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Chapter 1
Introduction

In current solid state physics, researchers often investigate van-der-Waals (vdW) heterostruc-
tures. On the one hand, the technical know-how to produce and post process thin slabs from
many layered crystals allows multiple material combinations. On the other hand, the diversity
of materials that already intrinsically possess extraordinary properties in a 2D-arrangement,
is very large (hexagonal boron nitride (hBN), transition metal dichalcogenides (TMDC),
phosphorene, topological insulators as Bi2Se3). In contrast to semiconductor physics, where
different materials are brought into contact for the purpose of band gap engineering, vdW
structures rely on proximity mediated properties, like magnetism or spin-orbit coupling
(SOC).

An often used material for vdW structures is graphene due to its prominent properties, like
high electron mobility and its spin quantities, which are especially attractive in electronics
when building new and faster integrated circuits. The mobility of graphene for instance,
has been measured to 10.000 cm2

Vs [1, 2] at room temperature, giant compared to the usual
semiconducting devices. Combined with its mechanical properties [3], making graphene the
strongest material ever measured, it could be useful in producing flexible graphene-based
displays [4] and the creation of next generation high-tech devices. Graphene is also interesting
when it comes to manipulating electron spins, potentially leading to spintronic devices [5, 6].
Especially spin relaxation and spin transport can be altered, by the enhancement of SOC [7,
8].

There are several possibilities to modify the electronic properties of graphene. One way is to
introduce adatoms or admolecules on graphene in order to enhance spin-orbit interaction.
There have been lots of investigations with light [9–15] and heavy [16–20] adatoms, as well as
small organic molecules [21]. It has been shown, that SOC parameters of the order of 1 meV
are used in tight binding Hamiltonians to describe the induced SOC strength, giant compared
to the intrinsic SOC of graphene (λI ≈ 12 µeV [22]). Recent scanning tunneling microscopy
(STM) experiments on hydrogenated graphene confirm the theoretically predicted induced
spin polarization in graphene by hydrogen adatoms [23].

Additionally one can alter the physics of graphene, by building vdW heterostructures with
insulating or metallic materials [24–33]. There have been several theoretical predictions and
experiments for graphene on an insulating substrate, like hBN, where they found a gap in
the band structure of graphene at the K point, due to the breaking of graphenes sublattice
symmetry [24]. The predicted band gap of a graphene/hBN structure is of the order of
50 meV and is of essential value when building graphene-based field-effect transistor devices.
This effect is not only limited to hBN, but in general every substrate, breaking the sublattice
symmetry of graphene, leads to a gap in the graphene band structure. Insulating materials,
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2 1. Introduction

especially hBN, are potentially efficient spin selective tunneling barriers [26], which is very
interesting for spintronics applications.

However, in electronics, one needs to be able to make contacts to graphene, most likely with
metals, in order to inject electrons, measure the physical quantities of graphene and make
possible vdW structures ready for application. By placing graphene on a metallic substrate,
it is possible to completely destroy the known linear band structure of graphene at the K
point [25, 31], especially when graphene is chemisorbed on the metal, as for the ferromagnets
cobalt and nickel. However, for graphene-based devices, it is not desirable to destroy the
linear dispersion, since transport properties are based on it. The band structure can be
preserved, if graphene is physisorbed on the metal, as it is for Cu, Au or Pt. Depending on
the kind of metal, one can also p-/n-dope graphene, since the Dirac point of graphene gets
shifted with respect to the Fermi level. This is a consequence of the different work functions
in graphene and the metal, leading to charge transfer and doping [25]. It has also been shown
that graphene on a copper surface experiences strong distance dependent SOC due to the
hybridization of graphene π with copper d states [30]. The first-principles calculations for
graphene on the Cu(111) surface match well with the measured angle-resolved photoemission
spectroscopy (ARPES) band structure and can be fitted by a robust low energy model
Hamiltonian in the vicinity of the K point. Experiments on ferromagnet/graphene interfaces
[32, 33] show that one atom thick single layer of graphene is enough to efficiently protect
ferromagnetic spin sources against oxidation and preserve the measurable spin-valve signal
in agreement with theory [34, 35]. Concerning the spin properties, especially graphene has
attracted a lot of attention due to its theoretical predicted very long spin relaxation times of
τ ≈ 1 µs and lengths of ls ≈ 100 µm [36, 37]. Strong SOC is desirable, for the observation of
many interesting phenomena, like spin-Hall effect. On the other hand, it is responsible for
spin relaxation.

A possibility to preserve the conical band structure, is to form graphene/insulator/metal
heterostructures. One can imagine, that the insulating layer protects graphene from strong
proximity effects, such that the general conical dispersion of graphene stays untouched.
Investigations on structures of graphene on the ferromagnetic insulator EuO shows a tunable
magnetic proximity effect leading to spin dependent Fermi velocity vF, hybridization gap
and large spin polarizations of the order of 25% [38]. Also graphene/insulator/ferromagnet
structures show a similar behavior. Ferromagnetic substrates induce weak proximity mag-
netism into graphene, while an insulating buffer layer preserves the graphene band structure.
Experimental and theoretical investigations of Ni(111)/hBN/graphene structures [27, 39]
show a very efficient spin-injection into graphene. They also find an inversion of the measured
spin-valve signal due to increasing barrier thickness. Figure 1.1 shows the schematic diagram
of the spin injection from a ferromagnetic electrode to graphene through the tunnel barrier
hBN, acting as spin dependent tunnel barrier [27]. Spins, injected by the ferromagnet/hBN
junction, accumulate in the graphene and lead to the splitting of the chemical potential. The
spin polarization of graphene can then be detected nonlocally by another ferromagnet/hBN
junction, placed at a distance of typical spin diffusion length (≈ 2 µm), as reported by
Kamalakar et al. [26].

All these findings already show that there was progress towards a spin logic device, that could
replace conventional electronic devices in near future [33, 40–42]. However, there is still a lot
of work to do, since SOC could be also strong in these systems, affecting the spin-lifetimes in
graphene significantly. The goal is to find the right balance between high spin-injection and
polarization, but also long spin-lifetimes. Thus it is crucial to investigate possible magnetic
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FIG. 1.1: Schematic diagram showing the spin injection from a ferromagnetic electrode to
graphene through the tunnel barrier hBN, acting as spin dependent tunnel barrier, leading to
spin polarized current in graphene; taken from Ref. [27].

and spin-orbit proximity effects from ferromagnets and insulators affecting graphene.

This thesis deals with the proximity induced exchange coupling, induced from the ferromagnets
cobalt and nickel through different insulators, in graphene. In chapter 2 we first deal with
every single layer on its own, to get a feeling and understanding of their properties. Especially
we are interested if the density functional theory (DFT) calculations cover the essential
features, like linear dispersion in graphene, size of the gap of insulators and spin magnetic
moment of the ferromagnets. We give an overview on the essential properties, like crystal
structure and application in research, describe the band structures and the density of states
(DOS) in terms of spin and orbital decomposition. In chapter 3 we essentially deal with two
kinds of heterostructures with the difference in the used ferromagnet. The structures are
based on graphene and hBN, matched with the ferromagnets cobalt and nickel. We search
for the energetically favorable stacking of the layers and explore the modification of the
graphene band structure. We introduce an effective low energy model Hamiltonian in order
to reproduce the graphene band structure and extract valuable exchange parameters from
the DFT data, which are essential for experimentalists and research. We study the effects
of a transverse electric field, change the insulator and ferromagnet thicknesses and look at
possible modifications in the band structure. In chapter 4 we take a brief look at two other
insulating barriers, namely Al2O3 and SiO2, by replacing hBN.





Chapter 2
Single Layers

In this chapter we want to look at the individual single layers, which will be the building
blocks of our vdW heterostructures. In order to understand, which characteristics originate
from which layer, orbitals and states in the band structure and the DOS of the vdW systems,
it is crucial to get an understanding for the characteristics of the single layers, since they are
closed systems themselves and possess their special features.

As we are looking at graphene/insulator/ferromagnet heterostructures, there are several
possibilities for the choices of the insulator and the ferromagnet. Our main focus will be on
hBN as the insulator, since the lattice is also hexagonal and can be nicely matched to the one
of graphene in a commensurable way. Other choices can be oxide insulators like SiO2, Al2O3,
TiO2 and MgO. But we will not be able to cover all the combinations, since the computational
effort for some systems, especially when large supercells are necessary to match the lattices,
is too high. In addition to hBN, we look at SiO2 and Al2O3, as they are typical barriers
for spin injection and detection. The ferromagnets which we consider are cobalt and nickel,
but also iron is a candidate to induce proximity magnetism in graphene. Cobalt is the most
simple choice, since it already crystallizes in a hexagonal lattice. Also nickel can be easily
matched with graphene, when we consider the (111)-plane of the fcc-lattice. Iron however, is
problematic if we want to match the lattice with graphene in a commensurable way and keep
the vdW system supercell small.

The fact that a material can magnetize graphene due to proximity is not only limited to
ferromagnets. Recent investigations on ferromagnetic insulators, such as europium oxide
(EuO) and yttrium iron garnet (YIG), show proximity induced magnetism in graphene [38,
43], leading to strong spin polarization of the π states of graphene. This manifests in the
lifting of the spin degeneracy of the Dirac states, along with a spin dependent gap, due to
sublattice symmetry breaking.

In this chapter we will only consider the different materials in their bulk crystal structures
(monolayers for graphene and hBN) to get an understanding of the special characteristics.
Later, when we come to heterostructures, we consider each individual crystal in a thin
slab geometry stacked on top of each other. Of course, the number of atomic layers of the
individual single materials and the stacking order among them will influence the proximity
induced effects. A more detailed description of the calculations and the input parameters,
which we used for the single layers, is given in appendix B.3.
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6 2. Single Layers

2.1. Graphene

Carbon is an important element, since all living (organic) compounds contain it. Carbon
atoms have an electronic configuration [He] 2s22p2, and thus have 4 valence electrons, which
makes it tetravalent to form covalent bonds. Usually, carbon is found in hydrocarbons, which
are essential for industry (fossil fuels, plastics).

A highly discussed material, which exclusively consists of carbon atoms, is graphene. Its
prominent properties, like high electron mobility, optical transparency and mechanical
robustness [44], make it interesting for research and electronic applications. The lattice of
graphene is shown in Fig. 2.1 with the lattice constant a =

√
3a0 ≈ 2.46 Å, where a0 = 1.42 Å

is the distance between next-nearest carbon atoms [45]. Graphene contains two nonequivalent
carbon atoms in the unit cell and thus it is made up from two trigonal sublattices A and B.
The reciprocal lattice is also hexagonal, containing the high symmetry points Γ, M and K.
Figure 2.2 shows the band structure and the corresponding orbital resolved DOS of graphene.

(b)

Γ

M

K
(a)

Carbon
a

A
B

FIG. 2.1: Unit cell and Brillouin Zone of graphene. (a) Lattice of graphene with lattice
constant a = 2.46 Å and labels for sublattice A and B. One unit cell is emphasized by the
dashed line. (b) First Brillouin Zone of the reciprocal lattice. Γ, M, K are non-equivalent
high symmetry points.

The s, px and py orbitals in graphene are forming sp2 hybridized covalent σ-bonds in the plane,
lying low in energy, which are responsible for the robustness of graphene. The remaining pz
orbitals which point out of plane are responsible for the π-bands near the Fermi energy and
determine the electric transport properties [46]. The Fermi energy is located at the K point,
where conduction and valence states touch, making graphene semi-metallic. The K point is
called Dirac point, since the dispersion is linear in its vicinity and thus the particles show a
similar behavior as massless Dirac fermions obeying the Dirac equation. The bands at the Γ
point for energies larger than 3 eV show parabolic behavior, which originate form the vacuum
spacing in z direction to simulate a single graphene layer.

There have also been tight-binding [45] and experimental [2] studies of the electronic structure
of graphene, which match well with the DFT results presented here. Monolayers of graphene
can be produced via mechanical exfoliation [44] or by chemical vapor deposition (CVD)
on metal substrates [47]. Graphene has attracted a lot of attention due to its theoretical
predicted very long spin relaxation times of τ ≈ 1 µs and lengths of ls ≈ 100 µm [36, 37].
However, theoretical and experimental studies show much larger SOC and thus spin relaxation
due to adatoms or other sources, see for example Refs. [10, 12]. Adatoms, e.g. hydrogen [10],
cause a local sp3 corrugation of the lattice and locally enhance the SOC strength with SOC
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FIG. 2.2: Band structure and corresponding orbital resolved DOS of graphene. Left panel:
Band structure along the high symmetry path Γ–M–K–Γ. Right panel: Orbital resolved DOS.
DOS of d states is multiplied by a factor 10.

parameters of the order of 1 meV, giant compared to graphenes intrinsic SOC of 12 µeV [22].
Very recently, STM experiments confirmed that hydrogen adatoms cause a local magnetic
moment on graphene [23], in agreement with theoretical predictions.

2.2. Hexagonal Boron Nitride

Almost equally interesting are other two dimensional materials. One of them is hexagonal
boron nitride (hBN), which is similar to graphene, but an insulator. Boron atoms have an
electronic configuration [He] 2s22p1 and thus have 3 valence electrons. Nitrogen has the
configuration [He] 2s22p3 and 5 valence electrons. hBN has the same lattice as graphene and

(b)

Γ

M

K
(a)

Borona
Nitrogen

FIG. 2.3: Unit cell and Brillouin Zone of hBN. (a) Lattice of hBN with lattice constant
a = 2.504 Å. One unit cell is emphasized by the dashed line. (b) First Brillouin Zone of the
reciprocal lattice. Γ, M, K are non-equivalent high symmetry points.

is not formed by carbon atoms, but by boron and nitrogen atoms, located on the sublattice



8 2. Single Layers

sites A and B, respectively. It is not surprising that the two different atoms can form a
honeycomb lattice as graphene, since their electronic configuration in sum is equal. However,
due to the strong difference in electronegativity of boron and nitrogen [48], the atoms form an
insulating material, as electrons are mainly localized around the nitrogen atom. Thus, hBN
can be considered as the insulating analogue of graphite. The unit cell, reciprocal lattice and
high-symmetry points are thus defined as for graphene, see Fig. 2.3. The lattice constant of
hBN [49] is a = 2.504 Å, slightly bigger than the one of graphene and c = 6.66 Å, being the
lattice constant, defining the interlayer distance in bulk hBN. Bulk hBN has an AA’ stacking,
meaning that boron (nitrogen) atoms of layer A are on top of nitrogen (boron) atoms of layer
A’. The single layers in bulk hBN are held together by vdW bonds.

From the band structure, Fig. 2.4, we can see, that hBN is an insulator, since the calculated
band gap is Eg = 4.681 eV, which deviates from Ref. [50], where they calculated it to 5.97 eV.
The band gap is underestimated by roughly 30%, which is common in DFT, when it comes
to insulators or semiconductors. The error in the value of the band gap can be fixed by using
an appropriate exchange correlation functional [51]. We can see, that states near the Fermi
level are mainly formed by nitrogen pz orbitals, which are in principle similar to graphene’s
states near the Fermi level. Still, we have to keep in mind, that hBN is an insulator. The
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FIG. 2.4: Band structure and corresponding orbital resolved DOS of hBN. Left panel: Band
structure along the high symmetry path Γ–M–K–Γ. Right panel: Orbital resolved DOS. DOS
of d states are multiplied by a factor of 10. Labels B and N correspond to the boron and
nitrogen atoms of the unit cell.

lowest valence band in Fig. 2.4 is almost exclusively formed by nitrogen s states, which
hybridize with boron s and p orbitals. In general, s, px and py orbitals are lying low in energy
in the window from −10 to −5 eV, forming the sp2 hybridized covalent bonds in the plane.
Comparing the contributions to the DOS of hBN and graphene, we can see some similarities,
reflecting the fact of a hexagonal lattice for both systems.

There have also been tight-binding [52] and other DFT [49] studies of the electronic structure
of hBN, which match well with the DFT results presented here, except for the value of
the band gap energy. Like graphene, hBN can also be prepared by exfoliation or CVD [53,
54]. There are already investigations on hBN/metal junctions leading to Shottky barriers
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[55] or of graphene/hBN junctions introducing a band gap in the graphene dispersion [24].
Compared to oxide insulators, hBN should be a much better candidate for spin devices, since
the mobility of graphene is still very high when forming vdW heterostructures and it is
potentially a good candidate as a spin filtering tunnel barrier [26, 27, 39, 56].

2.3. Silicon Dioxide

Silicon Dioxide (SiO2, α-quartz) is one of the most found compounds on earth. It is the
building brick of glass and several different gemstones, but it is also considered as very
important in technology. It is used in semiconductor and microchip industry as the insulating
material in metal-oxide-semiconductor (MOS) transistors or as a substrate material for
growing various thin semiconductors or metals. X-cut quartz is a commonly used material in
terahertz research due to its dielectric and nonlinear properties.

SiO2 crystallizes in a trigonal crystal structure with lattice constants a = 4.913 Å and
c = 5.405 Å. The spacegroup is Nr. 154 with the basis of silicon atoms at position
(0.470, 0.0, 0.0) and oxygen atoms at position (0.414, 0.268, 0.119), see Ref. [57]. The unit cell
contains three SiO2 molecules, see Fig. 2.5(a). The electronic configuration of silicon is [Ne]
3s23p2 and the one of oxygen is [He] 2s22p4 and thus silicon forms covalent bonds with four
oxygen atoms in a tetrahedral shape, see Fig. 2.5(c). Oxygen atoms serve as the connecting

(a) (b)

(c) Oxygen

Silicon

a

c

FIG. 2.5: Unit cell and structure of SiO2. (a) Top view of the trigonal lattice with lattice
constants a = 4.913 Å and c = 5.405 Å. One unit cell is emphasized by the dashed line.
Dashed line along diagonal of the unit cell defines the plane of the side view shown in (b).
(c) Single tetrahedron formed of one silicon atom and four hydrogen atoms.

bridge between two tetrahedrons and thus SiO2 appears in many different crystalline forms
which are obtained by linking the tetrahedrons together in different ways, but its best known
form is amorphous silicon dioxide. Since the lattice constant is nearly twice as large as the
one of graphene and the lattice has trigonal symmetry, it is an appropriate candidate for our
studies.

Due to previous studies of the graphene/α-SiO2(0001) interface [29, 58–60], we adopt an
oxygen surface termination of SiO2 at the interface with the graphene and place graphene
at the hollow sites above SiO2 following Ref. [29]. At the interface with the ferromagnets,
we take a silicon surface termination of SiO2. The problem is that from experiments, no
unique surface termination can be determined and also the stacking configuration cannot be
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predicted for sure and thus we have to rely on our choice.

The predicted band gap for amorphous SiO2 [61] is Eg = 8.9 eV and Eg = 8.4 eV for α-quartz
[62]. Our calculated value for the bulk α-SiO2 band gap is Eg = 6.008 eV. Again the band gap
is underestimated by the calculation. Using an appropriate exchange correlation potential
(modified Becke-Johnson) [51], we can get a more accurate band gap of Eg = 8.88 eV, but for
the heterostructure calculation it is not that important. Nevertheless, SiO2 is a wide gap
insulator. The calculated DOS, Fig. 2.6, is in agreement with Ref. [62]. The valence band
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FIG. 2.6: Band structure and corresponding orbital resolved DOS of SiO2. Left panel: Band
structure along the high symmetry path Γ–M–K–Γ–A–L–H–A. Right panel: Atomic and
orbital resolved DOS. Labels Si and O correspond to the silicon and oxygen atoms of the
unit cell.

DOS can be separated in three regions which are also well separable in the band structure.
We can see that the lowest energetic bands are formed by oxygen s orbitals, hybridizing
with silicon s and p orbitals in an energy window from −20 to −17 eV. The valence bands
near the Fermi level are almost exclusively formed by oxygens p orbitals with some weak
interaction to silicon atoms. The part which is responsible for the covalent bonding is at the
energy window from −10 to −4 eV arising mainly from oxygen p orbitals and silicon s and p
orbitals, forming the sp3-hybridization. The minimum of the valence band at roughly 6 eV
is located at the Γ point and mainly formed by silicon s states. Higher valence bands have
mainly silicon p character.

2.4. Aluminum Oxide

Aluminum Oxide (Al2O3, corundum) is also a widely used substrate for the growth of metallic
or semiconducting thin films in molecular-beam epitaxy (MBE) or metal organic chemical
vapor deposition (MOCVD). The (0001)-surface of Al2O3 was thus intensively studied during
the years [63, 64], predicting an aluminum surface termination [65] with 1/3 monolayer of
aluminum. However it is hard to say, which surface termination will be there in experiment.
Usually for spin injection experiments, oxide insulators are used, but the barriers often
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Aluminum
Oxygen

(a) (b)

a

c

FIG. 2.7: Unit cell and structure of Al2O3. (a) Top view of the trigonal lattice with lattice
constants a = 4.758 Å and c = 12.98 Å. One unit cell is emphasized by the dashed line.
Dashed line along diagonal of the unit cell defines the plane of the side view shown in (b).

suffer from defects or interface roughness, which makes it hard to produce reproducible
heterostructures [18, 66, 67]. By doping Al2O3 with titanium or chromium atoms, one can
get crystals which are laser active (Sapphire and Ruby crystals) and can thus be used in laser
physics to generate radiation.

Al2O3 crystallizes in a rhombohedral crystal structure [68] with lattice constant a = 4.758 Å
and c = 12.98 Å. Rhombohedral systems can be treated as hexagonally symmetric, when
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FIG. 2.8: Band structure and corresponding orbital resolved DOS of Al2O3. Left panel:
Band structure along the high symmetry path Γ–M–K–Γ. Right panel: Atomic and orbital
resolved DOS. Labels Al and O correspond to the aluminum and oxygen atoms of the unit
cell.

using a larger unit cell, which is done in the following, see Fig. 2.7. Al2O3 belongs to the
spacegroup Nr. 167 (Hematite group). The unit cell contains six molecules of Al2O3 in the
hexagonal unit cell. The electronic configuration of aluminum is [Ne] 3s23p1 as the direct
neighbor of silicon in the periodic table. The predicted band gap is Eg = 8.8 eV [69] and our
calculated one is Eg = 6.291 eV, again underestimated by roughly 30% due to the exchange
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correlation potential. Figure 2.8 shows the band structure and the corresponding DOS of
Al2O3. We can see that the lowest valence states are mainly formed by oxygen s orbitals with
a small contribution of aluminum s and p states. The bonding hybridization takes place in
the energy window around −6 eV, where oxygen p states mix with aluminum s and p states.
The highest lying valence bands are mainly formed by oxygen p states as for SiO2. From the
analysis of the DOS and the band structure we see that the two oxide insulators Al2O3 and
SiO2 are very similar.

2.5. Cobalt

Cobalt is a gray ferromagnetic transition metal, which appears in two different modifications
(hcp, fcc), depending on the temperature. It naturally appears in compounds, which contain
cobalt and was mainly used to color glasses (cobalt-blue). Its name has been derived from the
Latin word cobaltum, which means goblin, since at the time of its discovery people believed it
to be jinxed. Today it is used in alloys for different kind of purposes. At room temperature

Γ
K

M

A

(c)

L
H

(a) (b)

c

a

Cobalt

FIG. 2.9: Unit cell and First Brillouin Zone of cobalt. (a) 3D-representation of the hcp-lattice
and (b) corresponding top view with lattice constants a = 2.507 Å and c = 4.069 Å. One
unit cell is emphasized by the dashed line. (c) First Brillouin Zone of the reciprocal lattice.
Γ, M, K, A, H, L are six non-equivalent high symmetry points.

cobalt crystallizes in a hexagonal-closed-packed (hcp) lattice. The lattice constants are
a = 2.507 Å and c = 4.069 Å, see Fig. 2.9. Cobalt has a magnetic moment of roughly
µ = 1.6− 1.7 µB per atom [70]. The electronic configuration of cobalt is [Ar] 3d74s2 and thus
has 9 valence electrons.

The fact that the lattice constant of hcp-cobalt is close to the one of graphene and hBN
makes it a perfect candidate to form heterostructures, since only a small mismatch needs to
be compensated and small strain should be introduced. Since cobalt is a ferromagnet, we
performed open shell calculations of ground state electronic properties. From the DOS in Fig.
2.10 we can see, that states near the Fermi level are mainly formed by d orbitals. We see,
that the corresponding bands cross the Fermi level, which indicates metallic character, as
expected. The bands which are formed by d states are less dispersive compared to bands
which originate from s states, lying low in energy.

Comparing the spin contributions to the DOS, we can see, that states with spin up are lying
lower in energy than states with spin down character, making cobalt ferromagnetic. Our
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FIG. 2.10: Band structure and corresponding orbital resolved DOS of bulk hcp-cobalt. Left
panel: Spin polarized band structure along the high symmetry path Γ–M–K–Γ–A–L–H–A of
bulk cobalt. Spin up (down) bands are shown in solid red (blue). Right panel: Orbital and
spin resolved DOS. The contributions of s and p states are increased by a factor of five. The
arrows indicate different spin contributions of the DOS.

calculated value for the spin magnetic moment is µ = 1.63 µB per atom. Consequently the
total magnetization per unit cell is µG = 3.26 µB, since the hexagonal unit cell contains two
atoms. The value is in agree with the predicted one. By analyzing the DOS we calculate the
spin polarization, which is defined as the difference of the spin down and the spin up density
normalized by the total density evaluated at the desired energy E, i.e., p(E) = ρ↓−ρ↑

ρ↓+ρ↑

∣∣∣
E
. In

order to compare the two ferromagnets, we calculate the spin polarization at the Fermi level
EF to p(EF) ≈ 67%. Thus ferromagnets can be used for spin injection, because the injected
electrical current is spin polarized.

2.6. Nickel

Nickel is a silvery-white ferromagnetic transition metal. It is commonly found in iron
meteorites, but it is still one of the rare metals on earth, usually found together with cobalt.
Mainly it is used in alloys for corrosion-resistance (stainless steel) or metals directly get a
nickel coating. Nickel crystallizes in a face-centered-cubic (fcc) lattice.

It has a magnetic moment of roughly µ = 0.6 µB [70]. The electronic configuration of nickel
is [Ar] 3d84s2 and thus has 10 valence electrons per atom. The expected magnetic moment
should be the smallest among the three ferromagnets iron, cobalt and nickel which is indeed
true, since the d shell is almost filled. In order to stack a hexagonal lattice on top of it,
one needs to consider the (111)-plane, which then looks like a triangular lattice, see Fig.
2.11. The lattice constant of nickel is a = 3.524 Å and thus the lattice constant of the quasi
hexagonal lattice of the (111)-plane is 1

2
√

2a = 2.492 Å. The (111)-plane of nickel is thus a
good basis in order to make heterostructures with graphene, since the lattice mismatch is
small.
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(a) (b) (c)
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FIG. 2.11: Unit cell and First Brillouin Zone of nickel. (a) 3D-representation of the fcc-
lattice, (b) (111)-plane of the fcc-lattice with lattice constant a = 3.524 Å. One unit cell is
emphasized by the dashed line. (c) First Brillouin Zone of the reciprocal lattice. Γ, K, W, X,
L are five non-equivalent high symmetry points of usual reciprocal lattice of a fcc-crystal.
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FIG. 2.12: Band structure and corresponding DOS of bulk fcc-nickel. Left panel: Spin
polarized band structure along the high symmetry path Γ–X–W–Γ–L–K–Γ. Spin up (down)
bands are shown in solid red (blue). Right panel: Orbital and spin resolved DOS. The
contributions of s and p states are increased by a factor of five. The arrows indicate different
spin contributions of the DOS.

The band structure in Fig. 2.12 for bulk nickel is calculated along the high symmetry path
Γ–X–W–Γ–L–K–Γ, since the reciprocal lattice for a fcc-crystal is different from the reciprocal
lattice of a hexagonal crystal; see Fig. 2.11. Our calculated value for the spin magnetic
moment is µ = 0.64 µB per atom. The value is in agree with the predicted one.

We can see similarity between the band structures of cobalt and nickel. Bands near the
Fermi energy are also mainly formed by d states, which cross the Fermi level, giving nickel
a metallic character. The spin splitting of the bands in this case is smaller than for cobalt,
leading to the smaller spin magnetic moment. The spin polarization at the Fermi level EF is
p(EF) ≈ 80%, being larger than the one of cobalt, which can be directly seen by looking at
the DOS.
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2.7. Summary

Since we are interested in proximity induced exchange coupling in graphene, the strategy will
be as follows. We take a thin film of the ferromagnet, put an insulator on top of it as the
tunnel barrier, and place then graphene on top of that. The graphene/insulator/ferromagnet
structures are considered in a slab geometry, where we add 15 Å of vacuum. Since the lattice
constants are very different for some materials, we give here a short overview of the properties
of the different materials. The DFT results for the band gap energies are in good agreement

Material Graphene hBN SiO2 Al2O3 Cobalt Nickel
[71] [49, 72] [57, 62] [69] [73, 74] [73, 74]

Lattice hex. hex. trig. rhomb. hcp fcc

a [Å] 2.463 2.504 4.913 4.758 2.507 3.524
c [Å] 6.712 6.66 5.405 12.98 4.069 —

Eg [eV] (EXP) — 5.97 8.4 8.8 — —
Eg [eV] (DFT) — 4.681 6.008 6.291 — —
µ [µB] — — — — 1.6 0.6

TAB. 2.1: Overview of the used materials with their corresponding lattices, lattice constants
a, c, experimental (EXP) and calculated (DFT) band gap energies Eg for the insulators and
magnetic moments µ of the ferromagnets. Lattice constants c for graphene and hBN, are for
graphite and bulk hBN.

with others, see Refs. [24, 68, 75]. In comparison to the experiment, the calculated band gaps
are underestimated by roughly 30%. For thin films (0.5 – 2 nm) of the insulator, the band
gap is not necessarily the same as for the bulk, as can be seen in Ref. [58] for SiO2. Later on,
when we consider thin films of the ferromagnets, it can happen, that the magnetic moment is
increased compared to the bulk value, as proposed in Ref. [31]. Studies on nickel revealed
that surface atoms showed an increased magnetic moment of 7% compared to bulk atoms.
Dealing with heterostructures is much more complicated, since we have to consider a lot of
things, which influence the electronic properties of graphene. For example, the behavior of the
heterostructure depends on the stacking order and thickness of the single layers. Moreover,
there is always a mismatch in the lattice constant and thus we will introduce strain in the

Material combination Graphene Insulator Ferromagnet a [Å] mismatch [%]

Gr + hBN + Co 1× 1 1× 1 1× 1 2.489 0.83
Gr + hBN + Ni 1× 1 1× 1 1× 1 2.480 0.75
Gr + SiO2 + Co 2× 2 1× 1 2× 2 4.920 0.68
Gr + SiO2 + Ni 2× 2 1× 1 2× 2 4.920 0.48
Gr + Al2O3 + Co 2× 2 1× 1 2× 2 4.900 1.88
Gr + Al2O3 + Ni 2× 2 1× 1 2× 2 4.900 1.67

TAB. 2.2: Overview of the smallest possible matchings for the lattices; given are the in-plane
sizes of the required supercells. The heterostructure lattice constant a and the average lattice
mismatch between the three materials and the heterostructure systems are given.



16 2. Single Layers

structure, by fixing a reasonable but assumed lattice constant.

In Tab. 2.1 we summarize the lattice constants, band gap energies and atomic magnetic
moments for the individual bulk crystals. By matching the materials with their lattice
structure and lattice constants, we are able to form vdW heterostructures on a commensurable
hexagonal lattice as given in Tab. 2.2 with a mismatch of the lattices smaller than 2%. For
example, graphene, hBN and cobalt match in a 1× 1 unit cell with a commensurable lattice
constant of a = 2.489 Å. The average mismatch between the heterostructure lattice constant
and the single layer lattice constants is 0.83%. The smallest possible commensurable unit cell
combinations are listed in Tab. 2.2.



Chapter 3
Heterostructures with hBN

There have already been several theoretical [24, 25, 28, 55, 76–83] and also experimental [27,
39, 53, 84–86] investigations based on metal/hBN, graphene/hBN or graphene/hBN/metal
heterostructures. All of them reveal several striking properties, e.g. graphene grown on hBN
shows a 4 times higher mobility compared to graphene grown on SiO2 [84]. This is especially
useful, when fast electron transport is necessary. Most of all for spintronics, since, even
though an insulating/semiconducting substrate can induce strong proximity SOC [87, 88] and
thus limit the spin lifetime in graphene, we can transport the information over a long distance
before it gets lost. Investigations on graphene/hBN structures show an induced band gap
of roughly 50 meV at the Dirac point in the graphene band structure, since the two carbon
sublattices become inequivalent when interacting with the hBN-substrate [24]. This is useful,
because we can give graphene semiconducting properties, which is especially attractive for field
effect devices. When we want to make graphene applicable it is necessary to make metallic
contacts. Placing graphene on a metal substrate results in doping of graphene [25], but
the linear graphene dispersion can be strongly altered by a metallic substrate. Additionally
experiments on ferromagnet/graphene interfaces [32, 33] show that one atom thick single
layer of graphene is enough to efficiently protect ferromagnetic spin sources against oxidation
and preserve the measurable spin-valve signal in agreement with theory [34, 35].

By forming graphene/insulator/ferromagnet structures, we can simultaneously protect
graphene from the influence of the ferromagnet due to the insulating barrier, but exploit
the magnetism offered from the ferromagnet. Thus it is crucial to investigate magnetic
and spin-orbit proximity effects from ferromagnets/metals influencing graphene through an
insulating layer, in detail. Investigations on structures of graphene on the ferromagnetic
insulator EuO already show a tunable magnetic proximity effect leading to a spin dependent
Fermi velocity vF, hybridization gap and large spin polarizations of the order of 20% [38].
Experimental and theoretical investigations of Ni(111)/hBN/graphene structures [27, 39]
show a very efficient spin-injection into graphene. They also find an inversion of the measured
spin-valve signal due to the variation of the barrier thickness. Additionally, spins have also
been successfully injected from cobalt by tunneling through oxide insulators into graphene
[66].

In this section we consider graphene/hBN/ferromagnet structures to investigate the low
energy physics around the graphene Dirac cone. At first, we search for the relaxed minimum
energy configuration, then we calculate the physical relevant quantities like band structure
and DOS and finally extract the strength of the exchange interaction by employing a low
energy model Hamiltonian, which is able to describe the modified graphene band structure in
the vicinity of the Dirac point.

17
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3.1. Graphene/hBN/Cobalt

The lattice constant of graphene is a = 2.46 Å [45], the one of hBN [49] is a = 2.504 Å,
slightly bigger than the one of graphene, and the one of hcp-cobalt is a = 2.507 Å [89]. Thus
we fix an effective average lattice constant of a = 2.489 Å for the system, as a compromise to
make the lattices commensurable and to keep the unit cell as small as possible. The lattice of
graphene changes by only 1%, since we want to look at the electronic properties of graphene,
especially. The main effect of a larger lattice constant is that in-plane sp2 bonding gets
weakened due to the increased distance between the atoms and thus low energy bands rise in
energy. For a further analysis of the effects of the lattice constant on the electronic structure
of graphene and hBN, look at appendix B.2.

Our starting point structure will be one single layer of graphene, one layer of hBN and three
atomic layers of cobalt stacked on top of each other, taking the symmetry of the hexagonal
lattices into account. The distance between the single layers at the beginning is d = 3.2 Å,
assuming vdW-bonding. A vacuum spacing of 14 Å is added, to get a quasi-2D slab structure.
Computational details are given in appendix B.3.

3.1.1. Lattice Structure

Initially, we need to find the minimum energy configuration of this layered structure, since
there are a lot of possibilities to stack them. At first, we keep the layers of cobalt and hBN
fixed on top of each other, as in Fig. 3.2(1). The distances between the layers are also kept
fixed at d = 3.2 Å. We want to take a look at the different total energies of the system, when
we change only the stacking order of graphene on top of hBN, since there are already three
inequivalent possibilities; see Fig. 3.1. Of course, one could think of other possibilities, but

Nitrogen Boron Carbon

(a) (b) (c)

FIG. 3.1: Possible stackings of graphene on top of hBN. (a)-(c) show three inequivalent
stacking possibilities of graphene on top of hBN for commensurable lattices. The vdW
structure has C3v symmetry.

from the symmetry point of view, these structures are favorable for commensurable lattices.
The total energies and the forces for the different configurations from Fig. 3.1 are given in
Tab. 3.1 where we can see that it is energetically favorable if carbon atoms are on top of
boron and above the hBN-hexagon, in agreement with Ref. [24]. The forces are too high,
since a relaxation of atomic positions has not been performed up to this point.

In the second step, we keep this minimum energy configuration between hBN and graphene
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configuration (a) (b) (c)

Etot − Eref [meV] -27.432 -37.248 -65.442
total force [mRy/a0] 25.825 25.629 25.428

TAB. 3.1: Total energies of the different stacking possibilities of graphene on top of hBN
with respect to the chosen reference energy Eref = −562.925 Ry. The different configurations
correspond to Fig. 3.1. The stacking of hBN on top of cobalt was configuration (1) in Fig. 3.2,
which we kept fixed for these possibilities. The layer distances are fixed at d = 3.2 Å.

configuration (1) (2) (3) (1’) (2’) (3’)

Etot − Eref [meV] -65.442 -67.129 -73.922 -115.13 -114.27 -74.702
total force [mRy/a0] 25.428 25.173 24.593 22.467 22.578 24.594

TAB. 3.2: Total energies of the different stacking possibilities of hBN on top of cobalt with
respect to the chosen reference energy Eref = −562.925 Ry. The different configurations
correspond to Fig. 3.2. The primed labels correspond to the same configurations, but with
interchanged nitrogen and boron atoms. The stacking of graphene on hBN is configuration
(c) in Fig. 3.1. The layer distances are fixed at d = 3.2 Å.

fixed, but take a look at the different stacking possibilities between cobalt and hBN. In
general, there are again three possibilities of stacking a hexagonal structured layer on top of
the hcp-cobalt for commensurable lattices, which are shown in Fig. 3.2, again taking into
account the symmetry. The atoms in the unit cell of hBN are inequivalent and therefore the

Nitrogen Boron Cobalt

(1) (2) (3)

top

hcp

fcc

FIG. 3.2: Possible stackings of the hBN layer on top of cobalt. (1)-(3) show three inequivalent
stacking possibilities for a commensurable lattice. By interchanging nitrogen and boron
atoms, there are in total six possibilities.

number of possibilities doubles by interchanging nitrogen and boron atoms. From the total
energies in Tab. 3.2, it seems to be crucial that the nitrogen atom is at top-site above the
cobalt substrate. The boron atom can have two configurations, either fcc or hcp-site, which
are very close in energy. We find that it is energetically favorable if nitrogen atoms are at
top-site and boron atoms are at fcc-site above cobalt, in agreement with Refs. [28, 76, 78].

In general, three positions (top, hcp and fcc) can be distinguished within a hexagonal unit
cell. Thus the different positioning possibilities of the carbon atoms above the substrate will
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influence the strength of proximity magnetism. In Fig. 3.3, the energetically most favorable
stacking is shown, following from our total energy analysis, where we assumed the lattices to
be commensurable with the lattice constant a = 2.489 Å. Taking the hexagonal symmetry of
the lattices into account, the vdW structure in total has C3v symmetry. Since we know that
hcp-cobalt is a ferromagnet, we consider open shell calculations for ground state electronic
properties.

In the final step, we allow the atoms within the unit cell to relax in their z position
(transverse to the layers), to find the optimized distances between the single layers. After
relaxation of atomic positions we obtained layer distances of dCo/hBN = 2.097 Å between
the cobalt and hBN and dhBN/Gr = 3.010 Å between hBN and graphene (measured between
nitrogen and carbon/cobalt atoms, respectively, since the hBN layer is buckled) and a
vacuum spacing of roughly 15 Å. The adjacent layer distances of this minimum energy

Cobalt Nitrogen
Boron

~ 2.1 Å

~ 3.0 Å

~ 0.1 Å 

(a) (b)

top

fcc
hcp

a ~ 2.49 Å

Carbon

CB CA

Co3

Co2

Co1

FIG. 3.3: Structure of graphene/hBN/cobalt, with labels for the different atoms. (a) Top
view of the structure, with one unit cell emphasized by the dashed line. (b) Side view with
stacking configuration: CB over boron, CA over hBN-hexagon. Nitrogen at top-sites and boron
above fcc-sites of cobalt. The distances indicated are measured between graphene/cobalt and
the nitrogen atom of hBN, since the hBN layer is corrugated by ∆z = 0.113 Å. The boron
atom is closer to the cobalt surface. Atoms Coα, α = 1, 2, 3 label the three cobalt layers.

configuration are in agreement with Refs. [24, 55, 90], which report dhBN/Gr = 3.22− 3.40 Å
and dCo/hBN = 1.92 − 2.02 Å. We also find, that the hBN-layer is not flat anymore but
slightly buckled since the boron atom is closer to the cobalt surface by 0.113 Å compared to
the nitrogen atom, in agreement with Refs. [55, 76].

It is worth to mention that the energy gain by using a spin-polarized ground state in the
calculation compared to a non-polarized ground state is ∆Esp-nsp ≈ 0.7 eV, which is very
large compared to the thermal energy and cannot be neglected for the description of this
system. The energy difference by changing the stacking of the atoms in the system, following
from the total energies in Tabs. 3.1, 3.2, is comparable to the thermal energy kBT ≈ 25 meV.
During the production of such layered structures, temperatures of 1000 K are common
[53, 79] and thus the energetically favorable stacking cannot be predicted for sure at room
temperature. Since the lattices of graphene, hBN and cobalt are incommensurable in reality,
there will always be regions, where any of the mentioned stacking configurations appear.
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Computationally it is very demanding to analyze incommensurable structures, since one has
to consider large supercells. For graphene on hBN, moiré patterns have been observed [91,
92] for an incommensurable structure. As our results are in agreement with previous DFT
calculations, the starting point for our considerations will be the structure shown in Fig. 3.3.
Details of the calculations presented in the following are given in appendix B.3.

3.1.2. Effective Hamiltonian

First we want to have a look at the general band structure of the vdW system, in order to
get a feeling, where the bands of our single layers come into play. In Fig. 3.4 we show the
band structure divided into the two spin channels, where the different colors correspond to
the different layers of the vdW heterostructure. We can see, that the bands of the individual
layers are almost intact and get only slightly influenced by the other layers. Fortunately the
graphene band structure, especially the linear dispersion at the K point, is preserved. Thus
an effective low energy model Hamiltonian should be able to describe the dispersion in the
vicinity of the K point.

Obviously hBN gets spin polarized, especially by looking at the highest lying valence band
of hBN directly at the K point. From the spin up channel, we see that the maximum of

FIG. 3.4: Character plot of the spin polarized band structure of the graphene/hBN/cobalt
heterostructure along the high symmetry path M–K–Γ. Left panel: Spin up character
plot of the band structure. Different colors correspond to the different layers of the vdW
heterostructure (red = cobalt, black = graphene, green = hBN). Right panel: Spin down
character plot of the band structure.

this band is at −4.5 eV, while it is at −4 eV for the spin down channel, resulting in an
exchange energy of roughly 0.5 eV. The same is true for the conduction band of hBN, which
is also spin split. From the analysis of the single layer hBN, we know that the maxima of the
valence bands are mainly formed by pz orbitals, originating from the nitrogen atom. The
main hybridization of hBN bands with the cobalt bands takes place near the Γ point. The dz2

orbitals of cobalt hybridize with states of hBN and we can see anti-crossings of the bands in
the energy window from −4 to −7 eV. Also at the K point cobalt bands show some character
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of states from hBN at energies around −3 eV So indeed, the influence of cobalt on hBN is
large, since the layer distance is quite small. By analyzing the cobalt bands for the different
spin channels, we find an exchange energy of roughly 1.6 – 1.8 eV, which is in agreement with
its atomic magnetic moment of 1.6 µB. The graphene π-bands are lying within the band
gap of hBN, but get influenced by the cobalt d-bands lying around the Fermi level. In the
following we will explicitly analyze, how the graphene bands are influenced by the cobalt
bands near the Dirac point.

Two effects will play a role in this heterostructure that will influence graphene’s band structure
near the Dirac point. First, the influence of the substrate resulting in a small gap in the
band structure of around 50 meV as for graphene/hBN structures [24] is due to the sublattice
symmetry breaking. Second, due to the metal the Dirac point is shifted away from the system
Fermi level because of the difference in the workfunctions of graphene and the metal, as in
Refs. [24, 25]. Graphene gets either hole or electron doped, depending on the metal itself
or on the applied electric field transverse to the structure [28]. As we can see in Fig. 3.4,
the Dirac point of graphene is roughly ED ≈ −0.5 eV below the system Fermi level, making
graphene electron doped. We call the energy ED the Dirac point energy and it is a measure
for the doping level. If one is interested in the real value of the doping, one would have to
calculate the difference of the workfunctions of graphene and the vdW heterostructure, as
has been done in Ref. [28]. From Ref. [25] we already know that, when graphene is placed
on cobalt, the graphene bands are perturbed, especially the cone structure at K point is
destroyed. In Fig. 3.4 we can see, that already one layer of hBN protects the Dirac cone
region significantly.

Minimal pz-model

Our main goal is to answer the question, how do hBN and the ferromagnetic substrate affect
the graphene Dirac cone at K?

The band structure in Fig. 3.4 motivates us to introduce the following minimal Hamiltonian
to describe the proximity induced exchange spin splitting in graphene, similarly to earlier
derivations of effective Hamiltonians for the proximity SOC in graphene on transition metal
dichalcogenides and on Cu(111) substrate [30, 88]. The basis of the Hamiltonian we use is
pseudospin ⊗ spin, giving us the basis states |A ↑〉, |A ↓〉, |B ↑〉, and |B ↓〉.

Pristine graphene is described by the massless Dirac Hamiltonian H0 in the vicinity of
K (K’)

H0 = ~vF(τσxkx + σyky), (3.1)

with vF denoting Fermi velocity, kx and ky are the Cartesian components of the electron
wave vector measured from K (K’) and σx and σy are the Pauli matrices of pseudospin.
Hamiltonian H0 describes gapless Dirac states with conical dispersion near Dirac points, with
τ = ±1 for K (K’) point, shown in Fig. 3.5(a). Since graphene is on a hBN/ferromagnet
substrate, the two different carbon atoms from different sublattices feel different effective
potentials, which can be described by the Hamiltonian

H∆ = ∆σzs0, (3.2)

where σz is the Pauli matrix in pseudospin space, s0 is the unit matrix in spin space and ∆ is
the proximity induced orbital gap. The Hamiltonian H∆ describes a mass term, which breaks
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FIG. 3.5: Band structure topologies of the modified graphene Hamiltonian. (a) Band
structure in the vicinity of the K point of the model graphene Hamiltonian H0, (b) H0 +H∆
and (c) H0 + H∆ + Hex, with λA

ex < λB
ex < ∆. The spin up (down) branch is shown in

solid red (blue). (d) A zoom on the band structure of subfigure (e) of the DFT results
of graphene/hBN/cobalt in the vicinity of the K point with emphasized characters of the
corresponding graphene sublattice pz orbitals, i.e. the upper (lower) two bands are formed
by pz orbitals of sublattice A (B).

the pseudospin symmetry and thus H0 +H∆ describes a gapped graphene spectrum with
parabolic dispersion, shown in Fig. 3.5(b). The most crucial thing we want to investigate is
the exchange splitting induced in the graphene bands by the ferromagnet. Fig. 3.5(d) shows
the spin polarized band structure of graphene/hBN/cobalt near the Dirac point. To describe
the proximity induced exchange splitting of the Dirac states, we introduce the Hamiltonian

Hex = λA
ex [(σz + σ0)/2] sz + λB

ex [(σz − σ0)/2] sz, (3.3)

with λA
ex and λB

ex being the proximity induced exchange parameters for sublattice A and B,
respectively. This term is similar to a sublattice resolved intrinsic SOC Hamiltonian [10, 12,
21, 30, 88, 93]. The dispersion of the Hamiltonian H0 +H∆ +Hex, which should be able to
describe the spin splitting of the band structure in the vicinity of the K point, is shown in
Fig. 3.5(c). The minimal Hamiltonian in matrix form reads

H0 +H∆ +Hex =


∆ + λA

ex 0 ~vF(kx − iky) 0
0 ∆− λA

ex 0 ~vF(kx − iky)
~vF(kx + iky) 0 −∆− λB

ex 0
0 ~vF(kx + iky) 0 −∆ + λB

ex

 . (3.4)

Figure 3.5(e) shows the calculated band structure of the graphene/hBN/cobalt structure
within DFT along the high symmetry path M–K–Γ in the energy window from −2 to 1 eV
around the system Fermi level. Figure 3.5(d) shows a zoom around the K point of the DFT
band structure, where we can see that the conduction (valence) Dirac states are mainly
formed by pz orbitals of sublattice A (B), supporting the need for a sublattice resolved
exchange Hamiltonian.

The Hamiltonian H0 +H∆ +Hex is a minimal model using only carbon pz orbitals, which
can be used to fit the DFT-data directly at the K point and extract the pure band splittings.
This Hamiltonian, we denote as the pz-model, which is essentially useful for model charge and
spin transport calculations. We would like to emphasize that the dispersion of the minimal
pz-model Hamiltonian in Fig. 3.5(c) is already very similar to the first-principles dispersion
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in the vicinity of the Dirac point in Fig. 3.5(d).

The parameters ∆, λA
ex and λB

ex and the band splittings at the K point are related as follows
for the pz-model: splitting of the conduction bands ∆Econd = |2λA

ex|, splitting of the valence
bands ∆Eval = |2λB

ex|, and hybridization gap ∆Econd-val = |2∆| as shown in Figs. 3.5(b),(c).
The Dirac point is shifted in energy with respect to the system Fermi level, as can be seen in
Fig. 3.5(e). The Dirac point energy ED, defined for the pz-model is calculated by averaging
the four DFT-energies coming from the graphene Dirac bands at the K point and it will be
our measure for the doping level.

Extended pz-d-model

As we consider ferromagnetic substrates, flat bands originating from d orbitals are positioned
around the Fermi energy. In the interesting range of energies near the Dirac point, pz states
of graphene hybridize with the d states, depending on their energetic position in the band
structure. Similar effects occur in graphene on Cu(111) substrate [30], for example. When
these d orbitals hybridize with pz carbon orbitals in graphene, the effective exchange coupling
gets strongly modified. Figure 3.5(e) shows that in the energy window of ±400 meV from the
Dirac point, three bands are interacting (crossing) with the Dirac states.

In order to capture the hybridization quantitatively, we add an additional ferromagnet
Hamiltonian HFM to our model consisting of three d bands, which describes the hybridization
of the ferromagnet d bands with the graphene states. The full effective Hamiltonian Hpz-d =
H0 +H∆ +Hex +HFM in matrix form reads

Hpz-d=



∆̃ + λ̃A
ex 0 ~vF(kx − iky) 0 uA

↑ vA
↑ wA

↑
0 ∆̃− λ̃A

ex 0 ~vF(kx − iky) uA
↓ vA

↓ wA
↓

~vF(kx + iky) 0 −∆̃− λ̃B
ex 0 uB

↑ vB
↑ wB

↑
0 ~vF(kx + iky) 0 −∆̃ + λ̃B

ex uB
↓ vB

↓ wB
↓

uA
↑ uA

↓ uB
↑ uB

↓ Eu 0 0
vA
↑ vA

↓ vB
↑ vB

↓ 0 Ev 0
wA
↑ wA

↓ wB
↑ wB

↓ 0 0 Ew


(3.5)

where Ej , j = u,v,w are the energies that correspond to the ferromagnet d states (with the
spin specified by the DFT calculation), which interact with the Dirac states, and jA,B

↑,↓ are the
effective hybridization parameters with the corresponding Dirac state, where the subscript
(superscript) indicates the spin (pseudospin) state.

The proximity exchange (λ̃ex) and orbital gap (∆̃) parameters are in principle different from
those of the minimal pz-model Hamiltonian as they are renormalized due to the hybridization.
The hybridization parameters vanish, if the Dirac states directly at K are reasonably far
away from the ferromagnet d bands and an interaction does not affect them. As soon as the
Dirac states at K are close to a d band or the hybridization is so large that it affects the
spin splitting of the Dirac states, we can describe the hybridization with the corresponding
interaction parameter. The full effective Hamiltonian Hpz-d will be denoted as the pz-d-model,
and in the energy window of roughly ±150 meV from the Dirac point energy, the band
structure can be well described by this model, see Figs. 3.8 and 3.9. The pz-d-model is of
essential value for the description of the hybridization between the d bands with the graphene
Dirac states, which can significantly enhance the effective proximity exchange splitting, as we
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will discuss later. Like the minimal pz-model, the pz-d-model has to be shifted in energy, to
match the DFT data and we call this energy E0, which is an analog of ED.

3.1.3. Results

One hBN layer

We start with presenting the results on the graphene/hBN/cobalt structure from Fig. 3.3,
where we considered three layers of cobalt and one layer of graphene and hBN, respectively.
From the spin and orbital resolved DOS in Fig. 3.6, we can see that the contributions to
the DOS from spin up and spin down channels of boron and nitrogen are not equal. Indeed,
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FIG. 3.6: Orbital and spin resolved DOS of all the atoms contained in one unit cell of
the graphene/hBN/cobalt heterostructure. Atoms Coα, α = 1, 2, 3, which are ordered from
vacuum to interface with hBN, label the cobalt layers as shown in Fig. 3.3(b). CA and
CB correspond to the two different sublattices, where CB is the one above the boron atom.
Positive (negative) value of the DOS corresponds to spin up (down) and different colors
correspond to projections on different orbitals.

boron shows a magnetic moment of −0.04 µB and nitrogen shows a magnetic moment of
0.02 µB. The ferromagnetic exchange of hBN with cobalt happens mainly in the energy
window from −5 to 0 eV, as there can be strong interaction with the d orbitals from the
ferromagnet. We have already seen that the exchange energy of the highest lying valence
band of hBN is roughly 0.5 eV, induced by proximity magnetism from the cobalt. It is not
really surprising that hBN gets polarized by the cobalt, since the nitrogen atoms sit directly
on top of the cobalt atoms, see Fig. 3.3, maximizing the overlap of the orbitals. Especially we
see that, if the dz2 contribution to the DOS of Co3 has a maximum, the pz orbitals dominate
the DOS of nitrogen. A clear band gap cannot be identified anymore in the DOS of hBN,
in contrast to pristine hBN, since the electronic states of graphene and the ferromagnetic
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substrate extend over the band gap of hBN.

The two carbon atoms CA and CB do not seem to get polarized at all from the DOS. However,
cobalt induces a small positive spin magnetic moment in both carbon atoms of roughly
4× 10−4 µB. Especially in the energy window between −2 to 0 eV, we can see an imbalance
in the carbon DOS of the two spin channels. In this energy window also the DOS of hBN
shows a strong imbalance coming from pz orbitals, indicating the proximity nature of the
polarization of Dirac states. The Dirac point of graphene is now located at roughly −0.5 eV
below the system Fermi level, where we can see a very small peak in the spin up density of
both carbon atoms, in contrast to pristine graphene. We also note that at this energy there
is a large spin up contribution from pz orbitals of nitrogen and from dz2 orbitals of Co3.

The cobalt atoms, of course, possess a magnetic moment, but there are deviations among
them. The different atoms Co1, Co2, and Co3 have magnetic moments of 1.71 µB, 1.59 µB,
and 1.51 µB, and deviate from the bulk value of 1.66 µB. The magnetic moment of the cobalt
atoms decreases from the vacuum side to the interface with hBN. Cobalt d states are localized
in the energy window from −6 to 2 eV around the Fermi level.

Fig. 3.7 shows the spin polarized band structure with characters of the d orbitals of the
different cobalt atoms Coα, α = 1, 2, 3. We can see, that mainly one of Co3 spin up bands is

FIG. 3.7: Spin polarized band structure of graphene/hBN/cobalt heterostructure with
character of the d orbitals of the different cobalt atoms Coα, α = 1, 2, 3. Spin up (down)
bands are shown in solid red (blue). Thickness of the bands are weighted with the d orbital
character of the individual cobalt atoms, corresponding to the three layers in Fig. 3.3(b).

located at the Dirac point. By further investigation, one can see that this band represents the
highest lying spin up d band of cobalt and is mainly formed by its dz2 orbital, as indicated in
Fig. 3.8, which has a similar shape as a pz orbital. The effective overlap of the cobalt dz2 and
the carbon pz orbital can be large, giving a main contribution to the transport perpendicular
to the vdW heterostructure.

In addition, two bands of Co2 are located near the Dirac point energy. The lower spin up
band is also formed by the dz2 orbital, while the upper spin down band is formed by a
combination of dx2−y2 and dxy orbitals, with its spin up counterpart at roughly −1.7 eV
below the system Fermi level. What can also nicely be seen is the intrinsic exchange splitting
of cobalt of roughly 1.6 eV, especially if we look at the Γ point. As expected, mainly cobalt
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atoms Co2 and Co3 from the interface side with hBN influence the Dirac states at the K
point, while the d bands from the cobalt atom Co1 at the vacuum side are lying more far
away from the Dirac point. Moreover, we notice a window in energy between 0 and 0.5 eV
at the K point, where no d bands are located. By an external electric field, one could shift
the Dirac point to this free energy window such that the graphene Dirac bands will not be
crossed by any d bands and thus the band splittings at the K point will not get influenced by
hybridization with d bands.

Since we are interested in the proximity induced exchange spin splitting in graphene, we fit
our effective model Hamiltonians to the DFT calculated band structure, to get representative
parameters for our structures. Fig. 3.8(a) shows the spin polarized band structure of the
graphene/hBN/cobalt heterostructure for one layer of hBN. The graphene Dirac states for
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FIG. 3.8: Spin polarized band structure of graphene/hBN/cobalt heterostructure for one
layer of hBN. (a) Band structure in the vicinity of the Dirac point with labels for the main
orbital contributions from which the individual bands are formed, e.g. dz2(3) corresponds
to the dz2 orbital of cobalt atom Co3 from Fig. 3.3(b). Labels Ej , j = u,v,w are the energy
bands, which correspond to the cobalt d states used to fit the pz-d-model Hamiltonian in Eq.
(3.5). The energies Ej , in Eq. (3.5), are measured with respect to the energy E0. (b) The
fit to the pz-d-model with a side view of the structure. First principles data (dotted lines)
are well reproduced by the pz-d-model (solid lines). (c) The corresponding splittings of the
valence (val) and conduction (cond) Dirac states of graphene. The main fit parameters are
E0 = −430.89 meV, ∆̃ = 21.45 meV, λ̃A

ex = −7.63 meV, λ̃B
ex = 8.95 meV, Eu = −279.41 meV,

Ev = −19.37 meV, Ew = 282.31 meV, wA
↓ = 48.44 meV. The most relevant parameters

are obtained, by minimizing the difference between the model and the DFT data for a
fitting range from K towards Γ point for k points up to 20 × 10−3/Å. By performing the
fit towards M point, one would obtain slightly different parameters, at maximum deviating
by 5%. From the band structure and from the fact that we limit our fitting range, we find
that no additional hybridization parameters jA,B

↑,↓ are necessary to fit our band structure,
except for the mentioned ones. The Fermi velocity to match the slope away from K point is
vF = 0.812×106 m

s , which corresponds to a nearest-neighbor hopping parameter of t = 2.48 eV,
slightly smaller than the commonly used value of 2.6 eV [10, 12, 21], due to the larger lattice
constant used here.

spin up are lying lower in energy than the spin down ones. The Dirac point energy is below
the system Fermi level, corresponding to electron doping of graphene, since the Fermi level
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crosses now the conduction band of graphene. This shift is induced by the metal as suggested
in Ref. [25]. The cobalt bands hybridize with the graphene states in the vicinity of the K
point and introduce exchange splitting. From the band structure in Fig. 3.8 we see that the
linear dispersion of graphene is preserved. In addition, a gap forms and the spin degeneracy
of the Dirac states gets lifted, allowing for semiconducting properties along with the usage of
different spin channels by appropriate experimental setups. By comparing our DFT results
to the pz-d-model Hamiltonian Hpz-d, Eq. (3.5), we obtain the parameters given in Tab. 3.3,
for cobalt as the ferromagnet and one layer of hBN. The fit of the pz-d-model is shown by
solid lines in Fig. 3.8(b) and agrees very well with the DFT data. The gap in the dispersion
is found to be roughly 40 meV, while the band splittings are of the order of 10 meV, for
one layer of hBN. We additionally employ our pz-model valid directly at the K point. The
parameters for the pz-model are given in Tab. 3.4 and do not deviate much from the values
obtained by the pz-d-model, due to the rather weak influence of the hybridization of the d
orbitals with the graphene Dirac states at the K point.

Two hBN layers

Figure 3.9 shows the calculated band structure and the fit to the pz-d-model in the case of
two layers of hBN and three layers of cobalt. The inset in Fig. 3.9(b) shows the geometry for
two layers of hBN. The relative position of carbon atom CA to hBN is not changed, while
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FIG. 3.9: Spin polarized band structure of graphene/hBN/cobalt heterostructure for two
layers of hBN (AA’ stacking). (a) Band structure in the vicinity of the Dirac point with labels
for the main orbital contributions. Inset shows a zoom on the conduction Dirac states to
visualize the reversal of the spin states. (b) The fit to the pz-d-model with a side view of the
structure for two layers of hBN. DFT data (dotted lines) are well reproduced by the pz-d-model
(solid lines). (c) The corresponding splittings of the valence and conduction Dirac states. The
fit parameters are E0 = −352.65 meV, ∆̃ = 41.02 meV, λ̃A

ex = 0.096 meV, λ̃B
ex = −0.512 meV,

Eu = −357.12 meV, Ev = −114.75 meV, Ew = 207.34 meV, vB
↑ = 41.67 meV. The Fermi

velocity to match the slope away from K point is vF = 0.820× 106 m
s . All other parameters

are zero for the same fitting range as for the one layer case.

the position of the atom CB is changed such, that it is again on top of the uppermost boron
atom, which is the energetically favorable situation for graphene on hBN. The conduction
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(valence) Dirac states are still formed by sublattice A (B), even though CB has changed its
position within the unit cell. The layer distance between the two hBN layers was relaxed
to dhBN/hBN = 2.977 Å and the distance between the uppermost hBN layer and graphene is
dhBN/Gr = 3.114 Å in the two hBN layer case. The corrugation of the lower hBN and the
distance between hBN and cobalt did not change. Fig. 3.9(a) shows the spin polarized band
structure of graphene/hBN/cobalt for two layers of hBN. In the band structure, now the
spin up graphene Dirac states are no longer lying lower in energy than the spin down ones,
leading to reversal of the sign of the exchange parameters λA

ex and λB
ex. The band structure

shows, that the doping level decreases by roughly 80 meV and the hybridization with the d
band with energy Ev, coming from the top-cobalt layer, is strongly enhanced, in contrast
to the case with one hBN layer. The fit to the pz-d-model is shown by solid lines to the
DFT data in Fig. 3.9(b) and the obtained parameters are given in Tab. 3.3 for cobalt as the
ferromagnet and two layers of hBN. In Fig. 3.9(c) we can see that the band splitting at the K
point for the conduction (valence) bands is smaller (larger) compared to the one hBN layer
case. In addition, the proximity induced gap nearly doubles, and the hybridization to the dz2

band originating from Co3 is much stronger.

The inset in Fig. 3.9(b) shows that for the case of two hBN layers, carbon atom CB (now
in top position) has a direct connection to the cobalt atom in top position via a nitrogen
and a boron atom of the two individual hBN layers. Localized at this cobalt atom Co3 in
top position, there is some density with dz2 character (resulting in the band with energy
Ev), which can propagate through this direct path and polarizes carbon atom CB. This
hybridization is described with the parameter vB

↑ , shifting the coupled bands in energy and
leading to the opening of a hybridization gap in the band structure, which also enhances the
band splitting at the K point. The vertical stacking of the atoms facilitates the hybridization
of the carbon pz states with cobalt d states. For the case of one hBN layer there is no
direct path connecting cobalt atoms in top-position and carbon atoms CB and thus the
hybridization is suppressed. Again, by employing our pz-model directly at the K point, we
can extract parameters, which correspond to the pure splittings of the Dirac bands at the
K point, corresponding to the values of the splittings in Fig. 3.9(c). The values of λ̃B

ex and
λB

ex, obtained from the two models are given in Tabs. 3.3, 3.4. They deviate by a factor
of 20, which comes from the fact, that the minimal pz-model describes dressed exchange
parameters, whereas the pz-d-model describes the bare exchange parameters. The dressed
parameters contain both the interlayer exchange, as well as spin-selective hybridization of pz
and d orbitals. The bare exchange couplings λ̃ex are much weaker than in the single hBN
layer case, by an order of magnitude. However, the dressed coupling λB

ex stays in magnitude
similar (the sign changes). The reason is that the valence band spin splitting is dominated by
the anti-crossing of dz2(3) and pz(CB) orbitals, affecting only the spin up component. The
spin down valence band is not affected. As a result, the proximity spin splitting is in this case
caused by shifting the spin up band relative to its spin down counterpart, by the spin-selective
hybridization. This mechanism of proximity exchange can lead to a giant enhancement of the
proximity spin splittings.

In conclusion, two mechanisms are responsible for the band splittings of the graphene Dirac
states. One is the general magnetic exchange, coming from proximity magnetism of the
ferromagnetic substrate, which is influenced by the barrier thickness. The thicker the barrier,
the weaker is the general magnetic exchange splitting of the Dirac bands. Second, the
hybridization of the graphene states with the d bands can additionally enhance the pure band
splittings at the K point, as can be seen in Fig. 3.9. From the theory of magnetic interlayer
coupling, we know that the interlayer exchange coupling is an oscillating function of the
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spacer thickness [94, 95]. In our studies on graphene/insulator/ferromagnet structures, we
observe a similar behavior in the proximity exchange.

Additional Considerations

Here we address some outstanding questions related to our above analysis. How do additional
insulating layers perform? Can we control the doping level by an external electric field? Is
the proximity exchange affected? Are the band splittings we see representative for a thick
ferromagnetic substrate (are three Co layers enough)? How is the proximity effect affected by
the Hubbard U, which shifts the d orbital levels?

In the following we consider only the dressed band splittings λex, obtained by the minimal
pz-model directly at the K point. Bare splittings are hardly affected by electric fields, and
their behavior with respect to the number of layers is that of a damped oscillator.

Dependence of the number of hBN layers. Figure 3.10 shows the dependence of the
proximity gap ∆ and the two exchange parameters λA

ex and λB
ex on the number of hBN layers

between cobalt and graphene. We can see that the exchange parameters change sign by
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FIG. 3.10: Influence of additional number of hBN layers on the proximity induced parameters
for the graphene/hBN/cobalt structure, using the pz-model at the K point. Dependence of (a)
the proximity gap ∆, (b) the exchange parameters λA

ex, and (c) λB
ex on additional hBN layers

for different lattice constants or an additional Hubbard parameter of U = 1.0 eV. Parameter
values for 2 (3) layers of hBN were increased by a factor of 10 (100) for better visualization
as indicated.

adding an additional insulating layer. The proximity gap ∆ nearly doubles for two layers of
hBN and stays essentially unchanged when a third layer is added, since the local environment
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of graphene does not change anymore. The parameters obtained by the pz-model are listed in
Tab. 3.4 for a = 2.489 Å. For four layers of hBN, again the parameters change sign, but they
are even smaller than for three layers of hBN and thus not included here. The parameters λA

ex
and λB

ex are already in the µeV regime for three hBN layers, which is a result of the strong
barrier. The two layer hBN case is special for the case of λB

ex, since this exchange parameter
has a similar magnitude as for the single layer hBN case, due to the strong hybridization
with the d orbitals close to the K point. We note that the distances for the three layer case
are similar to the two layer case. We only have one additional distance between the two hBN
layers directly below graphene, which was relaxed to dhBN/hBN = 3.088 Å.

As we have already seen, also the bands of hBN are spin split. To get a magnitude of
the exchange splitting of the individual hBN layers, we look at the graphene/hBN/cobalt
structure with three layers of hBN. In the band structure we can identify the highest (lowest)
lying valence (conduction) bands, which are spin split, of the three individual layers, similar
as in Fig. 3.4. From that, we extract the band splittings of conduction ∆Econd and valence
∆Eval bands of the individual hBN layers at the K point. We notice that the spin up bands of
hBN are always lying lower in energy than the spin down ones at the K point. The obtained
values are especially important for people who study spin and charge transport, as well as
tunneling in these kind of vdW structures. Due to the spin splitting of the bands, hBN can
additionally act as a spin filter for tunneling electrons, as reported in Ref. [27].

 1

 10

 100

 1000

1 2 3

∆
E

 [
m

eV
]

hBN layer

∆Econd

∆Eval

FIG. 3.11: Conduction ∆Econd and valence ∆Eval band splittings of the three individual
hBN layers at the K point. Values are obtained by identifying the spin split hBN conduction
and valence bands of the three individual layers in the band structure of graphene/hBN/cobalt
heterostructure for three layers of hBN. Spin up bands of hBN are always lying lower in
energy than the spin down ones at the K point.

In Fig. 3.11 we show the valence and conduction band splittings at the K point of the three
hBN layers. We find that the exchange splitting of the first hBN layer (closest to the cobalt
surface) is roughly 0.5 eV. The splittings of the second and third layer decrease by one order
of magnitude, respectively, due to the distance related decay of the proximity magnetism.

Lattice constant effects. Since we have artificially set the lattice constant for all the (well
lattice matched) materials to be the same, we now consider its effect on the proximity
structure. We use the graphene constant a = 2.46 Å, by simply changing the in-plane lattice
constant of the slab to this value without changing the vertical distances between the layers,
which should be more favorable for the description of the graphene dispersion. The results in
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this case do not deviate much from the case with our adopted a = 2.489 Å, as can be seen in
Fig. 3.10, but the Fermi velocity for a = 2.46 Å and one hBN layer is vF = 0.827× 106 m/s,
corresponding to a larger nearest-neighbor hopping parameter of t = 2.56 eV.

Hubbard U. Since the exact position of the d bands is crucial to see the giant proximity
exchange in the case of two hBN layers, we consider what happens when we apply a
Hubbard U parameter to the calculation, shifting the d orbital levels. From recent studies
of graphene on copper [30] we know that the copper bands have to be shifted down in
energy by U = 1.0 eV to match the measured band structure from ARPES (Angle Resolved
Photo Emission Spectroscopy) experiments. From other DFT studies [96–100], mainly on
metal-oxides, it is not possible to get a unique value for U . Thus, we apply U = 1.0 eV, as a
generic representative value. The results are again in Fig. 3.10 and can be compared with the
calculations without a Hubbard U parameter. We can see that the parameters ∆ and λA

ex stay
almost unchanged. However, λB

ex, representing the valence Dirac band splitting is strongly
affected, especially in the case for two hBN layers (it is not affected for three layers). By
applying the Hubbard U , we shift the band with energy Ev, in Fig. 3.9, down in energy away
from the Dirac states and thus the splitting at the K point decreases. The energetic position
of the d bands with respect to the Dirac point strongly influences the pure band splittings at
the K point, if the hybridization is large. In the absence of experimental guidance into the
exact relative position of d levels in our system, we can thus only predict the general trends
and rough magnitudes for the valence proximity splitting. If the d bands are indeed close
to the Dirac point, their influence will be giant, and one can expect ramifications in spin
tunneling and spin injection.

Electric field effects. Figure 3.12 shows the influence of the electric field on the proximity
parameters ∆, λA

ex, λB
ex and the Dirac point energy ED. We model our electric field by a
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FIG. 3.12: Influence of the electric field on the proximity induced parameters for the
graphene/hBN/cobalt structure for one hBN layer, using the pz-model at the K point.
Dependence of the (a) Dirac energy ED, the proximity gap ∆, and (b) the exchange parameters
λA

ex and λB
ex on the applied transverse electric field.

saw-like potential oriented perpendicular to the slab structure. A positive field points towards
graphene and depletes its conduction electrons (lowers the magnitude of ED). We can see that



3.1. Graphene/hBN/Cobalt 33

ED and ∆ show the same trend with electric field. In general, by increasing the electric field
the doping level decreases, i.e. one just shifts the Dirac point with respect to the Fermi level.
The proximity gap ∆ also increases with increasing electric field reflecting the charge transfer
away from graphene. The continuous shift of the doping level with the applied electric field
allows to shift the Fermi level to the desired position. The general trend of the proximity
parameters is, that both tend to decrease with increasing electric field. For moderate field
strengths of ±2 V/nm, the parameters and thus the band splittings at the K point are almost
unaffected.

As we have seen in the two hBN layer case, the valence band splitting is strongly affected by
hybridization with a d level. By applying an electric field, we can tune the energetic position
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FIG. 3.13: Influence of the electric field on the proximity induced parameters for the
graphene/hBN/cobalt structure for two hBN layers, using the pz-model at the K point.
Dependence of the (a) Dirac energy ED, the proximity gap ∆, and (b) the exchange parameters
λA

ex and λB
ex on the applied transverse electric field. (c) and (d) show the calculated spin

resolved band structure projected on the graphene states in the vicinity of the Dirac point
for two differently chosen field strengths, to visualize the reversal of the valence spin states at
the K point.

of the Dirac point with respect to the d levels, which should also strongly affect the spin
splitting of the graphene Dirac bands. In Fig. 3.13 we show the influence of the electric field
on the proximity parameters for two layers of hBN. We can see that the Dirac point energy
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ED increases with electric field, as for the monolayer hBN case. The proximity parameter λA
ex

stays roughly constant in magnitude around 100 µeV. In Figs. 3.13(c) and (d), we show the
calculated spin resolved band structure of the graphene/hBN/cobalt heterostructure for two
hBN layers, projected on the graphene states in the vicinity of the Dirac point for different
field strengths. The spin up graphene valence band at the K point is lying lower in energy
than the spin down one for E = −4 V/nm and vice versa for E = 0 V/nm. Therefore the
parameter λB

ex is positive (negative) for fields smaller (larger) than roughly −1.5 V/nm, see
Fig. 3.13(b). At the transition field strength of −1.5 V/nm, we cannot exactly state, whether
λB

ex is positive or negative. The reason for this reversing spin states is the resonant d level.
At a certain energetic configuration between Dirac point and d level, adjusted by the external
electric field, the hybridization of the d level with graphene valence pz states vanishes (for
fields smaller than −1.5 V/nm) and the spin splitting changes sign. This allows to control the
sign of the injected spin by applying an electric field, shifting the Dirac bands through the
resonant d level. Of course, this effect can only be observed, if the d bands are indeed close
to the Dirac point. Also the proximity gap ∆ jumps in magnitude at the same field strength
of roughly −1.5 V/nm, since the parameters ∆ and λB

ex of the pz-model are connected. Apart
from the jump, the gap parameter increases with increasing field strength.

Additional cobalt layers. Finally we analyze the influence of additional cobalt layers on
the band structure, see Fig. 3.14. As we increase the number of cobalt layers, also more d
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FIG. 3.14: Influence of additional number of cobalt layers on the band structure for
the graphene/hBN/cobalt system for one hBN layer, using the pz-model at the K point.
Dependence of the (a) the proximity gap ∆, and the exchange parameters λA

ex and λB
ex and

(b) Dirac energy ED on additional number of cobalt layers.

bands are introduced in the dispersion. Consequently, in the vicinity of the K point in Fig.
3.5(e) graphene states can be disturbed by these additional cobalt bands. We can see that
the band splittings of the graphene Dirac states at the K point do not get influenced much
by additional layers, since the parameters λA

ex and λB
ex stay almost constant, but the Dirac

energy, which is our measure for the doping level, seems to saturate only after 6 cobalt layers
are present. We conclude that three cobalt layers suffice to obtain representative proximity
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parameters, and 6 cobalt layers are needed to fix the relative positioning of the bands.

3.2. Graphene/hBN/Nickel

Similar to the approach with cobalt, we now use nickel as the ferromagnet. Nickel crystallizes
in a face-centered-cubic (fcc) lattice and has a magnetic moment of roughly 0.6 µB, smaller
than the one of hcp-cobalt which is 1.6 µB [101]. Thus we expect the effects of proximity
induced magnetism to be smaller for the nickel substrate. In order to stack a hexagonal
lattice on top of it, we consider the (111)-plane. The lattice constant of nickel [102] is
a = 3.524 Å and thus the lattice constant of the quasi hexagonal lattice of the (111)-plane is
1
2
√

2a = 2.492 Å, see Fig. 2.11.

As a result the Ni(111)-plane is suitable for making heterostructures with graphene as the
lattice mismatch is small. Remember that the lattice constant of graphene is a = 2.46 Å
[45] and the one of hBN [49] is a = 2.504 Å. Thus we fix an effective lattice constant of
a = 2.48 Å for the systems with nickel, to arrange the single layers in a commensurable way.
We again start with vdW-bonded layers, with d = 3.2 Å and a vacuum spacing of 14 Å.

3.2.1. Lattice Structure

We perform a similar total energy analysis as for the case of cobalt, again taking into account
the symmetry of the hexagonal lattices. The energetically favorable stacking of graphene

Nickel Nitrogen
Boron Carbon

~ 2.1 Å

~ 3.0 Å

~ 0.1 Å 

(a) (b)

top

fcc
hcp

Ni1

Ni2

Ni3

CB CA

a ~ 2.48 Å

FIG. 3.15: Structure of graphene/hBN/nickel, with labels for the different atoms. (a) Top
view of the structure, with one unit cell emphasized by the dashed line. (b) Side view
with stacking configuration: CB over boron, CA over hBN-hexagon. Nitrogen at top-site
above nickel and boron above fcc-site of nickel. The distances indicated are measured
between graphene/nickel and the nitrogen atom of hBN, since the hBN layer is buckled by
∆z = 0.101 Å, as the boron atom is closer to the nickel surface. Atoms Niα, α = 1, 2, 3 label
the three nickel layers.
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on hBN has already been investigated in section 3.1.1. In this case, the lowest energy
configuration is, when nitrogen atoms are at top-site above nickel and boron atoms are at
fcc-site above nickel. Carbon atoms sit on top of boron atoms and at the hollow site, above the
center of a hexagonal ring of hBN, see Fig. 3.15, in agreement with previous DFT-studies [24,
28, 55]. After relaxation of atomic positions we obtained layer distances of dNi/hBN = 2.105 Å
between the nickel and hBN and dhBN/Gr = 3.015 Å between hBN and graphene (measured
between graphene/nickel and the nitrogen atoms, respectively, since the hBN layer is buckled).
The layer distances of this minimum energy configuration are in agreement with Refs. [24,
55, 90], which report dhBN/Gr = 3.22− 3.40 Å and dNi/hBN = 1.96− 2.12 Å. The hBN-layer
is not flat anymore but slightly buckled by 0.101 Å, in agreement with Refs. [55, 76]. The
vacuum in z direction for these composite systems is roughly 15 Å after relaxation in order
to simulate quasi-2D systems. For hBN we use an AA’ stacking (B over N, N over B), being
the energetically favorable one.

In Fig. 3.16 we show the DFT calculated band structure divided into the two spin channels,
where the different colors correspond to the different layers of the vdW heterostructure with
one layer of hBN and three layers of nickel. We can see, that the bands of the individual

FIG. 3.16: Character plot of the spin polarized band structure of the graphene/hBN/nickel
heterostructure. Left panel: Spin up character plot of the band structure. Different colors
correspond to the different layers of the vdW heterostructure (red = nickel, black = graphene,
green = hBN). Right panel: Spin down character plot.

layers are intact and get only slightly influenced by the other layers as for the cobalt case.
The hBN layer gets spin polarized, with an exchange energy of roughly 0.3 eV of the highest
lying valence band at the K point. The main influence of the ferromagnet is on the nitrogen
pz orbitals, where the overlap to the nickel dz2 orbital is maximal.

The graphene π-bands are lying within the band gap of hBN, but get influenced by the nickel
d-bands lying around the Fermi level. By analyzing the nickel bands for the different spin
channels, we find an exchange energy of roughly 0.6 – 0.8 eV, which is in agreement with the
bulk atomic magnetic moment of 0.6 µB for nickel. The band structure, Fig. 3.16, shows that
our model Hamiltonian Eq. (3.5), can be used to describe the physics in the vicinity of the
K point, as the linear dispersion is preserved and three d bands are located near the Dirac
point energy.
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3.2.2. Results

One hBN layer

We begin our analysis of the graphene/hBN/nickel heterostructure by investigating the DOS,
see Fig. 3.17. There is clear similarity to the cobalt case, but also small and interesting
differences. We see that the contributions from the spin channels are not equal for boron
and nitrogen leading to a magnetization of these atoms. The energy window, where hBN
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FIG. 3.17: Orbital and spin resolved DOS of all the atoms contained in one unit cell of
the graphene/hBN/nickel heterostructure. Atoms Niα, α = 1, 2, 3, which are ordered from
vacuum to interface with hBN, label the nickel layers as shown in Fig. 3.15(b). CA and
CB correspond to the two different sublattices, where CB is the one above the boron atom.
Positive (negative) value of the DOS corresponds to spin up (down) and different colors
correspond to projections on different orbitals.

interacts with nickel is from −5 to 0 eV, where nickel d orbitals strongly contribute to the
DOS. Consequently hBN gets polarized and the boron atom has a magnetic moment of
−0.02 µB, nitrogen has a magnetic moment of 0.03 µB. The carbon atoms get proximity
polarized by the ferromagnet with a value for the magnetic moment of roughly 6× 10−4 µB,
surprisingly larger than for the case with cobalt. In an energy window around −2 eV, we
can see an imbalance of the two spin channels contributing to the carbon DOS. The Dirac
point is again roughly −0.5 eV below the system Fermi level, indicating electron doping of
graphene. At this energy we can see a peak in the spin up DOS coming from carbon and
nitrogen pz orbitals and from the Ni3 dz2 orbitals. Additionally at the energy 0.5 eV we notice
an imbalance of the two spin channels contributing to the carbon DOS, where spin down
contributions of nitrogen pz orbitals and of Ni3 dz2 orbitals are dominant. In total we see
that, the dz2 orbital DOS of Ni3 has a peak at roughly ±0.5 eV and at precisely these energies
we see that nitrogen and carbon atoms show a peak in the corresponding spin channel pz
orbital DOS. The nickel atoms Ni1, Ni2, and Ni3, see Fig. 3.15(b), have magnetic moments
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of 0.71 µB, 0.70 µB, and 0.59 µB. Nickel atoms at the vacuum interface show an increased
magnetic moment, while nickel atoms at the hBN interface show a smaller magnetic moment
compared to the bulk value of 0.6 µB. Nickel d states extend in the energy window from
−5 to 1 eV, which is about 2 eV narrower in comparison to the cobalt substrate due to the
magnetic moment and the exchange splitting that is smaller than for cobalt.

We further analyze the origin of the bands near the Dirac energy, which are essentially
states coming from the ferromagnet. Figure 3.18 shows the spin polarized band structure
of graphene/hBN/nickel structure with characters for the d orbitals of the different nickel
atoms Niα, α = 1, 2, 3. At the Γ point we can estimate the intrinsic exchange splitting of

FIG. 3.18: Spin polarized band structure of graphene/hBN/nickel heterostructure with
character of the d orbitals of the different nickel layers Niα, α = 1, 2, 3. Spin up (down) bands
are shown in solid red (blue). Thickness of the bands are weighted with the character of the
d orbitals of the different nickel atoms.

nickel to be 0.6 eV in agreement with the magnetic moment. The band structure also shows,
very similar to the case with cobalt, three d bands in the vicinity of the Dirac point, possibly
influencing the graphene band structure. The spin down d band is mainly originating from
all d orbitals of atoms Ni1 and Ni2, see Fig. 3.17, except for dz2 orbitals, in contrast to the
cobalt case, due to the different lattices of nickel and cobalt. The two highest lying spin
up bands originate from dz2 orbitals of Ni2 and Ni3, similar as for the cobalt substrate. In
contrast to cobalt, the three d bands of nickel are all crossing the valence Dirac states and
the energy window from −0.5 to 0 eV at the K point is free from nickel d bands. We apply
our model Hamiltonian, Eq. (3.5), to describe the low energy graphene band structure near
the Dirac point.

Figure 3.19(a) shows the calculated spin polarized band structure of the graphene/hBN/nickel
heterostructure for one layer of hBN. The graphene Dirac states for spin up are lying lower
in energy than the spin down ones, as for the cobalt case. By comparison between nickel and
cobalt we notice that the Dirac point energy ED for nickel is about 100 meV lower in energy
than for cobalt, but the proximity induced band splittings are smaller, as expected due to
the smaller magnetic moment of nickel. In general the band structures are quite similar with
the difference that nickel d states do not influence the Dirac states as much as cobalt does,
which manifests in smaller values of the hybridization parameters jA,B

↑,↓ for nickel. Most of
all, we notice that there is no d band crossing the conduction Dirac states in the chosen
energy and k-region. The fit to the pz-d-model is shown by solid lines to the DFT data in
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FIG. 3.19: Spin polarized band structure of the graphene/hBN/nickel heterostructures for
one layer of hBN. (a) Band structure in the vicinity of the Dirac point with labels for the
main orbital contributions. Labels Ej , j = u,v,w are the energy bands, which correspond to
the nickel d states used to fit the pz-d-model Hamiltonian in Eq. (3.5). (b) The fit to the
pz-d-model with a side view of the structure. First principles data (dotted lines) are well
reproduced by the model (solid lines). (c) The corresponding splittings of the valence (val)
and conduction (cond) Dirac states of graphene. The fit parameters are E0 = −527.98 meV,
∆̃ = 22.98 meV, λ̃A

ex = −1.25 meV, λ̃B
ex = 8.17 meV, Eu = −272.58 meV, Ev = −201.27 meV,

Ew = −158.17 meV, vB
↑ = 10.15 meV, wB

↓ = 4.19 meV. The Fermi velocity to match the slope
away from K point is vF = 0.81× 106 m

s . The fit parameters are again obtained in the same
way as for the cobalt case.

Fig. 3.19(b). We see that the pz-d-model Hamiltonian, Eq. (3.5), describes our first-principles
results very well for the fit parameters given in Tab. 3.3. Similar to the cobalt case, the
gap in the dispersion is roughly 40 meV and the band splittings are of the order of 10 meV.
We additionally employ our pz-model, Eq. (3.4), to extract the pure band splittings. The
parameter values for the pz-model are given in Tab. 3.4. Due to the weak hybridization with d
orbitals, the minimal model parameters are very close to the parameters of the pz-d-model.

Two hBN layers

Figure 3.20 shows the calculated band structure and the fit to the pz-d-model in the case
of two layers of hBN and three layers of nickel. Again the positions of carbon CA has not
changed with respect to the hBN layers, while position of CB was changed to be on top of
the uppermost boron atom. The layer distance between the two hBN layers was relaxed
to dhBN/hBN = 2.995 Å and the distance between the uppermost hBN layer and graphene
is dhBN/Gr = 3.110 Å in the two layer case. The corrugation of the lower hBN layer and
the distance between hBN and nickel did not change. The inset in Fig. 3.20(b) shows the
geometry for two layers of hBN.

Figure 3.20(a) shows the spin polarized band structure of graphene/hBN/nickel for two layers
of hBN. The spin up graphene Dirac states are no longer lying lower in energy than the spin
down ones, leading to reversal of the sign of the exchange parameters, just as for cobalt,
see section 3.1.3. The fit parameters for the pz-d-model are given in Tab. 3.3. The fit to
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FIG. 3.20: Spin polarized band structure of graphene/hBN/nickel heterostructures for
two layers of hBN (AA’ stacking). (a) Band structure in the vicinity of the Dirac point
with labels for the main orbital contributions. Inset shows a zoom on the conduction
Dirac states to visualize the reversal of the spin states. (b) The fit to the pz-d-model
with a side view of the structure for two layers of hBN. First principles data (dotted lines)
are well reproduced by the pz-d-model (solid lines). (c) The corresponding splittings of
the valence and conduction Dirac states. The fit parameters are E0 = −435.76 meV,
∆̃ = 42.88 meV, λ̃A

ex = 0.080 meV, λ̃B
ex = −1.44 meV, Eu = −363.36 meV, Ev = −309.27 meV,

Ew = −251.05 meV, vB
↑ = 32.67 meV. The Fermi velocity to match the slope away from K

point is vF = 0.824× 106 m
s . All other parameters are zero for the same fitting range as for

the one layer case.

the pz-d-model is shown in Fig. 3.20(b). We can see, that the band splittings for both the
conduction and valence Dirac states are smaller than in the single hBN layer case, as expected
due to the additional insulating layer, while the proximity induced gap ∆ nearly doubles, and
the hybridization to the nickel dz2(3) state is much larger. From the geometry in Fig. 3.20(b),
we notice that carbon CB has a direct connection with nickel atoms in top position via
a nitrogen and a boron atom of the two individual hBN layers, which is responsible for
the strong hybridization with the d band with energy Ev. This hybridization drives the
strong proximity exchange in the valence band of graphene. By employing our pz-model
directly at the K point we extract parameters describing the pure splittings of the Dirac
bands, corresponding to the values of the splittings in Fig. 3.20(c). The parameters from the
pz-model are given in Tab. 3.4. The values of λ̃B

ex and λB
ex, obtained from the two models

are given in Tabs. 3.3, 3.4. In the case for nickel and two layers of hBN, they are of similar
magnitudes, in contrast to the cobalt case, since the d band with energy Ev is relatively far
away from the Dirac point energy, so that the hybridization effects on the band splittings
at the K point are similar in monolayer and bilayer hBN structures. There is no resonant d
level as in the cobalt case.

Additional Considerations

In the following, we consider the effective band splittings directly at the K point, which
correspond to the exchange couplings in the minimal pz-model.
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Dependence of the number of hBN layers. Figure 3.21 shows the dependence of the
proximity gap ∆ and the two exchange parameters λA

ex and λB
ex on the number of hBN

layers between nickel and graphene. Similar to cobalt the exchange parameters decrease
by one order of magnitude and change sign by adding an additional insulating layer. The
proximity gap ∆ doubles for two layers of hBN and stays constant, since effectively the local
environment for graphene does not change anymore by adding hBN layers. For completeness,
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FIG. 3.21: Influence of additional number of hBN on the proximity induced parameters for
the graphene/hBN/nickel structure, using the pz-model at the K point. Dependence of (a)
the proximity gap ∆, (b) the exchange parameters λA

ex, and (c) λB
ex on additional hBN layers

for different lattice constants or an additional Hubbard parameter of U = 1.0 eV. Parameter
values for 2 (3) layers of hBN were increased by a factor of 10 (100) for better visualization
as indicated.

the distances for the three layer case are similar to the two layer case. We have only one
additional distance between the two hBN layers directly below graphene, which was relaxed
to dhBN/hBN = 3.073 Å.

Also the bands of hBN are spin split, and similar as for the cobalt substrate, we look at
the graphene/hBN/nickel structure with three layers of hBN. In the band structure we can
identify the highest (lowest) lying valence (conduction) bands, which are spin split, of the
three individual layers. From that, we extract the band splittings of conduction ∆Econd and
valence ∆Eval bands of the individual hBN layers at the K point. We notice that the spin up
bands of hBN are always lying lower in energy than the spin down ones. In Fig. 3.22 we show
the valence and conduction band splittings at the K point of the three layers. We notice that
the splittings are very similar, but smaller in magnitude, compared to the cobalt case.

Lattice constant effects. We also look how the band structure of the slabs change when
we use the graphene lattice constant, a = 2.46 Å, by simply changing the in-plane lattice
constant to this value without changing the vertical distances between the layers. The results
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FIG. 3.22: Conduction ∆Econd and valence ∆Eval band splittings of the three individual
hBN layers at the K point. Values are obtained by identifying the spin split hBN conduction
and valence bands of the three individual layers in the band structure of graphene/hBN/nickel
heterostructure for three layers of hBN. Spin up bands of hBN are always lying lower in
energy than the spin down ones at the K point.

in this case do not deviate much from the case with a = 2.48 Å, as can be seen in Fig. 3.21.
The Fermi velocity for a = 2.46 Å and one hBN layer is vF = 0.822× 106 m/s, corresponding
to a larger nearest-neighbor hopping parameter of t = 2.52 eV.

Hubbard U. We now introduce a Hubbard parameter U = 1.0 eV to compare the results on
the calculations of different number of layers of hBN with the ones with U = 0 eV. However,
the influence of the additional on-site term on the band structure and the parameters is
negligible, see Fig. 3.21, in contrast to the cobalt case. The band structures for the nickel
case and for one/two layers of hBN, see Figs. 3.19, 3.20, show that the splittings of the Dirac
bands at the K point, without a Hubbard U parameter, are already almost not affected by
hybridization with d bands. Thus, if we shift away the d bands from the Dirac point by
applying a Hubbard U parameter, the band splittings are almost unaffected.

Electric field effects. Figure 3.23 shows the influence of the electric field on the proximity
parameters and the doping level for one hBN layer. We can see that ED and ∆ show the
same trend with electric field. By increasing the electric field the doping level decreases. The
proximity gap ∆ also increases with increasing electric field reflecting the charge transfer away
from graphene. The continuous shift of the doping level with the applied electric field allows
to shift the Fermi level to the desired position. Compared to the case of cobalt, the proximity
parameters for nickel change more smoothly with applied electric field. The magnitude of the
proximity parameter λA

ex, on average, stays constant and the parameter λB
ex slowly decreases

with electric field, but for moderate fields the band splittings are almost unchanged. The
electric tunability of the proximity exchange in this case is rather weak.

Figure 3.24 shows the influence of the electric field on the proximity parameters and the
doping level for two hBN layers. We can see that ED and ∆ show the same trend with electric
field, as for the single layer hBN, but the orbital gap parameter ∆ is roughly twice as large
as in the case with monolayer hBN. As we have already seen, the two proximity parameters
λex change their sign, by adding the second hBN layer. The magnitude of the proximity
parameter λA

ex stays roughly constant with electric field, but is one order of magnitude smaller
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FIG. 3.24: Influence of the electric field on the proximity induced parameters for the
graphene/hBN/nickel structure for two hBN layers, using the pz-model at the K point.
Dependence of the (a) Dirac energy ED, the proximity gap ∆, and (b) the exchange parameters
λA

ex and λB
ex on the applied transverse electric field.

than in the monolayer hBN case. The proximity parameter λB
ex decreases with increasing

electric field. For negative (positive) fields, the Dirac point is shifted in energy towards (away
from) the hybridizing d levels, which cross the valence Dirac states, see Fig. 3.20, and λB

ex
is increasing (decreasing). We note that the magnitude of λB

ex in the bilayer hBN case is
comparable to the monolayer hBN case.

Additional nickel layers. Finally we analyze the influence of additional nickel layers on
the band structure, see Fig. 3.25. As we increase the number of nickel layers, also more d
bands are introduced in the dispersion. Consequently, in the vicinity of the K point graphene
Dirac states can be disturbed by these additional nickel bands. We can see that the band
splittings of graphene at the K point do not get influenced much by additional layers, since
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Dependence of the (a) the proximity gap ∆, and the exchange parameters λA

ex and λB
ex and

(b) Dirac energy ED on additional number of cobalt layers.

the parameters stay at the same order. In this case, already 4 layers of nickel show a steady
situation for the Dirac energy ED. The effect on the proximity parameters is negligible.

3.3. Summary

We have investigated the proximity induced exchange interaction induced by the ferromagnets
cobalt and nickel into graphene through the insulator hBN. We found proximity induced
exchange splittings of the order of 10 meV together with a proximity gap of 40 meV for
one layer of hBN. As we go from one to two insulating layers, proximity induced exchange
interaction does not only get weaker by one order of magnitude, but the signs of the exchange
parameters reverse and the proximity gap doubles. This reversal of the signs continues for
up to 4 layers of hBN; the gap stays essentially constant. The proximity induced splittings
decrease by one order of magnitude for each additional layer. It is fascinating that the
ferromagnetism in graphene is proximity induced by the ferromagnetic slab and that the
strength of the proximity exchange behaves like a damped oscillator with respect to the
number of hBN layers between graphene and the ferromagnet.

By changing the in-plane lattice constant of the slab vdW structure to the more reasonable
graphene lattice constant, band splittings are not affected. An additional on-site Hubbard
U term, can affect the band splittings of the Dirac states at the K point significantly, since
hybridization effects of d bands with graphene pz states play an important role, especially
when a resonant d level is near the Dirac point, as in the case of cobalt and two layers of hBN.
In addition we found that, by applying an electric field, we can continuously shift the doping
level and tune the proximity gap. The exchange splittings of the bands are almost unaffected
for one hBN layer, but if a resonant d level is near the Dirac point, we can control the sign of
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the spin splitting, as we have seen for the valence Dirac band in the case with cobalt and two
hBN layers. This allows to control the spin polarization in graphene, by an external electric
field, if the d levels are indeed near the Dirac point. By adding ferromagnetic layers to the
system we are able to stabilize the doping level, but we find that three ferromagnetic layers
are enough to study the proximity effects.

Table 3.3 (3.4) summarizes the results on the presented structures for the different ferromagnets
cobalt and nickel and for 1–3 layers of hBN, necessary to fit the DFT data of the corresponding
structure with the pz-d-model (pz-model) Hamiltonian. We find that the results for both
ferromagnets are quite similar, but in general the hybridization strength of cobalt is a bit
larger compared to nickel, which is a consequence of the different atomic magnetic moments.
When there are at least three layers of hBN between the ferromagnet and graphene, there is
essentially no difference between cobalt and nickel anymore, since all hybridization effects are
strongly suppressed.

FM hBN E0 ∆̃ λ̃A
ex λ̃B

ex Eu Ev Ew IA vF/105

[layer] [meV] [meV] [meV] [meV] [meV] [meV] [meV] [meV] [m/s]

Co 1 -430.89 21.45 -7.63 8.95 -279.41 -19.37 282.31 48.44 (wA
↓ ) 8.12

2 -352.65 41.02 0.096 -0.512 -357.12 -114.75 207.34 41.67 (vB
↑ ) 8.20

3 -301.07 38.83 -0.005 0.018 -408.70 -166.03 155.10 - 8.21

Ni 1 -527.98 22.98 -1.25 8.17 -272.58 -201.27 -158.17 10.15 (vB
↑ ), 4.19 (wB

↓ ) 8.10
2 -435.76 42.88 0.080 -1.44 -363.36 -309.27 -251.05 32.67 (vB

↑ ) 8.24
3 -361.54 40.42 -0.005 0.017 -437.30 -384.53 -324.91 - 8.26

TAB. 3.3: Summary of the most relevant parameters for all relevant structures (a = 2.489 Å
and U = 0 eV) for the different ferromagnets (FM) cobalt and nickel for 1–3 layers of hBN,
respectively. Proximity gap ∆̃, energy shift E0, exchange parameters λ̃A

ex and λ̃B
ex, energies

Eu, Ev, Ew of the interacting ferromagnet bands (measured with respect to E0) and the
interaction parameters (IA) necessary to fit the DFT data of the corresponding structure
with the pz-d-model Hamiltonian H, Eq. (3.5).

FM hBN [layer] ED [meV] ∆ [meV] λA
ex [meV] λB

ex [meV]

Co 1 -433.10 19.25 -3.14 8.59
2 -348.03 36.44 0.097 -9.81
3 -301.10 38.96 -0.005 0.018

Ni 1 -527.89 22.86 -1.40 7.78
2 -434.82 42.04 0.068 -3.38
3 -361.57 40.57 -0.005 0.017

TAB. 3.4: Summary of the parameters for all relevant structures (a = 2.489 Å and U = 0 eV)
for the different ferromagnets (FM) cobalt and nickel for 1–3 layers of hBN, respectively.
Proximity gap ∆, Dirac point energy ED, exchange parameters λA

ex and λB
ex necessary to fit

the DFT data of the corresponding structure with the minimal pz-model Hamiltonian at the
K point.

Two mechanisms are responsible for the band splittings of the graphene Dirac states. One
is the general magnetic exchange, coming from proximity magnetism of the ferromagnetic
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substrate, which is influenced by the barrier thickness. The thicker the barrier, the weaker is
the general magnetic exchange splitting of the Dirac bands, since we increase the effective
distance to the ferromagnetic substrate. Second, the hybridization of the graphene states
with the d bands can additionally enhance the band splittings significantly. The strength
of the hybridization depends on the energetic position of the d levels with respect to the
Dirac point energy and from the fact, if there is a direct channel which can transport the
magnetism from the ferromagnet to graphene, i.e. the effective overlap of the dz2 orbitals
with the pz orbitals of graphene.



Chapter 4
Heterostructures with Oxide
Insulators

In this chapter we consider the oxide insulators Al2O3 and SiO2 to be the tunneling barriers
between the ferromagnets and graphene. Oxide insulators usually appear in an amorphous
structure and thus things like surface termination and energetically favorable stacking are
hard to predict. As there are no DFT calculations on these structures so far, we are only
presenting results on the structures as defined in the following. In order to keep the barrier
between the ferromagnets and graphene as thin as possible, we take the oxide insulator
thickness to be smaller than 5 Å. We know that we then need roughly one monolayer1 of
SiO2, but only half a monolayer of Al2O3.

The (0001)-surface of Al2O3 was intensively studied during the years [63, 64], predicting
an aluminum surface termination [65] with 1/3 monolayer of aluminum. Therefore we take
this surface termination on the interfaces with graphene and the ferromagnets. Due to
previous studies of the graphene/α-SiO2(0001) interface [29, 58–60], we adopt an oxygen
surface termination of SiO2 at the interface with the graphene and place graphene at the
hollow sites above SiO2 following Ref. [29]. At the interface with the ferromagnets, we take a
silicon surface termination of SiO2. The problem is that from experiments, no unique surface
termination can be determined and also the stacking configuration cannot be predicted for
sure and thus we have to rely on our choice. In contrast to the hBN case, we also do not know
how to stack the layers. Thus we simply start by putting the single layers (graphene, insulator
and ferromagnet) on top of each other in a way, where we think that it is energetically
favorable. To create the unit cells, we need to consider 2× 2 supercells of graphene and the
ferromagnets, which can then be matched with a 1× 1 cell of the oxide insulators. For the
vdW heterostructures we use in-plane lattice constants of a = 4.92 Å for SiO2 and a = 4.90 Å
for Al2O3. All atoms within the whole unit cell were allowed to adjust their x, y and z
positions during the relaxation process, such that forces were reduced below 5× 10−4 [Ry/a0].
The vacuum distance of the vdW structures after relaxation is roughly 15 Å and the layer
distances, which are very similar to the cases with hBN, are given in the corresponding
section. The k-point sampling for the reduced Brillouin Zone in the oxide insulator cases was
54× 54. All other computational details are the same as for the hBN case and can be found
in appendix B.3

We will not perform an analysis of the structures in detail, as has been done in the cases
for hBN, but to get a magnitude for the proximity induced magnetism, we extract the band
splittings directly at the K point. The values of the proximity splittings in the graphene bands

1The lattice constants c of SiO2 and Al2O3 are 5.405 Å and 12.98 Å. Thus we cut the unit cell such that we
get the necessary thickness of roughly 5 Å for the barrier.
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are only representative for the presented structures, as the stacking influences the strength
of proximity induced effects. Lattice structures and band structure plots are shown for the
cases with nickel as the ferromagnet only, since results are very similar for structures with
cobalt. In general we expect the magnitude of the proximity magnetism to be small, since
the effective thickness of the barriers between the ferromagnet and graphene is comparable
to the case with two or three layers of hBN.

Unfortunately, we were not able to perform the relaxation of atomic positions for the structures
with SiO2 and thus we do not have any results for these cases. However, we expect that
proximity effects are very similar for both oxide insulators. Results for the oxide insulator
Al2O3 combined with the two ferromagnets cobalt and nickel, respectively, are listed in Tab.
4.1.

4.1. Graphene/Al2O3/Ferromagnet

We begin the analysis on the structures with the oxide insulators with Al2O3. After relaxation
of atomic positions, we obtained the structure shown in Fig. 4.1 with the thickness of the
Al2O3 layer itself to be 4.70 Å. The distance between graphene and Al2O3 was relaxed to
dGr/Al2O3 = 2.99 Å and the distance between nickel and Al2O3 is dNi/Al2O3 = 2.15 Å. Both
distances are slightly larger by roughly 0.03 Å in the cobalt case.

We can see that the structure now has an oxygen surface between graphene and Al2O3 even
though we started with an aluminum surface termination with 1/3 monolayer of aluminum
on both sides [65]. The weak interaction with graphene, allowed the surface aluminum atom
on the graphene side to be pulled back towards Al2O3. On the interface side with nickel,
the aluminum surface termination is still intact due to the strong interaction with the nickel
surface. The structure with cobalt as the ferromagnet is very similar to the one with nickel.
The two different carbon sublattices can be distinguished, by defining CA at the hcp-sites

Nickel Oxygen
Aluminum Carbon

(a)
(b)

~ 3.0 Å

~ 2.2 Å

a ~ 4.90 Å

top
hcp

fcc

top

hcp

fcc

CA CB

FIG. 4.1: Structure of graphene/Al2O3/nickel, with labels for the different atoms. (a) Top
view of the structure shows one unit cell with the lattice constant a = 4.90 Å. (b) Side view
with stacking configuration and layer distances as indicated.
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and CB at the fcc-sites above the nickel surface in Fig. 4.1(b). In Fig. 4.1(a) we can see that
both sublattices are above an aluminum atom and above three nickel atoms in the unit cell.
Thus, the sublattices A and B in total have almost the same effective environment and we
expect only a small orbital gap in the spectrum, since sublattice symmetry should not be
broken as strong as in the hBN case. Also the proximity induced band splittings should be
small, since the thickness of the insulator is quite large.

We want to have a look at the general band structure of the system. In Fig. 4.2 we show
the calculated spin polarized band structure of the graphene/Al2O3/nickel heterostructure
divided into the two spin channels. What is very astonishing is that the graphene Dirac point
is roughly 1 eV above the system Fermi level and Dirac states do not get influenced by any
bands in a very large k and energy window around the Dirac point. By using our definition
of the doping level, graphene is p-doped in the case of Al2O3 in contrast to hBN. The linear
dispersion is nicely preserved and it seems that the graphene π-states do not get influenced,
even though there is the Al2O3/nickel substrate below. Bands of the nickel are again located
around the Fermi level and valence states of the Al2O3 layer are below −1.5 eV. Of course, d
bands of the ferromagnet hybridize with states from the insulator. Since we are interested in
proximity effects in graphene, we will not analyze this complete chaos in the band structure
and immediately look at the graphene Dirac states.

FIG. 4.2: Character plot of the spin polarized band structure of the graphene/Al2O3/nickel
heterostructure along the high symmetry path M–K–Γ. Left panel: Spin up character
plot of the band structure. Different colors correspond to the different layers of the vdW
heterostructure (red = nickel, black = graphene, green = Al2O3). Right panel: Spin down
character plot of the band structure.

In Fig. 4.3(a) we show a zoom on the calculated spin polarized band structure for the
graphene/Al2O3/nickel heterostructure. Similar to one layer of hBN, we can see that the
spin up Dirac states are lower in energy than spin down ones. However, the band gap and
the splittings are very small. The fact, that no states influence the graphene Dirac bands
allows to apply the pz-model at the K point. We have to admit, that the conduction and
valence Dirac states are no longer formed by a specific sublattice exclusively, as in the hBN
case. Thus the sublattice resolved exchange Hamiltonian Hex is in principle not valid as
defined and the exchange parameters λA

ex and λB
ex do not represent the proximity magnetism
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induced on a certain sublattice. However, the band structure can be nicely reproduced by
the pz-model for k points up to 10 × 10−3/Å away from the K point, see Fig. 4.3(b),(c).
The gap is roughly 2 meV, small compared to the hBN cases, since the two sublattices are
effectively almost equal, as already mentioned. The band splittings are roughly 200 µeV,
being comparable to the case with two or three layers of hBN. The proximity parameters
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FIG. 4.3: Spin polarized band structure of graphene/Al2O3/nickel heterostructure. (a) Band
structure in the vicinity of the Dirac point. Inset shows a zoom on the Dirac states to visualize
the splitting of the spin states. (b) The fit to the pz-model. First principles data (dotted
lines) are well reproduced by the pz-model (solid lines). (c) The corresponding splittings of
the valence (val) and conduction (cond) Dirac states of graphene. The fit parameters are
ED = 938.82 meV, ∆ = 1.28 meV, λA

ex = −0.083 meV, λB
ex = 0.114 meV. The parameters are

obtained, by applying the pz-model at the K point. The Fermi velocity to match the slope
away from K point is vF = 0.823× 106 m

s .

obtained by the pz-model, for the case of cobalt and nickel are listed in Tab. 4.1. We find
that the band splittings are very similar in the case of cobalt. Due to the larger atomic
magnetic moment in cobalt, the total band structure is a little bit different, namely spin up
and spin down d bands of cobalt are more split in energy and thus spin down d bands are
located around the Dirac point energy, in contrast to nickel. However, the spin down d bands
of cobalt almost do not influence the graphene Dirac states due to the thick Al2O3 barrier
and the situation is effectively the same as for nickel.

4.2. Summary

In summary we have investigated the oxide insulator Al2O3 as the barrier between the
ferromagnets nickel/cobalt and graphene. The proximity induced band splittings in graphene
are of the order of 200 µeV, the gap in the spectrum is around 2 meV. The parameters, obtained
by applying the pz-model at the K point, are listed in Tab. 4.1 for the heterostructures with
the oxide insulator Al2O3. The mechanism that leads to the splitting of the bands is the
general magnetic exchange, which depends on the barrier thickness and the strength of the



4.2. Summary 51

FM OI ED [meV] ∆ [meV] λA
ex [meV] λB

ex [meV] vF/105 [m/s]

Co Al2O3 881.86 1.02 -0.055 0.066 8.23
Ni Al2O3 938.82 1.28 -0.083 0.114 8.23

TAB. 4.1: Summary of the parameters for all relevant structures for the different ferromagnets
(FM) cobalt and nickel with the oxide insulator (OI) Al2O3, respectively. Proximity gap ∆,
Dirac point energy ED, exchange parameters λA

ex and λB
ex and Fermi velocity vF necessary to

fit the DFT data of the corresponding structure with the minimal pz-model Hamiltonian.

atomic magnetic moment of the ferromagnet. No hybridization effects with d bands from the
ferromagnet influence the spin splittings of the Dirac bands.

In the case of SiO2, we expect the strength of the proximity effects to be very similar to the
presented case with Al2O3. In principle, also other insulating barriers like MgO or TiO2 can
be used for this kind of vdW structures, as reported in Refs. [66, 103–105]. However, hBN
seems to be one of the most interesting candidates as the tunneling barrier.





Chapter 5
Summary and Outlook

In total we have investigated the magnetic proximity effect in graphene/insulator/ferromagnet
structures. We have seen, that a gap opens at the Dirac point and that the Dirac bands
of graphene get spin split, even if the insulating barrier is relatively thick, as for the oxide
insulator Al2O3. Especially hBN is a promising candidate for vdW structures, since we
have found a damped oscillation in the proximity exchange in graphene with respect to the
number of hBN layers between graphene and the ferromagnet. In addition to that, hBN
acts as a spin filtering tunnel barrier, which is especially attractive for the spin injection in
graphene. By systematically studying several modifications of the vdW structure (number
of ferromagnetic and insulating layers) as well as in the DFT input (electric field, Hubbard
U), we provide reasonable proximity parameters that can be used in model charge and
spin transport calculations. Moreover, we found that a resonantly coupled d level from the
ferromagnet, near the Dirac point energy, can lead to a giant enhancement of the proximity
spin splitting which can be tailored by electric field.

This whole study on proximity effects in graphene/insulator/ferromagnet structures can be
continued by including SOC, which could further enhance the splitting of the Dirac bands, not
only due to the SOC splitting in general, but also due to a possible spin-mixing hybridization
of the d bands with the graphene Dirac states. As we have already started to study vdW
structures with Al2O3, one could also think about using other oxide insulators (MgO, TiO2).
Moreover, other interesting materials exist, that can be used to create vdW structures.
Especially transition metal dichalcogenides and topological insulators are intensively studied
in current research.
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Appendix A
Reminder on DFT

A.1. Many-particle systems

Typically, in condensed matter physics, we deal with a large number of atoms (N ∼ 1023)
and to investigate properties of a solid one has to combine techniques of quantum mechanics
and statistical physics. The difficulty comes from the large number of constituents and their
possible interactions. To describe the microscopic properties of a solid, one needs to know
the Hamiltonian of this system containing all kinetic and interaction terms

H = Te + Tn + Vee + Vnn + Ven, (A.1)

where every individual term contains at least a sum over N particles. By solving the
corresponding Schrödinger equation, we can extract eigenstates and eigenenergies, necessary
to calculate quantities of interest.

It would be nice to solve the exact equation, but this is nearly impossible due to the large
amount of constituents in a solid. One needs to develop methods which can handle this
Hamiltonian as accurate as possible, without neglecting anything of importance. Since the
mass of the nucleus in an atom is much larger than the electron mass me

MI
∼ 10−4 one can

consider the electrons to be in a system, with a positive charge distribution from nuclei with
fixed positions (Born-Oppenheimer approximation). The Hamiltonian A.1 reduces to

H = Te + Vee + Vext + Ec, (A.2)

and because of the fixed position of the nuclei, their kinetic energy is zero. The interaction
term between the nuclei reduces to a constant Ec, only leading to a shift in energy. The
actual influence of the nuclei on the electrons is contained in the external potential Vext,
containing all kinds of interactions, depending on the system. The Hamiltonian we now have
to consider is

H = Hel + Vext, (A.3)

with a system-independent part Hel and a part Vext which contains all the system-relevant
information. Therefore we now have a wave function Ψ({ri}), which only depends on the
coordinates ri of the electrons, since the positions of the nuclei are fixed. By this simple
assumption life is already much easier.
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A.2. Density functional theory

Still, the Hamiltonian contains too much terms, to be solvable as in a simple single particle
Schrödinger equation. For solids, one commonly uses Density Functional Theory (DFT). This
method was established by P. Hohenberg and W. Kohn (HK) in 1964. The most important
quantity in this formalism is the electronic density ρ(r)

ρ(r) =
N∑
i=1
|φi(r)|2, (A.4)

contrary to the formalism of Schrödinger, where the wave function Ψ(ri) plays the central role.
The theorems of HK [106] prove that the density, which only depends on three parameters r,
provides the same information as the wave function, depending on 3N parameters ri.

Kohn and Sham (KS) developed out of the HK theorems methods for treating an inhomoge-
neous system of interacting electrons, the so called Kohn-Sham equations [107]. These are
self-consistent equations with exchange and correlation effects contained in a suitable way.
By minimizing the ground state energy functional written in the form

E[ρ] =
∫
ρ(r)Vext(r)dr + 1

2

∫
ρ(r)ρ(r ′)
|r − r ′|

drdr ′ +G[ρ] (A.5)

one can derive equations, which are analogous to single particle equations. These Kohn-Sham
equations read[

− ~2

2m∇
2 +

(∫
ρ(r ′)
|r − r ′|

dr ′ + Vxc(r) + Vext(r)
)]

φi(r) = εiφi(r), (A.6)

where
Vxc(r) = δExc

δρ
. (A.7)

Now one has to solve, in a self-consistent way, single-particle equations for all the φi’s, which
actually describe quasi-particles with their energies εi. But by construction it is guaranteed,
that the density of these quasi-particles is equal to the true electron density.

A.3. Exchange-Correlation functional

No approximations have been made so far, apart from the Born-Oppenheimer one, but the
exchange-correlation energy Exc is unknown and hence the search for functionals is central in
DFT-research. Of course it has to be approximated, to make our theory applicable. Two
different exchange-correlation functionals are extensively used in calculations, namely LDA
(local density approximation) and GGA (generalized gradient approximation). For a slow
varying density ρ(r), Exc[ρ] can be written as

ELDA
xc [ρ] =

∫
ρ(r)εHEG

xc (ρ(r))dr, (A.8)

with εHEG
xc (ρ(r)) being the exchange-correlation energy density (energy per electron) of a

uniform electron gas of density ρ [107]. This we call LDA, because the dependence of the
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functional on the density is only local. εHEG
xc (ρ(r)) is a function of ρ and we obtain an

exchange-correlation potential of the form

V LDA
xc (r) = δExc

δρ
= εHEG

xc (ρ(r)) + ρ(r)∂ε
HEG
xc (ρ(r))
∂ρ(r) . (A.9)

It is surprisingly accurate for realistic systems, but it fails in systems that are dominated
by electron-electron interaction effects (like heavy fermion systems), because there is no
resemblance to a uniform electron gas [108].

A first step to improve LDA is to take also the density of the neighboring volumes into
account. Therefore εxc should also depend on the gradient of the density, which is then called
GGA. The exchange-correlation energy is now of the form

EGGA
xc [ρ] =

∫
ρ(r)εxc(ρ(r),∇ρ(r))dr, (A.10)

where εxc 6= εHEG
xc , is a function that depends on the density ρ(r) and the gradient of the

density ∇ρ(r). One can choose εxc in different ways, to get different GGA’s. This freedom
does not exist for LDA, because there is only one correct expression for εHEG

xc . The most
appropriate and most reliable GGA’s were proposed in 1996 by Perdew, Burke and Ernzerhof
(GGA-PBE) [109].

A.4. Basis sets

The final step in DFT is, that one needs to solve equations of the form

Hspφi = εiφi, (A.11)

where Hsp is a single particle Hamiltonian and φi are the Kohn-Sham single-particle orbitals.
In general, one first needs to define a ground state density. But before we can define a density,
we need a basis set φbp, so that we can expand the wave function within the chosen basis set

φi =
P∑
p=1

cipφ
b
p, (A.12)

because we do not know how the φi’s look like, which define the density. For an exact
definition of φi, one needs an infinite basis set (P →∞), because the φi belong to a function
space with infinite dimension. As this is not practical, we limit the number P , but accept,
that we can only generate functions which are close to the exact φi. Having chosen a basis,
the problem reduces to an eigenvalue problem and the search for the expansion coefficients
cip. If we choose a basis set, that is similar to the φi, the number P reduces, and we can still
accurately describe the wave function (efficiency). This assumes, that one already knew the
solution right before starting the calculation, which is in general not the case. So additionally
the basis set should work for the majority of problems (unbiased).

Two different basis sets exist, which are mixed to combine their good properties. One are the
plane waves, which accurately describe weakly bound/free electrons and the other ones are
local orbitals/atomic like functions, which accurately describe heavily bound electrons.
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It would be nice, if the basis functions are mathematically simple. Solids or crystals have a
periodic structure and hence a periodic Hamiltonian and so we can choose the basis set to be
plane waves. The wave function writes

φnk(r) =
∑
K

cn,kK exp(i(k + K)r). (A.13)

In this notation, i = (n,k) and p = k + K. Remember that we have to limit our basis
set. We choose K ≤ Kmax, that corresponds to a sphere with radius R = Kmax around the
origin of reciprocal space. All reciprocal lattice vectors smaller than Kmax are taken into the
basis set. Determining the eigenvalue problem, yields for each eigenvalue εn,k an eigenvector
[cn,kK ]P×1 of P values for cn,kK . The P eigenvalues each with their own set of coefficients, and
each leading to another eigenfunction φnk. So we found P different eigenfunctions, all with
the same k but with different band index n. When we repeat the calculations for every k,
that is contained in the first Brillouin zone, we get the band structure. The number of k’s
defines the sampling. To make this ansatz applicable, we look at the wave function of a
simple atom. The most oscillating part is near the nucleus, so one needs to modify something
in this region. One can use atomic like functions in combination with plane waves or one can
modify the potential (pseudopotential method). Chemistry happens in the outer shells, and
for the description in the inner shells, we replace the potential through a pseudopotential,
to reach smooth tails of the wave functions there. Going to the outer region, the potential
evolves into the true potential.

Even though the pseudopotential method is useful, one cannot appropriately describe proper-
ties of the system near the nucleus. We have to search for another basis set, that describes
the electrons properly, which means they are more or less free far away from the nuclei and
near the nuclei they behave as bound to the atom. Therefore we use a combination of plane
waves and atomic like functions. For this we divide the space into two regions. The so called
muffin tin sphere Sα with radius Rα around each atom, and the remaining space outside of
them called the interstitial region I; see Fig. A.1. The augmented plane wave (APW) basis
set is defined as in Ref. [110]

φk
K(r, E) =


1√
V

exp(i(k + K)r), r ∈ I

∑
l,m

Aα,k+K
lm uαl (r′, E)Y l

m(θ′, φ′), r ∈ Sα
(A.14)

The position inside the spheres is given with respect to the center of each sphere by r ′ = r−rα.
uαl (r′, E) are the solutions of the radial part of the Schrödinger equation for a free atom α
and Y l

m(θ′, φ′) are spherical harmonics. Inside Sα the basis is a linear combination of atomic
functions (Aα,k+K

lm are coefficients) and should therefore be close to the actual eigenfunctions.
One requirement is that the plane waves match the atomic functions in value, over the
complete surface of the sphere, in order to determine the coefficients uniquely.

In order to describe the eigenstates accurately with this basis one needs to set the free
parameter E, in uαl (r′, E), equal to the band energy εnk and therefore we have to start with a
guessed value for εnk before we start solving the secular equation. The APW method contains
one difficulty, as we do not know the eigenenergies E = εnk yet, to construct the basis set,
because this is what we are actually searching for. For this the basis of Linearized Augmented
Plane Waves (LAPW) exists in order to overcome this obstacle. We make a Taylor expansion
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FIG. A.1: Definition of muffin tin sphere Sα with radius Rα around each atom and interstitial
region I, taken from Ref. [110].

of uαl (r′, E) around a specific energy E0

uαl (r′, εnk) = uαl (r′, E0) + (E0 − εnk) ∂u
α
l (r′, E)
∂E

∣∣∣∣
E=E0

+O
[
(E0 − εnk)2

]
, (A.15)

and take the first two terms into account, to create the LAPW basis

φk
K(r, E) =


1√
V

exp(i(k + K)r), r ∈ I

∑
l,m

(Aα,k+K
lm uαl (r′, E0) +Bα,k+K

lm u̇αl (r′, E0))Y l
m(θ′, φ′), r ∈ Sα

(A.16)

where u̇αl = ∂uαl (r′,E)
∂E

∣∣∣
E=E0

. An additional coefficient must be introduced, because we do not

know the energy difference E0−εnk. To determine Aα,k+K
lm and Bα,k+K

lm we need the matching,
at the sphere boundary, to the plane waves in value and slope. In order to accurately describe
the band structure, we should choose a set of Eα1,l (for every band l) and not an universal
E0 in Eq. A.16. The limitation criteria here is the product Rminα Kmax, where Rminα is the
smallest muffin tin radius. A well bound electron to the nucleus is called a core state and
participates not in chemical bonding. It is therefore contained in the muffin tin sphere. States
outside the sphere take part in chemical bonding and are called valence states and are treated
by LAPW. Low lying valence states are called semi-core states. If we want to describe these,
we do not know how to choose Eα1,l, because we do not know in which band these states
sit. We can add another type of basis function to LAPW, a local orbital (LO), to solve this
dilemma. A few more types of basis sets exist, such as the APW+lo, which combines the
good features of APW and LAPW+LO; see e.g. Ref. [110].





Appendix B
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and Details

B.1. Program packages

The Atomic Simulation Environment (ASE) is a set of tools and Python modules for
setting up, manipulating, running, visualizing and analyzing atomic simulations [111]. It
was used to create the slab structures with the corresponding distances and to set up the
input data of the calculations. We created the structures of the single layers and for the vdW
heterostructures, single layers were stacked in a suitable way.

XCrySDen is a crystalline and molecular structure visualization program aiming at display of
isosurfaces and contours, which can be superimposed on crystalline structures and interactively
rotated and manipulated [112]. It was used to view the structures we generated and to
produce the k-path for band structure calculations. After relaxation of atomic positions it
was used to measure the distances between the single layers in the vdW systems.

VESTA is a 3D visualization program for structural models, volumetric data such as
electron/nuclear densities, and crystal morphologies [113]. It was used to visualize the crystal
structures, visualize spin polarizations or other volumetric data. All figures showing crystal
structures were produced with VESTA.

QUANTUM ESPRESSO (QE) is an integrated suite of Open-Source computer codes for
electronic-structure calculations and materials modeling at the nanoscale. It is based on
density-functional theory, plane waves, and pseudopotentials. It is able to calculate ground
state properties, perform structural optimizations, quantum transport and many more [114].
It was used for structural relaxation of the systems and the calculation of electronic properties,
such as band structure and DOS. We calculated the ground state properties of the single
layers, as well as for the vdW structures.

The program package WIEN2k allows to perform electronic structure calculations of solids
using density functional theory (DFT). It is based on the full-potential (linearized) augmented
plane-wave ((L)APW) + local orbitals (lo) method, one among the most accurate schemes for
band structure calculations. WIEN2k is an all-electron scheme including relativistic effects
and has many features [115]. It was used to compare and check the results obtained from
QE-suite.
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B.2. Lattice constant analysis

Since we deal with vdW heterostructures and all the single layers have a different lattice
constant, we have to analyze the influence of the lattice constant on the electronic properties
of the single layers, in order to get a reasonable structure. By calculating the band structure
and ground state total energy of graphene for several different lattice constants, we can
see that the lowest energy is obtained for a lattice constant of a = 2.46 Å, as expected for
graphene, see Fig. B.1. However, when we take a lattice constant of a = 2.49 Å, the total
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FIG. B.1: Influence of the lattice constant on the graphene band structure and the total
energy. Left panel: Band structure for the different lattice constants. Insets show zooms on
the corresponding region, indicated by the arrow, respectively. Right panel: Total energy as
a function of the lattice constant a, normalized by reference energy E0.

energy of the system changes only by 14 meV; in other words the energy per carbon atom is
changed by 7 meV, which can be considered as a thermal fluctuation at room temperature.

When we look at the band structure, we can see that the Dirac states are almost not influenced.
Thus we can say, that the low energy physics of graphene does not get affected if we use
a = 2.49 Å for our vdW structure. The change in the band structure manifests mainly in
the low energy bands, since these are formed by s, px and py orbitals, lying in the graphene
plane, which get directly affected by the lattice constant. Going to larger lattice constants,
shifts the low energy bands up in energy. Thus, from the graphene point of view, it should
be okay to take a larger lattice constant of a = 2.49 Å, since our main interest lies in the
Dirac states. The change in the lattice constant by this is 1.2%.

We make a similar analysis for hBN, see Fig. B.2, and find an optimal lattice constant of
a = 2.51 Å, being very close to the experimental value of a = 2.504 Å. The change in energy
by changing the lattice constant to a = 2.49 Å is roughly 10 meV, which is again small
compared to the total energy of the system. Also the change in the band gap is negligible
small, since it is roughly 10 meV. Both energies can be considered as thermal fluctuations at
room temperature. Similar to graphene, low energy states are mainly affected by the lattice
constant. In general by changing the lattice constant to a = 2.49 Å, the change is only 0.6%,
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FIG. B.2: Influence of the lattice constant on the hBN band structure, the total energy
and the band gap Eg. Left panel: Band structure for the different lattice constants. Insets
show zooms on the corresponding region, indicated by the arrow. Right panel: Total energy
normalized by reference energy E0 (red curve) and band gap Eg (blue curve) as a function of
the lattice constant a.

which is very small. In total if we now use a lattice constant of a = 2.49 Å for graphene and
hBN, the basic physics should not be that different.

We make a further analysis, by looking at the heterostructure of graphene on hBN. By that we
place graphene on top of hBN in the energetically most favorable way, as found in section 3.1.1.
We allow the atoms to fully relax within the unit cell (x, y, z-coordinates) to minimize forces
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FIG. B.3: Band structure and corresponding orbital resolved DOS of graphene on hBN.
Left panel: Band structure along the high-symmetry path Γ-M-K-Γ. The inset shows a zoom
on the Dirac states with a gap of Eg = 70.2 meV. Right panel: Atom and orbital resolved
DOS. Labels B, N and C correspond to the different atoms.
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and also allow the system to perform a relaxation of the in-plane lattice constant to minimize
the strain of the unit cell. We find a relaxed composite lattice constant of a = 2.486 Å and a
layer spacing of d = 3.136 Å. We have to keep in mind, that in the graphene/hBN/cobalt
heterostructure, we still have the lattice of cobalt with a = 2.507 Å. Thus, it is reasonable to
take the assumed average lattice constants, for the vdW heterostructures as given in Tab.
2.2. Figure B.3 shows the band structure and the corresponding DOS of graphene on hBN
for the composite lattice constant of a = 2.486 Å. We find an orbital gap in the graphene
states at K of Eg = 70.2 meV, wich is in agreement with Ref. [24]. The graphene pz states
forming the Dirac cone are lying within the band gap of hBN.

B.3. Computational Methods

The calculations for the single layers were performed with QE and WIEN2k in order to ensure
and check the correctness of the results, which slightly deviate, since the two programs are
based on different methods. All of the given results on the relevant vdW heterostructures are
from QE calculations. For calculations where a two dimensional slab structure was considered,
we took a vacuum spacing of 14 Å.

In WIEN2k we performed convergence studies to get the values for RKmax, which is the cutoff
for the number of basis functions, and the k-point sampling, which additionally determines
the accuracy. For calculations we used the following parameters. For single layers of graphene
and hBN: RKmax = 9 and a sampling of 60× 60× 1 for self-consistent calculations. For the
band structure we used a sufficient number of discrete k-points along the given high-symmetry
paths. For bulk ferromagnets hcp-cobalt and fcc-nickel: RKmax = 9 and a sampling of 120000
k-points within the Brillouin zone was used, for an accurate description of the ferromagnetic
properties and the correct determination of the Fermi level. For bulk oxide insulators Al2O3
and SiO2: RKmax = 9 and a sampling of 120000 k-points within the Brillouin zone was used
for an accurate description of the band gap. However, without using an accurate exchange
correlation functional, the band gap is underestimated by roughly 30%. All electronic
properties (band structure and orbital/spin resolved DOS) for the single layers presented in
chapter 2 were calculated with WIEN2k. In QE we obtained very similar results.

In QE we especially dealt with the vdW structures. To study proximity induced exchange
interaction in graphene, we consider graphene/insulator/ferromagnet heterostructures in a
slab geometry. The calculation parameters for structures with hBN are given in the following.
After performing convergence studies of the total and the Fermi energy, dependent on k-point
sampling and cutoff, we found the following values. For self-consistent calculations a k-point
sampling of 120× 120× 1 was used. This large sampling of the Brillouin Zone is necessary
for an accurate description of the system, especially for states near the Dirac cone and the
determination of the correct Fermi level [28]. For band structure calculations we used a
sufficient number of discrete k-values along the high-symmetry paths in the first Brillouin
Zone. We used a kinetic energy cutoff for charge density and potential of 450 Ry, the kinetic
energy cutoff for wavefunctions was 100 Ry for the X.pbe-n-kjpaw.UPF pseudopotential,
which is scalar relativistic with the projector augmented wave method [116] with a Perdew-
Burke-Ernzerhof exchange correlation functional [109] and a nonlinear core correction. For
the relaxation of the heterostructures, we used vdW corrections [117], with a force relaxation
using BFGS quasi-newton algorithm [118]. We also considered dipole corrections to avoid
interactions between periodic images. To determine the interlayer distances, the atoms were
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allowed to relax in their z positions (transverse to the layers) until all components of all forces
were reduced below 10−4 [Ry/a0], where a0 is the bohr radius. The vacuum in z direction for
these slab structures is roughly 15 Å after relaxation in order to simulate quasi-2D systems.





List of Figures

1.1. Scheme of spin injection into graphene . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Unit cell and Brillouin Zone of graphene . . . . . . . . . . . . . . . . . . . . . 6
2.2. Band structure and DOS of Graphene . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Unit cell and Brillouin Zone of hBN . . . . . . . . . . . . . . . . . . . . . . . 7
2.4. Band structure and DOS of hBN . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5. Unit cell and structure of SiO2 . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6. Band structure and DOS of SiO2 . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7. Unit cell and structure of Al2O3 . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8. Band structure and DOS of Al2O3 . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9. Unit cell and Brillouin Zone of cobalt . . . . . . . . . . . . . . . . . . . . . . 12
2.10. Band structure and DOS of cobalt . . . . . . . . . . . . . . . . . . . . . . . . 13
2.11. Unit cell and Brillouin Zone of nickel . . . . . . . . . . . . . . . . . . . . . . . 14
2.12. Band structure and DOS of nickel . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1. Possible stackings of graphene on top of hBN . . . . . . . . . . . . . . . . . . 18
3.2. Possible stackings of hBN on top of cobalt . . . . . . . . . . . . . . . . . . . . 19
3.3. Final structure of graphene/hBN/cobalt . . . . . . . . . . . . . . . . . . . . . 20
3.4. Character plot of band structure of graphene/hBN/cobalt . . . . . . . . . . . 21
3.5. Band structure topologies of the modified graphene Hamiltonian . . . . . . . 23
3.6. Orbital and spin resolved DOS of graphene/hBN/cobalt . . . . . . . . . . . . 25
3.7. Band structure character plots of cobalt d-orbitals for graphene/hBN/cobalt . 26
3.8. Spin polarized band structure of graphene/hBN/cobalt with fit to the pz-d-model 27
3.9. Spin polarized band structure of graphene/2hBN/cobalt with fit to the pz-d-model 28
3.10. Influence of additional number of hBN layers on the proximity induced pa-

rameters for graphene/hBN/cobalt, using the pz-model . . . . . . . . . . . . . 30
3.11. Spin splitting of the hBN bands at K point for graphene/hBN/cobalt structure 31
3.12. Influence of the electric field on the proximity induced parameters for

graphene/hBN/cobalt, using the pz-model . . . . . . . . . . . . . . . . . . . . 32
3.13. Influence of the electric field on the proximity induced parameters for

graphene/2hBN/cobalt, using the pz-model . . . . . . . . . . . . . . . . . . . 33
3.14. Influence of additional number of cobalt layers on the proximity induced

parameters for graphene/hBN/cobalt, using the pz-model . . . . . . . . . . . 34
3.15. Final structure of graphene/hBN/nickel . . . . . . . . . . . . . . . . . . . . . 35
3.16. Character plot of band structure of graphene/hBN/nickel . . . . . . . . . . . 36
3.17. Orbital and spin resolved DOS of graphene/hBN/nickel . . . . . . . . . . . . 37
3.18. Band structure character plots of nickel d orbitals for graphene/hBN/nickel . 38
3.19. Spin polarized band structure of graphene/hBN/nickel with fit to the pz-d-model 39
3.20. Spin polarized band structure of graphene/2hBN/nickel with fit to the pz-d-model 40
3.21. Influence of additional number of hBN on the proximity induced parameters

for graphene/hBN/nickel, using the pz-model . . . . . . . . . . . . . . . . . . 41
3.22. Spin splitting of the hBN bands at K point for graphene/hBN/nickel structure 42
3.23. Influence of the electric field on the proximity induced parameters for

graphene/hBN/nickel, using the pz-model . . . . . . . . . . . . . . . . . . . . 43

67



68 List of Figures

3.24. Influence of the electric field on the proximity induced parameters for
graphene/2hBN/nickel, using the pz-model . . . . . . . . . . . . . . . . . . . 43

3.25. Influence of additional number of nickel layers on the proximity induced
parameters for graphene/hBN/nickel, using the pz-model . . . . . . . . . . . 44

4.1. Final structure of graphene/Al2O3/nickel . . . . . . . . . . . . . . . . . . . . 48
4.2. Character plot of band structure of graphene/Al2O3/nickel . . . . . . . . . . 49
4.3. Spin polarized band structure of graphene/Al2O3/nickel with fit to the pz-model 50

A.1. Definition of Muffin tin sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.1. Influence of the lattice constant on graphene band structure and total energy 62
B.2. Influence of the lattice constant on hBN band structure, total energy and band

gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.3. Band structure and DOS of graphene on hBN . . . . . . . . . . . . . . . . . . 63



List of Tables

2.1. Overview of the used materials . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. Overview of the possibilities of the lattice matching . . . . . . . . . . . . . . . 15

3.1. Total energies of the different stacking possibilities of graphene on top of hBN 19
3.2. Total energies of the different stacking possibilities of hBN on top of cobalt . 19
3.3. Summary of parameters of the pz-d-model Hamiltonian for the structures with

hBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4. Summary of parameters of the pz-model Hamiltonian for the structures with

hBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1. Summary of parameters of the pz-model Hamiltonian for the structures with
Al2O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

69





Bibliography

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science
306, 666–669 (2004).

2D. R. Cooper et al., “Experimental Review of Graphene”, ISRN Cond. Mat. Phys. 2012,
1–56 (2012).

3C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and
intrinsic strength of monolayer graphene.”, Science 321, 385–388 (2008).

4I. Lahiri, V. P. Verma, and W. Choi, “An all-graphene based transparent and flexible field
emission device”, Carbon 49, 1614–1619 (2011).

5I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications”, Rev.
Mod. Phys. 76, 323–410 (2004).

6J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, “Semiconductor spintronics”,
Acta Phys. Slovaca 57, 565–907 (2007).

7A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. H. Castro Neto, “Extrinsic spin
hall effect induced by resonant skew scattering in graphene”, Phys. Rev. Lett. 112, 066601
(2014).

8T. Y. Yang, J. Balakrishnan, F. Volmer, a. Avsar, M. Jaiswal, J. Samm, S. R. Ali, a.
Pachoud, M. Zeng, and M. Popinciuc, “Observation of long spin-relaxation times in bilayer
graphene at room temperature”, Phys. Rev. Lett. 107, 5–8 (2011).

9A. H. Castro Neto and F. Guinea, “Impurity-induced spin-orbit coupling in graphene”,
Phys. Rev. Lett. 103, 026804 (2009).

10M. Gmitra, D. Kochan, and J. Fabian, “Spin-orbit coupling in hydrogenated graphene”,
Phys. Rev. Lett. 110, 246602 (2013).

11J. Zhou, Q. Liang, and J. Dong, “Enhanced spin–orbit coupling in hydrogenated and
fluorinated graphene”, Carbon 48, 1405–1409 (2010).

12S. Irmer, T. Frank, S. Putz, M. Gmitra, D. Kochan, and J. Fabian, “Spin-orbit coupling
in fluorinated graphene”, Phys. Rev. B 91, 115141 (2015).

13R. M. Guzmán-Arellano, A. D. Hernández-Nieves, C. A. Balseiro, and G. Usaj, “Gate-
induced enhancement of spin-orbit coupling in dilute fluorinated graphene”, Phys. Rev. B
91, 195408 (2015).

14K. M. McCreary, A. G. Swartz, W. Han, J. Fabian, and R. K. Kawakami, “Magnetic
moment formation in graphene detected by scattering of pure spin currents”, Phys. Rev.
Lett. 109, 186604 (2012).

15D. V. Fedorov, M. Gradhand, S. Ostanin, I. V. Maznichenko, A. Ernst, J. Fabian, and
I. Mertig, “Impact of electron-impurity scattering on the spin relaxation time in graphene:
a first-principles study”, Phys. Rev. Lett. 110, 156602 (2013).

16D. Ma, Z. Li, and Z. Yang, “Strong spin–orbit splitting in graphene with adsorbed au
atoms”, Carbon 50, 297–305 (2012).

71

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.5402/2012/501686
http://dx.doi.org/10.5402/2012/501686
http://dx.doi.org/10.1126/science.1157996
http://dx.doi.org/10.1016/j.carbon.2010.12.044
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevLett.112.066601
http://dx.doi.org/10.1103/PhysRevLett.112.066601
http://dx.doi.org/10.1103/PhysRevLett.107.047206
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevLett.110.246602
http://dx.doi.org/10.1016/j.carbon.2009.12.031
http://dx.doi.org/10.1103/PhysRevB.91.115141
http://dx.doi.org/10.1103/PhysRevB.91.195408
http://dx.doi.org/10.1103/PhysRevB.91.195408
http://dx.doi.org/10.1103/PhysRevLett.109.186604
http://dx.doi.org/10.1103/PhysRevLett.109.186604
http://dx.doi.org/10.1103/PhysRevLett.110.156602
http://dx.doi.org/http://dx.doi.org/10.1016/j.carbon.2011.08.055


72 Bibliography

17S. Abdelouahed, A. Ernst, J. Henk, I. V. Maznichenko, and I. Mertig, “Spin-split electronic
states in graphene: effects due to lattice deformation, rashba effect, and adatoms by first
principles”, Phys. Rev. B 82, 125424 (2010).

18K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K. Kawakami, “Manipulation
of spin transport in graphene by surface chemical doping”, Phys. Rev. Lett. 104, 187201
(2010).

19J. Hu, J. Alicea, R. Wu, and M. Franz, “Giant topological insulator gap in graphene with
5d adatoms”, Phys. Rev. Lett. 109, 266801 (2012).

20C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, “Engineering a robust quantum spin
hall state in graphene via adatom deposition”, Phys. Rev. X 1, 021001 (2011).

21K. Zollner, T. Frank, S. Irmer, M. Gmitra, D. Kochan, and J. Fabian, “Spin-orbit coupling
in methyl functionalized graphene”, Phys. Rev. B 93, 045423 (2016).

22S. Konschuh, M. Gmitra, and J. Fabian, “Tight-binding theory of the spin-orbit coupling
in graphene”, Phys. Rev. B 82, 245412 (2010).

23H. González-Herrero, J. M. Gómez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C.
Salgado, M. M. Ugeda, J.-Y. Veuillen, F. Yndurain, and I. Brihuega, “Atomic-scale control
of graphene magnetism by using hydrogen atoms”, Science 352, 437–441 (2016).

24G. Giovannetti, P. a. Khomyakov, G. Brocks, P. J. Kelly, and J. Van Den Brink, “Substrate-
induced band gap in graphene on hexagonal boron nitride: Ab initio density functional
calculations”, Physical Review B 76, 2–5 (2007).

25G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J.
Kelly, “Doping Graphene with Metal Contacts”, Physical Review Letters 101, 026803
(2008).

26M. V. Kamalakar, A. Dankert, J. Bergsten, T. Ive, and S. P. Dash, “Enhanced tunnel
spin injection into graphene using chemical vapor deposited hexagonal boron nitride.”, Sci.
Rep. 4, 6146 (2014).

27M. V. Kamalakar, A. Dankert, P. J. Kelly, and S. P. Dash, “Inversion of Spin Signal
and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals
Heterostructures”, Scientific Reports 6, 21168 (2016).

28M. Bokdam, P. a. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene
in metal|dielectric|graphene heterostructures: A model based upon first-principles calcula-
tions”, Physical Review B 87, 075414 (2013).

29T. C. Nguyen, M. Otani, and S. Okada, “Semiconducting electronic property of graphene
adsorbed on (0001) surfaces of SiO2”, Phys. Rev. Lett. 106, 1–4 (2011).

30T. Frank, M. Gmitra, and J. Fabian, “Theory of electronic and spin-orbit proximity effects
in graphene on Cu(111)”, Phys. Rev. B 93, 1–7 (2016).

31G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the
electronic structure and EELS spectra at the graphene/Ni(111) interface”, Physical Review
B 71, 1–8 (2005).

32M.-B. Martin et al., “Protecting nickel with graphene spin-filtering membranes: A single
layer is enough”, Appl. Phys. Lett. 107, 012408 (2015).

33B. Dlubak et al., “Graphene-passivated nickel as an oxidation-resistant electrode for
spintronics”, ACS Nano 6, 10930–10934 (2012).

34V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov, M.
Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly, “Graphite and Graphene as
Perfect Spin Filters”, Phys. Rev. Lett. 99, 176602 (2007).

http://dx.doi.org/10.1103/PhysRevB.82.125424
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRevLett.104.187201
http://dx.doi.org/10.1103/PhysRevLett.109.266801
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevB.93.045423
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1126/science.aad8038
http://dx.doi.org/10.1103/PhysRevB.76.073103
http://dx.doi.org/10.1103/PhysRevLett.101.026803
http://dx.doi.org/10.1103/PhysRevLett.101.026803
http://dx.doi.org/10.1038/srep06146
http://dx.doi.org/10.1038/srep06146
http://dx.doi.org/10.1038/srep21168
http://dx.doi.org/10.1103/PhysRevB.87.075414
http://dx.doi.org/10.1103/PhysRevLett.106.106801
http://dx.doi.org/10.1103/PhysRevB.93.155142
http://dx.doi.org/10.1103/PhysRevB.71.075402
http://dx.doi.org/10.1103/PhysRevB.71.075402
http://dx.doi.org/10.1063/1.4923401
http://dx.doi.org/10.1021/nn304424x
http://dx.doi.org/10.1103/PhysRevLett.99.176602


Bibliography 73

35P. Lazić, G. M. Sipahi, R. K. Kawakami, and I. Žutić, “Graphene spintronics: Spin injection
and proximity effects from first principles”, Phys. Rev. B 90, 085429 (2014).

36C. L. Kane and E. J. Mele, “Quantum Spin hall effect in graphene”, Phys. Rev. Lett. 95,
226801 (2005).

37D. Huertas-Hernando, F. Guinea, and A. Brataas, “Spin-orbit coupling in curved graphene,
fullerenes, nanotubes, and nanotube caps”, Phys. Rev. B 74, 155426 (2006).

38H. X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, and M. Chshiev, “Proximity
Effects Induced in Graphene by Magnetic Insulators: First-Principles Calculations on Spin
Filtering and Exchange-Splitting Gaps”, Phys. Rev. Lett. 110, 046603 (2013).

39Q. Wu, L. Shen, Z. Bai, M. Zeng, M. Yang, Z. Huang, and Y. P. Feng, “Efficient spin injec-
tion into graphene through a tunnel barrier: Overcoming the spin-conductance mismatch”,
Physical Review Applied 2, 1–10 (2014).

40P. Michetti and P. Recher, “Spintronics devices from bilayer graphene in contact to
ferromagnetic insulators”, Phys. Rev. B 84, 1–8 (2011).

41Han Wei, Kawakami Roland K., Gmitra Martin, and Fabian Jaroslav, “Graphene spin-
tronics”, Nat Nano 9, 794–807 (2014).

42B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, “Proposal for an all-spin logic
device with built-in memory”, Nature nanotechnology 5, 266–270 (2010).

43Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, “Proximity-Induced Ferromagnetism in
Graphene Revealed by the Anomalous Hall Effect”, Physical Review Letters 114, 016603
(2015).

44C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of
graphene”, Carbon 48, 2127–2150 (2010).

45A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and a. K. Geim, “The
electronic properties of graphene”, Rev. Mod. Phys. 81, 109–162 (2009).

46M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, “Band-structure
topologies of graphene: Spin-orbit coupling effects from first principles”, Physical Review
B 80, 1–5 (2009).

47M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, “Graphene CVD growth
on copper and nickel: role of hydrogen in kinetics and structure”, Phys. Chem. Chem.
Phys. 13, 20836 (2011).

48L. C. Allen, “Electronegativity is the average one-electron energy of the valence-shell
electrons in ground-state free atoms”, J. Am. Chem. Soc. 111, 9003–9014 (1989).

49A. Catellani, M. Posternak, A. Baldereschi, and A. J. Freeman, “Bulk and surface electronic
structure of hexagonal boron nitride”, Phys. Rev. B 36, 6105–6111 (1987).

50X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, “Quasiparticle band structure of bulk
hexagonal boron nitride and related systems”, Phys. Rev. B 51, 6868–6875 (1995).

51J. A. Camargo-Martinez and R. Baquero, “Performance of the modified becke-johnson
potential for semiconductors”, Phys. Rev. B 86, 195106 (2012).

52J. Robertson, “Electronic structure and core exciton of hexagonal boron nitride”, Phys.
Rev. B 29, 2131–2137 (1984).

53Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P. M. Ajayan, “Direct
growth of graphene/hexagonal boron nitride stacked layers”, Nano Letters 11, 2032–2037
(2011).

http://dx.doi.org/10.1103/PhysRevB.90.085429
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevLett.110.046603
http://dx.doi.org/10.1103/PhysRevApplied.2.044008
http://dx.doi.org/10.1103/PhysRevB.84.125438
http://dx.doi.org/http://dx.doi.org/10.1038/nnano.2014.214 10.1038/nnano.2014.214
http://dx.doi.org/10.1038/nnano.2010.31
http://dx.doi.org/10.1103/PhysRevLett.114.016603
http://dx.doi.org/10.1103/PhysRevLett.114.016603
http://dx.doi.org/10.1016/j.carbon.2010.01.058
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevB.80.235431
http://dx.doi.org/10.1103/PhysRevB.80.235431
http://dx.doi.org/10.1039/c1cp22347j
http://dx.doi.org/10.1039/c1cp22347j
http://dx.doi.org/10.1021/ja00207a003
http://dx.doi.org/10.1103/PhysRevB.36.6105
http://dx.doi.org/10.1103/PhysRevB.51.6868
http://dx.doi.org/10.1103/PhysRevB.86.195106
http://dx.doi.org/10.1103/PhysRevB.29.2131
http://dx.doi.org/10.1103/PhysRevB.29.2131
http://dx.doi.org/10.1021/nl200464j
http://dx.doi.org/10.1021/nl200464j


74 Bibliography

54G. E. Wood, A. J. Marsden, J. J. Mudd, M. Walker, M. Asensio, J. Avila, K. Chen, G. R.
Bell, and N. R. Wilson, “van der Waals epitaxy of monolayer hexagonal boron nitride
on copper foil: growth, crystallography and electronic band structure”, 2D Materials 2,
025003 (2015).

55M. Bokdam, G. Brocks, M. I. Katsnelson, and P. J. Kelly, “Schottky barriers at hexagonal
boron nitride/metal interfaces: A first-principles study”, Physical Review B 90, 085415
(2014).

56V. M. Karpan, P. A. Khomyakov, G. Giovannetti, A. A. Starikov, and P. J. Kelly,
“Ni(111)|graphene|h-BN junctions as ideal spin injectors”, Physical Review B 84, 153406
(2011).

57Y. Le Page and G. Donnay, “Refinement of the crystal structure of low-quartz”, Acta
Crystallogr. Sec. B 32, 2456–2459 (1976).

58Z. Ao, M. Jiang, Z. Wen, and S. Li, “Density functional theory calculations on graphene/α-
SiO2(0001) interface.”, Nanoscale research letters 7, 158 (2012).

59Y.-J. Kang, J. Kang, and K. J. Chang, “Electronic structure of graphene and doping effect
on SiO2”, Physical Review B 78, 115404 (2008).

60X. F. Fan, W. T. Zheng, Z. X. Shen, and J.-L. Kuo, “Interaction between graphene and
SiO2 surface”, J. Phys. Condens. Matter 305004, 1–17 (2011).

61T. H. DiStefano and D. E. Eastman, “The band edge of amorphous SiO2 by photoinjection
and photoconductivity measurements”, Solid State Communications 9, 2259–2261 (1971).

62R. Gupta, “Electronic structure of crystalline and amorphous silicon dioxide”, Physical
Review B 32, 8278–8292 (1985).

63M. Gautier, G. Fenaud, L. Pham Van, B. Villette, M. Pollak, N. Thromat, F. Jollet, and
J.-P. Duraud, “alpha-Al2O3 (0001) Surfaces: Atomic and Electronic Structure”, J. Am.
Ceram. Soc. 77, 323–334 (1994).

64V. Puchin, J. Gale, a.L. Shluger, E. Kotomin, J. Günster, M. Brause, and V. Kempter,
“Atomic and electronic structure of the corundum (0001) surface: comparison with surface
spectroscopies”, Surface Science 370, 190–200 (1997).

65R. D. Felice and J. E. Northrup, “Theory of the clean and hydrogenated Al2O3 (0001)
surfaces”, Physical Review B 60, R16287–R16290 (1999).

66W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami,
“Tunneling spin injection into single layer graphene”, Phys. Rev. Lett. 105, 167202 (2010).

67S. P. Dash, S. Sharma, J. C. Le Breton, J. Peiro, H. Jaffrès, J.-M. George, A. Lemaître,
and R. Jansen, “Spin precession and inverted hanle effect in a semiconductor near a
finite-roughness ferromagnetic interface”, Phys. Rev. B 84, 054410 (2011).

68C. Sevik and C. Bulutay, “Theoretical study of the insulating oxides and nitrides: SiO2,
GeO2, Al2O3, Si3N4, and Ge3N4”, J. Mater. Sci. 42, 6555–6565 (2007).

69R. H. French, “Electronic Band Structure of Al2O3, with Comparison to Alon and AIN”,
J. Am. Ceram. Soc. 73, 477–489 (1990).

70V. Murthy, Structure and properties of engineering materials (McGraw-Hill Education,
2003).

71A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, and C. Thomsen, “Elasticity of single-
crystalline graphite: Inelastic x-ray scattering study”, Physical Review B 75, 153408
(2007).

http://dx.doi.org/10.1088/2053-1583/2/2/025003
http://dx.doi.org/10.1088/2053-1583/2/2/025003
http://dx.doi.org/10.1103/PhysRevB.90.085415
http://dx.doi.org/10.1103/PhysRevB.90.085415
http://dx.doi.org/10.1103/PhysRevB.84.153406
http://dx.doi.org/10.1103/PhysRevB.84.153406
http://dx.doi.org/doi:10.1107/S0567740876007966
http://dx.doi.org/doi:10.1107/S0567740876007966
http://dx.doi.org/10.1186/1556-276X-7-158
http://dx.doi.org/10.1103/PhysRevB.78.115404
http://dx.doi.org/10.1088/0953-8984/24/30/305004
http://www.sciencedirect.com/science/article/pii/0038109871906430
http://dx.doi.org/10.1103/PhysRevB.32.8278
http://dx.doi.org/10.1103/PhysRevB.32.8278
http://dx.doi.org/10.1111/j.1151-2916.1994.tb06999.x
http://dx.doi.org/10.1111/j.1151-2916.1994.tb06999.x
http://dx.doi.org/10.1016/S0039-6028(96)00971-5
http://dx.doi.org/10.1103/PhysRevB.60.R16287
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1103/PhysRevB.84.054410
http://dx.doi.org/10.1007/s10853-007-1526-9
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06541.x
http://dx.doi.org/10.1103/PhysRevB.75.153408
http://dx.doi.org/10.1103/PhysRevB.75.153408


Bibliography 75

72K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for
ultraviolet lasing of hexagonal boron nitride single crystal”, Nature Materials 3, 404–409
(2004).

73I. M. Billas, a. Châtelain, and W. a. de Heer, “Magnetism from the atom to the bulk in
iron, cobalt, and nickel clusters.”, Science 265, 1682–1684 (1994).

74P. Enghag, Encyclopedia of the elements: technical data - history - processing - applications
(Wiley, 2008).

75P. Rinke, E. Kioupakis, A. Janotti, F. Bechstedt, M. Scheffler, and C. G. Van De Walle,
“First-principles optical spectra for F centers in MgO”, Physical Review Letters 108,
126404 (2012).

76G. Grad, P. Blaha, K. Schwarz, W. Auwärter, and T. Greber, “Density functional the-
ory investigation of the geometric and spintronic structure of h-BN/Ni(111) in view of
photoemission and STM experiments”, Physical Review B 68, 1–7 (2003).

77P. a. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Van Den Brink, and P. J.
Kelly, “First-principles study of the interaction and charge transfer between graphene and
metals”, Physical Review B 79, 1–12 (2009).

78R. Laskowski, P. Blaha, and K. Schwarz, “Bonding of hexagonal BN to transition metal
surfaces: An ab initio density-functional theory study”, Physical Review B 78, 045409
(2008).

79A. B. Preobrajenski, A. S. Vinogradov, and N. Mårtensson, “Monolayer of h-BN
chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states”,
Surf. Sci. 582, 21–30 (2005).

80M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong, and P. J. Kelly, “Electrostatic doping
of graphene through ultrathin hexagonal boron nitride films”, Nano Letters 11, 4631–4635
(2011).

81T. Abtew, B.-C. Shih, S. Banerjee, and P. Zhang, “Graphene-ferromagnet interfaces:
hybridization, magnetization and charge transfer.”, Nanoscale 5, 1902–9 (2013).

82Y. S. Dedkov and M. Fonin, “Electronic and magnetic properties of the graphene/ferromagnet
interface”, New J. Phys. 12, 125004 (2010).

83C. Tablero, “Electronic and magnetic properties of the Fe-doped CuInS2”, Chemical
Physics Letters 499, 75–78 (2010).

84W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, and A. Zettl, “Boron
nitride substrates for high mobility chemical vapor deposited graphene”, Applied Physics
Letters 98, 242105 (2011).

85C. Dean, a. F. Young, L. Wang, I. Meric, G. H. Lee, K. Watanabe, T. Taniguchi, K. Shepard,
P. Kim, and J. Hone, “Graphene based heterostructures”, Solid State Communications
152, 1275–1282 (2012).

86M. S. Driver, J. D. Beatty, O. Olanipekun, K. Reid, A. Rath, P. M. Voyles, and J. A.
Kelber, “Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular
Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001)”, Langmuir 32, 2601–2607
(2016).

87A. Avsar et al., “Spin-orbit proximity effect in graphene.”, Nat. Commun. 5, 4875 (2014).
88M. Gmitra and J. Fabian, “Graphene on transition-metal dichalcogenides: A platform for
proximity spin-orbit physics and optospintronics”, Phys. Rev. B 92, 155403 (2015).

89C. M. Singal and T. P. Das, “Electronic structure of ferromagnetic hcp cobalt. i. band
properties”, Phys. Rev. B 16, 5068–5092 (1977).

http://dx.doi.org/10.1038/nmat1134
http://dx.doi.org/10.1038/nmat1134
http://dx.doi.org/10.1126/science.265.5179.1682
http://dx.doi.org/10.1103/PhysRevLett.108.126404
http://dx.doi.org/10.1103/PhysRevLett.108.126404
http://dx.doi.org/10.1103/PhysRevB.68.085404
http://dx.doi.org/10.1103/PhysRevB.79.195425
http://dx.doi.org/10.1103/PhysRevB.78.045409
http://dx.doi.org/10.1103/PhysRevB.78.045409
http://dx.doi.org/10.1016/j.susc.2005.02.047
http://dx.doi.org/10.1021/nl202131q
http://dx.doi.org/10.1021/nl202131q
http://dx.doi.org/10.1039/c2nr32972g
http://dx.doi.org/10.1088/1367-2630/12/12/125004
http://dx.doi.org/10.1016/j.cplett.2010.09.018
http://dx.doi.org/10.1016/j.cplett.2010.09.018
http://dx.doi.org/10.1063/1.3599708
http://dx.doi.org/10.1063/1.3599708
http://dx.doi.org/10.1016/j.ssc.2012.04.021
http://dx.doi.org/10.1016/j.ssc.2012.04.021
http://dx.doi.org/10.1021/acs.langmuir.5b03653
http://dx.doi.org/10.1021/acs.langmuir.5b03653
http://dx.doi.org/10.1038/ncomms5875
http://dx.doi.org/10.1103/PhysRevB.92.155403
http://dx.doi.org/10.1103/PhysRevB.16.5068


76 Bibliography

90M. Vanin, J. J. Mortensen, a. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen, and
K. W. Jacobsen, “Graphene on metals: A van der Waals density functional study”, Physical
Review B 81, 1–4 (2010).

91P. Moon and M. Koshino, “Electronic properties of graphene/hexagonal-boron-nitride
moiré superlattice”, Phys. Rev. B 90, 155406 (2014).

92M. Bokdam, T. Amlaki, G. Brocks, and P. J. Kelly, “Band gaps in incommensurable
graphene on hexagonal boron nitride”, Phys. Rev. B 89, 201404 (2014).

93M. Gmitra, D. Kochan, P. Högl, and J. Fabian, “Trivial and inverted dirac bands and the
emergence of quantum spin hall states in graphene on transition-metal dichalcogenides”,
Phys. Rev. B 93, 155104 (2016).

94P. Bruno and C. Chappert, “Ruderman-Kittel theory of oscillatory interlayer exchange
coupling”, Physical Review B 46, 261–270 (1992).

95P. Bruno, “Oscillations of Interlayer Exchange Coupling vs. Ferromagnetic-Layers Thick-
ness”, EPL 23, 615 (1993).

96K. Nakamura, R. Arita, Y. Yoshimoto, and S. Tsuneyuki, “First-principles calculation of
effective onsite Coulomb interactions of 3d transition metals: Constrained local density
functional approach with maximally localized Wannier functions”, Phys. Rev. B 74, 1–5
(2006).

97F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger, “Calculations of Hubbard
U from first-principles”, Phys. Rev. B 74, 125106 (2006).

98O. G. A. Svane, “Transition-Metal Oxides in the Self-Interaction-Corrected Density-
Functional Formalism”, Physical Review Letters 65, 1148–1151 (1990).

99A. Juhin, F. de Groot, M. Calandra, and C. Brouder, “Angular dependence of core
hole screening in LiCoO2: A DFT+U calculation of the oxygen and cobalt K-edge x-ray
absorption spectra”, Physical Review B 81, 115115 (2010).

100M. Forti, P. Alonso, P. Gargano, and G. Rubiolo, “Transition Metals Monoxides. An
LDA+U Study”, Procedia Materials Science 1, 230–234 (2012).

101N. Ashcroft and N. Mermin, Solid state physics (Saunders College, 1976).
102C. Kittel, Introduction to solid state physics (Wiley, 2004).
103F. Volmer, M. Drögeler, E. Maynicke, N. von den Driesch, M. L. Boschen, G. Gün-

therodt, and B. Beschoten, “Role of MgO barriers for spin and charge transport in
Co/MgO/graphene nonlocal spin-valve devices”, Phys. Rev. B 88, 161405 (2013).

104F. Godel, E. Pichonat, D. Vignaud, H. Majjad, D. Metten, Y. Henry, S. Berciaud, J.-F.
Dayen, and D. Halley, “Epitaxy of MgO magnetic tunnel barriers on epitaxial graphene.”,
Nanotechnology 24, 475708 (2013).

105M. W. Bräuninger, “Tunnel barriers for spin injection into graphene” (Universität Basel,
2014).

106P. Hohenberg and W. Kohn, “Inhomogeneous electron gas”, Phys. Rev. 136, B864–B871
(1964).

107W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation
effects”, Phys. Rev. 140, A1133–A1138 (1965).

108W. Kohn, “Nobel lecture: electronic structure of matter-wave functions and density
functionals”, Rev. Mod. Phys. 71, 1253–1266 (1999).

http://dx.doi.org/10.1103/PhysRevB.81.081408
http://dx.doi.org/10.1103/PhysRevB.81.081408
http://dx.doi.org/10.1103/PhysRevB.90.155406
http://dx.doi.org/10.1103/PhysRevB.89.201404
http://dx.doi.org/10.1103/PhysRevB.93.155104
http://dx.doi.org/10.1103/PhysRevB.46.261
http://dx.doi.org/10.1209/0295-5075/23/8/013
http://dx.doi.org/10.1103/PhysRevB.74.235113
http://dx.doi.org/10.1103/PhysRevB.74.235113
http://dx.doi.org/10.1103/PhysRevB.74.125106
http://dx.doi.org/10.1103/PhysRevLett.65.1148
http://dx.doi.org/10.1103/PhysRevB.81.115115
http://dx.doi.org/10.1016/j.mspro.2012.06.031
http://dx.doi.org/10.1103/PhysRevB.88.161405
http://dx.doi.org/10.1088/0957-4484/24/47/475708
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/RevModPhys.71.1253


Bibliography 77

109J. P. Perdew, K. Burke, M. Ernzerhof, D. of Physics, and N. O. L. 7. J. Quantum Theory
Group Tulane University, “Generalized Gradient Approximation Made Simple”, Phys. Rev.
Lett. 77, 3865–3868 (1996).

110S. Cottenier, Density Functional Theory and the family of (L)APW-methods: a step-by-step
introduction (2002), ISBN 9080721514.

111S. R. Bahn and K. W. Jacobsen, “An object-oriented scripting interface to a legacy
electronic structure code”, Comput. Sci. Eng. 4, 56–66 (2002).

112A. Kokalj, “XCrySDen—a new program for displaying crystalline structures and electron
densities”, J. Mol. Graph. Model. 17, 176–179 (1999).

113K. Momma and F. Izumi, “VESTA3 for three-dimensional visualization of crystal, volu-
metric and morphology data”, Journal of Applied Crystallography 44, 1272–1276 (2011).

114P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project
for quantum simulations of materials”, J. Phys. Condens. Matter 21, 395502 (2009).

115K. Schwarz and P. Blaha, “Solid state calculations using wien2k”, Computational Materials
Science 28, 259–273 (2003).

116G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-
wave method”, Phys. Rev. B 59, 1758–1775 (1999).

117S. Grimme, “Semiempirical gga-type density functional constructed with a long-range
dispersion correction”, Journal of Computational Chemistry 27, 1787–1799 (2006).

118J. J. E. Dennis and J. J. Moré, “Quasi-newton methods, motivation and theory”, SIAM
Rev. 19, 46–89 (1977).

http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1109/5992.998641
http://dx.doi.org/10.1016/S1093-3263(99)00028-5
http://dx.doi.org/10.1107/S0021889811038970
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/http://dx.doi.org/10.1016/S0927-0256(03)00112-5
http://dx.doi.org/http://dx.doi.org/10.1016/S0927-0256(03)00112-5
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1002/jcc.20495
http://dx.doi.org/10.1137/1019005
http://dx.doi.org/10.1137/1019005




Acknowledgments

At the end of my thesis I would like to thank all the people that supported me and contributed
to this thesis.

First of all, I would like to express my deep gratitude to Prof. Jaroslav Fabian, who gave
me the chance to write my thesis in his research group. During this period of time I have
learned many things, which will be helpful for my further scientific work. Especially the topic,
presented in this thesis, was carefully chosen and is very interesting.

I would like to thank my academic supervisors Martin Gmitra and Tobias Frank, for the
helpful discussions and useful comments on the obtained results. I thank Tobias for his help
when it came to computational problems, but also for the well-conceived comments, when I
started with this topic. I thank Martin for the thought-provoking discussions of the results
and for intensive support, not only on the scientific level, during this research project.

Finally, I would like to thank my family, friends and colleagues. Their support and care
helped me to stay focused during my studies.

79





Erklärung gemäß § 39, Abs. (5) der Prüfungsordnung vom

29. November 2011

Ich erkläre hiermit, dass ich

• die vorliegende Abschlussarbeit selbstständig verfasst,

• keine anderen als die angegebenen Quellen und Hilfsmittel benutzt und

• die Arbeit nicht bereits an einer anderen Hochschule zur Erlangung eines akademischen
Grades eingereicht habe.

Weiterhin bestätige ich hiermit, dass

• die vorgelegten Druckexemplare und die vorgelegte elektronische Version der Arbeit
identisch sind,

• ich über wissenschaftlich korrektes Arbeiten und Zitieren aufgeklärt wurde und

• von den in § 24, Abs. (5) vorgesehenen Rechtsfolgen Kenntnis habe.

Regensburg, 14 Juli 2016
Unterschrift

81




	Introduction
	Single Layers
	Graphene
	Hexagonal Boron Nitride
	Silicon Dioxide
	Aluminum Oxide
	Cobalt
	Nickel
	Summary

	Heterostructures with hBN
	Graphene/hBN/Cobalt
	Lattice Structure
	Effective Hamiltonian
	Results

	Graphene/hBN/Nickel
	Lattice Structure
	Results

	Summary

	Heterostructures with Oxide Insulators
	Graphene/AlTEXTOTEXT/Ferromagnet
	Summary

	Summary and Outlook
	Reminder on DFT
	Many-particle systems
	Density functional theory
	Exchange-Correlation functional
	Basis sets

	Computational Implementation and Details
	Program packages
	Lattice constant analysis
	Computational Methods

	List of Figures
	List of Tables
	Bibliography
	Acknowledgments

