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1 Introduction

The big interest in condensed matter physics is due to the possibility to find new materials,
that allow to improve the performance of for example electrical devices, such as transistors
and build these at nanoscale size. Another branch of research in this area is spintronics,
where one hopes to gain control over the spin degree of freedom, in special materials, to
obtain new possibilities in information processing (supercomputer). A very promising and
highly discussed material in condensed matter physics is graphene.
Graphene is a very special solid with some unique properties. Because of its hexagonal single
layer structure it is light as well as robust and flexible. In recent years it has always been
a great subject in research with a lot of applications. For instance it is used in integrated
circuits (high charge carrier mobility), in solar cells (high electric conductivity and optical
transparency) or in so called graphene-based ultracapacitors (energy storage). Moreover it is
claimed to be the ideal material for spintronics [20].

This work handles with the problem how to calculate some of these properties (electronic
density, band structure) with the density functional theory (DFT) on the basis of the
WIEN2k code [10].
Some theoretical background is needed to understand the major problem, because it is very
difficult to handle a many particle system. Therefore a short introduction on solid state
physics is given, where the many-particle Hamiltonian gets constructed. The next step
is to find good approaches, to simplify the problem, but not neglect too much important
contributions. The Born-Oppenheimer approximation is therefore introduced, which neglects
the motion of the nuclei, because of their much bigger mass than those of the electrons.
The important element in DFT is the electronic density, which contains equivalent information
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2 1 Introduction

as the many body wave function, according to the theorems of Hohenberg and Kohn [8].
Out of these follow the Kohn-Sham equations [9], which is a self consistency problem, that
can be solved, when making further approximation for the exchange-correlation potential
(LDA, GGA). The accuracy of the final solution depends on the used basis set and its size
(APW, LAPW, APW+lo).
In the last part the WIEN2k code and its operating principle is shortly introduced and the
results on the single layer graphene calculations are presented. The more important and
interesting part is the one, where we consider methylated graphene. This is a single graphene
layer, where methyl groups (CH3 molecules) are attached, so that one might find interesting
new properties, which could be useful and applicable in technology.



2 Many-particle systems

In solid-state physics one has to deal with properties of matter in the solid phase. A solid is
composed of atoms, that are held together by chemical bonding. The number of atoms is
typically N ∼ 1023 and hence properties of solids have to be investigated using methods of
quantum mechanics combined with those of statistical physics. The difficulty comes from the
fact that the constituents in a solid (nuclei, electrons) interact among themselves through
Coulomb interaction.

2.1 Many-body-Hamiltonian

To describe the microscopic properties of a solid, one first needs to know the Hamiltonian
of this system. The kinetic energy divides into the one for the electrons and the one for
the nuclei. Considering only the relevant scales for a solid, the only interaction is the
Coulomb-interaction, between all of the different constituents. The Hamiltonian then reads
[1]

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂en. (2.1)
The single parts of the Hamiltonian in their explicit forms are:

• the kinetic energy of the electrons

T̂e = −
∑
i

~2

2me

∇2
i (2.2)

• the kinetic energy of the nuclei

T̂n = −
∑
I

~2

2MI

∇2
I (2.3)

• the potential energy from the Coulomb interaction between the electrons

V̂ee = 1
2
∑
i 6=j

e2

|ri − rj|
(2.4)
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4 2 Many-particle systems

• the potential energy from the Coulomb interaction between the nuclei

V̂nn = 1
2
∑
I 6=J

ZIZJe
2

|RI −RJ |
(2.5)

• the potential energy from the Coulomb interaction between the electrons and the nuclei

V̂en = −
∑
i,I

ZIe
2

|ri −RI |
(2.6)

As one can already see now, the Hamiltonian contains a lot of terms, because of the huge
number of interacting particles. Therefore the problem is to develop methods to handle this
with an accuracy, so that nothing important is neglected.

2.2 Many-body Schrödinger equation and wave function

The Hamiltonian 2.1 can describe all kinds of materials (plastic, glass, steel, . . .), because it
is general and exact for all solids. The Schrödinger equation for the given problem is

ĤΨ = EΨ, (2.7)

where
Ψ = Ψ({ri}, {RI}), (2.8)

depends on all coordinates of the electrons {ri} and the coordinates of the nuclei {RI}. The
main issue is, that already a problem of three particles is not solvable, when interactions play
a role. For simplifications, we do not consider the spin here, but it could be easily added in
the formalism. So we are looking at a system of N indistinguishable particles. As we only
consider electrons in the main part (after chapter 2.3 this will be clear), the wave function
has the form

Ψ = Ψ(1, 2, . . . , N). (2.9)
Introducing the permutation operator P̂ij, which interchanges two particles at i and j

P̂ijΨ(1, 2, . . . , i, j, . . . , N) = Ψ(1, 2, . . . , j, i, . . . , N), (2.10)

leads to
P̂ijΨ = −Ψ, (2.11)

as electrons are fermions and the wave function must be antisymmetric. One can also show,
that if Ψ is an eigenstate, P̂Ψ also is, where P̂ is a general permutation. Therefore any



2.3 Born-Oppenheimer approximation 5

observable Â, especially Ĥ, commutes with P̂

[P̂ , Â] = 0 ⇒ 〈P̂Ψ|Â|P̂Ψ〉 = 〈Ψ|Â|Ψ〉. (2.12)

P̂ is unitary, which means P̂ † = P̂−1. In general the antisymmetric N -particle wave function
is

ΨA({ri}) = 1√
N !

∣∣∣∣∣∣∣∣
φα1(r1) · · · φα1(rN)

... ...
φαN (r1) · · · φαN (rN)

∣∣∣∣∣∣∣∣ , (2.13)

with the single particle states φαi(rj). This is the Slater-determinant representation, which
has the required properties of antisymmetry (interchanging columns gives a -1 ) and satisfies
the Pauli-principle (αi = αj ⇒ ΨA = 0), where no state can be double occupied.

2.3 Born-Oppenheimer approximation

On closer examination of the Hamiltonian 2.1 with the explicit form of the single parts one
notices that there is a small term contained in comparison to others. Looking at the masses
of the constituents one finds me

MI
∼ 10−4 and therefore the kinetic energy of the nuclei is

much smaller than the one of the electrons. Electrons adopt instantaneously to the actual
configuration of the nuclei. One can get a qualitative proof of this by assuming the whole
system to be in thermal equilibrium. Electrons and Nuclei have the same thermal energy
per degree of freedom 〈

me

2 v2
i

〉
=
〈
MI

2 v2
I

〉
= kBT

2 . (2.14)

Due to me
MI
∼ 10−4, electrons move much faster. This leads to the fact, that one can

consider the electrons to be in a system, with a positive charge distribution, from the fixed
nuclei. Therefore, electrons are the only particles we now need to describe with our wave
function. The consequences of the Born-Oppenheimer approximation [5] are, that the exact
Hamiltonian 2.1 reduces to

Ĥ = T̂e + V̂ee + V̂ext + E1. (2.15)
Because of the fixed position of the nuclei, their kinetic energy is zero. The interaction
term between the nuclei reduces to a constant E1, which just leads to an energy shift and is
irrelevant when calculating the electronic wave function. The actual effect of the nuclei on
the electrons is now contained in the external potential V̂ext. A more general form for the
external potential would now be

V̂ext =
∑
i,I

VI(|ri −RI |), (2.16)
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which contains the Coulomb interaction, but can also include additional terms like an electric
field [1]. However the central Hamiltonian we now have to deal with is

Ĥ = T̂e + V̂ee + V̂ext = Ĥel + V̂ext, (2.17)

with a system-independent part Ĥel and a part V̂ext which contains all the system-relevant
information. Therefore we now have a wave function Ψ({ri}), which only depends on the
coordinates ri of the electrons, since the position of the nuclei is fixed. Note, that there also
exists an effective Schrödinger equation for the nuclei, where the energy of the electrons acts
like an effective potential, but this is not important, since we want to describe electronic
properties.



3 Density functional theory

Despite the Born-Oppenheimer approximation, the given Hamiltonian is still too difficult.
Therefore one wants to work with a simpler approximation picture, because the problem
is not exactly solvable. A lot of solution methods exist in order to deal with the quantum
many-body problem, given through the Hamiltonian 2.17. A commonly used method is the
Hartree-Fock approximation because it works very well for atoms and molecules. For solids,
this method is not so accurate and therefore a more modern one is used, namely Density
Functional Theory (DFT). This method was established by P. Hohenberg and W. Kohn (HK)
in 1964. The most important quantity in this formalism is the electronic density ρ(r)

ρ(r) =
N∑
i=1
|φi(r)|2, (3.1)

contrary to the formalism of Schrödinger, where the wave function Ψ(ri) plays the central
role. At first sight, one thinks, that the density, which only depends on three parameters r,
cannot provide the same information as the wave function, which depends on 3N parameters
ri, but the theorems of HK [8] prove the opposite.

3.1 Hohenberg-Kohn theorems

Theorem 1: The ground state density ρ(r) defines uniquely the Hamiltonian. Therefore
the many particle ground state energy is a unique functional of the density ρ(r) [8].

Proof: Suppose the same density ρ(r) follows from two different external potentials V̂ext
and V̂ ′ext (they should differ not only by a constant) and therefore two different Hamiltonians
Ĥ and Ĥ ′. The wave functions Ψ and Ψ′ are not equal, because they are the solutions to
different Schrödinger equations.

Ĥ = Ĥel + V̂ext 6= Ĥel + V̂ ′ext = Ĥ ′ (3.2)

ĤΨ = E0Ψ, Ĥ ′Ψ′ = E ′0Ψ′, E0 6= E ′0 (3.3)

7



8 3 Density functional theory

Using the minimal principle one can say

E0 = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉, (3.4)

E0 < E ′0 +
∫
d3rρ(r)(V̂ext − V̂ ′ext), (3.5)

The same can be done, when interchanging primed and unprimed quantities

E ′0 < E0 −
∫
d3rρ(r)(V̂ext − V̂ ′ext), (3.6)

which leads to contradiction, when adding equations 3.5 and 3.6 . This proves, that the
ground state energy is a unique functional of the density.

Theorem 2: For the Hamiltonian Ĥ, the ground state energy functional is defined by

H[ρ] = EVext [ρ] = 〈Ψ|Ĥel + V̂ext|Ψ〉 = FHK [ρ] +
∫
ρ(r)V̂ext(r)dr, (3.7)

and reaches its minimal value for the ground state density ρ(r), corresponding to Ĥ [8].

Proof: The energy functional for a system of N particles depending on Ψ′ is given by

E[Ψ′] = 〈Ψ′|Ĥ|Ψ′〉, (3.8)

and has its minimum at the correct ground state Ψ, under the constraint that the particle
number is constant

N [ρ] =
∫
ρ(r)dr = N. (3.9)

Using equation 3.7 leads to

E[Ψ′] = FHK [ρ′] +
∫
ρ′(r)V̂ext(r)dr > FHK [ρ] +

∫
ρ(r)V̂ext(r)dr = E[Ψ], (3.10)

which proves, that EVext [ρ] reaches its minimal value for the ground state density.
A definitely advantage of these theorems is, that we now have to search for the correct
ground state density, which depends only on three parameters. Because of the fact that the
Coulomb interaction has a rather long range, one can separate the classical Coulomb energy.
Hence for most purposes it is appropriate to rewrite FHK [ρ] in the following way

FHK [ρ] = 1
2

∫ ρ(r)ρ(r ′)
|r − r ′|

drdr ′ +G[ρ] = J [ρ] +G[ρ], (3.11)

where J [ρ] is the classical Coulomb energy and G[ρ] is a universal functional [8].
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3.2 Kohn-Sham approach

Kohn and Sham (KS) developed out of the HK theorems methods for treating an inhomo-
geneous system of interacting electrons, the so called Kohn-Sham equations [9]. These are
self-consistent equations like the Hartree-Fock equations, but the exchange and correlation
effects are contained in an appropriate way. We start with the ground state energy written
in the form

E[ρ] =
∫
ρ(r)V̂ext(r)dr + 1

2

∫ ρ(r)ρ(r ′)
|r − r ′|

drdr ′ +G[ρ]

= Eext[ρ] + J [ρ] +G[ρ], (3.12)

and want to derive equations, which are analogous to single particle equations, that are
easier to solve. We approximate G[ρ] in the following way

G[ρ] = Ts[ρ] + Exc[ρ]. (3.13)

Ts[ρ] is the kinetic energy of a system of non-interacting electrons (the s always denotes
the system of non-interacting particles, which here serves as reference system so that
(− ~2

2m∇
2 + Vs)φi = εiφi)

Ts[ρ] = − ~2

2m

N∑
i=1
〈φi|∇2

i |φi〉, (3.14)

where φi are the Kohn-Sham-orbitals, so that the following is true (when choosing an
appropriate Vs)

ρs(r) =
N∑
i=1
|φi(r)|2 = ρ0(r), (3.15)

with the exact ground state density ρ0(r) of the interacting system. Exc[ρ] is the exchange-
correlation energy of an interacting system. We now have defined all our terms (except Exc,
for this see chapter 3.3), which means we can use the variational principle with the energy of
the form

EKS[ρ] = Ts[ρ] + Eext[ρ] + J [ρ] + Exc[ρ], (3.16)
and the constraint that the φi should be normalized one obtains

δ

[
EKS −

∑
i

εi(〈φi|φi〉 − 1)
]

= 0, (3.17)

where εi is a Lagrange multiplier. This yields the Kohn-Sham equations[
− ~2

2m∇
2 +

(∫ ρ(r ′)
|r − r ′|

dr ′ + Vxc(r) + Vext(r)
)]

φi(r) = εiφi(r), (3.18)
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where
Vxc(r) = δExc

δρ
. (3.19)

Now we have to solve single-particle equations for all the φi’s, which actually describe
quasi-particles with their energies εi. But by construction it is guaranteed, that the density
of these quasi-particles is equal to the true electron density. As these equations need to
be solved self consistently, we first need to assume a starting density ρ0, construct the
Hamiltonian and then find a new density ρ1 by solving the single particle equations. The
procedure has to be done again with ρ1, and so forth, as long as |ρn − ρn+1| < δtol. The
solution procedure for this is shown in figure 3.1.

Figure 3.1: Solution process for Kohn-Sham equations [7]

3.3 Exchange-Correlation functional

Until now, no approximations have been made, apart from the BO-approximation, but the
exchange-correlation energy Exc is unknown and hence the search for functionals is central
in DFT-research. The Kohn-Sham approach is exact, but now we need approximations for
Exc, to make our theory really applicable. Two different exchange-correlation functionals
will be presented, which are extensively used in calculations.
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3.3.1 Local Density Approximation

For a slow varying density ρ(r), Exc[ρ] can be written as

ELDA
xc [ρ] =

∫
ρ(r)εHEGxc (ρ(r))dr, (3.20)

with εHEGxc (ρ(r)) being the exchange-correlation energy density (energy per electron) of a
uniform electron gas of density ρ [9]. This we call the Local Density Approximation (LDA),
because the dependence of the functional on the density is only local. εHEGxc (ρ(r)) is a
function of ρ and we obtain an exchange-correlation potential of the form

V LDA
xc (r) = δExc

δρ
= εHEGxc (ρ(r)) + ρ(r)∂ε

HEG
xc (ρ(r))
∂ρ(r) . (3.21)

The exchange-correlation energy due to a particular density ρ(r) could be found
by dividing the material in infinitesimally small volumes with a constant density.
Each such volume contributes to the total exchange correlation energy by an
amount equal to the exchange correlation energy of an identical volume filled with
a homogeneous electron gas, that has the same overall density as the original
material has in this volume [2].

An exacter derivation of ELDA
xc [ρ] can be found in [4]. An astonishing fact is that the LDA

not only works for systems with a slowly varying density. It is surprisingly accurate for
realistic systems, but it fails in systems that are dominated by electron-electron interaction
effects (like heavy fermion systems), because there is no resemblance to a uniform electron
gas [11].

3.3.2 Generalized Gradient Approximation

A first step to improve LDA, is to take not only the local density into account, but also the
density of the neighbouring volumes. Therefore εxc depends on the gradient of the density,
and it is called the Generalized Gradient Approximation (GGA). The exchange-correlation
energy is now of the form

EGGA
xc [ρ] =

∫
ρ(r)εxc(ρ(r),∇ρ(r))dr, (3.22)

where εxc 6= εHEGxc , is a function, that depends on the density ρ(r) and the gradient of the
density ∇ρ(r). One can choose εxc in different ways, to get different GGA’s. This freedom
does not exist for LDA, because there is only one correct expression for εHEGxc . In particular,
GGA’s used in physics focus on exact constraints, whereas in quantum chemistry, parameters
are fitted on examined molecules. The most appropriate and most reliable GGA’s were
proposed in 1996 by Perdew, Burke and Ernzerhof (GGA-PBE) [3].
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3.4 Basis sets

The final step in DFT is, that one needs to solve equations of the form

Ĥspφi = εiφi, (3.23)

where Ĥsp is the single particle Hamiltonian. In the case of DFT Ĥsp is given through
equation 3.18 and φi are the Kohn-Sham single-particle orbitals. The solution process is
equivalent for DFT or Hartree-Fock, so the mathematical techniques are the same to solve
them.
In general, one first needs to define a ground state density. But before we can define a density,
we need a basis set φbp, so that we can express the wave function as a linear combination of
the basis functions

φi =
P∑
p=1

cipφ
b
p, (3.24)

because we do not know how the φi’s look like, which define the density. Solving now means,
that we want to find the coefficients cip, so that our wave function is a linear combination of
the basis functions. To exactly define the φi, one needs an infinite basis set (number of P is
infinite), because the φi belong to a function space with infinite dimension. As this is not
practical, we therefore limit the number P, but accept, that we can only generate functions
which are close to the exact φi. Having chosen a basis, the problem reduces to an eigenvalue
problem of linear algebra (for further details see [2]). Before we introduce a basis, we want
to know, which properties define a good basis.
If we choose a basis set, that is similar to the φi, the number P reduces in equation 3.24,
but we can still accuratly describe the wave function (efficiency). This assumes, that one
already knew the solution right before starting the calculation, which is good for few special
systems, with the same properties, but for the majority they will poorly describe it. So the
basis set should work for the majority of problems (unbiased).
In general, two different basis sets exist, which are mixed to combine their good properties.
One are the plane waves, which accuratly describe weakly bound/free electrons and the
other ones are local orbitals/atomic like functions, which accuratly describe heavily bound
electrons.

3.4.1 Plane waves and pseudopotential method

As already said, the basis set should be efficient and unbiased. Additionally it would be nice,
if the basis functions are mathematically simple. Solids or crystals have a periodic structure
and hence a periodic Hamiltonian and so we can choose the basis set to be plane waves. The
wave function writes

φnk(r) =
∑
K

cn,kK exp(i(k +K)r). (3.25)
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In this notation, i = (n,k) and p = k +K. As one can see, this basis-set is k-dependent.
That means, that one has for different n and same k, the same basis set, but for different
k one has another basis set. Rememeber that we have to limit our basis set. We choose
K ≤ Kmax, that corresponds to a sphere with radius R = Kmax around the origin of
reciprocal space. All reciprocal lattice vectors, smaller than Kmax are taken into the basis
set.
Determining the eigenvalue problem, yields for each eigenvalue εn,k an eigenvector [cn,kK ]P×1
of P values for cn,kK corresponds [2]. The P eigenvalues each with their own set of coefficients,
and each leading to another eigenfunction φnk. So we found P different eigenfunctions, all
with the same k but with different band index n. When we repeat the calculations for every
k, that is contained in the first Brillouin zone, we get the band structure. The number of
k’s defines the sampling. So far, so good. The problem is, that we would need about 108

plane waves [2] for realization and this is way beyond practice.
To make this ansatz applicable, we look at the wave function of a simple atom. The most
oscillating part is near the nucleus, so one needs to modify something in this region. One
can use atomic like functions in combination with plane waves (APW-method, see chapter
3.4.2), or one can modify the potential (pseudopotential method).
As already said, the wave function oscillates in the inner region, outside the electrons are
almost free. Chemistry happens in the outer shells, and for the description in the inner
shells, we replace the potential through a pseudopotential, to reach smooth tails of the wave
functions there. Going to the outer region, the potential evolves into the true potential.
Using this ansatz, we only need about 270 plane waves [2], which is a managable amount.
Two criteria are important, when defining a pseudopotential (transferability and softness).
First one is, that it can be used in a lot of environments (molecules, solids, etc.) and the
second one is, that we only will need few plane waves because of this potential.

3.4.2 Augmented plane waves

Even though the pseudopotential method is useful, one cannot appropriately describe
properties of the system near the nucleus. We have to search for another basis set, that
describes the electrons properly, which means they are more or less free far away from the
nuclei and near the nuclei they behave as bound to an atom. Therefore we use a combination
of plane waves and atomic like functions. For this we divide the space into two regions. The
so called muffin tin sphere Sα with radius Rα around each atom, and the remaining space
outside of them called the interstitial region I. The augmented plane wave (APW) basis set
is defined as in Ref. [2]

φkK(r, E) =


1√
V

exp(i(k +K)r), r ∈ I

∑
l,m
Aα,k+K
lm uαl (r′, E)Y l

m(θ′, φ′), r ∈ Sα
(3.26)
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The position inside the spheres is given with respect to the center of each sphere by r ′ = r−rα
(see figure 3.2). uαl (r′, E) are the solutions of the radial part of the Schrödinger equation for

Figure 3.2: Division of a unit cell in muffin tin regions Sα and the interstitial region I [2]

a free atom α and Y l
m(θ′, φ′) are spherical harmonics. In Sα the basis is a linear combination

of atomic functions (Aα,k+K
lm are coefficients) and should therefore be close to the actual

eigenfunctions, so that they appropriately describe the system. One requirement is that the
plane waves match the atomic functions in value, over the complete surface of the sphere, in
order to determine the coefficients uniquely.
As for plane waves we have to limit the basis, which is in principle infinite and hence we
introduce a lmax to limit their number. The cut off parameter for plane waves was Kmax. In
order to match these limitations, we compare the number of nodes per unit length which
yields RαKmax = lmax. We accept therefore, that the matching at the boundaries are not
exact, but sufficient. To visualize the basis set, imagine an oscillating function, that changes
into something more complex inside of Sα.
To describe the eigenstates accurately with this basis one needs to set the free parameter
E, in uαl (r′, E), equal to the band energy εnk and therefore we have to start with a guessed
value for εnk before we start solving the secular equation (see figure 3.3). We will need about
131 APW’s so that the diagonalization is much faster, but we only find one eigenvalue and
not P simultaneously as for plane waves and hence this method is in total slower than the
pseudopotential method.

3.4.3 Linearized Augmented Plane Waves

The regular LAPW method: The APW method contains one difficulty, as we do not know
the eigenenergies E = εnk yet, to construct the basis set, because this is what we are actually
searching for. For this the basis of Linearized Augmented Plane Waves (LAPW) exists in
order to circumvent this obstacle.
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Figure 3.3: Flowchart of the APW method [2]

We make a Taylor expansion of uαl (r′, E) around a specific energy E0

uαl (r′, εnk) = uαl (r′, E0) + (E0 − εnk) ∂u
α
l (r′, E)
∂E

∣∣∣∣∣
E=E0

+O
[
(E0 − εnk)2

]
, (3.27)

and take the first two terms into account, to create the LAPW basis

φkK(r, E) =


1√
V

exp(i(k +K)r), r ∈ I

∑
l,m

(Aα,k+K
lm uαl (r′, E0) +Bα,k+K

lm u̇αl (r′, E0))Y l
m(θ′, φ′), r ∈ Sα

(3.28)

where u̇αl = ∂uαl (r′,E)
∂E

∣∣∣
E=E0

. An additional coefficient must be introduced, because we do not
know the energy difference E0− εnk. To determine Aα,k+K

lm and Bα,k+K
lm we need the matching,
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at the sphere boundary, to the plane waves in value and slope. In order to accurately describe
the band structure, we should choose a set of Eα

1,l (for every band l) and not an universal
E0. The LAPW basis thus is

φkK(r, E) =


1√
V

exp(i(k +K)r), r ∈ I

∑
l,m

(Aα,k+K
lm uαl (r′, Eα

1,l) +Bα,k+K
lm u̇αl (r′, Eα

1,l))Y l
m(θ′, φ′), r ∈ Sα

(3.29)

With this basis we get, out of one diagonalization, P different band energies for one single k,
as for plane waves. The limitation criteria here is the product Rmin

α Kmax, where Rmin
α is the

smallest muffin tin radius. A smaller Kmax yields a smaller matrix size and a larger Rmin
α

reduces computation time and hence Rmin
α Kmax should be kept constant. The basis set size

is then about 195 basis functions. As the calculation time scales with the third power of the
basis set size, this method is 2-3 times faster than plane waves [2].

LAPW with Local Orbitals: A well bound electron to the nucleus is called a core state
and participates not in chemical bonding. It is therefore contained in the muffin tin sphere.
States outside the sphere take part in chemical bonding and are called valence states and
are treated by LAPW. Low lying valence states are called semi-core states. If we want to
describe these, we do not know how to choose Eα

1,l, because we do not know in which band
these states sit. We add another type of basis function to LAPW, a local orbital (LO), to
solve this dilemma

φlmα,LO(r, E) =


0, r 6∈ Sα

(Aα,LOlm uαl (r′, Eα
1,l) +Bα,LO

lm u̇αl (r′, Eα
1,l) + Cα,LO

lm uαl (r′, Eα
2,l))Y l

m(θ′, φ′), r ∈ Sα
(3.30)

Its name comes from the fact, that an LO acts only in the region of one particular atom
Sα. There is no k- or K-dependence, because they have no connection to plane waves.
The energies Eα

1,l and Eα
2,l correspond to the next highest or the next lowest valence state

in relation to the mentioned semi-core state. The coefficients Aα,LOlm , Bα,LO
lm and Cα,LO

lm are
determined by normalization and matching of zero value and zero slope at the boundary.
Through this additional function, the basis set size and thus computational time increase,
but the accuracy is much better [2].
A few more types of basis sets exist, such as the APW+lo, which combines the good features
of APW and LAPW+LO. As this would lead too far, those are not explained here, but in
[2].



4 Properties of Graphene

Carbon atoms have a chemical configuration of [He] 2s2 2p2 and hence they can form various
complex molecules. A really interesting and today often used and discussed material is
graphene. Because of its structure, it is light as well as robust. For a long time, the
production of single layer graphene was a very time-consuming procedure, but since 2014
one can produce large quantities of defect-free graphene [15].
Moreover it has some interesting physical properties, such as a remarkably high electron
mobility (> 15000 cm2

Vs ). Often it is used in spintronics, because carbon has nearly no nuclear
magnetic moment and because of its small spin-orbit coupling (SOC) [20], it is theoretically
expected to have long spin-lifetimes, which is good, when transporting spin information.
Here one will get a short introduction of important properties of graphene.

4.1 Lattice

The carbon atoms in graphene have a sp2-hybridisation and hence every atom can have
three equal σ-bondings to other carbon atoms. This is why the graphene lattice has the
honeycomb or hexagonal two-dimensional form (see figure 4.1). Graphene belongs to the
point group D6h which has 24 symmetry operations (see figure A.1). The distance between
the carbon atoms is aC = 1.42 Å. The last non hybridized pz-orbitals, which are orthogonal
to the graphene plane, form a π-bonding system. The primitive cell is formed by the lattice
unit vectors a1 and a2

a1 = aC
2
(
3,
√

3
)
, a2 = aC

2
(
3,−
√

3
)
, (4.1)

where a = |a1| = |a2| =
√

3aC ≈ 2.46 Å. The reciprocal lattice unit vectors b1 and b2 are
given by

b1 = 2π
3aC

(
1,
√

3
)
, b2 = 2π

3aC

(
1,−
√

3
)
, (4.2)

which can be found by using the relation ai · bj = 2πδij and also form a hexagonal reciprocal
lattice.
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18 4 Properties of Graphene

(a) Lattice structure of graphene. a1 and a2 are the
lattice unit vectors, and δi, i = 1, 2, 3 are the nearest-
neighbour vectors

(b) Corresponding Brillouin zone. The Dirac cones
are located at the K and K’ points. b1 and b2 are the
reciprocal lattice unit vectors

Figure 4.1: Lattice and reciprocal lattice of graphene [13]

4.2 Band structure

The band structure of graphene can be calculated, using the tight-binding approximation
(TBA)

E±(k) = ±t ·
√

3 + f(k) + t′f(k) (4.3)
with

f(k) = 4 cos
(√

3kya
2

)
cos

(
3kxa

2

)
+ 2 cos

(√
3kya

)
(4.4)

where a = 2.46 Å is the lattice constant, t = 2.7 eV is the nearest neighbour hopping energy
and t′ is the next nearest neighbour hopping energy (0.02t ≤ t′ ≤ 0.2t) [13]. The band
structure is shown in figure 4.2, where one can clearly see, that the upper (π∗) and the lower
(π) band touch each other at six points (actually there is a band gap at the order of 10−6

eV, when SOC is turned on [20]), namely the K and K ′ points from figure 4.1, the so called
Dirac points. As there are two atoms per unit cell, there are in general two nondegenerate
low energy eigenstates. The lower band can be exactly filled with 2 valence electrons at
temperature T = 0, and thus the Fermi energy EF = 0, which means, that graphene has
electron-hole symmetry. Pure graphene is therefore a zero gap semiconductor (or zero-overlap
semimetal).
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(a) Upper (π∗) and lower (π) band for t = 2.7 eV and
t′ = 0.2t. Axis: kx, ky and E [eV]

(b) Band structure of a single graphene layer. Solid
red lines are σ-bands and dotted blue lines are π-
bands [14]

Figure 4.2: Theoretical band structure of graphene

4.3 Closer look on Dirac points

Taking a closer look on the Dirac points, the dispersion in the low energy limit can be
obtained by expanding the formula for the band structure around K =

(
2π
3a ,

2π
3
√

3a

)
with

k = K + q and |q| � |K|

E±(q) = ±vF |q|+O
[(
q

k

)2
]
, (4.5)

where q is the momentum relative to the Dirac point and vF = 3ta
2 ≈ 1 · 106 m

s is the Fermi
velocity [13]. Note, that in this limit the velocity does not depend on momentum or energy,
as usual. An expansion around K and taking t′ into account up to the second order in q

K

yields

E±(q) = 3t′ ± vF |q| −
(

9t′a2

4 ± 3ta2

8 sin(3θq)
)
|q|2, (4.6)

where θq = arctan
(
qx
qy

)
is the angle in momentum space. Remark, that t′ breaks the electron

hole symmetry, and the bands become asymmetric with respect to the Fermi energy. The
energy dispersion 4.5 is close to the one of massless relativistic particles, which are described
by the Dirac equation. It follows, that the cyclotron mass is proportional to the square root
of the electronic density ρ

m∗ =
√
π

vF

√
ρ, (4.7)
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which provides evidence of massless Dirac quasi-particles (Dirac fermions) in graphene [13].
As already said, the electron wave function near the Dirac points (this case is for K) obey a
2D Dirac equation

−ivFσ · ∇Ψ(r) = EΨ(r), (4.8)

Ψ±,K(k) = 1√
2

(
exp(−iθk/2)
± exp(iθk/2)

)
, HK = vFσk, E = ±vFk, (4.9)

with the Pauli spin-matrices σ = (σx, σy). The signs ± correspond to the eigenenergies
E = ±vFk in the π∗ and π bands. A similar equation exists for the K ′ Dirac point. The
wave functions of these two are related by time-reversal symmetry. One can now show, that
the helicity, defined by the operator

ĥ = 1
2σ ·

p

|p|
(4.10)

is a good quantum number close to the Dirac points [13].

4.4 Density of States

The density of states per unit cell is given by

ρ(E) = 4|E|
π2t2
√
Z0
· F
(
π

2 ,
√
Z1

Z0

)
, (4.11)

with

Z0 =


(
1 + |E|

|t|

)2
− [(E/t)2−1]2

4 , −t ≤ E ≤ t

4 |E||t| , t ≤ |E| ≤ 3t
(4.12)

and Z0 = Z1, but with interchanged domains [13]. F
(
π
2 , x

)
is the complete elliptic integral

of the first kind. As the band structure can be approximated at the Dirac point, so can the
density of states

ρ(E) = 2Ac|E|
πv2

F

, (4.13)

with Ac = 3
√

3a2

2 which is the unit cell area. Figure 4.3 shows the density of states for different
t′.
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Figure 4.3: Density of states per unit cell [13]

One can see, that the density of states, in the vicinity of the neutrality point, can be
approximated by ρ(E) ∝ |E|. The density of states is vanishing at zero energy and the
peaks, left and right of the neutrality point are called van Hove singularities, which refer to
the points in k-space, where |~∇~kE| = 0.





5 Single layer graphene

The DFT calculations on graphene were executed with an ab initio (= from the beginning)
calculation, implemented in the WIEN2k code [10]. A detailed description of the procedure is
given in A.1. In this chapter, the most important results are stated and explained. The main
input for the WIEN2k code is the structure file, which is given (for graphene) by figure A.1.
The lattice parameters are chosen such, that the two dimensional honeycomb structure (see
figure 5.1) is obtained, with a vacuum spacing of 28a0 along z-direction (a0 ≈ 0.5 Å). Hence
the overlap of the wave functions in this direction is minimized. The optimal parameters,
that were obtained can be seen in A.1. The calculation was performed with RK = 8 and
k-point sampling (KPTS) of 21× 21× 1 for the band structure and RK = 8 and k-point
sampling of 42× 42× 1 for the DOS. Remember that RK is the cut-off parameter, which
limits the basis set size, to have a good compromise between duration and accuracy of the
calculation. The k-point sampling also defines the accuracy of the calculation. In general it
is valid to say, the more k-points the better, but the duration also scales linearly with the
number of k-points.
As the calculation has to be performed in a self-consistent way, one first needs a starting
density ρ0. It is constructed by taking the superposition of atomic densities [10].

Figure 5.1: Lattice of graphene constructed with Xcrysden (crystalline and molecular struc-
ture visualisation program)

5.1 Band structure

The calculated band structure for graphene was plotted along the high symmetry points
Γ −M − K − Γ where the Fermi energy was set to zero (see figure 5.2), which can be
compared to the tight-binding structure (figure 4.2). As expected, the upper π∗ and the
lower π bands touch each other at the K-point, where the dispersion shows linear behaviour.

23



24 5 Single layer graphene

Moreover the dispersion at the Γ-point shows a parabolic behaviour for energies > 3 eV,
which is similar to the dispersion of a free electron gas. This contribution comes from the
vacuum spacing between the graphene layers, since this region has to be filled with plane
waves.

Figure 5.2: Band structure of graphene. π∗-band (brown), π-band (yellow), other bands are
σ-bands

5.2 Density of States

The calculated DOS is shown in figure 5.3, which can be compared to the analytical one
(figure 4.3). The graph shows the expected behaviour at the neutrality point (see 5.4), where
the DOS can be approximated by ρ(E) ∝ |E|. The different colors refer to different orbitals.
Note, that the DOS (black line) is the density of states for the unit cell, whereas the orange
line is the one for a single carbon atom. The low lying s and px+py states are forming
the sp2-hybridisation, which are responsible for the robustness of graphene. In the low
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energy region, the main contribution comes from the pz states, that form the π-bonds, which
are responsible for the large conductance. Clearly visible are the van Hove singularities,
at around -2.5 eV and 1.7 eV. But these peaks from the pz contribution do not reach the
total DOS value, since orbital contributions are taken from inside muffin tin spheres only.
Therefore the main contribution to the DOS at higher energies (> 3 eV) are mainly due to
states from the interstitial region.
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6 Methylated graphene structure

This part deals with the problem of a modified graphene structure. As one can see in
figure 6.1, we added a CH3 molecule (methyl group) with perpendicular orientation to the
graphene layer. A methyl group consists of one carbon atom bonded to three hydrogen atoms
and it is often found in organic materials, usually in larger molecules. Thus this structure
is called methylated graphene. We chose the molecule, since graphene is expected to be
contaminated by organic molecules. In principle it is not clear, where the molecule will bind
(top, hollow or bridge position), but we know from the hydrogenated system [20, 17], that
the top position is favoured in this case, since carbon and hydrogen have almost the same
pauling electronegativity (C: 2.55, H: 2.20 [21]) and thus behave similar. A description of
the performed calculations is given in A.1.2. Because of the methyl group, the inversion
symmetry is broken and the point group reduces to C3v, which has 6 symmetry operations
(see figures A.7,A.8). In order to get the lowest energy configuration, several calculations of
different orientations of the molecule should be performed (see figure 6.1). But due to reasons
of symmetry, the lowest energy configuration will in principle be such that the carbon-atom,
where the molecule is attached to, forms a tetrahedron with the methyl group (see figure
6.2), which is lifted from the graphene layer. Due to the lack of time, we considered (as an
approximation) the lattice constant, to be the one of the single layer graphene.

(a) Top configuration (b) Hollow configuration

Figure 6.1: Different orientations of methyl group with respect to graphene layer
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28 6 Methylated graphene structure

The structural parameters of the tetrahedron obtained from force relaxations are as follows

θ1 = 106.4° θ2 = 109.9° θ3 = 112.3° θ4 = 109.1°,

d1 = 1.099 Å d2 = 1.588 Å d3 = 1.505 Å d4 = 0.426 Å,

d3

d1

d4
d2

θ4

θ3

θ1

θ2

Figure 6.2: Structural parameters of the methyl group

which is close to an ideal sp3-hybridized tetrahedron with θtetrah. ≈ 109.47°. In contrast to
the single layer graphene, where the bonding length between carbon atoms is 1.42 Å , the
bonding between the carbon atoms, in this structure, differs from 1.4 Å to 1.43 Å. The task
is now to find out, how these change the physical properties of the system. In principle one
can for example expect a magnetic moment of the system (spin-polarized calculation) and a
gap occurring in the band structure, due to the covalently bonded methyl groups (through
C-C bonding) [18]. To obtain the highest accuracy, one has to perform a lot of calculations
with different parameter sets (k-points and RK), so that the total energy and the magnetic
moment converge. Due to the lack of time, we only considered calculations with RK to be
between 3.5 and 4.5 with k-point sampling 5 × 5 × 1. As the total energy for the hollow
configuration is lower than the one for the top configuration (see table 6.1), this one will be
preferred by the nature and only the results on the hollow configuration are given.

ENE (3.5) ENE (4) ENE (4.5) FER (3.5) FER (4) FER (4.5)

Top -1451.351 -1451.356 -0.11866 -0.11867
Hollow -1451.330 -1451.365 -1451.372 -0.11816 -0.11518 -0.11473

∆E [eV] 0.19 0.22

Table 6.1: Total energies (ENE) and fermi energies (FER) in units [Ry] for different RK
(number in brackets) with KPTS = 5× 5× 1
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6.1 Band structure

The calculated band structure for methylated graphene was plotted along the high symmetry
points Γ−M −K − Γ with Fermi level set to zero, where we considered a spin-polarized
calculation (see figure 6.3) with RK = 4 and k-point sampling 5× 5× 1. As one can already
see, the Dirac point is no longer at K, but at the Γ-point. This considered 3× 3 methylated
graphene supercell therefore has properties of the 1× 1 graphene unit cell. This is due to
the coincidence, that the K-point of this Brillouin zone matches with the Γ-point of the
graphene Brillouin zone (see figure 6.4). A spin splitting can be observed and thus a net
magnetic moment occurs, since the spin up bands, which sit lower in energy than the spin
down bands, are getting filled sooner. One observes an exchange splitting of about 0.5 eV
at the Fermi level and also a splitting of the low lying carbon σ-bands. Moreover a gap of
about 0.2 eV occured in the band structure at the Γ-point.

Figure 6.3: Spin resolved band structure of methylated graphene



30 6 Methylated graphene structure

K

Γ

Figure 6.4: Brillouin zone matching

6.2 Magnetization

The total magnetic moment per unit cell is defined as

M = (N↑ −N↓)µB =
EF∫
−∞

(g↑(E)− g↓(E))µBdE (6.1)

whereN↑ (N↓) is the number of electrons in the unit cell with spin up (down) and g↑(E) (g↓(E))
is the DOS per unit cell for spin up (down). We obtained a total spin magnetic moment in
the unit cell of 1.00011 µB for RK = 4.5 and for RK = 4 we obtained 0.99993 µB. One can
say, that there is definetely a magnetic moment as expected, of almost exactly 1 µB. This is
in agreement to Lieb’s theorem [22], since we have one monovalent covalently bonded methyl
group on one lattice site. The distribution of the magnetic moments over the unit cell is
viewed in figure 6.5.
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Figure 6.5: Sketch of the spin distribution in the unit cell
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Spin down (blue) and spin up (red) are sketched relatively to 0.1 µB (long arrows at the
left). The spins for the hydrogen atoms are quite small and thus not contained in the sketch.
One can clearly see, that the magnetic moments of the sublattices have different sign, but
the spin down contribution is less than the spin up contribution and thus the resulting total
magnetic moment is about 1 µB. Table 6.2 shows the strength of the magnetic moment for
the different atoms, defined in A.8, which in sum lead to the total magnetic moment per
unit cell, taking the multiplicity into account.

site magnetic moment [µB] multiplicity total contribution [µB]

interstitial 0.56197 1 0.56199
atom 1 -0.02706 6 -0.16236
atom 2 0.08385 3 0.25155
atom 3 0.03773 3 0.11319
atom 4 -0.01739 1 -0.01739
atom 5 0.08029 3 0.24087
atom 6 -0.00540 1 -0.00540
atom 7 0.04309 1 0.04309
atom 8 -0.02535 1 -0.02535
atom 9 -0.00008 3 -0.00024
total 0.99993 1 0.99993

Table 6.2: Magnetic moments of the single atoms for RK = 4

Due to the sp3 hybridization, which are formed by the methyl admolecules, the spin-orbit
coupling will be increased, such that the spin Hall effect could be observed, that offers the
possibility of electrically driven spintronics [20].

6.3 Density of states

The calculated atomic resolved DOS (case without spin polarization, RK = 3.5 and a k-point
sampling of 15× 15× 1) is shown in figure 6.6. The numbering of the atoms refers to the
one from table 6.2 and figure 6.5.
The peak at the Fermi level indicates an exchange splitting of the bands, as already mentioned,
since mainly the states of atoms, with spin up, contribute here. In general, more spin up
states are thus occupied. A closer look on this peak is given through figure 6.7. The main
contribution for this high density of states around zero energy is due to the atoms 2, 3, 5
and 7, which have all a net magnetization of spin up.
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Figure 6.6: Atomic resolved DOS
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Figure 6.7: Peak around zero energy of atomic resolved DOS

Figure 6.8 shows the density of states for the net magnetization, meaning, that it shows the
sum of the atomic densities of states, when taking their sign of the magnetic moment from
table 6.2 into account

ρ(E)magnetic =
9∑
i=1
±ρ(E)atomi (6.2)

= −ρ(E)atom1 + ρ(E)atom2 + ρ(E)atom3 − ρ(E)atom4 + . . .

Only around zero energy, the states from spin up and spin down do not compensate each
other, since there are more spin up states, than spin down states occupied.
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Figure 6.8: Density of states for net magnetization. Spin up and down compensate each
other, but not around zero energy

A closer look on the orbital resolved DOS, for the atoms, which are involved in the bonding
to the methyl group (namely atoms 5, 6, 7 and 9), is shown in figure 6.9. As one can see, the
main contribution of the hydrogen atoms (atom 9) is due to the s orbitals. The contribution
from atom 5 is mainly due to pz orbitals.
As one can expect, the main contributions from atoms 6 and 7 should be due to pz states,
since the bonding is perpendicular to the graphene layer, which is in fact the case. The
density of states thus directly contains information about the direction of the bonding. Note,
that atom 7 has a not negligible contribution from s states. Again, the orbital contributions
do not reach the total DOS value, as before.
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Figure 6.9: Orbital resolved DOS at zero energy peak for atoms located around methyl group
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The spin resolved DOS is shown in figure 6.10 for RK = 4 and a k-point sampling of
15× 15× 1. One can definitely confirm the fact of the antisymmetric filling of spin up and
spin down states, leading to a net magnetic moment.
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Figure 6.10: Spin resolved DOS of methylated graphene



7 Overview and Outlook

In the thesis we studied the electronic structure of graphene and methylated graphene
with ab-initio calculations. Starting from considering pure single layer graphene sheets, we
investigate graphene where methyl groups were attached.

During the study of graphene structures, with Wien2k, a lot of practical knowledge, concerning
ab-initio codes and DFT, has been gained. The main problem in condensed matter physics
was stated, solution approaches were made and fundamentals of DFT were introduced. We
considered the theorems of Hohenberg and Kohn, which are the foundations of DFT, that led
to the self-consistent Kohn-Sham equations, which are a practical tool, in order to determine
the ground state of a solid. Different basis sets were introduced, which are crucial, when
calculating electronic properties, since the electronic density is obtained by the square of the
absolute value of the wave function. One gained expertise in handling the Wien2k software
suite and knowledge about post-processing, like calculating the density of states or band
structure. A feeling for crucial parameters and convergence quantities evolved.

The first results we obtained were the band structure and the density of states, by considering
pure single layer graphene. These quantities were in quite good agreement with the thight-
binding ones, since we could confirm the linear behavior of the DOS and the band structure at
the neutrality points, which refers to massless Dirac fermions in the vicinity of the K-points,
like they were theoretically predicted.

The more interesting part, where we considered methylated graphene, led to a spin splitting
and thus an antisymmetric filling of the states, resulting in a net magnetic moment of 1 µB
per unit cell. We also found, that the DOS has a rather high value at the Fermi level, which
indicates the exchange splitting. As expected, a gap in the band structure occured and the
Dirac cone appeared now at the Γ-point, due to the fact, that the K-point of the Brillouin
zone from the methylated graphene matches with the Γ-point of the graphene Brillouin
zone.

Due to the lack of time, it was not possible to obtain the ideal results for the methylated
graphene, as this would need more calculations with different unit cell constants. One
could have also treated spin-orbit coupling or other quantities, concerning different unit
cells, where the number and orientation of the methyl groups varies, as one can in principle
expect a change in the value of the total magnetic moment or a change in the size of the
band splitting. In particular, it would be interesting, what happens if other adatoms or
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admolecules (such as Fluorine or Hydrogen) were attached and not a methyl group. And it
would also be possible to use different two dimensional structures (single layer boron nitride)
or additionaly consider vacancies in the structure. Moreover one could consider so called
Van-der-Waals heterostructures, where several two dimensional structures are stacked on top
of each other.
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A.1 Procedure and Parameters of WIEN2k

A.1.1 Single layer graphene

To reproduce the given results of the calculations with WIEN2k, here is a step-by-step
guidance, to obtain them. Special properties of settings, parameters and naming conventions
of the input files for WIEN2k can be looked up in [10].
In order to recreate the lattice structure of the considered system, one has to construct a
structure file (see fig. A.1), which defines the unit cell and is used as general input for the
procedure. One should be careful here, as the positioning of the single parameters in the
*.struct file is very sensitive, meaning that even one blank can decide, if the next steps run or
not. In order to avoid this, one can look at the structure file at $WIENROOT/SRC_templates.

Figure A.1: Structure file of graphene

In the initalization process of the LAPW routine [init_lapw], one uses the new scheme
with a reduction of RK of 0%. As the muffin tin radius RMT is already set in the structure
file, one can use these values and take a next neighbour bond-length factor of 2. Spin of the
electrons is not important in this calculation, so it can be set to (default). The configuration
for lstart is the PBE-GGA and a separation energy (between core and valence states) of −6
Ry has been chosen. The k-point sampling in kgen can be arbitrarily set to 5× 5× 1 for a
first calculation.
For the actual calculation, one has to run LAPW, with the charge convergence option
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[run_lapw -cc 0.0001], which means, that if a charge convergence less than 10−4 is obtained,

∆c =
∫
|ρn(r)− ρn−1(r)|dr < 10−4 · e (A.1)

the routine can stop, because the result is acceptable. A closer look on the whole routine,
can be found in Ref. [10] or look at figure A.6. One can look into the *.scf file to get the
energies ENE [grep :ENE *.scf] and FER and the number of basis functions RKM from
the *.scf1 file. A calculation with a force relaxation is not necessary, since one exactly knows
how the honeycomb structure of graphene looks like with all the distances and angles. But
this will be important later. In principle one should also do a determination of the lattice
constant.
After several calculations with different RK = Rmin

α Kmax and different k-point samplings
(KPTS) (see A.1) one finds the optimal parameter for graphene from the figures A.3, A.4
and A.5. One can see, that the total energy (ENE) converges for RK=8 and KPTS=40 and
has its minimal value (∆(ENE)RK={7,8} ≈ 14 meV, ∆(ENE)RK={8,9} ≈ 7 meV). Figure A.5
shows, that the Fermi energy (FER), obtained from the calculation, is only accurate when
KPTS is dividable by 3 (maybe only these k-point samplings are good, when at the Dirac
cone (see figure A.2). Pretend, that one sampling takes the points 1-3 and another one just
takes the points 2 and 3. Then the Fermi energy, which is for graphene at the dirac point,
would be shifted by a ∆E) and therefore we use KPTS to be 48, which equals a k-sampling
of 21× 21× 1.

kx

ky

E

1

2 3

∆E

Dirac point

Figure A.2: Sketch of the dirac cone and the sampling points/KPTS (red)

One also obtains, that one has to set G_Max =14 to satisfy G_Min < G_Max. As the spin
is not important, we do not need a spin polarized calculation.
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To construct the band structure (see figure 5.2) one first has to define the path in the
k-space (here: Γ −M − K − Γ was chosen), along which the band structure has to be
calculated. This can be easily done with Xcrysden [xcrysden –wien_kpath *.scf] when
separating this path into 100 k-points. Next, one needs an *.insp file, which can be copied
from $WIENROOT/SRC_templates directory and in this file the Fermi energy from the *.scf
file has to be inserted. Now one has to execute lapw1 [x lapw1 -band], lapw2 [x lapw2
-band -qtl] and spaghetti [x spaghetti -qtl]. lapw1 calculates the eigenvalues along the
defined path and lapw2 calculates the particle charges. To visualize the band structure,
one can for example look at the *.spaghetti_ps file, or directly plot the energies from the
*.spaghetti_ene file.
To construct the density of states (DOS) one first has to change the k-point sampling to
42×42×1 and rerun the lapw calculation, in order to get a better accuracy, when calculating
the DOS. To calculate the particle charges one has to execute lapw2 [x lapw2 -qtl]. To
run the program tetra one needs the input file *.int, which allows to specify which partial
DOS should be calculated. To create this file we run [configure_int_lapw] and take the
DOS up to d-charakter. Now one can run the program tetra [x tetra -qtl], which creates
the files for the DOS, namely *.dos1 and *.dos1ev.
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RK KPTS K-Matrix ENE FER G-MAX

5 3 3-3-1 -152.33284665 -0.1362372675 12
5 5 5-5-1 -152.37169405 -0.2499799629 12
5 8 7-7-1 -152.37515635 -0.2512280607 12
5 12 9-9-1 -152.37229051 -0.1378930738 12
5 16 11-11-1 -152.37403870 -0.1969413528 12
5 21 13-13-1 -152.37373221 -0.1966123952 12
5 27 15-15-1 -152.37337674 -0.1378933172 12
5 33 17-17-1 -152.37363437 -0.1777933982 12
5 40 19-19-1 -152.37373008 -0.1776751748 12
5 48 21-21-1 -152.37355481 -0.1379047334 12
5 56 23-23-1 -152.37371094 -0.1682302410 12
5 65 25-25-1 -152.37376299 -0.1680817486 12
5 75 27-27-1 -152.37367635 -0.1378826053 12
5 91 30-30-1 -152.37362400 -0.1378991160 12
5.5 27 15-15-1 -152.39794013 -0.1392064597 12
6 27 15-15-1 -152.40863779 -0.1375914936 12
6.5 27 15-15-1 -152.41284774 -0.1386237232 12
7 27 15-15-1 -152.41447826 -0.1382344157 12
7.5 27 15-15-1 -152.41518107 -0.1379355179 12
8 27 15-15-1 -152.41549579 -0.1376855797 12
8.5 27 15-15-1 -152.41579341 -0.1375221064 12
9 27 15-15-1 -152.41601528 -0.1374234363 12
9 27 15-15-1 -152.41534335 -0.1374047123 14
8.5 27 15-15-1 -152.41527412 -0.1375035393 14
8 27 15-15-1 -152.41512965 -0.1376957228 14
7.5 27 15-15-1 -152.41480993 -0.1379314856 14
7 27 15-15-1 -152.41412098 -0.1382317673 14
6.5 27 15-15-1 -152.41250934 -0.1386189860 14
6 27 15-15-1 -152.40832866 -0.1375791639 14
5.5 27 15-15-1 -152.39767181 -0.1392024130 14
5 27 15-15-1 -152.37314794 -0.1378956351 14

Table A.1: Set of calculations to obtain ideal parameters
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Figure A.6: Program flow in WIEN2k [10]
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A.1.2 Methylated graphene structure

The calculations for the graphene structure with the methyl group attached were more
difficult to perform. One has to create a supercell [x supercell], because one cannot attach
a methyl group to every carbon atom, as they would overlap and we only want to consider
them as a kind of impurity. The unit cells for the two different modifications are shown in
figure 6.1, and contain a lot more than only two carbon atoms. The final structure files are
shown in (A.7, A.8), but the mentioned unit cells do not match with these structure files.
This is because, when initializing LAPW, the structure files are changed in the symmetry
cycle.
The rest of the initialization is equal to the one of graphene except, that the parameter
RK = Rmin

α Kmax was chosen to be between 3.5 and 4.5 and ’de’ (emax = Ef + de) to be
0.5 in the *.in1c file. The k-point sampling was chosen to be 5 × 5 × 1 and ran with the
options [run_lapw -cc 0.001 -p]. The option -p, means, that the calculation runs parallel
on different cores of the processor. For that, one has to create a .machines file, where the
number of parallel calculations is declared, for parallelizing k-points over processors.
As this calculation lead to no error, the next step was to optimize the structure, by executing
a force relaxation. Therefore one needs to edit the *.inm file and use MSR1a as mixing
method. Now one runs again the LAPW cycle [run_lapw -cc 0.0001 -fc 1 -p] with
the additional force convergence parameter. This leads to a slightly modified structure,
where the mentioned tetrahedral shape is much more pronounced. The forces from the *.scf
[grep :FR *.scf] should reduce themselves to an acceptable value (in general at the order
of mRyd/bohr). The force relaxation has to be performed for structures, where one just
approximately knows the geometry of the system, but it is important to find the configuration
of the atoms, where the energy is minimal, as it depends on the positions of the nuclei.
As already mentioned, one can in principle expect a magnetic moment in this structure,
due to the covalently bonded methyl group. Therefore one considers a calculation with
spin-polarization, different RK and k-point samplings [runsp_lapw -cc 0.0001 -p]. The
band structure and the DOS are obtained by an analogue procedure as for graphene, with
the difference, that one has to add the option [-up|dn] either for spin up or spin down
calculation.
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Figure A.7: Structure file of methylated graphene; top configuration
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Figure A.8: Structure file of methylated graphene; hollow configuration
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