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Quantifying uncertainty of
machine learning methods for
loss given default

Matthias Nagl, Maximilian Nagl* and Daniel Rösch

Chair of Statistics and Risk Management, Universität Regensburg, Regensburg, Germany

Machine learning has increasingly found its way into the credit risk literature.

When applied to forecasting credit risk parameters, the approaches have

been found to outperform standard statistical models. The quantification

of prediction uncertainty is typically not analyzed in the machine learning

credit risk setting. However, this is vital to the interests of risk managers and

regulators alike as its quantification increases the transparency and stability in

risk management and reporting tasks. We fill this gap by applying the novel

approach of deep evidential regression to loss given defaults (LGDs). We

evaluate aleatoric and epistemic uncertainty for LGD estimation techniques

and apply explainable artificial intelligence (XAI) methods to analyze the main

drivers. We find that aleatoric uncertainty is considerably larger than epistemic

uncertainty. Hence, the majority of uncertainty in LGD estimates appears to be

irreducible as it stems from the data itself.

KEYWORDS

machine learning, explainable artificial intelligence (XAI), credit risk, uncertainty, loss

given default

1. Introduction

Financial institutions play a central role in the stability of the financial sector. They

act as intermediaries to support the supply of money and lending as well as the transfer of

risk between entities. However, this exposes financial institutions to several types of risk,

including credit risk. Credit risk has the largest stake with roughly 84% of risk-weighted

assets of 131major EU banks as of June 2021 [1]. The expected loss (EL) due to credit risk

is composed of three parameters: Probability of Default (PD), Loss Given Default (LGD),

and Exposure at Default (EAD). PD is defined as the probability that a creditor will not

comply with his agreed obligations at a later time. LGD is defined as the relative fraction

of the outstanding amount that is lost. Finally, EAD is defined as the outstanding amount

at the time of default.

This article focuses on LGD as this risk parameter is important for financial

institutions not only from a risk management perspective but also for pricing credit

risky assets. Financial institutions can use their own models to calculate an estimate for

the LGD. This estimate is subsequently used to determine the interest on the loan/bond

and the capital requirement for the financial institution itself see, e.g., [2–6]. Depending

on the defaulted asset, we can divide the LGD further into market-based and workout

LGD. The former refers to publicly traded instruments like bonds and is commonly

defined as one minus the ratio of the market price 30 days after default divided by
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the outstanding amount at the time of default. The latter refers

to bank loans and is determined by accumulating discounted

payments from creditors during the default resolution process.

In this article, we use a record of nearly three decades of market-

based LGDs gathered from the Moody’s Default and Recovery

Database starting in January 1990 until December 2019. Recent

literature using a shorter history of this data documents that

machine learning models due to their ability to account for non-

linear relationships of drivers and LGD estimates outperform

standard statistical methods, see, e.g., [7–9]. Fraisse and Laporte

[10] show that allowing for non-linearity can be beneficial in

many risk management applications and can lead to a better

estimation of the capital requirements for banks. Therefore,

using machine learning models can increase the precision of

central credit risk parameters and, as a consequence, could have

the potential to yield more adequate capital requirements for

banks due to the increased precision.

There is a large body of literature using advanced statistical

methods for LGDs. These include beta regression, factorial

response models, local logit regressions, mixture regression, and

quantile regression amongmany others, see, e.g., [2–4, 9, 11–18].

Concerning the increased computational power and methodical

progress in academia, machine learning models have become

more and more frequently applied concerning LGDs1. Early

studies by Matuszyk et al. [28] and Bastos [12] employ tree-

based methods. Moreover, several studies provide benchmark

exercises using various machine learning methods, see, e.g.,

[13–15]. Bellotti et al. [5] and Kaposty et al. [29] update

previous benchmark studies with new data and algorithms.

Nazemi et al. [30] find text-based variables to be important

drivers for marked-based LGDs. Furthermore, evidence that

spatial dependence plays a key role in peer-to-peer lending

LGD estimation can be found in Calabrese and Zanin [31]. By

combining statistical and machine learning models, Sigrist and

Hirnschall [32] and Kellner et al. [6] show that benefits from

both worlds can be captured.

An important aspect, to which the machine learning LGD

literature has not yet paid attention, is the associated uncertainty

around estimates and predictions2. Commonly, we can define

two types of uncertainty, aleatoric and epistemic [33]. Following

Gawlikowski et al. [34], aleatoric uncertainty is the uncertainty

in the data itself that can not be reduced and is therefore also

1 Furthermore, several studies use machine learning to estimate PDs,

see, e.g., [19–23]. Concerning mortgage probability of default, see, e.g.,

[24–27]. Overall, there is a consensus that machine learning methods

outperform linear logit regression.

2 Gambetti et al. [4] uses an extended version of the beta regression

to model the mean and precision of market-based LGDs. This can

be interpreted as focusing on the aleatoric uncertainty. However, the

literature using machine learning algorithms lacks uncertainty estimation

concerning LGD estimates.

known as irreducible or data uncertainty. In classical statistics,

this type of uncertainty is for example represented by ǫ in

the linear regression framework. Epistemic uncertainty refers

to the uncertainty of a model due to the (limited) sample size.

This uncertainty can be reduced by increasing the sample size

on which the model is trained and is therefore also known

as reducible or model uncertainty [34]. In a linear regression

setting, epistemic uncertainty is, accounted for by the standard

errors of the beta coefficients. Given a larger sample size, the

standard errors should decrease. Recently, the literature on

uncertainty estimation has grown rapidly as outlined in a survey

article by Gawlikowski et al. [34].

A first intuitive way to quantify uncertainty is the Bayesian

approach, which is also common in classical statistics. However,

Bayesian neural networks are computationally expensive and

do not scale easily to complex neural network architectures

containing many parameters. Therefore, other researchers aim

at approximating Bayesian inference/prediction for neural

networks. Blundell et al. [35] introduce a backpropagation-

compatible algorithm to learn probability distributions of

weights instead of only point estimates. They call their

approach “Bayes by Backprop.” Rather than apply Bayesian

principles at the time of training, another strand of literature

tries to approximate the posterior distribution only at the

time of prediction. Gal and Ghahramani [36] introduce a

concept called Monte Carlo Dropout, which applies a random

dropout layer at the time of prediction to estimate uncertainty.

Another variant of this framework is called Monte Carlo

DropConnect by Mobiny et al. [37]. This variant uses the

generalization of Dropout Layers, called DropConnect Layers,

where the dropping is applied directly to each weight, rather

than to each output unit. The DropConnect approach has

outperformed Dropout in many applications and data sets, see,

e.g., [37]. Another strategy is to use so-called hypernetworks

[38]. This type of network is a neural network that produces

parameters of another neural network (so-called primary

network) with random noise input. Finally, the hyper and

primary neural networks together form a single model that

can easily be trained by backpropagation. Another strand

of literature applies an ensemble of methods and uses their

information to approximate uncertainty, see, e.g., [39–41].

However, these approaches are computationally more expensive

than Dropout or DropConnect-related approaches. A further

strand of literature aims at predicting the types of uncertainty

directly within the neural network structure. One of these

approaches is called deep evidential regression by Amini

et al. [42] and extensions by Meinert et al. [43], which

learn the parameters of a so-called evidential distribution.

This method quantifies uncertainty without extra computations

after training. Additionally, the estimated parameters of the

evidential distribution can be plugged into analytical formulas

for epistemic and aleatoric uncertainty. This approach quantifies

uncertainty in a fast and traceable way without any additional
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computational burden. Because it has many advantages, this

article relies on the deep evidential regression framework.

We contribute to the literature in two important ways.

First, this article applies an uncertainty estimation framework in

machine learning LGD estimation and prediction. We observe

that deep evidential regression provides a sound and fast

framework to quantify both, aleatoric and epistemic uncertainty.

This is important with respect to regulatory concerns. Not

only is explainability required by regulators, the quantification

of uncertainty surrounding their predictions may be a fruitful

step toward the acceptance of machine learning algorithms

in regulatory contexts. Second, this article analyzes the ratio

between aleatoric and epistemic uncertainty and finds that

aleatoric uncertainty is much larger than epistemic uncertainty.

This implies that the largest share of uncertainty comes from the

data itself and, thus, cannot be reduced. Epistemic uncertainty,

i.e., model uncertainty, plays only a minor role. This may

explain why advanced methods may outperform simpler ones,

but still, the estimation and prediction of LGD remain a very

challenging task.

The remainder of this article is structured as follows. Data

is presented in Section 2, while the methodology is described

in Section 3. Our empirical results are discussed in Sections 4,

5 concludes.

2. Data

To analyze bond loss given defaults, we use Moody’s

Default and Recovery Database (Moody’s DRD). This data has

information regarding the market-based LGD, default type, and

various other characteristics of 1,999 US bonds from January

1990 until December 20193. We use bond characteristics such as

the coupon rate, the maturity, the seniority of the bond, and an

additional variable, which indicates whether the bond is backed

by guarantees beyond the bond issuer’s assets. Furthermore,

we include a binary variable, which determines if the issuer’s

industrial sector belongs to the FIRE (finance, insurance, or

real estate) sector. To control for differences due to the reason

of default, we also include the default type in our analysis. In

addition to that, we add the S&P 500 return to control for the

macroeconomic surrounding. Consistent with Gambetti et al.

[4], we calculate the US default rates directly from Moody’s

DRD. To control for withdrawal effects, we use the number of

defaults occurring in a given month divided by the number of

firms followed in the same period. Since we are interested in

3 In the original sample with 2,205 bonds, there are 206 bonds

with similar LGDs and the same issuer. Since we want to analyze the

uncertainty of bonds and not of issuers, we exclude those observations

from the data set. However, including these bonds reveals that the

uncertainty around their values is considerably smaller, which might have

been expected.

FIGURE 1

Histogram of LGDs.

TABLE 1 Descriptive statistics of LGDs across the whole sample.

N Min. Median Mean Max St.Dev. Skewness

LGD 1999 0.50 73.00 64.29 99.99 27.59 –0.59

All displayed values except the sample size and skewness are expressed as percentages.

the uncertainty in the LGD estimation, we include uncertainty

variables. To incorporate financial uncertainty, we use the

financial uncertainty index by Jurado et al. [44] and Ludvigson

et al. [45] which is publicly available on their website. Finally,

we include the news-based economic policy uncertainty index

provided by Baker et al. [46], which is also accessible on his

website. To keep predictive properties, we lag all macroeconomic

variables and uncertainty indices by one-quarter similar to

Olson et al. [8].

Our dependent variable shows a mode at 90%, illustrated

in Figure 1. This is consistent with Gambetti et al. [4], who

analyzed the recovery rates. The average LGD is about 64.29%

as shown in Table 1 with a standard deviation of 27.59%. The

sample also covers nearly the whole range ofmarket-based LGDs

with a minimum of 0.5% and a maximum of 99.99%.

Table 2 lists the variables and data types. In total, we

use six bond-related variables, two macroeconomic, and

two uncertainty-related variables. The categorical bond-related

variables act as control variables for differences in the

bond structure.

Table 3 shows the correlations between macroeconomic and

uncertainty variables. The correlation is moderate to strong

across the variables. This must be taken into account when

interpreting the effects of the variables. The only exception is the

financial uncertainty index and the default rate, which have a

very weak correlation.

Table 4 shows descriptive statistics for the seniority of the

bond. Each subcategory captures the whole range of LGDs,

while the mean and the median of Senior Secured bonds are

comparably low. In addition, the Senior Secured bonds have

almost no skewness, while the skewness of Senior Unsecured
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TABLE 2 Selected variables for the network.

Variable Variable type Data type

Coupon rate Bond Continuous

Maturity Bond Continuous

Seniority Bond Categorical

Default type Bond Categorical

Backed guarantee Bond Binary

Industry type Bond Binary

S&P 500 Macroeconomic Continuous

Default rate Macroeconomic Continuous

Financial uncertainty Uncertainty Continuous

News-based EPU Uncertainty Continuous

TABLE 3 Upper triangle of the correlation matrix of macroeconomic

and uncertainty features.

S&P500 Default

rate

Fin.

unc.

News-based EPU

S&P500 100.00 –65.18 –41.69 –65.21

Default rate 100.00 5.25 43.85

Fin. unc. 100.00 51.88

News-based EPU 100.00

All displayed values are expressed as percentages.

TABLE 4 Descriptive statistics of LGDs according to the seniority of

the defaulted bond.

N Min. Median Mean Max St.Dev. Skewness

Senior secured 180 0.50 49.75 50.48 99.25 28.87 –0.02

Senior

unsecured

1,305 0.50 72.50 63.37 99.97 27.93 –0.53

Senior

subordinated

353 0.50 79.0 72.07 99.99 23.97 –0.99

Subordinated 161 0.87 74.0 70.17 99.87 23.74 –0.90

bonds is moderate. The skewness of Senior Subordinated

and Subordinated bonds is more negative and fairly similar.

Comparing the descriptive statistics across seniority, we observe

that the locations of the distributions are different, but the

variation of the distribution is considerably large. This might be

the first indication of large (data) uncertainty.

Table 5 categorizes the LGDs by their default type, which

alters some aspects of the overall picture. Compared to Table 1,

the categories Distressed Exchange and Others have lower mean

and median LGD and positive skewness. The biggest difference

between these two categories is that Distressed Exchange has

a lower standard deviation. Missed Interest Payment and

Prepackaged Chapter 11 show similar descriptive statistics

compared to the whole sample in Table 1. The last category

TABLE 5 Descriptive statistics of LGDs according to the default type.

N Min. Median Mean Max St.Dev. Skewness

Chapter 11 705 0.75 85.00 73.48 99.99 25.46 –1.25

Distressed

exchange

322 0.50 40.25 44.51 94.87 24.43 0.18

Missed interest

payment

677 1.00 73.50 66.79 99.99 23.98 –0.69

Others 161 1.00 47.00 51.22 99.75 31.38 0.20

Prepackaged

chapter 11

134 0.50 76.88 66.58 99.64 28.64 –0.64

Chapter 11 has even higher mean and median LGD and the

skewness is fairly low.

3. Methods

To model the uncertainty of LGDs, we use a framework

called deep evidential regression by Amini et al. [42]. This

method is capable of determining the uncertainty of regression

tasks and estimating the epistemic and the aleatoric uncertainty.

One way to model aleatoric uncertainty in the regression case is

to train a neural network with weights w based on the negative

log-likelihood of the normal distribution, and thus perform a

maximum likelihood optimization. The objective function for

each observation is Amini et al. [42]:

LLi (w) =
1

2
log(2πσ 2

i )+
(yi − µi)

2

2σ 2
i

(1)

Where yi is the i-th LGD observation of the sample with

size N and µi and σ 2
i the mean and the variance of the

assumed normal distribution for observation i. Since µi and σ 2
i

are unknown, they can be modeled in a probabilistic manner

by assuming they follow prior distributions q(µi) and q(σ 2
i ).

Following Amini et al. [42], for µi a normal distribution and for

σ 2
i a inverse gamma distribution is chosen:

µi ∼ N(γi, σ
2
i ν−1

i ) (2)

σ 2
i ∼ Ŵ−1(αi,βi) (3)

With γi ∈ R, νi > 0, αi > 1 and βi > 0. Factorizing the joint

prior distribution q(µi, σ
2
i ) = q(µi)q(σ

2
i ) results in a normal

inverse gamma distribution:

p(µi, σ
2
i |γi, νi,αi,βi) =

β
αi
i
√

νi

Ŵ(αi)
√

2πσ 2
i

(
1

σ 2
i

)αi+1

exp{−
2βi + νi(γi − µi)

2

2σ 2
i

} (4)

This normal inverse gamma distribution can be viewed

in terms of virtual observations, which can describe the total
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evidence8i. Contrary to Amini et al. [42], we take the suggested

definition of the total evidence in Meinert et al. [43] as 8i =
νi+2αi, because as derived inMeinert et al. [47], the parameters

νi and 2αi of the conjugated prior normal inverse gamma

distribution can be interpreted as virtual observations of the

prior distribution, where µi and σ 2
i are estimated from. As a

result, the total evidence is the sum of those two expressions. By

choosing the negative inverse gamma distribution as the prior

distribution, there exists an analytical solution for computing

the marginal likelihood or model evidence if the data follows a

normal distribution [42, 43]. The marginal likelihood, therefore,

follows a student-t distribution:

p(yi|γi, νi,αi,βi) = St(yi; γi,
βi(1+ νi)

νiαi
, 2αi) (5)

The marginal likelihood represents the likelihood of

obtaining observation yi given the parameter of the prior

distribution, in this case, γi, νi,αi, and βi. Therefore, maximizing

the marginal likelihood maximizes the model fit. This can

be achieved by minimizing the negative log likelihood

of p(yi|γi, νi,αi,βi). Due to the special conjugated setting

with normally distributed data and normal inverse prior

distributions, the marginal likelihood can be calculated in a

closed form [42]:

LNLLi (w) =
1

2
log(

π

νi
)− αilog(�i)+ (αi +

1

2
)

log((yi − γi)
2νi + �i)+ log(

Ŵ(αi)

Ŵ(αi + 1
2 )

) (6)

Such that �i = 2βi(1 + νi) and Ŵ(.) represents the gamma

function. This closed-form expression makes deep evidential

regression networks fast to compute. To get an accurate estimate

of the aleatoric and the epistemic uncertainty the loss function

has to be regularized. Contrary to the original formulation

of Amini et al. [42], Meinert et al. [43] suggest a different

regularization term because when using the original formulation

the regularized likelihood is insufficient to find the parameters

of the marginal likelihood. Therefore, we follow the approach

of Meinert et al. [43] and use the adjusted regularization term.

This adjustment scales the residuals by the width of the student-

t distribution in Eq. (5), wSti , such that the gradients of 8i and

therefore, of νi do not tend to get very large in noisy regions:

LRi (w) =
∣

∣

∣

∣

yi − γi

wSti

∣

∣

∣

∣

p

8i (7)

With p being the strength of the residuals on the

regularization. The loss function for the neural network can

therefore be calculated as:

Li(w) = LNLLi (w)+ λLRi (w) (8)

Where λ is a hyperparameter to determine the strength

of the regularization in Eq. (7). Since λ and p have to be

determined in advance the network has four output neurons,

corresponding to each parameter of the marginal likelihood in

Eq. (5). These parameters can be used to quantify uncertainty.

Due to the close connection between the student-t and the

normal distribution, wSti can be used as an approximation for

the aleatoric uncertainty [43]. Following Meinert et al. [43], the

epistemic and aleatoric uncertainty can be derived as follows:

uali ≡ wSti =

√

βi(1+ νi)

αiνi
(9)

uepi ≡
1

√
νi

(10)

By employing this approach, we assume that our dependent

variable, y, follows a normal distribution. LGDs are commonly

bound in the interval between zero to one, which is only a

part of the space of the normal distribution. Hence, there is the

possibility that we obtain predicted values outside this range.

However, using the normality assumption is very common in

LGD research as the OLS regression is frequently used as the

main method or at least as a benchmark to other methods,

see, e.g., [5, 11, 13–15, 17, 29, 48–53]. Anticipating the results

in Section 4, we will see that the predicted values for almost

all bonds lie in the interval between zero to one and, thus,

our approach produces reasonable estimates. Furthermore, the

deep evidential regression approach requires some assumptions

to obtain a closed-form solution. For other distributional

assumptions, e.g., a beta distribution for the LGD, there is no

closed-form marginal likelihood known, which, if used, would

eliminate the advantages of this approach.

To unveil the relationships modeled by the neural network,

we use Accumulated Local Effect (ALE) plots by Apley and Zhu

[54]. ALE plots visualize the average effect of the independent

variables on the prediction. Another advantage of ALE plots

over other explainable artificial intelligence (XAI) methods is

that they are unbiased and fast to compute. As mentioned

in Section 2, there is a moderate to high correlation between

macroeconomic and uncertainty-related variables. Therefore,

the XAI method has to be robust to correlations, which is

another advantage of ALE plots. For an independent variable

Xj ∈ R
N×1, the total range of observed values is divided into K

buckets. This is accomplished by defining Zj,k as the
k
K quantile

of the empirical distribution. Therefore Zj,0 is the minimum and

Zj,K the maximum value of Zj. Following this approach, Sj,k can

be defined as the set of values within the left open interval from

Zj,k−1 to Zj,k with nj,k as the number of observations in Sj,k. Let

k(Xj) be an index that returns the bucket for a value of Xj, then

the (uncentered) accumulated local effect can be formalized as:

gALE(Xj) =
k(Xj)
∑

k=1

nj,k
−1

∑

i∈Sj,k

[

f (Zj,k,X\j,i)− f (Zj,k−1,X\j,i)
]

.

(11)
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X\j ∈ R
N×P−1 denotes the set of variables without the

variable j of P variables and f (.) describes the neural network’s

output before the last transformation. The minuend in the

square brackets denotes the prediction of f (.) if the observation

i is replaced with Zj,k and the subtrahend represents the

prediction with Zj,k−1 instead of observation i. The differences

are summed over every observation in Sj,k. This is done

for each bucket k and therefore gALE(Xj) is the sum of the

inner sums weighted by the number of observations in each

bucket. In order to get the centered accumulated local effect

with mean effect of zero for Xj the gALE(Xj) is centered

as follows:

2ALE(Xj) = gALE(Xj)− N−1
N

∑

i=1

gALE(Xj,i) (12)

Because of the centering of the ALE plot, the y-axis describes

the main effect of Zj at a certain point in comparison to the

average predicted value.

There exist several other XAI methods to open up

the black box of machine learning methods. The aim in

our article is to investigate non-linear relationships between

features and LGD estimates. We therefore decide to use

graphical methods. They include partial dependence plots

(PDP) by Friedman [55] for global explanations and individual

conditional expectation (ICE) plots by Goldstein et al. [56]

for local explanations. However, the first method especially

can suffer from biased results if features are correlated.

This is frequently the case for the macroeconomic variables

used in our article. We therefore use ALE plots by Apley

et al. [54] because they are fast to compute and resolve

the problem of correlated features as in our article. Moving

beyond graphical methods, there are several other alternatives,

such as LIME by Ribeiro et al. [57] or SHAP by Lundberg

and Lee [58]. However, these methods cannot visualize

the potential non-linear relationship between features and

LGD estimates. Furthermore, both approaches are known

to be problematic if features are correlated and are in

some cases unstable, see, e.g., [59, 60]. Thus, we use ALE

plots by Apley et al. [54] as they are well suited for

correlated features.

Concerning credit risk, these methods are frequently applied

in recent literature. For example, Bellotti et al. [5] use

ALE plots focusing on workout LGDs. Bastos and Matos

[7] compare several XAI methods, including ALE plots as

well as Shapley values. Similarly, Bussmann et al. [61] use

SHAP to explain the predictions of the probability of default

in fintech markets. Barbaglia et al. [25] use ALE plots to

determine the drivers of mortgage probability of defaults in

Europe. In related fields, such as cyber risk management

or financial risk management in general, the application of

XAI methods becomes more widespread as well, see, e.g.,

[62–65].

4. Results

4.1. Learning strategy

We use the deep evidential regression framework for LGD

estimation to analyze predictions as well as aleatoric and

epistemic uncertainty. Our data set contains 1,999 observations

from 1990 to 2019. To evaluate the neural network on unseen

data, which are from different years than the training data, we

split the data such that the observations from 2018 to 2019 are

reserved as out-of-time data. The remaining data from 1990 to

2017 are split randomly into an 80:20 ratio. A 20% fraction of

this data is preserved as out-of-sample data to compare model

performance on unseen data which has the same structure. The

80% fraction of this split is the training data. This training data is

used to train the model and validate the hyperparameters. Next,

the continuous variables of the training data are standardized

to adjust the mean of these variables to zero and the variance

to one. This scaling is applied to the out-of-sample as well as

the out-of-time data with the scaling parameter of the training

data. The categorical variables are one hot encoded and one

category is dropped. For seniority, Senior Unsecured, and, for

the default type, Chapter 11 is dropped and thus act as reference

categories. For the guarantee variable and Industry type, we

use the positive category as reference. The last preprocessing

step includes scaling the LGD values by a factor of 100, such

that the LGDs can be interpreted in percentages and enhance

computational stability.

After the preprocessing, hyperparameters for the neural

network and the loss function have to be chosen4. The parameter

p of Eq. (7) is set to 2 to strengthen the effect of the residuals

on the regularization, see, e.g., [43]. The parameter λ is set to

0.001. The analysis is also performed with λ = 0.01 and λ =
0.0001, but the differences are negligible. The most commonly

used hyperparameters in a neural network are the learning rate,

the number of layers, and the number of neurons. To avoid

overfitting we included dropout layers, with a dropout rate,

which must also be tuned. We use random search to obtain

200 different model constellations and validate them using 5-

fold cross-validation. For the random search, we assume discrete

or continuous distributions for each hyperparameter. Table 6

displays the distributions of the hyperparameters of the neural

network. The dropout rate for example is a decimal number,

which is usually in the interval between 0, no regularization,

and 0.5, strongest regularization. Therefore, we use a continuous

uniform distribution to draw the dropout rates. Furthermore,

20% of the data from the iterating training folds are used for

early stopping to avoid overfitting. Each of the five iterations

is repeated five times, to reduce the effect of random weight

initialization, and averaged. The best model is chosen such that

4 Amini et al. [42] provide a python implementation for their paper at

https://github.com/aamini/evidential-deep-learning.
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TABLE 6 Setup and final values of the hyperparameter search.

Parameter Distribution Final parameter

Learning rate Uc ∼ [0.0001, 0.01] 0.0029

Dropout rate Uc ∼ [0.0, 0.50] 0.4309

Hidden layer Ud ∼ [1, 2] 2

Multiple Ud ∼ [1, 4] 4

The table shows the ranges for the hyperparameter search. Uc corresponds to the

continuous uniform distribution, Ud corresponds to the discrete uniform distribution.

the mean RMSE of the five hold-out fold of cross-validation

is the smallest. To determine the number of neurons we use

an approach similar to Kellner et al. [6]. As baseline neurons,

we use (32, 16) with a maximum of two hidden layers. In this

procedure, the multiplier is the factor that scales the baseline

number of neurons5. As an activation function ReLU is chosen

for all hidden units and the network is optimized via Adam. To

ensure that νi, αi, and βi stay within the desired interval, their

output neurons are activated by the softplus function, whereby 1

is added to the activated neuron of αi.

The constellation of column three (final parameter) in

Table 6 is used to form the final network. For that, the network

is trained on the training data, 20% of which is used for early

stopping. Afterward the trained network is evaluated on the

out-of-sample and on the out-of-time data. This procedure

is repeated 25 times. Table 7 provides the average values

and summarizes the evaluation of the different data sets and

compares it across different models. Since the loss function in

Eq. (8) depends on λ and p, changes in those parameters result

in a loss of comparability.

Table 7 compares the neural network from the deep

evidential framework to a neural network trained on the mean

squared error and to common methods in the literature. These

include the linear regression, the transformed linear regression,

the beta regression, and the fractional response regression, see,

e.g., [5, 14]. For the transformed linear regression the LGDs

are transformed by a logit transformation, which is then used

to fit a linear regression. The predictions of this regression

are transformed back to their original scale using the sigmoid

function. Each model is trained on the same training data. For

the neural network trained with mean squared error, the same

grid search and cross-validation approach with early stopping is

used6. Since the evidential neural network is the only model with

the marginal likelihood as an objective function the evidential

5 For example, if we sample a multiplier of 4 in a two hidden layer

network, we have (128, 64).

6 The final parameters of the neural network trained with a mean

squared error are very similar in terms of dropout rate (0.4397) and

identical for the multiple and the number of hidden layers. The final

learning rate (0.0004) is lower than that of the evidential neural network.

TABLE 7 Evaluation metrics.

Data set Method Evidential loss RMSE

Training

Evidential neural network 4.1879 0.1813

Neural network - 0.1427

Linear regression - 0.2088

Transformed linear regression - 0.2142

Fractional response regression - 0.2231

Beta regression - 0.2306

Out of sample

Evidential neural network 4.2574 0.1964

Neural network - 0.1742

Linear regression - 0.2091

Transformed linear regression - 0.2100

Fractional response regression - 0.2183

Beta regression - 0.2328

Out of time

Evidential neural network 6.1888 0.4241

Neural network - 0.3695

Linear regression - 0.4499

Transformed linear regression - 0.4674

Fractional response regression - 0.4488

Beta regression - 0.3961

For the calculation of the RMSE, the observed LGDs and the predicted LGDs, γ , are

rescaled to the original interval from zero to one by dividing the LGDs by 100 to make

the RMSE comparable in the literature. The smallest RMSE per data set is printed in bold

and the second best is underlined.

loss can only be computed for this model. To compare the

evidential neural network with different models, we evaluated

the models using the root mean squared error. Note that for

computing the root mean squared error only one parameter, γ ,

is needed since this parameter represents the prediction in terms

of the LGD. From Table 7, we can see that the neural networks

perform best on the training and the out-of-sample data. For

the out-of-time data, the beta regression scores second best after

the neural network trained with mean squared error, but the

difference to the evidential neural networks is on the third digit.

4.2. Aleatoric and epistemic uncertainty
in predictions

The deep evidential regression framework allows us to

directly calculate the aleatoric and epistemic uncertainty

for every prediction of our neural network. Figure 2 shows

both types for our estimation sample. The x-axis shows the

observation number for the predictions sorted in ascending

order. The ordered LGDs are on the y-axis. The dark

gray band around the ordered prediction is calculated

by adding/subtracting the values of Eqs. (9) and (10)
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FIGURE 2

Uncertainty estimation in sample. (A) Aleatoric uncertainty. (B) Epistemic uncertainty.

on our predictions. The light gray band is obtained by

adding/subtracting two times the value of these equations. In the

following, we call this "applying one or two standard errors of

uncertainty" onto our predictions. The gray dots show the actual

observed, i.e., true LGD realizations.

Comparing the two plots of Figure 2, we observe that

the aleatoric uncertainty covers a much larger range around

our predictions than the epistemic uncertainty. Almost all

true LGD realizations lie within the two standard errors of

aleatoric uncertainty. Hence, the irreducible error or data

uncertainty has the largest share of the total uncertainty. Recall

that market-based LGDs are based on market expectations as

they are calculated as 1 minus the traded market price 30

days after default. Therefore, the variation of the data also

depends on market expectations which are notoriously difficult

to estimate and to a large extent not predictable. Thus, it is

reasonable that the aleatoric uncertainty is the main driver of

the overall uncertainty. In contrast, the epistemic uncertainty,

i.e., the model uncertainty, is considerably lower. This may

be attributed to our database. This article covers nearly three

decades including several recessions and upturns. Hence, we

cover LGDs in many different points of the business cycle

and across many industries and default reasons. Therefore, the

data might be representative for the data generating process

of market-based LGDs. Hence, the uncertainty due to limited

sample size is relatively small in our application.

As we model all parameters of the evidential distribution

dependent on the input features, we can also predict uncertainty

for predictions in out-of-sample and out-of-time samples.

Comparing Figures 2, 3 one might have expected that the

epistemic uncertainty is increasing due to the lower sample size

and the usage of unseen data. However, the functional relation

of the epistemic uncertainty is calibrated on the estimation

sample and transferred via prediction onto the out-of-sample

data. Hence, if the feature values do not differ dramatically,

the predicted uncertainty is similar. Only if we observe new

realizations of our features in unexpected (untrained) value

ranges, the uncertainty prediction should deviate strongly. Thus,

we may use the prediction of the uncertainty also as a qualitative

check of structural changes.

Structural changes in LGD estimation are primarily due to

changes over time. This is one reason why some researchers

argue to validate forecasting methods especially on out-of-

time data sets, see, e.g., [3, 8]. In our application, there is no

qualitative sign of structural breaks via diverging uncertainty

estimates in 2018 and 2019. Comparing Figure 4 with the former

two, we observe a similar pattern. This might have been expected

as the out-of-time-period is not known for specific crises or

special circumstances.

Comparing the course of the epistemic uncertainty in all

three figures, we observe that the uncertainty bands become

smaller as the predicted LGD values increase. This implies that

the neural network becomes more confident in predicting larger

LGDs. Comparing this course with the histogram in Figure 1,

one explanation for that might be the considerably larger sample

size on the right-hand side. As we observe larger LGDs in our

sample, the epistemic uncertainty in this area decreases.

4.3. Explaining LGD predictions

In this subsection, we take a deep dive into the drivers

of the mean LGD predictions. As outlined in Section 3, we

use ALE Plots to visualize the impact of our continuous

features. We choose K = 10 buckets for all ALE plots.

Overall we have three different sets of drivers. The first one

consists of bond specific variables, subsequently we investigate

drivers that reflect the overall macroeconomic developments

and finally we follow Gambetti et al. [4] and include uncertainty-

related variables. Evaluating the feature effects is important

to validate that the inner mechanics of the uncertainty-aware

neural network coincide with the economic intuitions. This is
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FIGURE 3

Uncertainty estimation out-of-sample. (A) Aleatoric uncertainty. (B) Epistemic uncertainty.

FIGURE 4

Uncertainty estimation out-of-time. (A) Aleatoric uncertainty. (B) Epistemic uncertainty.

of major concern if financial institutions are tempted to use

this framework for their capital requirement calculation. The

requirement of explaining employed models is documented

in many publications of regulatory authorities, see, e.g.,

[66–69].

Figure 5 shows the feature effect of bond-related drivers.

The feature value range including a rugplot to visualize the

distribution of the feature is shown on the x-axis. The effect

of the driver on the LGD prediction is shown on the y-

axis. We observe on the left-hand side of Figure 5, a negative

effect of the coupon rate up to a value of roughly 8%. This

negative relation seems plausible as higher coupon rates may

also imply higher reflows during the resolution of the bond

and, thus decreases the Loss Given Default. The relation starts

to become positive after 8%, which may be explained by the

fact that a higher coupon rate also implies higher risk and,

thus the potential reflow becomes more uncertain. Maturity has

an almost linear and positive relation with the predicted LGD

values. In general, the increase in LGD with longer maturity

is explained by sell-side pressure from institutional investors

which usually hold bonds with a longer maturity, see, e.g., [48].

These relations were also confirmed by Gambetti et al. [4], who

find that bond-related variables have a significant impact on the

mean market-based LGD.

With regard to features that describe the macroeconomic

surrounding, Figure 6 shows their effect on the LGD prediction.

The default rate is one of the best-known drivers of market-

based LGDs and is used in various studies, see, e.g., [3, 4, 30, 52].

The increasing course reflects the observation that LGDs tend

to be higher in recession and crisis periods than in normal

periods. This empirical fact also paves the way for generating

so-called downturn estimates which should reflect this crisis

behavior. These downturn estimates are also included in the

calculation of the capital requirements for financial institutions,

see, e.g., [70, 71] or for downturn estimates of EAD see Betz

et al. [72]. Similarly, we observe a negative relation of predicted

LGDs and S&P 500 returns, implying that LGDs increase if

the returns become negative. Interestingly, positive returns have
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FIGURE 5

Bond-related drivers. (A) Coupon rate. (B) Maturity.

FIGURE 6

Macroeconomy-related drivers. (A) Default rate. (B) S&P 500 return.

FIGURE 7

Uncertainty-related drivers. (A) Financial uncertainty. (B) News-based EPU.

little impact on LGD predictions, which again, reinforces the

downturn character of LGDs.

Consistent with Gambetti et al. [4], who were the first to

document the importance of uncertainty-related variables in the

estimation of LGDs, we include two frequently used drivers

as well, shown in Figure 7. Financial uncertainty proposed by

Jurado et al. [44] and the News-based EPU index by Baker et al.

[46], which cover uncertainty based on fundamental financial

values and news articles. Both show a rather flat course from the

low to mid of their feature value range. However, there is a clear
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positive impact on LGDs when the uncertainty indices reach

high levels. Again, this reinforces the crisis behavior of market-

based LGDs. The importance of uncertainty-related variables is

also confirmed by Sopitpongstorn et al. [9] who find a significant

impact as well. In a similar sense, Nazemi et al. [30] use news

text-based measures for predicting market-based LGDs and

underlining their importance. To summarize, recent literature

suggests that uncertainty-related variables should be used to

include all kinds of expectations of the economics surrounding

the model framework.

5. Conclusion

Uncertainty estimation has become an active research

domain in statistics and machine learning. However, there

is a lack of quantification of uncertainty when applying

machine learning to credit risk. This article investigates a

recently published approach called Deep Evidential Regression

by Amini et al. [42] and its extension by Meinert et al. [43].

This uncertainty framework has several advantages. First, it

is easy to implement as one only has to change the loss

function of the (deep) neural network and sightly adjust the

output layer. Second, the predicted parameters of the adjusted

network can easily be turned into mean prediction, aleatoric

uncertainty, and epistemic uncertainty predictions. There are

virtually no additional computational burdens to calculate

predictions and their accompanying uncertainty. Third, the

overall computational expense is much lower compared to

approaches like Bayesian neural networks, ensemble methods,

and bootstrapping. Furthermore, deep evidential regression

belongs to a small class of frameworks which allow a direct,

analytical disentangling of aleatoric and epistemic uncertainty.

With these advantages, this framework may also be suitable for

applications in financial institutions to accompany the usage

of explainable artificial intelligence methods with quantification

of aleatoric and epistemic uncertainty. Moreover, it is possible

to include other variables, such as firm-specific financial

risk factors, or to focus on non-listed companies. Further

applications may also include the prediction of risk premiums

in other asset pricing or forecasting the sale prices of real estate.

Moreover, in other areas where predictions are critical such as

health care, the quantification of prediction uncertainty may

allow a broader application of machine learning methods.

This article uses almost 30 years of bond data to investigate

the suitability of deep evidential regression on the challenging

task of estimating market-based LGDs. The performance of

the uncertainty-aware neural network is comparable to earlier

literature and, thus, we do not see a large trade-off between

accuracy and uncertainty quantification. This paper documents

a novel finding regarding the ratio of aleatoric and epistemic

uncertainty. Our results suggest that aleatoric uncertainty is the

main driver of the overall uncertainty in LGD estimation. As

this type is commonly known as the irreducible error, this gives

rise to the conjecture that LGD estimation is notoriously difficult

due to the high amount of data uncertainty. On the other hand,

epistemic uncertainty that can be reduced or even set to zero

with enough data plays only a minor role. Hence, the advantage

of more complex and advanced methods, like machine learning,

may be limited. However, this may not hold for all LGD

data sets or if we look at different parts or parameters of the

distribution other than the mean. Therefore, we do not argue

that our results should be generalized to all aspects of LGDs,

but are the first important steps to investigating the relation of

aleatoric and epistemic uncertainty. Overall, understanding the

determinants of both uncertainties can be key to getting a deeper

understanding of the underlying process of market-based LGDs

and, thus is certainly a fruitful path of future research.
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