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Abstract: The crystal and molecular structure of three derivatives of carbonyl 2-substituted pyrroles
was determined by the single crystal X-ray diffraction. There are 2,2-dichloro-1-(1-methyl-1H-pyrrol-
2-yl)ethan-1-one (I), 2-chloro-1-(1H-pyrrol-2-yl)ethan-1-one (II) and methyl 1H-pyrrole-2-carboxylate
(III). All compounds crystallize with one molecule in the asymmetric unit in P212121 for I and II,
and P21/c group for III. Despite the similar structures of the investigated compounds, the hydrogen
bonds formed in their crystal structures adopt different H-bond motifs. In structure I, the dimers
R1

2(5) and R2
1(7) form a chain along the b-axis, while in structures II and III, chain C(5) structural

motifs are formed. The single point calculations at a ωB97XD/6-311++G(d,p) level of theory indicate
that systems with N-H· · ·O bonds have greater interaction energies (are more stable) compared with
systems featuring C-H· · ·O/Cl bonds. A descriptive Hirshfeld analysis showed that the greatest
differences are visible for the H· · ·H interactions. These H· · ·H interactions predominate in structure
III, accounting for 45% of the intermolecular interactions, while in structures I and II, they account
for only 25%. Although compounds I-II contain Cl-atoms, the percentage of Cl· · ·Cl interactions is
rather low. In structure with two Cl-atoms (I), the contribution of the Cl· · ·Cl contacts is 8.7% and for
II, the contribution accounts for only 0.4% of the interactions.

Keywords: crystal structure; hydrogen bond; Hirshfeld surface; pyrrol -2-yl ketone; DFT

1. Introduction

Five-membered heterocyclic compounds are among the most widespread and impor-
tant building blocks of molecular structures. Among them, the pyrrole ring, which is a
building element in many natural products, such as hem [1], chlorophylls [2], and bioactive
alkaloids [3–7], is the most common. Although the parent pyrrole has been characterized
experimentally [8] and analyzed [9–12] by theoretical methods, relatively little is known
about its derivatives, particularly the noncovalent governing of the crystal structure of this
class of compounds.

Although some studies have been devoted to 2-substituted pyrroles, [13] mainly to
assess the conformational preferences [14–19] or aromaticity [20–22], there is still a lack
of certain knowledge about noncovalent interactions of pyrrol-2-yl-carbonyl compounds.
However, general studies show that intermolecular interactions strongly influence the
arrangement of molecules in crystals, especially directional hydrogen bonds [23,24].

Halogen bonds also impart directionally in crystal structures, and may be considered
as counterparts of hydrogen bonds [25–31]. Halogen bonds involving C-Cl· · ·O have been
observed in the crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone [32]. Anal-
yses of other interactions of carbonyl 2-substituted pyrroles show mainly different kinds
of hydrogen bonds [16–19,32]. Density Functional Theory (DFT) calculations indicated
that for the s-cis conformation of pyrrole-2-carboxylic acid, where the NH and COO bonds
are located on the same side of the moiety, two centrosymmetric dimers are possible [33].
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For each dimer, there are two equivalent hydrogen bonds, two O-H· · ·O bonds creating
R2

2(8) motifs according to Etter’s rules [34,35] or two N-H· · ·O hydrogen bonds forming
R2

2(10) motifs.
H-bonded motifs in crystal structures are described by graph set assignments [34,35].

R denotes the ring, and the number of atoms that make up the ring is given in parentheses.
Therefore, for R2

2(8) there are eight ring atoms linked through covalent and hydrogen
bonds, since two hydrogen bonds form between two carboxylic groups. The superscript
and subscript denote the number of proton acceptors and proton donors, respectively. For
R2

2(8) there are two equivalent proton acceptor O centers (since the dimer is linked through
two equivalent molecules) and two equivalent proton-donating bonds (OH). Etter also
described other motifs [34,35]: C denotes the chain of atoms containing hydrogen bonds
which repeat in the crystal structure, S refers to intramolecular hydrogen bonds and D
replays to a dimer where a single hydrogen bond exists.

In the case of the s-trans conformer of pyrrole-2-carboxylic acid, there is only the
possibility that the dimer contains two equivalent O–H· · ·O bonds within the R2

2(8) motif.
An X-ray structure analysis confirmed that pyrrole-2-carboxylic acid forms crystals with
s-cis conformers that form the motifs R2

2(8) and R2
2(10) mentioned above [19]. Recently,

2-pyrrolecarboxylic acid and 1-methyl-2-pyrrolecarboxylic acid have been studied by ther-
mochemical measurements and computational analyses [36], and pyrrole-2-carboxamide
has been analyzed by spectroscopic and X-ray methods, and DFT calculations [19]. For the
latter compound, the s-cis conformer was revealed and the presence of centrosymmetric
dimers in crystals connected through N–H· · ·O bonds.

Due to the importance and prevalence of pyrrole compounds in organic chemistry,
we have conducted research aimed at extending knowledge of the structural properties
in some pyrrol-2-yl carbonyl compounds, particularly focusing on the role of the inter-
molecular interactions in their crystal structures. When searching the Cambridge Structural
Database [37], we found more than 26,500 compounds containing pyrrole rings. Among
them, there are almost 930 structures with a 2-substituted pyrrole core and only 153 with a
2-pyrrol-2-yl core, and 14 of the 27 pyrrol-2-yl halogenated ketone contain a chlorine atom.

2. Materials and Methods
2.1. Synthesis of Pyrrol-2-yl Chloromethyl Ketones

The conventional Friedel–Crafts acylation method was applied for the preparation of
aromatic ketones I and II (Scheme 1) [38]. The title pyrroloketones were generally obtained
using acid chlorides as acylating agents and stoichiometric amounts of AlCl3 as a reaction
promoter. Dichloroacetyl chloride or chloroacetyl chloride (0.02 mol) was dissolved in
10 mL of anhydrous ethyl ether and 0.02 mol of AlCl3 was added. Then, the 0.02 mol of
freshly distilled pyrrole was added dropwise and the reaction mixture was stirred for one
hour at room temperature. After that time, an aqueous solution of potassium carbonate
(0.02 mol) was added. The resulting mixtures were extracted twice with ether and the crude
products were purified by crystallization from hexane. Spectroscopic data are available
in [39].

2.2. Synthesis of Methyl Pyrrole-2-Carboxylate

Methyl pyrrole-2-carboxylate (III) was synthesized (Scheme 2) according to the method
of Bailey et al. [40]. Sodium (0.08 g) was dissolved in 50 mL of anhydrous methanol, and
5.3 g (0.025 mol) of pyrrol-2-yl trichloromethyl ketone was added portion by portion over a
10-minute period. The solution was stirred for 30 min and then concentrated to dryness
using a rotary evaporator. The oil residue was partitioned between ethyl ether and 3M HCl
(1:1, V:V). The ether layer was separated, and the aqueous layer was washed once with
ether. The combined ether solutions were washed once with an aqueous sodium hydrogen
carbonate solution (10%), dried with magnesium sulfate, and concentrated by distillation.
The crude products were purified by crystallization from a mixture of hexane and ethyl
acetate (1:1; V:V), giving 2.5 g of ester. Spectroscopic data are available in [16,17].
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2.3. X-ray Diffraction Analysis

Measurements of structure I was performed on a Stoe IPDS diffractometer with
graphite monochromated MoKα radiation (λ = 0.71073 Å). For the compound, data re-
ductions were performed with Stoe IPDS [41]. The intensities were corrected for Lorentz
and polarization effects. An empirical absorption correction was applied for compound
I [42]. The structures of II and III were measured on Rigaku SuperNova Dual Source
diffractometer, also with MoKα radiation (λ = 0.71073 Å). For both compounds, analytical
absorption corrections were applied [43]. The data collection and refinement parameters
are given in Table 1, and the structures of the molecules are shown in Figure 1. The structure
was solved by direct methods with SIR-97 [44] for structures I and by SHELXS [45] for
structures II and III, which revealed the positions of all non-H-atoms. Non-H-atoms were
refined anisotropically. For structure I, all of the H-atoms were located in a difference
electron density map, whereas for structures II and III, they were placed in geometrically
calculated positions. Then, for all structures, positions of H-atoms were allowed to refine
together with individual isotropic temperature factors. The refinement of each structure
was carried out on F2 using full-matrix least-square procedures, which minimized the
function ∑w(F2

o-F2
c)2 with SHELXL-2014/7 [46]. Geometry analysis and molecular plots

were obtained using the PLATON program [47] and Mercury [48].
Crystal data for I, C7H7Cl2NO (M = 192.04 g/mol): orthorhombic, space group P

212121 (no. 19), a = 5.8789(2) Å, b = 7.4029(2) Å, c = 14.6418(4) Å, V = 860.05(14) Å3, Z = 4,
T = 123.0(1) K, µ(MoKα) = 0.694 mm−1, Dcalc = 1.483 g/cm3, 10,785 reflections measured
(3.566◦ ≤ Θ ≤ 27.918◦), 2030 unique (Rint = 0.0328), which were used in all calculations.
The final R1 was 0.0255 [I > 2σ(I)] and wR2 was 0.0671 (all data).

Crystal data for II, C6H6ClNO (M = 143.57 g/mol): triclinic, space group P 212121
(no. 19), a = 5.8789(2) Å, b = 7.4029(2) Å, c = 14.6418(4) Å, V = 637.22(3) Å3, Z = 4,
T = 100.0(2) K, µ(MoKα) = 0.504 mm−1, Dcalc = 1.496 g/cm3, 3887 reflections measured
(2.782◦ ≤ Θ ≤ 27.773◦), 1404 unique (Rint = 0.0428), which were used in all calculations.
The final R1 was 0.0333 [I > 2σ(I)] and wR2 was 0.0743 (all data).
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Crystal data for III, C6H7NO2 (M = 125.13 g/mol): monoclinic, space group P 21/c
(no. 14), a = 7.5448(2) Å, b = 5.4641(1) Å, c = 14.7330(3) Å, β = 100.419(2)◦, V = 597.36(2) Å3,
Z = 4, T = 100.0(2) K, µ(MoKα) = 0.106 mm−1, Dcalc = 1.391 g/cm3, 6625 reflections
measured (2.745◦ ≤ Θ ≤ 27.854◦), 1358 unique (Rint = 0.0397), which were used in all
calculations. The final R1 was 0.0443 [I > 2σ(I)] and wR2 was 0.0947 (all data).

CCDC 2120675–2120677 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html (accessed on 21 October 2022) (or from the CCDC, 12 Union Road, Cam-
bridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).
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Figure 1. Molecular structures of (a) 2,2-dichloro- 1- (1-methyl-1H- pyrrol- 2-yl)ethan-1-one (I),
(b) 2-chloro-1-(1H-pyrrol-2-yl)ethan-1-one (II) and (c) methyl 1H-pyrrole-2-carboxylate (III). Atomic
displacement ellipsoids are drawn with a 50% probability level.

2.4. Hirshfeld Surface Analysis

Hirshfeld analysis was performed using Crystal Explorer [49,50]. The Hirshfeld
surface maps intermolecular contacts, and it is computed at the sum of de and di, the
distances from the external atoms to the surface and the internal atoms to the surface,
respectively [49]. Sums of distances shorter than the sum of the van der Waals radii of two
neighboring atoms are marked with red spots, distances close to the van der Waals radii
are marked in white, and distances larger than the sum of van der Waals radii are marked
in blue. A qualitative description of all relevant contacts in the crystal structure is shown
in fingerprint graphs [50] by plotting the distances from contact atoms to the Hirshfeld
surface, di and de, in a 2D graph, creating a ‘heatmap’ of noncovalent interactions.

2.5. Full Interaction Maps Analysis

The Full Interaction Maps feature is included with mercury [48]. This tool generates a
picture of the interaction landscape of a molecule from its 3D coordinates. Using statistical
distributions from structures included in the CSD, it predicts the most likely locations for a
variety of functional groups. By comparing this distribution with a 3D packing diagram,
it can determine whether a crystal structure fulfils the desired interactions of a particular
conformation of a particular molecule.

2.6. Theoretical Calculations

All molecular systems were examined using the ωB97XD [51] variant of DFT with
the 6-311++G(d,p) base set [52–55]. This level of theory gives good results in the case of
hydrogen bonds or other weak interactions with the contribution of dispersion effects, and
is appropriate for the calculation of relatively large systems [56,57]. All three systems (I-III)
were calculated with use of single point calculations in geometries taken from the crystal
state. Only the positions of H-atoms were normalized according to neutron diffraction
data [58], which is a standard procedure for model system in geometries extracted from X-
ray experiments. All calculations were carried out using the Gaussian09 package (revision
D.01) [59]. Interaction energies for the analyzed systems have been computed as the

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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difference between the total energy of the complex and the energies of monomers, and were
corrected for the basis set superposition error (BSSE) using the counterpoise procedure [60].
The monomers were in the same geometries as those in a dimer complex or chain system;
thus, we exclude the deformation energy from our consideration.

3. Results and Discussion

In a recent study, we investigated centrosymmetric dimers formed by pyrrol-2-yl
chloromethyl ketones in their s-cis conformers [39]. According to current knowledge [20,61],
the s-cis conformer, in which the NH and COO groups are located on the same side of
the moiety, is more stable than the s-trans conformer. Theoretical calculations and crystal
structure data show that, in general, the carbonyl group lies in the same plane as the pyrrole
ring [17,19]. It is worth noting that the flat arrangement of the carbonyl group with respect
to the pyrrole ring favors the formation of centrosymmetric dimers with two equivalent
N-H· · ·O hydrogen bonds.

Spectroscopic and theoretical research on the conformations and intermolecular inter-
actions of pyrrol-2-yl chloromethyl ketones and their N-methyl derivatives [39] show that
the weakest hydrogen bond exists in the dimer of the pyrrol-2-yl trichloromethyl ketone,
while the dimers of chloromethyl and dichloromethyl ketones have stronger hydrogen
bonds, all of which are comparable in strength. All investigated pyrrol-2-yl chloromethyl
ketones created the R2

2(10) motif [34,35] containing two equivalent hydrogen bonds N-
H· · ·O. It is interesting that such motifs were barely sensitive to the number of Cl-atoms.
It seems that the rigid skeletons of the pyrrole rings hamper the π-electron delocaliza-
tion within the above-mentioned motif, and thus, the influence of the strength of the Cl
substituents on the N-H· · ·O hydrogen bond strength was restricted for the pyrrol-2-yl
chloromethyl ketones. On the other hand, X-ray investigations on 1-methylpyrrol-2-yl
trichloromethyl ketone [32] show that in this structure, there is no centrosymmetric dimer
motif, but two kinds of interactions are responsible for the arrangement of molecules in
a crystal structure, C-H· · ·O and C-Cl· · ·O. The O-atom of the carbonyl group acts as an
acceptor in both the hydrogen and halogen bond.

To extend this study, we investigated two pyrrol-2-yl chloroketones and one methyl
pyrrole-2 carboxylate structures by single-crystal XRD analysis. According to this study,
all the compounds crystallize with one molecule in the asymmetric unit and all show
s-cis conformations, as depicted in Figure 1. Compound III crystallizes in the P21/c
centrosymmetric groups, while the other two compounds (I and II) crystallize in the
P212121 space group. This is reflected in the hydrogen bond motifs that are formed in the
structures of these compounds. A ring motif of H-bonds [34,35] is present in the structures
of I, and forms between the chain motifs in III.

3.1. XRD Analysis

The molecular crystal structures of compounds I, II and III were examined in terms
of the geometric relationship between the pyrrole ring and carbonyl group. The structural
variation of the three pyrrolylketones was ensured by the different numbers of halogen
atoms or the methyl group substituted to the N atom from the pyrrole ring. Their structural
overlay is shown in Figure 2.

All of the investigated compounds I-III have a flat pyrrole ring in their structure.
The C6 carbonyl carbon atom deviates from the best plane calculated for the rings atoms
N1-C2-C3-C4-C5 (Cg1) of −0.079(2)Å, 0.054(2)Å and 0.002(2)Å and oxygen atom O6 of
−0.035(2)Å, 0.10(2)Å and −0.56(2)Å for structures I, II and III, respectively. Comparing
the values of selected geometric parameters listed in Table S1, it can be seen that both the
bond lengths and the valence angles show no significant differences between the com-
pounds. To verify the geometric parameters, a Cambridge Structural Database search [37]
was performed, from which 15 structures most resembling the investigated ketones and 11
structures corresponding to carboxylic acid were found. One of the esters found (Refcode
DUCYOQ, [62]) is identical to the structure of III examined here. Although the geometry
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of both structures is essentially identical, we decided to include structure III in this study
since its structure was measured at a lower temperature, giving a better figure of merit
for structure refinement. We also found structure I (Refcode UHIQEJ, [63]), but there is
no structure description included in the cited work, so we decided to use our own data.
The search schemes for fragments of molecules and the geometry parameters are given
in Schemes S1 and S2 and Tables S3–S6. Figures S2 and S3 present a graphical representa-
tion [64] of the structures found in CSD. The values of all the geometrical parameters of the
investigated compounds are comparable with those found in the CSD.
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Figure 2. Structural overlay of molecular structures for all compounds in stick style (lavender color
denotes I, green—II, blue—III).

The crystal packing analysis for the compounds investigated has revealed a variety
of supramolecular architectures. The structure of the intermolecular interaction nets are
guided by the presence of different types of H-bonds and stacking interactions. Despite the
presence of the chlorine atoms in the structures, the classical halogen bond is not formed.
The Cl atom either participates in hydrogen bonds as a proton acceptor for weak C-H
donors, or in a C-Cl· · ·π interaction.

The predictions of the most likely locations for a variety of functional groups (acceptors
and donors) for the investigated compounds are presented on the full interaction maps
(FIMs) [48] in Figure 3. The red regions of the maps denote areas that are identified as similar
to a H-bond acceptor. The blue regions denote H-bond donors and the brown regions
indicate hydrophobic groups. The FIMs of studied structures I-III show the expected
directions for the formation of hydrogen bonds or others noncovalent interactions. The
FIMs of studied structures I-III are shown in Figure 3 and Figure S1.
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In compound I, the carbonyl oxygen atom serves as a bifurcated acceptor in two C-
H· · ·O interactions, giving an R2

1(7) motif. Additionally, the C-H as a bifurcated-donating
group participates in a C-H· · ·Cl bond, forming the R1

2(5) motif. Both motifs create chains
along b-axis. The chains form the C-H· · ·π interaction, and create a zigzag 3D pattern, as
shown in Figure 4. This structural motif is also stabilized by C-Cl· · ·π interactions.
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H7 0.92(2)Å, H7· · ·O6(1−x,−1/2−y,1/2+z) 2.94(2)Å, <C7H7O6 160(1)◦, [C3-H3· · ·Cl8] C3-H3
0.92(2)Å, H3· · ·Cl8(1−x,−1/2−y,1/2+z) 2.94(2)Å, <C3H3Cl8 129(1)◦, [C7-H7· · ·O6] C7-H7 0.92(2)Å,
H7· · ·O6(1−x,−1/2−y,1/2+z) 2.330Å <C7H7O6 154◦, (b) 3D arrangement viewed along the
b-axis. Parameters of X/Y . . . Cg interactions [C5-H5· · ·Cg1] C5-H5 0.96(2) Å, H5· · ·Cg1
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In structure II, the infinite chain along the a-axis is created by N-H· · ·O hydrogen
bonds, forming a C(5) chain motif (Figure 5). The molecule contains only one chlorine
atom, which participates in H-bonding. The chain is stabilized by N-H· · ·Cl and C-H· · ·O
interactions. Additionally, the 3D network is stabilized by C-H· · ·π interactions.
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Figure 5. Molecular arrangements in structure II. (a) The c-axis view of the chain created by the hy-
drogen bond N1-H1· · ·O6 and (b) stabilized by the hydrogen bonds N1-H1· · ·Cl8 and C4-H4· · ·O6.
H-bond parameters [N1-H1· · ·O6] N1-H1 0.90(2)Å, H1· · ·O6(1/2+x,1/2-y,1-z) 2.05(2)Å, <N1H1O6
164(1)◦ , [C4-H4· · ·O6] C4-H4 0.93(2)Å, H4· · ·O6(3/2-x,1-y,−1/2+z) 2.52(2)Å, <C4H4O6 163(1)◦ ,
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[N1-H1· · ·Cl8] N1-H1 0.90(2)Å, H1· · ·Cl6(−1/2+x,1/2-y,1-z) 2.90(2)Å, <N1H1Cl8 126(1)◦. (c) 3D
arrangement viewed along the c-axis. Parameters of X· · ·Cg interactions [C3-H3· · ·Cg1] C3-H3
0.94(2) Å, H3· · ·Cg1 (1-x,1/2+y,1/2-z) 2.72(2)Å, <C3H3Cg1 156(1)◦. (d) 3D arrangement viewed
along the a-axis.

The structure of the methyl pyrrole-2-carboxylate (III) is stabilized by N-H· · ·O hy-
drogen bonds, which form the C(5) chain motif along the b-axis. The weak C-H· · ·O
interactions create centrosymmetric dimers between chains, giving the R2

2(6) motif. The
3D is additionally stabilized by C-H· · ·π interactions (Figure 6).
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Figure 6. Molecular arrangement in structure III. (a) An a-axis viewed chain of N-H· · ·O. H-
bond parameters [N1-H1· · ·O6] N1-H1 0.88(2)Å, H1· · ·O6(1-x,1/2+y,1/2-z) 2.06(2)Å, <N1H1O6
171(1)◦. (b) View of the N-H· · ·O chains connected by C-H· · ·O hydrogen bonds and stabilized by
C-H· · ·π interactions. H-bond parameters [C8-H82· · ·O7] C8-H82 0.97(2)Å, H82· · ·O7(1-x,−1-y,1-z)
2.63(2)Å, <C8H82O7 156(1)◦, [C5-H5· · ·Cg1] C5-H5 0.95(2)Å H5· · ·Cg1 (1-x,1/2+y,1/2-z) 2.64(2)Å,
<C5H5Cg1 139(1)◦.

3.2. Theoretical Calculations

Energy parameters from single point calculations were determined for the investigated
H-bonded motifs found in the crystals of I-III using theωB97XD/G-311++G(d,p) level of
theory, and are given in Table 1. The positions of H-atoms were normalized according to
neutron diffraction data [58]. Since the geometries of the studied molecules were taken
from the crystal structures, the energy values apply to all possible interactions between the
given molecules in each crystal.

Table 1. Selected geometric parameters and energy of interactions for two interacting molecules in
crystal obtained at theωB97XD/G-311++G(d,p) level of theory.

D-H [Å] H· · ·A [Å] <DHA[◦] Eint
CP

[kcal/mol]
M.p. [◦]

I
C7-H7· · ·O6 1.098 2.222 126 −7.62 65.8–66.5 [60]C3-H3· · ·Cl8 1.083 2.843 152

II
N1-H1· · ·O6 1.030 1.919 163 −11.02 120.5 [60]N1-H1· · ·Cl8 1.030 2.828 124

III N1-H1· · ·O6 1.030 1.917 170 −8.36 72

Looking at the obtained results, it can be seen that systems with the N-H· · ·O bonds
have greater interaction energies compared to those with C-H· · ·O/Cl interactions.

The energy of a single interaction N-H· · ·O in structure III is about 8.36 kcal/mol and
is higher than the energy for centrosymmetric dimer motif optimized on the level of the
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B3LYP/6-311++G(d,p) theory investigated earlier in [39] by more than 2 kcal/mol (dealing
with a centrosymmetric dimer, we can divide the interaction energies in half for each of the
two N-H· · ·O bonds, and the energy of a single N-H· · ·O bond was −6.63 kcal/mol). Such
a difference may result both from the fact that for the interactions studied here, we chose
single point calculations using the geometry from the crystal state, while previously, the
optimization of the geometry was carried out and the B3LYP functional was used. Here,
we used theωB97XD functional because we noticed in our earlier research [56,57] that it
gives results similar to those of the MP2 method. It should be noted that this functional
contains Grimme’s D2 numerical correction for dispersion effects [65]. Thus, additional
effects included in the theory approximation may give a relatively larger interaction energy.

In structure I, the interaction energy is the lowest at 7.62 kcal/mol. This is expected
since, in general, C-H is a relatively weaker donating group compared with O-H [66]. In
the case of I, the nitrogen atom in the pyrrole ring is substituted with a methyl group,
meaning that only weak H-bonds involving the C-H donor group may form, as opposed to
the relatively stronger interactions with a N-H donor group.

In structure II, in addition to the N-H· · ·O interactions, there is also the N-H· · ·Cl inter-
action, a total interaction energy (for both mentioned interactions) is close to 11.02 kcal/mol.
The calculations for the optimized dimer of this derivative showed that the energy of a
single interaction was 6.34 kcal/mol [39]. However, the geometry of the system studied
here, taken from experimental conditions, differs from the optimized dimer as it features a
H-bond to Cl atom. Stronger H-bonding in the compound investigated here may therefore
be associated with the additional interaction to the Cl atom.

It is worth mentioning that theoretically estimated interaction energies are in a straight
relation with the physical macroscopic properties of the crystals. As it can be seen in
Table 1, the melting points of studied crystals of pyrrolylketone derivatives are related to
the estimated energies of interactions. The more negative value of Eint

CP, the higher the
melting point.

3.3. Hirshfeld Surface Analysis

Figure 7 shows the Hirshfeld surfaces of the investigated compounds, showing red
spots corresponding to contacts with a length shorter than the sum of van der Waals radii
and white spots corresponding to contacts with a length equal to the sum of van der Waals
radii. In the examined compounds II and III, the N1-H1· · ·O6 interaction is the shortest
distance in the hydrogen bridge, and thus, the strongest. For compound I, in which no
H-bond involving an N atom is formed, there are three such short interactions. These
are C3-H3· · ·O6, C7-H7· · ·O6 and C5-H5· · ·π. Red spots on the Hirshfeld surface of II
correspond to the N1-H1· · ·O6 and C4-H4· · ·O6 interactions. In the structure of III, there
is also a short interaction, C5-H5· · ·π.

Crystals 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

3.3. Hirshfeld Surface Analysis 
Figure 7 shows the Hirshfeld surfaces of the investigated compounds, showing red 

spots corresponding to contacts with a length shorter than the sum of van der Waals radii 
and white spots corresponding to contacts with a length equal to the sum of van der Waals 
radii. In the examined compounds II and III, the N1-H1⋯O6 interaction is the shortest 
distance in the hydrogen bridge, and thus, the strongest. For compound I, in which no H-
bond involving an N atom is formed, there are three such short interactions. These are C3-
H3⋯O6, C7-H7⋯O6 and C5-H5⋯π. Red spots on the Hirshfeld surface of II correspond to 
the N1-H1⋯O6 and C4-H4⋯O6 interactions. In the structure of III, there is also a short 
interaction, C5-H5⋯π. 

   
I II III 

Figure 7. Hirshfeld surfaces of compound I-III mapped over dnorm. 

The fingerprint plots [49,50] presented in Figure 8 show all the molecular interac-
tions, and the most occurring interactions that have been extracted from the Hirshfeld 
surface. 

   
I II III 

Figure 8. Fingerprint plots of compound I-III showing all the interactions taken from the Hirshfeld 
surface. 

The most different types of contacts can be observed for II, while III has the fewest. 
The most frequent contacts are H⋯H, H⋯C/C⋯H and H⋯Cl/Cl⋯H. The H⋯H contacts ac-
count for 25% to 45% of the total interactions, H⋯Cl/Cl⋯H interactions account for 26% to 
29%, and H⋯C/C⋯H interactions account for 14% to 21% of all interactions. In structure I, 
which features an N-methyl group instead of an H-atom, the share of H⋯H contacts is 
about 25% at the expense of H⋯Cl/Cl⋯H (29%). For structure II, which features one Cl-
atom, the shares of H⋯H, H⋯Cl/Cl⋯H interactions are equal at 25% and H⋯C/C⋯H interac-
tions account for 20%. In III, in which there are no Cl-atoms and a methyl group instead 

Figure 7. Hirshfeld surfaces of compound I-III mapped over dnorm.
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count for 25% to 45% of the total interactions, H⋯Cl/Cl⋯H interactions account for 26% to 
29%, and H⋯C/C⋯H interactions account for 14% to 21% of all interactions. In structure I, 
which features an N-methyl group instead of an H-atom, the share of H⋯H contacts is 
about 25% at the expense of H⋯Cl/Cl⋯H (29%). For structure II, which features one Cl-
atom, the shares of H⋯H, H⋯Cl/Cl⋯H interactions are equal at 25% and H⋯C/C⋯H interac-
tions account for 20%. In III, in which there are no Cl-atoms and a methyl group instead 

Figure 8. Fingerprint plots of compound I-III showing all the interactions taken from the Hirsh-
feld surface.

The most different types of contacts can be observed for II, while III has the fewest.
The most frequent contacts are H· · ·H, H· · ·C/C· · ·H and H· · ·Cl/Cl· · ·H. The H· · ·H
contacts account for 25% to 45% of the total interactions, H· · ·Cl/Cl· · ·H interactions
account for 26% to 29%, and H· · ·C/C· · ·H interactions account for 14% to 21% of all
interactions. In structure I, which features an N-methyl group instead of an H-atom,
the share of H· · ·H contacts is about 25% at the expense of H· · ·Cl/Cl· · ·H (29%). For
structure II, which features one Cl-atom, the shares of H· · ·H, H· · ·Cl/Cl· · ·H interactions
are equal at 25% and H· · ·C/C· · ·H interactions account for 20%. In III, in which there are
no Cl-atoms and a methyl group instead of N-H, H· · ·H contacts account for 45% of the
interactions and the share of H· · ·O/O· · ·H interactions is the highest one, at 25%.

It is worth noting that for the H· · ·C/C· · ·H, H· · ·O/O· · ·H contacts, their percentage
share does not change drastically between the compounds. It is interesting that compounds
I-II contain Cl-atoms, and yet the percentage of Cl· · ·Cl interactions is rather low; in the
structure with two Cl-atoms, they account for only 8.7% (I) and the lowest contribution
of the Cl· · ·Cl contacts is in the structure with one Cl-atom, (II), which accounts for only
0.4% of the interactions. These interactions are longer than sum of the van der Waals radii,
and cannot be recognized as typical halogen bonds (e.g., for I the distance is 3.581Å). The
graphical representations of the composition of different types of interactions in compound
I-III are shown in Figure 9, and the fingerprint plots for the most frequently occurring
interactions are shown in Table S2.
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4. Conclusions

The crystal and molecular structure of three derivatives of carbonyl 2-substituted
pyrroles was determined by the single crystal X-ray diffraction combined with the single
point calculations at ωB97XD/6-311++G(d,p) level of theory and descriptive Hirshfeld
analysis. All investigated compounds crystallize with one molecule in the asymmetric
unit in P212121, for I and II, and P21/c space group, for III. Despite the similar molecular
structures of investigated compounds, they feature distinct H-bond motifs in the crystalline
phase. In the structure of I, the dimers R1

2(5) and R2
1(7) created by C-H· · ·O and C-

H· · ·Cl bonds form a chain along the b-axis. In structures II and III, C(5) chain motifs
are formed. In structure II, an infinite chain of N-H· · ·O H-bonds forms along the a-axis,
and is stabilized by N-H· · ·Cl and C-H· · ·O interactions. Similarly, in structure III, N-
H· · ·O form a chain along the b-axis. Between the chains, weak C-H· · ·O interactions
create centrosymmetric dimers, giving the R2

2(6) motif. Additionally, the 3D network in
the structures I-III is stabilized by C-H· · ·π interactions. The single point calculations at
ωB97XD/6-311++G(d,p) level of theory indicate that the systems with N-H· · ·O bonds
(II and III) have greater interaction energies (II 11.02 kcal/mol and III 8.36 kcal/mol),
compared with the weak C-H· · ·O/Cl H-bonds occurring in structure I (7.62 kcal/mol).
Hirshfeld analysis showed that in structure III, in which there are no chlorine atoms,
H· · ·H interactions predominate, accounting for 45% of the total number of intermolecular
interactions, while H· · ·O/O· · ·H is 25%. For the compounds with chlorine atoms (I-II),
H· · ·H similarly accounts for 25%. Furthermore, H· · ·Cl/Cl· · ·H interactions contribute
29% for I (with two Cl-atoms) and 25% for II (one Cl-atom), whereas H· · ·O/O· · ·H
contribute accounting 15% and 18% for I and II, respectively.
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5. Dubis, A.T.; Łapiński, A. Spectroscopic and theoretical study on peramine and some pyrrolopyrazinone compounds. Vib. Spec.
2009, 49, 265–273. [CrossRef]
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