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1. Introduction

1.1 Background and Motivation
The years during which the present dissertation has been written, are ones that will
be remembered for a long time. While the COVID-19 pandemic had an enormous
impact, 2019 to 2022 brought many more and different challenges. There included
wildfires in Australia, North America and Europe, followed by a long list of devastat-
ing hurricanes and catastrophic floods, even in areas previously considered safe from
such incidents (Eckstein, Künzel, & Schäfer, 2021; World Economic Forum, 2022).
But not only natural disaster struck, also widespread social unrest in the US and
a raging war in Ukraine highlighted the reality of persistent, disruptive volatility.
Such risk factors are likely to increase in the future due to environmental, demo-
graphic, and socioeconomic changes (Sharma et al., 2022) and will threaten existing
business models in all social and economic areas – including, of course, real estate –
and force them to adapt. While no individual or organization is able to accurately
predict specific risks factors, there is a need for companies to monitor and evaluate
them and implement strategies to face future uncertainties. For real estate, these
threats include pandemics, climate change, changing demographics, changes in ten-
ant preferences, geopolitical risks, issues relating to global supply chains, changes in
technology, and factors that are simply unknown and unpredictable at the moment
(Clayton et al., 2021).
Climate change, as one of the main if not the dominant challenge of present gen-
erations has reached high levels of public awareness in recent years. Real estate
companies, especially listed ones, have the fiduciary duty to protect the value of
the portfolios under their management and to address and mitigate any financial
uncertainties associated with climate change. There are two different forms of risk
related to climate change that need to be considered for real estate management,
namely: Direct Physical Risk and indirect Transition Risk (Vrensen et al., 2020).
Physical climate risk refers to natural disasters or extreme weather events like wild-
fires, floods, or storms, but also to gradual changes in temperature and precipitation
that might directly damage buildings or decrease building value by increasing main-
tenance and/or insurance costs (Hirsch, Braun, & Bienert, 2015; Absolut Research,
2019). Transition climate risk refers to regulatory changes associated with the trans-
formation towards sustainable development, which might cause an asset to become
“stranded” (Hirsch, Spanner, & Bienert, 2019). The term "stranded assets" orig-
inated in the context of companies in the coal or oil industry and suggests that
some resources currently considered in company valuations should be re-evaluated
if, for example, demand for these resources is expected to decline, or if producers
must bear a (carbon) tax (Caldecott, 2018a; Caldecott, 2018b). In the context of
the real estate industry, assets are called "stranded" if they do not meet regulatory
requirements and market expectations in terms of carbon footprint or it is fore-
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seeable that they will not meet them in the future (Caldecott et al., 2017; Hirsch,
Spanner, & Bienert, 2019). If such requirements are not met, costs due to the
pricing-in of carbon emissions (e.g., through taxes), technological disruptions, legal
liabilities, and reputational risks – all of which could potentially reduce property
values – can be expected. To avoid the stranding of an existing building, the owner
needs to invest in green retrofit measures.1 The term “retrofit” in general refers to
the modernization or expansion of existing (usually older) plants and equipment. In
the real estate context, the US Green Building Council (USGBC) defines a green
retrofit as “an upgrade at an existing building to improve energy and environmental
performance, reduce water use, improve comfort and quality of space in terms of
natural lighting, air quality and noise” (USGBC, 2009). This includes, but is not
limited to, improving the energy efficiency of heating, lighting, cooling, ventilation,
and other mechanical systems, increasing the quality of insulation in the building
envelope, implementing sustainable energy generation, but also aiming to improve
occupant comfort and health. Two of the three research articles included in the
present thesis go into more detail on the micro and macroeconomic implications of
green retrofits.
Research Article 1 "The Value Effects of Green Retrofits", of this cumulative dis-
sertation, focuses on describing and analyzing the impact of retrofits on property
values and analyzing its components, whereby three types of value effects are de-
scribed. Namely, the value impact of the capitalization of energy savings, lower
value discounts due to stricter standards (reduced transition risk) and the value
uplift due to indirect benefits (health, employee satisfaction, marketing, etc.) are
identified, visualized in a stylized example, and exemplified in a brief empirical anal-
ysis. Nevertheless, the article is theoretical in nature and in terms of investigating
green premia (value increases due to green features).
While Articles 1 and 3 are thematically closely related, as both revolve around eco-
nomical considerations regarding green retrofits, Article 2 "Multivariate Tail Risk
Modeling for REITs: What Factors Drive Extreme Losses?" is distinct from the other
two in terms of subject matter. It is a clear contribution to the risk management
literature in real estate investing and within it, belongs to the literature strand of
Extreme Value Theory (EVT). While the traditional mean-variance theory focuses
on a log-normal distribution and measures risk by the standard deviation of returns,
the EVT is the study of the tail of the return distribution. In financial markets,
extreme price movements correspond to market function during ordinary periods,
and also to stock market crashes, real estate market collapses, financial/currency
crises and other highly volatile periods which are connected with an extreme event
(Liow, 2008). The research objective of Paper 2 is to implement a novel methodol-
ogy motivated by Chavez-Demoulin, Embrechts & Hofert (2016), in order to model
extreme loss observations for Real Estate Investment Trusts (REITs). The study

1Note that in general, the stranding of a building could also be avoided by demolishing it (and
rebuilding it), but on a macroeconomic level, this cannot be the regular case as a means of meeting
net zero carbon emissions by 2050 or even 2045. With the low rate of new construction in Germany
(and Europe) of approximately 0.7%, the outdated share of the building stock cannot merely be
replaced within the remaining time (Destatis, 2021). Moreover, demolition and new construction
lead to higher footprints in terms of embodied carbon (ifeu, 2021).
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examines whether exogenous market covariates provide explanatory power for the
estimation of Generalized Pareto Distributions (GPD) in a non-linear generalized
additive model framework, which is more flexible than classic Gaussian approaches
(Danielsson & de Vries, 1997). The main finding from this unique and methodology-
driven approach to REIT returns is that a superior model fit is present, due to the
inclusion of covariates for estimating the GPD’s moments. The results both enhance
our understanding of the employed covariates from an academic perspective, and are
also of value from a practical point of view. For the financial risk management of a
portfolio containing multiple assets, it is crucial to understand the joint behavior of
the assets, besides the marginal behavior of each individual asset. The EVT-based
methodology for studying the dynamics of tail behavior is capable of increasing
portfolio performance in times of crisis and can guide risk management measures
with respect to corresponding factors like market interest rates, stock index returns
or term structure.
Research Article 3, "Does retrofitting pay off? An analysis of German multifamily
building data" builds thematically on Article 1 and addresses the question of whether
a retrofit pays off financially from a landlord’s perspective. This question arises,
because landlords do not benefit directly from all the value effects of retrofits, but
must bear the full cost. The conducted marginal analysis of green retrofits is critical,
because it adds to our understanding of why renovation rates are remaining at low
levels, despite continued regulatory efforts to increase them. To quantify it’s current
regulatory incentive effect, the marginal cost analysis in broadened by including the
still young CO2 taxation for fossil fuels consumed on site in Germany and the newly
introduced split allocation of the CO2 price between tenants and landlords. This
study is strongly data-driven and uses a unique and difficult-to-acquire dataset for
Germany regarding retrofit costs of multifamily buildings. The findings suggest that,
on average and under current conditions, retrofits are economically disadvantageous
for landlords, without the addition of public subsidies.
The present thesis extends the real estate literature by exploring extreme loss risk
factors of REITs and the economics of green retrofit measures in an analytical,
systematic, and critical manner. The results on the one hand aim to provide a
new framework for rendering modern real estate risk management more resilient to
extreme risks. On the other hand, the dissertation provides insights into practice-
relevant climate risk mitigation.
The remainder of the thesis is structured as follows. In the following section, the
research questions of the three papers are explicitly and concisely listed, and the
subsequent section identifies co-authors, submission status, and previous as well as
future conference presentations. In chapters 2, 3 and 4, the three research articles
of the dissertation are reproduced in the version submitted to or published in the
respective journals. At the beginning of each of these chapters, you will find the
abstract of the article and up to eight keywords. Since the journals have different
guidelines regarding the form of the abstract (structured/unstructured), they differ
in this respect. The last chapter contains the conclusion starting with an Execu-
tive Summary of the articles, then the concluding answers to the derived research
questions, research limitations, and an outlook for potential future research.
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1.2 Research Questions
This section provides a brief overview of the research questions relevant for each of
the three research articles.

Paper 1 | The Value Effects of Green Retrofits

• How do energy efficiency gains affect the value and valuation of properties?

• To what extent will future policy measures affect current property prices?

• How does a deep retrofit with energy efficiency improvement add value to a prop-
erty?

• What is the magnitude of these value effects?

Paper 2 | Multivariate Tail Risk Modeling for REITs: What Factors Drive
Extreme Losses?

• Does econometric modeling of the extreme losses of securitized real estate invest-
ments provide any insights compared to the current methods for risk assessment?

• What exogenous risk factors yield explanatory power to describe the excesses
located in the lower tail of REIT return distributions?

• Are the extreme value losses more strongly driven by equity market or debt market
covariates and do the respective strengths of the influences differ with regard to the
REIT asset class under consideration?
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Paper 3 | Does Retrofitting Pay Off? An Analysis of German Multifamily
Building Data

• Is there a green premium in the rental market for multifamily units in Germany?

• Provided that a price premium is indeed found, is the rent increase potential from
an improvement in energy efficiency sufficient to offset the costs of a retrofit, over
the expected useful life of the asset?

• Does the level and design of the CO2 tax on fossil fuels for residential heating
provide a sufficiently strong incentive for owners of energetically poor multi-family
houses to retrofit their properties for energy efficiency?
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1.3 Co-Authors, Submissions and Conference
Presentations

In the following, information on co-authors, journal submissions, publication status
and conference presentations for each of the three papers is provided.

Paper 1 | The Value Effects of Green Retrofits

Authors:

Dirk Brunen, Alexander Groh & Martin Haran

Submission Details:

Journal: Journal of European Real Estate Research (JERER)
Submission date: 12/02/2019
Current status: Published
Publication date: 09/24/2020
DOI: https://dx.doi.org/10.1108/JERER-12-2019-0049

Paper 2 | Multivariate Tail Risk Modeling for REITs: What Factors Drive
Extreme Losses?

Authors:

Cay Oertel & Alexander Groh

Submission Details:

Journal: Real Estate Finance (REF)
Submission date: 07/24/2021
Current status: Accepted

Conference Presentations:

This paper was presented over Zoom at the hybrid 27th Annual Conference of the
European Real Estate Society (ERES) in Kaiserslautern, Germany (2021).
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Paper 3 | Does retrofitting pay off? An analysis of German multifamily
building data

Authors:
Alexander Groh, Hunter Kuhlwein & Sven Bienert

Submission Details (1):

Conference Proceedings: IOP Conference Series: Earth and Environmental Science
Submission date: 03/14/2022
Current status: Accepted

Submission Details (2):

Journal: Journal of Sustainable Real Estate (JOSRE)
Submission date: 05/03/2022
Current status: Under Review

Conference Presentations:
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2. The Value Effects of Green
Retrofits

2.1 Abstract

Purpose: This paper aims to decompose the value effects of green retrofits on
commercial real estate. The paper disentangles various sources of value capture
mechanisms that can be attained through green retrofit actions and profiles the ex-
tent to which green retrofit solutions can be effectively capitalised using transaction
evidence from the Munich housing market. The insights offered can help real es-
tate owners and investors during their ex ante analysis of future energetic retrofit
investments.
Design/methodology/approach: The authors offer their reader both a concep-
tual framework and the results from an empirical analysis to identify the value effects
of retrofits and the associating gains in energy efficiency. The conceptual framework
theorises the different value components that a deep retrofit has to offer. The re-
gression analysis includes a multivariate analysis of 8,928 dwellings in the Munich
residential real estate market.
Findings: This study’s framework disentangles the total retrofit value effect into
three components: the capitalisation of energy savings, the exposure to the value
discount because of stricter standards and the value uplift because of indirect ben-
efits (health, employee satisfaction, marketing etc.). The regression results indicate
that the value gains because of energy efficiency improvements are in the range
of 2.4–7.4%, while the indirect benefits and reduced exposure to stricter standards
amount to another 3%.
Originality/value: While numerous studies have investigated the upside value ef-
fects of energy efficiency in the real estate sector, there is scant academic research
which has sought to evidence the value of green retrofit solutions and the extent to
which this can be capitalised. Instrumentalising the various value effects of energetic
retrofit that have been identified is not straightforward. At the same time, inade-
quate value capture of energetic retrofit effects could delay intervention timelines or
aborting of proposed retrofit actions which should be of primary concern to policy-
makers and stakeholders tasked with the decarbonisation of real estate assets.
Key Words: Energy performance certificates, Green premia, Multivariate regres-
sions, Munich house prices, Energy efficiency, Retrofits, Value effect
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2.2 Introduction
In June 2000, the European Climate Change Program (ECCP) was launched by the
European Commission to avoid the harmful effects of climate change. The ECCP
identified, developed and incorporated the necessary elements of a European strategy
to implement the Kyoto Protocol. New policy directives have been issued to guide
all industries towards the 2050 aim of an 80% carbon reduction. As the real estate
industry is accountable for almost 30% of all greenhouse gas (GHG) emissions in
the European Union (EU) (IPE 2018), the real estate sector plays a pivotal role
in the EU decarbonisation efforts stated in the Intended Nationally Determined
Contributions. To optimise the potential contribution of the real estate sector, there
is a pertinent need for stricter building codes for energy efficient new construction
as well as more robust measurement and assessment of embodied carbon across
the various stages of the asset life cycle. The most impactful benefits nonetheless
will be realised through the upscaling of green retrofit solutions and for targeted
intervention to facilitate and enable reductions in the carbon intensity of existing
buildings. Ambitious retrofit policies and robust decarbonisation pathways can help
reduce real estate’s carbon footprint by up to 46% between 2021 and 2030 (European
Commission, 2014). Nonetheless, while deep energy retrofits can appear profitable
on paper, not just from a climate change perspective, they occur only occasionally
in the market.
In theory, these green retrofits should lead to three value effects. Given that these
retrofits are undertaken and calibrated to reduce energy use (and costs), a first
source of value effects should be the capitalisation of future energy cost savings. As
long as the net present value of future energy costs savings exceeds the immediate
retrofit investment, we expect a proportional “green” premium of the property right
after the retrofit is finalised. In the case of owner-occupiers, the outlook of lower
energy costs will directly be included in the budget of the users’ lifecycle costs. In
the case of properties that are leased to tenants, the same value effect should appear
as long as rents can be increased proportional to the future energy costs savings.
A second source of value uplift relates to the reduced exposure to stranding risk.
By confronting a property’s current energy standards with the pathway of future
energy regulations, we can calculate an exact intersection moment in time, at which
stranding risks become apparent. From that moment onwards, a retrofit can be
undertaken to reduce this risk exposure. Not undertaking the retrofit would induce
a series of increasing value discounts from that moment onwards, as a result of
potential government penalties or as consequence of market obsolesce. A retrofit
will shield the property from these negative value effects and discounts and will
therefore result in a net value gain. Finally, the third source of value effects that we
identified is a cluster of so-called indirect benefits that benefit the occupiers of the
retrofitted property, including for example, improved employee satisfaction through
reputational gains for both the property owners and tenants. These benefits will
weaken over time, as enhanced building standards will drive change culminating in
the gradual transition to “new” market averages.
In practice, measuring the size of these value effects is far from straightforward.
Although the capitalisation of future energy cost savings ought to be simple, studies
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have shown that the calculations involved suffer from information limitations, per-
ceived uncertainties regarding retrofit costs and future energy savings and bounded
rationality of property owners, buyers and valuation professionals. From the litera-
ture, we learn that the capitalisation rate of the net energy costs savings is close to
70% (see Wallace et al, 2017). Regarding the positive value impact of the stranding
risks shielding of retrofits, the literature offers evidence equalling 6.5% of transac-
tion values, measured as brown discounts for the least energy efficient properties
within the local commercial real estate markets (Kok and Jennen, 2012).Timely
retrofits can help to prevent this type of future value discounts. Regarding the value
uptake because of the cluster of indirect benefits, the available literature is inconclu-
sive. However, studies for the US office markets of retrofitted properties identified a
summed total premium of 10–20% value premia, compared to non-retrofitted prop-
erties (Geltner et al., 2017).
Our paper seeks answers to various important questions:
Q1. How do energy efficiency gains affect the value and valuation of properties?
Q2. To what extent will future policy measures affect current property prices?
Q3. How does a deep retrofit with energy efficiency improvement add value to a

property?
Q4. What is the magnitude of these value effects?
In the remainder of this paper, we seek for appropriate answers. We first offer an
overview of the body of knowledge on both green premia and brown discounts. We
then incorporate these insights into a conceptual framework with which we can time
carbon-reducing retrofit actions, we assess their value effects for the property and
we offer the outcomes of an empirical analysis to shed some light on the magnitude
of these value effects. We finalise our paper with a summary of our most important
conclusions, their implications and an agenda for future research.

2.3 A Review of Green Premia
This section reviews the empirical evidence on the economics of energy efficiency
retrofits in the context of pricing of buildings with high environmental performance.
While there is no complete consensus on the capitalisation of energy efficiency, the
majority of studies point to a “green premium”. Investment in energy efficiency is
considered to provide multiple benefits to investors. Whether by directly reducing
energy demand and associated costs or facilitating other co-benefits, the enormous
potential of energy efficiency is highlighted. Other financial benefits of energy ef-
ficiency investments common for all countries are energy cost reduction, hedging
against energy price volatility and extended building lifecycle (IEA, 2016).
Green buildings are often regarded as future-proof investments and as one of the
most important areas for promoting a low-carbon economy. The precise definition
of what constitutes a “green building” is debatable. In the EU, the Energy Perfor-
mance Certificate (EPC) of the building is the most common measure used to assess
how “green” a building is. The EPC is expressed on a letter scale, from A to G,
where A is the most efficient and G is the least efficient. EPCs must also highlight
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the most cost-effective measures that can be implemented in the property to reduce
the carbon footprint. The primary objective of this green certification is to reduce
uncertainty about quality and to drive prices by subsequently generating an increase
in the demand for energy efficient buildings. For example, in the case of properties
that have been subjected to green retrofit measures, the owner, through the price
mechanism, can use the EPC certificate to signal the efficiency level of the property
they are selling, enabling them to recoup their initial retrofit investment via higher
capital gain if the value outweighs the cost. Buyers in the market, on other hand,
can use the EPC rating and information to screen out inefficient properties by opt-
ing for favourable EPC rated dwellings which can be easily let out and command
higher rent. The EPC can also be used to assess the likely retrofit investment the
property may require to reduce energy consumptions and associated energy costs.
Alternatively, prospective buyers of energy inefficient buildings will use poor EPC
scores as a basis for negotiating down the price culminating in what the market
conceive as a “brown discount”.

2.3.1 Literature on the capitalisation of green features into
sale prices

The past decade has witnessed a marked escalation in the volume of research exam-
ining the relationship between the energy and financial performance of real estate
assets. Much of the research on the capitalisation effect of energy efficiency within
European property markets has initially at least focused on the residential sector.
Residential property has assumed a value effect of green retrofits increasingly promi-
nent role within institutional portfolios in recent years, while improving the energy
efficiency and carbon intensity of European housing stock has the greatest impact
potential, in terms of attaining the decarbonisation goals depicted in the 2015 Paris
Agreement – thus forming a logical starting point for this review. The rationale
for improving energy efficiency as well as the capacity to adopt green retrofit solu-
tions varies extensively across the residential sector premised on ownership profile
and the nature of incentives or policy obligations. In the case of home owners, for
example, motivations may center around reducing energy and associated running
costs or if they are motivated to sell their property, for example, if energy retrofit
adds value over and above the cost of the retrofit action, this serves to optimise
the sale price. For investors, including institutional investors, the range of motiva-
tions while including value creation, other factors such as tenant satisfaction, tenant
turnover, rental premium as well as the Environment, Social and Governance (ESG)
credentials of the company all feed into the decision-making framework.
A study by Brounen and Kok (2011) examined the impact of energy labels on house
prices in The Netherlands. Their research suggests that energy labels encourage
transparency in the energy efficiency and that this information is capitalised into
house prices. By studying the transaction processes of approximately 32,000 proper-
ties between 2008 and 2009, they found that residential properties with green labels
rated A, B and C command premia of 10%, 5.5% and 2.2%, respectively, relative
to properties rated D. The data set contained a large number of control variables
and attempts were made to reduce the likelihood of biases in the sample by using
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the Heckman‘s correction for selection bias. In another closely related study, Hy-
land et al. (2013) applied a standard hedonic method to show that for a sample of
15,060 Irish dwellings on the market between 2008 and 2012, there was a 9.3% price
premium for A-rated dwellings compared to D-rated dwellings. Fuerst et al. (2015)
drew a similar conclusion by reporting a price effect of higher energy performance
in the English housing market for a large sample of sale transactions. They report
significant positive premia for dwellings rated A/B (5%) or C (1.8%), compared to
an average D-rated dwelling. A small but positive relationship between energy per-
formance and sale prices is also found for the housing market in Northern Ireland
(Davis et al., 2015). Furthermore, a recent study of the Danish housing market
suggests that energy performance ratings of properties play an important role in
relation to sale prices (Jensenet al., 2016).
The studies above suggest a significant price premium attached to properties with
favourable energy efficiency ratings. Other studies, however, suggest a weak or
negligible impact on prices. By using Swedish housing transactions between 2009
and 2010, Cerin et al. (2014) show that energy performance is not rewarded across all
property-price classes and ages of residential properties. They also show that there
is little evidence of price penalties for the least energy efficient properties, although,
within the most energy efficient houses, a statistically significant association between
energy performance certification and house price is reported. In a related study,
Amecke (2012) surveyed owner-occupied dwellings in Germany that were purchased
after 2009, the year when the EPC became obligatory for domestic buildings in
Germany. Through examining factors affecting purchasing decisions, they conclude
that the impact of EPCs is insignificant and unhelpful in understanding the financial
implications of the energy efficiency of a dwelling. These findings are mirrored in a
more recent study of Fregonara et al. (2017) who used a hedonic model to examine
the relationship between house price and EPC ranking in Turin.

Table 1 Empirical studies investigating the capitalisation of energy efficiency in
Europe

Studies Methods Country Results

Amecke (2012) Standard Hedonic
Model

Germany Energy performance certificates have a
limited effect on purchasing decisions

Brounen & Kok (2011) Heckman‘s
two-step
estimation (FGLS)

Netherlands Buildings with a green label sell at a
premium of 3.6% relative to otherwise
comparable houses with a non-green
labels.

Cerin et al. (2014) Standard Hedonic
Model

Sweden Energy rating does not on average
contribute to the market price
premium of a house.

Davis et al. (2015) Standard Hedonic
Model

Northern
Ireland

A small but positive relationship
between energy performance and sale
prices.

Fuerst et al. (2015) Standard Hedonic
Model

England 14% premium of the highest band of
energy ratings relative to lowest band.

Fuerst et al. (2016) Standard Hedonic
Model

Wales 18.5% and 4% for A/B rated and C
rated buy-to-let properties and no
significant discount for lower-rated
properties.
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Studies Methods Country Results

Hyland et al. (2013) Standard Hedonic
Model

Ireland A-rated properties receive a price
premium of 11%, B-rated properties of
5.8% relative to D-rated properties.

Högberg (2013) Standard Hedonic
Model

Sweden Home buyers take into account the
information available in the EPCs
which entail a price premium.

Jensen et al. (2016) Standard Hedonic
Model

Denmark Energy performance ratings of
properties play an important role in
relation to sales prices.

Table 1 presents a summary of these empirical studies examining the possible im-
pact of energy efficiency ratings on European house prices. The evidence for a price
premium is partly contradictory, but it is generally skewed to a premium in terms
of higher transacted prices for properties with high environmental performance.
Despite this, it is quite apparent that there is a clear lack of empirical studies exam-
ining the effect of green certificates on rents in either the residential of commercial
property markets.

2.3.2 Literature on the capitalisation of green features into
rental prices

Empirical research examining the capitalisation of energy efficiency on rental returns
is extremely limited. The apparent gap in the literature is not surprising, given the
inherent shortage of high quality data. To a greater extent, previous analyses of this
topic have examined the effect of energy efficiency ratings in the commercial office
market. This more established literature has typically relied on appraisal-based
data or asking rent data to show a significant and positive link between energy
efficiency ratings and office rents. For instance, an early study by Banfi et al. (2008)
suggests that tenants are prepared to pay up to 13% higher rent for buildings that
have adopted energy-saving measures. Similarly, Eichholtz et al. (2013) report that
office buildings that were labelled energy efficient by one of the two major US rating
agencies (Green Building Council and EPA’s Energy Star) command a “green” rental
premium relative to office buildings that were never certified. They estimate that,
holding property characteristics constant, an office building registered with LEED or
Energy Star commands an average green rental premium of 3%. This green premium
is found to be higher for buildings with a triple net rental contract, suggesting
that tenants prefer to pay energy bills separately when leasing space in green office
spaces.
In a related study, Fuerst et al. (2013) use a data set containing actual contract rents
and lease terms to show that UK office spaces with favourable energy performance
ratings attract a significant rental premium relative to buildings with average en-
ergy performance ratings, although this premium is largely limited to highly energy
efficient newly built buildings. Investors in the residential rental market are likely to
be different from investors in commercial buildings in the absence of easily accessible
information on the energy efficiency of buildings (Kok and Kahn, 2014).
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Despite an infusion of institutional capital into the residential sector in Europe
over the course of the past decade, empirical literature emerging from the private
rental market has up until now been very limited. Data quality concerns are often
cited as limitations and there is no clear consensus on the scale of the price effect
of energy efficiency yet. A few case studies from Sweden, Germany and Ireland
report a positive relationship between energy efficiency ratings and residential rents.
Zalejska-Jonsson (2014) uses a Swedish database that includes occupants living in
green and conventional multi-family buildings to show a green premium of 5% of
total rent. However, environmental certificates are found to have a negligible effect
on renting decisions. Similarly, Hyland et al. (2013) adopt a Heckman’s selection
technique to investigate the effect of energy efficiency ratings on Irish residential
property values and rents. They report that relative to D-rated properties, A-rated
properties have a green sale price premium of 11% and a green rent premium of
1.9%. Interestingly, not only does this study suggest a positive relationship between
energy efficiency ratings and rental and sale prices, but it also suggests that buyers
exhibit a stronger willingness to pay for energy efficiency than tenants. In related
research, Kholodilin and Michelsen (2014) examined the residential rental market in
Berlin and found that energy efficiency savings are generally capitalised into rental
prices. Earlier, Rehdanz (2007) arrived at similar conclusions in a study of German
housing markets. Some evidence therefore exists that green buildings do command
higher rental prices than conventional ones.

2.4 The Case and Causes of Brown Discounts
Appraisers will be able to produce more realistic market valuations if they con-
sider green features of the property, such as energy efficiency or indoor air quality.
Moreover, existing conventional buildings will become obsolete and experience the
so-called “brown discount” if they do not adapt to the increasing demands of tenants
and regulators regarding sustainability features. Because of increasing stringency
of regulatory requirements, these latter buildings and properties fall below stan-
dards and become less attractive because of increasing level of necessary economic
input for upgrading. A framework that illustrates the market forces and dynam-
ics underlying brown discount was introduced by the Green Energy Money blog
(2016) (Figure 1). Figure 1 illustrates how the gradual uptake of green building pre-
mia eventually intersects with downwards sloping valuation of write-offs, creating a
tipping point from which onwards brown discounts are associated with properties
that fail to meet sustainability standards. The concept of “green value” or “green
premium” was introduced in 2005 by the Royal Institution of Chartered Surveyors
(RICS) and was used more widely in the real estate business from 2010 (Harten-
berger et al., 2017). While in the USA, “Green Value” is used to refer to a variety
of sustainability and environmental properties (including water and waste efficiency
and resilience to flooding, even for social aspects); in Europe, the term refers mostly
to energy efficiency and low carbon features. It has been long and often discussed
whether more sustainable buildings are valued somewhat higher as a direct result
of their better performance.
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Figure 1: The future trend of green buildings taking over the market because of
non-sustainable buildings going obsolete

Source: Green Energy Money (2016)

But there is also empirical evidence for the opposite effect of brown discounts. For
instance, Kok and Jennen (2012) published results that measured brown discounts
for a large sample of 1,100 leasing transactions within the Dutch office market dur-
ing the period 2005–2010. They show that buildings that have been certified and
designated as inefficient (with an EU EPC of D or worse) command rental levels
that are some 6.5% lower as compared to energy efficient, but otherwise similar
buildings (labelled A, B and C). Moreover, new policy measures prohibiting leasing
out commercial properties that fail to meet minimum energy efficiency standards
have been announced in The Netherlands and in the UK.1 Obviously, the outlook of
rental vacancies because of these regulations will depress property values in the fu-
ture and cause brown discounts. These recorded green premia and brown discounts
can help to assess the spread that appraisers need to incorporate into their future
valuation based on the energy efficiency standard of the property at hand.
Besides these value and valuation effects, energy efficiency can also impact properties
market liquidity. Becoming a stranded asset will first materialise into slower update
numbers and a longer time on the market (TOM) during sale processes. Tenants and
potential buyers will consider the relative energy efficiency level of the property and
before this will materialise into the transaction price effects, the first effect may well
be that buyers and tenants shy away from the offered property as they prefer more
efficient alternatives. In that case, the liquidity or illiquidity of inefficient properties

1Since April 1st 2018, landlords of non-domestic private rented properties (including public
sector landlords) may not grant a tenancy to new or existing tenants if their property has an EPC
rating of band F or G (shown on a valid EPC for the property). This applies to existing tenancy
agreements from 2023.
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will precede the price effects. Liquidity is an important consideration for owners and
investor of real estate, besides price stability, as real estate is already categorised as
a less liquid asset category. Ending up with less than average liquidity will create
risks that investors and buyers want to know ex ante.
Within the European real estate market, EPCs have been introduced as carriers of
relevant information. They can inform tenants and buyers about the relative size
of their future utility bills. Bills that can widely range depending on the energy
efficiency standard of the property. Still, until recently, this thermal quality element
has long been absent in the sale process between sellers and real estate buyers.
Buyers did not ask, and sellers did not tell. In line with Akerlof (1970), we expect
that EPCs can serve as a means for reducing this informational asymmetry between
sellers and buyers, which is one of the aims of energy policy (see Gayer and Viscusi,
2013; Mannix and Dudley, 2015). Houde (2014) already demonstrated that energy
certification can act as a reliable substitute for more accurate, but complex, energy
information. But that said, EPC information will not bridge the full information
asymmetry.
The success of a real estate transaction depends on the price and speed of sale. Typ-
ically, sellers strive for a quick sale at the highest possible transaction price. While
prices can be boosted by not disclosing all negative attributes. Taylor (1999) showed
that buyers shy away from homes for which qualities are not known. Buyers prefer
to bid on homes with full(er) information even if the information is not necessarily
positive, as they want to be protected from having to undertake time and resource
consuming activities that may yield that information. This adaptation from Ak-
erlof’s Lemon’s problem within the real estate market predicts that the speed of
sale increases with information. In Aydin et al. (2019), a first empirical analysis
of these liquidity effects is performed on EPCs’ value as carriers of information by
testing their effects on the TOM of housing transactions. The authors study the
Dutch housing market, as The Netherlands was one of the first countries to adopt
EPCs in the housing market on a national scale in 2008. This early adoption cre-
ates a rich data setting, as Dutch EPCs have been around for close to 12 years.
Their results indicate that EPC information effectively enhances the speed of sale,
as TOM decrease when dwellings are labelled. These TOM reductions vary between
7% and 22%, depending on model specifications and estimation approaches. In all
cases, the effect is significant and increases as labels are provided earlier during the
sale process and convey positive ratings. Apparently, good news travel faster and
shorten the sale journey.
From a policy perspective, the quality of data remains a key barrier to the up-
scaling and expansion of green retrofit solutions. Nonetheless, recent research by
Marmolejo-Duarte and Chen (2019) is highly insightful in that it serves to not only
showcase the impacts of EPC rating on property price but perhaps more pertinently
highlights a capacity gap when it comes to retrofit intervention. Their research on
the Barcelona housing market infers that EPC ratings have “modest” impacts on
listing prices. Their research highlights that for the cheapest apartments and apart-
ments located in low-income areas, the “brown discount” derived from poor EPC
ratings is enormously significant, potentially depreciating the equity of those who
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have the least resources to carry out an energy retrofit.
The retrofit “capacity” gap presents challenges for all major cities in terms of policy
formation and the range of incentives needed to decarbonise the built environment.
Moreover, many of the most carbon intensive assets reside within public sector asset
portfolios. Constraints on capital budgets ensure that the challenge of retrofit applies
not only to low-income home owners but also many cash strapped municipalities. As
such the business case and credibility of the evidence base to support green retrofit
intervention is critically important.
Historically, simple payback models were used to support the business case. The
payback model in essence measured the capital costs of the retrofit intervention
relative to the energy cost saving accrued over time following the intervention (Kelsey
and Pearson, 2011). The payback model has nonetheless been criticised for failing to
take account of the long-term benefits beyond the initial capital recovery while early
versions of the payback model assumed energy prices to remain constant (Jones and
Bogus, 2009).
The payback model was to some extent displaced following the introduction of life
cycle cost analysis (LCCA). The LCCA method aims to determine whether a retrofit
investment will generate a positive return on investment over the life of the retrofit
technology. LCCA uses internal rate of return and net present values as specific
measures to inform the nature and extent of the retrofit decision. LCCA is a much
more comprehensive approach than the payback method in that it considers interest,
inflation, utility price increases and annual energy savings. However, LCCA neglects
an important factor which might not be immediately tangible in a financial sense,
but which actually comprises the largest expense of any commercial building, i.e.
the tenants (Carlson and Pressnail, 2018).
The latest development in building energy retrofit economics is the idea that an
energy retrofit will affect building asset value. Section 2.5 will duly explore the
latest thinking around the dominant sources of value creation and the extent to
which this can ultimately be captured from a valuation viewpoint and capitalised
from an owner/investor perspective.

2.5 Three Sources of Retrofit Value
A lack of relevant information, or difficulties of processing information, can inhibit
owners and investors willingness to invest in energy efficient retrofits, as future gains
are uncertain.This is certainly true for any value effects of green retrofits, as these
can only be verified ex post. The value capture element of green retrofit is important
ex ante, as this future indirect benefit is often missing in the payback period calcu-
lations that are frequently used when analysing energy efficiency investments.
Recently, a consortium of European research institutes cooperated to compile the
Carbon Risk Real Estate Monitor (CRREM). The CRREM framework enables prop-
erty owners to quantify and include the intended retrofit investments, and besides
calculating the net carbon impact (plus energy cost savings and stranding risk re-
duction) the CRREM framework offers an estimation of the capitalisation rate of
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this investment on the property value as a result of the retrofit. This framework
identifies and specifies three specific sources of retrofit value effects:
A: The capitalisation rate of energy savings.
B: The increasing exposure to the value discount due to stricter standards.
C: The value uplift due to indirect benefits (health, employee satisfaction, marketing,
etc.).
The combined sum-effect of these three will benefit the property owner after the
retrofit and therefore ought to be acknowledged during the ex ante retrofit analysis.
To illustrate the framework, we like to use the example of an owner and landlord
of a Dutch office building. The building was constructed in 2005 according to the
building codes at the time. This means that the GHG intensity of the property – the
kg CO2e/(m2a) – is determined during construction and is assumed to be constant
over the lifetime of the property. Let us assume that today’s appraised market value
of this fully leased property is €10 million and that the discounted value of the
expected energy costs for the remaining lease period equals €1 million and is known
by both the owners and the tenants, who are all assumed to be fully informed and
rational. Property owners will be familiar with the Paris Agreement, but unaware of
how this will affect demand for their property. Hence, many property owners decide
to wait until measures are taken or they are forced to take action.
The CRREM framework offers property owners and investors an alternative to this
passive “wait and see” strategy. Instead, the framework offers three pathways, pre-
sented in Figure 2. In panel A, investors are offered – in green – the most likely
trajectory of the policy measures relevant for their office building. This curved line
is based on the science-based targets regarding the GHG intensity of Dutch office
buildings until 2050. Based on this pathway, the most reliable “time before strand-
ing risk” is calculated as a function of this policy pathway and the current GHG
intensity of the property. Please note that instead of using the horizontal curve,
which ignores the projected effects of climate change and evolution of the decarbon-
isation of the grid on the energy use and GHG emissions of the property, the upward
sloping curve that combines all is selected. The crossing point between this curve
and the policy pathway marks the moment at which the property starts failing to
align with future energy regulations. This crossing point marks the moment which
introduces stranding asset risk as a result of energy policy misalignment. In panel
A of Figure 2, we calculate that the subject property has 10 years until 2030 before
this crossing point is reached. This is the first relevant output, as stranding risk will
eventually deteriorate the property value, and the CRREM framework helps real
estate investors to assess the period during which you can proactively ensure that
their property is repositioned to reduce this avoidable risk. This prediction will also
enable investors to coordinate the required retrofit actions with their tenancy sched-
ule and planned preventive maintenance, minimising void periods, tenant disruption
and expenses.
Panel B of Figure 2 illustrates how this active repositioning can be examined finan-
cially. Please note that from this diagram onwards, the y-axis displays the present
value of costs. Against the background of the panel A, insight regarding the timing
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Figure 2: Stylized example to illustrate CRREM insights into stranding risk and
retrofit decision

Notes: (a) Measuring the time to stranding risk; (b) comparing discounted costs of retrofit
vsersus no-retrofit; (c) assesing the retrofit value effect
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of stranding asset risk now shows the financial payoffs of the alternative strategy of
retrofitting the property in 2030 and thereby ensuring that the property aligns with
the 2050 GHG regulations versus the status quo strategy in which the property is
not retrofitted at all.
From this information, an investor would then move to panel C in which the value
impact of this retrofit is estimated in three components. Knowing that the present
value of the energy use (status quo) equals €1 million, and knowing that the required
retrofit will take one year to execute, incurs €800,000 in present value terms and
will result in no energy costs for the tenants afterwards, enable investors to assess
the value potential of this retrofit action on the property value. Assuming rational
decision-making, investors should expect that the €800,000 retrofit costs would be
fully offset with the proportional gain in rents that the landlord is able to charge
and that the tenants are willing to pay. In fact, €200,000 is left as a value premium
because of the difference in discounted costs. In panel C of Figure 2, this premium is
indicated as yellow area “A”. From academic literature, we learned that in practice,
these cost savings are not fully capitalised into market values. Empirical studies
show that about 70% of projected (energy) cost savings are included in subsequent
transaction prices. In this example, this would reduce the A-premium to €140,000,
equalling 1.4% of the estimated market value of the property. This A-premium
comes on top of an 8% value increase that is directly because of the retrofit invest-
ment, which is payed back by the outlook of zero energy costs and associating rent
increases. The retrofit also shields the property for the effects of stricter standards
and GHG regulation. In the case of the status quo strategy, this would have intro-
duced stranded asset risk and would invoke increasing value discounts to the future
property valuations. This is indicated in blue as area B in panel C of Figure 2. The
size of this discount (here displayed as additional costs) has been documented in the
literature as brown discounts that can accumulate to 6.5% of the transaction value.
In this case, however, this B-component will be modest at first, because stranding
risk kicks in after 2030 and will increase with the downwards slope of the green
policy pathway curve. As years go by, the discrepancy between the GHG-intensity
of the not-retrofitted property and new regulations will build up and increase the
value discount that marks this discrepancy. Finally, it is reasonable to assume that
investors can also expect value uplift after the retrofit, which is not just a function
of direct cost savings. This C-component in panel C of Figure 2 includes the in-
direct benefits of, for instance, enhanced employee health and improved marketing
and promotion potential that reduced carbon footprint actions can yield. A recent
survey evidence by the USGBC (2018) affords a wider overview of employee benefits
related to green buildings. Nonetheless, these benefits are difficult to measure, and
empirical proof on this is scarce and weak. It is also known that this C-premium
will also reduce over time, as the competitive advantage of the retrofit improvements
will erode as years pass.



24 The Value Effects of Green Retrofits

2.6 Empirical Analysis
To assess the magnitude of the value effects of energy retrofits in line with the
conceptual framework of Section 2.5, we performed a small empirical analysis. For
this analysis, we make good use of data provided by Immobilienscout24, the leading
real estate platform in Germany. The total data set comprises about 24,000 listings
for residential properties (apartments as well as detached-, semi-detached houses,
etc.) for the city of Munich in the time period 2012–2015. As the information is
entered by platform users, the data is subject to data entry bias. We therefore cleared
the data of implausible values such as zero or negative area and of missing values
that are required for the estimation such as energy consumption. After optimisation,
8,956 cross-sectional observations remained.
Table 2 Summary statistics
Variable Mean Median Std.Dev Min. Max. N

Price 505,696.92 438,250.00 326,286.25 67,000.00 2,840,000.00 8,956
Area 88.17 81.97 37.07 21.48 334 8,956
Price/m2 5,515.54 5,295.21 1,743.82 951.46 17,192.17 8,956
Energy/m2a 97.09 89.35 54.52 8.1 342 8,956
Floor 2.06 2 2.02 -1 23 8,956
Year constructed 1995.36 2000 19.54 1855 2018 8,956
Number of rooms 2.94 3 1.05 1 9 8,956
Number of bathrooms 1.28 1 0.48 1 7 8,956
Number of bedrooms 1.89 2 0.88 1 6 8,956
Price for parking 19,211.19 19,000.00 8,052.10 0 150,000.00 8,956
Year of last retrofit 2010.4 2012 4.68 1978 2016 2,339

Distribution of Categorical Variables

Simple Normal Sophisticated Luxury
Quality of Equipment 0.01 0.19 0.51 0.1 8,956

Yes (%) No (%)
Elevator 69 31 8,956
Balcony 91 9 8,956
Guest WC 40 60 8,956
Garden 33 67 8,956
Cellar 82 18 8,956
Built in kitchen 52 48 8,956
Retrofit from 2014 22 78 2,339

Table 2 presents the most important summary statistics of our data set and shows
that 2,339 of the 8,956 units have been modernised. Almost 22% of those were
retrofitted in the years from 2014, which is depicted by the distribution of the di-
chotomous variable "Retrofit from 2014". In 2014, the last major amendment to
Energieeinsparverordnung (EnEV; German Energy Saving Ordinance) came into
force. EnEV represents an important instrument of German energy and climate
protection policy as the EnEV is intended to help ensure that the German Govern-
ment’s energy policy goals, in particular, a virtually climate neutral building stock
will be achieved by 2050. Among other things, the EnEV issued an order that in
advertisements of buildings that have an EPC, the energy efficiency class of the
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building must be indicated. The energy efficiency class is based on the total energy
consumption per square meter of living space per year (kWh/m2a). Accordingly,
and similar to Cajias, Fuerst & Bienert (2019), we are using energy consumption
classes as a second proxy besides absolute energy consumption by assigning each
observation to the respective consumption class. Consumptions defined in EnEV
in (kWh/m2a) were used as thresholds. Table 3 depicts the distribution of energy
classes in the data set and reports correlation coefficients for both of the energy
proxies and price per square meter.
Table 3 Correlation matrix
Variable Mean Price/m2 Energy/m2a A+ A B C D E F G

Price/m2 5515.54 1
Energy/m2a 97.09 -0.4 1
A+ 0.10 0.13 -0.48 1
A 0.14 0.27 -0.40 -0.13 1
B 0.18 0.22 -0.31 -0.16 -0.19 1
C 0.13 -0.03 -0.07 -0.13 -0.15 -0.18 1
D 0.15 -0.20 0.14 -0.14 -0.17 -0.20 -0.16 1
E 0.15 -0.21 0.37 -0.14 -0.17 -0.20 -0.16 -0.18 1
F 0.11 -0.15 0.50 -0.12 -0.14 -0.17 -0.13 -0.15 -0.15 1
G 0.03 -0.07 0.41 -0.06 -0.07 -0.09 -0.07 -0.08 -0.08 -0.06 1
H 0.01 -0.03 0.21 -0.02 -0.03 -0.03 -0.02 -0.03 -0.03 -0.02 -0.01

Our econometric approach to examine whether higher energy consumption comes
along with a significant price penalty or a reduced consumption with a premium
involves two steps. Firstly, we estimate a standard hedonic pricing model as em-
pirically justified by Sirmans et al. (2005). By that we use price per square foot
as response variable and absolute energy consumption as energy proxy. In a second
step we use partial residual plots to identify possible nonlinear relationships between
predictor and response variables (Brunauer et al., 2010). By visual inspection, it
is found that five covariates suggest nonlinear modeling, namely, area, number of
bathrooms, floor, price for parking and energy consumption. Consequently, these
are modeled non-linear within an additive mixed approach with mixed covariates
of parametric estimates and nonlinear functions. The baseline price model looks as
follows:

Y = Xβ + f (xi) (2.1)

With building factors (i), binary spatial variables for geographic regions [S] based
on ZIP code level (j), energy consumption [EC] proxies (k) and age [K] controls
(t):

log(price/m2)i = βXi + θSj + µECk + λKt + εi (2.2)

X holds both linear and non-linear characteristics. We estimated six different model
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specifications of which three are solely linear. Three more with mixed linear and
nonlinear covariates whereas non-linearity is accounted for by modeling the nonlinear
covariates with penalised splines. As can be seen from the correlation matrix above,
the turning point of the sign of the correlation coefficient for the energy classes and
price is between class C and B. We therefore choose to eliminate class C from the
vector EC for model estimation and by that setting class C as the reference category.
This brings the expectation with it that higher classes from A+ to B will show a
positive sign and by that a green premium, while lower classes will show a negative
sign and by that a brown discounts.

Table 4 Regression model output
log(price/m2) (1) (2) (3) (4) (5) (6)

Method OLS OLS OLS GAM GAM GAM

Constant 8.523*** 8.448*** 8.418*** 8.668*** 8.646*** 8.609***
(0.029) (0.023) (0.024) (0.017) (0.018) (0,019)

log(energy/m2 a) -0.010** 4.506***
(0.005) (edf)

A+ 0.048*** 0.046*** 0.044*** 0.041***
(0.011) (0.011) (0.010) (0.010)

A 0.076*** 0.074*** 0.071*** 0.069***
(0.010) (0.010) (0.009) (0.009)

B 0.025*** 0.024** 0.025*** 0.024***
(0.009) (0.009) (0.008) (0.008)

D -0.016* -0.015* -0.015** -0.014**
(0.008) (0.008) (0.007) (0.007)

E 0.004 0.0003 0.007 0.005
(0.009) (0.009) (0.008) (0.008)

F 0.023** 0.020** 0.019* 0.016
(0.009) (0.009) (0.009) (0.009)

G 0.01 0.09 0.003 0.002
(0.014) (0.014) (0.013) (0.013)

H 0.053 0.050 0.053 0.050
(0.032) (0.032) (0.030) (0.030)

Retrofit from 2014 0.032*** 0.030***
(0.006) (0.005)

Linear Covariates 15 15 15 11 11 11
Non-linear Covariates 0 0 0 4 4 4
Age Dummies 8 8 8 8 8 8
Spatial Dummies 75 75 75 75 75 75

N 8,928 8,928 8,928 8,928 8,928 8,928
Adjusted R2 0.610 0.614 0.615 0.677 0.677 0.678
AIC -4125 -4196 -4225 -5768 -5774 -5805

Notes: Significant at *10, **5 and ***1% levels; standard errors in brackets below the
estimated coefficient. edfs are reported for nonlinear estimates within nonlinear models.
The estimated coefficients are marked with “edf” in brackets below. The reported signi-
ficance shows the significance of smooth terms.
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Table 4 holds the estimation results for models (1)–(6) and shows the results for
both the linear ordinary least squares (OLS) and mixed-linear GAM estimations.2
In both cases, we present our model results in three versions. In the first two
models, we estimate the appreciation and capitalisation of energy efficiency. For our
OLS model, we find that enhanced energy efficiency (either lower energy intensity
or better energy labels) is associated with higher property prices. For both model
estimates, we find that the gain from an average C-label to an A-label lifts property
prices with 7.1 to 7.6% – depending on model specifications. This serves as an
empirical proxy for the size of the A and B areas of Figure 2. When we also control
for the retrofitting in our sample, we find that A- over C-label bonus drops to 6.9
to 7.4%, while the residual value effects (C area of Figure 2) of the retrofit are
priced at a premium of 3.0 to 3.2%. In other words, our Munich analysis shows that
the sum effects of retrofits that improve C-label dwellings to an A-label standard
add 10% value in total. A value effect, that is partly because of the validated
energy efficiency gains, while offering another 3% for non-energy efficiency related
improvements.

2.7 Conclusions and Implications
In this paper, we focused on the value effects of green retrofits of real estate. The
rich literature on green premia was reviewed to proxy the size of the value effects
of energy efficiency improvements. The existing knowledge base identified various
sources of value capture mechanisms that can be related to retrofit actions.
We introduced a conceptual framework – the CRREM framework – which helps to
identify and measure three types of real estate value effects that can result from a
green retrofit. Given that these retrofits are undertaken and calibrated to reduce
energy use (and costs), a first source of value effects should be the capitalisation
of future energy cost savings. As long as the net present value of future energy
costs savings exceeds the immediate retrofit investment, we expect a proportional
“green” premium of the property right after the retrofit is finalised. In case of
owner-occupiers, the outlook of lower energy costs will directly be included in the
budget of the users’ lifecycle costs. In case the property is leased, the same value
effect should appear as long as rents can be increased proportional to the future
energy costs savings. A second source of value effects relate to the reduced exposure
to stranding risks. The CRREM framework identifies the moment at which the
property’s current energy standards will intersect with a pathway of future energy
regulations and standards. At that intersection, stranding risks becomes apparent,
and a retrofit can be undertaken to reduce this risk exposure. Not undertaking
the retrofit would induce a series of increasing value discounts from that moment
onwards, as a result of potential government penalties or as consequence of market
obsolesce. A retrofit will shield the property from these negative value effects and

2We also include a more elaborate output table than Table 4, including all covariates, in the
Appendix of this chapter. This table includes the same coefficients on the most relevant matters
(energy efficiency and retrofitting), while also showing coefficients for the appropriate controls
(area, floor, parking etc.) which are all in line with both intuition and the literature.
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discounts and will therefore result in a net value gain. Finally, the third source of
value effects that we have identified is a cluster of so-called indirect benefits that
vary from enhanced employee satisfaction to reputational gains for the property
users involved. These benefits will wear down over time, as the enhanced building
standards will gradually fall back to market averages.
In practice, measuring the size of these value effects is far from straightforward.
Although the capitalisation of future energy cost savings ought to be simple, stud-
ies have shown that the calculations involved suffer from information limitations,
perceived uncertainties regarding retrofit costs and future energy savings, and from
bounded rationality of property owners, buyers and valuators. From the literature,
we learn that the capitalisation rate of the net energy costs savings is close to 70%.
Regarding the positive value impact of the stranding risks shielding of retrofits, the
literature offers evidence equalling 6.5% of transaction values, measured as brown
discounts for the least energy efficient properties within the local commercial real
estate markets. Timely retrofits can help to prevent this type and size of future
value discounts. Regarding the value uptake, because of the cluster of indirect ben-
efits, the available literature is still inconclusive. However, studies for the US office
markets of energetic retrofitted properties identified a summed total premium of
10% to 20% value premia, compared to non-retrofitted properties.
Apart from the relevant insight into these value effects that have been documented
in the available literature, we also offer our own empirical evidence. After analysing
data from the Munich real estate market, we find an aggregate retrofit premium
of around 10%. A premium which can largely be attributed to the gains in energy
efficiency from a standard C label to a more future proof A-label, while offering
around 3% value uplift for the indirect benefits.
The insights that are offered in this paper can help real estate owners and investors
during their ex ante analysis of future energetic retrofit investments. Instrumental-
ising the various value effects that have been identified in this paper is not straight-
forward. At the same time, ignoring these value effects would delay or abort retrofit
actions. As soon as an outlook on consistent government actions becomes available,
real estate valuers will be able to absorb the effects of future sanctions in today’s
appraisals of the properties. Finally, regarding the wide range of indirect benefits
that range from marketing benefits to improved employee’s health, more empirical
research is needed to allow for an estimation of future value effects.
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2.9 Appendix

Table 5 Regression model output for all variables
log(price/m2) (1) (2) (3) (4) (5) (6)

Method OLS OLS OLS GAM GAM GAM

(0.029) (0.023) (0.024) (0.017) (0.018) (0.019)
log(energy/m2a) -0.010** 4.506***

(0.005) (edf)
A+ 0.048*** 0.046*** 0.044*** 0.041***

(0.011) (0.011) (0.010) (0.010)
A 0.076*** 0.074*** 0.071*** 0.069***

(0.010) (0.010) (0.009) (0.009)
B 0.025*** 0.024** 0.025*** 0.024***

(0.009) (0.009) (0.008) (0.008)
D -0.016* -0.015* -0.015** -0.014**

(0.008) (0.008) (0.007) (0.007)
E 0.004 0.0003 0.007 0.005

(0.009) (0.009) (0.008) (0.008)
F 0.023** 0.020** 0.019* 0.016

(0.009) (0.009) (0.009) (0.009)
G 0.01 0.09 0.003 0.002

(0.014) (0.014) (0.013) (0.013)
H 0.053 0.050 0.053 0.050

(0.032) (0.032) (0.030) (0.030)
Retrofit from 2014 0.032*** 0.030***

(0.006) (0.005)

Area 0.001*** 0.00***1 0.001*** 7.869*** 7.906*** 7.906***
(0.0001) (0.0001) (0.0001) (edf) (edf) (edf)

Floor 0.006*** 0.005*** 0.005*** 4.013*** 3.781*** 3.783***
(0.001) (0.001) (0.001) (edf) (edf) (edf)

log(price for parking) 0.014*** 0.015*** 0.014*** 8.923*** 8.932*** 8.935***
(0.002) (0.002) (0.002) (edf) (edf) (edf)

Number of bathrooms 0.030*** 0.028*** 0.027*** 1.744*** 1.693*** 1.712***
(0.006) (0.006) (0.006) (edf) (edf) (edf)

Number of rooms -0.017*** -0.015*** -0.015*** -0.007 -0.007 -0.006
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Number of bedrooms -0.019*** -0.021*** -0.021*** -0.022*** -0.023*** -0.023***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Elevator -0.0002 0.003 0.004 -0.011** -0.009* -0.009*
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Guest WC 0.036*** 0.036*** 0.036*** 0.029*** 0.028*** 0.029***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Luxury 0.141*** 0.142*** 0.149*** 0.103*** 0.104*** 0.111***
(0.009) (0.009) (0.009) (0.008) (0.008) (0.008)

Sophisticated 0.057*** 0.054*** 0.060*** 0.035*** 0.034*** 0.040***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
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log(price/m2) (1) (2) (3) (4) (5) (6)

Method OLS OLS OLS GAM GAM GAM

Normal -0.067*** -0.066*** -0.062*** -0.060*** -0.060*** -0.056***
(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)

Balcony 0.001 -0.004 -0.005 0.007 0.005 0.004
(0.008) (0.008) (0.008) (0.007) (0.007) (0.007)

Cellar -0.024*** -0.022*** -0.021*** -0.011* -0.011* -0.010
(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)

Garden -0.008 -0.010** -0.009* -0.004 -0.005 -0.005
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Fitted kitchen 0.004 0.008 0.009* 0.005 0.005 0.007
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Linear Covariates 15 15 15 11 11 11
Non-linear Covariates 0 0 0 4 4 4
Age Dummies 8 8 8 8 8 8
Spatial Dummies 75 75 75 75 75 75

N 8,928 8,928 8,928 8,928 8,928 8,928
Adjusted R2 0.610 0.614 0.615 0.677 0.677 0.678
AIC -4125 -4196 -4225 -5768 -5774 -5805

Notes: Significant at *10, **5 and ***1% levels; standard errors in brackets below the
estimated coefficient. edfs are reported for nonlinear estimates within nonlinear models.
The estimated coefficients are marked with “edf” in brackets below. The reported signi-
ficance shows the significance of smooth terms.
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3. Multivariate Tail Risk
Modeling for REITs: What
Factors Drive Extreme Losses?

3.1 Abstract
The statistical modelling of daily REIT returns has been subject to a large number
of conditional mean and conditional volatility models. However, these approaches
estimate the conditional moments and corresponding risk metrics, based on the en-
tire return distribution. Thus, the lower tail and extreme losses are not modelled
explicitly. Subsequent univariate extreme value models marked a starting point for
further improving tail risk modelling. Nonetheless, these univariate models do not
fully capture the exogenous risk factors which affect the extreme losses of a public
equity position. In order to extend univariate models, the present paper applies a
novel multivariate extreme-value regression model explicitly for the lower tail of the
return distribution below a chosen threshold. The study examines whether exoge-
nous financial market covariates provide explanatory power for the estimation of
Generalized Pareto Distributions in a non-linear generalized additive model frame-
work. The main findings of this unique approach to REIT returns are that the
explanatory power of covariates from equity and debt markets for the fit of General-
ized Pareto Distributions is existent. However, the explanatory power differs across
the analyzed impact factors and the model fit also varies across the eight tested
REIT indices. From a more methodological perspective, shape parameters of the
distributions are more sensitive to covariate inclusion than scale parameters, and
the time effects of the models are both dynamic across time and clearly non-linear.

Keywords: REIT Returns, Extreme Value Regression, Generalized Additive Mod-
els, Tail Risk, Risk Management

3.2 Introduction
Extreme downturns of public equity markets have gained considerable interest in
the past decade, due to experiences during the global financial crisis of 2008/2009
and the recent COVID-19 pandemic. Those extreme losses, which are located in
the lower tail of the return distribution, denote observations with relatively low
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probability of occurrence, but severe negative financial impact on the value of the
position. The statistical modeling of the specified portion of the return distribution
has forced academia to develop procedures that are not based on the estimation of
conditional moments of the entire distribution function (McNeil, 1997). Correspond-
ing traditional conditional means, such as capital asset pricing models (CAPM) or
generalized autoregressive conditional heteroscedasticity (GARCH)-based variance
models of return time series, do not offer a suitable analytical framework for mod-
eling the tails of financial return distributions (Bee, Dupuis & Trapin, 2019).
Accordingly, econometric literature in the field of finance shifted towards Extreme
Value Theory (EVT) to describe the exceedances of the return distribution be-
low a defined threshold, using Generalized Pareto Distributions (GPD) to model
the extreme return observations (McNeil, Frey & Embrechts, 2005). In the finan-
cial literature, several studies have demonstrated the advantages of more flexible
EVT-based return distribution tail modeling, in comparison to classic Gaussian ap-
proaches (Danielsson & de Vries, 1997), because public equity returns are known
for excess kurtosis and so-called fat tails (dating back to Officer, 1972). This excess
kurtosis is the central statistical moment for rejecting the assumption of normality
for equity return distributions. In this context, REIT returns are a highly interest-
ing field of study compared to classic equity positions such as the constituents of
the S&P500, because the former show even heavier excess kurtosis than the latter
(as recently studied by Fritz & Oertel, 2020).
Univariate EVT models which fit GPDs solely on the information from the time
series itself have enabled capturing this feature of non-normally distributed tails of
financial data (Longin & Solnik, 2001). In this context, McNeil and Frey (2000)
introduced the return decomposition to an inner kernel density based on a normal
distribution and outer GPDs above and below defined thresholds. Specifically for
REITs, Liow (2008) showed the general favorability of univariate EVT models with-
out exogenous covariates, through the improved fit of the tails and risk metric back
tests for Value-atRisk (VaR) estimations. Nonetheless, the univariate EVT-based
modeling of extreme REIT returns does not fully replicate the financial risk of public
equity positions (Kiriliouk, Rootzén, Segers & Wadsworth, 2019), because their risk
exposure can only be fully captured from additional exogenous risk factors. This
exogeneity of financial risk is well documented for REITs in other modeling frame-
works, with regard to the macroeconomic environment, as well as cross-dependencies
towards equity or debt markets (Chan, Hendershott & Sanders, 1990; Stevenson,
2002; Chang, Cheng & Leung, 2011; among others). In order to deal with this
aspect of exogenous tail risk factor modeling, Chavez-Demoulin, Embrechts and
Hofert (2016) extended the econometric literature by a dynamic multivariate EVT
regression model to allow for exogenous covariates to fit the tails of timely-variant
time series data. This methodological advancement provides the analytical basis
for addressing the abovementioned weaknesses of univariate EVT modeling and the
time variance of REIT returns. To the best of the authors’ knowledge, no study has
so far modeled a dynamic multivariate EVT regression for REIT returns depending
on exogenous covariates. The central benefit of these models is the enhanced un-
derstanding of the risk factors, which contain explanatory power for modeling the



Literature Review on the Statistical Modeling of REIT Return
Risk 39

tails of REIT returns. Thus, the central research question of the present study can
be summarized as follows: What exogenous risk factors yield explanatory power to
describe the excesses located in the lower tail of REIT return distributions?

3.3 Literature Review on the Statistical Modeling
of REIT Return Risk

In the financial literature, the return risk of public equity positions generally denotes
the possibility of variability of intertemporal discrete value changes of the daily stock
price pt, expressed by rt = log (pt) − log(pt−1) (e.g. Bachrach & Galai, 1979). From
a methodological point of view, return risk is classically modeled by either linear
multifactor CAPM, based on the seminal work of Sharpe (1964) and Lintner (1965)
or GARCH models (Bollerslev, 1986). It is important to note, that this brief review
replicates only the most prominent models for moments of the financial return risk
with regard to conditional means (µt) and variances (σ2

t ), and the decisive differences
from the empirical approach of the present piece. In the first cluster of classic linear
risk factor models on conditional means, expected returns (E [rt]) are a function of
exogenous covariates, which are interpreted as risk factors (θ), expressed by (Hansen
& Lunde, 2005):

µt = E(rt) = f(r|θ) (3.1)

This general idea of linear risk factor models was translated into an economically
significant parametric specification for stocks, estimating the parameters ψ in the
function f(r|ψ (θ)) by the three or five factor model of Fama and French (1993;
2015) for the expected value of excess returns Ri,t −RF i,t (see equation 3.2):1

Ri,t−RF i.t = αi+βi (RMt − RF t)+siSMBt+hiHMLt+riRMW t+ciCMAt+ei,t (3.2)

In addition to the Fama-French risk factors of stock returns, the literature has fo-
cused on additional risk factors to capture further explanatories, thus reducing the
error component eit (for REITs, e.g. Chan, Hendershott & Sanders, 1990). The
parameter estimates for any additional exogenous risk factors are generally known
as factor loadings. In the existing body of literature, authors generally argue that
statistical significance of factor loadings constitutes the empirical evidence of the
proposed theoretical relationship between return risk and the covariates (recently
for REITs, e.g. Carmichael & Coen, 2018). However, as noted above, the linear mul-
tifactor model provides evidence of the impact of risk factors on the conditional mean
(µt) of the excess return, which equals the expected value (µt = E [Ri,t −RF i.t]).
Accordingly, these models are unsuitable for the present study, which aims explicitly

1The risk factors of the Fama-French model are neither named nor explained here. See Fama &
French (2015) for a thorough reproduction. The equation only represents the basic idea for stock
return risk factor models.
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at modeling the tail. The second group of prominent models is the family of GARCH
models. Univariate GARCH models were originally introduced by Bollerslev (1986),
aiming at modeling conditional variance:

σ2
t = var (rt) = f(r|θ) (3.3)

Originally, the parametric approach of the univariate GARCH (f(r|ψ (θ)) model let
the variance to be conditional only on p past realizations of the time series variance
(σ2

t−i), as well as q past error terms (ε2
t−i) as impact factors (θ), leading to the general

notation of GARCH (p, q):

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i (3.4)

GARCH models were also extended by the functional relationship or potential asym-
metries between past information and the estimated variance, such as exponential
(Nelson, 1991), asymmetric (Glosten, Jagannathan & Runkle, 1993) or threshold
GARCH (Zakoian, 1994) among others.2 In addition to the univariate GARCH
models, several authors have introduced exogenous factors to affect the variance of
stock returns in multivariate GARCH specifications. In these models, θ not only
contains past variance and error terms of the time series itself, but also exogenous co-
variates to affect the conditional return volatility of equation 3.4 (e.g. Jirasakuldech,
Campbell & Emekter, 2009).
Thus, conditional variance specifications entail similar limitations to the tail mod-
eling like the first mentioned multifactor models. Even though the dispersion of the
distribution is addressed, conditional variance models do not explicitly model the
tails, and therefore, not the extreme losses in a financial time series. Consequently,
conditional variance models are not an effective methodological tool for addressing
the tail risk either. Based on these limitations, researchers developed univariate
EVT models across the broader finance literature and extending into the real es-
tate segment to address extreme tail risk (e.g. Liow, 2008), underlining the decisive
advantage of EVT. The application of an EVT approach allows to unambiguously
model the tail of the return time series data only. This tail risk modeling is typically
achieved by decomposing the financial time series data into an inner normally dis-
tributed kernel density and outer GPD-distributed tails (as motivated by McNeil,
Frey & Embrechts, 2005).
Historically, the main motivation to turn away from the normal distribution for
stock returns, and thus towards the tail modeling based on EVT among financial
researchers as well as market participants, is based on the stylized facts of the cross
section of stock returns as in Bekaert, Erb, Harvey and Viskanta (1998) and Harris
and Kucukozmen (2001). The specified studies all extract the issue of leptokurtosis,
including non-normal fat tails in the cross section of stock returns. This fat tail

2See Hansen & Lunde (2005) for an extensive review of GARCH model types. The character-
istics of different GARCH models are beyond the scope of the present study.
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issue is especially relevant for REIT return data, since the specified asset class
shows even stronger excess kurtosis in the daily return distributions, in comparison
to the broader equity market (Fritz & Oertel, 2020). Consequently, fat tails are
directly relevant from a practical point of view, because they lead to false risk-
metric calculation (Dittmar, 2002). The alternative risk-metric calculation based
on EVT models has been shown to entail empirical advantages in comparison to
classical methods (Chavez-Demoulin, Embrechts & Hofert, 2016).
From an economic perspective, the heavy losses in the fat tails of the daily return
distributions of REITs are a result of the non-normality of the underlying direct
real estate positions (e.g. Byrne & Lee, 1997). The underlying assets are considered
as the main driver for return movements of public equities from a valuation-based
point of view. Rational investors, who are valuing REITs by means of a fundamen-
tal valuation approach, translate information about the net asset values (NAV) of
the underlying assets into return movements of the stock price (Woltering, Weis,
Schindler & Sebastian, 2018). Consequently, Rossignolo, Fethi and Shaban (2012)
explicitly advise the application of return risk models, which are not based on the
assumption of normally distributed returns. The following section on dynamic EVT
regression represents one of these methodological alternatives, as called for in the
study of Rossignolo, Fethi and Shaban (2012).

3.4 The Dynamic Extreme Value Regression Model

EVT regression specifications model the extreme events of a time series using EVT
distributions, and explicitly not moments of the entire return distribution. In order
to define these extreme events of a time series, either the block maxima or the peak
over threshold (POT) method can be applied. We choose to apply the latter, since
it is advantageous in terms of extreme data point generation (noted in general by
Chavez-Demoulin, Embrechts & Hofert, 2016; Karmakar, 2017). Therefore, we let
u ≥ 0 be the threshold.
The return time series points, which exceed u, are treated as random exceedances
X1, . . . , Xq, with corresponding excesses Yi = Xi − u, i ϵ {1, . . . , n}. For financial
returns, it is important to highlight, that this procedure is applied to the losses of
a time series. The threshold is commonly chosen as a sufficiently low α-quantile
of the return distribution. Nonetheless, the term sufficiency is debatable in this
context (Karmakar, 2017), without a clear criterion for threshold selection. For the
empirical study, the 25% quantile is selected. In any case, the vector containing
the excesses Yi yields only the α percent heaviest losses of the return distribution.
As pointed out by Embrechts, Kluppelberg and Mikosch (1997), the number of
exceedances until period t, Nt follows a Poisson process with intensity parameter λ,
namely Nt Poi(Λ (t)) with integrated rate function Λ (t) = λ t. Accordingly, and in
line with the Balkema-de Haan-Pickands theorem (see McNeil, Frey & Embrechts,
2005 for a detailed reproduction), the distribution function of the excesses Yi can be
characterized by a GPD(ξ, β):
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P (Y > y |Y > u) = Gξ,β (y) =

1 −
(
1 + ξy

β

)− 1
ξ , ξ ̸= 0

1 − exp
(
− y

β

)
, ξ = 0

(3.5)

where ξ represents the scale and β the shape parameter, as y ≥ 0 if ξ ≥ 0 and
0 ≤ y ≤ −β/ξ if ξ < 0 applies.3 Under asymptotic independence of the exceedance
number Nt the maximization problem of the likelihood function can be formulated
as:

L(λ, ξ, β; Υ) = (λT )n

n! e(−λT )
∏n

i=1 gξ,β(Υi) (3.6)

where gξ,β denotes the density of Gξ,β. The decisive model Log-Likelihood can be
split into two components, namely the Log-Likelihood for the number of exceedances
as well as the excesses. The Log-Likelihood to be maximized follows:

ℓ(λ, ξ, β; Υ) = ℓ(λ; Υ) + ℓ(ξ, β; Υ) (3.7)

with

ℓ(λ; Υ = −λ T + nlog(λ) + log(T
n

n! ) (3.8)

and

ℓ (ξ, β; Υ) =
n∑

i=1
ℓ (ξ, β; y) (3.9)

with

l (ξ, β; y) = loggξ,β
(y) =


− log (β) − 1

(
1 + 1

ξ

)
log

(
1 + ξy

β

)
, if ξ > 0, y ≥ 0

log(β) − y
β
, if ξ = 0

−∞, otherwise.

(3.10)

The Log-Likelihood function is decisive for dynamic EVT models, because the model
evaluation can only be based on the entire model likelihood and graphical inspec-
tion of the model residuals, which are asymptotically unit exponentially distributed

3If ξ > 0 applies, the mathematical condition needed for the specified asymptotics to hold is
called regular variation. See Chavez-Demoulin, Embrechts and Hofert (2016) for a detailed proof.
Financial return data can be assumed to satisfy ξ > 0, and thus to be analyzed by the outlined
asymptotics.
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(Chavez-Demoulin, Embrechts & Hofert, 2016). A familiar inference approach based
on individual parameter significance, as known from ordinary least squares estima-
tions and beta coefficients, does not exist for EVT models. Thus far, the described
methodology represents the classic univariate EVT model for estimating the param-
eters of a GPD for the tail of a distribution, without additional information from
exogenous covariates. By contrast, the dynamic multivariate regression model allows
the dependence of GPD parameters on these exogenous covariates. Accordingly, we
let the EVT distribution parameters vary conditional on exogenous covariates, in-
cluding η ϵ Rp as the vector of parameters for the respective EVT distribution (p =
2 for a GPD):

gk (θk) = fk (xk) + hk (t) , k ϵ (1, . . . , p) (3.11)

where gk denotes a link function for the parameters, fk the function for the covari-
ate xk, as well as hk to model the behavior of gk across time. The incorporation of
covariates in θ is in line with the risk factors in CAPM or GARCH models. Thus,
we transfer the logic of risk factors in conditional mean and variance models towards
conditional EVT tail risk models. It should be emphasized, that the functional form
of fk can be open to discussion. Based on the pioneering work of Coles (2001), the
original approach to EVT regression models used to be fully parametric. However,
we chose a generalized additive model (GAM) for the functions in a non-parametric
estimation of the link function, as introduced by Hastie and Tibshirani (1990), us-
ing penalized splines. The smoothing parameter selection of the GAM is subject
to the Kullback-Leibler divergence equation (see Simonoff & Tsai, 1999 for an ex-
tensive reproduction). The non-parametric approach ensures greater flexibility of
the functional relationship between the covariates and the dependent REIT return
excesses (in line with Bee, Dupuis & Trapin, 2019). This is especially important,
since literature relates directly to the present study in the field of EVT regression
of REIT returns, which states a potential relationship form as orientation. The full
dynamic multivariate EVT model then essentially re-parameterizes the estimates
for the GPD parameters like β by ν, defined as:

ν = log[(1 + ξ)β)] (3.12)

Accordingly, the re-parameterized Log-Likelihood for the excesses, denoted by ℓr

follows:

ℓr(ξ, ν; Υ) = ℓ(ξ, e(ν/1+ξ); Υ) (3.13)

Decisively, the functions for ξ and ν are now assumed to be a function of exogenous
covariates x and time t, in order to capture the dynamics in the non-parametric
form of equation 3.11:

ξ = ξ (x, t) = fξ (x) + hξ (t) , (3.14)
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ν = ν (x, t) = fν (x) + hν (t) , (3.15)

The re-parameterized estimates of ξ and ν in equation 3.14 and 3.15 above are then
incorporated into an equation for β:

β = β(x, t) = eν(x,t)

1 + ξ(x, t) (3.16)

Since ξ and ν depend on exogenous covariates, ξ (x, t) and ν (x, t) in equations 3.14
and 3.15 directly show the relationship between the estimated functions of the factor
levels for f̂ξ, ĥξ, f̂ν and ĥν and the re-parameterized Log-Likelihood as the goodness
of fit criterion of the model in equation 3.13. The expression of equation 3.16
leads to the re-parameterized estimate of β for describing the distribution function
in equation 3.5. If covariates yield valuable explanatory power for the tail of the
modeled REIT return series, the re-parameterized ξ and ν will decrease the infor-
mational loss, measured by the Log-Likelihood ℓr. The presented model parameters
are estimated by a penalized maximum likelihood estimator including a backfitting
algorithm (in line with Chavez-Demoulin, Embrechts & Hofert, 2016). Given these
relationships and the description of the functional form of the model, the ultimate
goal is the selection of statistically significant covariates to improve the goodness of
fit criterions of the GPD models. The logically ensuing question is the identification
of potential covariates let the parameters of the GPD and thus the tail risk model
to be affected by. To do so, the following section reviews the empirical literature on
exogenous covariates, which represent potential REIT tail risk factors.

3.5 Identification of REIT Tail Risk Factors as
Model Covariates

For decades, researchers have examined the data-generating process of REIT re-
turns and by doing so identified and described many corresponding risk and return
factors using various empirical methods and analytical approaches. The field of
extreme value modeling, on the other hand, is relatively young and there are as
yet no empirical research results specifically on REITs. For the first attempt at
such multivariate EVT modeling in the REIT domain, we essentially test the im-
pact of covariates already known from other types of statistical models on the tail
parameters. These statistical models cover those from section 3.3, namely multifac-
tor specifications for modeling conditional means and secondly, conditional variance
based on GARCH specifications. As we are utilizing daily REIT index return data,
we focus on the identification of covariates for which such daily data is available,
and do not consider some of the variables frequently studied in the literature, for
which data is available on a monthly or weekly basis only. For a more wide-ranging
compilation of the extensive literature on REIT risk and return, see the recent work
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of Letdin, Sirmans, Sirmans and Zietz (2019). We firstly focus on reproducing the
factors which capture conditional mean, and then conditional variance.
Thirty years ago, Chan, Hendershott and Sanders (1990) employed a multifactor
asset pricing model to show that a set of financial risk factors is significant and
in part, consistent driver of REIT returns. They found the risk structure and the
term structure of the bond market to be key factors driving both equity market
and REIT returns. Subsequent work, most of which shares the common ground of
integrating the dependencies between REIT returns, stock and bond markets, has
adopted macro-factor approaches and included multiple further variables to study
REIT return behavior (Ling & Naranjo, 1997; Ling & Naranjo, 1999; Ling, Naranjo
& Ryngaert, 2000). Clayton and MacKinnon (2001) investigate the time variability
of the link between REIT returns, direct real estate returns, large cap and small
cap stock returns and bond returns, in a multi-factor model. They find that REIT
returns have a higher sensitivity to small cap stock than to large cap stock. In a
follow-up study, Clayton and MacKinnon (2003) find that this relationship is time-
variant.
Glascock, Lu and So (2000) show that REITs behave more like stocks and less like
bonds. Similarly, both pre-financial crisis studies that were conducted for example
by Ross and Zisler (1991), Gyourko and Keim (1992) or Liu and Mei (1992), and
more recent studies that include the liquidity crisis of 2008/2009 in their analysis like
Huang, Wu, Liu and Wu (2016) or Liow, Zhou and Qing (2015), demonstrate that
stock price indices exhibit significant positive relationships with REIT returns.
Changes in monetary policy refer to the actions that the US Federal Reserve takes
to influence the availability and cost of money (Ewing & Payne, 2005). Studies
that proxy for monetary policy, and that find a significant impact thereof on real
estate returns, mostly either use changes in money supply/monetary base (Darrat
& Glascock, 1989; Ling, Naranjo & Ryngaert, 2000) or changes in the federal funds
rate (FFR) (Ewing & Payne, 2005; Bredin, O’Reilly & Stevenson, 2007; Chen,
Peng, Shyu & Zeng, 2012). According to Chang, Chen and Leung (2011), equity
REIT (EREIT) and housing market returns have a significant non-linearity with
the FFR and term spread. Using quantile regression, Chen, Peng, Shyu and Zen
(2012) also investigate the effects of changes in monetary policy proxied by the
FFR on securitized real estate returns. They show that the effect of changes in
monetary policy is conditional upon market state. In volatile bear markets, changes
in monetary policy have no effect on returns, while during bull markets, changes in
monetary policy have a significant adverse effect on EREIT returns.
A common proxy for investor sentiment in the general stock market is the Chicago
Board of Options Exchange (CBOE) volatility index (VIX) (Conolly, Stivers &
Sun, 2007; Freybote, 2016; Anoruo & Murthy, 2017). The VIX measures implied
volatilities based on S&P500 options and by so doing, captures the expectations of
investors about future market volatility. Hence, the greater the VIX, the higher the
volatility due to sentiment and uncertainty. In a study on distress-risk and stock
returns, Shen (2020) finds that the distress-risk anomaly of EREIT returns is highly
correlated with the VIX. Lin, Rahman & Yung (2009) show, in a mean regression
approach, that when investors are optimistic, REIT returns increase and when they



46 Multivariate Tail Risk Modeling for REITs

are pessimistic, they become lower, when including conventional control variables
like term and risk structure.
Turning to REIT return characteristics from a conditional variance perspective,
using GARCH and EGARCH specifications on monthly data to investigate volatility
spillovers, Stevenson (2002) finds that REIT return volatility is influenced more
strongly by volatility in small cap stocks than by large cap stocks or US bonds,
which is in line with the early findings of Giliberto (1993). Further research found
certain macro-variables such as long-run interest rate, short-run interest (West &
Worthington, 2006), the FFR (Jirasakuldech, Campbell & Emekter, 2009) and the
risk premium and term structure in the bond market (Fei, Ding & Deng, 2010) to
be drivers of REIT return volatility.
Given the above discussion, in the present study we consider returns in the general
stock market for small cap and large cap stock, term spreads, risk spreads, the FFR
and the VIX as the covariates to investigate. In mathematical terms, these variables
represent the covariates x in equations 3.14 and 3.15 for ξ (x, t) and ν (x, t). Work
such as Clayton and MacKinnon (2003), which underlines the time-variance of re-
lationships, legitimize the additional dependence of ξ and ν on time (t). However,
we do not claim that these variables capture all relevant risks that affect the tail
parameters of the investigated REIT returns. Nevertheless, there is evidence that
especially financial market data can proxy for a reasonable portion of tail risk ex-
posure determining asset returns and are therefore suited for further analyzing tail
risk parameter movement.

3.6 Data Set and Descriptive Statistics
The dependent securitized real estate data represents daily returns of closing price
returns of the FTSE EPRA/NAREIT US indices, collected from Thomson Reuters
Eikon. We gather observations for various usage types by generating returns for
EREITS, including the NAREIT All Equity, Office, Retail, Industrial, Residential
REIT indices and with regard to mortgage REITs (MREIT), the NAREIT MREITs
index alongside the Mortgage Commercial and Mortgage Home Financing indices.
Additionally, the combined All REITs index is used, leading to a total number of
eight REIT indices as the dependent. We use several indices to test for potential
heterogeneity of the covariates on the different indices, especially since the exogenous
covariates are themselves equity and debt market proxies, potentially affecting their
REIT peer markets. The complete data set covers 2,966 observations per time series
from July 2008 to July 2020, and thus a total number of 23,720 daily REIT returns.
Missing return observations due to exceptional market closure events (such as 9/11)
were set to zero.
We incorporate equity market data, by using daily closing price returns from the
S&P500 index, to reflect the development of the most prominent public equity in-
dex in the US Additionally, daily returns from the S&P600 small cap index serve
as an alternative proxy, to reproduce the return variation of equities with smaller
market capitalization and thus higher financial similarity to most EREITs, as noted
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by Wang, Erickson and Chan (1995) or Stevenson (2002). We also use returns
of the NASDAQ composite and the Dow Jones (DJ) Industrial, to test for other
equity types so as to affect the lower tail of the dependent returns. Moreover,
market volatility is captured by the daily changes in the VIX, obtained from the
CBOE.
We also add explanatories from bond markets. Accordingly, we use the database on
bond yields of the Federal Reserve Bank of St. Louis (FRED) and construct several
daily yield changes. We formulate two versions of the term spread and two versions of
the risk spread in the bond market since the studies listed in section 3.5 do not define
them uniformly. Thus, we want to exploit this heterogeneity to test for a different
sensitivity of the GPD parameters to variation in the calculation of these factors.
Following Petkova (2006) and Glascock and Lu-Andrews (2014), we calculate the
term structure as the daily changes in the premium between the ten-year and one-
year government bond yields (TERM 1) and in line with Chan, Hendershott and
Sanders (1990), as the daily changes in the premium between the ten-year and one-
month government bond yields (TERM 2). Additionally, we construct the default
risk premium as the daily change in the spread between Moody’s Baa corporate bond
index and the ten-year government bond yield (RISK 1), as also described by Chan,
Hendershott and Sanders (1990), and as the daily change in the spread between
Moody’s Baa corporate bond index and Aaa corporate bond index (RISK 2), again
following Glascock & Lu-Andrews (2014). Lastly, to proxy for interest rates and
monetary policy we use the FFR. The VIX and the bond market yields and spreads
are not treated as daily returns, but by calculating the daily percent change, denoted
by ∆ rt = rt − rt−1.
In addition to the constructional aspects of the data set, the optical and numerical
univariate analysis of the data provides some first insights into the distributional
characteristics of the data. In line with expectations due to the stylized facts of the
return distribution from the related literature, we observe a typically leptokurtic
empirical return distribution, including fat tails of the dependent variables of the
present study (see Figure 3).4

For the lower tail of the All Equity price return index, we firstly observe extremely
large losses in comparison to the normal distribution in absolute terms, observable
in particular from the density mass below -10.0% of the empirical daily return dis-
tribution. Secondly, an excessive part of the distribution mass is located in the area
of smaller absolute values for the exceedances, between daily returns of -5.0% and
-10.0%. This empirical density closer to the threshold causes the shape parame-
ters to be potentially close to zero, because smaller shape estimates allow for larger
amounts of density closer to the threshold, holding the scale parameter constant.
This variation of the density mass in the lower part of the exceedances clarifies the
need to vary shape parameters of the GPDs across the different return series. With
regard to the estimation problem of the parameters, potential explanatory covari-
ates need to yield similar distributional return characteristics, in order to provide
explanatory power to the GPD parameters of the dependents.

4The statement holds for all REIT indices in the data set.
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Figure 3: Empirical distribution of the FTSE EPRA/NAREIT US All Equity
index returns and fitted normal distribution

Notes: The left-hand plot displays the empirical return distribution (black line) in com-
parison to the theoretical normal distribution (red line). The right-hand graphic shows
the lower tail of the distribution, cut off at the 25% quantile of the empirical distribution,
which is also used as the threshold for the POT method.

These similarities of the distributional characteristics of the data can be numerically
drawn from the descriptive statistics in Table 6 below. In sum, these characteristics
reveal the expected division between the EREITs, stock market covariates and the
VIX on one hand, and the remaining debt variables on the other. REIT indices
show clearly separated first moments with regard to equity and debt positions, since
EREITs unanimously display positive mean returns, whereas their debt peers collec-
tively show negative first moments. These findings for EREITs are similar to their
equity position peers from the broader stock market, because all equity indices of
the sample show positive mean returns. The standard deviations (SD) of the distri-
butions are more homogenous across the REIT indices in terms of absolute values.
Interestingly, the second moment of the Mortgage Home Financing index represents
an outlier with a significantly lower dispersion than its commercial mortgage peer
and all equity REITs. The dispersion of the time series is also captured by the
minima and maxima of the data. Here, the REITs display more extreme values
than the broader stock market data. Especially the minima values are essentially
interesting for the fit of the GPD, since a wider spread of the distribution into the
lower tail cause the scale parameter of the GPD to be larger, in order to allow for
more density in the very tail, holding the shape parameter constant.
The third moment yields mixed signs. Even though the majority of the REIT in-
dices are positively skewed, the retail and especially the distribution of the Mortgage
Home Financing index, as well all equity indices, are negatively skewed. The fourth
moment and the additionally calculated excess kurtosis of the distributions support
the assumption of heavily leptokurtic and fat-tailed return distributions. These char-
acteristics are also expressed by the reported Jarque-Bera-Test statistic (JB), which
unanimously rejects the assumption of normal distribution. Additionally, the test
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for serial autocorrelation (Q(16)) of the original time series, as well as the squared
residuals (Q2(16)), yield empirical evidence of the existence of serial autocorrelation
in the data. In sum, these descriptive statistics confirm the stylized facts about
financial return data in the literature, refuting the assumption of normality, and
thus numerically support the application of EVT distributions for the tail. For the
deeper numerical analysis of the lower tail of interest, we report the quantiles at the
one, five and ten percent levels, as well as the interquartile range (IQR) between
the zero (or minima respectively) and the 10% and 25% level quantiles. The 1%
quantiles for all REITs are significantly larger than for the covariates, whereas the
results for the 5% and 10% quantiles are mixed. Thus, we conclude that the REIT
data requires a more disperse GPD and potentially increasing scale and lowering
shape. This pattern also holds true for the reported IQRs.
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In addition to the univariate analysis of the time series data, we are interested in
the bivariate analysis and the dependence structure of the data, because inductive
regression models are generally based on co-movement investigation. However, since
we are modeling the lower tails of the distribution using the POT approach, we
refrain from analyzing the classic Bravais-Pearson correlation matrix, because the
named metric reflects the pairwise linear dependence across the entire bivariate
distribution of the variables.5 Instead, we use a pairwise lower-tail dependence
coefficient λL below the same threshold at the 25% quantile, to extract statements
about the co-movement structure specifically in the tail of the distribution (see
Table 7).6

Most importantly, we analyze the lower tail-dependence of the target REIT returns
and the explanatories (see table 7). The lower tail-dependence coefficients of the
EREIT returns range above 0.5 with regard to all equity market explanatories, in-
dicating a potentially higher informational power of these variables in comparison
to the bond market variables. The latter variable category shows lower absolute
tail-dependence coefficients, which indicates a less clear bivariate co-movement. In-
terestingly, the VIX shows small absolute values for the lower tail-dependence co-
efficients (around 0.1). Thus, the VIX appears not to clearly co-move towards the
tail with any REIT or equity position of the data set. This finding, however, is
in line with the construction logic of the VIX, since it captures two-sided volatility
from equity options and not specifically tail risk. The only variable to contradict
this low tail-dependence of the VIX is the FFR. Remarkably, the FFR is also highly
tail-dependent on all REIT and equity positions as the only debt market variable
of the data set. Thus, the FFR appears to be the potentially most impactful GPD
covariate among the bond market proxies. Economically, this bivariate relationship
can potentially be justified by the typically high leverage levels of REITs, which
are highly exposed to interest rate risk in consequence. By contrast, other classic
bond market risk proxies appear to display less clear tail-dependence. This find-
ing indicates that REIT returns could be more exposed in the tail to federal debt
conditions than to the corporate debt market conditions. In sum, the univariate
and bivariate analyses support the assumption of REIT and equity market returns
being highly dependent, also with regard to the lower tail. Bond market proxies
generally lack dispersion from an univariate point of view and additionally show
smaller lower tail dependence than the equity market covariates (with exception of
the FFR). However, the univariate description and the numerical analysis of the
time series does not fully disclose the potential impact of the covariates in a GAM
for GPD parameters, which are reported in the following section.

5The well-known Bravais-Pearson correlation coefficients can be found in the appendix.
6The lower tail dependence coefficient for a pair of random variables X1, X2 is defined by:

λL = limu↓0+ P (F (X1) ≤ u | G(X2) ≤ u) as presented by e.g. Embrechts, Hofert and Wang
(2016).
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3.7 Empirical Findings and Model Diagnostics
The procedure for testing the statistical significance of the investigated covariates
is based on the equation set of Chavez-Demoulin, Embrechts and Hofert (2016).
Essentially, we estimate each line of equations below, and then compare the Log-
likelihoods of these models against each other, in line with Kiriliouk, Rootzén, Segers
and Wadsworth (2019). Firstly, we estimate the benchmark univariate GPD models
without exogenous covariates, and only the constant terms cξ or cν based on equa-
tion 3.17 below. We then incorporate the single market covariate of interest into
the equations as x to let ξ and/or ν to depend on in addition to linear, cν (t), or
non-linear, hν (t), time effects (models of equation 3.18 through 3.22):

ξ (x, t) = cξ ; ν (x, t) = cν (3.17)

ξ (x, t) = fξ (x ) ; ν (x, t) = cν (3.18)

ξ (x, t) = fξ (x ) + cξ (t ) ; ν (x, t) = cν (3.19)

ξ (x, t) = fξ (x ) ; ν (x, t) = fν (x ) (3.20)

ξ (x, t) = fξ (x ) ; ν (x, t) = fν (x ) + cν (t ) (3.21)

ξ (x, t) = fξ (x ) ; ν (x, t) = fν (x ) + hν (t ) (3.22)

The comparison of the goodness of fit for model 3.17 and 3.18 is suitable for assessing
the significance of the included covariate x on ξ, captured by fξ(x). A comparison of
models 3.18 and 3.19 indicates an additional potential dynamic effect of time on ξ.
The assessment of models 3.18 versus 3.20 shows the significance of the covariate on
ν. The comparison of models 3.20 and 3.21 indicates the impact of the linear time
effect on ν. A separation of the models 3.21 and 3.22 is used to assess whether the
time metric exerts a linear or non-linear effect on ν. We set the threshold u for the
POT estimation at the 25% quantile of the return distribution, to model a sufficient
number of losses as the lower tail. The sensitivity of the results with respect to
the threshold selection can be debatable (see Caeiro & Gomes, 2016 for a thorough
discussion).
However, we do not vary the threshold explicitly, but report the effect of threshold
selection for a single exemplary time series as part of the model diagnostics, using the
corresponding test. We also do not explicitly report the estimated re-parameterized
values for ξ and ν, because the actual estimates do not contain information about
the statistical significance of the relationship between the GPD parameters and the
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Table 8 Thresholds, Anderson-Darling statistics and Log-Likelihoods of
benchmark models of equation 3.17

All
Equity

Resi-
dential Office Retail Indus-

trial
Mortgage

REITs
Mortgage

Home
Mortgage

Commercial
All

REITs

Threshold u -0.622 -0.624 -0.646 -0.711 -0.751 -0.527 -0.515 -0.626 -0.565
N below 742 742 742 742 742 742 742 742 742
AD statistic 0.542 0.730 0.512 0.406 0.255 0.805 0.432 0.975 0.598
AD p-value 0.228 0.100 0.259 0.433 0.789 0.066 0.389 0.026 0.174
Log-L model
(3.17)

-992.2 -1007.3 -1020.9 -1063.1 -1145.3 -825.1 -859.4 -1088.6 -953.2

Notes: The table reports the absolute value of the corresponding loss for the threshold selection.
We observe 742 losses below the reported threshold. Additionally, the AD test statistic including
the p-value is reported to justify the assumption of a uniform distribution of the observations below
the threshold. Lastly, the benchmark model Log-Likelihood is displayed.

exogenous covariates. Table 8 contains the Log-Likelihood for each of the bench-
mark models of equation 3.17 and the thresholds for all indices, as well as the
Anderson Darling (AD) statistic and corresponding p-value of the AD test for a
GPD fit. The AD can be used to confirm the choice of threshold, according to the
procedure of Choulakian and Stephens (2012) for checking the asymptotic uniform
distribution.
The first assessment of the benchmark models reveals the general feasibility of all
time series as a model of a univariate GPD, because the p-values of the AD test
demonstrate sufficient confidence in the fit of a GPD for the majority of the time
series (p > 0.01). The only notable outliers, rejecting the null hypothesis of a
GPD fit of the data to some extent, represent the Mortgage REITs index at the
10% confidence level and the Mortgage Commercial time series at the respective
5% level. Interestingly, this finding illustrates the generally lower feasibility of a
GPD fit for MREIT return tails in comparison to their EREIT peers. Turning to
the actual multivariate EVT model study, the ensuing tables reproduce the Log-
Likelihood of the equation set specified above for each investigated covariate, and
model specifications 3.18 to 3.22, as well as the Log-Likelihood of the benchmark
model of equation 3.17 without an exogenous covariate (see Table 9):
For the exogenous covariates from equity markets, we extract several insights. Firstly,
and most importantly, we observe the general applicability of exogenous equity mar-
ket covariates. We derive this finding from the fact that all tails of the dependent
REIT indices show on average lower Log-Likelihoods for model fits with model equa-
tion 3.18 through 3.22 in comparison to the benchmark model with equation 3.17.
Secondly, we find little empirical evidence for the benefit of the inclusion of ex-
ogenous equity market covariates solely in the estimation of ξ. Generally, model
fits using equation 3.18 do not outperform the benchmark for any dependent REIT
index. In contrast, a large reduction in informational loss can be observed for the
comparison of the goodness of fit measures for models 3.18 and 3.19 with model 3.20,
and thus for the inclusion of exogenous covariates for ν. Unlike for model 3.18, we
find consistent outperformance of model 3.20 in comparison to the benchmark for all
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Table 9 Log-Likelihoods for models with exogenous equity market covariates

All
Equity

Resi-
dential Office Retail Indus-

trial
Mortgage

REITs
Mortgage

Home
Mortgage

Commercial
All

REITs

Benchmark

Model (3.17) -992.2 -1007.3 -1020.9 -1063.1 -1145.3 -825.1 -859.4 -1088.6 -953.2

S&P500

Model (3.18) -998.0 -1010.0 -1033.1 -1065.4 -1169.9 -819.0 -845.9 -Inf -959.4
Model (3.19) -967.2 -985.9 -1000.1 -1042.2 -1122.5 -797.5 -832.0 -1070.7 -926.9
Model (3.20) -823.6 -875.6 -864.3 -963.7 -1037.4 -726.6 -767.5 -1025.3 -773.1
Model (3.21) -825.8 -864.3 -859.2 -935.6 -997.8 -725.6 -766.9 -Inf -773.2
Model (3.22) -750.9 -786.3 -777.5 -863.5 -884.3 -689.6 -733.4 -853.2 -Inf

S&P600

Model (3.18) -990.1 -1004.2 -1024.4 -1057.0 -1159.4 -820.8 -847.6 -Inf -951.6
Model (3.19) -962.3 -982.9 -992.3 -1035.7 -1121.2 -793.3 -828.7 -1065.9 -923.3
Model (3.20) -805.7 -860.1 -834.3 -918.7 -1026.6 -702.5 -750.2 -975.3 -764.9
Model (3.21) -807.4 -851.7 -836.6 -900.4 -984.9 -699.7 -750.1 -954.0 -766.1
Model (3.22) -744.4 -788.5 -767.7 -840.3 -883.0 -673.3 -719.9 -837.6 -704.9

NASDAQ

Model (3.18) -1001.3 -1014.1 -1037.3 -1068.6 -1167.5 -834.3 -859.8 -Inf -964.0
Model (3.19) -973.3 -991.8 -1005.4 -1045.3 -1126.4 -803.2 -838.3 -1073.7 -934.6
Model (3.20) -875.8 -912.0 -930.1 -1004.5 -1079.2 -757.9 -795.2 -1076.6 -825.2
Model (3.21) -865.6 -896.1 -910.1 -969.3 -1020.8 -757.9 -793.3 -Inf -821.4
Model (3.22) -781.4 -Inf -813.6 -895.4 -910.6 -707.4 -749.7 -876.4 -732.8

DJ-Industrial

Model (3.18) -1001.9 -1012.8 -1037.2 -1069.1 -1176.0 -816.1 -843.1 -Inf -963.5
Model (3.19) -970.1 -987.5 -1002.7 -1044.6 -1127.8 -797.0 -831.1 -1072.5 -930.2
Model (3.20) -842.6 -887.7 -880.8 -974.5 -1073.1 -721.3 -764.4 -1042.9 -789.8
Model (3.21) -842.0 -874.6 -874.0 -945.1 -1023.0 -720.1 -764.4 -999.2 -791.4
Model (3.22) -758.7 -789.2 -783.8 -Inf -899.6 -687.2 -731.0 -863.5 -709.1

VIX

Model (3.18) -1022.5 -1032.3 -1055.7 -1093.7 -1194.0 -864.7 -890.6 -Inf -983.9
Model (3.19) -982.5 -999.0 -1012.7 -1055.4 -1137.7 -809.6 -844.3 -1082.0 -942.3
Model (3.20) -943.3 -975.5 -985.1 -1077.5 -1209.0 -797.8 -838.3 -1171.6 -883.9
Model (3.21) -928.5 -950.3 -963.7 -1020.6 -1105.9 -796.3 -833.4 -1089.0 -882.0
Model (3.22) -804.5 -828.3 -830.1 -907.9 -957.2 -713.3 -754.7 -902.5 -754.0

Notes: The table shows the Log-Likelihood of the equation set from Chavez-Demoulin, Embrechts
and Hofert (2016). The benchmark model based on equation (3.17) is only displayed once,
because the Log-Likelihood of it is the same across all covariates. The value “-Inf” indicates the
impossibility of fitting the GPD on the tail for a given covariate and model equation.
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studied covariates. Hence, it can be concluded that the multivariate modeling of ν
is more beneficial than for ξ for equity market covariates. This finding is in line with
the remark about the relative importance of both GPD parameters from Chavez-
Demoulin, Embrechts and Hofert (2016), who find similar results for their data by
stressing the importance of an exogenous modeling of ν. This empirical insight can
be explained by the probability density of the return series close to the threshold.
These excesses with small absolute values are mainly captured by variations of ν
instead of ξ.
Among the covariates, we find that the S&P600 proxy appears to be the most
powerful covariate to include in the models (except for the residential equity REIT
time series). This finding is in line with the literature on conditional mean and
variance models, which favors the explanatory power of small cap equity proxies
like the S&P600 in comparison to other large cap equity indices, as noted in the
literature review for classic conditional moments (e.g. Stevenson, 2002; Clayton &
MacKinnon, 2003). From those models of the S&P600 with a numerical solution for
the Log-Likelihood, only the Office and Industrial REIT models are less powerful
than the benchmark. A remarkably low explanatory power can be observed for the
VIX. This result could have been anticipated with regard to the bivariate lower tail
dependence matrix and can be explained by the construction of the VIX.
Across the REIT indices, we find heterogeneity among the empirical results for the
equity market covariates. Firstly, we can confirm higher reductions in the Log-
Likelihood for the EREITs than for the MREITs. This finding is generally in line
with expectations, because EREITs are assumed to be more integrated into the
broader equity market than their MREIT peers. Among EREITs we observe the
largest reductions in Log-Likelihoods for the All Equity REIT time series by incorpo-
rating covariates, followed by the Office REIT index. A remarkably low explanatory
power of the inclusion of equity market covariates can be observed on average for
the Retail and Industrial EREIT series. These findings suggest a higher equity mar-
ket integration of the tail of Office REITs compared to the Retail and Industrial
REITs peers. Among the MREITs on the other hand, we find empirical evidence
of the highest reductions in Log-Likelihood for the Commercial MREIT time series
(except for the VIX). The reductions for the All REIT time series shows the highest
Log-Likelihood reductions on average for all equity market covariates (except for
the S&P500). This high explanatory power of the equity market covariates on the
blended All REIT time series can be interpreted as indicating the highest equity
market integration of the tail of the All REIT index.
Another highly important modeling aspect is the impact of the time function. For
the linear time effects, we observe a moderate influence on the model fit, by compar-
ing Log-Likelihoods of fits of model 3.21 with the benchmark Log-Likelihoods and
those of models 3.18 to 3.20. However, we find a relatively small outperformance of
fits with model equation 3.21 compared to fits with model equation 3.20 and thus
conclude a significant effect of time on the REIT return tail modeling. This finding
for the tail of the return series is in line with the widely known time variance of
the entire REIT return series distribution, as well as its time varying volatility (e.g.
Jirasakuldech, Campbell & Emekter, 2009) and time dependency of correlations be-
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tween REIT returns and macro variables (e.g. Fei, Ding & Deng, 2010). A larger
outperformance can be observed for the models which include a non-linear effect of
time on ν, denoted by hν(t) . The specified model 3.22 is the one with the lowest
Log-Likelihood overall. We conclude that the time effects on the tail are clearly
non-linear for the models with equity market covariates. We now turn to the model
fits which include the debt market covariates (see Table 10).
As the first and overall finding for the debt market covariates, on average, we find
smaller improvements in informational power in comparison to the equity market
covariates. This is particularly surprising for the MREITs, because one would ex-
pect debt market covariates to contain more information about MREITs than the
equity market. However, we do not observe this effect in our data. Instead, the
equity covariates clearly outperform the debt market covariates across all studied
REIT usage type indices. In sum, this finding shows that also the lower tail by itself
and its moments are more cointegrated with stocks than with bonds, as has already
been demonstrated empirically in conditional mean (e.g. Glascock, Lu & So, 2000)
and conditional volatility settings (e.g. Stevenson, 2002). This tendency has also
been found in the bivariate analysis of the lower tail dependence estimation in the
previous section. The specified tail metric can thus be considered as a useful tool for
preliminary analysis for a multivariate EVT regression model. Specifically, the debt
market covariates do not display homogenous reductions in the Log-Likelihoods on
average, like the exogenous equity market covariates across the model fits with equa-
tions 3.18 to 3.22. Instead, the average differences of the benchmark Log-Likelihoods
and all fits with model specification 3.18 to 3.22 of the debt market covariates are
not negative. This finding, however, is mainly driven by the poor performance of
models 3.20 and 3.21. Fits with model equation 3.22 still unanimously outper-
form the benchmark model 3.17. This finding, however, casts doubt on the actual
explanatory power of the debt market covariates themselves, because it is mainly
the result of the non-linear time effect. Turning to the impact on the individual
model parameters, the effects are ambiguous. As for the equity covariates, the in-
clusion of debt market covariates in the explanatories for the ξ parameter of REIT
index losses actually decreases the goodness of fit of models 3.18 compared to the
benchmark model. The linear time effect on ξ only provides rather small absolute
Log-Likelihood reductions on average, comparing models 3.19 to 3.17. Model 3.20
without a time effect performs on average worse than the benchmark model 3.17,
and also with regard to models 3.21 and 3.22. Thus, we see evidence countering the
debt market covariates, because Log-Likelihood reductions are on average driven by
the time factor of the models, as noted above. In sum, we conclude that the tail risk
of REIT returns is dependent on equity market covariates instead of debt market
variables.
The highest explanatory power among the covariates can be observed for the term
spreads, followed by the FFR. Risk spreads perform significantly worse on average.
With regard to potential term spread differences, we do not observe an effect of the
term spread duration in our results. For the spread with respect to the one-year
government bond yields (TERM 1), we find a very similar mean Log-Likelihood
across all estimated models, as for the one-month (TERM 2) peer.
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Table 10 Log-Likelihoods for models with exogenous debt market covariates

All
Equity

Resi-
dential Office Retail Indus-

trial
Mortgage

REITs
Mortgage

Home
Mortgage

Commercial
All

REITs

Benchmark

Model (3.17) -992.2 -1007.3 -1020.9 -1063.1 -1145.3 -825.1 -859.4 -1088.6 -953.2

TERM 1

Model (3.18) -1036.5 -1039.2 -1068.5 -1102.3 -1212.7 -877.0 -899.1 -1169.8 -999.2
Model (3.19) -991.1 -1006.0 -1019.6 -1062.2 -1144.7 -822.6 -855.2 -1087.3 -951.6
Model (3.20) -1037.5 -1046.2 -1084.5 -1176.1 -1337.0 -842.1 -868.7 -1240.3 -985.5
Model (3.21) -993.7 -1002.3 -1024.9 -1095.6 -1185.4 -836.5 -859.3 -1127.0 -954.6
Model (3.22) -857.0 -875.8 -876.0 -965.4 -1046.5 -732.4 -765.2 -946.5 -811.2

TERM 2

Model (3.18) -1034.6 -1037.6 -1067.1 -1100.7 -1210.4 -876.1 -896.4 -1165.8 -997.1
Model (3.19) -989.3 -1004.8 -1018.9 -1060.7 -1142.7 -822.2 -854.6 -1086.6 -950.0
Model (3.20) -1026.9 -1042.6 -1082.1 -1144.5 -1304.8 -847.8 -870.7 -1236.5 -974.4
Model (3.21) -986.7 -1000.6 -1024.5 -1089.4 -1168.2 -841.0 -860.8 -1123.5 -946.4
Model (3.22) -864.4 -884.6 -887.9 -967.5 -1046.2 -743.7 -774.4 -956.2 -819.0

RISK 1

Model (3.18) -1035.7 -1040.9 -Inf -1097.8 -1216.4 -Inf -Inf -1165.9 -997.4
Model (3.19) -988.2 -1004.4 -1017.3 -1057.8 -1144.3 -810.6 -844.4 -1085.4 -948.9
Model (3.20) -1070.9 -1082.6 -1113.9 -1173.4 -1382.2 -841.3 -Inf -1276.1 -1014.3
Model (3.21) -1017.2 -1024.5 -1053.5 -1087.3 -1204.8 -836.9 -Inf -1146.7 -976.5
Model (3.22) -872.9 -886.8 -889.9 -960.7 -1048.8 -Inf -Inf -955.6 -824.8

RISK 2

Model (3.18) -1040.4 -1042.4 -1072.3 -1111.6 -1211.0 -Inf -Inf -1176.3 -1001.4
Model (3.19) -989.7 -1006.0 -1017.6 -1062.8 -1141.4 -816.9 -850.9 -1086.5 -950.0
Model (3.20) -1093.3 -1097.8 -1133.9 -1206.7 -Inf -Inf -Inf -1305.3 -1036.8
Model (3.21) -1040.7 -1042.9 -1066.9 -1109.3 -1211.4 -867.1 -Inf -1170.0 -1001.7
Model (3.22) -885.8 -897.4 -907.5 -975.1 -1056.1 -758.4 -792.4 -973.0 -838.7

FFR

Model (3.18) -1039.4 -1043.3 -1073.1 -1106.4 -1217.4 -Inf -905.3 -1169.7 -1001.8
Model (3.19) -989.1 -1006.6 -1019.8 -1060.4 -1144.1 -821.1 -854.7 -1084.4 -950.6
Model (3.20) -1099.7 -1108.8 -1151.7 -1200.8 -Inf -894.6 -Inf -Inf -1045.8
Model (3.21) -1036.2 -1042.2 -1070.4 -1102.5 -1216.7 -882.3 -898.5 -Inf -999.1
Model (3.22) -881.1 -894.8 -904.2 -971.4 -1054.4 -759.9 -909.8 -970.1 -835.4

Notes: The table shows the Log-Likelihood of the equation set from Chavez-Demoulin, Embrechts
and Hofert (2016). The benchmark model based on equation 3.17 is only displayed once,
because the Log-Likelihood of it is the same across all covariates. The value “-Inf” indicates the
impossibility of fitting the GPD on the tail for a given covariate and model equation.
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Similar results can be found for the risk spreads from the bond markets, RISK 1
and RISK 2, with almost identical mean Log-Likelihoods across all models. Conse-
quently, we do not find that the tail risk modeling is dependent on either the spread
duration of the term spread or on the minuend of the bond risk spread. Lastly, we
observe the same impact of the time factor in our fitted models with debt market co-
variates as for the equity market specifications. Across the REIT index types, we do
not find a clear pattern, as is also the case for the equity market covariates. Instead,
the usage types yield unstructured and even puzzling results. The All Equity index,
as well as the Residential and Office EREITs, show remarkable reductions in the
average Log-Likelihood across models 3.18 to 3.22, whereas the Industrial EREIT
and Commercial MREIT time series both perform significantly below average. This
heterogeneity is rather weak compared to the equity market covariates, and should
thus not be emphasized too heavily.
After having estimated the numerical model fits of the equation set of Chavez-
Demoulin, Embrechts and Hofert (2016), we are interested in the model diagnostics
for our estimations. We choose the All Equity REIT index and the best performing
covariate, the S&P600, to illustrate the diagnostics based on the QQ-Plot of the
model residuals, which are asymptotically unit exponentially distributed. We report
the theoretical quantiles as well as those of the selected models, including the 95%
pointwise asymptotic confidence intervals for the benchmark model (see Figure 4)
and in comparison, two selected S&P600 models to illustrate the behavior of the
model residual across varying multivariate specifications (see Figure 5).

Figure 4: Benchmark model residuals for the All Equity REIT index

Source: Own presentation.

An optical inspection of the benchmark model reveals several insights into the model
residuals. For the benchmark model, we find an empirical distribution of the resid-
uals, which is close to the expected unit exponential distribution in the lower part.
Nonetheless, we see some structural upper divergence (or left skew) from the the-
oretical quantiles especially in the center of the plot. This indicates a structurally
incorrect modeling of the empirical distribution. The upper divergence of the resid-
uals is also crucial from a risk management point of view, because they reveal struc-
tural underestimation of the empirical distribution. This misspecification, derived
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from the model residuals can be translated directly into a wrong and especially
too low risk estimation such as for the VaR. Thus, the benchmark model residuals
can be interpreted as a central motivation to re-parameterize the tail risk model.
The resulting residuals from the multivariate EVT models show the behavior of the
residuals of different specifications. Firstly, we report the residuals of model 3.18,
which yields a poorer Log-Likelihood than the benchmark model reported above.
For this model, we also find less suitable model residuals, because the upper diver-
gence of the model is even heavier than for the benchmark. Lastly, we report the
residuals of model 3.22 in the right part of Figure 5, which shows a clearly improved
optical impression of the model residuals, because we do not observe a clear diver-
gence from the theoretical quantiles, especially for the lower part of the distribution.
The graphical illustration underlines the favorability of a well-specified multivariate
model against the benchmark model. However, the left plot of Figure 5 underlines
the need to specify multivariate EVT models with care.

Figure 5: Model residuals for the All Equity REIT index and the S&P600 index
as covariate for model 3.18 (left plot) and model 3.22 (right plot)

Source: Own presentation.

Lastly as part of the diagnostics, we check for sensitivity to the threshold selection.
Typically, EVT models are subject to discussions about user-sided adjustments of
the threshold in order to generate favorable results (Karmakar, 2017). Therefore,
we use the Hill Plots of the All Equity REIT data to illustrate the sensitivity of
the threshold selection (see Figure 6). We exclude the remaining REIT indices from
optical analysis, since they yield similar results.
The Hill plot depicts the variation of the parameter as a function of the threshold
variation and corresponding number of exceedances, both on the horizontal axis.
For our data, we observe the typical volatile impact on the left-hand side of the
plot, where little observations fall into the tail, because the threshold is relatively
large. Logically, the inclusion of more excesses has a large impact on the parameter.
We observe the classic smoothed course of the function with a decreasing number
of exceedances, moving from left to right. Most importantly, the estimation should
not be based on a threshold which is too large, thus causing the parameter to be
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located in the left part of the figure (above absolute values for u = 2.450). Since
we are using the lowest 25% of the observations, and threshold losses around 0.5 to
0.7 (recalling Table 8), our models are located in the smooth part of the function.
Thus, threshold variation in this part of the distribution would not significantly
change the model parameters. In sum, we interpret both diagnostics as an empirical
legitimation of our multivariate modeling approach.

Figure 6: Hill Plot of the benchmark model for the All Equity REIT Index

Notes: The threshold on the upper x-axis is reported in absolute values. Since we are
estimating the lower tail of the distribution, these values represent negative returns (losses).
Source: Own presentation.

3.8 Conclusion and further Research
The present study introduces a novel approach to tail risk modeling for REIT re-
turns. We are the first to apply a multivariate EVT regression for the specified type
of financial returns to explicitly model the excesses in the tails of the distributions,
depending on exogenous covariates. By doing so, we extend the literature of uni-
variate EVT models in the REIT literature, such as Liow (2008), to enhance our
understanding of exogenous covariates.
The results reveal several insights into the studied tail modeling of REIT returns.
Firstly, the present study is yet another, which underlines the importance of an
EVT-based modeling of the tail of REIT returns instead, of the Gaussian normal
distribution. Secondly, we address the rarely used lower tail dependence measure
as a bivariate assessment metric for the ensuing EVT regression. We find the gen-
eral usability of the metric, because we observe higher absolute values of lower tail
dependence among those covariates, which provide the highest explanatory power
to the GPD parameters in the multivariate EVT model. This relationship, how-
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ever, can only be used as a preliminary analytical step and does explicitly not fully
anticipate the relationship or informational power of the covariate in the EVT regres-
sion model. The results regarding the accuracy of the multivariate EVT regressions
speak strongly for the inclusion of equity market covariates in the specifications. By
contrast, exogenous debt market covariates perform significantly worse. We thus
advise the application of the former. We find a strong effect of time on the distri-
butional parameters of the REIT return excesses. In addition, we observe strong
empirical evidence for the non-linear relationship between time and the GPD param-
eters, which confirms the application of non-parametric GAMs to allow for greater
flexibility.
The results not only enhance our understanding of the employed covariates, which
contain information for the tail modeling of REIT return distributions from an aca-
demic perspective, but are also of value from a practical point of view. In this
context, the enhanced fit of GPDs for the specified tails can be used for risk man-
agers, who are frequently required to estimate risk metrics. We utilized the model
residuals to illustrate this issue. Univariate models falsely estimate the risk exposure
of REIT positions, as shown by upper divergence of the residuals from theoretical
quantiles. The inclusion of exogenous covariates not only improves the model fit by
means of the Log-Likelihood, but also by model residuals which are closer to the
theoretical quantiles. Further research can address this risk metric estimation, as
well as further enhance the modeling of the multivariate EVT approach. Risk metric
calculation such as for the VaR or conditional VaR based on the re-parameterized
multivariate GPDs, may outperform univariate EVT models like Liow (2008) espe-
cially in terms of predictive accuracy of the metrics. Here, back testing studies can
provide interesting insights for multivariate models. Additionally, since the present
study uses the single covariate testing procedure of Chavez-Demoulin, Embrechts
and Hofert (2016), only a limited number of relationships between the GPD pa-
rameters and one of the exogenous variables, plus the time component, is studied.
Accordingly, further EVT regression modeling of REIT returns that also estimates
larger multivariate specifications including multiple covariates, could be fruitful. We
see the greatest potential for further research in this field of more complex multi-
variate models including a larger number of covariates. Lastly, the flexible semi-
or non-parametric modeling of the GAM functions could also enable incorporating
interaction terms. Thus, the present research article should be interpreted as a
starting point for multivariate EVT models of REIT returns.
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4. Does Retrofitting Pay Off? An
Analysis of German Multifamily
Building Data

4.1 Abstract
Several studies have investigated the relationship between the energy performance of
buildings and housing prices. First, this paper identifies a price premium for energy
efficiency within the German rental market. Then, the indexed price differences and
associated marginal benefits are compared to the marginal costs of energy retrofits.
An extensive database of Germany’s largest online platform for housing over a time
span from 2016 to 2020 is used in a hedonic regression approach. Additionally, to
extract the marginal costs of energy consumption abatement, a dataset of 1,048
rental units regarding green-retrofit measures is utilized. While a significant green
premium is identified in the rental market, the findings suggest that it is not high
enough to compensate landlords for the money they have to spend to retrofit. The
marginal costs exceed the marginal benefits by far. Furthermore, it is found that the
German government’s recent plans to split the CO2 tax between landlords and ten-
ants does not change this because the price per metric ton of carbon is insufficiently
high. The findings can help both tenants and landlords in their decision-making, as
well as policy makers in the implementation of decarbonization efforts.

4.2 Introduction
The most recent Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) made it clear once again that the world’s climate is in danger and
that drastic steps will be necessary to stem the tide of global warming (Masson-
Delmotte et al., 2021). The building sector plays a particularly important role in
this scenario. After all, 27% of total global energy-related CO2 emissions come
from the operation of buildings, and a further 10% from the construction industry
as of 2020 (United Nations Environment Programme, 2021). In order to achieve
the goal of the Paris Agreement (UNFCCC, 2015), to limit the global tempera-
ture rise to well below 2 degrees Celsius compared with pre-industrial times (and
to make efforts to limit the temperature rise to 1.5 degrees), the European Union
(EU) submitted a Nationally Determined Contribution (NDC) which states that
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the European economy should reach net zero by the year 2050. This goes hand in
hand with the widespread decarbonization of the building sector. To meet this chal-
lenge, the European Commission presented its strategy for a so-called "Renovation
Wave" for climate neutrality and market recovery on October 14th 2020, as part of
the European "Green Deal" (European Commission, 2020). Accordingly, the annual
building renovation rate is to be at least doubled by 2030. Currently, about 75% of
buildings in the EU are not energy efficient, but 85-95% of today’s existing buildings
will still be in use in 2050. Tools like the Carbon Risk Real Estate Monitor (CR-
REM) (see Hirsch, Spanner, & Bienert, 2019), and the wide availability of Energy
Performance Certificates (EPCs) have increased both transparency and the ability
to identify buildings in need of an energetic update. At the same time, the rate
of annual energy renovations in the residential building stock in both Europe and
Germany is at only about 1% of the total stock (European Commission, 2019) and
remained at this low level quite constantly in recent years. The revised Energy Per-
formance of Buildings Directive (EPBD) mandates that the worst performing 15%
of the residential building stock have to be upgraded until 2030 from the current
EPC label G to at least label F (European Commission, 2021).
For Germany, the rented residential building stock plays an outstandingly important
role for climate impact reduction in comparison to other European countries, as the
homeownership rate is below 50% and thus the lowest in the Eurozone, according
to data from the Household Finance and Consumption Survey of the European
Central Bank and Eurostat (Andrews & Caldera-Sánchez, 2011; Eurostat, 2019).
With such a large proportion of rented housing stock, decarbonization of this stock
is essential to achieving German carbon reduction targets. In contrast to owner-
occupied dwellings, there is a problem with the energy efficient renovation of rented
buildings that is frequently mentioned in the literature: The Split Incentive Problem
or Landlord-Tenant Dilemma (Schleich & Gruber, 2008). This dilemma is indeed an
obstacle to the renovation of many rented buildings. While one party, the landlord,
must invest the costs of a retrofit, he cannot benefit directly from the advantages
this investment brings. The tenant, on the other hand, benefits directly from the
energy renovation, as he faces lower heating costs and enjoys improved thermal
comfort after a retrofit. But he, the tenant, has no influence on the investment to
achieve energy efficiency. Consequently, from a landlord’s perspective, there must
be another channel to compensate him for the investment or he would not retrofit
his property in the first place. While there are tools that could be used to reduce
the split incentive problem, such as green leases that include a cost-benefit sharing
mechanism, they require a certain amount of expertise and are not very common in
Germany (Cajias, Fuerst, & Bienert, 2019).
At the beginning of 2021, a uniform CO2 tax was introduced on fuels for heat
generation, which is levied on the heating costs. The costs for the CO2 tax were
intended to be shared equally between tenants and landlords, but this ruling was
overturned just before it was passed because one of the governing parties at the
time voted against it, so that for the time being, 100% of the tax burden is borne
by the tenant. Thus, a rent increase remains the most effective way for landlords
to recover the investment costs for green retrofits. In this regard, the question of
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whether higher rents can be achieved by improving the energy efficiency of a property
is important for landlords to ask themselves before commissioning any measures
(Fuerst, Haddad, & Adan, 2020). In an existing lease contract, the landlord may
increase the yearly rent by 8% of the occurring costs, but by a maximum of €3/m2,
€2 if the previous rent is below €7/m2 (§ 559 BGB) after execution of retrofit
measures. Modernization also allows for an exception to the rent brake and to
generate a premium in the amount under § 559 BGB. Accordingly, the modernization
rent increase primarily affects existing contracts while these increases are already
reflected in asking rents for new leases. Therefore, an empirical analysis of the rent
increase potential through energy modernization is possible and meaningful based
on asking rents. Another aspect that could increase the benefit of lower energy
consumption of an apartment in the future from the landlord’s perspective are tax
savings. This is the case because the new German government that is made up
of three parties, namely Social Democrats (SPD), Green party (BÜNDNIS90/Die
Grünen) and Liberals (FDP) recently announced that the carbon tax burden will
be split between landlords and tenants (SPD, BÜNDNIS90/Die Grünen, & FDP,
2021).
This paper analyses how energy performance is transferred to the rent of an apart-
ment or a house and tests how and if green premia are present. To do so, an
extensive dataset of rental listings in Germany is examined, wherein the energetic
conditions from Energy Performance Certificates (EPCs) are utilized as central ex-
ogenic variables. This is possible, since the EU EPBD obliges member states to
adopt an energy efficiency certification scheme which ensures that a dwelling has an
independent rating of its energy performances when offered for rental (EUR-Lex,
2018). In addition, a dataset with information on retrofits of multi-family houses
in Germany is used to compute marginal costs for energetic improvements in the
context of building renovation. The central research question of the present study
is threefold. The first part explores the question of whether, in the German mar-
ket for rented apartments in multi-family buildings, there is a price premium for
energy efficiency (green premium). Provided that a price premium is indeed found,
the subsequent research-focus is on whether the rent increase potential from an im-
provement in energy efficiency is sufficient to offset the costs of a retrofit, over the
expected useful life of the asset. If this is rejected, it is necessary to investigate
whether the regulatory framework that is currently in place in Germany provides
sufficient incentives for the implementation of energy efficiency measures. In this
respect, it will be examined whether the current level and design of the CO2 tax on
fossil fuels for residential heating in Germany provides a sufficiently strong incentive
for owners of energetically poor multi-family houses to retrofit their properties for
energy efficiency.
The paper is organized as follows. Section 4.3 introduces the theoretical background
and reviews literature on the topic. In Section 4.4, the two datasets are described,
whereas in Section 4.5, the methodology of both the statistical model estimation and
derivation of marginal benefit and marginal cost curves is presented. The results of
the hedonic pricing model, as well as the derived curves, are placed in relation to
each other and supplemented by the influence of the assumed future course of the
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CO2 taxation in Section 4.6. Lastly, Section 4.7 concludes the paper.

4.3 Literature Review
In the field of research on the influence of energy efficiency on the price of buildings
and the achievable rents, a multitude of studies have emerged which can generally
be divided into two main strands. One refers to green labels which are based on
certain characteristics, and the other focuses on absolute energy consumption to
proxy for energy efficiency. Early examples of both date back to the eighties (John-
son & Kaserman, 1983; Gilmer, 1989). Since then, the price effect of green labels
in commercial real estate has been investigated in many studies (Wiley, Benefield,
& Johnson, 2010; Kok, Miller, & Morris, 2012; Fuerst & McAllister, 2011; Simons,
Robinson, & Lee, 2014; Robinson & McAllister, 2015; Addae-Dapaah & Wilkinson,
2020). Also, mostly during the last decade, in an extensive body of literature, EPCs
which provide information about the energy performance of buildings, have been
utilized to implement energy efficiency in hedonic modeling, and test its price effect.
The first to demonstrate that higher energy efficiency, as measured by EPC ratings,
is capitalized into purchase prices, were Kok & Brounen (2011) who studied transac-
tions of about 32,000 residential properties that occurred between 2008 and 2009 in
the Netherlands. They found that properties with a green label rated A, B or C had
a premium of 10%, 5.5% and 2.2%, respectively, relative to properties rated D.1 In
subsequent studies, this fundamental relationship of a significant price premium for
green buildings has been confirmed several times for different housing markets, but
with varying premium levels (Cajias & Piazolo, 2013; Kholodilin & Michelsen, 2014;
Fuerst, McAllister, Nanda, & Wyatt, 2016; Dell’Anna, Bravi, Marmolejo-Duarte,
Bottero, & Chen, 2019; Taltavull de La Paz, Perez-Sanchez, Mora-Garcia, & Perez-
Sanchez, 2019; Copiello & Donati, 2021; Cadena & Thomson, 2021). A few studies,
however, indicate that there is no significant, a negligibly small or even a negative
relationship. The findings of Cerin, Hassel & Semenova (2014), for example, suggest
that energy efficiency causes a price premium only for certain age and property-price
classes in the Swedish residential market. Interestingly, Yoshida & Sugiura (2010)
identified a price discount in the Tokyo market for newly constructed green condo-
miniums of 5.5%, while green condominiums on average are traded at a premium.
Also, meta-analyses, such as that of Cespedes-Lopez, Mora-Garcia, Perez-Sanchez
& Perez-Sanchez (2019), have emphasized that the effects are not unambiguous and
their strength depends strongly on the way the EPC rating is included in the anal-
ysis and on the region considered. By meta-regression they aggregated the results
of 66 prior studies and find that EPCs entail an overall price premium of 4.2%.
However, this varies when broken down by continent. Average premiums of 5.36%
are observed in North America, 4.8% in Asia, and the lowest in Europe, on average
2.3%. Similarly, Wilkinson & Sayce (2020) in another meta-analysis examined, in
a European context, the relationship between EPCs and capital (or rental) values.
They once more verify that the majority of research shows there is a positive re-

1Note that EPC classes are not defined in the same way in all jurisdictions, but differ both in
terms of their number and the respective range of values. For example, the EU defines classes A
to G while Germany is using a differentiation of A+ to H.
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lationship between observed market price and energetic performance, but also that
EPC ratings are not a strong value driver compared to other variables. In addi-
tion, they also confirm that energy upgrades can increase value, but point out that
this does not go so far that the costs outweigh the increase in value. By contrast,
Copiello & Donati (2021) conclude that investing in building energy efficiency can
be economically viable up to a certain extent, when comparing the marginal bene-
fit of a retrofit, and hence the green premium, with the marginal cost to save one
kilowatt hour (kWh), based on housing price data for the town of Padua in Italy.
Specifically, they point out that housing in the worst energy rating bands can be
profitably, meaning that marginal benefit exceeds marginal costs, refurbished up to
an energy performance index of about 50 kWh/m2a to 40 kWh/m2a, depending on
whether or not tax incentives are provided. It is important to note that this finding
is based on substantial premiums of up to 61.7% from the lowest to the best EPC
rating bands, the latter being decisive for further analysis.
Most of the aforementioned studies have focused primarily on purchase transactions
and one cannot assume that the energy efficiency effects identified on the residential
sales market can be simply applied to the rental market, as these markets differ
both in the degree of formalization of disclosure of rights (e.g. involvement of real
estate agents and notaries) and in the prevalence of compliance controls (Dressler &
Cornago, 2017). However, the influence of EPC ratings has also been investigated,
albeit to a lesser extent, in the context of rental apartments: Cajias & Piazolo
(2013) identify a green premium in the German rental market for the energy classes
“B”, “C” and “D” of 13.3% (which is on average €0.47/m2), 13.5% (€0.59/m2) and
16.3% (€0.74/m2) higher rent as the reference class, the lowest energy efficient. Hy-
land, Lyons & Lyons (2013) find a significant lower premium for rental apartments
than for property sales. Their research, for which they used rental advertisement
data from Ireland, also suggests a significantly lower premium than that found by
Cajias & Piazolo (2013). For A-rated dwellings, Hyland, Lyons & Lyons (2013)
find a gain of 1.8% green premium relative to otherwise similar D rated dwellings.
Dressler & Cornago (2017) find, with data for rentals in the city of Brussels, that
highly energy-efficient dwellings are associated with a 4.8% rent premium when
compared to low-energy-efficient dwellings, which amounts to €50 per month for
the average apartment in their dataset, which has 107 m2 of living space. Addi-
tionally, they point out that disclosing energy-efficiency information for dwellings
with intermediate energy-efficiency results in a discount, which they interpret as a
strategic motivation not to disclose a dwelling’s energy performance when it is not
in the top classes. Cajias, Fuerst & Bienert (2019) with a big dataset of nearly 760
thousand observations across over 400 local markets in Germany, estimated that
rents for A+, A, B and C-rated rental apartments are on average 0.9%, 1.4%, 0.1%
and 0.2% higher than the reference category D, whereas dwellings in the categories
below E, F, G and H are subject to rent discounts of up to -0.5%. By analyzing
different subsamples, Cajias, Fuerst & Bienert (2019) also demonstrate that the Top
7 real estate markets, i.e. Berlin, Hamburg, Munich, Frankfurt, Cologne, Düsseldorf
and Stuttgart, show less sensitivity to energy-efficiency, while in secondary markets,
the premium is enhanced by up to 1.4% points (for A+), while discounts are also
increased by up to 1.8% points. Additionally, the premiums for the A category in-
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creased over time from 0% in 2013 to 1.4% in 2017 and the brown discounts for G
and H-rated apartments decreased over time. Furthermore, and in line with Fuerst,
Haddad & Adan (2020), evidence for a negative coherence of time on the market
and energy-efficiency of rental units is provided. In a more recent published scien-
tific work for Germany, some of the earlier findings were confirmed by Pommeranz
& Steininger (2021), who once more demonstrate that rents are on average lower
for apartments with higher energy consumption. Furthermore, they suggest that
in neighborhoods with higher green awareness and higher purchasing power, lower
rents for energy-inefficient apartments are payed, while the effects of purchasing
power are higher than for green awareness.
Overall, the majority of studies suggest that a green premium also exists in the rental
market, but that the level of this premium differs according to various factors. This
present paper is part of the existing debate and aims to broaden it by comparing
the efficiency gains from a retrofit with the associated marginal costs, and analyzing
whether the monetary benefits justify the implementation of retrofit measures from
the landlord perspective.

4.4 Data

4.4.1 Data on asking rents
The original dataset comprises more than 2 million observations of rental listings
from the leading online platform in Germany for housing, ImmobilienScout24, for
the time span 2016 to year 2020 and in cities with a population of more than 100,000.
Data access was provided by the Research Data Centre Ruhr at the RWI – Leibniz-
Institute for Economic Research (FDZ Ruhr). The dataset is identified at DOI:
“10.7807/immo:red:hm:suf:v3”.
Since it is not transaction data or data from rent agreements, but from offerings
on an online platform, the information was entered by the platform users, which
means that it is subject to data entry bias. To deal with this issue, we cleared
the data of implausible values such as zero or negative area, and of missing values
that are required for the estimation such as energy demand per square meter. Af-
ter data-clearing processes, we are left with 533,780 observations with full hedonic
characteristics. The dataset contains information on rent, apartment size, energy
demand per square meter, number of rooms, quality and if the features Elevator,
Balcony, Guest WC, Built-in Kitchen, Garden and Cellar are applicable. The cat-
egorial variable for quality has the classifications simple, normal, sophisticated and
luxury, which we include as binary variables as well as for the aforementioned equip-
ment features. We also add two socioeconomic variables to the dataset by including
the number of households in a city and the average household income. The so-
cioeconomic data was retrieved from GfK (http://www.gfk.com). Table 12 depicts
the descriptive statistics. The average rent for a unit is at €751.86, the average
rent per square meter is €10.89 and the average energy demand per square meter
is at 118 kWh/m2a, which equals EPC D. The average apartment age is 45 years,
whereby the age of the building is calculated as the difference between the year
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of construction and the year in which the rental listing was placed. About 1.6%
of the properties are classified as simple, 49.6% as normal, 43.4% as sophisticated,
and only 0.5% as luxury. Additionally, Table 13 depicts the corresponding Pearson
correlation coefficients.
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As indicated in Table 13, the energy consumption and age have a clearly positive cor-
relation, which has resulted from the tightening of energy consumption regulations
for new construction over the course of time (Fuerst, McAllister, Nanda & Wyatt,
2016). One indicator for an expected green premium is that energy consumption
and rent per square meter have a negative correlation. In order to examine the
relationship between energy demand and rental potential, the energy efficiency rat-
ings, which are also called EPC bands or EPC classes, are used in addition to the
absolute value per square meter. The EPC classes are not included in the data from
the outset, but are calculated on the basis of the energy demand values according
to German legislation. Figure 7 shows the EPC rating bands from H (the worst)
to A+ (the best) like they are defined in the German Building Energy Act (GEG).
For example, for a building to be assigned to energy efficiency class A, its annual
energy demand in kilowatt-hours per square meter per year (kWh/m2a) has to be
in the range between 31 and 50 kWh/m2a.

Figure 7: German energy efficiency classes of residential buildings according to
German Building Energy Act

Source: Own depicition

Accordingly, we construct a binary variable for each EPC-rating band. The summary
statistics for the EPC-variables generated in this way can be found in Table 14.
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As can be seen from Table 14, most apartments are in EPC class D (24%), followed
by E (18%) and C (16%) but only very small proportions of the buildings are assigned
to the very upper and very lower rating bands. While the shares of the classes A+
and A are close to the share in the German building stock at 2% (A+) and 5% (A),
the very lowest groups G and H are massively underrepresented. In the multi-family
housing stock in Germany, their shares are around 7% (H) and 9% (G) as depicted in
Figure 8 while in the data sample, they comprise only 2% (H) or 5% (G). A possible
reason for this low percentage of the lower rating bands in the data may be that
owners who advertise these apartments for rent are aware that mediocre and low
energy efficiency potentially reduces the rentability or results in a price discount,
and therefore do not include energy performance in the advertisement (Dressler, &
Cornago, 2017).2

Figure 8: Frequency distribution of building efficiency classes according to the
final energy demand in the German building stock

Source: Own depiction according to BMWi (2020).

Table 14 also shows the mean energy consumption in kWh/m2a and mean rent for
each EPC rating band. The highest average rent is charged in class A (€13.78/m2

p.m.), while the lowest is charged in class H (€8.82/m2 p.m.). The rent differential
is not constant, for example, the average monthly rent per square meter in energy
efficiency class E with €9.34/m2 is slightly higher than in class D with €9.27/m2.
Rent and energy consumption show a negative correlation coefficient of -0.26 while
the correlation coefficients of the different EPC classes and the rent per square
meter have changing signs. For classes A+ to C the sign is positive and from class
D downwards it is negative. The range of correlations is between 0.23 and -0.09.
Surprisingly, the highest or lowest correlations are not at the extreme points of the
energy-efficiency classes, i.e. at A+ and H, but at B and D. Due to the correlations
one would expect the presence of a green premium in the classes A+ to C.

2According to German law, an apartment may be advertised with the inclusion of the EPC
whereas it is mandatory to present the EPC to the prospective tenant at the latest at the time of
the apartment tour.
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4.4.2 Green retrofit data
The data used for this study regarding the cost of green retrofits and corresponding
efficiency gains was collected by the General Association of the German Housing
Industry (Bundesverband deutscher Wohnungs- und Immobilienunternehmen e. V.;
GdW) and some of its partner companies and kindly made available to us. The
sample comprises exclusively multifamily buildings in Germany and includes obser-
vations on 1,048 residential units in 27 properties with a total of 64,519 m2 of living
space before and after retrofit measures. The data contains a description of the
measures carried out, the year of the retrofit, renovation costs, the energy demand
before and after refurbishment, and the energy consumption before and after refur-
bishment, whereas energy demand and consumption are included in relation to the
living space. The term energy demand refers the amount of energy per square meter
that is required to provide heat to the unit. It is calculated on the basis of normative
standard conditions which are defined in the GEG. The energy consumption, on the
other hand, is based on values actually measured over a 3-year period, before and
after each retrofit, and in the dataset are only adjusted for temperature differences.
Since the EPC classes according to the GEG do not refer to the living space but to
the usable space, the energy consumption and demand must be converted to this.
Here, we apply the simplified conversion according to GEG § 82 para. 2, which for
this purpose specifies a conversion factor of 1.2 for multi-family houses.
Additionally, because the year in which the retrofit measures were carried out varies,
we extrapolate, or in the case of one observation for which the retrofit took place in
2019, we discount the costs of the retrofit to 2018, using the construction cost index
for Germany provided by the German statistical office (Destatis, 2022a) in order to
make them comparable. We choose 2018, as this is the average year of the offering
data with which the retrofit costs are compared later. Table 15 shows descriptive
statistics of the data sample. In terms of energy demand, the average value before
retrofit is 236.88 kWh/m2a and 69.97 kWh/m2a afterwards. This corresponds on
average to a retrofit starting from EPC class G and resulting in EPC class B. In
terms of actual measured consumption, on average a refurbishment performance of
176.28 kWh/m2a to 94.39 kWh/m2a is realized, i.e. EPC band G to D. The average
absolute energy saving in the energy demand is 166.91 kWh/m2a, while the actually
measured saving is less than half as high at about 81.89 kWh/m2a.
Table 16 shows the Pearson correlation coefficients for the retrofit data. It can be
noted here that the cost of retrofit per square meter correlates negatively with both
the number of housing units and the total usable space in the building, implying
that the average cost of retrofit decreases with the size of the building and that
economies of scale may be achieved accordingly. However, the positive correlation
coefficients of the costs with the initial state before renovation in kWh/m2a and
the additional state afterwards are particularly noteworthy. This indicates rising
marginal costs of retrofitting with increasing energetic performance.
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4.5 Methods

4.5.1 Hedonic Pricing and Generalized Additive Model
The econometric approach to analysing whether higher or lower energy consump-
tion in rental multifamily housing is associated with a significant price premium
involves two steps. Our first step is to estimate a hedonic pricing model (HPM), as
empirically justified by Sirmans, MacPherson & Zietz (2005), which is the standard
methodology for examining value determinants in housing. The baseline model is
specified as follows:

Y = Xβ + f(xi) (4.1)

With apartment unit factors (i), energy consumption [EC] proxies (j), socioeco-
nomic indicators (k), binary locational variables [L] on ZIP code level (l) and binary
time dummy controls [K] by listing year (t):

log(price/m2)i = β Xi + µECj + δSk + θ Ll + λ Kt + εi (4.2)

In doing so, we apply the ordinary least squares estimation method on the fully lin-
ear form and thus use the log of price per square meter as the response variable, and
the log of energy consumption per square meter as the energy proxy. Some stud-
ies argue that the standard HPM approach overestimates the influence of energy
consumption and that using different alternatives such as including spatial depen-
dencies (e.g. Conway et al., 2010; Bisello, Antoniucci, & Marella, 2020; Copiello
& Donati, 2021;) or applying nonlinear estimation techniques like Generalized Ad-
ditive Models (GAM) (Cajias & Ertl, 2018; Cajias, 2018), produces better results
than the standard approach. Spatial models could not be applied in the present
study, as the dataset was cleared from addresses or granular location information
by the provider for privacy reasons. Accordingly, in a second step to apply a GAM
approach, we use partial residual plots on our HPM estimates to identify possible
nonlinear relationships between predictor and response variables (Brunauer, Lang,
Wechselberger, & Bienert, 2010). A visual inspection reveals that all non-categorial
covariates suggest nonlinear modeling to some degree, namely the unit area, build-
ing age, floor number, energy consumption per square meter and the socioeconomic
variables of purchasing power and number of households. Consequently, these are
modeled non-linearly within an additive mixed approach with mixed covariates of
parametric estimates and nonlinear functions. We estimated four different model
specifications of which two are solely linear. Two more are mixed with both linear
and nonlinear covariates, whereas non-linearity is accounted for by modeling the
nonlinear covariates with penalized splines. For each HPM and by means of the
GAM approach, a further model is estimated in which the energy consumption is
represented by the EPC rating bands. Since we are interested in the rent difference
of the better classes compared to the worst performing buildings, we set the classes
G and H as the reference category. Due to the negative correlation between energy
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consumption and price per square meter, this approach leads to the expectation
that the regression coefficients of the binary variables for the classes A+ to F have
a positive sign, and that an increase in the strength of the effect can be observed
with increasing energy efficiency.

4.5.2 Marginal Benefit and Marginal Cost Curves
In environmental economics, the concept of marginal abatement costs (MAC) is used
together with marginal benefit (MB) to determine the optimal pollution-reduction
level (Eory, Topp, & Moran, 2013). MAC are defined as necessary costs per addi-
tional unit of emissions reduction, and MB as the financial benefit resulting from the
avoidance of this unit (McKitrick, 1999). The economically optimal level of abate-
ment is located where MAC are equal to the resulting MB (Pearce & Turner, 1990).
As already indicated, the term MAC is most often used in the academic literature
in relation to pollution or greenhouse gas emissions. Since, in the present study, our
analysis is not based on avoided emissions, but on energy savings, the term marginal
cost (MC) is more appropriate and will be used in the following analysis, although
the concept is very similar.
Following Copiello & Donati (2021), MB for energetic improvements in buildings
can be calculated as follows:

MB = ∆TB/∆Epi (4.3)

where ∆TB is the change in total benefit (TB), and hence, the price premium due
to an increase in energy efficiency after a green retrofit. And ∆Epi is the change in
the energy performance index Epi which is measured in kWh/m2a. To apply this
calculation procedure to the coefficients resulting from the estimation of the HPM
for each energy efficiency class and then estimate a marginal benefit curve (MBC),
we use the average savings between two classes resulting from the data set, and
the associated rent premium at the point of means for the reference category (EPC
G & H).
Analogous to the calculation of the MB, the marginal costs can be calculated as
the quotient of total costs (∆TC) per square meter to undertake the green retrofit
measures and the resulting change in the energy performance index (∆Epi):

MC = ∆TC/∆Epi (4.4)

To derive the appropriate slope of the marginal cost curve, we relate the MC deter-
mined for each observation i to the respective intervention level ILi which is defined
as average of energy performance index before (Epibi) and energy performance index
after (Epiai ) retrofit:

ILi = Epibi + Epiai
2 (4.5)
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In order to make the curve determined, that is shifted towards a lower degree of
energy efficiency comparable with the MBC, it has to be shifted back toward a
higher level of energy efficiency by factor S. S being defined as:

S =
(

1
n

n∑
1
Epii

)
1
2 (4.6)

The two curves derived in this way can be used to graphically analyze the extent
to which the implementation of the measures pays off economically in terms of an
increase in rents, provided there is an intersection of the curves. The intersection of
the MBC and MCC indicates the optimal level of energy reduction.

4.6 Results and Implications
The following presentation of results consists of three parts. We first estimate the
price impact of energy efficiency ratings and then proceed to apply the methodology
described above to determine the MBC, which we subsequently compare with the
MCC in order to assess the profitability of retrofit measures. As a final subsection,
we address some caveats with regard to the interpretation of the results.

4.6.1 Hedonic Pricing Model regression results
Table 17 shows the regression results for energy-related variables of four hedonic
model specifications that were estimated with the natural logarithm of asking rents
in Euros per month, as the response variable. Included are energy performance
indicators, hedonic and socioeconomic covariates with 533,780 observations from
2016-Q1 to 2020-Q4. Full regression results with coefficients for all included covari-
ates can be found in the appendix of this chapter in Table 19. Model (1), is the
standard linear model with the numeric energy index parameter log(energy/m2) as
exogenic variable, model (2) is the otherwise similar OLS model but with energy
efficiency bands as exogenic variables, while model (3) is the counterpart to (1), but
estimated in a GAM framework and likewise (4) showing the corresponding GAM
model estimates to model (2) with EPC rating bands. Spatial fixed effects on ZIP
code level and year time dummies have been included in all model estimations.
For all estimates, a significant influence of the energy quality of the buildings on
the rent was found, confirming the results of previous studies. As expected, the
positive impact of really high energy quality is much greater than for slightly better
apartments according to the results of the linear regression. Surprisingly, the signs
of the small but significant coefficients for EPC classes D, E and F in model (2)
are negative. However, this result in the linear regression appears plausible when
the correlation coefficients of the EPC classes with the rent per square meter from
Table 16 are recalled, because the negative correlation for the classes G and H
is weaker than for E, F, and G. This relationship, which is difficult to explain
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economically, is not found in the analogous GAM model (4), which suggests that
the non-linear inclusion of several variables has improved the model estimation. This
is also supported by the higher adjusted R2.

Table 17 Regression results for energy-related exogenic variables
log(price/m2) (1) (2) (3) (4)

Method OLS OLS GAM GAM

log(energy per m2) -0.058*** 8.047***
(0.001) (edf)

A+ 0.134*** 0.039***
(0.002) (0.002)

A 0.109*** 0.024***
(0.001) (0.001)

B 0.069*** 0.021***
(0.001) (0.001)

C 0.009*** 0.008***
(0.001) (0.001)

D -0.002** 0.003***
(0.001) (0.001)

E -0.003*** 0.001
(0.001) (0.001)

F -0.002** 0.002*
(0.001) (0.001)

Spatial FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
N 533,780 533,780 533,780 533,780
Adjusted R2 0.926 0.927 0.934 0.934
Notes: Significant at *10, **5 and ***1% levels; standard errors in brackets below the
estimated coefficient. edfs are reported for nonlinear estimates within nonlinear models.
The estimated coefficients are marked with “edf” in brackets below. The reported signi-
ficance shows the significance of smooth terms.

From the estimated coefficients of binary variables in a semi-logarithmic regression
the percentage effect is calculated by applying the formula 100×

(
eβ − 1

)
as stated

explicitly for hedonic pricing models by Halvorsen & Palmquist (1980). Accordingly,
in model (4), which is the basis for the following analysis, the highest green premium
for energy efficiency class A+ is 3.98%, compared to the reference category. The
following categories A, B, C, show a green premium of 2.43%, 2.12% and 0.80%,
while for D, E and F, only very small differences of 0.3%, 0.1% and 0.2% were
identified in comparison with the worst performing classes G & H.
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4.6.2 Derivation of Marginal Benefit Curve and Marginal
Cost Curve

In order to derive the marginal benefit of avoiding another unit of energy per square
meter from the previously identified green premium, we proceed with the average
square meter rent within the reference category, which is at €9.09/m2. This is
increased by the respective percentage of the green premium for the higher energy
classes. The resulting increases in future cash flows are discounted to a net present
value (NPV) using a yearly discount rate of 3% and assuming a 50-year useful life
for the facility components. The discount rate reflects the investor’s capital return
requirement and would, in practice, vary according to the location or risk profile of
the property. The assumption regarding the useful life of the building is based on the
legal requirements of German tax law, which provides for straight-line depreciation
at 2% per year, corresponding to a period of 50 years until the building is fully
depreciated (§ 7 EStG para. 2). This NPV is finally divided by the absolute change
in the energy performance index from each EPC class to the reference category, as
stated in equation (4.3). This procedure yields the following plot which is presented
in reversal scale in Figure 9. The step-by-step calculation can be derived from
Table 20 in the appendix of this chapter.

Figure 9: Derivation of the Marginal Benefit Curve

Source: Own depiction.

Following the procedure outlined in Section 4.5.2 and defined by equations (4.4)
and (4.5), the marginal costs of energy demand adjustment are plotted against the
intervention level (IL), as depicted by the blue circles in Figure 10a and 10b, where
Figure 10a contains the values for the energy demand and Figure 10b contains the
values for the actual consumption. The result suggests increasing marginal costs
for retrofits on higher levels of energy efficiency for both cases, which has also been
observed in earlier studies on energetic retrofits for different measures and materials
(Timmons, Konstantinidis, Shapiro, & Wilson, 2016; Gustavsson & Piccardo, 2022).
To adjust the MCC (IL) that was plotted on the intervention level to the target
level to obtain the final MCC, it is shifted to the right by S (=83.46 kWh/m2a
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for forecasted energy demand and =40.94 kWh/m2a for actually measured energy
consumption).

Figure 10: Derivation of the Marginal Cost Curve for energy demand (a) and
energy consumption (b)

Source: Own depiction.

The comparison of the value range of the MBC and MCC already clearly shows
that the costs exceed the expected benefits by far for both energy demand and
energy consumption. Since the actual measured savings are on average far below
the forecasted levels, the marginal costs related to consumption are at a higher
level. In the following section, the analysis of the generated curves will be continued
and extended by different approaches, in order to economically evaluate relevant
interrelationships. Knowledge of a possible discrepancy between forecasted and
realized saving should be considered in investment decisions for or against retrofits,
but since data on the actual consumption is not available up front (and is therefore
not part of an investor’s decision-making), the analysis in the following sections is
based on the energy demand values only.

4.6.3 Synthesis and economic evaluation of the CO2 tax
The joint depiction of MBC and MCC in one plot yields the conclusion that the
MB from possible rent increases is not sufficient to offset the retrofit costs from the
landlord’s point of view. The MBC runs under the MCC and does not intersect it.
At this point, it should be noted that the preceding cost analysis is based on the full
costs of the renovation measures, because only for 12 observations in the data set
the costs eligible for subsidies for energy-efficient buildings (“förderfähige Kosten”)
are known. These costs are defined as costs for measures that explicitly increase
the energetic quality of a building. For these 12 observations, the average share of
energy-related costs is at 45% of full costs. Even assuming this percentage for all
retrofits in the dataset and shifting the MCC downward by 55%, the observation of
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the irretrievability of the measures from the landlord perspective does not change.
Also, the assumption-based Marginal Cost Curve for energy-related costs (MCCer;
grey dotted line in Figure 11a) does not intersect the MBC (green dotted line at
bottom of Figure 11a).

Figure 11: Marginal Cost Curves, Marginal Benefit Curve and Energy Cost
Saving

Source: Own depiction.

The observation that energy-efficient refurbishment does not pay off in monetary
terms applies in particular to rented housing, because of the split incentive problem.
This is illustrated with a calculation example: To approximate the NPV of the
reduction in energy consumption by one kWh/a, we assume the natural gas price
per kWh of the year 2020 of 6.2 Cent/kWh (Destatis, 2022b), before the CO2 tax
on fuels was introduced in Germany, and calculate the total cost benefit over a
50-year useful life, applying the discount rate mentioned above and an energy cost
progression of 2% which reflects the average annual increase for the years 2005 to
2020 (Destatis, 2022b). We assume the price and price progression for natural gas,
because in the private household sector, natural gas is the most important energy
source on the heating market, with a current share of around 44% (BMWK, 2022).
This results in an NPV of €2.44 in terms of energy cost saving for one kWh/m2.
The corresponding line (ECS) intersects the MCC at an energy performance of
about 185 kWh/m2a, meaning that a retrofit would be expected to be economically
advantageous up to this point (Figure 11b). This consideration assumes that owner-
occupiers can retrofit at the same cost per square meter as the real estate companies
that provided the data for the analysis. However this might in many instances not
be the case, as these companies are able to benefit from economies of scale and
bargaining power. The intersection with the MCCer, however is reached at a much
higher energetic level at about 60 kWh/m2a, due to the lower marginal costs.
The example does not claim to provide an exact estimation regarding the de facto
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profitability of retrofit measures in practice, as it is based on averaged data and
various assumptions. Nevertheless, the insight is quite clear that undertaking mod-
ernization efforts to increase building energy efficiency is much more attractive, due
to the inclusion of energy cost savings in the owner-occupied sector.
With the potential to solve the landlord-tenant dilemma to some extent, a proposal
of splitting the CO2 tax between tenant and landlord was included as a declaration of
intent in the coalition agreement of the newly voted-in German federal government
in 2021 (SPD, BÜNDNIS90/Die Grünen, & FDP, 2021). The agreement states that
a percentage allocation of the tax will be implemented, that will depend on the EPC
class of a building. If this law has not been passed by 1st June 2022, the distribution
will be made on a parity basis and regardless of the energy performance. Below, we
analyse these two cases and again calculate a marginal benefit for saving one kWh
of energy, but with inclusion of the carbon tax. One challenge hereby is that the
CO2 price, which is regulated in the BEHG (“Brennstoffemissionshandelsgesetz”),
is only defined until 2026. In 2021, it was introduced at €25 per metric ton (t) of
CO2 and will gradually increase to €30 (2022), €35 (2023), €45 (2024), €55 (2025)
and a range from €55 to €65/tCO2 in 2026. Subsequently, free pricing is to be
established on the market, unless it is decided in 2025 that defined price corridors
will be continued.
The German Federal Ministry for the Environment, Nature Conservation and Nu-
clear Safety (BMU) uses values from the BMU-funded project "Politik-Szenarien IX"
(“Policy Scenarios IX”) in its current model calculations (Repenning et al., 2021).
The "Policy Scenarios IX" project assumes a CO2 price of €65/tCO2 in 2026 and
an annual increase of €15/t to €125/t in 2030, €200/t in 2035 and up to €275/t
in 2040. We adopt this assumption and add the expectation that the price will not
increase further from 2045, when Germany is expected to have already achieved net
carbon neutrality. To calculate this tax on a kWh of energy, we include the CO2
emission factor for natural gas of 0.20431 kg/kWh (Department for Business, Energy
& Industrial Strategy, 2022). This conversion results in a kWh of natural gas being
taxed, for example, with 0.73 Cents in 2022, with 3.0 Cents in 2030 or with 8.5
Cents in 2045 and after. The sum of the tax savings thus achieved for one kWh over
a 50-year period results in an NPV of €1.10/kWh. In the case of parity distribution
of the tax, simply 50% of the calculated NPV, i.e. 55 Cent, can be added to the
MB for each EPC class, which shifts the MBC upwards.
In April 2022, the parties comprising the German government agreed on how the
gradual allocation of the CO2 tax for residential buildings should be structured. A
10-stage model is proposed, which provides that a poor energy performance of the
unit or building leads to a higher cost burden for the landlord (BWSB, 2022). This
is based on the energy consumption converted into CO2 emissions, not purely on
the EPC classes. The CO2 costs to be borne by the parties per residential unit are
determined via the heating cost statement. For apartments with a particularly poor
energy balance (52 kg CO2/m2a), landlords bear 90% and tenants 10% of the CO2
costs. However, if the building meets the very efficient standard, landlords do not
have to bear CO2 costs at all. To apply this information to our calculation method-
ology, which is based on EPC classes, we use the just introduced CO2 emissions
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factor and multiply it with the average energy demand of each EPC class in our
data (see Table 18).

Table 18 Distribution of the CO2-tax burden on tenant and landlord by EPC classes
Emissions

(kg CO2/m2a)
Tax payed by
Landlord (%)

Tax payed by
Tenant in (%)

Approx. EPC
class

Approx.
emissions

(kg CO2/m2a)

< 12 0 100 A+ & A 4.65 & 9.89
12 ≤ 17 10 90 B 15.05
17 ≤ 22 20 80 C 21.16
22 ≤ 27 30 70 - -
27 ≤ 32 40 60 D 27.75
32 ≤ 37 50 50 E 34.72
37 ≤ 42 60 40 - -
42 ≤ 47 70 30 F 42.74
47 ≤ 52 80 20 - -

≥ 52 90 10 G & H 53.05 & 69.63
Source: BWSB (2022); own calculations.

Based on the input parameters just presented, the modified MBCs for the two
different cases of imposing the carbon tax on the landlord are derived. These are
shown in Figure 12a.

Figure 12: Influence of the CO2-tax within the marginal cost analysis

Source: Own depiction.

The course of the MBC is increased significantly in both cases. However, the taxation
is still insufficient to raise the marginal benefit of saving one kWh in the rental sector
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to such an extent that it offsets the cost of the renovation for any level of energy
efficiency. Both MBCs that include CO2 taxation also run strictly below the MCCer.
In making this observation, it is important to note that the tax payments to be made
in the future were discounted to 2021. The incentive effect of the tax would therefore
also increase in influence, as the price rises over time. However, this is also partly
countered by rising construction costs. From 2020-Q4 to 2021-Q4, construction costs
for the maintenance of residential properties rose by over 14% (Destatis, 2022c). It
is likely that if higher renovation rates are achieved, costs will also increase further,
due to increased demand for construction services during the next decade.
In the owner-occupied sector, on the other hand, the tax would be fully added to the
energy cost savings and thus further increase the economically reasonable depth of
renovation (Figure 12b). In general, it is highly questionable whether both investors
and private users would apply such assumptions in their decision making. The fact
that the tax is only defined until 2026 and, as a consequence it is unclear how high it
will be in subsequent years, creates planning uncertainty which limits the incentive
effect of the carbon tax.

4.6.4 Limitations and possible model extension
Some limitations to the analysis, which mainly concern the data used, should be
considered when interpreting the results. For the analysis of the green premium in
the rental market, it is important to note that the rent data reflects asking prices
which implies that there is no guarantee that a contract was actually concluded at
this price. Nevertheless, as practice shows, leases in the residential sector are rarely
negotiated and mostly conclude at the asking rent. Moreover, the data only extends
to 2020. Accordingly, both the CO2 tax and the recent tremendous price increases
in the energy market in Germany of up to 30% (Destatis, 2022d) that might induce
adjustments on the demand side, i.e. tenants being more sensitive to the energetic
performance, are not reflected in this data.
Regarding the cost side of the analysis, due to the lack of information in the available
data, it was only possible to make a rough approximation of the actual energy-related
costs of renovation. It is important to note that with massively increasing renovation
rates, which are a necessary requirement for reaching both the EUs’ and Germany’s
climate targets, the typical occasion for energy-related renovation cannot always
be "normal" maintenance, but rather intervention in the building substance outside
of the usual maintenance cycles, in order to specifically implement the necessary
measures for climate protection. For this reason, the application of energy related
cost components alone in economic profitability studies can be criticized. A further
limitation is that public subsidies from the federal programs for energy-efficient
building renovation could not be considered, as they are not part of the provided data
either. The observation of financially unviable retrofits from the landlord’s point of
view demonstrates that there is a substantial need for providing subsidies.
Finally, the analysis was based on energy demand per square meter, although the
actual target value of the governmental goals does not refer to this, but to CO2 or
CO2-equivalent emissions. While an approximation of the influence of CO2 taxation
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could be achieved by means of a conversion using the emission factor for natural gas,
the quantitative analysis would gain in substance if it could be based on actual CO2
emissions per square meter. The current federal government has already expressed
its intention to digitize the EPC and focus increasingly on CO2, from which further
research could benefit. But more importantly these steps would enable a more
targeted implementation of retrofit measures in the future.

4.7 Conclusion
This study empirically investigated whether a green premium is paid for energy
efficiency in the German rental market. The results show that this is indeed the
case for the very high-performance EPC classes, while there is only a very small,
almost negligible premium for mediocre- and lower-performance classes. In addition,
a marginal cost curve for the abatement of an additional kilowatt-hour of final energy
was derived from a dataset of green-retrofits of multi-family homes in Germany.
A comparison of the marginal cost with the marginal benefit derived from the iden-
tified green premium shows that the monetary advantage resulting from possible
rent increases is far from sufficient to compensate for the costs of retrofit measures
(if there are no public subsidies). While the finding of a green premium implies that
the landlord-tenant dilemma is not absolute, but that landlords can also benefit to
some extent from efficiency gains in relation to rent, a comparison shows that the
net present value from energy cost savings would be many times larger than that
of additional rent. An inclusion of the planned split of the CO2 tax between both
landlord and tenant in the analysis has shown that at the time of the study, this
split is on average not capable of providing a sufficient incentive for the landlord
to carry out green retrofits. The price per ton of CO2 appears to be too low for
this purpose. This statement does not imply that the taxation completely fails to
achieve its purpose and has no influence on the retrofit activity, but it does im-
ply that this form of taxation is not sufficient in the short term, to bring about a
substantial increase in the renovation rate and that further measures are therefore
necessary. It should be noted that an excessive increase in the tax to correct this
and to increase the renovation rate in the short term is not an advisable measure,
because this would drive up the housing costs of all households including those of
owner-occupiers for which the incentive is already stronger than for owners of rental
stock. Over time, as the tax per ton of CO2 increases, the incentive effect will also
increase. However, from today’s point of view, the inclusion of the tax in calcula-
tions is associated with considerable planning uncertainty, as the price per ton is
only defined until 2026. It should in fact be specified until 2030 and even beyond
in order to take full advantage of realizable potentials that could be activated by
CO2 taxation. To increase the renovation rate in the short term and to focus on
the worst performing buildings where the greatest efficiency gains are achievable,
binding minimum standards as already proposed in the last update of the EPBD,
appear to be a good alternative.
The study results, even if imperfect and subject to limitations, appear to be valu-
able not only for tenants and investors in their decision-making, but also for policy



References 99

makers in the implementation of decarbonization efforts in the residential real estate
sector.
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4.9 Appendix

Table 19 Full regression results for all variables
log(price/m2) (1) (2) (3) (4)

Method OLS OLS GAM GAM

log(Energy per m2) -0.058*** 8.047***
(0.001) (edf)

A+ 0.134*** 0.039***
(0.002) (0.002)

A 0.109*** 0.024***
(0.001) (0.001)

B 0.069*** 0.021***
(0.001) (0.001)

C 0.009*** 0.008***
(0.001) (0.001)

D -0.002** 0.003***
(0.001) (0.001)

E -0.003*** 0.001
(0.001) (0.001)

F -0.002** 0.002*
(0.001) (0.001)

log(area) 0.774*** 0.775*** 8.988*** 8.988***
(0.001) (0.001) (edf) (edf)

age -0.001*** -0.0005*** 8.993*** 8.991***
(0.00001) (0.00001) (edf) (edf)

floor number -0.00003 0.0005*** 8.958*** 8.898***
(0.0001) (0.0001) (edf) (edf)

number of rooms 0.031*** 0.031*** 8.970*** 8.963***
(0.0004) (0.0004) (edf) (edf)

Elevator 0.031*** 0.027*** 0.017*** 0.017***
(0.001) (0.001) (0.001) (0.001)

Balcony 0.023*** 0.024*** 0.037*** 0.037***
(0.001) (0.001) (0.001) (0.001)

Guests WC 0.043*** 0.043*** 0.014*** 0.014***
(0.001) (0.001) (0.001) (0.001)

Built-in Kitchen 0.064*** 0.065*** 0.063*** 0.063***
(0.001) (0.001) (0.0005) (0.0005)

Garden 0.014*** 0.014*** 0.012*** 0.012***
(0.001) (0.001) (0.001) (0.001)

Cellar -0.027*** -0.025*** -0.014*** -0.014***
(0.001) (0.001) (0.001) (0.001)

Simple equipment -0.077*** -0.078*** -0.085*** -0.085***
(0.002) (0.002) (0.002) (0.002)
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log(price/m2) (1) (2) (3) (4)

Method OLS OLS GAM GAM

Sophisticated equipment 0.141*** 0.138*** 0.118*** 0.118***
(0.001) (0.001) (0.001) (0.001)

Luxury equipment 0.282*** 0.275*** 0.217*** 0.217***
(0.001) (0.001) (0.001) (0.001)

log(Purchasing Power) 1.051*** 1.029*** 6.281*** 6.137***
(0.068) (0.067) (edf) (edf)

log(Households) 0.109*** 0.110*** 1.082*** 1.089***
(0.008) (0.008) (edf) (edf)

Spatial FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
N 533,780 533,780 533,780 533,780
Adjusted R2 0.926 0.927 0.934 0.934

Notes: Significant at *10, **5 and ***1% levels; standard errors in brackets below the
estimated coefficient. edfs are reported for nonlinear estimates within nonlinear models.
The estimated coefficients are marked with “edf” in brackets below. The reported signi-
ficance shows the significance of smooth terms.

Table 20 Calculation of marginal benefit for each EPC class
A+ A B C D E F

Green Premium (%) 3.98 2.43 2.12 0.80 0.30 0.10 0.20
Green Premium (€/m2 p.m.) 0.36 0.22 0.19 0.07 0.03 0.01 0.02
Total Benefit (€/m2) 112.28 68.58 59.91 22.68 8.48 2.82 5.65
∆Epi (kWh/m2a) 235.21 213.57 192.25 166.98 139.76 110.97 77.80
Marginal Benefit (€/kWh) 0.48 0.32 0.31 0.14 0.06 0.03 0.07

Notes: The green Premium in €/m2 p.m. is calculated on the basis of an average rent of
€9.09/m2 p.m. in the reference category. The total benefit is calculated as the NPV of monthly
payments over a 50-year period with bullet payments and a discount rate of 3%. ∆Epi always
corresponds to the average change compared to the reference category.
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5. Conclusion

The present thesis explores selected aspects that are relevant for the management
of both direct and indirect real estate positions. With regard to directly held real
estate, the focus of the research is on interrelationships regarding retrofit measures
for the building, which represent a basis for adaptation to and mitigation of climate
change and the associated climate risks. With regard to indirectly held real estate,
extreme loss risks emanating from the financial and capital markets are investigated.
Chapter 1 provides some background information and general motivation for the
presented research topics. Chapters 2 through 4 contain the individual research es-
says comprising the cumulative dissertation. The following sections include a com-
prehensive summary of each individual research paper. Subsequently, congruencies,
limitations as well as further research opportunities are considered.

5.1 Executive Summary

Paper 1 | The Value Effects of Green Retrofits

Renovating both public and private buildings is essential for driving energy efficiency
in the real estate sector and thereby combating climate change (European Commis-
sion, 2022). Inadequate knowledge of the mechanisms behind retrofit actions and/or
a lack of anticipation of potential value capture of green retrofits could delay inter-
vention timelines or lead to the aborting of proposed retrofit actions, which should
be of primary concern to policymakers and stakeholders tasked with the decarbon-
isation of real estate assets. Paper 1 offers both a conceptual framework and an
empirical analysis, in order to identify the value effects of retrofits which can be de-
rived from associated gains in energy efficiency. Moreover, the paper opens with an
extensive literature review of green premia and presents previous research on both
price effects on real estate transactions and the market for rentals. The evidence of
a price premium is partly contradictory, but most studies find a significant positive
effect of high environmental performance on market value. While numerous stud-
ies have investigated the upside value effects of energy efficiency in the real estate
sector, there is little academic research that analyses the impact of green retrofits
and the extent to which this can be capitalized by investors/owners. The conceptual
framework that we have introduced helps to identify and measure three types of real
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estate value effects that can result from a green retrofit. First of all, and very much
intuitively, an increase in value results from the avoidance of energy costs, which
occur from an increase in energy efficiency. This effect should be evaluated differ-
ently for real estate transactions and rented stock, because, in the case of a property
sale, the savings can be fully capitalized in value appreciation, whereas in the case
of rented properties, this can only be the case if the rent can be increased propor-
tional to the energy efficiency gain of the property. Another value effect results from
increasing regulatory pressure with regard to the decarbonization of the economy.
Future policy measures will lead to value reductions, as government penalties or
market obsolescence can be expected for inefficient properties. A retrofit is capable
of shielding the property from discounts and will therefore result in a net value gain.
The third source of value relating to a deep retrofit with energy efficiency improve-
ment is a cluster of so-called indirect benefits that vary from improved occupier
wellbeing to reputational gains for the property users involved.
To strengthen the arguments put forward, an empirical analysis was conducted to
demonstrate the positive value effect of higher energy efficiency in the real estate sec-
tor. The regression analysis based on 8,928 dwellings in the Munich residential real
estate market includes a classic OLS approach to model the sales prices of residential
units as a function of energy efficiency proxies and a set of hedonic characteristics.
The results indicate value gains from energy efficiency improvements in the range
of 2.4–7.4%, while the indirect benefits and reduced exposure to stricter standards
amount to another 3%.

Paper 2 | Multivariate Tail Risk Modeling for REITs: What Factors Drive
Extreme Losses?

Although some researchers already pointed out several years ago that research in this
field could be fruitful (Liow, 2008; Stein, Piazolo, & Stoyanov, 2015) Paper 2 is the
first study so far in which a dynamic multivariate EVT regression for REIT returns,
depending on exogenous covariates, was modeled. After a general introduction to
the statistical modeling of REIT return risk, the novel extreme value regression
methodology is introduced, which is based on Chavez-Demoulin, Embrechts and
Hofert (2016). We define extreme events using the POT method, where we set the
threshold at the 25% quantile of the return distribution. Instead of simply fitting
a GPD from the data series generated in this way, as is usually done, we include
different covariates in the model fit of the distributions moments, namely scale and
shape parameters. We identify model covariates by carefully reviewing the extensive
body of literature on the risk factors for REITs. Since our empirical analysis is
based on daily return data, several risk factors that are frequently highlighted in the
literature, but for which no daily values are available, are excluded.
The data used as explanatories includes equity market covariates and bond market
covariates. On the equity side, we use daily closing price returns from the S&P500,
S&P600 small cap index, NASDAQ composite and the Dow Jones Industrial. More-
over, market volatility is captured by daily changes in the volatility index "VIX".
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Accordingly, on the bond side, we construct two versions of the term spread and two
of the risk spread in the bond market. Lastly, to proxy for interest rates and mone-
tary policy, we use the federal funds rate. As the dependent in our model estimation,
we utilize closing price returns of eight different NAREIT US indices, whereby we
use five EREIT indices (All Equity, Office, Retail, Industrial, and Residential REIT
index), three MREIT indices (NAREIT MREITs, Mortgage Commercial, and Mort-
gage Home Financing), and the combined All REITs index.
The estimation of a system of model specifications for each pair of dependent REIT
index and exogenic covariate reveals several novel insights. Most importantly, the
inclusion of covariates in the GPD fit yields improved model accuracy, as indicated
by both the Log-Likelihood metric and the model residuals, which are closer to the
theoretical quantiles if exogenic covariates are utilized. However, the explanatory
power differs across the analyzed impact factors. In general, the equity market co-
variates for all REIT indices outperform the debt market covariates by far, meaning
that the extreme value losses are more strongly driven by equity market than by
debt market covariates. The best modeling result was achieved by including the
S&P600. The asset class under consideration has no discernible impact on the ap-
plicability of the methodology, and we find no clear evidence that some covariates
perform better for certain REIT asset classes indices than for others.

Paper 3 | Does Retrofitting Pay Off? An Analysis of German Multifamily
Building Data

Paper 3 analyses green retrofits, and is the first study in this context to examine the
economic viability of such measures using marginal cost analysis. Although a large
number of studies (including Paper 1) have shown that higher energy efficiency
of buildings is associated with a green premium, it cannot be assumed that such
increases in sales value or rent increases are sufficient to compensate for the costs
of implementing retrofit measures. This is particularly questionable with regard to
rentals, because, due to the landlord-tenant dilemma, not all value effects of green
retrofits impact fully (Schleich & Gruber, 2008).
Two different data sets are used to investigate the research question. On the one
hand, a hedonic pricing model is estimated for a large sample of more than half a
million residential rental listings in Germany, which is in line with former research,
shows a green premium for higher energy efficiency. On the other hand, a unique
data sample with information on the retrofits of a total of over 1,000 residential units
in multi-family homes is used to extract retrofit-related energy abatement costs.
Based on the green premium detected by the hedonic pricing model, an economic
benefit is calculated by computing the NPV of the rent increase due to increased
energy efficiency for each of the EPC classes A+ to F, over the expected useful life.
This NPV is again converted into a marginal benefit by dividing the total benefit by
the energy savings per square meter. The results show a marginal benefit between
48 cents and 3 cents per kWh saved per year. By contrast, however, the marginal
abatement costs of another kWh are much higher. These range roughly between one



112 Conclusion

and four euros per kWh saved per year, if only energy-related costs are considered.
This discrepancy between costs and benefits is highlighted by the fact that MBC
and MCC do not intersect. A calculation of the NPV of the energy cost savings
(from which a landlord does not benefit) shows that these have an NPV of roughly
€2.40 per kWh, indicating that in the owner-occupied segment, the implementation
of retrofit measures is much more attractive.
A further analysis step examines whether the inclusion of the recently announced,
but not yet enacted regulatory measure of splitting the CO2 tax on fossil fuels
between landlord and tenant alters the result of the unfavourability of retrofitting.
Accordingly, under serveral assumptions, the expected tax savings are computed as
an NPV, which is added to the potential rent increase and thus shifts the marginal
benefit curve upwards. However, even in this case, the marginal cost analysis shows
that, on average, there is no sufficient incentive to implement renovation measures
from a landlord perspective. The analysis reveals the importance of public subsidies
and shows that, in addition to passing on the CO2 tax to landlords, further steps
are needed to increase the rate of renovation in the rented residential building stock
in Germany.

5.2 Final Remarks
"Resilient investments are those able to withstand the effect of not only acute disrup-
tions in the market but also chronic longer-term threats" (Clayton et al., 2021).
The economic case for real estate resilience is clear. Real estate managers who act
on behalf of institutional investors have a fiduciary responsibility to not only identify
risks that affect the assets they manage, but also to make investments that mitigate
those risks and increase asset value. Clayton et al. (2021) further specify that risk
management often relies on diversification and insurance to control risks, which is
a valid and reasonable approach, but some long-term threats may not be insurable
and may be nondiversifiable. Therefore, besides at the investment and portfolio
level, much of the work to create resilient real estate portfolios must be at the asset
level.
Although the individual articles in this cumulative dissertation are partly themat-
ically distinct, they remain united by the fact that together, they address selected
aspects of both short-term shocks and long-term threats, in line with the require-
ment described above to ensure resilient real estate investments. According to this
understanding, Paper 2 refers to acute disruptions, while Paper 1 and Paper 3, with
their reference to meeting the challenges of climate change, refer more to long-term
challenges. More precisely, the EVT study on REIT returns extreme behavior can
help investors and fund managers understand the distribution of real estate mar-
ket returns better, so that they obtain potentially more accurate real estate return
forecasts in times of crisis. However, the study is seen as a starting point on which
further research needs to be conducted in order to convert the novel methodology
into practical applications. The study has already shown that the inclusion of mar-
ket data increases the accuracy of the fitting process, but a next step should be
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to compute actual risk metrics from the fitted distribution functions modeled using
covariates, and to then compare the outcomes with the common method of distri-
bution calculation by means of backtesting. Furthermore, within the modeling of
the parameters themselves, there is ample scope for future research. The greatest
potential in this regard is in the field of more complex multivariate models includ-
ing a larger number of covariates. Additionally, the flexible modeling of the GAM
functions could also enable incorporating interaction terms.
Retrofits of buildings are essential in establishing resilience to the long-term threats
of global warming, as they mitigate climate risks and are suitable for adapting build-
ings to the changing market and regulatory environment. At the same time, it is
clear that retrofitting existing buildings worth preserving, plays a central role in
the transformation to a climate-neutral building stock in general (European Com-
mission, 2022). A profound understanding of the rational decision-making process
regarding green retrofitting, as well as possibilities regarding policy instruments to
influence these decisions, are both necessary for policy makers to increase renovation
rates to meet carbon reduction targets and for owners alike to protect or increase
property values. Paper 1 and Paper 3 pick up on this aspect. In order to investigate
the effect of improved energy efficiency, supply data on the sale and rental of resi-
dential properties in Germany was used. Actual contract data, that would ideally
include multiple observations of prices for the same units at different points in time
(before and after retrofit) would be even more desirable, but there are significant
limitations to data availability. Therefore, for future research, value could be cre-
ated by refining the analysis through data collection and quality assurance. This is
particularly the case for assessments of the cost of actual efficiency gains through
retrofits, especially with regard to the cost structure, i.e. the breakdown into full
costs and the energy-related share. The plans presented by the new German govern-
ment for the introduction of a digital building energy certificate, in connection with
the focus on the characteristic value of the emission output instead of the energy
consumption, will probarbly improve data availability (SPD, BÜNDNIS90/Die Grü-
nen, & FDP, 2021). In addition, it may be useful to repeat the analysis of Paper 3
with updated data to re-evaluate the effect of the CO2 tax split between landlord
and tenant. Influencing variables such as energy prices, construction costs, and the
level of the CO2 tax itself, could significantly affect the results and make retrofits
more favorable to rental property owners than is the case today. Extending the
analysis to other real estate asset classes may also yield valuable insights.
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