽ

)
Lκ(x, y)

r→∞−−−→ 0
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as well. For the second term we can proceed similarly: Since

0 ≤
∣∣∣∣− ∫

N\Ur

dµ(x)

∫
Ũr

dρ̃(y)
(
∇1,v +∇2,ṽ

)
Lκ(x, y)

∣∣∣∣
≤
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)
∣∣(∇1,v +∇2,ṽ

)
Lκ(x, y)

∣∣
≤
∫
N\Ur

dµ(x)

∫
M̃

dρ̃(y)
∣∣(∇1,v +∇2,ṽ

)
Lκ(x, y)

∣∣
and since by condition (10) again the last term converges to 0 in the limit r → ∞
this implies

−
∫
N\Ur

dµ(x)

∫
Ũr

dρ̃(y)
(
∇1,v +∇2,ṽ

)
Lκ(x, y)

r→∞−−−→ 0.

Hence the mass of causal fermion systems does not depend on the chosen exhaus-
tions.

4.3.5 Independence of the Considered Time

Next we will prove that the mass from Section 4.3 is independent of the chosen
time by showing that the time derivative of the mass vanishes in the limit of the
exhaustions:

Proposition 4.14. The mass from the definition in Lemma 4.12 does not depend
on the chosen time.

Proof. With the notation from Lemma 4.12 we consider exhaustions U ↗M and
Ũ ↗ M̃ , pasts Ωt ⊂M, Ω̃t ⊂ M̃ and let u denote the inner solution corresponding
to the vector field ∂

∂t
on Minkowski spacetime. Since ρ̃ is asymptotically flat,

there is an inner solution ũ to the vector field ∂
∂t

on the spacetime M̃ , s.t. the
integrability condition

(∇1,u +∇2,ũ)L(x, y) ∈ L1(N × M̃) (12)

is fulfilled. To be able to use the integrability condition (12) we first want to
rewrite the mass to obtain integrals over the whole of Un or M \ Un (resp. Ũn or
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M̃ \ Ũn), which can be done as follows:

O1(Ωt, Ω̃t, Un, Ũn)

= −

(∫
Ωt∩Un

dρ(x)

∫
M̃\(Ω̃t∪Ũn)

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn\Ω̃t

dρ̃(y)

)
∇1,uLκ(x, y)

+

(∫
Un\Ωt

dρ(x)

∫
Ω̃t\Ũn

dρ̃(y)−
∫
M\(Ωt∪Un)

dρ(x)

∫
Ω̃t∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

= −
(∫

Ωt∩Un

dρ(x)

∫
M̃\Ũn

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

+

(∫
Un

dρ(x)

∫
Ω̃t\Ũn

dρ̃(y)−
∫
M\Un

dρ(x)

∫
Ω̃t∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

−
(
−
∫
Ωt∩Un

dρ(x)

∫
Ω̃t\Ũn

dρ̃(y) +

∫
Ωt\Un

dρ(x)

∫
Ω̃t∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

+

(
−
∫
Ωt∩Un

dρ(x)

∫
Ω̃t\Ũn

dρ̃(y) +

∫
Ωt\Un

dρ(x)

∫
Ω̃t∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

= −
(∫

Ωt∩Un

dρ(x)

∫
M̃\Ũn

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

+

(∫
Un

dρ(x)

∫
Ω̃t\Ũn

dρ̃(y)−
∫
M\Un

dρ(x)

∫
Ω̃t∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

= −
(∫

Ωt∩Un

dρ(x)

∫
M̃\Ũn

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn

dρ̃(y)

)
∇1,uLκ(x, y),

where we integrated by parts in the last steps so that the last two integrals dropped
out since ∂

∂t
is tangential to ∂U . Deriving by t then yields

d

dt
O1(Ωt, Ω̃t, Un, Ũn)

= −
(∫

Nt∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y)−
∫
Nt\Un

dµ(x)

∫
Ũn

dρ̃(y)

)
∇1,uLκ(x, y)

for the boundary Nt = ∂Ωt. Since the integrals over y do not depend on Ω̃t, we
can with partial integration add a zero to obtain

d

dt
O1(Ωt, Ω̃t, Un, Ũn)

= −
(∫

Nt∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y)−
∫
Nt\Un

dµ(x)

∫
Ũn

dρ̃(y)

)
(∇1,u +∇2,ũ)Lκ(x, y).
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Now the integrability condition (12) yields that both these surface layer integrals
vanish in the limit n→ ∞: For the first integral we have

0 ≤
∣∣∣∣− ∫

Nt∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y) (∇1,u +∇2,ũ)Lκ(x, y)

∣∣∣∣
≤
∫
Nt∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y) |(∇1,u +∇2,ũ)Lκ(x, y)|

≤
∫
Nt

dµ(x)

∫
M̃\Ũn

dρ̃(y) |(∇1,u +∇2,ũ)Lκ(x, y)| .

As the last term converges to 0 in the limit n→ ∞ by the integrability condition
(12) we obtain

−
∫
Nt∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y) (∇1,u +∇2,ũ)Lκ(x, y)
n→∞−−−→ 0.

Analogously we can consider the second term:

0 ≤
∣∣∣∣− ∫

Nt\Un

dµ(x)

∫
Ũn

dρ̃(y) (∇1,u +∇2,ũ)Lκ(x, y)

∣∣∣∣
≤
∫
Nt\Un

dµ(x)

∫
Ũn

dρ̃(y) |(∇1,u +∇2,ũ)Lκ(x, y)|

≤
∫
Nt\Un

dµ(x)

∫
M̃

dρ̃(y) |(∇1,u +∇2,ũ)Lκ(x, y)| .

Now by the integrability condition (12) the last term converges to 0 in the limit
n→ ∞ and we have

−
∫
Nt\Un

dµ(x)

∫
Ũn

dρ̃(y) (∇1,u +∇2,ũ)Lκ(x, y)
n→∞−−−→ 0.

Hence the mass of causal fermion systems does not depend on the considered
time.

4.3.6 Independence of the Identification of Hilbert Spaces

As also discussed in [PMT, Section 4.3], for the mass we needed to identify the
Hilbert spaces H and H̃ of the causal fermion systems from Convention 4.8 by
a unitary transformation V : H → H̃. Here we have freedom in choosing this
transformation, since it is only unique up to transformations of the form V → VW
for some unitary transformation W on H. However, in this section we will show
that this freedom does not influence the mass:
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Proposition 4.15. In the situation of Convention 4.8 let W be a unitary trans-
formation on H and define the measure Wρ̃ by:

∀Ω ⊂ F (Wρ̃)(Ω) := ρ̃(W−1ΩW ). (13)

Then if ρ̃ and Wρ̃ are asymptotically flat (cf. Definition 4.9), the masses M(ρ̃)
and M(Wρ̃) coincide.

Proof. We follow and adapt the proof of [PMT, Theorem 4.7]: If a measure ρ
is a minimizer of the causal action, so is Wρ (defined as in equation (13)) due
to the invariance of operator eigenvalues under unitary transformations. Now let
(Ws)s∈[0,τmax] be a smooth and strongly continuous family of unitary transforma-
tions and let

A := −i d
ds
Ws|s=0

be its generator. Then the so-called commutator jet given by

v := (0, v) with v(x) := i[A, x]

(with [., .] denoting the commutator) satisfies after deriving by s due to the unitary
invariance of the Lagrangian the equation

(D1,v +D2,v)Lκ(x, y) = 0. (14)

In particular, we can follow (using the notation from the decomposition from
Definition 3.2)∫

R
dt′ (D1,v +D2,v)Lκ(x, (t

′, y⃗)) = 0

⇒ −
∫
R
dt′D2,vLκ(x, (t

′, y⃗)) =

∫
R
dt′D1,vLκ(x, (t

′, y⃗)) (15)

as well as (∫
R
dt+

∫
R
dt′
)
D1,vLκ((t, x⃗), (t

′, y⃗))

=

∫
R
dtD1,vLκ((t, x⃗), (t

′, y⃗)) +

∫
R
dt′D1,vLκ((t, x⃗), (t

′, y⃗))

=

∫
R
dt′D2,vLκ((t, x⃗), (t

′, y⃗)) +

∫
R
dt′D1,vLκ((t, x⃗), (t

′, y⃗))

=

∫
R
dt′(D1,v +D2,v)Lκ((t, x⃗), (t

′, y⃗)) = 0 (16)

25



using the symmetry of the Lagrangian in the second step and equation (14) in the
last step. This implies that the linearized mass (cf. equation (8)) vanishes, if the
jet w in equation (8) is such a commutator jet: Let v be a commutator jet as above.
Then using in the second step the symmetry of the Lagrangian as well as equation
(15) and in the last step equation (16) (we abbreviate (x, y) = ((t, x⃗), (t′, y⃗)) for
shorter notation from the second line) yields(∫

N\Un

dµ(x⃗)

∫
Un

dρ(y)−
∫
N∩Un

dµ(x⃗)

∫
M\Un

dρ(y)

)
D2,vLκ(x, y)

=

(∫
N\Un

dµ(x⃗)

∫
N∩Un

dµ(y⃗)

∫
R
dt′ −

∫
N∩Un

dµ(x⃗)

∫
N\Un

dµ(y⃗)

∫
R
dt′
)
D2,vLκ(x, y)

=

∫
N∩Un

dµ(x⃗)

∫
N\Un

dµ(y⃗)

∫
R
dtD1,vLκ(x, y)

+

∫
N∩Un

dµ(x⃗)

∫
N\Un

dµ(y⃗)

∫
R
dt′D1,vLκ(x, y)

=

∫
N∩Un

dµ(x⃗)

∫
N\Un

dµ(y⃗)

(∫
R
dt+

∫
R
dt′
)
D1,vLκ(x, y)

= 0. (17)

This proves the proposition, since: If ρ̃ and Wρ̃ are asymptotically flat, by def-
inition the surface layer integrals for the masses can in the limit be linearized
w.r.t. some jets w1 resp. w2 (cf. equation (8)). By the considerations above
an infinitesimal unitary transformation corresponds to adding a commutator jet,
i.e. w2 = w1 + v for a commutator jet v. However, since the linearized term for
the mass vanishes for commutator jets as shown in equation (17), this additional
commutator jet does not change the value of the mass.

4.4 Positive Mass Theorem
Finally we will prove an analogue to the Positive Mass Theorem from [ADM]: If a
local condition is fulfilled determining the sign of an expression like a mass density,
the mass from Definition 4.10 will be non-negative.
To this end we first will adapt the definitions [PMT, Definition 1.6] as well as [PMT,
Definition 1.7] to our setting, allowing to write down the jet w from Definition 4.9
explicitly.
Definition 4.16 (κ-extendable). We again use the notation from Convention 4.8.
The measure ρ̃ is called κ-extendable if

i) there is a family (ρ̃τ )τ∈(−1,1) of measures of the form

ρ̃τ = (F̃τ )∗ρ̃, (18)
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(similar to in Definition 4.9) which all satisfy the Euler-Lagrange equations
(1) with a parameter κ(τ) and

F̃0 = idM̃ as well as κ′(0) 6= 0.

ii) For every x ∈ M̃ , the curve F̃τ (x) is differentiable at τ = 0, giving rise to a
vector field

ṽ :=
d

dτ
F̃τ |τ=0 ∈ Γ(M̃, T F̃). (19)

For convenience choose the parametrization, s.t.
d

dτ
log κ(τ)|τ=0 = −1.

Definition 4.17 (κ-scalable). Let ρ̃ be asymptotically flat. Then ρ̃ is said to be
κ-scalable if for a suitable choice of the mapping F̃τ in Definition 4.16 the vector
field component w of w from Definition 4.9 coincides with the vector field ṽ from
equation (19) up to a constant g ∈ R, the so-called gravitational coupling constant,
i.e. if we have

w = gṽ. (20)

For the positive mass theorem we will consider that ρ̃ is κ-scalable, hence we
can always write the jet w from equation (8) depending on ṽ from equation (20).
For the proof of the positive mass theorem we will need a jet v with this vector field
component ṽ (we then have w = gv for the gravitational coupling constant g) to
fulfill a certain equation, the so-called hypersurface equation. This can be achieved
by fixing the last freedom (cf. Corollary 3.9: the jet v can be modified by adding
inner solutions), demanding that the jet v from Definition 4.10 (which is a solution
of the linearized field equations by [PMT, Section 2.1.2], since we demanded that
the measures of the form (18) satisfy the Euler-Lagrange equations) is shifted by
an inner solution (as is described in Corollary 3.9), s.t. it fulfills the so-called
hypersurface equation:

Definition 4.18 (Hypersurface Equation). Let N ⊂ M be a hypersurface. Then
we locally choose an embedding I × N → M for some (time) interval I ⊂ R,
denoting points by x = (t, x⃗) and having a measure decomposition dρ = dtdµt. We
define for all x⃗ ∈ N :

sN (x⃗) :=

(∫ ∞

0

∫ 0

−∞
+

∫ 0

−∞

∫ ∞

0

)
dtdt′

∫
Nt′

dµt′ (y⃗)Lκ((t, x⃗), (t
′, y⃗)). (21)

Then a jet v ∈ J∞ is said to fulfill the hypersurface equation if

〈u,∆Nv〉 = 0 ∀u ∈ Jtest, (22)
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i.e. if for all test jets u ∈ Jtest and for all x⃗ ∈ N we have

0 = 〈u,∆Nv〉 (x⃗)

= ∇u

(∫ ∞

0

∫ 0

−∞
+

∫ 0

−∞

∫ ∞

0

)
dtdt′

∫
Nt′

dµt′ (y⃗) (∇1,v +∇2,v)Lκ((t, x⃗), (t
′, y⃗))

−∇u∇vsN (x⃗) .

We also have to implement the area constraint:

Proposition 4.19. To fulfill the area constraint from equation (9) in Definition
4.10, v needs to satisfy the equation∫

Ωt∩Un

dρ(x)

∫
M\(Ωt∪Un)

dρ(y) (∇1,v +∇2,v)Lκ(x, y) = 0. (23)

Proof. We start from the area constraint

A (Ωt, Un) = Ã
(
Ω̃t, Ũn

)
.

Taylor up to first order gives

Ã
(
Ω̃t, Ũn

)
=

∫
Ω̃t∩Ũn

dρ̃(x)

∫
M̃\(Ω̃t∪Ũn)

dρ̃(y)Lκ(x, y)

=

∫
Ωt∩Un

dρ(x)

∫
M\(Ωt∪Un)

dρ(y)Lκ(x, y)

+

∫
Ωt∩Un

dρ(x)

∫
M\(Ωt∪Un)

dρ(y)∇1,vLκ(x, y)

+

∫
Ωt∩Un

dρ(x)

∫
M\(Ωt∪Un)

dρ(y)∇2,vLκ(x, y).

Then the area constraint

A (Ωt, Un) = Ã
(
Ω̃t, Ũn

)
⇐⇒ Ã

(
Ω̃t, Ũn

)
− A (Ωt, Un) = 0

means that v has to satisfy∫
Ωt∩Un

dρ(x)

∫
M\(Ωt∪Un)

dρ(y) (∇1,v +∇2,v)Lκ(x, y) = 0,

i.e. that v does not change the surface area.

Next we introduce the local condition playing the same role as the positive
mass density for the positivity of the ADM mass:
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Definition 4.20 (Local Mass Condition). In the situation of Definition 4.18 as-
sume that the spatial limit

sN,∞ := lim
N∋x⃗→∞

sN(x⃗)

exists. In this case we say a jet v ∈ J∞ fulfills the local energy condition if

∇v (sN (x⃗)− sN,∞) ≥ 0. (24)

In order to formulate a positive mass theorem we now want to linearize the
generalized (i.e. for general measure ρ instead of measure µ) surface layer integrals
from the mass definition in κ. For this by adding a zero we will obtain integrals
over the whole past (resp. future):

− d

dκ

(∫
Un\Ωt

dρ(x)

∫
Ω̃t̃′\Ũn

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn\Ω̃t̃′

dρ̃(y)

−
∫
Ωt∩Un

dρ(x)

∫
M̃\(Ω̃t̃′∪Ũn)

dρ̃(y)−
∫
M\(Ωt∪Un)

dρ(x)

∫
Ω̃t̃′∩Ũn

dρ̃(y)

)
Lκ(x, y)|κ=0

= − d

dκ

(∫
Un\Ωt

dρ(x)

∫
Ω̃t̃′\Ũn

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn\Ω̃t̃′

dρ̃(y)

−
∫
Ωt∩Un

dρ(x)

∫
M̃\(Ω̃t̃′∪Ũn)

dρ̃(y)−
∫
M\(Ωt∪Un)

dρ(x)

∫
Ω̃t̃′∩Ũn

dρ̃(y)

−
∫
Un\Ωt

dρ(x)

∫
Ω̃t̃′∩Ũn

dρ̃(y)−
∫
Ωt∩Un

dρ(x)

∫
Ũn\Ω̃t̃′

dρ̃(y)

−
∫
Ωt∩Un

dρ(x)

∫
Ũn\Ω̃t̃′

dρ̃(y)−
∫
Un\Ωt

dρ(x)

∫
Ω̃t̃′∩Ũn

dρ̃(y)

)
Lκ(x, y)|κ=0

= − d

dκ

(∫
Un\Ωt

dρ(x)

∫
Ω̃t̃′

dρ̃(y) +

∫
Ωt∩Un

dρ(x)

∫
M̃\Ω̃t̃′

dρ̃(y)

+

(∫
Ωt

dρ(x)

∫
Ũn\Ω̃t̃′

dρ̃(y) +

∫
M\Ωt

dρ(x)

∫
Ω̃t̃′∩Ũn

dρ̃(y)

))
Lκ(x, y)|κ=0 .
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Now we can derive by κ and use the symmetry of Lκ in the second step to obtain:

−
∫ ∞

0

dt

∫ 0

−∞
dt′
∫
Nt∩Un

dµt (x⃗)

∫
Nt′

dµt′ (y⃗)∇2,vLκ((t, x⃗), (t
′, y⃗))

−
∫ 0

−∞
dt

∫ ∞

0

dt′
∫
Nt∩Un

dµt (x⃗)

∫
Nt′

dµt′ (y⃗)∇2,vLκ((t, x⃗), (t
′, y⃗))

+

(∫ 0

−∞
dt

∫ ∞

0

dt′
∫
Nt

dµt (x⃗)

∫
Nt′∩Un

dµt′ (y⃗)∇2,vLκ((t, x⃗), (t
′, y⃗))

−
∫ ∞

0

dt

∫ 0

−∞
dt′
∫
Nt

dµt (x⃗)

∫
Nt′∩Un

dµt′ (y⃗)∇2,vLκ((t, x⃗), (t
′, y⃗))

)

=

(∫ ∞

0

∫ 0

−∞
+

∫ 0

−∞

∫ ∞

0

)
dtdt′×∫

Nt∩Un

dµt (x⃗)

∫
Nt′

dµt′ (y⃗) (∇1,v −∇2,v)Lκ((t, x⃗), (t
′, y⃗)), (25)

where the jet v comes from equation (19).
With these preparations we can now formulate our positive mass theorem for the
mass of causal fermion systems:

Theorem 4.21 (Positive Mass Theorem). If ρ̃ is asymptotically flat and κ-scalable,
the gravitational coupling constant g ∈ R from Definition 4.17 is positive and the
shifted v to the vector field ṽ from equation (19) fulfills the hypersurface equation
(22) and constraint (23) as well as the local mass condition (24), the resulting
mass is non-negative.

Proof. By linearizing in κ we computed the surface layer integrals for the mass
up to the (by assumption) positive gravitational coupling constant g ∈ R until
equation (25). From there we can further calculate for the integrand

(∇1,v −∇2,v)Lκ((t, x⃗), (t
′, y⃗)) =

2∇1,vLκ((t, x⃗), (t
′, y⃗))− (∇1,v +∇2,v)Lκ((t, x⃗), (t

′, y⃗)).

Using this and plugging in the hypersurface equation (22) as well as the definition
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(21) of sN into equation (25) yields(∫ ∞

0

∫ 0

−∞
+

∫ 0

−∞

∫ ∞

0

)
dtdt′×∫

Nt∩Un

dµt (x⃗)

∫
Nt′

dµt′ (y⃗) (∇1,v −∇2,v)Lκ((t, x⃗), (t
′, y⃗))

= 2∇v

∫
N∩Un

dµN (x⃗) sN (x⃗)−∇v

∫
N∩Un

dµN (x⃗) sN (x⃗)

= ∇v

∫
N∩Un

dµN (x⃗) sN (x⃗) .

Plugging in the local mass condition (24)

∇v (sN (x⃗)− sN,∞) ≥ 0

proofs the claim.

5 Energy of Causal Fermion Systems
A time-dependent causal fermion system (H̃, F̃ , ρ̃) (with corresponding non-static
spacetime M̃ = supp ρ̃) does not only have a mass, but a momentum as well. An
example would be boosting the stationary black hole from Schwarzschild space-
time, then moving into a fixed direction with fixed velocity. (This example will
be considered in detail in Section 6.) This momentum shall be given by a three-
dimensional vector, of which each component describes the momentum along one
of the three spatial directions. Together with the (one-dimensional) mass the mo-
mentum will build a four-dimensional energy vector to be defined later in this
section.

5.1 Momentum of Causal Fermion Systems
The idea of how to define the momentum is - instead of considering the measure
µ in Minkowski spacetime as the contraction of ρ with the vector field ∂

∂t
for the

time derivative - to contract ρ with the spatial derivatives ∂
∂x

(resp. ∂
∂y
, ∂
∂z

for the
corresponding component). (For the definition of contraction see Situation 3.1.)
These integrals similar to the one from Section 4.3.3 (but with the corresponding
inner solutions for the spatial derivatives) then will not give a contribution from the
integration over the constant-{t = 0}-time-hypersurface N , but now a contribution
from the {x = 0}-domain (resp. {y = 0}, {z = 0}) with a fixed spatial coordinate.
For this section we will recall the notation from Section 4:
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Convention 5.1. While defining the mass, momentum and energy of time-dependent
causal fermion systems we will often refer to spacetimes M and M̃ . This will al-
ways mean we consider two causal fermion systems (H,F , ρ) resp. (H̃, F̃ , ρ̃) with
the spacetimes M = supp ρ resp. M̃ = supp ρ̃ (and decompositions as in Defi-
nition 3.2), which are minimizers of the same causal action, i.e. with the same
constants s and κ. Moreover, M will from now on always denote the Minkowski
spacetime (cf. 2.10) with decomposition M = R × N , dρ = dtdµ from Section
4.3 and M̃ will be asymptotically flat. Additionally, Ωt := (−∞, t]×N ⊂ M will
always denote the past for time t ∈ R in Minkowski, whereas Ω̃t′ ⊂ M̃ will denote
the past of time t′ ∈ R in the spacetime M̃ .

Now we can define the notion of momentum for causal fermion systems:

Definition 5.2 (Momentum). In the situation of Convention 5.1 define for every
i ∈ {1, 2, 3} the momentum of the causal fermion system w.r.t. the spatial direction
xi (in Minkowski spacetime) by

Pi(ρ̃) := lim
Un↗M,Ũn↗M̃ with A(Un)=Ã(Ω̃t′ ,Ũn)

Ii(ρ̃,Ωt, Ω̃t′ , Un, Ũn)

with

Ii(ρ̃,Ωt, Ω̃t′ , Un, Ũn) :=

−

(∫
Ωt∩Un

dµ(x)

∫
M̃\(Ω̃t′∪Ũn)

dρ̃(y)−
∫
Ωt\Un

dµ(x)

∫
Ũn\Ω̃t′

dρ̃(y)

)
∇1,uLκ(x, y)

+

(∫
Un\Ωt

dµ(x)

∫
Ω̃t′\Ũn

dρ̃(y)−
∫
M\(Ωt∪Un)

dµ(x)

∫
Ω̃t′∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y),

where u denotes the inner solution corresponding to the spatial derivative ∂
∂xi

.

The well-definedness of the momentum can be proven analogously to the well-
definedness of the mass, we just need to rotate the setting for the mass (use for
example the decomposition as in Definition 3.3 instead of the decomposition from
Definition 3.2). This, however, does not only mean we consider for a fixed spatial
direction xi (i ∈ {1, 2, 3}) the constant-xi-hypersurface instead of the constant-
time-hypersurface N and an inner solution corresponding to the spatial derivative
∂
∂xi

instead of the inner solution for the time derivative but also the exhaustions
of the spacetimes are considered s.t. this inner solution is tangential.

Lemma 5.3. The momentum from Definition 5.2 is independent of the chosen
exhaustions Un ↗M resp. Ũn ↗ M̃ .
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Proof. Using the asymptotic flatness of the spacetime M̃ the limits U ↗M resp.
Ũn ↗ M̃ exist and are independent of the chosen exhaustions analogous to the
proof for the mass.

Lemma 5.4. The momentum from Definition 5.2 is independent of the chosen
time t′ ∈ R.

Proof. The proof is analogous to the proof for the time independence of the mass.
However, instead of integrating over time hypersurfaces we integrate over spatial
hypersurfaces w.r.t. one spatial component. The integrability over these hyper-
surfaces is again ensured by the asymptotic flatness.

Lemma 5.5. The momentum from Definition 5.2 is independent of the identifi-
cation of Hilbert spaces (cf. Section 4.3.6).

Proof. The proof is analogous to the proof considering the mass in Section 4.3.6
but we again consider the ”rotated setting” with the decomposition as in Definition
3.3 instead of the decomposition from Definition 3.2.

5.2 Energy of Causal Fermion Systems
With the notions of mass and momentum already defined we can now define the
energy of causal fermion systems. The energy will be an energy-momentum vector
as will be specified in Remark 5.7.

Definition 5.6 (Energy). We again use the notation from Convention 5.1. Ad-
ditionally, let u be the inner solution corresponding to a vector field in Minkowski
space. Then define the energy of M̃ by

E(ρ̃, u) := lim
Un↗M,Ũn↗M̃ with A(Un)=Ã(Ũn,Ω̃t′)

E(ρ̃, Ω̃t′ , u, Un, Ũn)

with

E(ρ̃, Ω̃t′ , u, Un, Ũn) :=

−

(∫
Ωt∩Un

dρ(x)

∫
M̃\(Ω̃t′∪Ũn)

dρ̃(y)−
∫
Ωt\Un

dρ(x)

∫
Ũn\Ω̃t′

dρ̃(y)

)
∇1,uLκ(x, y)

+

(∫
Un\Ωt

dρ(x)

∫
Ω̃t′\Ũn

dρ̃(y)−
∫
M\(Ωt∪Un)

dρ(x)

∫
Ω̃t′∩Ũn

dρ̃(y)

)
∇1,uLκ(x, y),

giving a four-dimensional energy vector.
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Remark 5.7. By definition the last three components of the energy vector coincide
with the definition of the momentum from Definition 5.2. Additionally the first
component of the energy coincides with the mass (in the form from the alternative
definition in Lemma 4.12).

Remark 5.8. By the linearity of the integral and the jet derivatives the energy
vector E from Definition 5.6 is linear in u. Hence the energy vectors E(u) to inner
solutions u form a four-dimensional vector space over R.

5.3 Energy-Momentum as a Four-Vector
In this section we will prove the following statement:

Proposition 5.9. The energy from Definition 5.6 does not depend on the observer,
more concretely this energy-momentum vector is a four-vector.

Proof. Consider a spacetime satisfying Situation 3.1 and a Lorentz boost with
fixed velocity v ∈ R along a direction xj for some j ∈ {1, 2, 3}. (The case in which
the direction is not along an axis then follows from the linearity of the energy in
its jet component (cf. Remark 5.8).) Then the boost is of the form

t̃ = γ (t− vxj) , and x̃j = γ (xj − vt)

with
γ :=

1√
1− v2

(26)

as well as x̃i = xi for i 6= j. In order to calculate the energy of the boosted
spacetime we need the partial derivatives

∂

∂t̃
= γ

∂

∂t
− vγ

∂

∂x j

∂

∂x̃j
= −vγ ∂

∂t
+ γ

∂

∂xj
∂

∂x̃i
=

∂

∂xi
for i 6= j.

From now on we will w.l.o.g. consider a boost in x3-direction (the calculation for
the other directions is analogous) and denote the axes by t, x, y and z (for shorter
notation and better readability). Since the components of the energy, i.e. the
mass M and the momentum Px := P1,Py := P2 resp. Pz := P3 in x-, y- resp.
z-direction correspond to the partial derivatives ∂

∂t
, ∂
∂x
, ∂
∂y

resp. ∂
∂z

as vector fields
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for the inner solution u in Definition 5.6, by linearity we have for the boosted
spacetime the energy-momentum vector

M̃

P̃x

P̃y

P̃z

 =


γM− vγPz

Px

Py

−vγM+ γPz

 .

To prove that the energy-momentum vector from Definition 5.6 is a four-vector,
we need to show that this energy-momentum vector of the boosted system has the
same ”length” w.r.t. the Minkowski norm (with the signature (−,+,+,+)) as the
vector for the initial system:∥∥∥∥(M̃, P̃x, P̃y, P̃z

)T∥∥∥∥ = −M̃2 + P̃2
x + P̃2

y + P̃2
z

= − (γM− vγPz)
2 +P2

x +P2
y + (−vγM+ γPz)

2

= −γ2M2 + 2vγ2MPz − v2γ2P2
z +P2

x +P2
y

+ v2γ2M2 − 2vγ2MPz + γ2P2
z

= −
(
1− v2

)
γ2M2 +

(
1− v2

)
γ2P2

z +P2
x +P2

y,

where ”.T” denotes the transposed vector.
Plugging in γ (cf. equation (26)) we obtain∥∥∥∥(M̃, P̃x, P̃y, P̃z

)T∥∥∥∥ = −M2 +P2
x +P2

y +P2
z =

∥∥∥(M,Px,Py,Pz)
T
∥∥∥ .

6 Example: Energy of a Boosted Schwarzschild
Spacetime

In this section we compute the energy in the example of a boosted Schwarzschild
spacetime.

6.1 Coordinates of Boosted Schwarzschild Spacetime
We consider the Schwarzschild spacetime for the causal fermion system with the
Dirac sea H = H− (cf. construction in [PMT, Section 6.1]). Taking the Black
Hole from Schwarzschild spacetime with mass MS, but now additionally moving
in a fixed direction with a fixed velocity v ∈ R (normalized w.r.t. the speed of
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light c = 1), we obtain a (non-rotating, uncharged) boosted Schwarzschild Black
Hole. Here we will always consider a Black Hole moving in z-direction (w.r.t. the
Cartesian coordinate directions in Minkowski space). In this case, the Cartesian
coordinates from Minkowski space can be transformed as follows:

tc,new
xc,new
yc,new
zc,new

 =


γ (t− vx)

x
y

γ (z − vt)


with

γ =
1√

1− v2
.

Hence transforming to spherical coordinates the boost can be written as

Ψ :


t
r
θ
ϕ

 7→


γ(t− vr cos(θ))√

r2 sin2(θ) + γ2(r cos(θ)− vt)2

arccos

(
γ(r cos(θ)−vt)√

r2 sin2(θ)+γ2(r cos(θ)−vt)2

)
ϕ

 . (27)

(Here θ always denotes the polar angle whereas ϕ denotes the azimuthal angle.)
We now can express the Schwarzschild line element (with MS denoting the mass
of the black hole)

ds2Schw = −
(
1− 2MS

r

)
dt2 +

(
1− 2MS

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2

transformed with these boosted spherical coordinates, giving the line element

ds2bS =−
(
1− 2MS

r

)
dt2 − 8MSv cos θ

r
dtdr + 4MSv sin θdtdθ

+

(
1− 2MS

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2

for large r for the boosted Schwarzschild metric. In matrix form this can be written
as the metric

GbS =


−
(
1− 2MS

r

)
−8MSv cos θ

r
4MSv sin θ 0

−8MSv cos θ
r

(
1− 2MS

r

)−1
0 0

4MSv sin θ 0 r2 0
0 0 0 r2 sin2 θ

 . (28)
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In this section we will always consider ρ̃ given by dρ̃ =
√
| detGbS|d4x. For the

calculation of the area (in order to compute the mass thereafter) we will also need
the value of the square root of the determinant of this matrix GbS, which is (using
Taylor) approximately given by√

| detGbS| = r2 sin θ. (29)

As seen in Section 4, the deviation of the boosted Schwarzschild metric from the
Minkowski metric can be taken into account in two possible (equivalent) ways:

• by integrating the second variable of Lκ in the boosted Schwarzschild space-
time

• by linearizing, integrating the second variable in Minkowski spacetime but
integrating ∇2,wLκ for a jet w, describing the change of the metric. (cf.
Definition 4.9)

The latter is what we will do in this thesis as we can then calculate the surface
layer integrals. Since we want to consider closed balls (w.r.t. the Minkowski norm)
as exhaustion of the Minkowski spacetime (as well as balls for the exhaustion of
the boosted Schwarzschild spacetime), for every fixed radius R ∈ R we want to
therefore choose coordinates in Minkowski space close to the boundary SR = ∂BR

of BR, s.t. the metric after the coordinate change coincides with the boosted
Schwarzschild metric (given by GbS) near to SR: (Then the infinitesimal difference
between this coordinate system and the usual Minkowski coordinate system will
yield the jet w.)

Lemma 6.1. Choosing in Minkowski spacetime the coordinates
t̃
r̃

θ̃

ϕ̃

 =


t+ tMS

R
− 8MSv cos θ

R
r + 4MSv cos θ

r − (r −R)MS

R

θ
ϕ

 =: Φ




t
r
θ
ϕ




the metric locally (close to the boundary of the closed ball BR of radius R) coincides
with the boosted Schwarzschild metric GbS.

Proof. Close to the boundary of BR, i.e. around r = R we can calculate:
t
r
θ
ϕ

 =


t̃− t̃MS

R
+ 8MSv cos θ̃

R
r̃ − 4MSv cos θ̃

r̃ + (r̃ −R)MS

R

θ̃

ϕ̃
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giving the Jacobian

J :=
∂(t, r, θ, ϕ)

∂(t̃, r̃, θ̃, ϕ̃)

∣∣∣∣∣
r=R

=


1− MS

R
8MSv cos θ̃

R
−4MSv sin θ̃ 0

0 1 + MS

R
0 0

0 0 1 0
0 0 0 1


and linearly in MS we have

J ·GMink · JT = GbS

with the diagonal matrix GMink describing the Minkowski metric with signature
(−,+,+,+) as well as GbS from (28) describing the boosted Schwarzschild metric.
(Here ” · ” resp. ”.T” denote the matrix multiplication resp. the transposed
matrix.)

From this we can calculate the jet derivative for the jet w describing the devia-
tion of the boosted Schwarzschild metric from Minkowski: An infinitesimal change
is given by (the subscript 2 again refers to the second component of the Lagrangian
and for shorter notation we use xM := (t, r, θ, ϕ), yM := (t′, r′, θ′, ϕ′) ∈M)

D2,wL(xM, yM) = (30)


t− tMS

R
+ 8MSv cos θ

R
r − 4MSv cos θ

r + (r −R)MS

R

θ
ϕ

−


t
r
θ
ϕ


 ◦


∂
∂t
∂
∂r
∂
∂θ
∂
∂ϕ

Lκ(xM, yM) =

((
−t′MS

R
+

8MSv cos(θ
′)

R
r′ − 4MSv cos(θ

′)

)
∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
Lκ(xM, yM)

(31)

as in fact coincides with the linear deviation in MS, i.e.

D2,wL(xM, yM) =MS
∂

∂MS

L(xM, yM)|MS=0

for all xM, yM ∈M .

6.2 Area of Balls in Boosted Schwarzschild Spacetime
Since we will use balls for the exhaustion of the boosted Schwarzschild space-
time when calculating its mass, we need to calculate the area of balls in boosted
Schwarzschild spacetime. Then we can compare this result to the area of balls
exhausting Minkowski spacetime and adjust the radius of the considered balls s.t.
the area constraint is satisfied. However, it turns out that changing the radius of
the balls in boosted Schwarzschild spacetime is not necessary:
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Lemma 6.2. The area of a ball with a given radius in the boosted Schwarzschild
spacetime from Section 6.1 coincides with the area of a ball with the same radius
in Minkowski spacetime.
Convention 6.3. Quantities with tilde will always refer to boosted Schwarzschild
spacetime.
Proof. Consider a decomposition of the boosted Schwarzschild spacetime as in
Definition 3.2 and let Ω̃ be the past of time 0 ∈ R. Additionally, let Ũ be a closed
ball of radius R in the boosted Schwarzschild spacetime with transversally inter-
secting boundaries ∂Ω̃ and ∂Ũ . Then by Definition 4.6 the area can be calculated
as follows (to abbreviate the notation, denote in the following x̃bS = (0, r̃, θ̃, ϕ̃)

resp. ỹbS = (t̃′, r̃′, θ̃′, ϕ̃′) ∈ M̃ and xM = (0, r, θ, ϕ) resp. yM = (t′, r′, θ′, ϕ′) ∈M):∫
Ω̃∩Ũ

dρ̃(x)

∫
M̃\(Ω̃∪Ũ)

dρ̃(y)Lκ(x̃bS, ỹbS)

=

∫ 0

−∞
dt̃

∫ R

0

dr̃

∫ π

0

dθ̃

∫ 2π

0

dϕ̃

∫ ∞

0

dt̃′
∫ ∞

R

dr̃′
∫ π

0

dθ̃′
∫ 2π

0

dϕ̃′√
| detGbS|Lκ(x̃bS, ỹbS).

Calculating the limits and setting

Ψ1(R) =

√
R2 sin2(θ) + γ2 (R cos(θ)− vt)2 =: R̃ (32)

(where Ψ1 is the second component of Ψ from (27)) as well as using (29) this
transforms to∫ −γvr cos(θ)

−∞
dt

∫ R̃

γvt

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

−γvr cos(θ)

dt′
∫ ∞

R̃

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′×

r2 sin(θ)r′
2
sin(θ′)Lκ(xM, yM).

This coincides with the area of a ball in Minkowski of radius R̃ giving the area

Ã
(
Ω̃, Ũn

)
= 4πR̃2 · C

with the real constant

C :=

∫ 0

−∞
dt

∫ ∞

0

dt′
∫ 0

−∞
dx

∫ ∞

0

dx′
∫ ∞

−∞
dy′
∫ ∞

−∞
dz′L ((t, x, 0, 0) , (t′, x′, y′, z′)) .

Plugging in the definition of R̃ from equation (32) and doing a Taylor expansion
in v = 0 yields approximately

Ã
(
Ω̃, Ũn

)
= 4πR2 · C

which coincides with the area of a ball of radius R in Minkowski spacetime.
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Hence to take the area condition into account we do not have to change the
radius of the balls in the exhaustion of boosted Schwarzschild, i.e. we can now
calculate the mass of the boosted Schwarzschild spacetime with the same radius for
the balls in the exhaustion of the boosted Schwarzschild spacetime as we consider
for the balls in the exhaustion of Minkowski spacetime.

6.3 Mass of Boosted Schwarzschild Spacetime
In this section we will compute the mass for the boosted Schwarzschild spacetime.
As one would expect, moving the Schwarzschild black hole in a fixed direction will
not influence the mass of this black hole:

Proposition 6.4. The mass of the boosted Schwarzschild spacetime coincides with
the mass of the (unboosted) Schwarzschild spacetime.

Proof. Since the mass is time-independent, let N be the time-{t = 0}-hypersurface
of Minkowski spacetime. Abbreviating the notation using x̃bS = (0, r̃, θ̃, ϕ̃) resp.
ỹbS = (t̃′, r̃′, θ̃′, ϕ̃′) ∈ M̃ and xM = (0, r, θ, ϕ) resp. yM = (t′, r′, θ′, ϕ′) ∈ M the
mass of the boosted Schwarzschild spacetime can be computed from the mass
definition in Definition 4.10, taking the exhaustions (Un)n∈N = (BR)R∈N ⊂ M

resp. (Ũn)n∈N = (B̃R)R∈N ⊂ M̃ (closed balls with the same radius) of Minkowski
resp. boosted Schwarzschild spacetime and the jet w from (31) describing the
gravitation:

O(ρ̃, Un, Ũn) = −
(∫

N∩Un

dµ(x)

∫
M̃\Ũn

dρ̃(y)−
∫
N\Un

dµ(x)

∫
Ũn

dρ̃(y)

)
Lκ(xM, ỹbS)

= −
(∫

N∩Un

dµ(x)

∫
M\Un

dρ(y)−
∫
N\Un

dµ(x)

∫
Un

dρ(y)

)
∇2,wLκ(xM, yM)

= −
(∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

−∞
dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

−
∫ ∞

R

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

−∞
dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)
×((

−t′MS

R
+

8MSv cos(θ
′)

R
r′ − 4MSv cos(θ

′)

)
∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
×

r2 sin(θ)r′
2
sin(θ′)Lκ(xM, yM)
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= −
(∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

−∞
dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

−
∫ ∞

R

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

−∞
dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)
r2 sin(θ)r′

2
sin(θ′)×(

−t′MS

R

∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
Lκ(xM, yM)

−
(∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

−∞
dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

−
∫ ∞

R

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

−∞
dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)
r2 sin(θ)r′

2
sin(θ′)×

cos(θ′)

(
8MSv

R
r′ − 4MSv

)
∂

∂t′
Lκ(xM, yM)

R→∞−−−→ MS

with MS denoting the mass of Schwarzschild spacetime from [PMT, Equation
(6.23)] since the second term vanishes by the symmetry in θ and the first one
coincides with the term for the mass in Schwarzschild spacetime calculated in
[PMT] to obtain [PMT, Equation (6.23)].

6.4 Momentum of Boosted Schwarzschild Spacetime
In order to determine the energy of the boosted Schwarzschild spacetime it remains
to compute the momentum in all spatial directions. With the Schwarzschild black
hole moving in z-direction it is expected that we have momentum along the z-
direction, but the momentum vanishes in the x- resp. y-direction.

6.4.1 Momentum of Boosted Schwarzschild Spacetime w.r.t. the z-
direction

We can now calculate the momentum along each direction. (In the computations
we will sometimes use symmetry arguments. These can in some cases seem a bit
different for surface layer integrals: One has to keep in mind that since L(x, y) is of
short range (cf. Section 2.3), there is contribution only for x and y close together
and no contribution (hence no compensating terms) if x and y are far away from
each other.)
Proposition 6.5. The momentum in z-direction of a Schwarzschild black hole
from Section 6.1 moving in z-direction is given by

P3(ρ̃) = 4πMSv lim
R→∞

∫
R
dt

∫
R3

d3y⃗ R‖y⃗‖
(
2‖y⃗‖
R

− 1

)
Lκ ((t, (0, 1, 0)) , (0, y⃗)) ,
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where ‖.‖ denotes the Euclidean norm on R3.

Proof. For the momentum along the z-direction first linearize for the inner solution
u corresponding to ∂

∂z
the surface layer integral of the form from Definition 5.2 with

the notation from Convention 5.1:

I3(ρ̃,Ωt, Ω̃t′ , Un, Ũn) =

−

(∫
Ωt∩Un

dµ(x)

∫
M̃\(Ω̃t′∪Ũn)

dρ̃(y)−
∫
Ωt\Un

dµ(x)

∫
Ũn\Ω̃t′

dρ̃(y)

)
∇1,uLκ(xM, ỹbS)

+

(∫
Un\Ωt

dµ(x)

∫
Ω̃t′\Ũn

dρ̃(y)−
∫
M\(Ωt∪Un)

dµ(x)

∫
Ω̃t′∩Ũn

dρ̃(y)

)
∇1,uLκ(xM, ỹbS)

= −
(∫

Ωt∩Un

dµ(x)

∫
M\(Ωt∪Un)

dρ̃(y)−
∫
Ωt\Un

dµ(x)

∫
Un\Ωt

dρ̃(y)

+

∫
Un\Ωt

dµ(x)

∫
Ωt\Un

dρ(y)−
∫
M\(Ωt∪Un)

dµ(x)

∫
Ωt∩Un

dρ̃(y)

)
∇1,u∇2,wLκ(xM, yM)

with the jet from equation (31) as jet w. Since we can express the Cartesian
derivative in z-direction as spherical derivative via

∂

∂z
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ

and the integrals vanish for the part derived by θ as ∂
∂θ

is tangential to the bound-
ary of Un (for a proof of this, see [Area, Definition 3.4 and Lemma 3.5]). Plugging
in the closed balls BR of radius R for Un (resp. B̃R for Ũn) as well as the past
Ω0 = (−∞, 0]×N for the time hypersurface N for the static Minkowski spacetime
from its decomposition as in Definition 4.3 and carrying out the radial derivative
∂
∂r

yields (we only get boundary terms at r = R, since Lκ decays on length scale
δ ∈ R (cf. Section 2.3)):
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I3(ρ̃,Ω0, Ω̃0, BR, B̃R)

= −
(∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

−
(
−
∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)

−
(∫ ∞

0

dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ 0

−∞
dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

−
(
−
∫ ∞

0

dt

∫ ∞

R

dr

∫ π

0

dθ

∫ 2π

0

dϕ

∫ 0

−∞
dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)))

×((
−t′MS

R
+

8MSv cos(θ
′)

R
r′ − 4MSv cos(θ

′)

)
∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
×

cos(θ)R2 sin(θ)r′
2
sin(θ′)Lκ(xM, yM). (33)

After multiplying out the brackets in the integrand, the integrals over −t′MS

R
∂
∂t′

resp. (r′ −R) MS

R
∂
∂r′

vanish because of the symmetry of cos(θ) with center π
2
, giving

I3(ρ̃,Ω0, Ω̃0, BR, B̃R)

= −
(∫ 0

−∞
dt

∫ ∞

0

dt′
∫ ∞

R

dr′ +

∫ 0

−∞
dt

∫ ∞

0

dt′
∫ R

0

dr′ −
∫ ∞

0

dt

∫ 0

−∞
dt′
∫ ∞

R

dr′

−
∫ ∞

0

dt

∫ 0

−∞
dt′
∫ R

0

dr′
)∫ π

0

dθ

∫ 2π

0

dϕ

∫ π

0

dθ′
∫ 2π

0

dϕ′×

R2 sin(θ)r′
2
sin(θ′) cos(θ)

(
8MSv cos(θ

′)

R
r′ − 4MSv cos(θ

′)

)
∂

∂t′
Lκ(xM, yM).

By integrating by parts in t′ we obtain (we again only have boundary terms at
t′ = 0 as Lκ decays on length scale δ ∈ R (cf. Section 2.3)):

I3(ρ̃,Ω0, Ω̃0, BR, B̃R)

= −
(
−
∫ 0

−∞
dt

∫ ∞

R

dr′ −
∫ 0

−∞
dt

∫ R

0

dr′

−
∫ ∞

0

dt

∫ ∞

R

dr′ −
∫ ∞

0

dt

∫ R

0

dr′
)∫ π

0

dθ

∫ 2π

0

dϕ

∫ π

0

dθ′
∫ 2π

0

dϕ′×

R2 sin(θ)r′
2
sin(θ′) cos(θ)

(
8MSv cos(θ

′)

R
r′ − 4MSv cos(θ

′)

)
Lκ(xM, yM)
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=

∫
R
dt

∫ ∞

0

dr′
∫ π

0

dθ

∫ 2π

0

dϕ

∫ π

0

dθ′
∫ 2π

0

dϕ′×

MSvR
2 sin(θ)r′

2
sin(θ′) cos(θ) cos(θ′)

(
8r′

R
− 4

)
Lκ(xM, yM).

We next want to express the spatial integrals in Cartesian coordinates (x1, x2, x3)
resp. (y1, y2, y3) for the first resp. second component. For the transformation we
have the factors R2 sin(θ) resp. r′2 sin(θ′). The cosines cos(θ) resp. cos(θ′) can in
Cartesian coordinates be written as

cos(θ) =
x3
R

resp. cos(θ′) =
y3
‖y⃗‖

(with the Euclidean norm ‖.‖ on R3) as we have ‖x‖ = R. Hence transformating
to Cartesian coordinates leads to

I3(ρ̃,Ω0, Ω̃0, BR, B̃R)

= 2

∫
R
dt

∫ R

−R

dx3

∫ √
R2−x2

3

−
√

R2−x2
3

dx2

∫
R3

d3y⃗×

MSv
x3y3
R‖y⃗‖

(
8‖y⃗‖
R

− 4

)
Lκ

((
t,
√
R2 − x22 − x23, x2, x3

)
, (0, y⃗)

)
.

(Here the factor 2 comes from the symmetry since we integrate only over the
positive-x1-hemisphere as we only have x1 =

√
R2 − x22 − x23 in the argument of

the Lagrangian instead of x1 ∈ {±
√
R2 − x22 − x23}.) Now we have to take into

account that the Lagrangian is of short range (cf. Section 2.3). Hence we have

|y3 − x3| > δ ⇒ ‖(y1, y2, y3)− (x1, x2, x3)‖ > δ ⇒ Lκ(x, y) = 0.

with |.| resp. ‖.‖ denoting the absolute value on R resp. Euclidean norm on
R3. Hence we only need to integrate in x3 over the (one-dimensional) closed ball
Bδ(y3) = y3 +Bδ(0) ⊂ R. Since for ϵ ∈ Bδ(0) and x3 ∈ [−R,R] we have

[−R,R] 3 x3 = y3 + ϵ ⇐⇒ ϵ ∈ BR(−y3),
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this yields the integral

I3(ρ̃,Ω0, Ω̃0, BR, B̃R)

= 2

∫
R
dt

∫
R3

d3y⃗

∫
BR(−y3)∩Bδ(0)

dϵ

∫ √
R2−(y3+ϵ)2

−
√

R2−(y3+ϵ)2
dx2×

MSv
(y3 + ϵ)y3
R‖y⃗‖

(
8‖y⃗‖
R

− 4

)
Lκ

((
t,
√
R2 − x22 − (y3 + ϵ)2, x2, y3 + ϵ

)
, (0, y⃗)

)
= 8

∫
R
dt

∫
R3

d3y⃗

∫
BR(−y3)∩Bδ(0)

dϵ

∫ √
R2−(y3+ϵ)2

−
√

R2−(y3+ϵ)2
dx2×

MSv
y23

R‖y⃗‖

(
2‖y⃗‖
R

− 1

)
Lκ

((
t,
√
R2 − x22 − (y3 + ϵ)2, x2, y3 + ϵ

)
, (0, y⃗)

)
+ 8

∫
R
dt

∫
R3

d3y⃗

∫
BR(−y3)∩Bδ(0)

dϵ

∫ √
R2−(y3+ϵ)2

−
√

R2−(y3+ϵ)2
dx2×

MSv
ϵy3
R‖y⃗‖

(
2‖y⃗‖
R

− 1

)
Lκ

((
t,
√
R2 − x22 − (y3 + ϵ)2, x2, y3 + ϵ

)
, (0, y⃗)

)
.

Taking x⃗ = (
√
R2 − x22 − x23, x2, x3) = (

√
R2 − x22 − (y3 + ϵ)2, x2, y3 + ϵ) ∈ S2

R

into account (where S2
R ⊂ R3 denotes the two-dimensional sphere of radius R and

because of the positive sign in front of the root we are only considering the points
in the upper half of the sphere) rotational symmetry gives for the leading term

I3(ρ̃,Ω0, Ω̃0, BR, B̃R)

= 2πR2 · 8
∫
R
dt

∫
R3

d3y⃗ MSv
y23

R‖y⃗‖

(
2‖y⃗‖
R

− 1

)
Lκ ((t, (0, 1, 0)) , (0, y⃗)) .

Using the symmetry of the integrand about the diagonal {y3 = y1} and afterwards
the symmetry about the diagonal {y3 = y2} yields

I3(ρ̃,Ω0, Ω̃0, BR, B̃R)

= 16πMSvR
2

∫
R
dt

∫
R3

d3y⃗
‖y⃗‖2

22R‖y⃗‖

(
2‖y⃗‖
R

− 1

)
Lκ ((t, (0, 1, 0)) , (0, y⃗)) .

Hence the momentum is given by the limit

P3(ρ̃) = 4πMSv lim
R→∞

∫
R
dt

∫
R3

d3y⃗ R‖y⃗‖
(
2‖y⃗‖
R

− 1

)
Lκ ((t, (0, 1, 0)) , (0, y⃗)) .
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6.4.2 Momentum of Boosted Schwarzschild Spacetime w.r.t. the x-
resp. y-direction

Next we will compute the momentum w.r.t. the x-direction. However, this is as
one would expect:
Proposition 6.6. For a Schwarzschild black hole moving in z-direction the mo-
mentum along the x-direction vanishes.
Proof. The Cartesian derivative by x can be expressed in spherical coordinates as

∂

∂x
= cos(ϕ) sin(θ)

∂

∂r
− sin(ϕ)

r sin(θ)

∂

∂ϕ
+

cos(ϕ) cos(θ)

r

∂

∂θ
. (34)

As ∂
∂ϕ

and ∂
∂θ

are again tangential to the balls exhausting M , their contributions
vanish (just as for the momentum in z-direction).
With the analogous approach as for the z-direction instead of equation (33) taking
the radial derivative term from (34) into account we obtain (and can from there
calculate):

I1(ρ̃,Ω0, Ω̃0, BR, B̃R)

= −
(∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

+

∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)
×((

−t′MS

R
+

8MSv cos(θ
′)

R
r′ − 4MSv cos(θ

′)

)
∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
×

R2 sin(θ) cos(ϕ) sin(θ)r′
2
sin(θ′)Lκ(xM, yM)

= −
(∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

+

∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)
×

R2 sin(θ) cos(ϕ) sin(θ)r′
2
sin(θ′)

(
−t′MS

R

∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
Lκ(xM, yM)

= −M
R

∫ 0

−∞
dt

∫ ∞

0

dt′
∫ ∞

0

dr′
∫ π

0

dθ

∫ 2π

0

dϕ

∫ π

0

dθ′
∫ 2π

0

dϕ′×

R2 sin(θ) cos(ϕ) sin(θ)r′
2
sin(θ′)

(
−t′MS

R

∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
Lκ(xM, yM).

Integration by parts using

− ∂

∂t′

(
r′

2 · (−t′)
)
= r′

2 and − ∂

∂r′

(
r′

2
(r′ −R)

)
= −

(
3r′

2 − 2r′R
)
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yields

I1(ρ̃,Ω0, Ω̃0, BR, B̃R)

= −MS

R

∫ 0

−∞
dt

∫ ∞

0

dt′
∫ ∞

0

dr′
∫ π

0

dθ

∫ 2π

0

dϕ

∫ π

0

dθ′
∫ 2π

0

dϕ′×

R2 sin(θ) cos(ϕ) sin(θ) sin(θ′)
(
r′

2 − 3r′
2
+ 2r′R

)
Lκ(xM, yM).

Since in spatial Cartesian coordinates (x1, x2, x3) (to the spatial spherical coordi-
nates (r, θ, ϕ), where θ denotes the polar angle whereas ϕ denotes the azimuthal
angle) we have

cos(ϕ) sin(θ) =
x1√
x21 + x22

·
√
x21 + x22√

x21 + x22 + x23
=

x1√
x21 + x22 + x23

=
x1
R

(with
√
x21 + x22 + x23 = R as we integrate over the sphere of radius R in the first

component) as well as the factors R2 sin(θ) resp. r′2 sin(θ′), the integral can also
be written as

I1(ρ̃,Ω0, Ω̃0, BR, B̃R)

= −2 · MS

R

∫ 0

−∞
dt

∫ ∞

0

dt′
∫ R

−R

dx1

∫ √
R2−x2

1

−
√

R2−x2
1

dx2

∫
R3

d3y⃗×

x1
R

· −2‖y⃗‖2 + 2R‖y⃗‖
‖y⃗‖2

Lκ

((
t, x1, x2,

√
R2 − x21 − x22

)
, (0, y⃗)

)
,

(with ‖.‖ denoting the Euclidean norm on R3 and where the factor 2 comes from the
symmetry, considering x3 =

√
R2 − x21 − x22 instead of x3 ∈ {±

√
R2 − x21 − x22})

which vanishes because of the symmetry in x1, therefore the limit Px := P1(ρ̃)
vanishes as well.

Finally we consider the y-direction:

Proposition 6.7. For a Schwarzschild black hole moving in z-direction the mo-
mentum along the y-direction vanishes.

Proof. Transforming the Cartesian derivative by y into spherical coordinates gives

∂

∂y
= sin(ϕ) sin(θ)

∂

∂r
+

cos(ϕ)

r sin(θ)

∂

∂ϕ
+

sin(ϕ) cos(θ)

r

∂

∂θ
. (35)

∂
∂ϕ

and ∂
∂θ

drop out once again (as for the momentum in z- resp. x-direction) as
they are tangential to the boundary of the balls in the exhaustion of Minkowski.
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Proceeding analogously to the computation of the momentum along the z- and
x-direction because of (the radial derivative in) (35) we obtain instead of equation
(33) the term

I2(ρ̃,Ω0, Ω̃0, BR, B̃R)

= −
(∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ ∞

R

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′

+

∫ 0

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ

∫ ∞

0

dt′
∫ R

0

dr′
∫ π

0

dθ′
∫ 2π

0

dϕ′
)
×((

−t′MS

R
+

8MSv cos(θ
′)

R
r′ − 4MSv cos(θ

′)

)
∂

∂t′
+ (r′ −R)

MS

R

∂

∂r′

)
×

R2 sin(θ) · sin(ϕ) sin(θ)r′2 sin(θ′)Lκ(xM, yM).

This vanishes since the integrand is symmetric in ϕ with center π, hence so does
the limit Py := P2(ρ̃).

6.5 Energy-Momentum Vector of Boosted Schwarzschild
Spacetime

Summing up Sections 6.3 and 6.4 the energy of the boosted Schwarzschild space-
time is given by the energy-momentum vector

M̃

P̃x

P̃y

P̃z

 =


MS

0
0

P̃z


for the mass MS of Schwarzschild spacetime from [PMT, Equation (6.23)] and
with P̃z given by

P̃z = Pz = 4πMSv lim
R→∞

∫
R
dt

∫
R3

d3y⃗ R‖y⃗‖
(
2‖y⃗‖
R

− 1

)
Lκ ((t, (0, 1, 0)) , (0, y⃗)) ,

which as expected by Section 5.3 equals γvMS (Taylor expanded in v = 0). (In
[PMT, Equation (6.14)] evaluating the integral

∫
S2 dω gives 4π instead of 1

4π
after

[PMT, Lemma 6.1].)
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7 Outlook: Energy and Momentum of an Asymp-
totically Flat Lorentzian Manifold

In this section we discuss the generalization of the example from Section 6 to the
setting of asymptotically flat globally hyperbolic Lorentzian Manifolds. For an
asymptotically flat Lorentzian manifold (M, g) the metric g has the form

gij(x) = δij + aij(x)

for x ∈ R4 \Br(0) with the decay properties for the remainder

aij = O
(

1

‖x‖

)
, ∂kaij = O

(
1

‖x‖2

)
and ∂k∂laij = O

(
1

‖x‖3

)
(36)

(where ‖.‖ denotes the Euclidean norm on R4). In order to regard this as a space-
time in the theory of causal fermion systems, we need to construct a suitable causal
fermion system. In the static case, this was done in [PMT, Section 2.3]: Using
the notation from [PMT] for the Hilbert space H of physical wave functions the
minimizing measure was given by dρ = (F ε)∗dµM with dµM =

√
|det g|d4x the

volume measure on M.
However, how to choose H for the suitable causal fermion system is not obvious
for time-dependent causal fermion systems. Missing fundamental symmetries in
comparison to static spacetimes, in the time-dependent setting we now have to fix
a Hadamard state (for more detail on this topic, see for example [FHP, Section 1]).
But it is plausible that choosing the Hadamard state is not of importance for the
calculation of mass, momentum and energy, since we only consider the singularity
structure of the fermionic projector (for more detail see e.g. [MOP]) for the La-
grangian as is done for the static case in [PMT, Section 6.6] using [LCE, Appendix
B]. Summing this up, although it is not known yet if mass, momentum and energy
of arbitrary asymptotically flat globally hyperbolic Lorentzian Manifolds can be
obtained in the same way as for the boosted Schwarzschild spacetime in Section
6, it is expected to work similarly.

Lacking spherical symmetry, we would expectedly then have to calculate e.g. the
mass by averaging over masses calculated for fixed directions. More explicitly:
We denote the matrix (denoting the metric tensor) corresponding to the metric
g by G. Consider one direction w in M̃ with g(w,w) = 1 (and stay constant
along the other directions). (For example in spherical coordinates one would con-
sider fixed θ = θ0 and ϕ = ϕ0 in order to do this.) This then yields an induced
metric on gR·w on the subspace R · w = {λw|λ ∈ R}. Then choose coordinates
(t̃, r̃, θ̃, ϕ̃)T = Φ((t, r, θ, ϕ)T ) in Minkowski space (regarded in spherical coordinates
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(t, r, θ, ϕ), with fixed θ, ϕ in spherical coordinates) s.t. the metric in this direction
coincides linearly with the metric gR·w around Rw for radius R ∈ R (corresponding
to r = R in the boosted Schwarzschild example). This is possible due to the decay
properties (36).
For this we can then calculate the derivative describing the gravitation by

D2,vL =

((
Φ
(
(t, r, θ, ϕ)T

)
− (t, r, θ, ϕ)T

)
◦
(
∂

∂t
,
∂

∂r
,
∂

∂θ
,
∂

∂ϕ

))
L

and can with this derivative (taking the limit R → ∞) calculate the mass M(ρ̃, w)
and momentum P(ρ̃, w) along this direction.
Finally we have to get rid of the fixed direction by averaging over all directions by

M(ρ̃) =
1

ρ̃(∂B1(0))

∫
w∈B1(0)

M(ρ̃, w)dρ̃

resp.
P(ρ̃) =

1

ρ̃(∂B1(0))

∫
w∈B1(0)

P(ρ̃, w)dρ̃.

(This averaging was not necessary for spherical symmetric spacetimes.)

8 Conclusion
Finally we will recap the results proven in this thesis:
We have introduced a notion of mass for causal fermion systems (with the area
constraint instead of the inner volume constraint) depending only on the spacetime
geometry at infinity, which coincides with the mass for static causal fermion sys-
tems for the Minkowski and the Schwarzschild spacetime. Hence it also coincides
with the ADM mass in the cases of a Minkowski resp. a Schwarzschild spacetime
as it does as well for the boosted Schwarzschild spacetime as seen in the previous
section.
Furthermore we have defined a notion of momentum for causal fermion systems.
This has been used to define the energy as an energy-momentum vector. For this
we have shown that the energy vectors build a vector space and moreover that the
energy is invariant of the observer.
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