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Abstract

The investigation of neutrino oscillations is an ongoing world-leading research that aims
to understand fundamental neutrino properties. In particular, the observation that neutrinos
can oscillate from one flavor to another suggests that these elementary particles have a very
small but non-zero mass. However, high precision is required to reconstruct the neutrino en-
ergy with Monte Carlo generators and extract parameters such as the CP violating phase δ. The
experiments are most frequently built such that the neutrino beams scatter against heavy nuclei
targets and these cross sections are non-trivial to parametrize, depending on the energy scale
at which the experiment is carried out. Some of the parameters that enter in these cross sec-
tions and that represent systematic uncertainties are the so-called nucleon form factors. These
functions can be extracted non-perturbatively with lattice simulations by simulating the theory
that describes the strong interactions, also known as Quantum ChromoDynamics (QCD). One
of the major challenges faced in the lattice QCD determination of the nucleon matrix elements
is excited state contamination, particularly nucleon-pion contamination. State-of-the-art ana-
lyses take into account this contamination with multistate fits based on Chiral Perturbation
Theory, which is an effective field theory where the degrees of freedom are pion and nucleon
fields. In this project, we confront the problem directly. Since the primary source of contam-
ination is understood to be related to nucleon-pion states production, we compute this con-
tribution with lattice QCD simulations and consider it for the ground state. The outcome on
a single ensemble is promising and confirms the ChPT-inspired approaches. Furthermore, the
nucleon-pion term that is computed and taken into account is proportional to the matrix ele-
ment 〈Nπ|J |N〉, which is phenomenologically interesting by itself as it enters in the CC1π
and NC1π experimental processes, which occur in the neutrino oscillation experiments and
are considered in the event reconstruction. This pilot study represents the first initiative for
determining nucleon matrix elements with the variational method with a basis made of nuc-
leon and nucleon-pion operators. We plan to continue this work by including more statistics,
extending it to more ensembles, and computing for the first time 〈Nπ|J |N〉.
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CHAPTER

ONE

INTRODUCTION

The introduction is organised as follows.
In Sec. 1.1, I will introduce the current theory that describes the interactions of fundamental

particles. In Sec. 1.2 and 1.3, I will discuss processes that play an important role in some of the
world-leading experiments in particle physics. In Sec. 1.4, I will introduce neutrino oscillations
whose experimental discovery made a great impact and I will review some of the most import-
ant experiments that are investigating this phenomenon.

In the final section, I will motivate my research project by emphasising the importance of
the quantities that I compute and the role they play in these experiments.

1.1 The Standard Model: a brief introduction

The role of physics is to describe the events that occur in nature in terms of simpler phenomena.
However, the deeper one digs into the matter, the more there is yet to understand.

In the last centuries, we have learned that the ordinary matter in the Universe is made up of
atoms, which are composed of nuclei and electrons. We have discovered that nuclei are com-
posed of particles we call protons and neutrons, which were understood to be elementary until
the last century. Today, we know they are composite and that they are made up of more ele-
mentary particles we call quarks and gluons.

There are other elementary particles in nature, and at the current level of understanding
they interact through four fundamental forces: the electromagnetic, weak, strong, and grav-
itational forces. Some particles interact only through a single force, while others interact via
different fundamental forces.

The theory of particle physics that describes the first three of the four fundamental forces
is the Standard Model. Understanding its limitations is very important to investigate any sign
of physics that goes beyond it. Describing the Standard Model with deep care would take more
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Chapter 1 – Introduction Lorenzo Barca

Figure 1.1:
Classification of elementary particles in the Standard Model for ordinary matter. For each
lepton, there corresponds an antilepton that forms the antimatter.

than one book. Therefore I limit the content and mention the parts I retain that are essential
for this work. According to this model, ordinary matter is composed of elementary particles, di-
vided into fermions and bosons; see Fig. 1.1 for the classification. Following the spin-statistics
theorem, the latter have integer spin, and the fundamental bosons are the gluon, the photon,
the Higgs, the Z -boson, and the W ± bosons. The fermions have half-integer spin, and the ele-
mentary ones are classified into quarks and leptons.

According to the Standard Model, only quarks interact strongly, i.e. via strong interactions
because unlike leptons, they possess color charge. In particular, due to a phenomenon called
confinement, which can be explained through the theory of strong interactions, the quarks can-
not be isolated, and they are confined within composite particles, which are called hadrons.

The mesons (one quark and one antiquark) and the baryons (three quarks) are the two main
types of hadrons. The two most well-known baryons are the proton and the neutron. The
particles interact by exchanging gauge bosons and in the case of weak interactions, the me-
diators are the W ± and Z bosons, which were discovered in 1983 with the experiments UA1
and UA2, see [23, 32]. As shown in from Fig. 1.1, the neutrinos are in the last row. These are
elementary particles that interact only via the weak force, and very recently, experiments have
found that they have a mass. Still, it is so tiny that it is very challenging to measure.

For the following sections, I will focus on unresolved questions about the nature of the neut-
rinos and the world-leading experiments that address these questions.

2
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Figure 1.2:
The decay of a free neutron to a proton. On the left, the interaction is seen at the level of the
baryons that exchange a W ±-boson. On the right, the nucleons are written in terms of their
constituent (valence) quarks, and we see that there are two spectator quarks and one active
quark d that changes into u by the exchange of a W ± boson. The Feynman diagrams were
created using the package described in [71].

1.2 Neutron β-decay

In 1930, Wolfgang Pauli postulated the existence of a neutral particle, the neutrino, to explain
how the neutron β-decay could conserve energy, momentum, and angular momentum. The
β-decay is the following process:

n → p +e−+ ν̄e , (1.1)

which describes the decay of a free neutron into a proton, an electron and an electron antineut-
rino. The process is mediated by the W -boson and it is represented in Fig. 1.2.

An important quantity for decays and scattering processes is the scattering matrix element〈
f
∣∣Ŝ∣∣i〉, which represents the transition of an initial state |i 〉 to a final state

〈
f
∣∣ and Ŝ is the

scattering operator or S-matrix. In particular,
∣∣〈 f

∣∣Ŝ∣∣i〉∣∣2
represents the probability that an ini-

tial state |i 〉 transforms into a final state 〈 f |.
In the Standard Model, the weak interactions are described by a vector minus an axial cur-

rent, and in the case of the hadronic part of the β-decay, the exchange of a W -boson between a
u-quark and a d-quark is represented by the hadronic current

J h
µ = d̄γµ(1−γ5)u ≡ Vµ−Aµ , (1.2)

with Vµ = d̄γµu and Aµ = d̄γµγ5u being the vector and the axial current, respectively, which are
made of Dirac spinors ē,νe , d̄ ,u and the CKM matrix element Vud [53, 101]. The symbols γµ and
γ5 are Dirac matrices, and a possible matrix representation is discussed in App. A.

It is straightforward to show that the scattering matrix element is proportional to the squared
modulus of the nucleon weak matrix elements, that is∣∣〈 f

∣∣Ŝ∣∣i〉∣∣2 ∝
∣∣∣〈p

∣∣J h
µ

∣∣n〉∣∣∣2
, (1.3)

3



Chapter 1 – Introduction Lorenzo Barca

which, according to the decomposition in eq. (1.2), can be rewritten in terms of a nucleon vector
and axial matrix element, respectively

〈
p

∣∣Vµ∣∣n〉
and

〈
p

∣∣Aµ

∣∣n〉
. 1

Suppose that the initial neutron has a momentum p, and the final proton has momentum
p ′, so that the momentum carried by the current is q = p ′−p, then the nucleon matrix elements
can be decomposed in terms of the so-called nucleon form factors G(q2), Dirac matrices γµ, γ5,
proton and neutron spinors ūp (p ′), un(p). This is called Lorentz decomposition and for the
axial current, the Lorentz decomposition reads〈

p
∣∣Aµ |n〉 = ūp (p ′)

[
γµγ5G A(Q2)+ qµ

2mN
γ5GP̃ (Q2)

]
un(p) , (1.4)

where Q2 = −q2, G A(Q2) is the nucleon axial form factor, and GP̃ (Q2) is the nucleon induced-
pseudoscalar form factor. As regards the nucleon vector matrix element, its Lorentz decompos-
ition reads 〈

p
∣∣Vµ |n〉 = ūp (p ′)

[
γµF1(Q2)+ iσµνqν

2mN
F2(Q2)

]
un(p) . (1.5)

In the experiments of neutron β-decay, the momentum transferred is very small and it can
be considered negligible with respect to the nucleon mass mN , so that only the term propor-
tional to G A(Q2 = 0) will contribute to eq. (1.4). In this limit, the axial form factor is called axial
charge (g A ≡G A(Q2 = 0)) and it is accurately measured experimentally using polarized ultracold
neutrons by the UCNA collaboration ([121, 49]),

g A = 1.2772±0.0020 . (1.6)

Other experiments like PERKEO II [127] report λ= g A/gV = 1.2767(16). Note that what is com-
puted experimentally is the ratio λ = g A/gV and in the SM, gV = 1 up to second order correc-
tions in isospin breaking [6, 68] due to the conservation of the vector current.

Neutrinos are very interesting particles, and there is still a lot to understand about their
nature. A property of neutrinos that needs to be investigated is whether they are equivalent to
their antiparticle. In this case, they would be referred to as Majorana particles. The KATRIN
experiment aims to work at very high precision and to observe a very rare process that would
happen if the neutrinos were Majorana particles: the neutrinoless double beta decay, intro-
duced in [79]. Most importantly, the experiment aims to determine the electron neutrino mass
mνe through the tritium β-decay. The most updated value is an upper limit of mνe < 0.8 eV with
90% CL, see [15, 14].

1.3 Elastic and Quasielastic neutrino-nucleon scattering

The Elastic and Quasielastic neutrino-nucleon scattering are processes that involve a neutrino
interacting with a nucleon target through a Z -boson or W ±-bosons, and the Feynman diagrams

1An attempt at a theory that describes well the beta radiation at sufficiently low energy was made in 1934 by E.
Fermi, see [74].
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Figure 1.3:
Elastic and Quasielastic neutrino and antineutrino scattering off nucleon targets. (left) Neutral
current (NC) weak interaction, mediated by a Z boson. (middle, right) Charged current weak
processes, mediated by W bosons.

are represented in Fig. 1.3. Some authors refer to Quasielastic scattering when the nucleons are
quasi-free in the nuclei. A comparison between the processes mediated by the W -bosons in
Fig. 1.3 and Fig. 1.2 shows that a crossing symmetry relates the two and thus the scattering
amplitudes are similar.

Following [75, 122, 40, 137, 25], in the case of muon (anti)neutrino-nucleon scattering, the
differential cross section is

dσ(νµp,ν̄µp)

dQ2
= G2

F m2
N |Vud |2

8πE 2
ν

[
A(Q2)∓B(Q2)

s −u

m2
N

+C (Q2)
(s −u)2

m4
N

]
. (1.7)

The plus sign in eq. (1.7) is for neutrino scattering, while the minus sign is for antineutrino
scattering. The expressions for the functions A(Q2), B(Q2), and C (Q2) are

A =
m2
µ+Q2

m2
N

[
(1+τ)G2

A − (1−τ)(F 2
1 − τF 2

2 ) + 4τF1F2 +

−
m2
µ

4m2
N

(
(F1 +F2)2 + (G A +2GP̃ )2 −4(1+τ)G2

P̃

)]
, (1.8)

B = 4τG A(F1 +F2) , (1.9)

C = 1

4

[
G2

A +F 2
1 +τF 2

2

]
(1.10)

and

s −u = 4mN Eν−Q2 −m2
µ , τ= Q2

4m2
N

. (1.11)

The Pauli and Dirac form factors F1 and F2 are known from electron-hadron scattering, but

5
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for the axial form factors, one often adopts the dipole parametrization

G A(Q2) = g A(
1− Q2

M 2
A

)2 (1.12)

and uses the determination of the axial charge, see eq. (1.6), to extract the axial mass MA. The
parametrization in eq. (1.12) corresponds to an exponential spatial distribution for the axial
charge within the nucleon, and there is no proof that this assumption is correct.

These processes are essential as they enter in the neutrino oscillations experiments, a phe-
nomenon that is introduced in the next section.

1.4 Neutrino oscillations

The neutrino oscillations are quantum mechanical phenomena whose possibility was first noted
by Pontecorvo in 1957 [132], then studied independently by Maki, Nakagawa, and Sakata in
[112] and again by Pontecorvo in 1967, see [133]. In this paper, the author discussed the pos-
sibility of observing this phenomenon by tracking the neutrinos produced in the Sun. He anti-
cipated the solar neutrino problem, according to which the number of detected solar (electron)
neutrinos observed on earth is smaller than the flux predicted by the Standard Solar Model, see
[24]. This puzzle is now explained by the fact that the electron neutrinos produced in the solar
p-p chains transform to muon or tau neutrinos while travelling toward earth, which can occur
if they are not massless. Since neutrinos are massless in the Standard Model, this phenomenon
is beyond the Standard Model (BSM).

The flavor eigenstates of neutrinos |να〉 are different from the mass eigenstates |νi 〉, but
the two are related by a unitary matrix U , called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix that is

|να〉 =
∑

i
U∗
αi |νi 〉 . (1.13)

A possible parametrization for the PMNS matrix is given by introducing mixing angles θi j between
different neutrinos and three phases δ, α1 and α2, such that it reads

U =
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


=

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e−iδ

0 1 0
−s13e iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

e iα1/2 0 0
0 e iα2/2 0
0 0 1

 ,

(1.14)

where for shortening the notation ci j = cosθi j , si j = sinθi j . The phase factors α1 and α2 are
non-zero if neutrinos are Majorana particles, i.e. if the neutrino is identical to its antineutrino

6
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and they do not enter into oscillation processes, thus they cannot be determined from neutrino
oscillations experiments. The other phase factor δ is relevant for the CP symmetry: a non-zero
value would mean that neutrinos oscillate differently than antineutrinos, see [3] and below. The
mass eigenstates |νi 〉 can be described, for example, by plane waves, so that

|νi (t )〉 = e−i (Ei t−pi ·x) |νi (0)〉 (1.15)

and in the ultrarelativistic limit (pi ≡
∣∣pi

∣∣ ≫ mi ), the probability that a neutrino with flavor α
transforms to a neutrino with flavor β after travelling a length L is

P (να→ νβ) = ∣∣〈νβ(L)
∣∣να〉∣∣2 = δαβ−4

∑
i> j

Re
(
U∗
αiUβiUα jU

∗
β j

)
sin2

(
∆m2

i j L

4E

)

+2
∑
i> j

Im
(
U∗
αiUβiUα jU

∗
β j

)
sin

(
∆m2

i j L

2E

)
,

(1.16)

where ∆m2
i j ≡ m2

i −m2
j is the difference of the squared masses. It is clear that for massless

neutrinos, the probability in eq. (1.16) would be zero, and no oscillation would occur. How-
ever, this phenomenon has been observed several times and proves that neutrinos have a non-
vanishing, though tiny, mass. The neutrino oscillations are also sensitive to the phase factor δ,
which enters in the second sum in eq. (1.16), and it is relevant for the CP asymmetry

A(αβ)
CP = P (να→ νβ)−P (ν̄α→ ν̄β) = 4

∑
i> j

Im
(
U∗
αiUβiUα jU

∗
β j

)
sin

(
∆m2

i j L

2E

)
. (1.17)

There exist quite a few neutrino oscillation experiments that aim to improve the accuracy
of the results. Notice that in eq. (1.16) the neutrino oscillations are sensitive to ∆m2

i j ; therefore,
it is not possible to determine the individual masses of the mass eigenstates neutrinos through
these experiments. This leads to the uncertainty for the mass hierarchy of flavor eigenstates
neutrinos since they are related by eq. (1.13).

Improving the precision in the determination of the PMNS entries Uαi could say if neutrinos
oscillate differently than antineutrinos, giving rise to CP violation.

In these experiments, further complications arise as the target is not made of free nucle-
ons. Some nuclear models are required to connect neutrino-nuclei scattering with neutrino-
nucleon scattering of eq. (1.7).

Some of the neutrino oscillation experiments are SNO [37] in Canada and T2K [2] in Japan,
which were awarded the Nobel prize in physics in 2015 for the discovery that neutrinos oscillate.
Other ongoing and planned neutrino oscillation experiments are, for example, DUNE, MIN-
ERvA, NOvA, and MiniBooNE at Fermilab [4, 13, 5, 8], OPERA at CERN and LNGS [7], Hyper-
Kamiokande [95], and many others.

7
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For example, in the MiniBooNE experiment at Fermilab, see [9, 8, 10, 11, 12], a muon neut-
rino beam is directed at a detector filled with 800 tons of mineral oil. An excess of electron
neutrino events has been found in these experiments and it supports the neutrino oscillation
phenomenon. In this experiment, the NUANCE v3 event generator [61] is employed to estim-
ate neutrino interaction rates in the alkenes target medium. The NUANCE generator takes into
account all the possible interaction processes in the neutrino energy region relevant for Mini-
BooNE, that is 0 < Eν < 3 GeV. For this reconstruction, they find that processes including pion
production in the final state must be taken into account.

In particular, the largest background is from single-pion production (CC 1π, NC 1π), and the
final state can be a ∆(1232) resonance, a radial excitation of the nucleon like the Roper reson-
ance N∗(1440), or a two-particle state Nπ, which are all detected as Nπ states with different
transition amplitudes. For this reason, not only single-nucleon matrix elements of the form
〈N |J |N〉 are needed, but also 〈Nπ|J |N〉, 〈N∗|J |N〉 and

〈
∆+∣∣J |N〉, see [103] for a detailed

discussion.

1.5 Motivation and goal

Several world-leading experiments are addressing questions related to neutrino physics that
need to be answered. The mixing angles of the PMNS matrix and the CP-violating phase δ can
be calculated through oscillation experiments, while the Majorana phase αi and the neutrino
masses can be obtained from the neutrinoless double-beta decay of certain nuclei if discovered.
However, very high precision is needed in the determination of the parameters that enter in the
cross sections of neutrino-nucleon scattering at the detector level. Through lattice simulations,
it is possible to compute such parameters and help achieve this goal. In the next chapter, I will
introduce Lattice QCD, which is the discretized version of the theory of strong interactions, and
I will show how it is possible to determine the nucleon matrix elements of the form 〈N |J |N〉
and 〈Nπ|J |N〉, that are required for neutrino oscillation experiments. These nucleon matrix
elements must be computed at a non-perturbative regime, i.e., at low energy. At this scale, the
perturbative calculations fail. However, it is possible to discretize the theory and compute the
observables statistically, as I will explain in the next chapter.

By discretizing the theory of strong interactions, some systematics are introduced:

• discretization effects, due to a non-zero the lattice spacing a, that is the distance between
two adjacent lattice sites. The limit a → 0 will be taken by considering different a and it is
named the "continuum limit";

• volume effects V , which should disappear when taking the "infinite volume limit" (V →
∞) by computing the observables using ensembles with different (though finite) volumes;

• limited volume size because for computational reasons, it is prohibitive to generate en-
sembles with very large volumes as the computational times would be unfeasible;

8
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• unphysical quark masses, which are introduced to lower the computational costs of the
simulations. Using effective field theory the observables are then extrapolated to the
"physical point" (mπ0 ≈ 135 MeV).

The work presented in this thesis represents a pilot study that nobody has done before. In
particular, the main goal is to extract not only nucleon form factors like G A(q2) and GP̃ (q2),
that enter in the weak cross sections of processes like νl n → l− p and ν̄l p → l+ n, but also
the matrix elements 〈Nπ|J |N〉 that are important in the reconstruction of the neutrino energy
at the detector level, see the discussion at the end of the previous section. Furthermore, it is
needed to understand excited state contamination in the nucleon correlation functions, as will
be discussed in more detail in Chap. 3.

In this project, the matrix elements are computed using a single ensemble, i.e., a single lat-
tice volume, lattice spacing, and quark mass, but in the future, we plan to include more en-
sembles in the analysis and compute

〈
∆+∣∣J |N〉, so that I will extrapolate both

〈
∆+∣∣J |N〉 and

〈Nπ|J |N〉 to the physical point.

9



CHAPTER

TWO

QCD: FROM THE CONTINUUM TO THE LATTICE

2.1 A brief overview of the strong force

Quantum Chromodynamics is the quantum field theory that describes the interaction between
quarks, antiquarks, and gluons. The quarks are elementary particles and fermions of spin 1/2,
with six different flavors and three generations, see Fig. 1.1. They carry not only electric charge
but also a color charge of three different types: red, green, and blue. In their fundamental

representation, they are represented by Dirac spinor fields q f ,c
α (x), f refers to the flavor being

up, down, str ang e, char m, bot tom, and top, while c = r, g ,b refers to the color indices and
α= 1,2,3,4 to the Dirac indices. The antiquarks are the antiparticles of the quarks. They belong
to the antifundamental representation of SU (3) and carry anticolor. The gluons are massless
vector bosons with spin 1 and act as mediators of the strong force, similarly to the photons in
QED for the electromagnetic force and to the W and Z bosons for the weak force. The main
difference is that the gluons carry two charges: one color and one anticolor.

Like QED, the QCD action will be constructed from first principles starting from the free
Lagrangian of the quarks and requiring that the action is invariant under any transformations
of the SU (3) color group. In the free theory, since the quarks are fermions, they must obey the
Dirac equation and therefore the Lagrangian density is

Lfree[q̄ , q] =∑
f

q̄ f (x)
(
i /∂−m f

)
q f (x) , (2.1)

where q̄ f (x) = q f (x)†γ0, which is the adjoint quark field and /∂ ≡ γµ∂µ, following Feynman’s
(slashed) notation. The Lagrangian density in eq. (2.1) is intended in Minkowski spacetime.

The corresponding free action

Sfree[q̄ , q] =
∫

d 4x Lfree[q̄ , q] (2.2)

10



Chapter 2 – QCD: from the continuum to the lattice Lorenzo Barca

is not invariant under the SU (3) local gauge transformationΩ(x),

q f (x) −→ q ′ f (x) =Ω(x) q f (x) , (2.3)

q̄ f (x) −→ q̄ ′ f (x) = q̄ f (x)Ω(x)† , (2.4)

unless, similarly to QED, we replace in eq. (2.1) the partial derivative with the covariant derivat-
ive (∂µ→ Dµ),

Dµ(x) = ∂µ− i g Aµ(x) , (2.5)

where we introduce the gluon field Aµ(x) = ∑
a ta Aa

µ(x), with a = 1, ...,8. The parameter g in

eq. (2.5) is the strong coupling constant and ta = 1
2λa , where λa are the eight generators of

SU (3), i.e. the Gell-Mann matrices, which satisfy[
λa ,λb

]= 2i
∑

c
f abcλc . (2.6)

The f abc are called structure constants. For the action to be gauge invariant, the gluon field
must transform under SU (3) accordingly

Aµ(x) −→ A′
µ(x) =Ω(x)Aµ(x)Ω(x)† + i

g

(
∂µΩ(x)

)
Ω(x)† . (2.7)

Finally, the gauge invariant QCD Lagrangian in Minkowski spacetime reads

LQCD(x) =∑
f

q̄ f (x)
(
i /D −m f

)
q f (x)− 1

4
Gaµν(x)Gµν

a (x) , (2.8)

and we can construct the Feynman rules and diagrams to perform perturbative calculations.
The last term in the QCD Lagrangian density is the kinetic term for the field Aµ(x) and Gµν(x) =
taGµν

a (x) is the field strength tensor, defined by

Gµν(x) ≡ i

g

[
Dµ,Dν

]= ∂µAν(x)−∂νAµ(x)− i g
[

Aµ(x), Aν(x)
]

. (2.9)

In this equation, the symbols
[
,
]

refer to the commutator, and the main difference between
QCD and QED is the term

[
Aµ(x), Aν(x)

]
. In contrast to QED, where the commutator of U (1)

gauge fields is zero, in QCD this term does not vanish, and the group of matrices Aµ is therefore
non-Abelian. This term gives new Feynman rules to consider, and contrary to QED, there are
3-gluon and 4-gluon vertices (gluon self-interactions) to take into account.

We can rewrite the QCD Lagrangian density of eq. (2.8) in terms of the free quarks, Lag-
rangian density Lfree[q̄ , q] of eq. (2.1), the interaction Lagrangian density LI[q̄ , q, Aµ] and the
gluonic Lagrangian density LG[Aµ], where

LI[q̄ , q, Aµ] =−g
∑

f
q̄ f (x)γµq f (x)Aµ(x) , (2.10)

LG[Aµ] =−1

4
Gaµν(x)Gµν

a (x) . (2.11)

11
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For future purposes, it is helpful to define LF[q̄ , q] = Lfree[q̄ , q, Aµ]+LI[q̄ , q, Aµ], so that the
QCD action takes the form

SQCD[q̄ , q, Aµ] =
∫

d 4x LQCD[q̄ , q, Aµ] = SF[q̄ , q, Aµ]+SG[q̄ , q, Aµ] , (2.12)

with

SF[q̄ , q, Aµ] =
∫

d 4x
∑

f
q̄ f (x)

(
i /D −m f

)
q f (x) , (2.13)

SG[q̄ , q, Aµ] =−
∫

d 4x
1

2
Tr

{
Gµν(x)Gµν(x)

}
. (2.14)

The reader can verify that the QCD action of eq. (2.12) is invariant under SU (3) gauge trans-
formation Ω(x). I recommend the textbooks [147, 128, 113], for a more detailed introduction
to QCD. Non-Abelian gauge theories like QCD exhibit asymptotic freedom, one of the most im-
portant characteristics of the strong interactions. At high energies, the quarks interact weakly,
allowing perturbative calculations that can be performed using the Feynman diagrams.

At low energies, the interaction gets stronger, leading to the confinement of quarks and
gluons within hadrons. This aspect of the theory is not mathematically proven because the
perturbative calculations fail at low energy scales. However, there is a tool that allows physicists
to make predictions at this scale: Lattice QCD.

2.2 QCD on the lattice

For some of the following sections, I follow the structure of [146], and I refer to [82]. As stated
in the last part of the previous section, the perturbative calculations with Feynman diagrams
fail at low energy. In this section, I discretize the theory of strong interactions and show that is
possible to simulate it using (super)computers and make predictions at low energy scales.

Using the path integral formalism, it is possible to write the expectation values of multi-local
gauge-invariant operators O, which depends on the fields Aµ, q and q̄ , like

〈 O(q̄ , q, Aµ) 〉 = 1

ZQC D

∫
D[q̄ , q] D[Aµ] O(q̄ , q, Aµ) e i SQC D [q̄ ,q,Aµ] , (2.15)

where the integral is over all the possible configurations of the fields and ZQC D is the QCD
partition function, defined by

ZQC D =
∫

D[q̄ , q] D[Aµ] e i SQC D [q̄ ,q,Aµ] . (2.16)

Eq. (2.15) is also known as the correlation function and the symbols D[q̄ , q], D[Aµ] are integral
measures of the quark fields and gluon fields, respectively. To interpret the Green’s function as

12
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a statistical probability, we perform the so-called Wick rotation

x0 = τ −→ −i t , (2.17)

which is essentially a rotation from real to imaginary time. This transformation has consequences
on the representation of objects like Dirac gamma matrices, four-vectors and the action, but the
main difference is that

i SQC D [q̄ , q, Aµ] −→ −SE [q̄ , q, Aµ] , (2.18)

where the label "E" stands for Euclidean. The reason is that after the transformation in eq. (2.17),
the metric has the Euclidean signature. 1 Thus, with the transformation of eq. (2.17), the four-
vectors change as follows

xµM = (x0
M,xM) −→ xµE = (xE , x4

E ) = (xM, i x0
M) . (2.19)

Notice that in the Euclidean metric, the temporal component is in the fourth direction and I
will not distinguish between covariant and contravariant expressions when the objects are in
the Euclidean metric. The main point is that after this transformation, the correlation function
of eq. (2.15) becomes

〈 O(q̄ , q, Aµ) 〉 = 1

ZE

∫
D[q̄ , q]D[Aµ] O[q̄ , q, Aµ] e−SE [q̄ ,q,Aµ] , (2.20)

where the Euclidean partition function reads

ZE =
∫

D[q̄ , q]D[Aµ] e−SE [q̄ ,q,Aµ] . (2.21)

In Euclidean spacetime, the correlation function in eq. (2.20) has an expression that is suit-
able to simulate through importance sampling, that is explained in the next sections. We then
transform the infinite physical volume into a finite 3D hypercubic volume. The total size is
V = L3 ×T , where L and T are the spatial and temporal lattice extent, respectively. The spatial
extent L is divided into Ns lattice sites equally spaced by the lattice spacing a, so that L = aNs ,
while the temporal extent is made up of Nt lattice sites, again equally spaced by the same
amount a, so that T = aNt . The set of all lattice sites is

Λ= {
n | n1,n2,n3 ∈ {0,1, ..., Ns −1},n4 ∈ {0,1, ...Nt −1}

}
(2.22)

and the continuum spacetime coordinates x, that in eq. (2.15) were interpreted in Minkowski
spacetime, are replaced by discrete lattice coordinates

xµE = {
anµ | n1,n2,n3 ∈ {0,1, ..., Ns −1}, n4 ∈ {0,1, ...Nt −1}

}
. (2.23)

1For more details on the convention that I use herein and the two metrics, I refer to the App. A.
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The four-momentum carried out by the particle reads pµ

E = (pE , p4
E ), which is also discretized

such that

pE = 2π

L
n , n = (n1,n2,n3) , with ni =−Ns

2
+1, ...,

Ns

2
, (2.24)

and the maximum momentum in each direction is max{pi } = πa−1, while the minimum non-
zero momentum is min{pi } = πL−1. Therefore the lattice spacing a works as a momentum
cut-off (ultraviolet regulator), while L works as an infrared regulator. Normally, the volume is
chosen to be as large as possible to make volume effects as small as possible, but the larger
the volume gets, the less feasible the computations of lattice objects, above all the propagat-
ors, see Sec. (2.7). Therefore, the observables are computed on different finite volumes V and
lattice spacings a and then one carefully extrapolates the data to the physical limit (V → ∞,
a → 0). Once we have discretized the spacetime, we proceed with discretizing the QCD action
of eq. (2.12). There are different ways to discretize the action and in this work we adopt the
Wilson-Clover discretization, which will be discussed in the following sections.

2.3 Fermionic action: from naive to the improved version

In the following, I will consider only Euclidean objects, and for more clarity, I will drop the sub-
script "E". Still, they should not be confused with the respective objects in Minkowski space-
time. In the continuum theory and Minkowski spacetime, the action for the free quark fields is
written in eq. (2.2). The Euclidean and naive discretized version is

Snaive
free [q̄ , q] = a4

∑
n∈Λ

∑
f

(
q̄ f (n)

∑
µ

γµ
q f (n + µ̂)−q f (n − µ̂)

2a

)
+m f q̄ f (n)q f (n) , (2.25)

where the integral is replaced with a finite sum over all lattice sites, the quark fields are located
at the lattice coordinates xn = an, but we omit the lattice spacing in brackets for shorthand
notation, and the continuum derivative is replaced by the symmetric discretized expression.
From now on, I will work with lattice units, and the physical units can be retrieved with dimen-
sional analysis. Analogously to the continuum theory, this action lacks SU (3) gauge invariance.
Likewise, we require that on the lattice, the action preserves SU (3) gauge invariance, and we
introduce the gauge links Uµ(n),

Uµ(n) = exp
{

i g Aµ(n)
}
= 1+ i g Aµ(n)+O (a2) , (2.26)

which are elements of SU (3) that connect the point n with the adjacent point n+µ̂ (see Fig. 2.1)
and that transform under a discretized SU (3) gauge transformationΩ(n) according to

Uµ(n) −→ U ′
µ(n) =Ω(n) Uµ(n)Ω(n + µ̂)† . (2.27)

14
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ν

µ

n n + µ̂

n + ν̂ n + µ̂+ ν̂

U †
ν(n)

Uµ(n)

U−µ(n + µ̂)

Figure 2.1:
This is a 2D representation of a section of a lattice face. The quarks are located on the lattice
sites and the gauge fields are represented by the links that connect the adjacent lattice sites.

With this definition of the gauge links, we define the discretized derivative operators

∇µq f (n) =
[
Uµ(n)q f (n + µ̂)−q f (n)

]
, (2.28)

∇∗
µq f (n) =

[
q f (n)−U−µ(n)q f (n − µ̂)

]
, (2.29)

where for convenience, we define U−µ(n) ≡Uµ(n − µ̂)† and the naive gauge invariant fermionic
action takes the expression

Snaive
F [q̄ , q,U ] = ∑

n∈Λ

∑
f

[
m f q̄ f (n)q f (n)+ q̄ f (n)

4∑
µ=1

γµ
∇µ+∇∗

µ

2
q f (n)

]
. (2.30)

It is easy to see, by expanding in powers of a, that the eq. (2.30) gives the correct continuum limit
up to O (a). Unfortunately, this naive discretization has problems when we calculate the quark
propagator in momentum space.2 The problem is that, for finite lattice spacing, in momentum
space the propagator has 16 poles instead of a single one at pµ = 0. The other 15 poles are
unphysical and they are called doublers.

2The details of its derivation are written, for example, in Chap. 9 of [147] and Chap. 5 of [82]
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There are many solutions being proposed for this problem. In 1977 [144], Wilson suggested
adding to the naive action the quadratic term

−1

2

∑
n∈Λ

∑
f

4∑
µ=1

q̄ f (n)
(
∇µ−∇∗

µ

)
q f (n) , (2.31)

which in the continuum has the expression∫
d 4x

∑
f

q̄ f (x)∂µ∂µq(x) (2.32)

and that vanishes when a → 0. The advantage of this new term is that, while it does not contrib-
ute to the physical pole, the (unwanted) doublers decouple from the theory in the continuum
limit. For more details you can read Sec. 5.2.2 of [82]. To compactify the notation, we define the
hopping parameter

κ f =
1

2(m f +4)
, (2.33)

which has a critical value at κc = 1/8, where chiral symmetry is restored, but it gets shifted by
quantum effects. The renormalized mass can be calculated from the fermion self-energy as in
[131]. Adding the Wilson term in eq. (2.31) to the naive action in eq. (2.30) we obtain the Wilson
fermion action

SWilson
F [q̄ , q,U ] =∑

f

(
m f +4

) ∑
n∈Λ

q̄ f (n)
(
q f (n)−κ f

±4∑
µ=±1

(1−γµ)Uµ(n)q f (n + µ̂)
)

. (2.34)

This action is gauge invariant, does not suffer from the doubling fermions and approaches the
continuum action up to O (a) discretization errors. In the literature, it is rewritten like

SWilson
F [q̄ , q,U ] =∑

f

∑
n∈Λ

q̄ f (n)DW (n,m)q(m) , (2.35)

where DW (n,m) is the Wilson Dirac operator that reads

DW (n,m) =C
(
1−κ f H(n,m)

)
(2.36)

and the various terms that are introduced are

C = m f +4 , (2.37)

H(n,m) =
±4∑

µ=±1
(1−γµ) Uµ(n) δn+µ̂,m . (2.38)

The constant C is irrelevant and it can be absorbed in a redefinition of the quark fields q →p
C q ,

q̄ →p
C q̄ . The matrix H contains all the nearest neighbour terms in the Wilson operator and

thus is usually referred to as the hopping matrix.
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2.4 Wilson gauge action

It is left to add the discretized version of the pure gauge theory term, defined in eq. (2.14). By
using the gauge transformation for the gauge links in eq. (2.27), one can see that the closed loop
that we represent in Fig. 2.2 and that has the expression

Pµν(n) =Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)†Uν(n)† (2.39)

is clearly a gauge invariant quantity. This product of gauge links is called plaquette.
By using the definition in eq. (2.26) and by expanding in powers of a, the term

SWilson
G [U ] =−β

3

∑
n∈Λ

∑
µ<ν

(
1−Pµν(n)

)
(2.40)

gives the correct continuum limit of the pure gauge action up to O (a2), where we also use the
Baker-Campbell-Hausdorff formula

e AeB = e A+B+ 1
2 [A,B ]+... . (2.41)

In eq. (2.40), we introduce the parameter

β= 6

g 2
, (2.42)

which characterizes the gauge action and fixes the scale. In conclusion, combining the pure
gauge action of eq. (2.40) with the fermionic action in eq. (2.34), the full lattice QCD action
reads

SWilson
QCD [q̄ , q,U ] = SWilson

F [q̄ , q]+SWilson
G [U ] . (2.43)

2.5 Symanzik improvement

The Wilson fermionic action in eq. (2.34) approaches the continuum limit up to O (a) lattice
artefacts, while SWilson

G [U ] in eq. (2.40) up to O (a2) discretization errors. It is possible to add
more terms in the fermionic Wilson action to achieve an approach towards the continuum limit
up to O (a2). This procedure is called Symanzik improvement.

2.5.1 Wilson-Clover action

Following Chap. 9 of [82], the only term that can be added to the Wilson fermionic action and
that is not redundant due to the Dirac equation is proportional to∑

f

∑
n∈Λ

q̄ f (n)σµνGµνq f (n) . (2.44)
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ν

µn n + µ̂

n + ν̂ n + µ̂+ ν̂

Pµν(n)

Figure 2.2:
What is represented here is the simplest closed loop that the gauge links may form, which is
called plaquette.

Notice that we do not distinguish the covariant and the contravariant symbols as the metric
tensor is Euclidean. In [134], the authors Sheikholeslami and Wohlert propose that the im-
proved fermionic action

SSW
F [q̄ , q] = SWilson

F [q̄ , q]+ cSW
∑

f

∑
n∈Λ

q̄ f (n)σµνGµνq(n) , (2.45)

where

Gµν = −i

8

(
Qµν(n)−Qνµ(n)

)
(2.46)

is the lattice field strength tensor, a discretized version of eq. (2.9) and

Qνµ(n) = Pµν(n)+Pµ−ν(n)+P−µ−ν(n)+P−µν(n) (2.47)

is the sum of all the adjacent plaquettes. This sum has the shape of a clover and therefore
the Sheikholeslami-Wohlert action of eq. (2.45) is generally known as clover action Sclover

F . In
order to achieve full O (a)-improvement, the local operators J appearing for instance in matrix
elements

〈
N ′∣∣J ∣∣N〉

must also be Symanzik-improved. The O (a)-improved axial current is

A
(imp)
µ (x) =Aµ(x)+ cA∂µP (x) , (2.48)

while the pseudoscalar current is already O (a)-improved, i.e.

P (imp)(x) =P (x) . (2.49)
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P (6)
1 P (6)

2 P (6)
3

Figure 2.3: These are some possible closed gauge loops of dimension six.

2.5.2 Lüscher-Weisz improved gauge action

Although the Wilson gauge action is already O (a)-improved, it is possible to improve it even
further. In [109], Lüscher and Weisz propose the tree-level Symanzik-improved gauge action

SLW
G [U ] = c(4)

1 SWilson
G [U ]+ β

3

3∑
i=1

c(6)
i

∑
C∈P (6)

i

Re Tr{1−U (C)} , (2.50)

where c(n)
k are coefficients that can be computed perturbatively or non-perturbatively, P (6)

i is
the set of all elementary loops of type i and dimension six, represented in Fig. 2.3, and U (C)
is the oriented product of link variables along a path C. In the same paper, it is stated that a
single free parameter x such that |x| < 1/16 is sufficient to ensure the positivity of the action. In
particular, the coefficients are

c(4)
1 = 5

3
−24x , c(6)

1 =− 1

12
+x , c(6)

2 = 0 , c(6)
3 = x . (2.51)

Within the CLS effort, whose definition is explained at the end of the next section, the choice is
simply x = 0, so that

SCLS
G [U ] = 5

3
SWilson

G [U ]− β

36

∑
C∈P (6)

1

Re Tr{1−U (C)} . (2.52)

2.6 The Wick theorem

Finally, having constructed the Euclidean version of the QCD action, we can compute numer-
ically the integral in eq. (2.20), whose Euclidean version is

〈 O(q̄ , q,U ) 〉 = 1

Z

∫
D[q̄ , q]D[U ] O(q̄ , q,U ) e−S[q̄ ,q,U ] , (2.53)

where we have replaced SE with its discretized and O (a)-improved version S, which reads

S[q̄ , q,U ] = SSW
F [q̄ , q,U ]+SCLS

G [U ] . (2.54)
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Let me recall that the clover action is defined in eq. (2.45) and the pure gauge action in eq. (2.52).
The integral over quark variables could be transformed in a more feasible way for simulations
because the quark fields obey the anticommutation relations{

q f1 (n), q f2 (n′)
}= 0 ,

{
q̄ f1 (n), q̄ f2 (n′)

}= 0 . (2.55)

Let us consider the fermionic integral which appears in eq. (2.53) and that is

〈 O(q̄ , q,U ) 〉 = 1

ZF

∫
D[q̄ , q] O(q̄ , q,U ) e−SF [q̄ ,q,U ] , (2.56)

where the fermionic partition function is

ZF =
∫

D[q̄ , q] e−SF [q̄ ,q,Uµ] (2.57)

and SF could be any fermionic action we discussed. In particular, SF can be rewritten in terms
of the Dirac operators D f for each flavor f like

SF [q̄ , q,U ] =∑
f

∑
n,m∈Λ

q̄ f ,a
α (n)D f (n,m)ab

αβ q f ,b
β

(m) , (2.58)

and we have explicitly written the color and spin indices. For example, the Dirac operator that
gives the naive fermionic action of eq. (2.30) is thus given by

D f (n,m)ab
αβ = m f δαβδabδn,m +

4∑
µ=1

γ
µ

αβ

(
U ab
µ (n)δn+µ̂,m +U ab

−µ(n)δn−µ̂,m

)
. (2.59)

Notice that this Dirac operator satisfies the γ5-hermiticity property that is

γ5D f γ
5 =D†

f . (2.60)

The quark fields in eq. (2.57) may be integrated out for each flavor using the so-called Matthews-
Salam formula, see [115, 116], so that∫

d q̄ f d q f e−q̄ f D f q f ∝ det
[
D f

]
(2.61)

and the fermionic partition function results in a product of fermionic determinants

ZF =∏
f

det
(
D f

)
. (2.62)

Another key formula for calculating fermionic expectation values 〈. . .〉F is given by the Wick
theorem. Suppose that the multi-local operator O is a product of local quark fields, i.e. O =
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q i1 q̄ j1 · · ·q in q̄ jn , where the symbols i1 and j1 are multi-indices that embed all the quantum
numbers of the fermionic fields (color, spin, flavor, lattice site).

The Wick theorem states that the fermionic expectation value 〈O〉F is then given by

〈q i1 q̄ j1 · · ·q in q̄ jn 〉F = 1

ZF

∫ N∏
k=1

d qk d q̄k
(
qi1 q̄ j1 · · ·qin q̄ jn

)
exp

(
−

N∑
l ,m=1

q̄l Dlm qm

)
= (−1)n

∑
P (1,...,n)

sign(P )(D−1)i1 jP1
· · · (D−1)in jPn

, (2.63)

where the sum is over all the permutations P (1, ...,n) of the numbers 1, ...,n and sign(P ) is the
sign of the permutation P . The objects D−1 that appear are the inverse Dirac operators, i.e.
Dirac propagators. Finally, after integrating out the fermionic part, the integral in eq. (2.53)
becomes

〈 O(q̄ , q,U ) 〉 = 1

Z

∫
D[U ] e−SG [Uµ]

∏
f

det
(
a4D f

) 〈 O(q̄ , q,U ) 〉W , (2.64)

where 〈 O(q̄ , q,U ) 〉W corresponds to the Wick contractions that give rise to the fermion propag-
ators in eq. (2.63) and it depends on the structure of the operators O.

To give a few practical applications of eq. (2.63), and of the Wick contractions, consider the
bilinear interpolating operators

Od (x)ab
αβ = d̄ a

α(x)d b
β(x) , Ōd (y)ce

γϵ = d̄ c
γ(y)d e

ϵ (y) . (2.65)

The multi-index i1 in eq. (2.63) is replaced with (d , a,α, x), where d is the quark flavor, a and
α are the color and spin indices, respectively, and x is the spacetime coordinate. The Wick
contractions that are needed for the fermionic expectation value are

〈Od (x)ab
αβ〉W = 〈d̄ a

α(x)d b
β(x)〉W = −D−1

d (x, x)ba
βα , (2.66)

〈Od (x)ab
αβ Ōd (y)ce

γϵ〉W = D−1
d (x, x)ba

βα D−1
d (y, y)ec

ϵγ − D−1
d (x, y)bc

βγ D−1
d (y, x)ea

ϵα . (2.67)

Notice that there is only one permutation for the Wick contractions in eq. (2.66) and two per-
mutations for those in eq. (2.67) because there are two pairs of d quarks in the latter. The relat-
ive minus sign between the two terms in the last equation is due to sign(P ) in eq. (2.63), which
comes from the anticommutation rules of the fermionic fields.

Although all the six quark flavors should be considered in eq. (2.64), only those with the
smallest masses will contribute to this integral significantly.

In the first lattice simulations, det
(
D f

)
was set to 1, which is called quenched approximation

and corresponds to neglecting the contribution of the quark fields on the gluon fields. In the
language of perturbation theory, it is equivalent to neglecting fermionic loops in Feynman dia-
grams. In this quenched set-up, valence quarks were introduced to obtain hadronic correlation
functions.
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This limit is equivalent to assuming that quark and antiquark masses are very large and it
has been proven surprisingly successful for the determination of different quantities that, in
general, are not sensitive to the neglected quark loop diagrams, like some hadron masses. For
instance, in 1993, continuum limits of eight hadron mass ratios reproduced the experimental
results within an error of 6%, see [41]. However, examples of quantities that are affected by
the quenched approximation are the η′ mass and strange meson spectrum. For a review of the
goodness of this approximation, see [86]. Today the simulations are performed with det

(
D f

) ̸=
1, with strange and charm quarks not decoupled, respectively referred to as N f = 2 + 1 and
N f = 2+1+1, where the two light quarks are degenerate.

However, the computation of an integral such as the one in eq. (2.64) is very expensive as
it is high-dimensional. The numerical method for computing this type of integral is the Monte
Carlo integration, and to perform the importance sampling for the Monte Carlo integration, one
needs to generate gauge links with a Markov process, according to the probability distribution

P [Uµ] = 1

Z
e−S[Uµ]

∏
f

det
(
D f

)
. (2.68)

Once they reach thermal equilibrium, the gauge links Ui are stored and can be reused to calcu-
late statistical quantities by importance sampling. The gauge links that reach thermal equilib-
rium are also referred to as gauge configurations, and a set of gauge configurations is called an
ensemble. As an example, the correlation function in eq. (2.64) can be computed by

〈 O(q̄ , q,U ) 〉 = 1

N

N∑
i=1

〈 O[q̄ , q,Ui ] 〉W +O

(
1p
N

)
, (2.69)

where N is the number of gauge configurations, and O
(

1p
N

)
is the order of the statistical error.

Of course, it is convenient to generate as many gauge configurations N as possible to im-
prove the statistical errors. However, this procedure can be pretty costly, depending on the
choice of the action, its parameters, and the lattice volume. One of the central aims of the Co-
ordinated Lattice Simulations initiative (CLS hereafter3) is to generate a variety of ensembles
with different volumes V , kappas κ f - the latter is related to the free quark mass by eq. (2.33)
and β, which is related to the strong coupling g via eq. (2.42) and to the lattice spacing a, so that

it is possible to extrapolate the quantities to the physical limit (a → 0, V →∞, mπ = mphy s
π ).

2.7 The Dirac propagator on the lattice

From now on, I keep the full notation x and y for the spacetime coordinates in the brackets. In
the previous expressions of eqs. (2.66)-(2.67), D−1

d (x, y) represents the quark propagator - with

3see the webpage https://wiki-zeuthen.desy.de/CLS/CLS and [50, 125]
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d a
α(y) d̄ ā

ᾱ(x0)D−1(y, x0)aā
αᾱ

D−1(x0, y)bb̄
ββ̄

d̄ b̄
β̄

(y) d b
β

(x0)

Figure 2.4:
The colored dots represent the location of the
quarks and antiquarks on the lattice. The propag-
ator between the blue dots is the forward d-quark
propagator, while the one between the green dots
is the backward propagator.

flavor down -, which is the most important quantity in lattice QCD simulations. It is a complex
object with 3×3 color indices, 4×4 spin indices and V ×V coordinates; for this reason it is called
all-to-all propagator. Practically, it would take a lot of computer time to compute it numerically
and would require a huge amount of memory to store it. Consider for example a volume with
Ns = 24 and Nt = 48. The memory needed for the complex propagator of size (3×4×N 3

s ×Nt )2

would be ∼O (106) GB, which is unfeasible for the computers today.
However, in some cases, we would only need the propagator

D−1(y, x0)ba
βα , (2.70)

which is called point-to-all because it describes the propagation of a particle from a fixed lattice
site x0 to any point on the lattice y . These objects are computed starting from a Dirac vector
χ(x, x0)ba0

βα0
, which is equivalent to the point-to-all propagator with a fixed color index a0 and

spin index α0. Here I remove the flavor subscript f to simplify the notation.
The point-to-all is then computed by solving a system of linear equations,∑

y
D(x, y)cb

γβ D−1(y, x0)ba0
βα0

=χ(x, x0)ca0
γα0

, (2.71)

with
χ(x, x0)ca0

γα0
= δ(x −x0)δca0δγα0 (2.72)

being the vector source for the inversion, which for the moment is localised at a single lattice
site and it is called point source. The sum over color and spin indices is implied and D(x, y) is
the Dirac operator. Eq. (2.71) is usually referred as inversion and it is performed using iterative
solver algorithms, since D is a huge sparse matrix.

The simulation time is often dominated by the inversions, therefore one normally seeks for
fast algorithms to perform them, see [78].

In the simulations, it may occur that not only the forward propagator D−1(y, x0) is needed,
but also the backward propagator D−1(x0, y), which describes the quark propagating in the op-
posite direction, see Fig. 2.4. The backward propagators are not computed iteratively by solving
a linear system, but using the γ5-hermiticity of the action, see eq. (2.60), which results in the
γ5-hermiticity of the propagator,

D−1(x0, y) = γ5D−1(y, x0)†γ5 . (2.73)
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d̄ a
α(x) d c

γ(z)

d a
α(x) d̄ ā

ᾱ(x0)
D−1(x, x0)aā

αᾱ

D−1(z, x)ca
γα

Figure 2.5:
At the bottom there is the
point-to-all propagator,
while on top there is the
all-to-all, marked by a red
line.

Therefore, the backward propagators are computed from the forward propagators. It may also
occur that the all-to-all propagators are needed to compute correlation functions. In some
cases, they can be computed with the sequential method technique and in other cases with
stochastic methods like the One-End trick. Both will be discussed in the next sections.

2.8 Sequential method

This technique can be used to compute lattice objects that are made up of products of an all-
to-all propagator and point-to-all propagators. Consider for example the lattice object

S(z, x0)cā
γᾱ =D−1(z, x)ca

γα D−1(x, x0)aā
αᾱ , (2.74)

which is depicted in Fig. 2.5 and it is equivalent to the product of an all-to-all and a point-to-
all propagator in color and spin space. We can avoid computing the all-to-all propagator and
directly compute S(z, x0), by using D−1(x, x0) as a source for the inversion, similarly to χ(x, x0)
in eq. (2.71). Eq. (2.74) could be any linear combination S̃(x, x0) of point-to-all propagators and
gamma matrices, i.e.

S(z, x0)cā
γᾱ =D−1(z, x)ca

γα S̃(x, x0)aā
αᾱ (2.75)

and S̃(x, x0) may contain any algebraic expressions that contain products of γ matrices, color
contractions, et cetera. Hence, to obtain S(z, x0) in practice, we solve the linear system∑

z
D(x, z)ac

αγS(z, x0)cā
γᾱ = S̃(x, x0)aā

αᾱ . (2.76)

Since S(z, x0) is computed sequentially through combinations of point-to-all propagators, it
will be referred to as the sequential propagator, while S̃(x, x0) is the sequential source.

In some cases, we need to project the interpolating operator at the lattice site x on a non-
zero momentum p. This is done by applying a momentum phase to the sequential source be-
fore the inversion, i.e.

Sp(z, x0)cā
γᾱ =D−1(y, x)ca

γα e−i p·x S̃(x, x0)aā
αᾱ . (2.77)

Notice that in some cases, one should take into account the origin offset x0, and the momentum
projection at the sink becomes e−i p·(x−x0).
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This technique was introduced in [114] to investigate the nucleon structure [29, 27], and it
is now widely used also for other hadron structures like meson structure [77] and for baryon
semileptonic decays to study CKM matrix elements [119, 120].

In this project, the sequential method was largely used, and in most cases, we use the se-
quential propagator S(z, x0) as a source for a second sequential propagator.

2.9 One-End Trick

As we see in the next chapter, the correlation functions are computed by evaluating traces of
γ matrices and propagators. In some cases, the all-to-all propagators are needed, and it may
occur that they cannot be computed with the sequential method (see Sec. 2.8). However, it
may be possible to compute some correlation functions statistically with the so-called One-End
trick, which was introduced in [47] and it is based on stochastic methods, see [76, 118, 117].

Consider, for example, two interpolating operators O1(y) and Ō2(z) located respectively at
y = (y, t ) and z = (z,τ), with t a fixed timeslice, such that the resulting correlation function at
zero momentum is

C2pt (t −τ) =∑
y

∑
z
〈O1(y, t ) Ō2(z,τ)〉 =∑

y

∑
z

Tr
{
Γ1D

−1(z, y)Γ2D
−1(y, z)

}
, (2.78)

and by using the γ5-hermiticity property of the propagator it can be rewritten like

C2pt (t −τ) =∑
y

∑
z

Tr
{
γ5Γ1D

−1(z, y)Γ2γ
5D−1(z, y)†

}
. (2.79)

The propagators that appear in eq. (2.79) are all-to-all, or more clearly t-to-all, and we omit
their flavor for clarity. They can be constructed by generating Nstoc random vectors η(r )(x) at
the fixed timeslice T , with r = 1, ..., Nstoc and with the properties

〈η(r )(x)〉r ≡ 1

Nstoc

Nstoc∑
r=1

η(r )(x)a
α = 0 , (2.80)

〈η(r )(x)a
α

(
η(r )(z)†

)b

β
〉r = δxzδabδαβ+O

(
1p

Nstoc

)
, (2.81)

where 〈· · · 〉r represents the stochastic average over the Nstoc noise vectors, as shown in eq. (2.80).
We invert the Dirac operator D−1 on each source η(r )(x) to obtain the solutions ψ(r )(z) and
ψ(r )
Γ2

(z), that are

ψ(r )(z) =∑
y

D−1(z, y)η(r )(y) , (2.82)

ψ(r )
Γ2

(z) =∑
y

D−1(z, y)
(
Γ2γ

5)†
η(r )(y) . (2.83)
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With these definitions, the two-point functions in eq. (2.79) take the form

C2pt (t −τ) =
Nstoc∑
r=1

∑
z

Tr
{
γ5Γ1ψ

(r )(z)ψ(r )
Γ2

(z)†
}

. (2.84)

For this project, we use the One-End trick to compute current-to-pion correlation func-
tions with zero and non-zero momenta on both ends, where Γ1 = Γ and Γ2 = γ5, with Γ ∈
{γ5,γµ,γµγ5}, so that eq. (2.79) becomes

C p′,q
2pt (t −τ) =∑

y

∑
z

e−i p′·ye i q·z Tr
{
D−1(z, y)† γ5ΓD−1(z, y)

}
. (2.85)

We invert the Dirac operator on each source η(r )(x), and for one solution vector, we first project
the source on the momentum p′ by applying a conjugate phase. This results in the solutions
ψ(r )(z) and ψ(r )

p′ (z), which are

ψ(r )(z) =∑
y

D−1(z, y)η(r )(y) , (2.86)

ψ(r )
p′ (z) =∑

y
D−1(z, y) e i p′·yη(r )(y) (2.87)

and eq. (2.85) can be rewritten like

C p′,q
2pt (t −τ) =

Nstoc∑
r=1

∑
z

e i q·z Tr
{
ψ(r )

p′ (z)† γ5Γψ(r )(z)
}

. (2.88)

There are many ways to generate noise vectors that follow a distributionD, which has zero mean
(see eq. (2.80)) and has the orthonormal property of eq. (2.81). In [67], the authors proved that
sources with Z(2) noise, i.e. D=Z(2) = {+1,−1}, deviate less from the orthonormal condition of
eq. (2.81), see Tab.1 of the above mentioned paper. We follow [76] with their optimal choice and
use the complex number distribution D=Z(2)⊗ iZ(2), that is

D=
{

1p
2

(±1± i )

}
, (2.89)

which corresponds to Z(2) random noise vector both in the real and imaginary parts. This
method is used in the literature also in combination with the sequential method to compute
form factors in the light-light system, see [140, 141] and charm-light semileptonic decays [73].

2.10 Wuppertal Quark Smearing

The Wuppertal quark smearing is an iterative procedure to smooth the local interpolating op-
erator O(x) at the level of the quarks. It was introduced in [89] to increase the overlap of the

26



Chapter 2 – QCD: from the continuum to the lattice Lorenzo Barca

α +
Figure 2.6:
The gauge links are averaged over
their neighbouring incomplete
plaquettes, each one with the shape
of a staple.

hadron interpolating operator with the ground state (see discussion next chapter). In partic-
ular, the definition of the Wuppertal Smearing operator ΦW applied to the quark fields q(x) is

ΦW q(x) = 1

1+2dκs

(
q(x)+κs

±d∑
µ=±1

Uµ(x)q(x + µ̂)
)

, (2.90)

where d = 3 is the spatial dimension and κs is the smearing parameter characterizing the quark
field’s extension. This smoothing technique involves only the spatial components µ= 1, ...,d of
the gauge fields Uµ. The Wuppertal operator can be applied n times iteratively and it can be
expressed in terms of a lattice covariant Laplacian ∇2 ≡ (∂i )2, so that

Φ(n)
W q(x) =

(
1+ κs

1+2dκs
∇2

)n
q(x) . (2.91)

With the definition of the covariant lattice derivative in eqs. (2.28)-(2.29), the discretized Lapla-
cian operator applied to the quark fields q(x) is

∇2q(x) =
±d∑
µ=±1

(
∇µ−∇∗

µ

)
q(x) =−2d q(x)+

±d∑
µ=±1

Uµ(x)q(x + µ̂) . (2.92)

After n steps, the quark fields are extended on the lattice with a Gaussian shape and the smear-
ing radius is defined by

r 2
W =

∑
x∈Λ |x|2|q(x)|2∑

x∈Λ |q(x)|2 . (2.93)

For this project we have employed this smoothing technique and set κs = 0.25 with n = 150
iterations, but there are other types of quark smearing like Jacobi smearing [21].

2.11 Link smearing: APE smoothing

The APE smoothing is a particular type of gauge link smearing that is applied to the spatial
directions i = 1,2,3 of the gauge links Ui (x). These are averaged recursively over their neigh-
bouring incomplete plaquettes called staples, as depicted in Fig. 2.6.
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It has the following expression:

U (n+1)
i (x) =PSU (3)

{
αU (n)

i (x)+ ∑
j ̸=i

C (n)
i j (x)

}
, (2.94)

where the label n corresponds to the number of iterations and the term C (n)
µν (x) corresponds to

the average of the gauge links over the staples; visualise it with the help of Fig. (2.6), i.e.

C (n)
µν (x) = ∑

ρ=±ν
U (n)
ρ (x) U (n)

µ (x + ρ̂) U (n)
−ρ (x + ρ̂+ µ̂) . (2.95)

In eq. (2.94), PSU (3) is the projecting operator defined by

PSU (3)

{
V

}
= X ∈ SU (3) | max

{
ReTr

{
XV†

} }
, (2.96)

which projects back the gauge links onto the group SU (3) by maximizing the real part of the
trace Tr

{
X V †

}
. This method has had success in increasing the overlap with the physical states

for different projects, including observation of string breaking effects [26] and searches for glue-
balls [17]. In this project, we have employed the APE link smearing with α = 2.5 and n = 25
iterations, but there are other types of link smearing like HYP [92] and Stout smearing [126].
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CHAPTER

THREE

UNVEILING THE NUCLEON STRUCTURE

In this chapter, I will discuss two-point functions and three-point functions of hadron oper-
ators. In particular, I will focus on the nucleon operators and show how to extract the finite-
volume nucleon mass from the nucleon two-point functions and the nucleon matrix elements
at finite-volume from the nucleon three-point functions.

I will conclude the chapter by discussing the contamination from excited states on the lat-
tice and identify the main source of contamination.

3.1 Standard convention

The u- and d- quark propagators are defined as the Wick contractions of the specific quark and
antiquarks, i.e.,

U a,b
αβ

(x, y) = 〈ua
α(x) ūb

β(y)〉 , Da,b
αβ

(x, y) = 〈d a
α(x) d̄ b

β(y)〉 , (3.1)

where q a
α(x) and q̄b

β
(y) are respectively the annihilation and the creation q-quark operator, with

q being u or d . Notice the convention for the propagators and the symbol of Wick contractions
with respect to eq. (2.66).

Second, in the previous chapters, I used D(x, y) for the Dirac operator, e.g. eq. (2.59), and
D−1(x, y) for its inverse, i.e. the Dirac propagator. From this chapter, I use the convention
D−1(x, y) → D(x, y) for the propagators to simplify the notation. The Latin superscripts a, b in
eq. (3.1) represent the color indices, and the Greek subscripts α, β are Dirac indices.

We also work in the isospin symmetry limit where the u-quarks and d-quarks have the same
mass, i.e., are degenerate. In this limit, the two propagators are equivalent, and we will use

U (x, y) = D(x, y) . (3.2)
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However, it is relevant to mention that before carrying out the Wick contractions, one has to
differentiate between u ad d quarks. As regards the representation for the gamma matrices, we
adopt the same as it is implemented in the software packages that we use (CHROMA, GRID,
GPT), and that corresponds to the DeGrand-Rossi basis. In the App. A, I write both the repres-
entation of the gamma matrices that we adopt and the Weyl (chiral) representation, often used
in the continuum by some textbooks.

3.2 Two-point correlation functions

Let me recall that a general Euclidean two-point correlation function between two interpolating
operators O1 and Ō2, respectively located at x and y is defined by

C2pt (x, y) =
∫

D[U ]D[q]D[q̄]e−S[U ,q,q̄]O1(x) Ō2(y)∫
D[U ]D[q]D[q̄]e−S[U ,q,q̄]

, (3.3)

where S is the prescribed QCD action. As explained in Sec. 2.6, we integrate out the fermionic
variables and generate N gauge configurations Ui through a Markov process. In this way, the
two-point function is computed statistically by

C2pt (x, y) = 1

N

N∑
i=1

〈O1(Ui , q, q̄ ; x) Ō2(Ui , q, q̄ ; y)〉+O

(
1p
N

)
, (3.4)

where 〈O1(x) Ō2(y)〉 corresponds to the Wick contractions of the two interpolating operators.
In the next sections, I will consider nucleon ON and pion Oπ interpolating operators. We will
omit the statistical average over the gauge configurations, but we will implicitly intend it.

3.2.1 Pion two-point functions

In order to compute the pion two-functions statistically on the lattice, we first construct the
(negative) pion interpolating operators at a fixed source position x0 = (x0, t0) and sink x = (x, t ),

Oπ−(x) = ūa
β(x) γ5

βα d a
α(x) , (3.5)

Ōπ−(x0) =−d̄ ā
ᾱ(x0) γ5

ᾱβ̄
u ā
β̄

(x0) , (3.6)

where the conventional minus sign is such that the correlation function is positive.
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d a
α(x)

ūa
β

(x)
π−

d̄ ā
ᾱ(x0)

u ā
β̄

(x0)
π−

Daā
αᾱ(x, x0)

D āa
β̄β

(x0, x)

Figure 3.1:
A schematic plot of the propagators
involved in the pion two-point func-
tions. There is a forward and a back-
ward point-to-all propagator.

The Wick contractions of these pion interpolating operators are

Cπ
2pt (x, x0) = 〈Oπ−(x) Ōπ−(x0)〉

= −〈 ūa
β(x)γ5

βαd a
α(x) d̄ ā

ᾱ(x0)γ5
ᾱβ̄

u ā
β̄

(x0) 〉
= 〈 γ5

βαγ
5
ᾱβ̄

u ā
β̄

(x0)ūa
β(x) d a

α(x)d̄ ā
ᾱ(x0) 〉

= γ5
βαγ

5
ᾱβ̄

U āa
β̄β

(x0, x) Daā
αᾱ(x, x0)

= Tr
{
γ5U (x0, x)γ5D(x, x0)

}
. (3.7)

In the third line of eq. (3.9), I use the antisymmetric relations of the quark operators and the
Wick’s theorem to factorize the fermionic contractions. In order to project the interpolating
operators on the momentum pπ = 2π

L n, we apply the Fourier Transform as explained in App. A
and eq. (3.7) becomes

Cπ
2pt (pπ, t , t0) = ∑

x
e−i pπ·(x−x0)〈Oπ−(x, t ) Ōπ−(x0, t0)〉 . (3.8)

We also work in the isospin symmetry limit so that U (x, x0) = D(x, x0).
Thus, the final expression for the pion two-point functions at finite momentum pπ is

Cπ
2pt (pπ, t , t0) =∑

x
e−i pπ·(x−x0) Tr

{
γ5D(x0, x)γ5D(x, x0)

}
, (3.9)

where D(x, x0) is the forward propagator and D(x0, x) is the backward propagator, and they are
represented in Fig. 3.1. We can employ the γ5-hermiticity of the Dirac propagator, see eq. (2.73)
and rewrite eq. (3.7) in terms of just the point-to-all propagator D(x, x0), like

Cπ
2pt (pπ, t , t0) =∑

x
e−i pπ·(x−x0) Tr

{
D(x, x0)†D(x, x0)

}
, (3.10)

where the trace is taken over color and spin indices. One can compute the Fourier Transform of
the product inside the brackets in eq. (3.10) for every gauge configuration and have a statistical
average of the pion two-point functions, see eq. (3.4).
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On the other end, we can employ the spectral decomposition and insert a complete set of
states between the two interpolating operators in eq. (3.8),

1=∑
n

1

2En
|n〉〈n| , (3.11)

where I omit a conventional volume factor V in the denominator so that the spectral decom-
position for the pion two-point functions reads

Cπ
2pt (pπ, t , t0) =∑

x,n
e−i pπ·(x−x0) 1

2En
〈Ω|Oπ−(x, t )|n〉 〈n|Ōπ−(x0, t0)|Ω〉

= e−Eπ(t−t0)

2Eπ

〈
Ω

∣∣Oπ−(pπ)
∣∣π(pπ)

〉 〈
π(pπ)

∣∣Ōπ−(pπ)
∣∣Ω〉 + . . . (3.12)

In the second line, I assume that the dominant states that are created from the vacuum
|Ω〉 by our interpolating operators are pions

∣∣π(pπ)
〉

, and I use the space translation and time
evolution operators to the operator Oπ(x, t ), as explained in Sec. A.4 of the App. A.

However, every state |ñ〉 with the same quantum numbers as the pions could be created
and it is included in the dots. Generally, these states could be either excited states ("ES" in the
following) or multi-particle states ("MPS"), and they fall off exponentially with an energy higher
than Eπ. Therefore they will be exponentially suppressed at large time t , and in this limit, we
expect that the ground state, which is the pion in this case, is dominant.

The finite-volume energy is parametrised by the form Eπ =
√∣∣pπ∣∣2 +m2

π and thus it depends
on the lattice momentum pπ and on the finite-volume mass mπ. The energy Eπ and the matrix
elements 〈Ω| Oπ−

∣∣π(pπ)
〉

can be extracted from a fit to the two-point pion correlation functions.
From now on, I will consider a trivial source position x0 = 0 = (0,0) for brevity and without

loss of generality. However, in the actual simulation, I create the source at a non-zero position.

3.2.2 Nucleon two-point functions

We define the annihilation nucleon operator ON at the sink x = (x, t ) and the creation nucleon
operator ŌN at the source 0 = (0,0) 1 in the following way

ON ,γ(x) = ϵabc
(
d a
α(x) C̃αβ ub

β(x)
)

qc
γ(x) , (3.13)

ŌN ,γ̄(0) = ϵāb̄c̄ q̄ c̄
γ̄(0)

(
ūb̄
β̄

(0) C̃β̄ᾱ d̄ ā
ᾱ (0)

)
, (3.14)

where C̃ =Cγ5. With this convention, the proton and nucleon interpolating operators are con-
structed respectively when q = u,d . The nucleon two-point functions read

C N
2pt (pN , t ) = ∑

x
e−i pN ·x〈 Pγ̄γ ON ,γ(x, t ) ŌN ,γ̄(0,0) 〉 = ∑

x
e−i pN ·x C N

2pt (x, t ) , (3.15)

1In the general case of a non-zero origin, one has to take into account the momentum phase related to the
source position in the Fourier transform as in eq. (A.47) of App. A.
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u(x)
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d̄(0)
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ū(0)p

U (x,0)

U (x,0)

D(x,0)

Figure 3.2:
A schematic plot of the propagators in-
volved in the nucleon two-point func-
tions. There are only forward point-to-
all propagators and the color and spin in-
dices are not explicitly written because
there are two different Wick contractions
for the u-quarks.

where P is the spin-parity projector and pN is the momentum of the nucleon. The positive
parity projector is P+ = 1

2 (1+γ4), which is the Euclideanisation of P+ = 1
2 (1+γ0). Here, I adopt

the lattice representation, which is the DeGrand-Rossi basis, but in the App. A I also provide the
Weyl (chiral) representation, which some textbooks prefer.

The other spin-parity projectors that are being used herein are

P± = 1

2
(1±γ4) , (3.16)

P
j
↑/↓ =

1

2
(1± iγ5γ j ) , (3.17)

P
+ j
↑/↓ =P+P j

↑/↓ , (3.18)

P
+ j
↕ = 1

2
(P+ j

↓ −P+ j
↑ ) =P+(−iγ5γ j ) , (3.19)

where P j
↑/↓ are respectively the spin up/down projectors along the direction j , which can be

used in combination with P+ to form P
+ j
↑/↓. In particular, after performing the Wick contractions

with the proton interpolators and with the positive parity projector P+, we obtain

C p
2pt (x, t ) = ϵabcϵāb̄c̄ P+

γ̄γ C̃αβ C̃β̄ᾱ Daā
αᾱ(x,0)

(
U cc̄
γγ̄(x,0)U bb̄

ββ̄
(x,0)−U cb̄

γβ̄
(x,0)U bc̄

βγ̄(x,0)
)

. (3.20)

In the isospin symmetry limit, U (x,0) = D(x,0), so that combining eq. (3.15) with eq. (3.20) we
get

C N
2pt (pN , t ) = ∑

x
e−i pN ·x ϵabcϵāb̄c̄ P+

γ̄γ C̃αβC̃β̄ᾱ Daā
αᾱ(x,0)

(
Dcc̄
γγ̄(x,0)Dbb̄

ββ̄
(x,0)−Dcb̄

γβ̄
(x,0)Dbc̄

βγ̄(x,0)
)

.

(3.21)
Since the nucleons are fermions, in the spectral decomposition of the nucleon two-point
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functions, we have to consider the spin of the particles so that

C N
2pt (pN , t ) =∑

x
e−i pN ·x ∑

n,σ

1

2En
P+
γ̄γ 〈Ω|ON ,γ(x, t )|n,σ〉 〈n,σ|ŌN ,γ̄|Ω〉

= e−EN t

2EN

∑
σ

P+
γ̄γ

〈
Ω

∣∣ON ,γ(pN )
∣∣N (pN ,σ)

〉 〈
N (pN ,σ)

∣∣ŌN ,γ
∣∣Ω〉+ . . .

= e−EN t

2EN

∑
σ

P+
γ̄γ |ZN |2 uN (pN ,σ) ūN (pN ,σ)+ . . .

= e−EN t

2EN
|ZN |2 Tr

{
1

2
(1+γ4) (−i /pN +mN )

}
+ . . .

= |ZN |2 EN +mN

EN
e−EN t + . . . (3.22)

where in the third line, I define the overlap factors ZN and the nucleon spinors uN ,γ through the
matrix elements 〈

Ω
∣∣ON ,γ(pN )

∣∣N (pN ,σ)
〉= ZN uN ,γ(pN ,σ) , (3.23)

while in the fourth line, I use one of the relations for the Dirac spinors in Euclidean spacetime,
that is ∑

σ

uN (pN ,σ) ūN (pN ,σ) = (−i /pN +mN ) (3.24)

and in the final line, I compute the traces of Dirac matrices (see eq. (A.36) in App. A)). At large t ,
extracting the effective energy E eff

N from a fit to the nucleon two-point functions is possible. In
particular, at zero momentum p = 0, we have that EN = mN and the spectral decomposition of
the nucleon two-point function gives

C N
2pt (pN = 0, t ) = 2|ZN |2 e−mN t + . . . (3.25)

The effective mass can be extracted at large t from a ratio of the two-point function at sub-
sequent timeslices:

meff
N = a−1 log

(
C N

2pt (pN = 0, t )

C N
2pt (pN = 0, t +a)

)
. (3.26)

We computed eq. (3.21) using local nucleon operators and smeared nucleon operators. The
latter were constructed by applying the Wuppertal smearing operator to the quark fields and
the APE link smoothing to the gauge links. In more detail, we smeared at the source position by
inverting the Dirac operator on a smeared source, i.e.,∑

x
D(y, x)cb

γβ D(x,Φ0)ba0
βα0

=Φ(n)
W χ(y,0)ca0

γα0
, (3.27)

whereΦ(n)
W is the Wuppertal smearing operator defined in Sec. 2.10 and χ(y,0) is a point source.

We use the notation D(x,Φ0) for the Dirac propagator that is smeared at the source 0.
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Figure 3.3:
In this plot, we show the effective mass calculated with eq. (3.26) using local and smeared nuc-
leon operators. In the legend, the smeared nucleon operators are labelled byΦW ON . On the left,
the y-axis is presented in lattice units, while on the right, it is shown in physical units (GeV).

We then smear at the sink x the source-smeared propagator D(x,Φ0) by applying the smear-
ing operator again to the propagator D(x,Φ0) and we obtain D(Φx,Φ0) =Φ(n)

W D(x,Φ0) . We use
the CLS ensemble A653, whose parameters are gathered in Tab. F.1 and we compute the nuc-
leon two-point functions using local and smeared nucleon operators. In Fig. 3.3, we compare
the nucleon effective masses calculated with eq. (3.26) using local and smeared operators. In
both cases, there is evidence of a plateau region around the same value. However, with the
smearing, the plateau starts earlier. In particular, with smeared nucleon interpolators, we find

meff
N = (0.583±0.006) a−1 = (1148.5±11.8) MeV . (3.28)

It is clear that the nucleon mass on this ensemble is slightly heavier than the physical one, which
is ∼ 938 MeV. The conversion from lattice units (a−1) to physical units (MeV), is done by recall-
ing that a ≈ 0.1 fm on this ensemble and that 1 fm ≈ (1/197) MeV−1.
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3.3 Nucleon three-point functions

With the insertion of an intermediate current

Jk (z) = ψ̄δ(z)
σk

2
Γδδ′ψδ′(z) (3.29)

at z = (z,τ), between the nucleon interpolating operators in eqs. (3.14)-(3.13), it is possible to
compute the nucleon three-point functions, which have the following path integral represent-
ation

C
Jk
3pt (x, z,0) =

∫
D[U ]D[ψ]D[ψ̄]e−S[U ,ψ,ψ̄]ON (x) Jk (z) ŌN (0)∫

D[U ]D[ψ]D[ψ̄]e−S[U ,ψ,ψ̄]
. (3.30)

On the lattice, the nucleon three-point function reads

C
P;Jk
3pt (p′

N , t ;q,τ) = ∑
x,z

e−i p′
N ·x e i q·z 〈 Pγ̄γ ON ,γ(x, t ) Jk (z,τ) ŌN ,γ̄(0,0) 〉

= ∑
x,z

e−i p′
N ·x e i q·z C

P;Jk
3pt (x, t ;z,τ) , (3.31)

where C
P;Jk
3pt (x, t ;z,τ) represents the sum of all the Wick contractions for this process, which

depend on the quark fields composition of the nucleon and current operators. In particular,
with the isotriplet current J− = J1 − iJ2 = d̄Γu, a proton and a neutron interpolator at the
source and at the sink, respectively, we have

C
P;J−
3pt (p′

n , t ;q,τ) = ∑
x,z

e−i p′
n ·x e i q·z 〈 Pγ̄γ On,γ(x, t ) J−(z,τ) Ōp,γ̄(0,0) 〉

= ∑
x,z

e−i p′
n ·x e i q·z C

P;J−
3pt (x, z,0) . (3.32)

The spin-parity operators P used here are P+ j
↕ , defined in eq. (3.19), but for the moment, I write

a generic projectorP, as the discussion is general. There are two pairs of d-quarks and two pairs
of u-quarks, thus the number of Wick contractions is 2!×2! = 4, and the expression is

C
P;J−
3pt (x, z,0) = 〈 Pγ̄γ ON ,γ(x) J−(z) ŌN ,γ̄(0) 〉

= ϵabcϵāb̄c̄ C̃αβ C̃ β̄ᾱ Pγ̄γ Γ
δδ′
µ

(
Dcd
γδ(x, z) Daā

αᾱ(x,0) − Dcā
γᾱ(x,0) Dad

αδ(x, z)
)×

× (
U dc̄
δ′γ̄(z,0) U bb̄

ββ̄
(x,0) − U db̄

δ′β̄(z,0) U bc̄
βγ̄(x,0)

)
. (3.33)

Fig. 3.4 shows a schematic plot of the proton to neutron three-point functions. It is possible
to rewrite eq. (3.32) like

C
P;J−
3pt (p′

n , t ;q,τ) = ∑
z

e i q·z Tr
{(
γ5 Sd̄u(z,0)† γ5

)
ΓU (z,0)

}
, (3.34)
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Figure 3.4:
A schematic plot of the proton to neut-
ron three-point functions. The black solid
lines are point-to-all propagators, while
the red line is the all-to-all. The blue wavy
line represents the interaction with the in-
termediate current J− at the location z,
marked by the blue crosses.

where Sd̄u(z,0) is the proton to neutron sequential propagator and it includes sequentially the
propagators D(x,0), U (x,0) and D(x, z), depicted in Fig. 3.4. This propagator is computed with
the sequential method, by inverting on the sequential source, as explained in Sec. 2.8. In the
App. E, I write the expressions explicitly for both lattice objects and their implementation.

In the case of an isovector current J0 ≡ 2J3 = ūΓu−d̄Γd ≡Ju−Jd , the proton three-point
functions take the expression

C
P;J0
3pt (p′

p , t ;q,τ) = ∑
x,z

e−i p′
p ·x e i q·z 〈 Pγ̄γ Op,γ(x, t ) J0(z,τ) Ōp,γ̄(0,0) 〉 , (3.35)

which corresponds to a proton to proton three-point function. The terms with Ju and Jd can
be computed separately with the sequential method as in eq. (3.34), such that

C
P;J0
3pt (p′

p , t ;q,τ) =C
P;Ju
3pt (p′

p , t ;q,τ)−C
P;Jd
3pt (p′

p , t ;q,τ) . (3.36)

In the Sec. E.3 of the App. E, I provide the expressions for the sequential propagators Sūu(z,0)
and Sd̄d (z,0), that enter in the computation of eq. (3.36) and in the isospin symmetry limit we
have Sd̄u(z,0) = Sūu(z,0)−Sd̄d (z,0), so that

C
P;J−
3pt (p′, t ;q,τ) =C

P;J0
3pt (p′, t ;q,τ) . (3.37)

Notice that the neutron three-point functions with J0 are equal and opposite in sign to the
proton three-point functions with J0. Also, the quark content at the sink in the three-point
functions on the left-hand side is different than the one on the right-hand side. The spectral de-
composition provides a dependence of the nucleon three-point functions on the finite-volume
energies, vacuum to nucleon matrix elements like in eq. (3.23) and nucleon matrix elements
of the type 〈n|J−

∣∣p〉
for eq. (3.32) and

〈
p

∣∣J0
∣∣p〉

for eq. (3.36), which are very important, as I
discussed in Chap. 1. This part deserves an appropriate discussion.

37



Chapter 3 – Unveiling the nucleon structure Lorenzo Barca

3.4 Nucleon matrix elements

For this section, I consider the proton three-point function of eq. (3.35), but the same argu-
ment holds for the other nucleon three-point functions. I employ the spectral decomposition
by inserting two complete sets of states,

C
P j ,J0
3pt (p′, t ;q,τ) = ∑

x,z
e−i p′·x e i q·z 〈 P j

γ̄γ
Op,γ(x, t ) J0(z,τ) Ōp,γ̄(0,0) 〉

=∑
N
P

j
γ̄γ

〈Ω|Op,γ(p′)
∣∣N (p′)

〉 〈
N (p′)

∣∣J0(q)
∣∣N (p)

〉 〈
N (p)

∣∣Ōp,γ̄|Ω〉 e−E ′
N t e−(EN−E ′

N )τ

4E ′
N EN

= ∑
σ,σ′

P
j
γ̄γ

Z p′
p Z p∗

p up,γ(p′,σ)
〈

p(p′,σ′)
∣∣J0(q)

∣∣p(p,σ)
〉

ūp,γ̄(p,σ)
e−(EN−E ′

N )τe−E ′
N t

4E ′
N EN

+ . . . (3.38)

Notice that for the momentum conservation, the momentum at the source is p = p′−q. In the
second line,

∣∣N (p′,σ′)
〉

and
∣∣N (p,σ)

〉
represent respectively states that can be created by the

proton interpolating operators at the sink and at the source. In the third line, the assumption
is that only the protons are created both at the source and at the sink. However, multi-particles
states (Nπ, Nππ, ...) and radial excitation of the proton (N∗, ...) can be created as well, depend-
ing on the lattice size and pion mass.

The nucleon matrix elements
〈

p(p′,σ′)
∣∣J0

∣∣p(p,σ)
〉

can be decomposed according to their
Lorentz structure, which depends on the current J :〈

p(p′,σ′)
∣∣ J0

∣∣p(p,σ)
〉= up (p′,σ′) F F [J ] ūp (p,σ) . (3.39)

While the terms up and ūp are Dirac spinors of the proton, the term F F [J ] represents the
Lorentz decomposition of the nucleon matrix elements in terms of form factors, which have a
dependence on the momentum transfer Q2 = −q2. We already discussed similar Lorentz de-
compositions in Sec. 1.2 of Chap. 1. In the case of a pseudoscalar P and an axial-vector A µ

current, the Lorentz decompositions in Euclidean spacetime are〈
p(p′,σ′)

∣∣ P0
∣∣p(p,σ)

〉= up (p′,σ′) γ5GP (Q2) ūp (p,σ) , (3.40)〈
p(p′,σ′)

∣∣ A
µ

0

∣∣p(p,σ)
〉= up (p′,σ′)

(
γµγ5G A(Q2)− i

Qµ

2mN
γ5GP̃ (Q2)

)
ūp (p,σ) . (3.41)

The functions GP , G A and GP̃ that parametrize the nucleon matrix elements, are respectively
the pseudoscalar, axial and induced-pseudoscalar nucleon form factors. So, for example, the
terms F F [J ] that appear in eq. (3.39) for an axial-vector and pseudoscalar current are

F F [P ] = γ5GP (Q2) , (3.42)

F F [A µ] = γµγ5G A(Q2)− i
Qµ

2mN
γ5GP̃ (Q2) . (3.43)
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Using these Lorentz decompositions and the definition of the matrix elements in terms of
Dirac spinors and overlap factors, see eq. (3.23), the spectral decomposition of the proton three-
point functions in eq. (3.38) is

C
P,J0
3pt (p′

p , t ;q,τ) = Z p′
p Z p∗

p Tr
{
P(−i /p

′+mN )F F [J ](−i /p +mN )
} e−(EN−E ′

N )τe−E ′
N t

4E ′
N EN

+ . . . (3.44)

where again p = p′−q and we use eq. (3.24) on both ends. It is possible to extract these nucleon
form factors through a suitable ratio of nucleon three-point functions and two-point functions:

RP
J (p′, t ;q,τ) ≡

C
P j ,J0
3pt (p′, t ;q,τ)

C N
2pt (p′, t )

√√√√C N
2pt (p′,τ) C N

2pt (p′, t ) C N
2pt (p, t −τ)

C N
2pt (p,τ) C N

2pt (p, t ) C N
2pt (p′, t −τ)

. (3.45)

The idea behind these operations is that after the spectral decomposition, the nucleon ground
state contribution to the above ratio is time-independent, and the overlap factors cancel out. In
particular, in the limit 0 ≪ τ≪ t , the expression for the ratio in eq. (3.45) reads

RP
J (p′, t ;q,τ) =

√√√√ E ′
N EN

(E ′
N +mN )(EN +mN )

1

4E ′
N EN

Tr
{
P(−i /p

′+mN )F F [J ](−i /p +mN )
}+ . . .

(3.46)
After computing the traces of Dirac matrices which depend on the polarization projectorsP and
on the currents through F F [J ] (see e.g. eqs. (3.42)-(3.43)), it is possible to extract the nucleon
form factors from a fit to the ground state. In the Appendix, there are results of traces like in eq.
(3.46) using the pseudoscalar, vector and axial currents, see eqs. (A.37)-(A.42).

In particular, if we fix the momentum at the sink to zero (p′ = 0), so that E ′
N = mN , p = −q,

the ratios in eq. (3.46) for some specific choice of current and polarization projector are

RP j

P (0, t ;q,τ) = q j

p
2EN (EN +mN )

GP (Q2)+ . . . (3.47)

RP j

A j (0, t ;q,τ) = ip
2EN (EN +mN )

[
(EN +mN )G A(Q2)− (q j )2

2mN
GP̃ (Q2)

]
+ . . . (3.48)

RP j

A j (0, t ;q⊥ j ,τ) = i (EN +mN )p
2EN (EN +mN )

G A(Q2)+ . . . (3.49)

RP j

A 4 (0, t ;q,τ) = q j

p
2EN (EN +mN )

[
G A(Q2)+ (mN −EN )

2mN
GP̃ (Q2)

]
+ . . . (3.50)

In the kinematic case with q such that q j = 0, where j is the direction of the polarised spin, the

ground state contribution to the ratio RP j

A j (0, t ;q,τ), will be proportional only to G A(Q2), apart
from some kinematic factors, and this will make its extraction technically easier. This specific
ratio is expressed in eq. (3.49) and by q⊥ j , I intend that q j = 0.
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Analogously, one can fix the momentum at the source to zero (p = 0), vary p′ and obtain
similar expressions as eqs. (3.47)-(3.50). However, the three-point functions are more expens-
ive to compute this way with the (sink) sequential method, as one has to solve the sequential
propagator for each momentum and polarization (see eq. (2.77)) and in lattice QCD simulations
the computation of the propagators is typically the most expensive part (see Sec. 2.7).

Eq. (3.46) is known in the literature by the name of "ratio method", and it is largely applied
for nucleon matrix elements with pseudoscalar, axial-vector and vector currents (see [30, 58])
and even with different actions (see [108]). However, the nucleon matrix elements and thus the
form factors can also be extracted from a direct fit to the three- and two-point functions ([98]).

3.5 The forward limit: the axial charge g A

The special case where the momentum carried by the current is zero (q = 0) is the forward limit.
For the momentum conservation p′ = p and the particles can be in the kinematic configuration
where they are all at rest (p′ = p = q = 0). The only non-trivial ratio among eqs. (3.47)-(3.50) is

Im
{

RP j

A j (0, t ;0,τ)
}
≈G A(Q2 = 0) = g̃ A , (3.51)

where g̃ A is the unrenormalised axial charge. In order to obtain the renormalised axial charge,
we must multiply it by the axial renormalization constant ZA and consider the improvement
coefficients as explained in [135, 136, 56, 102], but here we neglect the mass terms and compute

g A = ZA(β) g̃ A . (3.52)

In Fig. 3.5, I show results on a single ensemble (A653, see App. F for details) of the ratio

R0 := ZA Im
{

RP j

A j (0, t ;0,τ)
}

(3.53)

with ZA(β= 3.34) = 0.7456(10)stat(57)syst, which was computed in [31]. This ratio is presen-
ted at different source-sink separations (7a ≤ t ≤ 14a) with local nucleon operators and at three
source sink separations (12a ≤ t ≤ 14a) with smeared nucleon operators.

In principle, the ratio RP j

A j (0, t ;0,τ) should be time-independent, see eq. (3.51). However,
as you can see from Fig. 3.5 the data points with local operators have a clear time dependence
and a symmetry with respect to the middle point t/2, which is the reason why they are shifted
by −t/2 along the x-axis. The contamination from excited states is more significant when the
current is located closer to the source (τ= 0) or to the sink (τ= t ), and for this reason the axial
charge g A is extracted at the middle-point τ = t/2. In the other case, when we use smeared
nucleon operators, the ratio is flat, and this suggests that it is dominated by the nucleon ground
state already with a source-sink separation of t = 11a ≈ 1.1 fm. In the first case with local nuc-
leon operators, the larger the source-sink separation, the closer the extracted value of g A to the
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Figure 3.5:
In this figure, I show the ratio R0 in eq. (3.53) at several source-sink separations 7a ≤ t ≤ 14a
(a ≈ 0.1 fm) with local nucleon operators and three source-sink separations 12a ≤ t ≤ 14a with
smeared nucleon operators, see the two legends. The ratios with smeared nucleon operators
are slightly shifted horizontally to improve their visibility. The two colours distinguish the two
smearing levels, while the different symbols represent different source sink separations. The
green band represents the estimate for the axial charge extracted using the smeared nucleon
operators.

other case with smeared nucleon operators. Unfortunately, at large source-sink separations, the
signal-to-noise ratio gets worse, and it prevents one from extracting the axial charge with less
contamination from excited states. One would need more statistics to tackle this problem or a
different approach, like for example, the summation method ([111, 57, 28, 91, 62, 1, 94, 45, 69]).
We extract g A by taking the average over the largest three source-sink separations in Fig. 3.5 and
we find

g A = 1.156±0.007 . (3.54)

This value of g A is at finite-volume, unphysical quark masses and finite lattice spacing and will
be used hereafter as a reference for other channels. In order to extrapolate to the continuum
limit and physical point, one would need more ensembles with different V , κ f and β. Only at
that point, after a careful extrapolation with a ChPT ansatz, the lattice results for the axial charge
can be compared to experimental results. This extrapolation in a, mπ and mπL is explained, for
instance, in Chap. 10 of the FLAG review ([22]), where in Fig. 43 a comparison between lattice
and experimental results for the axial charge is shown. This quantity is measured more precisely
in the neutron beta decay experiments, see Sec. 1.2 in the introduction.
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3.6 Nucleon form factors at Q2 ̸= 0

At non-zero momentum transfer, the nucleon form factors are extracted from the ratios in
eqs. (3.47)-(3.50). Practically, we fix the nucleon momentum at the sink to zero and vary the
momentum carried by the current. In Fig. 3.6, I show results of these ratios at different source-
sink separations that are constructed with smeared nucleon operators and local currents. The
latter are O (a)-improved, i.e., A

µ

(i mp) = A µ+ cA∂
µP , where the O (a)-improvement coefficient

cA ≈ −0.05571 is obtained with the interpolation formula in eq. (4.1), following [52]. In each
plot, the kinematic configuration is the same: p′ = 0 and the current momentum is the lowest
non-zero lattice unit momentum, i.e., q = ê j = 2π

L n̂ j , where n̂ j is the unit vector along the dir-
ection j . Since there is momentum conservation, the nucleon at the source has momentum
p =−q =−ê j . There is no evidence of a plateau in each of these plots, but while the data points
with J = P ,A j are flattening at large source-sink separations, see the first row and second
row in Fig. 3.6, respectively, the situation with a temporal axial current is more dramatic, see
the lowermost row of Fig. 3.6. For this channel, there is no evidence of nucleon ground state
dominance, and it seems that this channel is more affected by excited state contamination.

The nucleon form factors extracted naively from eqs. (3.47), (3.48) and (3.50), i.e. without
taking into account any excited state for the fit, are unreliable. In the literature, lattice groups
tried multistate fits to take into account excited states contamination. In particular, one might
assume that the same excited states that appear in the nucleon three-point functions are also
created by the same nucleon operators in the nucleon two-point functions. In this traditional
way, it is possible to either extract the excited state energy from a fit to the nucleon two-point
functions and use it for the extraction of the form factors or perform a simultaneous fit to both
correlation functions and extract all the unknown parameters.

However, the nucleon form factors that are extracted with this multistate fit in the traditional
way, do not satisfy the so-called PCAC and PPD relations, which are discussed in more detail in
Sec. 3.8. Such a failure has been observed in all lattice calculations that take the first energy gaps
from the nucleon two-point functions and use them for the fit to the three-point functions, see
[28, 18, 20, 19, 59, 96]. However, it is clear from Fig. 8 of [27] and Fig. 3 of [99] that the first
energy gaps differ. First, in the nucleon two-point functions, the overlap factor that comes with
the production of Nπ states - or any general excited state - is modulus squared, i.e. ∝ |ZNπ|2,
see eq. (3.22) and if ZNπ/ZN ∝ 1/10, then |ZNπ/ZN |2 ∝ 1/100. While in the nucleon three-point
functions, it is possible that the excited states are produced either at the source or at the sink,
and these terms are proportional to ZNπ. Second, in the nucleon three-point functions there is
the current matrix element

〈
N ′∣∣J |N〉, see (3.38), which could enhance some other states N ′, N

with the same quantum numbers as the nucleon, for instance the Nπ or Nππ states. Therefore,
it is possible that a state that couples strongly to the three-point functions is extremely hard to
detect in the two-point functions data.
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Figure 3.6:
In this figure, I present the standard ratios constructed in eqs. (3.47), (3.48), and (3.50)
in the kinematic configuration where the nucleon at the sink is at rest (p′ = 0), while
the current carries the momentum q = ê j , so that the nucleon at the source is moving
with momentum p =−q =−ê j . In all these channels, the data points are not constant
with time. However, while the data points with J = P seem to flatten, the channel
A 4 does not show any sign of nucleon ground state dominance.
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3.7 Parametrization of nucleon form factors

Before discussing the PCAC relation, let me first discuss some possible Q2 parametrization of
the nucleon form factors. After a reliable extraction of the nucleon form factors at different
momentum transfer (Q2) and the extrapolation to the physical point, it is possible to model the
behaviour of the form factors with respect to Q2. In some analyses, the model parametrization
is also used at finite volume, see [27].

3.7.1 Dipole model

A standard parametrization that is adopted for the axial form factors is the dipole ansatz:

G A(Q2) = g A[
1− (Q2/M 2

A)
]2 , (3.55)

which corresponds to an exponentially decreasing spatial charge distribution (in position space)
with an axial mass MA. This parameter is computed by expanding eq. (3.55),

G A(Q2) = g A
(
1−2(Q2/M 2

A)+ . . .
) −→ M 2

A = −2g A

G ′
A(Q2 = 0 GeV2)

, r 2
A = 12

M 2
A

, (3.56)

with g A =G A(Q2 = 0) and G ′
A(Q2 = 0 GeV2) = dG A

dQ2 (Q2 = 0 GeV2).
This parametrization is chosen for the cross section of (anti)neutrino-nucleon scattering

in the neutrino oscillation experiments ([9, 8, 10, 11, 12]), and they rely on the precise exper-
imental determination of the axial charge. However, apart from recovering the large Q2 limit
analogously to the electromagnetic case (see [60] for the axial channel and [16, 105] for the elec-
tromagnetic form factors in perturbative QCD), no one guarantees that this model assumption
is correct. The advantage of lattice QCD is that the nucleon form factors are extracted directly
from the ratios and do not rely on a model-dependent parametrization.

3.7.2 z-expansion

An attempt at a model-independent parametrization that relies only on the analyticity of the
form factors is the z-expansion,

G A(Q2) =
N∑

n=0
a A

n z(Q2)n . (3.57)

The form factors are written in powers of a new variable z, that is

z(Q2) =
√

tcut +Q2 −p
tcut − t0√

tcut +Q2 +p
tcut − t0

, (3.58)
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which maps the physical region −Q2
max ≤ Q2 < 0 into a region of a unit circle |z| ≤ 1. In the

formula of eq. (3.57), t0 is a free parameter that can be chosen to optimise the expansion, while
tcut depends on the physical system. For the nucleon axial form factors, tcut = (3mπ)2 as it takes
into account the three pion production threshold. This model-independent parametrization is
used to determine the mass parameter and also the form factors from (anti)neutrino-nucleon
scattering experiments ([43, 44]) and it is also largely used for the electromagnetic form factors
using electron-nucleon scattering data ([93, 72, 104]) and in semileptonic decays ([48]).

3.8 PCAC relation and the PCAC puzzle

A useful check for extracting the nucleon form factors comes from the Partially Conserved Axial
Current (PCAC) relation. The QCD action with N f massless flavours is symmetric under chiral
rotations SU (N f )A

2 of the quark fields q = (u,d , s, ...), i.e.

q(x)
SU (N f )A−−−−−−→ q ′(x) = e iαaγ

5ta q(x) , (3.59)

q̄(x)
SU (N f )A−−−−−−→ q̄ ′(x) = q̄(x)e iαaγ

5ta , (3.60)

but the state with the lowest energy, the vacuum, is not. The chiral symmetry is thus spon-
taneously broken or hidden. Nambu pointed out this hidden symmetry in [129] to explain the
lightness of the pions, which arise as (pseudo) Goldstone bosons of the two-flavour QCD. In
1968, Gell-Mann Oakes and Renner showed in [83] that the square of the Nambu-Goldstone
bosons mass is proportional to mu +md :

m2
π =−2

(mu +md )

f 2
π

〈ψ̄ψ〉 , (3.61)

where fπ ≈ 130 MeV and 〈ψ̄ψ〉 = 〈ūu + d̄d〉 is the quark condensate, which serves as a pseudo
order parameter for this spontaneous chiral symmetry breaking.

Lattice QCD simulations have shown that the quark condensate is different from zero even
in the chiral limit, where the quarks are massless, proving that chiral symmetry is spontaneously
broken, see for instance [84].

However, the quark mass term in the QCD action breaks the axial symmetry explicitly, and
this leads to a non-conservation of the axial current Aµ = q̄γµγ5q , which in Minkowski space-
time reads

∂µA
µ = 2i mℓ P , (3.62)

where mℓ = mu = md in the isospin symmetry limit. Therefore, the divergence of the axial
current is related to the pseudoscalar current P = q̄γ5q and to the light quark mass. In the
chiral limit (mu ,md → 0), the chiral symmetry is restored, and the axial current is conserved.

2ta are the N 2
f −1 generators of SU (N f ).
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If we consider eq. (3.62) applied to nucleon three-point functions, we have a PCAC relation
at the level of the correlators like:

mℓ =
∂µCP,A µ

3pt (p′, t ;q,τ)

2iCP,P
3pt (p′, t ;q,τ)

. (3.63)

If we apply eq. (3.62) to the axial and pseudoscalar nucleon matrix elements and we employ
their Lorentz decomposition (cf. eqs. (3.40)-(3.41)), we obtain

mNG A(Q2) = mℓGP (Q2)+ Q2

4mN
GP̃ (Q2) , (3.64)

which is a PCAC relation that the form factors must fulfil. On a finite volume, these relations
in eqs. (3.63)-(3.64) must be fulfilled up to O (a2) discretization errors if we adopted a Wilson-
Clover action with O (a)-improvement.

It is time to discuss the so-called PCAC puzzle. It is related to the fact that analyses carried
out with the ratio method (see eqs. (3.46)-(3.50)) lead to inconsistent checks for the PCAC rela-
tion at the level of the correlators (see eq. (3.63)) and for the form factors (see eq. (3.64)). In par-
ticular, the correlators satisfy the PCAC relation, but the form factors extracted from eqs. (3.47)-
(3.50) do violate it, when one assumes that the first excited states in the nucleon three-point
functions are the same as in the nucleon two-point functions. Indeed, from eq. (3.64) one can
construct the ratio

rPCAC =
mℓGP (Q2)+ Q2

4mN
GP̃ (Q2)

mNG A(Q2)
(3.65)

and check whether rPCAC = 1+O (a2), accordingly. It is also possible to check the pion-pole
dominance (PPD) hypothesis, according to which the induced-pseudoscalar form factor GP̃
can be written in terms of the axial form factor with the following expression:

GP̃ (Q2) = 4m2
NG A(Q2)

m2
π+Q2

−→ rPPD = GP̃ (Q2)(m2
π+Q2)

4m2
NG A(Q2)

, (3.66)

and the ratio rPPD = 1+O (a2) if PPD were to hold.
Unfortunately, neither PCAC nor PPD holds with the traditional fit ansatz, even including

some excited states in the fit and with all the (known) systematics under control. In [30], our
group investigated the perpendicular components of the axial and pseudoscalar currents. The
result is that the form factors satisfy the PCAC, but still violate PPD.

Many analyses ([88, 139, 99, 97, 30]) reported this problem of ES contamination in different
channels (vector, pseudoscalar and axial).

In particular, in [99], the authors employ a direct fit to the three-point functions using the
traditional ansatz with up to three excited states in the fit, and the problem still persists. The
excited-state contamination leads to unreliable extraction of the nucleon form factors and there-
fore of MA and r A. This problem has been solved only recently and will be discussed in the next
section.
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3.9 Contamination from Nπn states and ChPT prediction

The nucleon form factors extracted with a traditional ansatz violate the PCAC and PPD rela-
tions. Other tools to investigate QCD at low energy are effective field theories that do not rely
on an expansion with respect to the strong coupling [142, 63, 54]. In particular, chiral perturba-
tion theory (ChPT) provides very useful information in this context; for example it predicts the
above-mentioned PPD hypothesis, see [65, 64, 80, 81, 106, 42].

Some ChPT studies focus on the contamination of particular multi-particle states in two-
and three-point functions: the Nπ and Nππ states.

It is relevant to mention that Nπ and Nππ states may have similar energies, which depend
on mπ and V , see Fig. 2 in [87]. A proton at rest has definite positive parity, and while Nπ must
be in a P-wave with non-zero relative momentum for the nucleon and pion, the particles in Nππ

states can be all at rest in an S-wave. Indeed, the total parity P of the Nπ and Nππ states must
be equal to the one of the nucleon at rest3 PN = +1. Therefore, since parity is a multiplicative
quantum number and Pπ =−1,

PNπ = (−1)L PN Pπ = (−1)L+1 −→ L = 1, ... (P-wave, ...) , (3.67)

PNππ = (−1)L PN (Pπ)2 = (−1)L −→ L = 0, ... (S-wave, ...) , (3.68)

where L is the total angular momentum of the system. Therefore, if we neglect higher-order
waves, the contamination to the nucleon with positive parity at rest is due to N (p)π(−p) in P-
wave states and N (0)π(0)π(0) in S-wave states.

The contamination of these states in the nucleon two-point functions is rather small also
at sufficiently small quark masses and large volumes, and while Nπ states contribute to a few
percent of the effective mass ([33]), the impact of Nππ states is estimated to be at the per mille
level with a source-sink separation of t = 1.2 fm ([35]). Leading order ChPT predictions for the
contribution of Nπ states to the axial charge are also computed ([138, 34]), and they result in
a 5%− 10% overestimation of the axial charge at a source-sink separation of 1.5 fm. But it is
clear from Fig. 3.5 that the curvature is pointing downwards; thus the dominant contamination
or the cumulative sum of all the contaminations should be overall negative. In [90], a possible
sign for these downwards curvature could be explained by nucleon excitations like the Roper
resonance.

The problem of excited state contamination becomes evident for non-zero momentum trans-
fer. Indeed, the nucleon form factors violate eq. (3.64) and eq. (3.66), when they are extracted
with a traditional ansatz, i.e. the ratio method. Even the inclusion of multiparticle states in the
fit, whose energy is extracted from the nucleon two-point functions, does not help.

With a state-of-the-art analysis based on ChPT, our group extracted form factors that satisfy
the PCAC and PPD relations, see [27, 146]. The idea is to compute the contribution of Nπ states

3In Sec. 3.7, we explain that we fix the momentum of the nucleon at the sink to zero and vary q. Therefore, Nπ

or Nππ states, that are produced at the sink, must have total momentum 0 and positive parity like the nucleon.
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Figure 3.7:
In this plot, the PCAC ratio in eq. (3.65) is shown at finite volumes and with different pion masses
but the lattice spacing is set to a ≈ 0.064 fm. It is clear that while the circles agree within the er-
ror with the expected value, the crosses do not, and the smaller Q2+m2

π is, the more significant
the discrepancy. The form factors for the crossed symbols were computed using the traditional
ansatz, while the circles are computed with a novel method based on ChPT that takes into ac-
count Nπ states. For further details, see [27].

to the nucleon three-point functions, that are produced either at the source or at the sink and
use this new parametrization for the extraction of the form factors.

These corrections are computed at LO-ChPT, and for the axial and pseudoscalar currents,
they read respectively

δP
i ,A µ

LO−ChPT(p′, t ;q,τ) = Zp′ Zp

4E ′
N EN

[
e−EN t e−Eπ(t−τ) E ′

N

Eπ
rµ+(c ′p i +d ′q i )+e−E ′

N t e−EπτEN

Eπ
rµ−(cp ′i +d q i )

]
,

(3.69)

δP
i ,P

LO−ChPT(p′, t ;q,τ) = Zp′ Zp

4E ′
N EN

m2
π

2mℓ

[
e−EN t e−Eπ(t−τ) E ′

N

Eπ
(c ′p i +d ′q i )−e−E ′

N t e−EπτEN

Eπ
(cp ′i +d q i )

]
(3.70)

with r± = (Eπ,±q), and c,c ′,d ,d ′ are parameters defined in [27]. In particular, for the specific
choice of kinematics that we standardly use (p′ = 0), the nucleon-pion states at the sink must
have total momentum zero, while at the source, they must have total momentum p =−q.

As a comparison, I show in Fig. 3.7 the plot that is presented in [27] of the PCAC ratio using
the conventional ansatz and the ChPT based parametrization.
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ChPT is an effective field theory that is valid at small pseudoscalar meson masses and mo-
menta. In this regime, the degrees of freedom are the pion and nucleon fields, and it shares the
global symmetries of QCD, where the dynamic breaking of chiral symmetry is built in.

In [100], the authors address the problem with a different approach and are able to extract
form factors that satisfy the PCAC and PPD relation. They extract the energy of the excited
state using the current A 4 = q̄γ4γ5q in the nucleon three-point function and use the standard
multi-particle fit. They identify these excited states with the Nπ states through the dispersion
relations, and they also claim that these states are the main responsible for the contamination.

3.10 Contamination of Nπ in non-standard channels

Contamination from Nπ states can be empirically observed in non-standard channels, even
at q = 0 (forward limit). Usually, the nucleon momentum at the sink is fixed to zero, but it is
possible to project the nucleon operator at the sink to non-zero momentum. As an exploratory
study, we consider a moving frame at the sink with the minimum non-vanishing lattice mo-
mentum p′ = êi = 2π

L n̂i , where n̂i is the unit vector along the direction i as in Sec. 3.6, but q = 0,
such that |p′| = |p| ≈ 526 MeV.

Since p′ = p, the standard ratio method defined in eq. (3.45) reduces to

RP
J (p′, t ;0,τ) ≡

C
P j ,J0
3pt (p′, t ;0,τ)

C N
2pt (p′, t )

(3.71)

and we investigate the following ratios:

R1 := ZA Im
{

R
P+

i
Ai

(p′, t ;q = 0,τ)
}
= ZA g̃ A + ... (3.72)

R2 :=
(
−ZA

E

p i

)
Re

{
R
P+

i
A4

(p′, t ;q = 0,τ)
}
= ZA g̃ A + ... (3.73)

On the right-hand side, there is the nucleon ground state contribution to the specific ra-
tios, and the ellipses encode all the terms with the same quantum numbers as the nucleon
but higher energy. Notice that with this particular momentum configuration and specific spin-
parity projectors, it is possible to extract the axial charge from the currents Ai and A4, see
eqs. (3.72)-(3.73). Since we study the kinematic region with q = 0, the quark mass independ-
ent O (a)-improvement term proportional to cA is vanishing.
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Figure 3.8:
The renormalized ratios R1 and R2 are plotted at different source-sink separations t . These
ratios should approach the renormalized axial charge with t ≫ τ≫ 0, see eqs. (3.72)-(3.73) The
two different colours distinguish the two ratios, see the legend on the right, while the symbols
represent different source-sink separations. The green band is the value of g A extracted from
the rest frame, see Fig. 3.5.

In Fig. 3.8, we compare the renormalized axial charge extracted from the two ratios R1 and
R2 by using smeared nucleon operators. To increase the statistics, we average the ratios R1 and
R2 over all the six different directions: p′ = ±êx , ±êy , ±êz . The resulting g A from R1 in Fig. 3.8
is consistent with the determination of g A through R0, see Fig. 3.5. However, it is clear from
Fig. 3.8 that the axial charge extracted through the ratio R2 with A4 is ∼ 10%−25% smaller than
with Ai with 0.6 fm ≤ t ≤ 1.0 fm, which is a relevant discrepancy. This was also observed in
another study with a different Dirac operator and ensemble, see [107].

Following ref. [27] and eq. (3.69), there is no correction to consider at LO-ChPT for the chan-
nel with Az , while there is a non-zero LO-ChPT correction to A4 due to Nπ states produced
either at the source or at the sink. This correction to the standard three-point function is due to
N (êz)π(0) and it reads

δ
Pi ,A4
LO−ChPT(p′, t ;0,τ) =

p
Z ′

2E

p
Z

2E
cE p i e−(

E+mπ
2

)
t cosh

(
mπ

(
τ− t

2

))
. (3.74)
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Figure 3.9:
The data points represent the ratio R3 at different source-sink separations t , while the green
band at 0 is the nucleon ground state contribution to this ratio.

As an exploratory study, we consider a pseudoscalar current and a moving frame at the sink
with p′ = êi and q = 0. The ratio that we construct is thus

R3 :=
(

E

p i

)
Re

{
R
P+

i
P

(p′, t ;q = 0,τ)
}
= 0+ ... (3.75)

Notice that the nucleon ground state contribution to the ratio R3 is expected to be zero.
In Fig. 3.9, we show a clear non-zero signal for different source-sink separations and that it is
antisymmetric with respect to t/2. Therefore, this signal is clearly due to excited or/and multi-
particle state contamination.

Again, LO-ChPT predicts a non-zero contribution due to Nπ states produced either at the
source or at the sink, see eq. (3.70). This correction is coming again from N (êz)π(0) and it gives:

δP
i ,P

LO−ChPT(p′, t ;0,τ) =
p

Z ′

2E

p
Z

2E
cE p ′i e−(

E+mπ
2

)
t sinh

(
mπ

(
τ− t

2

))
. (3.76)

In the next chapter, I will introduce a new approach to tackle this problem of Nπ states on
the lattice by considering nucleon and nucleon-pion operators at the sink. This novel approach
allows the computation of new three-point functions and matrix elements, which can be util-
ised to remove the Nπ contamination directly. I will discuss more this in the next chapter.
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CHAPTER

FOUR

MULTIPARTICLE INTERPOLATOR APPROACH

In this chapter, a novel approach will directly address the contamination of Nπ states in the
nucleon three-point functions, see [36]. The idea is to consider a nucleon-pion interpolating
operator at the sink and a nucleon interpolator at the source with an intermediate current.

In section 1, I will discuss how to construct a nucleon-pion interpolating operator con-
sistently to have the same quantum numbers as the nucleon. In section 2, I show the meth-
ods I employ to compute these new three-point functions, and in section 3, I discuss how to
relate nucleon-pion two-point functions to the nucleon-to-nucleon-pion three-point correla-
tion functions. In section 4, I derive some important relations for these two- and three-point
functions through the Wigner-Eckart’s theorem. In the final sections, I discuss how to extract
〈Nπ|J |N〉 and 〈N |J |N〉 matrix elements.

4.1 Nucleon to Nucleon-pion three-point functions

We have learned that the pion production has to be taken into account on the lattice to ex-
tract the form factors more reliably. The reason is that in the nucleon three-point functions
〈ON (p′, t ) J (q,τ) ŌN (p,0)〉, the Nπ states could be created both at the source and at the sink.
In this work, I consider the isovector current J− at an intermediate spacetime z = (z,τ), which
is defined as J−(z) = d̄(z)Γu(z), and the standard nucleon three-point function in momentum
space reads

〈On(p′, t ) J−(q,τ) Ōp (p,0)〉 . (4.1)

The Nπ states that contaminate this correlation function at the source must have the same
isospin quantum numbers as the proton (I = 1/2, Iz = +1/2) and total momentum p, while at
the sink, the Nπ states must have the total momentum p′ and the same quantum numbers as
the neutron (I = 1/2, Iz =−1/2, S = 1/2).
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The novel approach that I used is to compute the three-point functions

〈ONπ(p′, t ) J−(q,τ) ŌN (pN ,0)〉 , (4.2)

where I consider the nucleon interpolating operator at the source and a nucleon-pion inter-
polating operator at the sink so that ONπ(p′, t ) = ON (p′

N , t ) Oπ(p′
π, t ). At the sink, the nucleon

and pion operators lie on the same timeslice t , but they generally have different momenta with
p′ = p′

N +p′
π. In the computation of standard nucleon three-point functions, the nucleon oper-

ator at the sink has a fixed momentum p′ = 0. To make a comparison with the standard correl-
ation functions, I project the Nπ interpolating operator at the sink such that p′ = 0 (rest frame)
and p′ = q (moving frame). This multiparticle operator at the sink must be constructed to have
the same quantum numbers as the neutron, as I have already mentioned above.

The isospin projection is carried out with the standard addition of isospin quantum num-
bers (I = 1/2 corresponds to the nucleons and I = 1 to pions), while the projection onto spin1

1/2 is performed using the group theory projection tool, which is summarised in App. C.
The isospin projected nucleon-pion operator OI ,Iz

Nπ is

O1/2, −1/2
Nπ =+ 1p

3
On Oπ0 −

√
2

3
Op Oπ− , (4.3)

where Op and On are given in eq. (3.13) respectively with q = u,d , while Oπ− = ūγ5d as in
eq. (3.5) and Oπ0 = 1p

2
(ūγ5u − d̄γ5d). For more details on the isospin projection, I send the

reader to App. B. On the lattice, the corresponding irreducible representation of spin 1/2 particles
(and more) is G1. Further details on the lattice group theory are in the App. C.

The combination of nucleon and pion with relative unit momenta and total momentum
zero (rest frame) that produces a nucleon-pion system with spin 1/2 aligned upwards along the
z direction is

(ONπ)G1
ms=↑(p′ = 0) =+ON↓(−ex) Oπ(ex)−ON↓(ex) Oπ(−ex) +

− i ON↓(−ey) Oπ(ey)+ i ON↓(ey) Oπ(−ey) +
+ON↑(−ez) Oπ(ez)−ON↑(ez) Oπ(−ez) , (4.4)

(ONπ)G1
ms=↓(p′ = 0) =+ON↑(−ex) Oπ(ex)−ON↑(ex) Oπ(−ex) +

+ i ON↑(−ey) Oπ(ey)− i ON↑(ey) Oπ(−ey) +
−ON↓(−ez) Oπ(ez)+ON↓(ez) Oπ(−ez) . (4.5)

1When we consider a system with non-zero momentum, we should refer to helicity for the general case. How-
ever, we always project the spin along the direction of the momentum, which is equivalent to the spin
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In a moving frame like e.g. p′ = nêz with n ∈N, it is possible to construct two operators for each
helicity component ms with the same quantum numbers as the nucleon. These are

(ONπ)G1,1
ms=↑(p′) = ON ,ms=↑(p′) Oπ(0) , (ONπ)G1,1

ms=↓(p′) =−ON ,ms=↓(p′) Oπ(0) , (4.6)

(ONπ)G1,2
ms=↑(p′) = ON ,ms=↑(0) Oπ(p′) , (ONπ)G1,2

ms=↓(p′) =−ON ,ms=↓(0) Oπ(p′) . (4.7)

The vectors ei correspond to the unit vectors

êx = 2π

L
(1,0,0) , êy = 2π

L
(0,1,0) , êz = 2π

L
(0,0,1) (4.8)

and the projection of ON onto ms =↑ / ↓ is made with the spin-parity projectors defined in
eq. (3.18). For example, identifying 3 as the z-direction, the helicity components of the nucleon
operators are

ON ,↑ =P+3
↑ ON , (4.9)

ON ,↓ =P+3
↓ ON . (4.10)

In more detail, the nucleon-pion operators (ONπ)G1,1
ms=↑/↓(p′) are relevant for the Nπ contam-

ination in the forward-limit (q = 0), see Figs. 3.8,3.9; while the operators (ONπ)G1,2
ms=↑/↓(p′) are

relevant for the Nπ contamination at non-vanishing momentum transfer. This will be clear
after this chapter, but it was already discussed in [27].

Having constructed the nucleon-pion operators, it is clear from eq. (4.3) that the three-point
correlation functions to compute are

〈 On(p′, t ) J−(q,τ) Ōp (p,0) 〉 , (4.11)

〈 Op (p′
N , t ) Oπ−(p′

π, t ) J−(q,τ) Ōp (p,0) 〉 , (4.12)

〈 On(p′
N , t ) Oπ0 (p′

π, t ) J−(q,τ) Ōp (p,0) 〉 , (4.13)

and the isospin projection of eq. (4.3) applied to the correlators gives:

〈 O1/2,−1/2
Nπ (p′, t ) J−(q,τ) Ōp (p,0) 〉 =+ 1p

3
〈 On(p′

N , t ) Oπ0 (p′
π, t ) J−(q,τ) Ōp (p,0) 〉+

−
√

2

3
〈 Op (p′

N , t ) Oπ−(p′
π, t ) J−(q,τ) Ōp (p,0) 〉 . (4.14)

The next step, discussed in the next section, is to perform the Wick contractions of these inter-
polating operators.
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4.2 Diagrams and their computation

The correlations functions to compute are

C
pJ→pπ−
3pt (p′

p ,p′
π, t ;q,τ) = 〈Op,γ(p′

N , t ) Oπ−(p′
π, t ) J−(q,τ) Ōp,γ̄(p,0)〉 , (4.15)

C
pJ→nπ0

3pt (p′
n ,p′

π, t ;q,τ) = 〈On,γ(p′
N , t ) Oπ0 (p′

π, t ) J−(q,τ) Ōp,γ̄(p,0)〉 , (4.16)

where the momentum projection for the operator Oi (p) is performed via Fourier transforma-
tion. The number of Wick contractions of these processes is much larger than the one for the
standard nucleon three-point functions. It increases factorially with the number of pairs of u-
quarks and d-quarks. For the process p +J− → pπ−, there are 2 pairs of u-quarks and 3 pairs
of d-quarks. Therefore the number of permutations are 2!×3! = 12.

These contractions can be split into diagrams with 4 different topologies: A, B, C and D,
shown in Fig. 4.1.

Thus, the spacetime correlation function for this process can be written like

C
pJ→pπ−
3pt (x, y, z) =C

pJ→pπ−
3pt ,A (x, y, z)+C

pJ→pπ−
3pt ,B (x, y, z)+C

pJ→pπ−
3pt ,C (x, y, z)+C

pJ→pπ−
3pt ,D (x, y, z) .

(4.17)
The expressions of the correlation functions for each diagram are written in App. D. The topo-
logies A, B and C are connected because the correlation functions involve the computation of
a single trace. The topology D, which can stand for "Disconnected", is made of two pieces: the
nucleon term and the pion-current term.

The expression of the nucleon term corresponds essentially to the same as in the nucleon
two-point functions (compare eq. (D.11) to eq. (3.20)), which can be computed on every gauge
configuration with a single point-to-all propagator. Instead, the pion-to-current correlation
function is made of two all-to-all propagators, and it is computed with the one-end-trick, see
Sec. 2.9.

Like the standard nucleon three-point function, the correlation functions for the diagrams
with topologies A, B and C can be expressed in terms of sequential propagators. In particular

C
pJ→pπ−
3pt ,A (p′

N ,p′
π, t ;q,τ) =∑

z
e i q·z Tr

{(
γ5 S†

2(z,0)γ5) Γ S1(z,0)
}

, (4.18)

where S1(z,0) is the (meson) sequential propagator and S2(z,0) is the nucleon sequential propag-
ator because it is equivalent to the one for p + Jd̄d → p. You can visualise it in Fig. 4.2 and see
the App. E for more details.

The diagrams with topology B are computed in the following way:

C
pJ→pπ−
3pt ,B (p′

N ,p′
π, t ;q,τ) =∑

z
e i q·z Tr

{(
γ5 S†

2(z,0)γ5) ΓU (z,0)
}

, (4.19)

where U (z,0) is the u-quark propagator from 0 to z in Fig. 4.1 and S2(z,0) is a sequential propag-
ator, computed using the pion sequential propagator.

55



Chapter 4 – Multiparticle interpolator approach Lorenzo Barca

u(x)

u(x)

d(x)

p

d̄(z)
u(z)
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ū(0)
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Figure 4.1:
This schematic plot represents the topologies A, B , C and D in the process p +J− → p +π−.
There are two all-to-all propagators, which are marked with red lines. Notice that all the propag-
ators in the diagrams with topologies A, B , C are sequentially connected, while in the D-like
they are disconnected.

The diagrams with topology C are computed this way

C
pJ→pπ−
3pt ,C (p′

N ,p′
π, t ;q,τ) =∑

z
e i q·z Tr

{(
γ5 S†

2(z,0)γ5) ΓD(z,0)
}

, (4.20)

where D(z,0) is the d-quark propagator from 0 to z in Fig. 4.1 and S2(z,0) is a sequential propag-
ator, which is computed using Sp→p

ūu , that is the nucleon sequential propagator for the process
p +Ju → p. For the other process p +J− → nπ0, there are in total 2!×2!×3! = 24 Wick con-
tractions, which reduce to 16 in the isospin symmetry limit, where the u-quark and the d-quark
propagators are equivalent.

These contractions can be split into the diagrams with topologies A, B and C, as shown in
Fig. 4.2. For the standard process p +J− → n, there are only 4 different Wick contractions.
Important information for future reference is that the disconnected diagram (D − l i ke) plays
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Figure 4.2:
These plots represent the topologies involved in the process p +J− → n +π0. Like in the other
process, there are two all-to-all propagators for each diagram, which are marked with red lines.
In this case, there is no disconnected piece, and therefore, they are all computed with the se-
quential method. Notice that for the diagram B , both u- and d- quark pieces of π0 contribute.

an important role for the GEVP analysis because it is the term that has the largest signal and
that is responsible for the contamination in the standard three-point functions. A closer look at
the lower right sketch in Fig. 4.1 makes it clear that in the non-interacting case, it has the time-
dependence e−EN t e−Eπ(t−τ), which was predicted by ChPT at leading order, see eqs. (2.44)-(2.45)
in [27].

Furthermore, this diagram inherits the signal from the nucleon two-point functions and the
meson-to-current two-point functions. Both terms are non-vanishing when the operators carry
the same momentum. In the case of the meson-to-current two-point functions 〈Oπ(p′

π)J−(q)〉,
the leading term in the spectral decomposition is proportional to the pion matrix elements〈
π(p′

π)
∣∣J−(q) |Ω〉, which for J =A µ read〈

π(p′
π)

∣∣A µ(q) |Ω〉 = i fπqµδp′
π,q . (4.21)
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Notice that for A z , the matrix element does not vanish only if q z ̸= 0, while for A 4 the correla-
tion function does have a non-zero signal as long as q = p′

π, and similarly for P (q). This explains
briefly why the Nπ does not contaminate the standard three-point functions at LO-ChPT with
A z , but are relevant in the A 4 channel.

4.3 Nucleon-pion two-point functions

The nucleon-pion two-point functions are

C Nπ
2pt (p′, t ) = 〈ONπ(p′, t ) ŌNπ(p,0)〉 , (4.22)

where for the momentum conservation p′ = p and the nucleon-pion operators are defined by

ONπ(p′, t ) = ON (p′
N , t )Oπ(p′

π, t ) , ŌNπ(p,0) = ŌN (pN ,0)Ōπ(pπ,0) , (4.23)

with p′ = p′
N +p′

π and p = pN +pπ. The nucleon-pion operators both at the source and at the
sink must be projected onto the desired isospin channel and lattice irreducible representation.
In the case of the neutron channel, we must project on the proper isospin and spin/helicity, as
explained in Sec. 4.1.

Regarding isospin projection, we use eq. 4.3 to obtain the nucleon-pion two-point function
with I = 1/2, Iz =−1/2, i.e.

C Nπ
2pt (p′

N ,p′
π, t ;pπ,pN ) = + 2

3
〈Op (p′

N , t ) Oπ−(p′
π, t ) Oπ−(pπ,0) Ōp (pN ,0)〉 +

+ 1

3
〈On(p′

N , t ) Oπ0 (p′
π, t ) Oπ0 (pπ,0) Ōn(pN ,0)〉 +

− 2
p

2

3
〈On(p′

N , t ) Oπ0 (p′
π, t ) Oπ−(pπ,0) Ōp (pN ,0)〉 . (4.24)

The nucleon-pion two-point functions are computed using the nucleon to nucleon-pion three-
point functions at different source-sink separations. Indeed, the latter are computed by fixing
the nucleon-pion operators at the sink t and by varying the interaction time τ of the current.

A further look at the diagrams in Figs. 4.1-4.2 and it makes it clear that in the particular case
of a pseudoscalar current (Γ= γ5)

J−(z0) =P−(z0) = d̄(z0)γ5u(z0) =−Ōπ−(z0) , (4.25)

with z0 = (z,τ= 0), so when the intermediate current is at the source, the three-point functions
correspond to a nucleon-pion two-point functions evaluated at a source-sink separation t .

In particular,

C pπ−→pπ−
2pt (p′

N ,p′
π, t ;pπ,pN ) =−〈 Op (p′

N , t ) Oπ−(p′
π, t ) P−(q,τ= 0) Ōp (pN ,0) 〉 , (4.26)
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where the minus sign is due to the antisymmetric properties of the quarks, see eq. (4.25). Here I
list the various relations that occur between nucleon-pion two-point functions and nucleon to
nucleon-pion three-point functions:

C pπ−→nπ0

2pt (p′
N ,p′

π,pπ; t ) = −C pP−→pπ−
3pt (p′

N ,p′
π,q = pπ; t ,τ= 0) , (4.27)

C pπ−→nπ0

2pt (p′
N ,p′

π,pπ, t ) = −C pP0→nπ0

3pt (p′
N ,p′

π,q = pπ; t ,τ= 0) , (4.28)

C nπ0→nπ0

2pt (p′
N ,p′

π,pπ, t ) = −C nP0→nπ0

3pt (p′
N ,p′

π,q = pπ; t ,τ= 0) , (4.29)

C n→pπ−
2pt (p′

N ,p′
π, t ) = −C nP−→p

3pt (p′
N ,q =−p′

π; t ,τ= t ) , (4.30)

C pπ−→n
2pt (p′

N ,p′
π, t ) = −C pP−→n

3pt (p′
N ,q = p′

π; t ,τ= 0) = −C nP−→p
3pt (p′

N ,q = p′
π; t ,τ= 0) . (4.31)

Notice that the pion momentum at the sink for the two-point C n→pπ−
2pt is the opposite with re-

spect to the nucleon three-point function, and the three-point functions should be evaluated
at the sink τ= t . A significant relation that can be proven with the Wigner Eckart theorem is

C n→nπ0

2pt (p′
N ,p′

π, t ) = 1p
2

C n→pπ−
2pt (p′

N ,p′
π, t ) , (4.32)

which can be found, for instance, in [46], where the relations are generalized to the baryon
octet. Other important relations exist between the matrix elements 〈Nπ|J |N〉. These can be
proven with the Wigner-Eckart theorem, checked on the lattice, and they are explained in the
next section.

4.4 The Wigner-Eckart theorem

The Wigner-Eckart theorem played an important role in this project because it provided helpful
checks for the calculations. It states that matrix elements of spherical tensor operators in the
basis of angular momentum - or like in this case isospin eigenstates - can be expressed as the
product of two factors, one of which is independent of the isospin orientation Iz , and the other
a Clebsch–Gordan coefficient.

The Wigner–Eckart theorem is generally stated in the following way. Given a tensor operator
T (k) and two isospin eigenstates |I , Iz〉,

∣∣I ′, I ′z
〉

, there exists a constant
〈

I ′
∣∣T (k) |I 〉, such that for

all Iz , I ′z and Iq , the following equation is satisfied:

〈I ′ I ′z |T (k)
q |I Iz〉 = 〈I Iz ;k q|I ′ I ′z〉〈I ′∥T (k)∥I 〉 , (4.33)

where

• T (k)
q is the q-th component of the spherical tensor operator T (k) of rank k;
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• |I Iz〉 denotes an eigenstate isospin I 2 and its z component Iz ;

• 〈I Iz ;k q|I ′ I ′z〉 is the Clebsch-Gordan coefficient for coupling I with k to get I ′;

• 〈I ′∥T (k)∥I 〉 is the reduced matrix element, which does not depend on Iz , I ′z , nor on q .

If we identify the particles with isospin IN = 1/2 as nucleons and Iπ = 1 as pions, see App. B,
we find a relation between scattering amplitudes S of different processes. In particular, the
addition of isospin eigenstates IN ⊕ Iπ gives

∣∣π+p
〉= ∣∣∣∣1,+1;

1

2
,+1

2

〉
=

∣∣∣∣3

2
,+1

2

〉
, (4.34)

∣∣π+n
〉= ∣∣∣∣1,+1;

1

2
,−1

2

〉
= 1p

3

∣∣∣∣3

2
,+1

2

〉
+

√
2

3

∣∣∣∣1

2
,+1

2

〉
, (4.35)

∣∣π0p
〉= ∣∣∣∣1,0;

1

2
,+1

2

〉
=

√
2

3

∣∣∣∣3

2
,+1

2

〉
− 1p

3

∣∣∣∣1

2
,+1

2

〉
, (4.36)

∣∣π0n
〉= ∣∣∣∣1,0;

1

2
,−1

2

〉
=

√
2

3

∣∣∣∣3

2
,−1

2

〉
+ 1p

3

∣∣∣∣1

2
,−1

2

〉
, (4.37)

∣∣π−p
〉= ∣∣∣∣1,−1;

1

2
,+1

2

〉
= 1p

3

∣∣∣∣3

2
,−1

2

〉
−

√
2

3

∣∣∣∣1

2
,−1

2

〉
, (4.38)

|π−n〉 =
∣∣∣∣1,−1;

1

2
,−1

2

〉
=

∣∣∣∣3

2
,−1

2

〉
. (4.39)

Notice first, that from eqs. (4.37)-(4.38) we recover eq. (4.3) for nucleon-pion states, that is∣∣∣∣1

2
,−1

2

〉
=+ 1p

3

∣∣π0n
〉−√

2

3

∣∣π−p
〉

. (4.40)

Consider now the scattering operator S between incoming and outgoing states. Since it com-
mutes with the isospin rotations Ii , it follows that the diagonal matrix elements 〈I , Iz |S |I , Iz〉
are independent of Iz , while the non-diagonal elements vanish. Therefore, it makes sense to
define the reduced scattering amplitude S I of a given isospin I by the equation〈

I , I ′z
∣∣S |I , Iz〉 = δI ′z Iz

S I , (4.41)

which is a special case of the Wigner-Eckart theorem mentioned above.
The eq. (4.41) has important applications as it relates the scattering amplitudes of various
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pion-nucleon scattering processes:

Spπ+→pπ+ = Snπ−→nπ− = S3/2 , (4.42)

Snπ+→nπ+ = Spπ−→pπ− = 1

3
S3/2 + 2

3
S1/2 , (4.43)

Spπ0→pπ0 = Snπ0→nπ0 = 2

3
S3/2 + 1

3
S1/2 , (4.44)

Snπ+↔pπ0 = Snπ0↔pπ− =
p

2

3
S3/2 −

p
2

3
S1/2 . (4.45)

By taking the absolute squares of the amplitudes, we obtain relations between cross sections σ
that are verified by experiments, for example

2σpπ0→pπ0 =σpπ+→pπ+ +σpπ−→pπ− . (4.46)

Another important relation that can be derived from the expressions mentioned above is

Snπ0→nπ0 = Spπ−→pπ− + 1p
2

Spπ−→nπ0 , (4.47)

which we checked on the lattice and it is satisfied also between two-point correlation functions:

C nπ0→nπ0

2pt (t ) = C pπ−→pπ−
2pt (t )+ 1p

2
C pπ−→nπ0

2pt (t ) (4.48)

and three-point functions, like for example

C
nJπ0→nπ0

3pt (t ) = C
pJπ−→pπ−
3pt (t )+ 1p

2
C

pJπ−→nπ0

2pt (t ) , (4.49)

where Jπ0 = 1p
2

(ūΓu− d̄Γd) = 1p
2
J3. These isospin relations in eqs. (4.48), (4.49) were checked

for the first time in this work on a single ensemble.

4.5 GEVP analysis of two-point functions

In Chap. 3, we discussed how to extract nucleon eigenenergies EN , vacuum to physical states
matrix elements of nucleon operators 〈Ω|ON |N〉 from the nucleon two-point functions and
nucleon matrix elements of intermediate currents 〈N |J |N〉 through a suitable ratio of three-
and two-point functions.

With the nucleon-to-nucleon-pion three-point and nucleon-pion two-point functions, we
aim to extract ENπ, 〈Ω|ON |Nπ〉, 〈Ω|ONπ |N〉, 〈Ω|ONπ |Nπ〉 and finally 〈Nπ|J |N〉, with J ∈
{P ,A µ}.
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If we project the nucleon-pion interpolators to have the same quantum numbers as the
nucleon |N〉, the spectral decomposition of the nucleon-pion two-point functions in eq. (4.22)
gives

C Nπ
2pt (t ) = 〈ONπ(p, t ) ŌNπ(p,0)〉

= e−EN t

2EN
〈Ω|ONπ(p)|N〉 〈N |ŌNπ(p)|Ω〉+ e−ENππt

2ENππ
〈Ω|ONπ(p)|Nππ〉 〈Nππ|ŌNπ(p)|Ω〉+

+ e−ENπt

2ENπ
〈Ω|ONπ(p)|Nπ〉 〈Nπ|ŌNπ(p)|Ω〉+ e−EN∗ t

2E∗
N

〈
Ω

∣∣ONπ(p)
∣∣N∗〉 〈

N∗∣∣ŌNπ(p)
∣∣Ω〉+ . . .

and we would expect that at large t , it is still the nucleon to dominate the correlation func-
tions, as it has the lowest energy EN . Therefore, extracting the Nπ states from these correlation
functions seems difficult, but there is a strategy to overcome this issue.

At a conference in 1981, K. Wilson proposed the variational method [145], a technique that
can be adopted to compute energy levels in lattice gauge theory. The idea had a lot of applica-
tions, and it was immediately used to determine the glueball spectrum [39, 123] and the static
quark potential [55]. Today, this method is still used and applied to the hadron spectrum as
well. In particular, in [110], Lüscher and Wolff show how to use it to determine also excited
states, like in our case |Nπ〉. The idea is to construct a large basis B of interpolating operators
that couple to our states of interest, that is

B= {O1,O2, . . . ,Om} , (4.50)

where Ok represents a generic interpolating operator that couples to the nucleon. With this
basis, one can construct a matrix of correlation functions like

C2pt (p, t )i j = 〈Oi (p, t ) Ō j (p,0)〉 = ∑
n=1

e−En t 〈Ω|Oi (p, t ) |n〉〈n|Ō j (p,0) |Ω〉 , (4.51)

with i , j = 1,2, . . . ,m and n = 1, ...,∞ represent the tower of states with the same quantum num-
bers as Oi and Ō j . The matrix representation of eq. (4.51) on the l.h.s. is

C2pt (p, t ) =


〈 O1(p, t ) Ō1(p,0) 〉 〈 O1(p, t ) Ō2(p,0) 〉 · · · 〈 O1(p, t ) Ōm(p,0) 〉
〈 O2(p, t ) Ō1(p,0) 〉 〈 O2(p, t ) Ō2(p,0) 〉 · · · 〈 O2(p, t ) Ōm(p,0) 〉

· · · · · · · · · · · ·
〈 Om(p, t ) Ō1(p,0) 〉 〈 Om(p, t ) Ō2(p,0) 〉 · · · 〈 Om(p, t ) Ōm(p,0) 〉

 . (4.52)

We truncate the sum on the r.h.s. in eq. (4.51) at n = m, so that

C2pt (p, t )i j =
m∑

n=1
Zi nZ

⊺
n j e−En t [

1+O (e−(Em−En )t )
]

, (4.53)
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where for shorthand notation we define

Zi n = 1p
2EnV

〈
ψi

∣∣n〉
, Z

⊺
n j =

1p
2EnV

〈
n

∣∣ψ j
〉

,
∣∣ψ j

〉= Ō j |Ω〉 (4.54)

and it is clear from eq. (4.53) that Zi n ≈ e+En t ∑m
j=1 C2pt (p, t )i j Z

−1
j n . With this definition, we can

solve the system

C2pt (p, t )V (p, t , t0) =Λ(p, t , t0) C2pt (p, t0)i j V (p, t , t0) , t > t0 , (4.55)

which is called Generalized EigenValue Problem (GEVP hereafter) for the matrix C2pt (p, t ). The
objects V (p, t , t0) = (

v1(p, t , t0), . . . , vm(p, t , t0)
)

and Λ(p, t , t0) = (
λ1(p, t , t0), . . . ,λm(p, t , t0)

)
are

respectively the matrix of generalized eigenvectors vn and eigenvalues λn , at a reference time t0

and in the frame p. The usefulness of this strategy is that after solving eq. (4.55), we can extract
the n-th eigenenergy from the n-th eigenvalue, i.e.

λn(p, t , t0) ≈ dn(t0)e−En (t−t0) . (4.56)

The eigenvectors are orthogonal with respect to C2pt (p, t0) at each t , which means that(
vα(p, t ), C2pt (p, t0)vβ(p, t )

)
∝ δαβ , (4.57)

where we define the inner product of a matrix A with the eigenvectors as(
vα(pα, tα), Avβ(pβ, tβ)

)
:=∑

i , j
vαi (pα, tα, t0) Ai j vβj (pβ, tβ, t0) , (4.58)

and we normalise them such that they are orthonormal with respect to C2pt (p, t0), i.e.(
vα(p, t ), C2pt (p, t0)vβ(p, t )

)
= δαβ . (4.59)

This strategy is beneficial for determining the energy spectrum of particles, but the basis
of interpolating operators B should be chosen carefully and as large as possible. One way to
extend the number of interpolating operators so that they are all consistent with the quantum
numbers, is to employ smearing techniques at different levels, i.e. different smearing radii rn

(see eq. (2.93)). This way, one can start from a single interpolating operator O1, and by using
different smearing radii it is possible to form a second one O2 =Φr2 O1, a third one O3 =Φr3 O1,
et cetera We solve the GEVP using the following rank-2 bases: B1 = {ON ,ΦON }, B2 = {ON ,ONπ},
B3 = {ΦON ,ONπ}, B4 = {ΦON ,ΦONπ}, and in Fig. 4.3, we present the GEVP results with the basis
B4 in the rest frame (p = 0) and one moving frame (p = êi ). Recall from eqs. (4.6)-(4.7) that
there are two nucleon-pion operators with the same quantum numbers and non-zero total mo-
mentum p. One operator is such that the pion is at rest; see eq. (4.6), and the other one is where
the nucleon is at rest, see eq. (4.7). In the next and final chapter, I will discuss how these GEVP
results can be adopted to construct improved operators. Finally, I will give results on the extrac-
tion of GEVP-improved matrix elements.
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Figure 4.3:
In this figure, we present the GEVP solutions of eq. (4.55) with t0 = 0.2 fm, and with the basis
B4 = {ΦON ,ΦONπ}. We use the shorthand notation λα ≡ λα(p = 0, t , t0 = 0.2 fm) and vαi ≡ vαi (p =
0, t , t0 = 0.2 fm). On the left plots, we display the effective energies of the eigenvalues λ1 and λ2,
that are computed with eq. (4.56), and we compare them to the energy of the nucleon at rest and
the non-interacting energies of Nπ S-wave and Nππ P-wave. On the right plots, each component
of the eigenvectors is plotted in function of t . The plots in the uppermost row are the GEVP solu-
tions with p = 0 and the ones in the middle row are with the nucleon-pion operators in eq. (4.6)
and total momentum p = êi , while the lowermost plots are with the operators in eq. (4.7) and total
momentum p = êi .



CHAPTER

FIVE

RESULTS

In this chapter, we apply the GEVP-projection method discussed in Sec. 4.5 to construct op-
erators that have better overlap with the physical state of interest. In particular, we show that
the same eigenvectors can be adopted for the three-point functions such that it is possible to
construct a GEVP-improved version of the standard ratio constructed in eq. (3.45).

5.1 Summary of the variational method employed

In principle, there is a tower of excited states with the same quantum numbers as the nucleon,
namely Nπ, N∗(1440), Nππ, ..., which can be created by the nucleon operator ON . However, let
us suppose that the nucleon operator ON creates only two states: the ground state and the first
excited state, which for convenience, we call |N〉 and |Nπ〉. This translates into

ON |Ω〉 = c1 |N〉+ c2 |Nπ〉 + . . . (5.1)

where the ellipses represent higher excited states that we neglect here. Ideally, we would like to
have that ON creates only |N〉, but we can construct an operator that has a very good overlap
with the first excited state and diagonalise the system in eq. (5.1). This operator is ONπ. We
construct a matrix of two-point functions that for this simplistic case it reads

C2pt (t ) =
( 〈 ON (t ) ŌN (0) 〉 〈 ON (t ) ŌNπ(0) 〉
〈 ONπ(t ) ŌN (0) 〉 〈 ONπ(t ) ŌNπ(0) 〉

)
. (5.2)

Using this matrix, we solve the GEVP in eq. (4.55) and we extract the eigenvectors v N (t ) and
v Nπ(t ), which are needed to construct operators O′

N and O′
Nπ that have better overlap with the

physical states |N〉 and |Nπ〉, i.e.

O′
N |Ω〉 = c ′N |N〉 + . . . (5.3)

O′
Nπ |Ω〉 = c ′Nπ |Nπ〉 + . . . . (5.4)
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With these GEVP-improved operators, we can construct ratios of three-point correlation func-
tions and two-point correlation functions, with the aim to extract GEVP-improved matrix ele-
ments. This will be discussed in the following sections in more detail, where I will also present
results for the GEVP-improved matrix elements.

5.2 GEVP improvement for matrix elements

It has been discussed in e.g. [38, 51] that solving the GEVP is helpful for extracting matrix ele-
ments more effectively.

We can use the GEVP results discussed in Sec. 4.5 and, in particular, the orthonormality
properties of the eigenvectors, see eq. (4.59), to construct operators Oi that have better overlap
with a desired state. The GEVP-improved two-point functions that have better overlap with the
state α are constructed in the following way:

C2pt (p, t )α := (
vα(p, t , t0), C2pt (p, t )vα(p, t , t0)

)
, (5.5)

while the three-point correlation functions projected at the sink onα and at the source on β are

C
P j ,J
3pt (p′, t ;q,τ)αβ :=

(
vα(p, t , t0), C

P j ,J
3pt (p′, t ;q,τ)vβ(p, t , t0)

)
. (5.6)

In eq. (5.5), C2pt is the matrix of two-point functions defined in eq. (4.51) and C3pt is the matrix
of three-point functions that reads

C
P j ,J
3pt (p′, t ;q,τ)i j =P j 〈

Oi (p′, t ) J (q,τ) Ō j (p,0)
〉

. (5.7)

Using these improved correlation functions, it is possible to compute GEVP-improved mat-
rix elements of the current J between two states α and β, i.e.

〈
α(p′)| J (q) |β(p)

〉
.

In the symmetric case where α = β = N , this suitable ratio takes an expression similar to
eq. (3.45), with the difference that we use projected correlation functions. Therefore, the GEVP
ratio reads

C
J

3pt (p′, t ;q,τ)N N

C2pt (p′, t )N

√
C2pt (p′,τ)N C2pt (p′, t )N C2pt (p, t −τ)N

C2pt (p,τ)N C2pt (p, t )N C2pt (p′, t −τ)N
−→ 〈

N (p′)| J (q) |N (p)
〉

. (5.8)

This GEVP-projected ratio actually provides a linear combination of nucleon form factors
as discussed in Sec. 3.4, which stems from the Lorentz decomposition of the nucleon matrix
elements. In [130], the authors construct a set of single-particle nucleon interpolating operators
with different levels of smearing and extract the axial charge g A from a suitable ratio GEVP-
improved correlation functions. They compare the results with the standard ratios of nucleon
three-point functions discussed in Sec. 3.7.
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In this project, we include the nucleon-pion operators in the GEVP analysis, as there is evid-
ence that the Nπ states are the major source of contamination to the extraction of the matrix
elements 〈N |P |N〉 and 〈N |Aµ|N〉, at least at non-zero momentum transfer.

For the projection of the interpolating operators, a careful choice of t1 and t2, which appear
in the construction, must be made for the eigenvectors, see eqs. (5.5)-(5.6). However, in our
case, the eigenvectors we extract are reasonably constant with t .

This choice of t1 and t2 is made such that the effective energies of the eigenvalues have a
plateau on the desired state (N , Nπ).

5.3 Nucleon matrix elements with q = 0

In the special case where q = 0, the GEVP-improved ratio in eq. (5.8) takes the expression

〈
N (p′)| J (0) |N (p′)

〉= C
J

3pt (p′, t ;0,τ)N N

C2pt (p′, t )N
. (5.9)

In particular, the GEVP-improved versions of the standard ratios in eqs. (3.72), (3.73) and (3.75)
are

R(GEVP)
1 :=

C
A j

3pt (ê j , t ;0,τ)N N

C2pt (ê j , t )N
=

(v N (ê j , t2), C
P j ,A j

3pt (ê j , t ;0,τ)v N (ê j , t1))

(v N (ê j , t2), C2pt (ê j , t )v N (ê j , t1))
, (5.10)

R(GEVP)
2 :=

C
A4
3pt (ê j , t ;0,τ)N N

C2pt (ê j , t )N
=

(v N (ê j , t2), C
P j ,A4

3pt (ê j , t ;0,τ)v N (ê j , t1))

(v N (ê j , t2), C2pt (ê j , t )v N (ê j , t1))
, (5.11)

R(GEVP)
3 :=

C P
3pt (ê j , t ;0,τ)N N

C2pt (ê j , t )N
=

(v N (ê j , t2), C
P j ,P
3pt (ê j , t ;0,τ)v N (ê j , t1))

(v N (ê j , t2), C2pt (ê j , t )v N (ê j , t1))
, (5.12)

where I write explicitly the dependence on t1 and t2 for more clarity, and the inner product of
eigenvectors and matrix of correlation functions is defined in eq. (4.58).

Notice that we do not compute the three-point functions with nucleon-pion operators both
at source and sink, i.e. we neglect the term

C Nπ→Nπ
3pt (p′, t ;q,τ) = 〈

ONπ(p′, t ) J (q,τ) ONπ(p,0)
〉

. (5.13)

This approximation is motivated by ChPT, according to which the dominant contribution is due
to Nπ states produced either at the source or at the sink, see refs. [27, 100].

The GEVP eigenvectors vN (ê j , t ) are the ones where the nucleon-pion system has total mo-
mentum ê j and it is in the momentum configuration N (ê j )π(0), i.e. we solve the GEVP with
the nucleon-pion operators in eqs. (4.6). In Fig. 5.1, we present the comparison plots between
the GEVP-improved ratios R1, R2 and R3 in eqs. (5.10), (5.11), (5.12) and the standard ratio in
eqs. (3.72), (3.73), (3.75), respectively.
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Figure 5.1:
Comparisons of the standard ratios in eqs. (3.72), (3.73), (3.75) with the GEVP ratios in
eqs. (5.10)-(5.12). For each of these plots, we use the same generalized eigenvectors,
evaluated at t0 = 2a and t2 = t1 = 2a. The green bands in each of these plots repres-
ent the expected results, either obtained from uncontaminated channels like in (b),
or calculated analytically, like in (c). Some ratios are slightly shifted horizontally to
improve their visibility, and the data points at source and sink are omitted.
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5.4 Nucleon matrix elements with q ̸= 0

We apply the GEVP-projection method also at Q2 ̸= 0, which is phenomenologically more inter-
esting. We construct the unrenormalised GEVP-projected ratio defined in eq. (5.8), that should
represent an improved version of the standard ratios in eq. (3.45).

RP
J (p′, t ;q,τ)(GEVP) ≡

C
P j ,J−
3pt (p′, t ;q,τ)N N

C2pt (p′, t )N

√
C2pt (p′,τ)N C2pt (p′, t )N C2pt (p, t −τ)N

C2pt (p,τ)N C2pt (p, t )N C2pt (p′, t −τ)N
. (5.14)

In particular, we investigate the same channels1 that are presented in eqs. (3.47)-(3.50) with
p′ = 0, q =−p = ê j by using the GEVP-improved operators

RP j

P (0, t ; ê j ,τ)(GEVP) = e jp
2EN (EN +mN )

GP (Q̃2)+ . . . (5.15)

RP j

A j
(0, t ; ê j ,τ)(GEVP) = ip

2EN (EN +mN )

[
(EN +mN )G A(Q̃2)− (e j )2

2mN
GP̃ (Q̃2)

]
+ . . . (5.16)

RP j

A j
(0, t ; êk ̸= j ,τ)(GEVP) = i (EN +mN )p

2EN (EN +mN )
G A(Q̃2)+ . . . (5.17)

RP j

A4
(0, t ; ê j ,τ)(GEVP) = e jp

2EN (EN +mN )

[
G A(Q̃2)+ (mN −EN )

2mN
GP̃ (Q̃2)

]
+ . . . (5.18)

where e j is the value of the unit vector ê j along the direction j, i.e. e j = 2π
L . Notice that in the

construction of the third ratio, we consider a spatial current A j and a polarization projector P j

as in the second ratio, but the current does not carry momentum in the same direction ( j ). For
our kinematic choice, the momentum transfer is Q̃2 = (EN −mN )2 +|êz |2 ≈ 0.290 GeV2, so that
Q̃2 +m2

π = 0.473 GeV2. At this energy scale, the PCAC violation is not larger than 15%, see Fig. 9
in [27] and the lattice artefacts for our ensemble can also be relevant.

As discussed in Sec. 3.4, we extract the axial form factor G A(Q̃2) from the ratio in eq. (5.17).
For this channel, the three-point correlation functions are not affected by the GEVP projection,
as expected from ChPT. The reason is that the dominant signal in the nucleon to nucleon-pion
three-point functions comes from the disconnected diagrams with the D − l i ke topology, see
lower left sketch in Fig. 4.1, and this diagram inherits the signal from the nucleon two-point
functions and meson-to-current two-point functions. The latter contains the matrix element
〈Ω|A j (q)

∣∣π(q)
〉 = i fπq j , which clearly vanishes for the ratio in eq. (5.17), where q j = 0. More

details on this are at the end of Sec. 4.2. In Fig. 5.2, we plot the ratio in eq. (3.49) at different
source-sink separations, and we extract the axial form factor G A(Q̃2) at large source-sink separ-
ations, where a plateau is observed.

1We do not employ O (a)-improvement in this analysis, but it will be performed in the future.
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Figure 5.2:
In this figure, I show the traditional ratio in eq. (3.49), which is equivalent to the ratio in eq. (5.17)
at several source-sink separations 0.6 fm ≤ t ≤ 1.4 fm, computed with smeared nucleon inter-
polators. It is clear that at large source-sink separations a plateau region forms, and we extract
the axial form factor G A, which is reported in eq. (5.20). The light blue line and the shaded band
represent the fit with 1 confidence level.

We take into account the exponential corrections at source and sink by using the fit formula

−i RP j

A j
(0, t ; êk ̸= j ,τ) = (EN +mN )p

2EN (EN +mN )
G A(Q̃2)+αsr c e−δEsr c t +αsi nk e−δEsi nk (t−τ) (5.19)

and we find that the unrenormalised2 axial form factor G A(Q̃2 ≈ 0.290 GeV2) is

G A(Q̃2) = 1.218±0.020 , (5.20)

where the error is determined with the bootstrapping method. The fit is performed using the
largest source-sink separations t = 1.2 fm,1.3 fm,1.4 fm and this result for G A is used for the ex-
traction of GP̃ from the other ratios. In Fig. 5.3, we show the comparison plots between the tra-
ditional and contaminated ratios in eqs. (3.48), (3.50), (3.50) and the respective GEVP-improved
ratios in eqs. (5.15), (5.16) and (5.18). The green band in each of these plots represent the nuc-
leon ground state result, i.e., the form factors extracted from a fit that satisfy the PCAC and PPD
relation are inserted in the respective analytical formula for the ratio in eqs. (5.15)-(5.18).

It is clear that the GEVP method improves significantly the ratios in all the channels, espe-
cially at the source (τ = 0) with momentum p = −q = −êz , as the GEVP-improved data points
lie closer to the nucleon ground state. However, there is some trace of contamination left at the
sink (τ= t ), where the momentum is p′ = 0.

2We may renormalise the form factor by multiplying it by ZA = 0.7456(10)stat(57)syst, introduced in Sec. 3.5.
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ults of the ratio with a pseudoscalar
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erators (blue data points) and the
GEVP-projected operators (red data
points), respectively eq. (3.47) and
eq. (5.15). At different source-sink
separations t , it is clear that the
GEVP-method removes most of the
contamination at the source, where
the momentum is p = −êz , while
there are some traces of contamina-
tion left at the sink, where p′ = 0.
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(b) In this plot, we compare the
results of the ratio with a spatial
axial current A j by using the stand-
ard operators (blue data points) and
the GEVP-projected operators (red
data points), respectively eq. (3.48)
and eq. (5.16). At different source-
sink separations t , it is clear that
the GEVP method removes also here
most of the contamination at the
source, while there is some traces of
contamination left at the sink.
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(c) In this plot, we compare the res-
ults of the ratio with a temporal
axial current A4 by using the stand-
ard operators (blue data points) and
the GEVP-projected operators (red
data points), respectively eq. (3.50)
and eq. (5.16). At different source-
sink separations t , it is clear that
the GEVP method removes also here
most of the contamination at the
source, while there are some traces
of contamination left at the sink.

Figure 5.3:
Comparisons of the results for the standard ratios in eqs. (3.47), (3.48), (3.50) with
the GEVP-improved ratios in eqs. (5.15), (5.16), (5.18), respectively. The kinematic is
such that the nucleon at the sink has momentum zero (p′ = 0) and q = êz , so that
p =−êz . For each of these plots, we use the same generalized eigenvectors, evaluated
at t0 = 2a and t2 = t1 = 2a. The green bands in each of these plots represent the
nucleon ground state expected results, which are extracted as discussed in the main
text. Some ratios are slightly shifted horizontally to improve their visibility, and the
data points at source and sink are omitted.
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As expected, we observe that the remaining contamination at the sink decreases with the
source-sink separation. Furthermore, the analytical expectation for the double ratio

RP j

A j
(0, t ;q = ê j ,τ)

RP j

A4
(0, t ;q = ê j ,τ)

= EN +mN

e j
≈ 4.69 (5.21)

is violated with the standard ratios, but the GEVP-improved ratios reproduce this value quite
precisely at the source. I will now discuss how we extracted all the form factors reliably and
used these results to plot the green band in the plots.

The nucleon axial form factor G A is obtained through the fit in eq. (5.19), and it is given in
eq. (5.20). We compare three different fit methods in order to extract the other form factors
GP (Q2), GP̃ (Q2) from the remaining ratios so that they satisfy the PCAC and PPD relations, i.e.

PPD: GP̃ (Q2) = 4m2
NG A(Q2)

m2
π+Q2

−→ rPPD =
(
m2
π+Q2

)
GP̃ (Q2)

4m2
NG A(Q2)

, (5.22)

PCAC: G A(Q2) = mℓ

mN
GP (Q2)+ Q2

4m2
N

GP̃ (Q2) −→ rPCAC =
mℓGP (Q2)+ Q2

4mN
GP̃ (Q2)

mNG A(Q2)
. (5.23)

These methods are:

1. Los Alamos approach [100]: We extract GP from the traditional (contaminated) ratio
in eq. (3.47) by including some exponential corrections at source and sink, similarly to
eq. (5.19). In more detail, the fit formula for the extraction of GP is

RP j

P (0, t ; ê j ,τ) = e j GP (Q̃2)p
2EN (EN +mN )

+αP
sr c e−δEsr c t +αP

si nk e−δEsi nk (t−τ) . (5.24)

We then use our results for G A in eq. (5.20) to perform a simultaneous fit to the ratios in
eqs. (3.48), (3.50) to extract GP̃ . For the simultaneous fit, we use the following fit ansatz:

− i RP j

A j
(0, t ; ê j ,τ) =

(EN +mN )G A(Q̃2)− e2
j

2mN
GP̃ (Q̃2)

p
2EN (EN +mN )

+αA j
sr c e−δEsr c t +αA j

si nk e−δEsi nk (t−τ) ,

(5.25)

RP j

A4
(0, t ; ê j ,τ) = e j

G A(Q̃2)+ (mN−EN )
2mN

GP̃ (Q̃2)
p

2EN (EN +mN )
+αA4

sr c e−δEsr c t +αA4
si nk e−δEsi nk (t−τ) . (5.26)

Notice that we fix the excited state energy gap δEsr c and δEsi nk to be the same in both
channels because Nπ states are expected to be the dominant contamination in both

channels. However, the appearing prefactors α
J
sr c and α

J

si nk could be different. This ex-
traction method is very similar to what has been performed in [100], where the energy
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gap is extracted solely from A4 and used for the other channels. The best fit results are
obtained from a simultaneous fit to all three channels and are

GP (Q̃2) = 25.836±0.771 , GP̃ (Q̃2) = 14.417±0.508 , (5.27)

which satisfy the PCAC and PPD ratios:

rPCAC(Q̃2) = 1.005±0.016 , rPPD(Q̃2) = 1.008±0.016 . (5.28)

2. RQCD approach [27]: We work with the traditional (contaminated) ratios, and we use
the ChPT-based ansatz explained in [27], where the energy gaps are known to be the Nπ

non-interacting energies. The fit formulas that are used to take into account just the Nπ

contamination are calculated at LO-ChPT and are derived from eqs. (2.44), (2.45) in [27].
These fit ansätze are very similar to eqs. (5.24)-(5.26), with the difference that δEsr c and
δEsi nk are not fit parameters, but they are determined at LO-ChPT. The independent fit
to the ratios in eqs. (3.47), (3.48) with t = 14a gives the following results:

GP (Q̃2) = 26.913±0.715 , GP̃ (Q̃2) = 15.068±0.506 , (5.29)

rPCAC(Q̃2) = 1.049±0.017 , rPPD(Q̃2) = 1.053±0.031 . (5.30)

3. GEVP approach [36]: Finally, we extract the form factors from the GEVP-projected ratios,
which is the novelty of this project. The time-dependence of the ratios in Fig. 5.3 suggests
that most of the contamination at the source with momentum p = êz is removed. How-
ever, there is some trace of contamination left at the sink that is fitted with an exponential
form. Therefore, we use the following fit ansatz for the projected ratios:

RP j

P (0, t ; ê j ,τ)(GEVP) = e j GP (Q̃2)p
2EN (EN +mN )

+αP
si nk e−δEsi nk (t−τ) , (5.31)

RP j

A j (0, t ; ê j ,τ)(GEVP) =
(EN +mN )G A(Q̃2)− (e j )2

2mN
GP̃ (Q̃2)

p
2EN (EN +mN )

+αA j

si nk e−δEsi nk (t−τ) , (5.32)

RP j

A 4 (0, t ; ê j ,τ)(GEVP) = e j

G A(Q̃2)+ (mN−EN )
2mN

GP̃ (Q̃2)
p

2EN (EN +mN )
+αA 4

si nk e−δEsi nk (t−τ) . (5.33)

The fit results to eqs. (5.31), (5.33) for the form factors with t = 10a are

GP (Q̃2) = 26.662±0.404 , GP̃ (Q̃2) = 14.332±1.340 , (5.34)

rPCAC(Q̃2) = 1.013±0.061 , rPPD(Q̃2) = 1.002±0.093 . (5.35)

The GEVP ratios are not averaged over all equivalent directions. This would increase the
statistics and lead to better fit results, especially for GP̃ . However, unlike the contamin-
ated ratios, the fit results with the GEVP ratios are all consistent with each other even with
a naive fit, confirming the ChPT-inspired approaches.
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CHAPTER

SIX

SUMMARY AND OUTLOOK

In this project, we have investigated new three-point correlation functions for the first time,
consisting of a 3-quark operator (nucleon) at the source, a 5-quark operator (nucleon-pion) at
the sink and a current J . These correlation functions enable the computation of finite-volume
transition matrix elements 〈Nπ|J |N〉, which enter as a contamination in the traditional cor-
relation functions that consist of a 3-quark operator (nucleon) both at the source and at the
sink, and a current J . The motivation for this project is two-fold: first we want to remove this
unwanted excited-state contamination from the (nucleon) ground state, and second we want
to compute numerically 〈Nπ|J |N〉 for the first time as it is phenomenologically very relevant
for experimental particle physics and in particular for neutrino-nuclei scattering.

We find that this method provides results compatible with effective field theory predictions.
Results that were inconsistent in the forward limit with the traditional method due to the Nπ

contamination, see Sec. 5.3, are now compatible with the nucleon ground state expectation. In
particular, the axial charge extracted from the channel with a temporal axial current A4 provides
results that are compatible with those extracted from the axial current A j within the errors, see
Fig. 5.1b. The GEVP-improved ratios at different source-sink separations with a pseudoscalar
current P are consistent with zero within the errors, see Fig. 5.1c.

At Q2 ̸= 0 GeV2, we also find a significant improvement in the ratios. We have investigated
three-point correlation functions with zero momentum at the sink p′ = 0 and momentum trans-
fer q =−p = êz , where êz is the lattice unit momentum along the direction z. We observe from
Fig. 5.3 that in all the channels, the GEVP-projection successfully removes the contamination
where the nucleon is not at rest. The results suggest a new fit formula to extract the nucleon
form factors GP and GP̃ . In contrast, the axial form factor G A is extracted in the traditional way
from a channel that suffers less from contamination. The nucleon form factors satisfy the PCAC
and PPD relation and are consistent within the errors with methods based on a multiparticle fit
(Los Alamos approach) or ChPT-based ansatz (RQCD approach).

In particular, with this method, we understand that the contamination due to Nπ states
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in the standard nucleon three-point functions is enhanced when the disconnected diagram is
non-vanishing. For this term to contribute, the meson matrix element 〈Ω|J (q)

∣∣π(pπ)
〉

must
not vanish. Therefore, in the forward limit (q = 0), only 〈Ω|A4(0) |π(0)〉 ,〈Ω|P (0) |π(0)〉 ̸= 0,
while at non-vanishing momentum transfer we have that 〈Ω|A4(q)

∣∣π(q)
〉

, 〈Ω|P (q)
∣∣π(q)

〉 ̸= 0
and 〈Ω|A j (q)

∣∣π(q)
〉 ̸= 0 only if q j ̸= 0.

In this dissertation, I have not presented results for 〈Nπ|J |N〉 matrix elements, but they
will be investigated in the future. In particular, the door is open for extrapolating these finite-
volume matrix elements to the physical limit, which are relevant to phenomenologically inter-
esting transition amplitudes.

These results for the GEVP-improved matrix elements computed on a single ensemble are
very promising. We plan to extend the work to other ensembles and take the continuum limit.
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APPENDIX

ONE

USEFUL IDENTITIES

A.1 Gamma matrices and their algebra

A.1.1 Minkowski spacetime

In the Weyl (chiral) representation, a possible form of the gamma matrices in Minkowski space-
time is

γ0 =
(

0 I2

I2 0

)
, γk =

(
0 σk

−σk 0

)
, γ5 =

(−I2 0
0 I2

)
, (A.1)

where In represents the n×n identity matrix and they are expressed in terms of the Pauli matrices
σk , which are defined like:

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

Here we also recall the properties of the gamma matrices and the relation between γ5 and the
other γµ:

{γµ,γν} := γµγν+γνγµ = 2gµνI4 , {γµ,γ5} = 0 , (A.3)

γ5 = iγ0γ1γ2γ3 = i

4!
ϵµναβ γ

µγνγαγβ , (A.4)

which hold ∀ µ,ν ∈ {0,1,2,3}. In the previous formula, gµν represents the metric tensor, which
in the Minkowski metric has the signature {+,−,−,−} and ϵµνρσ is the Levi-Civita tensor, with
ϵ0123 =+1. With this convention for the metric, the covariant gamma matrices are defined by

γµ = gµνγ
ν = {γ0,−γ1,−γ2,−γ3} . (A.5)
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Other important identities which come in handy when computing traces of products of
gamma matrices are the trace identities. These are:

1. trace of any product of an odd number of γµ is 0 ; (A.6)

2. tr
[
γµγν

]
= 4gµν ; (A.7)

3. tr
[
γµγνγργσ

]
= 4(gµνgρσ− gµρgνσ+ gµσgνρ) ; (A.8)

4. tr
[
γ5

]
= tr

[
γµγνγ5

]
= 0 ; (A.9)

5. tr
[
γµγνγργσγ5

]
=−4iϵµνρσ ; (A.10)

6. tr
[
γµ1 . . .γµN

]
= tr

[
γµN . . .γµ1

]
. (A.11)

In this basis, the charge conjugation operator C , which is defined to satisfy the representation-
independent relation CγµC−1 =−(γµ)⊺, reads and satisfies

C = iγ2γ0 =
(
iσ2 0

0 −iσ2

)
, (C )⊺ =C † =C−1 =−C . (A.12)

A.1.2 Euclidean spacetime

The Euclidean spacetime metric is obtained after applying the Wick rotation in eq. (2.17). There-
fore, if we reverse it, the Euclidean four-vectors are related to the Minkowski by the following:

x4
E = i x0 , x j

E = x j =−x j , (A.13)

where in the following, the Euclidean objects have a superscript label "E" to distinguish them
from the others in Minkowski spacetime.

The convention for the Euclidean γ matrices is the DeGrand-Rossi basis, which is adopted
by the software packages CHROMA, GRID and GPT. The γ matrices read

γ1 =
(

0 iσ1

−iσ1 0

)
, γ2 =

(
0 −iσ2

iσ2 0

)
, (A.14)

γ3 =
(

0 iσ3

−iσ3 0

)
, γ4 =

(
0 I2

I2 0

)
, γ5 =

(
I2 0
0 −I2

)
= γ1γ2γ3γ4 . (A.15)
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With this choice, the trace identities in eqs. (A.6)-(A.11) become:

1. trace of any product of an odd number of γµ is 0 ; (A.16)

2. tr
[
γµγν

]
= 4δµν ; (A.17)

3. tr
[
γµγνγργσ

]
= 4(δµνgρσ−δµρδνσ+δµσδνρ) ; (A.18)

4. tr
[
γ5

]
= tr

[
γµγνγ5

]
= 0 ; (A.19)

5. tr
[
γµγνγργσγ5

]
=+4ϵµνρσ ; (A.20)

6. tr
[
γµ1 . . .γµN

]
= tr

[
γµN . . .γµ1

]
; (A.21)

with ϵ1234 =+1. The charge conjugation operator C reads and satisfies again

C = γ2γ4 =
(−iσ2 0

0 iσ2

)
, (C )⊺ =C † =C−1 =−C . (A.22)

Another property that will be useful in e.g. App. C is the following:

(Cγ5)⊺ =−Cγ5 . (A.23)

A.2 Useful trace identities

I leave here the results in Minkowski spacetime of traces like

Tr
{
P( /p +m)

}
, (A.24)

Tr
{
P( /p

′+m)Γ( /p +m)
}

, (A.25)

with Γ ∈ {1,γ5,γµ,γµγ5}, P ∈ {P+,P+ j } and

P± = 1

2
(1±γ0) , P+ j =P+γ jγ5 , p ′ = (E ′,p′) , p = (E ,p) , (A.26)
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which appear in the spectral decomposition of nucleon two- and three-point functions. Notice
that I omit the subscript "N " on purpose. Here is the list of traces:

Tr
{
P+( /p +m)

}= 2(E +m) , (A.27)

Tr
{
P+( /p

′+m) γ5( /p +m)
}= 0 , (A.28)

Tr
{
P+( /p

′+m) γµ γ5( /p +m)
}= 2iϵ0ρµν p ′

ρpν , (A.29)

Tr
{
P+( /p

′+m)γµ( /p +m)
}= 2

[
p ′µ(E +m)+pµ(E ′+m)− g 0µ(p ′ ·p −m2)

]
, (A.30)

Tr
{
P+ j ( /p

′+m) γ5( /p +m)
}
= 2

[
p j (E +m)−p ′ j (E ′+m)

]
, (A.31)

Tr
{
P+ j ( /p

′+m) γµ( /p +m)
}
= 2i

[
ϵ jρµνp ′

ρpν−ϵ0 jρµ(p ′
ρ−pρ)m

]
, (A.32)

Tr
{
P+ j ( /p

′+m) γµγ5( /p +m)
}
= 2

[
−g jµ(p ′ ·p +m2 +m(E ′+E)

)+
+p ′µp j +p ′ j pµ+mg 0µ(p ′ j +p j )

]
. (A.33)

The Euclidean lattice version of these traces is obtained by using eqs. (A.16)-(A.21), considering
that

P± = 1

2
(1±γ4) , P+ j =P+iγ5γ j , p ′ = (i E ′,p′) , p = (i E ,p) (A.34)

and that the sum over the spins of Dirac spinors u(p,σ) becomes∑
σ

u(p,σ)ū(p,σ) =−i /p +m . (A.35)

Therefore,

Tr
{
P+(−i /p +m)

}= 2(E +m) , (A.36)

Tr
{
P+(−i /p

′+m) γ5(−i /p +m)
}= 0 , (A.37)

Tr
{
P+(−i /p

′+m) γµ γ5(−i /p +m)
}= 2ϵ4ρµν p ′

ρpν , (A.38)

Tr
{
P+(−i /p

′+m)γµ(−i /p +m)
}= 2

[
δ4µ(m2 +p ′ ·p)− i

(
p ′µ(E +m)+pµ(E ′+m)

)]
, (A.39)

Tr
{
P+ j (−i /p

′+m) γ5(−i /p +m)
}
= 2

[
p ′ j (E +m)−p j (E ′+m)

]
, (A.40)

Tr
{
P+ j (−i /p

′+m) γµ(−i /p +m)
}
=−2

[
mϵ4 jρµ(p ′

ρ−pρ)+ iϵ jρµνp ′
ρpν

]
, (A.41)

Tr
{
P+ j (−i /p

′+m) γµγ5(−i /p +m)
}
= 2

[
iδ jµ(−p ′ ·p +m2 +m(E ′+E)

)+
+ i p ′µp j + i p ′ j pµ−mδ4µ(p ′ j +p j )

]
. (A.42)

These relations are useful for computing the traces that appear in eq. (3.46).
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A.3 Spacetime translation operator

In this section, I define the translation and time evolution operators in Minkowski and Euc-
lidean space metrics. Here I use the notation with a hat on top of the operators.

A.3.1 Minkowski spacetime

The time evolution operator Û(τ) is defined such that it acts on a generic interpolating operator
O(0) ≡ O in the following way:

O −→ O(τ) = Û(τ)† O Û(τ) = e i Ĥτ O e−i Ĥτ , Û(τ) = e−i Ĥτ , (A.43)

while the space translation operator T̂(x) is

O −→ O(x) = T̂(x)† O T̂(x) = e−i p̂·x O e i p̂·x , T̂(x) = e i p̂·x . (A.44)

A.3.2 Euclidean spacetime

We apply the Wick rotation τ=−i t to the Minkowski spacetime operators, and we obtain:

O −→ O(t ) = ÛE (t )† O ÛE (t ),= e+ĤE t O e−ĤE t , ÛE (t ) = e−ĤE t , (A.45)

while the space translation operator T̂(x) is unchanged,

O −→ O(x) = T̂E (x)† O T̂E (x) = e−i p̂·x O e i p̂·x , T̂E (x) = e i p̂·x . (A.46)

A.4 Fourier Transform and spectral decomposition

A.4.1 Two-point functions

We apply the Fourier Transform to project the interpolators on a momentum p. Consider a
generic two-point function from a point x0 = (x0, t0) to x = (x, t ), that is

C2pt (p, t , t0) = ∑
x

e−i p·(x−x0)〈O(x, t ) Ō(x0, t0)〉 , (A.47)

where I omit the symbol 〈·〉G for the gauge ensemble average and the volume factor. Applying
the spectral decomposition and using eqs. (A.45)-(A.46), we obtain

C2pt (p, t , t0) = ∑
x

∑
n

e−i p·(x−x0) e−En t

2En
e i p·x 〈Ω|O |n〉〈n|Ō |Ω〉e+En t0 e−i p·x0

= ∑
n

e−En (t−t0)

2En
〈Ω|O |n〉〈n|Ō |Ω〉 , (A.48)

where En is the energy of the state n with total momentum p, that has the same quantum num-
bers as the operators O and Ō.
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A.4.2 Three-point functions

Consider now a generic three-point function with the same interpolating operators at the source
and at the sink as in eq. (A.47) and an additional current J at z = (z,τ), which reads

C3pt (p′,q, t ,τ, t0) = ∑
x,z

e−i p′·(x−x0)e i q·(z−x0)〈O(x, t ) J (z,τ) Ō(x0, t0)〉 . (A.49)

Applying the spectral decomposition and omitting t0 in the brackets of C3pt for aesthetics, we
obtain

C3pt (p′,q, t ,τ) = ∑
x,z

e−i p′·(x−x0)e i q·(z−x0)〈O(x, t ) J (z,τ) Ō(x0, t0)〉

= ∑
x,z

∑
n′,n

e−i p′·(x−x0)

2E ′
n

e i q·(z−x0)

2En
〈Ω|O(x, t )

∣∣n′〉〈
n′∣∣J (z,τ) |n〉〈n|Ō(x0, t0) |Ω〉

= ∑
x,z

∑
n′,n

e−E ′
n (t−τ)

2E ′
n

e−En (τ−t0)

2En
〈Ω|O ∣∣n′〉〈

n′∣∣J |n〉〈n|Ō |Ω〉e−i (p′−q−p)·(z−x0)

= ∑
n′,n

e−E ′
n (t−τ)

2E ′
n

e−En (τ−t0)

2En
〈Ω|O ∣∣n′〉〈

n′∣∣J |n〉〈n|Ō |Ω〉 . (A.50)

In the second line, I use the shorthand notation E ′
n and En to identify the energy of the state

n′ and n, respectively. The spatial phase factors cancel out for the momentum conservation
condition p′−q−p = 0, i.e. q = p′−p.
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APPENDIX

TWO

ISOSPIN PROJECTION

Analogously to the case of the regular spin in quantum mechanics, we define the ladder isospin
operators I+, I− and I3, such that they satisfy the commutation relations

[I+, I−] = 2I3 , [I3, I±] =±I± . (B.1)

The action of these operators on the light quark states |u〉, |ū〉, |d〉 and
∣∣d̄〉

is

I+ |u〉 = 0 , I− |u〉 = |d〉 , I3 |u〉 =+1

2
|u〉 ,

I+ |d〉 = |u〉 , I− |d〉 = 0 , I3 |d〉 =−1

2
|d〉 ,

I+
∣∣d̄〉= 0 , I−

∣∣d̄〉=−|ū〉 , I3
∣∣d̄〉=+1

2

∣∣d̄〉
,

I+ |ū〉 =− ∣∣d̄〉
, I− |ū〉 = 0 , I3 |ū〉 =−1

2
|ū〉 . (B.2)

The Casimir operator of the isospin group SU (2) is

I 2 = 1

2
(I+I−+ I−I+)+ I 2

3 (B.3)

and each isospin state |I , I3〉 is classified by its eigenvalue with respect to the operators I and I3:

I 2 |I , I3〉 = I (I +1) |I , I3〉 , I3 |I , I3〉 = I3 |I , I3〉 . (B.4)

The above-mentioned quark states are isospin states and they form the isodoublets (u,d), (d̄ , ū),
where

|u〉 =
∣∣∣∣1

2
,

1

2

〉
, |d〉 =

∣∣∣∣1

2
,−1

2

〉
, |ū〉 =−

∣∣∣∣1

2
,−1

2

〉
,

∣∣d̄〉= ∣∣∣∣1

2
,

1

2

〉
. (B.5)
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In the following, we use the quantum mechanics formula of (iso)spin addition

|I , Iz〉 =
∑

I1z , I2z

|I1, I1z ; I2, I2z〉〈I1, I1z ; I2, I2z |I , Iz |I1, I1z ; I2, I2z |I , Iz〉 (B.6)

to write an isospin state |I , Iz〉 in terms of the addition I1 ⊕ I2. In eq. (B.6), the matrix elements
〈I1, I1z ; I2, I2z |I , Iz |I1, I1z ; I2, I2z |I , Iz〉 are Clebsch-Gordan coefficients.

Pion: I = 1
The pions π are mesons with u- and d-quarks constituents. They form an isotriplet of states
|I = 1, Iz =−1〉, |I = 1, Iz = 0〉 and |I = 1, Iz =+1〉, which, in analogy with the spin addition, can
be seen as the isospin addition of their constituents (the quarks), I1 = 1

2 ⊕ I2 = 1
2 .

We start with the isospin state |1,+1〉 = − ∣∣d̄u
〉

and the others are obtained by applying the
ladder operator I−:

I− |1,+1〉 =p
2 |1,0〉 , I−(− ∣∣d̄ ,u

〉
) = |ū,u〉− ∣∣d̄ ,d

〉
, (B.7)

|1,0〉 = 1p
2

(|ū,u〉− ∣∣d̄ ,d
〉

) . (B.8)

We apply again the operator I− to the state |1,0〉 to get |1,−1〉,
I− |1,0〉 =p

2 |1,−1〉 , I−
1p
2

(|ū,u〉− ∣∣d̄ ,d
〉

) =p
2 |ū,d〉 , (B.9)

|1,−1〉 = |ū,d〉 . (B.10)

The pions π are mesons with isospin I = 1 and they form the isospin triplet (π+,π0,π−),
where ∣∣π+〉=− ∣∣d̄ ,u

〉
,

∣∣π0〉= 1p
2

(|ū,u〉− ∣∣d̄ ,d
〉

) , |π−〉 = |ū,d〉 . (B.11)

The construction of these states is similar to the spin-1 case in quantum mechanics. However,
the overall minus sign for

∣∣π+〉
and the relative minus sign for

∣∣π0
〉

is due to the definition of eq.
(B.2).

Nucleon: I = 1/2
The nucleon states |N〉, baryons with I = 1/2 and Iz = ±1/2, are constructed from the light
quarks ∣∣p〉= |d ,u,u〉 =

∣∣∣∣1

2
,+1

2

〉
,

∣∣p〉= |d ,u,d〉 =
∣∣∣∣1

2
,−1

2

〉
. (B.12)

The isospin 1/2 is also obtained from the addition I1 = 1⊕ I2 = 1
2 . In particular∣∣∣∣1

2
,+1

2

〉
=− 1p

3

∣∣∣∣1

2
,+1

2

〉
|1,0〉+

√
2

3

∣∣∣∣1

2
,−1

2

〉
|1,1〉 ,∣∣∣∣1

2
,−1

2

〉
=+ 1p

3

∣∣∣∣1

2
,−1

2

〉
|1,0〉−

√
2

3

∣∣∣∣1

2
,+1

2

〉
|1,−1〉 . (B.13)
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Translating these relations in terms of physical states (pions and nucleons),we obtain∣∣∣∣1

2
,+1

2

〉
=− 1p

3

∣∣p〉∣∣π0〉+√
2

3
|n〉 ∣∣π+〉

,∣∣∣∣1

2
,−1

2

〉
=+ 1p

3
|n〉 ∣∣π0〉−√

2

3

∣∣p〉 |π−〉 . (B.14)

These results are used to project the nucleon-pion interpolating operator OI ,Iz
Nπ on the isospin

I , Iz :

O1/2, +1/2
Nπ =− 1p

3
Op Oπ0 +

√
2

3
On Oπ+ , (B.15)

O1/2, −1/2
Nπ =+ 1p

3
On Oπ0 −

√
2

3
Op Oπ− . (B.16)

Analogously, the interpolating operators with isospin 3/2 are also obtained from the addition
I1 = 1⊕ I2 = 1

2 :

O3/2, +3/2
Nπ = Op Oπ+ , (B.17)

O3/2, +1/2
Nπ = 2p

3
Op Oπ0 + 1p

3
On Oπ+ , (B.18)

O3/2, −1/2
Nπ = 2p

3
On Oπ0 + 1p

3
Op Oπ− , (B.19)

O3/2, −3/2
Nπ = On Oπ− . (B.20)

The physical states corresponding to I = 3/2 are the ∆, which are decouplet baryons:

∆++ =
∣∣∣∣3

2
,+3

2

〉
, ∆+ =

∣∣∣∣3

2
,+1

2

〉
, ∆0 =

∣∣∣∣3

2
,−1

2

〉
, ∆− =

∣∣∣∣3

2
,−3

2

〉
. (B.21)
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APPENDIX

THREE

GROUP THEORY REMARKS

In the continuum, the theory of particles with spin 1 and 1/2 is related to the representation
theory of SO(3) and its double cover group SU (2). On a hypercubic lattice, the spin is real-
ised by the reduction of SO(3) and SU (2) with respect to the octahedral group Oh or its double
cover 2Oh , respectively. The symmetry group of particles with integer spin (bosons) is Oh , while
2Oh is for particles with half-integer spin (fermions). The crystallographic point group Oh is
composed of 24 elements, split into five conjugacy classes I ,3C2,8C3,6C4,6C ′

2. The notation is
standard in crystallography: nCm means a class of n elements of order m, i.e. each is an mth
root of the identity. In Tab. I of [85], there are all the elements of the cubic group, paramet-
erized by a rotation axis n(i ) and a rotation angle ωi . Following loosely [124, 70], the number
of Irreducible Representations (IRs hereafter) is equal to the number of conjugacy classes for
finite groups. The five IRs of Oh are called A1, A2, E , T1, and T2, with dimensions 1, 1, 2, 3, 3,
respectively. The irreducible representation A1 describes spinless particles like the pions, and
it will be mentioned in the following. Regarding the group 2Oh , it is constructed from Oh by
adding a negative identity J for ±2π rotations. This results in 48 elements, which are divided in
eight conjugacy classes: I , J , 6C4, 8C3, 8C6, 6C8, 6C ′

8 and 12C ′
4. The IRs for this group are eight

and in particular, they are A1, A2, E , T1, and T2 as for Oh , but additionally, there are G1, G2 and
H . Thus, there are in total eight conjugacy classes I , J , 6C4, 8C3, 8C6, 6C8, 6C ′

8 and 12C ′
4. For

example, a matrix representation of G1 is obtained from Pauli σ matrices:

D(n,ω)G1 = e−i n·σ2 ω = I cos
ω

2
− iσ ·n sin

ω

2
. (C.1)

One may recognize this formula from quantum mechanics because it is used to transform spin
1/2 particles under rotations along the axis n by an angle ω. The matrix of eq. (C.1) is also
known as the Wigner D-matrix for spin 1/2 and the irreducible representation G1 is therefore
relevant for describing e.g. electrons and nucleons.

Only total angular momenta j = 0,1/2,1,3/2 correspond to single IRs, while j ≥ 2 are de-
scribed by two or more different IRs. In Tab. C.1, it is displayed the reduction of SU (2) to 2Oh ,
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j Γ(dimΓ)
0 A1(1)

1/2 G1(2)
1 T1(3)

3/2 H(4)
2 E(2)⊕T2(3)

5/2 G2(2)⊕H(4)
3 A2(1)⊕T1(3)⊕T2(3)

7/2 G1(2)⊕G2(2)⊕H(4)

Table C.1: Reduction of SU (2) to 2Oh , up to j = 7/2

up to j = 7/2. The projection of an operator O onto a specific row r of a lattice irreducible
representation Γ is

Or,Γ =
∑

Si∈G
T Γ

r r (Si )
(
T (Si ) O T −1(Si )

)
, (C.2)

where the sum is over all the elements Si in the group G and the term in brackets represents
the transformation of the original interpolating operator O under the element Si . While the
irreducible representation Γ is equivalent to the spin s of the particle in the continuum, its row
r corresponds ms component. In the case of rotations R and inversions I , the transformation
properties of a single-hadron operator Os,ms (p) with momentum p, spin s and ms component
are

Os,ms (p)
R−−−−−→ R Os,ms (p) R−1 =∑

m′
s

D s
ms m′

s
(R−1) Os,m′

s
(R p) , (C.3)

Os,ms (p)
I−−−−−→ I Os,ms (p) I = (−1)P Os,m′

s
(−p) , (C.4)

where D s
ms m′

s
(R−1) is the Wigner D-matrix ([143]) of spin s and rotation matrix R. In the case

of a two-hadron interpolating operator O = O1O2 like the nucleon-pion operator ONπ(pN ;pπ) =
ON (pN )Oπ(pπ), if we want to project it on the row r of the irreducible representation Γ with a
total momentum ptot = 0, the group theory projection method reads

Or,Γ(ptot = 0) = ∑
Si∈G

T Γ
r r (Si )

(
T (Si ) O1(p) T −1(Si )

)(
T (Si ) O2(−p) T −1(Si )

)
. (C.5)

Taking into example the projection of a nucleon-pion interpolating operator ONπ = ON Oπ on
ms =±1/2 and s = 1/2 (Γ=G1), the projection method of eq. (C.5) gives

(ONπ)G1
ms

(ptot = 0) = ∑
Si∈2Oh

T G1
ms ms

(Si )
(
T (Si ) ON T −1(Si )

)(
T (Si ) Oπ T −1(Si )

)
. (C.6)

88



Chapter C – Group theory remarks Lorenzo Barca

In eq. (C.6) the sum is over the 48 elements that belong to the group 2Oh ; each of them has a
rotation axis n(i ) and a rotation angle ωi (see Tab. II in [85]).

In particular, I recall that the transformation properties under rotations R and inversions I
of the nucleon interpolating operator:

T (R) ON ,ms (p) T (R)−1 =∑
m′

s

D1/2
ms m′

s
(R−1) ON ,m′

s
(R p) , (C.7)

T (I ) ON ,ms (p) T (I ) = ON ,ms (−p) (C.8)

and the ones for the pion, which is a spinless pseudoscalar particle:

T (R) Oπ(p) T (R)−1 = Oπ(R p) , (C.9)

T (I ) Oπ(p) T (I ) =−Oπ(−p) . (C.10)

If we consider only unit momenta1 for the nucleon and the pion, the projection in eq. (C.6)
gives

(ONπ)G1
ms=↑(ptot = 0) =+ON↓(−ex) Oπ(ex)−ON↓(ex) Oπ(−ex) +

− i ON↓(−ey) Oπ(ey)+ i ON↓(ey) Oπ(−ey) +
+ON↑(−ez) Oπ(ez)−ON↑(ez) Oπ(−ez) , (C.11)

(ONπ)G1
ms=↓(ptot = 0) =+ON↑(−ex) Oπ(ex)−ON↑(ex) Oπ(−ex) +

+ i ON↑(−ey) Oπ(ey)− i ON↑(ey) Oπ(−ey) +
−ON↓(−ez) Oπ(ez)+ON↓(ez) Oπ(−ez) . (C.12)

In a moving frame, the symmetries of the lattice with isotropic spatial extension L are further
reduced to specific subgroups of Oh and 2Oh , whose elements Si obey the relation

Si d = d , (C.13)

where d is the boost direction, which is related to the total momentum of the single- or multi-
hadron operator ptot by:

ptot = 2π

L
d . (C.14)

The groups of elements that satisfy eq. (C.13) are called little groups.
In Tab. C.2, there are the respective little groups of 2Oh for each specific d. In Tab. III of [85],

there are also the little groups of Oh and rotations that satisfy2 Si d =−d.

1The notation is the following: ex = 2π
L (1,0,0), ey = 2π

L (0,1,0) and ez = 2π
L (0,0,1), like in the main text.

2For equal masses, the system is symmetric under d →−d and the little groups consist of elements that satisfy
Si d =±d.
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Group d Little Group Ri d = d

2Oh

(0, 0, 1) 2C4v {Ri | i = 1, 4, 7, 10, 13, 16, 19, 48}
(1, 1, 0) 2C2v {Ri | i = 1, 38, 44, 48}
(1, 1, 1) 2C3v {Ri | i = 1, 20, 24, 28, 32, 48}

Table C.2: Rotations Ri that obey the condition Ri d = d

Let us consider a generic moving frame d and the nucleon-pion system with total mo-
mentum ptot = 2π

L d. We perform the momentum projection via the Fourier transform:

(ONπ)ms (ptot) =
∑
x,y

e−i ptot·xe−i pπ(y−x)ON ,ms (x, t )Oπ(y, t ) . (C.15)

The reason why we employ this Fourier transform is because it simplifies the calculations as
we can apply the relation of eq. (C.13) when we transform the operator under rotations or
inversions. Indeed, calling L the little group,

(ONπ)G1
ms

(ptot = 0) = ∑
Ri∈L

T G1
ms ms

(Ri )
(∑

m′
s

D s
ms m′

s
(Ri ) ON ,m′

s
(p′

N )
)
Oπ(p′

π) , (C.16)

with p′
N = ptot −Ri pπ and p′

π = Ri pπ. For example, in the case of d = (0,0,1) = ez, the little
group is 2C4v , which is composed of eight elements (see Tab. C.2). The projection onto the
lattice irreducible representation reads

(ONπ)G1
ms

(êz) = ∑
Ri∈2C4v

T G1
ms ms

(Ri )
(∑

m′
s

D s
ms m′

s
(R−1

i ) ON ,m′
s
(p′

N )
)
Oπ(p′

π) , (C.17)

which gives the two possibilities

(ONπ)G1,1
ms

(êz) = 4 ON ,ms (ez) Oπ(e0) , (C.18)

(ONπ)G1,2
ms

(êz) = 4 ON ,ms (e0) Oπ(ez) . (C.19)
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APPENDIX

FOUR

WICK CONTRACTIONS

In this Appendix, I review the Wick contractions of quarks and their application to standard
nucleon three-point functions and to nucleon to nucleon-pion three-point functions. The cal-
culations are cross checked using the Mathematica package presented in [66] and we localise
the interpolating operator at the source position 0 = (0,0) for more clarity.

Using the nucleon interpolating operators

ON ,γ(x) = ϵabc
(
d a
α(x) C̃αβ ub

β(x)
)

qc
γ(x) , (D.1)

ŌN ,γ̄(0) = ϵāb̄c̄ q̄ c̄
γ̄(0)

(
ūb̄
β̄

(0) C̃β̄ᾱ d̄ ā
ᾱ (0)

)
, (D.2)

where q = u,d determines the isospin component N = p,n and the intermediate current at a
space-time position z = (z,τ)

Jq = q̄d
ϵ̄ (z) Γδ̄δ qd

ϵ (z) , with q = u,d , (D.3)

the proton three-point functions are

C
p+Jq→p
3pt (x, z,0) = Pk

γ̄γ 〈 Op,γ(x) Jq (z) Ōp,γ̄(0) 〉 , (D.4)

where Pk is the spin-parity projector. In particular, by employing the proton operators of eqs.
(D.1), (D.2) and using the Wick’s theorem, we obtain

C
p+Jd→p
3pt (x, z,0) = ϵabc ϵāb̄c̄ Pk

γ̄γ Γδ̄δ C̃αβ C̃β̄ᾱ

[
Dd ā
δᾱ(x,0)Dad

αδ̄
(x,0)−Ddd

δϵ̄ (z, z)Daā
αᾱ(x,0)

]
×

×
[
U cc̄
γγ̄(x,0)U bb̄

ββ̄
(x,0)−U cb̄

γβ̄
(x,0)U bc̄

βγ̄(x,0)
]

. (D.5)
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C
p+Ju→p
3pt (x, z,0) = ϵabc ϵāb̄c̄ Pk

γ̄γ Γ
δ̄δ C̃αβ C̃β̄ᾱ Daā

αᾱ(x,0)×
×

{
−U dd

δδ̄
(z, z)

[
U cc̄
γγ̄(x,0)U bb̄

ββ̄
(x,0)−U cb̄

γβ̄
(x,0)U bc̄

βγ̄(x,0)
]
+

+U dc̄
δγ̄ (z,0)

[
U cd
γδ̄

(x, z)U bb̄
ββ̄

(x,0)−U cb̄
γβ̄

(x,0)U bd
βδ̄

(x, z)
]
+

−U db̄
δβ̄

(z,0)
[
U cd
γδ̄

(x, z)U bc̄
βγ̄(x,0)−U cc̄

γγ̄(x,0)U bd
βδ̄

(x,0)
]}

. (D.6)

In C
p+Jd→p
3pt , there are 2 pairs of u-quarks and 2 pairs of d-quarks to consider and the possible

Wick contractions correspond to the permutations of pairs: 2!×2!, as it results from eq. (D.5). In

C
p+Ju→p
3pt , there are instead 3 pairs of u-quarks and 1 pair of d-quarks, so that the possible Wick

contractions are: 3!×1!. The standard results obtained in eqs. (D.5), (D.6) are checked against a
Mathematica library that performs such calculations (see [66]).

However, in the isospin symmetry limit, where U ab
αβ

(z, y) = Dab
αβ

(z, y), the disconnected con-

tribution in eqs. (D.6)-(D.5), which are proportional to Dee
ϵϵ̄ (z, z) are equal and opposite, so that

for an intermediate current Ju−d (z) = ūd
δ̄

(z)Γδ̄δ ud
δ

(z))− d̄ d
δ̄

(z)Γδ̄δ d d
δ

(z)), the three-point func-
tion reads

C
p+Ju−d→p
3pt (x, z,0) = ϵabc ϵāb̄c̄ Pk

γ̄γ Γδ̄δ C̃αβ C̃β̄ᾱ×
×

{
Daā
αᾱ(x,0)

[
+U dc̄

δγ̄ (z,0)
(
U cd
γδ̄

(x, z)U bb̄
ββ̄

(x,0)−U cb̄
γβ̄

(x,0)U bd
βδ̄

(x, z)
)
+

−U db̄
δβ̄

(z,0)
(
U cd
γδ̄

(x, z)U bc̄
βγ̄(x,0)

)]
+Dd ā

δᾱ(x,0)Dad
αδ̄

(x,0)U cb̄
γβ̄

(x,0)U bc̄
βγ̄(x,0)

}
,

where I have also used the antisymmetric properties of the color tensors and of the charge con-

jugation matrix (see eq. (A.23)). A comparison with the three-point function C
p+J−→p
3pt (x, z,0) in

eq. (3.33), makes it evident that in the isospin symmetric limit and with this choice of nucleon

interpolators, C
p+J−→p
3pt (x, z,0) = C

p+J−→p
3pt (x, z,0), where J−(z) = d̄ d

δ̄
(z) Γδ̄δ ud

δ
(z). This result

is also confirmed by the Wigner-Eckart theorem.
Here I list the results of the new processes that I have studied:

C
p+J−→pπ−
3pt (x, y, z) = Pk

γ̄γ 〈 Op,γ(x) Oπ−(y) J−(z) Ōp,γ̄(0) 〉
= C

p+J−→pπ−
3pt , A +C

p+J−→pπ−
3pt , B +C

p+J−→pπ−
3pt , C +C

p+J−→pπ−
3pt , D ,

(D.7)

C
p+J−→pπ−
3pt , A = ϵabc ϵāb̄c̄ Pk

γ̄γ Γδ̄δ C̃αβ C̃β̄ᾱ γ
5
ϵϵ′ Deā

ϵᾱ(y,0) Dad
αδ(x, z)×

×
[
U de
δϵ̄ (z, y)

(
U cc̄
γγ̄(x,0) U bb̄

ββ̄
(x,0)−U cb̄

γβ̄
(x,0) U bc̄

βγ̄(x,0)
)]

.

(D.8)
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C
p+J−→pπ−
3pt , B = ϵabcϵāb̄c̄ C̃αβ C̃ β̄ᾱ Pγ̄γ Γδ̄δ γ

5
ϵ̄ϵ Deā

ϵᾱ(y,0) Dad
αδ̄

(x, z)×
×

[
−U dc̄

δγ̄ (z,0)
(

U ce
γϵ̄ (x, y) U bb̄

ββ̄
(x,0)−U cb̄

γβ̄
(x,0) U be

βϵ̄ (x, y)
)
+

+U db̄
δβ̄

(z,0)
(

U ce
γϵ̄ (x, y) U bc̄

βγ̄(x,0)−U cc̄
γγ̄(x,0) U be

βϵ̄ (x, y)
)]

.

(D.9)

C
p+J−→pπ−
3pt , C = ϵabcϵāb̄c̄ C̃αβ C̃ β̄ᾱ Pγ̄γ Γδδ′ γ

5
ϵ̄ϵ Ded

ϵδ̄
(y, z) Daā

αᾱ(x,0)[
+U dc̄

δγ̄ (z,0)
(

U ce
γϵ̄ (x, y) U bb̄

ββ̄
(x,0)− U be

βϵ̄ (x, y) U cb̄
γβ̄

(x,0)
)

−U db̄
δβ̄

(z,0)
(

U ce
γϵ̄ (x, y) U bc̄

βγ̄(x,0) − U be
βϵ̄ (x, y) U cc̄

γγ̄(x,0)
)]

. (D.10)

C
p+J−→pπ−
3pt , D = ϵabc ϵāb̄c̄ C̃αβ C̃ β̄ᾱ Pk

γ̄γ Γδ̄δ γ
5
ϵ̄ϵ Ded

ϵδ̄
(y, z) Daā

αᾱ(x,0)×
×U de

δϵ̄ (z, y)
(

U cc̄
γγ̄(x,0) U bb̄

ββ̄
(x,0)−U cb̄

γβ̄
(x,0) U bc̄

βγ̄(x,0)
)

.

(D.11)

C
p+J−→nπ0

3pt (x, y, z) = Pk
γ̄γ 〈 On,γ(x) Oπ0 (y) J−(z) Ōp,γ̄(0) 〉

= 1p
2

(
C

p+J−→nπ0

3pt , A +C
p+J−→nπ0

3pt , B +C
p+J−→nπ0

3pt , C

)
.

(D.12)

C
p+J−→nπ0

3pt , A = ϵabc ϵāb̄c̄ Pk
γ̄γ Γδ̄δ C̃αβ C̃β̄ᾱ γ

5
ϵ̄ϵ

(
Dcd
γδ̄

(x, z)Daā
αᾱ(x,0)−Dcā

γᾱ(x,0)Dad
αδ̄

(x, z)
)
×

×U de
δϵ̄ (z, y)

(
U ec̄
ϵγ̄ (y,0)U bb̄

ββ̄
(x,0)−U eb̄

ϵβ̄
(y,0)U bc̄

βγ̄(x,0)
)

.

(D.13)

C
p+J−→nπ0

3pt , B =+ϵabcϵāb̄c̄ C̃αβ C̃β̄ᾱ Pγ̄γ Γδ̄δ γ
5
ϵ̄ϵ

(
Dcd
γδ̄

(x, z) Daā
αᾱ(x,0)−Dcā

γᾱ(x,0) Dad
αδ̄

(x, z)
)
×

×U be
βϵ̄ (x, y)

(
U dc̄
δγ̄ (z,0) U eb̄

ϵ′β̄(y,0)−U db̄
δβ̄

(z,0) U ec̄
ϵ′γ̄(y,0)

)
+

−ϵabcϵāb̄c̄ C̃αβ C̃β̄ᾱPγ̄γ Γδ̄δ γ
5
ϵ̄ϵ

(
U db̄
δ′β̄(z,0) U bc̄

βγ̄(x,0)−U dc̄
δ′γ̄(z,0) U bb̄

ββ̄
(x,0)

)
×

×Deā
ϵᾱ(y,0)

(
Dce
γϵ̄(x, y) Dad

αδ(x, z)−Dcd
γδ̄

(x, z) Dae
αδ̄

(x, y)
)

. (D.14)

C
p+J−→nπ0

3pt , C =−ϵabcϵāb̄c̄ C̃αβ C̃β̄ᾱ Pγ̄γ Γδ̄δ γ
5
ϵ̄ϵ

(
U db̄
δβ̄

(z,0) U bc̄
βγ̄(x,0)−U dc̄

δγ̄ (z,0) U bb̄
ββ̄

(x,0)
)

[
−Ded

ϵδ̄
(y, z)

(
Dce
γϵ̄(x, y) Daā

αᾱ(x,0)−Dcā
γᾱ(x,0) Dae

αϵ̄(x, y)
)]

. (D.15)

In addition, there are disconnected loops, that in the isospin symmetry limit cancel like in the

case of C
p+Ju−d→p
3pt (x, z,0).
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APPENDIX

FIVE

IMPLEMENTATION OF CORRELATION FUNCTIONS WITH
CHROMA

This additional and rather technical Appendix is about the sequential method applied for the
processes p +J− → n +π0 and p +J− → p +π−. In the following, I use CHROMA and GPT
notation for the definition of functions like quar kContr act X Y , tr aceColor and tr aceSpi n.

For example, given 2 propagator objects Dab
αβ

(x,0) and Dbb̄
αβ̄

(x,0), with 3× 3 different color

indices (a,b and ā, b̄) and 4×4 different spin indices (α,β and ᾱ, β̄), we can compute some the
contraction

G c̄c
ββ̄

(x,0) ≡ ϵabcϵāb̄c̄ Daā
αβ(x,0) Dbb̄

αβ̄
(x,0) = quar kContr act13

(
D(x,0),D(x,0)

)
, (E.1)

with quar kContr act13 being the routine implemented in CHROMA or GPT, in order to do the
contraction of the 1st Dirac index with the 3r d one.

The other contraction routines are also implemented in CHROMA and GPT (see). I will use
the shorthand notation:

• quar kContr act X Y = qC X Y ;

• C̃ =Cγ5;

• (·)TD = tr ansposeSpi n(), it interchanges the Dirac indices.

E.1 p +Jd → p

In the following, I remove the detailed notation from C3pt and the symbol of the sum
∑

in the
Fourier Transform for brevity. The expression for the three-point function is

C3pt = e i q·z Tr
{(
γ5 S†(z,0) γ5

)
ΓD(z,0)

}
, (E.2)
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where the sequential propagator S(x,0) is obtained from the inversion of the sum of the follow-
ing sequential sources:

S(z,0) = e i q·z D(z, x) γ5
[
S̃p→p

d̄d
(x,0)

]†
γ5 , (E.3)

with S̃p→p

d̄d
(x,0) being the proton-to-proton sequential source with a d̄d-current, defined by

S̃p→p

d̄d
(x,0) = S̃1(x,0)+ S̃2(x,0) (E.4)

and

S̃1(x,0) = [
qC 12

(
U ∗P , C̃ ∗U ∗ C̃

) ]TD , (E.5)

S̃2(x,0) = qC 14
(

P ∗U ∗ C̃ , C̃ ∗U
)

. (E.6)

E.2 p +Ju → p

The expression for the three-point function is

C3pt (p′,q; t ,τ) = e i q·z Tr
{(
γ5 S†(z,0) γ5

)
ΓU (z,0)

}
, (E.7)

where the sequential propagator S(x,0) is obtained from the inversion of the sum of the follow-
ing sequential sources:

S(z,0) = e i q·z U (z, x) γ5
[
S̃p→p

d̄d
(x,0)

]†
γ5 , (E.8)

with S̃p→p

d̄d
(x,0) being the proton-to-proton sequential source with a d̄d-current, defined by

S̃p→p
ūu (x,0) = S̃1(x,0)+ S̃2(x,0)+ S̃3(x,0)+ S̃4(x,0) (E.9)

and

S̃1 =−Tr aceSpi n
[

qC 24( U ∗ C̃ , C̃ ∗D )
]∗P , (E.10)

S̃2 =−P∗qC 24( D ∗ C̃ , C̃ ∗U ) , (E.11)

S̃3 = qC 13( C̃ ∗D ∗ C̃ , U ∗P ) , (E.12)

S̃4 =
[

qC 12
(

U ∗P , C̃ ∗U ∗ C̃
) ]TD . (E.13)
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E.3 p +J− → n

The expression for the three-point function is

C3pt (x, z,0) = e i q·z Tr
{(
γ5 S†(z,0) γ5

)
Γµ U (z,0)

}
.

Therefore
S(z,0) = e i p′

N ·xD(z, x)γ5
[

S̃p→n(x,0)
]†
γ5 , (E.14)

with S̃p→n(x,0) being the proton-to-neutron sequential source that is defined by the sum of
four pieces, i.e.

S̃p→n(x,0) = S̃1(x,0)+ S̃2(x,0)+ S̃3(x,0)+ S̃4(x,0) (E.15)

and

S̃1 =−Tr aceSpi n
[

qC 24( U ∗ C̃ , C̃ ∗D )
]∗P , (E.16)

S̃2 =−P∗qC 24( D ∗ C̃ , C̃ ∗U ) , (E.17)

S̃3 = qC 13( C̃ ∗D ∗ C̃ , U ∗P ) , (E.18)

S̃4 =−qC 14( P∗D ∗ C̃ , C̃ ∗U ) . (E.19)

E.4 p +J− → n +π0

This process is represented in Fig. 4.2.

A-like

C3pt (x, y, z) = e i q·z Tr
{(
γ5 S†

2(z,0) γ5
)
Γµ S1(z,0)

}
, (E.20)

S1(z,0) = e−i p′
π·y U (z, y) γ5 U (y,0) , (E.21)

S2(z,0) = e i p′
N ·x D(z, x) γ5

[
S̃†

1(x,0)+ S̃†
2(x,0)+ S̃†

3(x,0)+ S̃†
4(x,0)

]
γ5

= e i p′
N ·x D(z, x) γ5

[
S̃p→n(x,0)

]†
γ5 , (E.22)

S̃1(x,0) =−Tr aceSpi n
[

qC 24( D(x,0)∗ C̃ , C̃ ∗U (x,0) )
]
∗P , (E.23)

S̃2(x,0) =−P∗qC 24( D(x,0)∗ C̃ , C̃ ∗U (x,0) ) , (E.24)

S̃3(x,0) = qC 13( C̃ ∗D(x,0)∗ C̃ , U (x,0)∗P ) , (E.25)

S̃4(x,0) =−qC 14( P∗D(x,0)∗ C̃ , C̃ ∗U (x,0) ) , (E.26)

The sequential source for S2(z,0) is equivalent to the sequential source for the standard nucleon
three-point function p +J− → n.
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B-like

The neutral pion is π0 = 1p
2

(ūγ5u − d̄γ5d). We divide this expression in two terms: one part

coming from ūγ5u and the other from −d̄γ5d .
The term resulting from ūγ5u is

C3pt = e i q·z Tr
{(
γ5 S†

2(z,0) γ5
)
Γµ U (z,0)

}
, (E.27)

S1(x,0) = e−i p′
π·y D(x, y)∗γ5 ∗D(y,0) , (E.28)

S2(z,0) = e i p′
N ·x D(z, x)∗γ5

[
S̃B1 (x,0)

]†
γ5 , (E.29)

S̃B1 (x,0) = S̃1(x,0)+ S̃2(x,0)+ S̃3(x,0)+ S̃4(x,0) , (E.30)

S̃1(x,0) = −Tr aceSpi n
[
qC 24

(
D(x,0)∗ C̃ , C̃ ∗S1(x,0) )

)]∗P , (E.31)

S̃2(x,0) =−P∗qC 24( D(x,0)∗ C̃ , C̃ ∗S1(x,0) ) , (E.32)

S̃3(x,0) = qC 13( C̃ ∗D(x,0)∗ C̃ , S1(x,0)∗P ) , (E.33)

S̃4(x,0) =−qC 14( P∗D(x,0)∗ C̃ , C̃ ∗S1(x,0) ) . (E.34)

The term resulting from −d̄γ5d is

C3pt (x, y, z) = e i q·z Tr
{(
γ5 S†

2(z,0) γ5
)
Γµ U (z,0)

}
, (E.35)

S1(x,0) = e−i p′
π·y D(x, y)∗γ5 ∗D(y,0) , (E.36)

S2(z,0) = e i p′
N ·x D(z, x)∗γ5

[
S̃B2 (x,0)

]†
γ5 , (E.37)

S̃B2 (x,0) = S̃5(x,0)+ S̃6(x,0)+ S̃7(x,0)+ S̃8(x,0) , (E.38)

S̃5 =−qC 13( C̃ ∗S1(x,0)∗ C̃ , U (x,0)∗P ) , (E.39)

S̃6 = qC 14( P∗S1(x,0)∗ C̃ , C̃ ∗U (x,0) ) , (E.40)

S̃7 = P∗qC 24( S1(x,0)∗ C̃ , C̃ ∗U (x,0) ) , (E.41)

S̃8 = Tr aceSpi n
[

qC 24( S1(x,0)∗ C̃ , C̃ ∗U (x,0) )
]
∗P . (E.42)

The sequential source for S2(z,0) has the same expression as the sequential source for the
standard nucleon three-point function p +J− → n, but it also involves the first sequential
propagator S1(z,0).

97



Chapter E – Implementation of correlation functions with Chroma Lorenzo Barca

C-like

C3pt (x, y, z) = e i q·z Tr
{(
γ5 S†

2(z,0) γ5
)
Γµ U (z,0)

}
, (E.43)

S2(z,0) = e+i p′
π·y D(z, y) γ5 S1(y,0) , (E.44)

S1(y,0) = e i p′
N ·x D(y, x) γ5

[
S̃†

1(x,0)+ S̃†
2(x,0)+ S̃†

3(x,0)+ S̃†
4(x,0)

]
γ5

= e i p′
N ·x D(z, x)∗γ5

[
−S̃p→n(x,0)

]†
γ5 , (E.45)

S̃1(x,0) = qC 13( C̃ ∗D(x,0)∗ C̃ , U (x,0)∗P) , (E.46)

S̃2(x,0) = −qC 14( P∗D(x,0)∗ C̃ , C̃ ∗U (x,0) ) , (E.47)

S̃3(x,0) = −Tr aceSpi n( qC 24( D(x,0)∗ C̃ , C̃ ∗U (x,0) ) )∗P , (E.48)

S̃4(x,0) = −P∗qC 24( D(x,0)∗ C̃ , C̃ ∗U (x,0) ) . (E.49)

The sequential source for S1(z,0) is equivalent to the sequential source for the standard nucleon
three-point function p +J− → n, apart from an overall minus sign.

E.5 p +J− → p +π−

See Fig. 4.1.

A-like

C3pt = e i q·z Tr
{(
γ5 S†

2(z,0) γ5
)
Γµ S1(z,0)

}
, (E.50)

S1(z,0) = e−i p′
π·y U (z, y) γ5 D(y,0) , (E.51)

S2(z,0) = e+i p′
N ·x D(z, x) γ5

[
S̃†

1(x,0)+ S̃†
2(x,0)

]
γ5

= e i p′
N ·x D(z, x) γ5

[
S̃p→p

d̄d
(x,0)

]†
γ5 , (E.52)

S̃1(x,0) = qC 12( U (x,0)∗P , C̃ ∗U (x,0)∗ C̃ )TD , (E.53)

S̃2(x,0) = qC 14( P∗U (x,0)∗ C̃ , C̃ ∗U (x,0) ) . (E.54)

Notice that one sequential source corresponds to the one for p +Jd → p , see App. E.1.
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B-like

C3pt = e i q·z Tr
{(
γ5 S†

2(z,0) γ5
)
Γµ U (z,0)

}
, (E.55)

S2(z,0) = e i p′
N ·x D(x, z) γ5

[
S̃1(x,0)† + S̃2(x,0)† + S̃3(x,0)† + S̃4(x,0)† ]

γ5 , (E.56)

S̃1(x,0) =−P∗qC 24( S1(x,0)∗ C̃ , C̃ ∗U (x,0) ) , (E.57)

S̃2(x,0) =P∗qC 24( U (x,0)∗ C̃ , C̃ ∗S1(x,0) ) , (E.58)

S̃3(x,0) =−qC 14( P∗S1(x,0)∗ C̃ , C̃ ∗U (x,0) ) , (E.59)

S̃4(x,0) =−
[

qC 12( U (x,0)∗P , C̃ ∗S1(x,0)∗ C̃ )
]TD

, (E.60)

(E.61)

S1(x,0) = e−i p′
π·y U (x, y) γ5 D(y,0) . (E.62)

C-like

C3pt = e i q·z Tr
{(
γ5 S†

2(z,0) γ5
)
Γµ D(z,0)

}
, (E.63)

S2(z,0) = e i p′
π·y D(z, y) γ5 S1(y,0) , (E.64)

S1(y,0) = e i p′
N ·x D(y, x) γ5

[
S̃1(x,0)† + S̃2(x,0)† + S̃3(x,0)† + S̃4(x,0)† ]

γ5

= e i p′
N ·x D(z, x) γ5

[
S̃p→p

ūu (x,0)
]†
γ5 , (E.65)

S̃1(x,0) =−Tr aceSpi n
[

qC 24( D(x,0)∗ C̃ , C̃ ∗U (x,0) )
]
∗P , (E.66)

S̃2(x,0) =−P∗
[

qC 24( D(x,0)∗ C̃ , C̃ ∗U (x,0) )
]

, (E.67)

S̃3(x,0) = qC 13( C̃ ∗D(x,0)∗ C̃ , U (x,0)∗P ) , (E.68)

S̃4(x,0) = qC 12( U (x,0)∗P , C̃ ∗D(x,0)∗ C̃ )TD . (E.69)

Notice that one sequential source is equivalent to the one in the process p +Ju → p , see
App. E.2.

D-like

One-End trick:

C D
3pt (p′

N , p′
π,q; t ,τ) = 〈 ∑

x
e−i p′

N ·x C N N
2pt (x, t )

∑
z,y

e i q·ze−i p′
π·y C

πJ

2pt (z,τ;y; t ) 〉 (E.70)
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where the symbol 〈·〉 means that the correlation functions must be multiplied for each gauge
configuration. The expressions for these are:

C N N
2pt (x, t ) =+Tr

{
P∗ tr aceColor {D(x,0)∗ tr aceSpi n{G(x,0)}}

} +
+Tr{P∗ tr aceColor {D(x,0)∗G(x,0)}} , (E.71)

C
πJ

2pt (z,τ;y; t ) = Tr
{

D(z, y)† γ5ΓU (z, y)
}

, (E.72)

where
G(x,0) = qC 13(D(x,0)∗ C̃ t ,C̃ ∗D(x,0)) . (E.73)

C N N
2pt represents the nucleon-to-nucleon term depicted in Fig. C

πJ

2pt represents the current-to-

pion term depicted in Fig. Notice that two all-to-all propagators are needed to compute C
πJ

2pt
and in Sec. 2.9, I explain how to compute it with the One-End trick.
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APPENDIX

SIX

ENSEMBLE USED FOR THE SIMULATIONS

Ensemble β N 3
s ×Nt Boundary condition a[fm] mπ[MeV] mπL Nc f g s

A653 3.34 243 ×48 periodic 0.098 426 5.1 800

Table F.1:
CLS gauge ensemble analysed in this exploratory work. The lattice unit momentum corres-
ponds to |p| = 2π

L ≈ 525 MeV.
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