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GINZBURG-LANDAU EQUATIONS IN THE PRESENCE OF THE ISOTROPIC LIFSHITZ INVARIANT:
GENERAL CONSIDERATIONS

On a phenomenological level, non-centrosymmetric polar superconductors governed by the Rashba spin-orbit cou-
pling, and subjected to an external magnetic field B = rotA, can be described by the Ginzburg-Landau (GL)
functional for the free energy density [1]:

F [ψ,A] = a(T )|ψ|2 +
b

2
|ψ|4 +

1

4m
(Dψ)∗ ·Dψ +

B2

2µ0
+ FL[ψ,A] ≡ FGL[ψ,A] + FL[ψ,A], (S.1)

where the pre-last term represents density of the magnetic energy and the last one the so called isotropic Lifshitz
invariant. The latter stems from an interplay of the Rashba spin-orbit interaction, HR = αR(k × n) · σ, Zeeman
coupling, HZ = gµBB · σ and the superconducting coherence, and its explicit form reads [1]:

FL[ψ,A] = −1

2
κ(n×B) ·Yψ ≡ −

1

2
κ(n×B) ·

[
(ψ)∗Dψ + ψ(Dψ)∗

]
, (S.2)

wherein the Edelstein parameter κ,

κ = 3
αR
~

g µB
vF pF

f3

(
αR pF
~π kBTc

)
' 3

αR
~

g µB
vF pF

with f3(x) ' 0.475

π∫
0

dt

∞∑
n=0

sin t (x sin t)2

(2n+ 1)3[(2n+ 1)2 + (x sin t)2]
, (S.3)

serves as a figure of merit of the non-centrosymmetry of polar systems. The meaning of different symbols/letters is
set by the following notation, moreover, all quantities are assumed to be in SI units:

� ψ stands for the condensate (Cooper pair) macroscopic wave function in the GL approach, being in D spatial
dimensions, the unit of ψ is m−D/2,

� n is the spin-orbit-coupling unit vector defining the polar axis, without a loss of generality we assume n = ẑ =
(0, 0, 1), and αR is the corresponding Rashba coupling,

� σ stands for the vector {σx, σy, σz} of Pauli spin 1
2 -matrices, spin quantization axis is along n,

� A is the vector potential and B = rotA is the total magnetic field (in-plane + out-of-plane w.r.t. the given
polar axis n). We employ the Coulomb gauge, i.e., divA = 0,
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� D = ~
i∇− 2eA is the covariant momentum operator,

� m, g and e < 0 are, correspondingly, the electron effective mass, effective g-factor and the electron charge,

� µ0 and µB are, correspondingly, magnetic permeability and the Bohr magneton,

� a(T ) = α0(T −Tc)/Tc ≤ 0 and b are the conventional GL parameters, Tc is the critical temperature, and kB the
Boltzmann constant,

� pF and vF stand for the Fermi momentum and Fermi velocity,

� κ is the Edelstein coefficient of non-centrosymmetry (not to be confused with the Ginzburg-Landau parameter
κGL ≡ λ/ξ), in SI units κ is expressed in m·C/kg.

Considering F [ψ,A] as a functional of ψ and A, one derives in a standard way the first and second GL equations in
the presence of non-centrosymmetry, along with a boundary condition on the interface between the superconductor
and a vacuum (an insulator or normal metal):

1st GL-Eq: 0 =
δF

δψ∗
0 =

1

4m

[
D− 2mκ(n×B)

]2
ψ +

[
a(T )−mκ2(n×B)2

]
ψ + b|ψ|2ψ, (S.4)

2nd GL-Eq: 0 =
δF

δA
0 = rot

[
1

µ0
B +

1

2
κ (n×Yψ)

]
− e

2m
Yψ + 2κe|ψ|2(n×B), (S.5)

boundary condition: 0 = ν̂out ·
[
D− 2mκ(n×B)

]
ψ
∣∣∣
interface

, (S.6)

where ν̂out (in general not necessarily related with n) is the outer normal vector pointing from the superconductor to
the vacuum (an insulator or normal metal). For a completeness, the 2nd GL equation can be written in the form of
a Maxwell equation—namely the Ampere law:

rotH = js , where magnetic field intensity: H =
1

µ0
B−M, (S.7)

magnetization: M = −1

2
κ (n×Yψ), (S.8)

supercurrent: js =
e

2m
Yψ − 2κe|ψ|2(n×B). (S.9)

1ST GL EQUATION FOR A THIN SUPERCONDUCTING FILM IN IN-PLANE AND OUT-OF-PLANE
MAGNETIC FIELD

In what follows we assume that:

� the superconducting film is quasi-2D, lies in xy-plane, and is terminated on both sides by a vacuum i.e. ±ν̂out ‖
n = ẑ = (0, 0, 1),

� the film has an extrapolation length d and extends in the transverse direction within the interval z ∈ [−d2 ,+
d
2 ];

the extrapolation length d = dgeo +O(1)ξ, where dgeo is the true geometrical (i.e., physical) thickness of the Al
film and ξ is the GL coherence length,

� the film is without pronounced in-plane crystallographic anisotropies, i.e., we assume in-plane C4v (or higher
C) symmetry—this is imprinted in the form of HR,

� the vortex-generating (out-of-plane) component of magnetic field, Bz = Bz ẑ = (0, 0, Bz), is perpendicular to
the film,

� the in-plane component of magnetic field Bip is pointing along the y-axis, i.e. Bip = By ŷ = (0, By, 0),

then

� then the total magnetic field vector B = Bz + Bip = (0, By, Bz), and the corresponding vector potential in the
Coulomb gauge A = (−Bz y2 , Bz

x
2 ,−Byx),
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� n×B = −Byx̂ = (−By, 0, 0) ⇒ mκ2(n×B)2 = mκ2B2
y .

As a comment, Bz and By are local magnetic fields near the vortex core and in principle they differ from the corre-
sponding laboratory values. However, we expect the difference to be small owing to the fact that the film thickness is
much smaller than both ξ and λ. Thus, the in-plane field is not expected to be significantly affected by the negligible
in-plane screening currents. However, in this respect, it is difficult to model the role of the 2DEG, which is relatively
thicker compared to the Al film. Also the out-of-plane component is expected to be similar to the applied Bz field,
since the Pearl length 2λ2/d is of the order of many micrometers.

We will solve the 1st GL equation near the vortex core region, for which we assume that By and Bz are not varying
in space on the length scale of the coherence length ξ, and therefore we treat them as constants. Let us elaborate in
detail on the 1st GL equation, Eq. (S.4):

0 =
1

4m

[
D− 2mκ(n×B)

]2
ψ +

[
a(T )−mκ2(n×B)2

]
ψ + b|ψ|2ψ . (S.10)

We consider each term individually.

� [D− 2mκ(n×B)] = ~
i∇ + (eBzy + 2mκBy,−eBzx, 2eByx),

� [D− 2mκ(n×B)]2 = −~2∆ + 2~
i (eBzy + 2mκBy,−eBzx, 2eByx) ·∇ + [(eBzy + 2mκBy)2 + e2(B2

z + 4B2
y)x2],

� shifting the y-coordinate y = ynew − 2κmBy/(eBz) ⇒

[D− 2mκ(n×B)] =
~
i
∇ + (eBzynew,−eBzx, 2eByx) (S.11)

= [renaming: ynew 7→ y]

=
~
i
∇ + (eBzy,−eBzx, 2eByx) (S.12)

[D− 2mκ(n×B)]2 = −~2∆ + 2~
i (eBzynew,−eBzx, 2eByx) ·∇ + [e2B2

zy
2
new + e2(B2

z + 4B2
y)x2] (S.13)

= [renaming: ynew 7→ y]

= −~2∆ + 2~
i (eBzy,−eBzx, 2eByx) ·∇ + [e2B2

zy
2 + e2(B2

z + 4B2
y)x2] (S.14)

= −~2∆− 2eBzL̂z + 4eBy
(
x~
i ∂z
)

+ [e2B2
zy

2 + e2(B2
z + 4B2

y)x2] (S.15)

�

[
a(T )−mκ2(n×B)2

]
= a(T )−mκ2B2

y = −|a(T )| −mκ2B2
y ≤ 0.

The shift of the y coordinate is mathematically immaterial, since it can be absorbed into a change of the origin of
y-axis and in a redefinition of the order parameter wave function:

ψ(x, y, z) = ψ(x, ynew − 2κmBy
eBz

, z) ≡ ψ̃(x, ynew, z).

For simplicity of notation and minimal proliferation of symbols, we denote ynew by y and ψ̃(x, y, z) by ψ(x, y, z). On

the physical ground ∆y =
2κmBy
eBz

gives a displacement of the vortex core centre—defined as a minimum of |ψ|—from
the position of a maximum of the out-of-plane magnetic field penetrating the vortex.

After shifting and renaming the equation (S.10) reads:

0 = − ~2

4m∆ψ − 2eBz
4m L̂zψ +

4eBy
4m

(
x~
i ∂z
)
ψ + e2

4m [B2
zy

2 + (B2
z + 4B2

y)x2]ψ − [|a(T )|+mκ2B2
y ]ψ + b|ψ|2ψ. (S.16)

We look for a solution ψ that separates the in-plane dependence from the transverse one:

ψ(x, y, z) ≡ Ψ(x, y) · Φ(z), (S.17)

where Ψ(x, y) accounts for the in-plane and Φ(z) for the out-of-plane order parameter wave function, respectively.
Assuming Φ(z) is a real-valued function (transverse domain is simply connected), then

0 = − ~2

4mΦ · (∂xx + ∂yy)Ψ− ~2

4mΨ · ∂zzΦ− 2eBz
4m Φ · L̂zΨ +

4eBy
4m Ψ ·

(
x~
i ∂z
)

Φ

+ e2

4m [B2
zy

2 + (B2
z + 4B2

y)x2]Ψ · Φ− [|a(T )|+mκ2B2
y ]Ψ · Φ + b|Ψ|2Ψ · |Φ|2Φ. (S.18)
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Now, we average the last equation along the transverse direction within the extrapolation length d = dgeo +O(1)ξ:

0 = − ~2

4m 〈Φ〉 · (∂xx + ∂yy)Ψ− ~2

4mΨ · 〈∂zzΦ〉 − 2eBz
4m 〈Φ〉 · L̂zΨ +

4eBy
4m Ψ · 〈

(
x~
i ∂z
)

Φ〉

+ e2

4m [B2
zy

2 + (B2
z + 4B2

y)x2]Ψ · 〈Φ〉 − [|a(T )|+mκ2B2
y ]Ψ · 〈Φ〉+ b|Ψ|2Ψ · 〈|Φ|2Φ〉, (S.19)

where the meaning of the angular brackets (transverse averaging) is as follows:

〈f = f(z)〉 =
1

d

∫ +
d
2

−d2

dz f(z) . (S.20)

Doing so, we obtain:

〈∂zzΦ〉 = 1
d

[
∂zΦ

∣∣
z=+

d
2

− ∂zΦ
∣∣
z=−d2

]
= 0, (S.21)

〈∂zΦ〉 = 1
d

[
Φ(z = +d

2 ) − Φ(z = −d2 )
]

= 0, (S.22)

〈Φ〉 = real constant 6= 0. (S.23)

In the equations above, we set to zero 〈∂zzΦ〉 and 〈∂zΦ〉. This is due to the boundary conditions, Eq. (S.6), that
should be satisfied at two interfaces located at z = ±d2 (νout = ±ẑ), we treat both in conjunction:

0 = νout ·
[
D− 2mκ(n×B)

]
Ψ(x, y) · Φ(z)

∣∣
z=±d2

=
[
νout ·D− 2mκ νout · (n×B)︸ ︷︷ ︸

=0

]
Ψ(x, y) · Φ(z)

∣∣
z=±d2

(S.24)

m

0 = ~
iΨ(x, y) · ∂zΦ(z)

∣∣
z=±d2

± 2eByxΨ(x, y) · Φ(z = ±d2 ), (S.25)

m assuming Ψ(x, y) 6= 0

0 = ~
i ∂zΦ(z)

∣∣
z=±d2

± 2eByxΦ(z = ±d2 ). (S.26)

The above two equations should be satisfied, correspondingly, for any point with z = ±d2 and arbitrary x and y,
therefore, in the case when By 6= 0, the easiest way is to require that the function Φ(z) has the following properties:

∂zΦ(z)
∣∣
z=±d2

= 0 and Φ(z = ±d2 ) = 0, (S.27)

that hold on the scale of the extrapolation length d = dgeo +O(1)ξ.

Dividing Eq. (S.19) by 〈Φ〉 6= 0 and assuming 〈By/z〉 = By/z we get the effective 1st GL equation for a thin 2D film:

0 = − ~2

4m (∂xx + ∂yy)Ψ− 2eBz
4m L̂zΨ + e2

4m

[
B2
zy

2 + (B2
z + 4B2

y)x2
]
Ψ−

[
|a(T )|+mκ2B2

y

]
Ψ +

(
b 〈Φ

3〉
〈Φ〉

)
︸ ︷︷ ︸

beff

|Ψ|2Ψ (S.28)

We point out that, in principle, Bz and By alone are sufficient to introduce a certain vortex anisotropy even for
κ = 0, as it can be deduced from Eq. S.28. This corresponds to the known effect of vortex axis tilt for superconductors
of finite thickness in the presence of Meissner currents, here introduced by the field By. The shear force exerted by
the Meissner currents makes the vortex axis leaning towards the x-direction, instead of being parallel to the z-axis as
in the By = 0 case. The intersection of a tilted cylinder with the xy-plane is an ellipse, which is a way to interpret the
anisotropy in Eq. S.28. Such trivial anisotropy is not relevant for our situation since (i) the thickness in our case is so
small (7 nm of Al minus 2 nm of typical oxide) compared to ξ = 73 nm, that the resulting weak screening currents can
only produce a very minor tilt; (ii) even a major tilt could not explain the large squeeze along both axes, which is the
main results of our work. As explained below, the observed effect requires a finite Lifshitz invariant, namely, a finite
By and a finite κ. Experimentally, the necessity of the spin-orbit (i.e. of the Lifshitz invariant) for the observation of
the effect is confirmed by our control measurements on the Al/GaAs heterostructure, cf. gray symbols in Fig. 2a of
the main text.
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Vortex solution & vortex-core curvatures

In the ensuing we solve approximately for the vortex the following generic equation of the Gross-Pitaevskii type:

0 = −A(∂xx + ∂yy)Ψ + B
i (x∂y − y∂x)Ψ +

[
Cx x

2 + Cy y
2
]
Ψ−αΨ + β |Ψ|2Ψ (S.29)

where the following coefficients link Eq. (S.28) with Eq. (S.29):

A = ~2

4m , Cx =
e2B2

z

4m

(
1 + 4

B2
y

B2
z

)
, α = |a(T )|+mκ2B2

y , (S.30)

B = −~eBz
2m = ~|e|Bz

2m , Cy =
e2B2

z

4m , β = beff = b 〈Φ
3〉
〈Φ〉 , (S.31)

Because of a certain similarity of Eq. (S.29) with the harmonic oscillator problem (apart from the β term) we are
interested in a vortex solution in the form:

Ψ(x, y) = K(x+ i δ y) exp[p2x
2 + qxy + r

2y
2] ' [vortex core region] ' K(x+ i δ y) +O(x2, y2) , (S.32)

where the approximation on the right side is valid only close to the center of the vortex core. The term (x + i δ y)
defines a vorticity of the solution Ψ; for δ > 0 (< 0) it wraps counter-clock-wise (clock-wise). Moreover, the asymp-
totic form of our ansatz for Ψ has in the vortex core region the same functional dependence on x and y (including
the third powers) as the original Abrikosov solution, see e.g. Tinkham [2].

To obtain an analytical expression for the vortex curvatures, we shall need some further approximations.
Approximation 1: We linearize in (S.29) the non-linear term proportional to β:

|Ψ(x, y)|2] ' [vortex core region] ' K2x2 +K2δ2y2 ∝ kxx2 + kyy
2 , (S.33)

where kx ∝ K2 and ky ∝ δ2K2 are the vortex curvatures along x̂ and ŷ, respectively. Since we are interested in the

vortex core region
√
x2 + y2 < ξ � λ, we consider only the lowest order terms in |Ψ|2 in Eq. (S.29). Doing so we get

linear partial differential equations with the modified quadratic-potential terms:

0 = −A(∂xx + ∂yy)Ψ + B
i (x∂y − y∂x)Ψ +

[
(Cx + βK2)︸ ︷︷ ︸

C1

x2 + (Cy + βK2δ2)︸ ︷︷ ︸
C2

y2
]
Ψ−αΨ (S.34)

Plugging the ansatz, Eq. (S.32), into the above equation, we get a system of non-linear algebraic equations for the
unknown parameters K, δ, p, q, r (the first two, K and δ, enter also C1 and C2):

0 = C1 − A p2 − iB q − A q2 (S.35)

0 = C2 − A r2 + iB q − A q2 (S.36)

0 = B p − B r + 2 iA p q + 2 iA q r (S.37)

0 = 3A p+ 2 iA q δ + A r − B δ + α (S.38)

0 = 3A r δ − 2 iA q + A p δ − B + δα (S.39)

For convenience of analytical calculation, we change the roles of δ and K with C1 and C2, i.e., we are assuming as
unknowns: p, q, r,C1, C2, and as parameters: A,B,α, δ.

For a given sign of B, we have the freedom to choose the sign of δ—both enter as parameters in the above equations.
However, the basic physics of the superconducting vortices tells us that for Bz > 0 (implying also B > 0) the vortex
should wrap counter-clock-wise. This means that in our ansatz, Eq. (S.32), we should have for a positive (negative)
Bz also positive (negative) δ—this physical requirement implies that combinations like Bδ or B/δ are always positive
quantities. Solving Eqs. (S.35)-(S.39), we obtain two sets of solutions—C+

1 and C+
2 —and—C−1 and C−2 —both can be
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compactly written as follows:

C±1 = α2

128A

[
B2

α2

(
9
δ2 − 22 + 81δ2

)
+ 20± (6 + 3B

αδ + 27Bδ
α )

√
B2

α2

(
9
δ2 − 14 + 9δ2

)
+ 4 B

α

(
1
δ + δ

)
+ 4 + 4

(
5
δ + 9δ

)
B
α

]
≡ Cx + βK2 (S.40)

C±2 = α2

128A

[
B2

α2

(
81
δ2 − 22 + 9δ2

)
+ 20± (6 + 27B

αδ + 3Bδ
α )

√
B2

α2

(
9
δ2 − 14 + 9δ2

)
+ 4 B

α

(
1
δ + δ

)
+ 4 + 4

(
9
δ + 5δ

)
B
α

]
≡ Cy + βK2δ2 (S.41)

the formulas for p, q, r are not given since we do not need them explicitly—we are looking just for the functional form
of Ψ in the first order in x and y. We now need to solve Eqs. (S.40) and (S.41) for K and δ, which is pretty difficult
owing to the complicated expressions in square brackets in the above equations. Moreover, it is necessary to choose
which set of solutions—either “+”: C+

1 ,C
+
2 , or “−”: C−1 ,C

−
2 —is physically more appropriate. This shall be done at

the end, when fitting the experimental data.

Approximation 2: To proceed further we expand the lengthy expressions for C±1 , and C±2 entering Eqs. (S.40) and
(S.41) assuming:

2π
|Bz|ξ2

Φ0
≈
∣∣∣B
α

∣∣∣� 1 ,
B

αδ
� 1 , and

Bδ

α
� 1 . (S.42)

By keeping therein terms only up to linear order in B
α , B

αδ and Bδ
α , a straightforward calculation gives:

C±1 =
α2

41+(0.5−(±)0.5)A

[
1 +

(1

δ
± 3δ

)B
α

]
, (S.43)

C±2 =
α2

41+(0.5−(±)0.5)A

[
1 +

(
δ ± 3

δ

)B
α

]
. (S.44)

Recalling that C±1 = Cx+βK2 and C±2 = Cy +βK2δ2, see Eq. (S.34), the problem reduces for each of the two cases—
labeled by “+” and “−” sign—to a solution of the algebraic system of two nonlinear equations for two unknowns K
and δ:

C±1 =
α2

41+(0.5−(±)0.5)A

[
1 +

(1

δ
± 3δ

)B
α

]
= Cx + βK2 , (S.45)

C±2 =
α2

41+(0.5−(±)0.5)A

[
1 +

(
δ ± 3

δ

)B
α

]
= Cy + βK2δ2 . (S.46)

Having found K and δ the problem is solved, since they provide—apart from a less relevant global scale factor—the
curvatures of the vortex core, i.e., kx ∝ K2, and ky ∝ K2δ2, see Eq. (S.33).
To effectively solve the above systems of equations, it is useful to make explicit the following physical quantities
(expressed in terms of the GL parameters |a(T )| and β)

Bulk Cooper-pair density (per unit volume): f2
0 =

|a(T )|
b

=
〈Φ3〉
〈Φ〉
|a(T )|
β

, (S.47)

Bulk condensation energy density (per unit volume): e∗c =
|a(T )|2

b
= |a(T )|f2

0 = b f4
0 , (S.48)

Effective thermodynamic critical field B∗c : B∗c =
√

2µ0e∗c , (S.49)

GL coherence length: ξ =
~√

4m|a(T )|
, (S.50)

Penetration length: λ =

√
m

2µ0e2f2
0

, (S.51)

Lifshitz-Edelstein length: `κ =
1

2κµ0|e|f2
0

, (S.52)

Superconducting flux quantum: Φ0 =
h

2|e|
= 2π

~
2|e|

, (S.53)
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We also use the derived quantities: mκ2 = 1
2µ0f2

0

λ2

`2κ
and mκ

|e| = λ2

`κ
⇒

α2

Aβ
=

(
|a(T )|+mκ2B2

y

)2
~2

4m β
=
|a(T )| |a(T )|

~2

4m β

(
1 +

mκ2

|a(T )|
B2
y

)2

=
〈Φ〉
〈Φ3〉

f2
0

ξ2

(
1 +

λ2

`2κ

1

e∗c

B2
y

2µ0

)2

, (S.54)

Cy
β

=
e2B2

z

4mβ
=
〈Φ〉
〈Φ3〉

1

4

f2
0

λ2

1

e∗c

B2
z

2µ0
, (S.55)

Cx
β

=
〈Φ〉
〈Φ3〉

1

4

f2
0

λ2

1

e∗c

B2
z

2µ0

(
1 + 4

B2
y

B2
z

)
, (S.56)

α

β

B

A
=
〈Φ〉
〈Φ3〉

f2
0

(
1 +

λ2

`2κ

1

e∗c

B2
y

2µ0

)
2π Bz

Φ0
, (S.57)

We now define a dimensionless Cooper pair wave function: ψ(x, y) = Ψ(x, y)/(
√
〈Φ〉
〈Φ3〉f0) and expand |ψ(x, y)|2 around

the vortex core center

|ψ(x, y)|2 ' K2

〈Φ〉
〈Φ3〉

f2
0

x2 + K2δ2

〈Φ〉
〈Φ3〉

f2
0

y2 ≡ 1

2
kxx

2 +
1

2
kyy

2. (S.58)

We have now all the ingredients to compute the curvatures of |ψ|2 near the vortex core. Equation (S.58) links kx
and ky with K and δ, which in turns are the solutions of the algebraic equations (S.45) and (S.46). The result below
is made explicit for the “+” case:

1

ξ2

(
1 +

λ2

`2κ

1

e∗c

B2
y

2µ0

)2

+

(√
kx
ky

+ 3

√
ky
kx

)(
1 +

λ2

`2κ

1

e∗c

B2
y

2µ0

)
2π Bz

Φ0
≡ 1

λ2

1

e∗c

B2
z

2µ0

(
1 + 4

B2
y

B2
z

)
+ 2kx , (S.59)

1

ξ2

(
1 +

λ2

`2κ

1

e∗c

B2
y

2µ0

)2

+

(√
ky
kx

+ 3

√
kx
ky

)(
1 +

λ2

`2κ

1

e∗c

B2
y

2µ0

)
2π Bz

Φ0
≡ 1

λ2

1

e∗c

B2
z

2µ0
+ 2ky , (S.60)

since this set of equations turns out to provide a reasonable fit of the experimental data for small in-plane magnetic
fields. Due to the significant non-linearity of the problem, it is not, however, excluded that at a certain elevated value
of the in-plane field the system can come into a transition point, from which the “−” case solutions would start to be
realized by nature.

Impact of the crystal structure symmetry. It is important to stress that the above derivation assumes C4v crystal-
lographic symmetry, which is higher than the actual symmetry of InAs-based 2DEG that is possessing the crystal
symmetry C2v. In principle, for a C2v-symmetric crystal one might introduce two different Lifshitz lengths `κ1 and
`κ2 for two different main crystallographic axes—or the so called anisotropic Lifshitz invariant: 1

2κ1By(Ψ∗DxΨ +
c.c.) + 1

2κ2Bx(Ψ∗DyΨ + c.c.). It turns out, however, that the best fit of our data does not require anisotropic Lifshitz
invariant in order to produce the striking curvature enhancement as observed in the experiment. In other words, an
isotropic spin-orbit interaction stemming from an isotropic Fermi surface is sufficient to produce an anisotropic vortex
squeezing. The vortex anisotropy is exclusively due to the interplay of spin-orbit-coupling with the in-plane magnetic
field.

Fitting experimental data

Equations (S.59) and (S.60) are the final output of our model: they implicitly link the curvature along the x and
y-axis (kx and ky, respectively) to the Lifshitz length `κ and to the effective thermodynamic critical field B∗c . We
have experimentally determined the following constants:

ξ = 73 nm , λ = 227 nm , Bz = 10 mT , Bc2 = 61 mT. (S.61)
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In particular, Bc2 is determined as the Bz value (at base temperature and zero bias) for which a resistance emerges
such that the RLC circuit resonance is damped. This resistance is, for the present experimental conditions, of the
order of 65 Ω [3], which is much less that of half the normal resistance 0.5Rn = 0.5 · 3074Rn,� = 14.17 kΩ, where
Rn,� = Rn/3074 = 9.22 Ω is the normal sheet resistance. Therefore the Bc2 value above is slightly less than the
conventional value, which is such that R(Bz = Bc2) = 0.5Rn. The value of ξ immediately follows from that of Bc2
since Bc2 = Φ0/(2πξ

2). The value of λ is determined from the sheet kinetic inductance (Ls/N�) at zero field and
base temperature, which equals 13 pH. The sheet kinetic inductance provides directly λ via Ls,� = µ0λ

2/d.

We can numerically solve Eqs. (S.59) and (S.60) for kx and ky as functions of the in-plane field By, using the
experimentally given values of ξ, λ, and Bz, see Eq. (S.61), as fixed parameters. The Lifshitz length `κ and the
effective condensation energy e∗c—or equivalently B∗c , since e∗c = (B∗c )2/(2µ0)—are taken as the fitting parameters.
In order to fit the experimental data displayed in Fig. 2a in the main text, we must relate the vortex curvatures with
vortex inductances using

Lv,⊥ =
L0

2ξ2ky
, Lv,‖ =

L0

2ξ2kx
, (S.62)

where Lv,⊥ (Lv,‖) is the vortex inductance measured for Bip ⊥ I (Bip ‖ I). Apart of `κ and B∗c we also fit the
conversion parameter L0 that serves as a global scaling factor, its theoretical value depends on the microscopic details
of the pinning strength.

If we restrict the fitting range of the in-plane field to [-0.1 T, 0.1 T] we obtain the solid line curves in Fig. 2a in the
main text. The corresponding fitting parameters are:

L0 = 2.02 µH, `κ = 594 nm, and B∗c = 96.1 mT. (S.63)

The value of B∗c is substantially higher than our independent estimate of the thermodynamic critical field Bc = 13 mT.
This is due to the fact that we have assumed local microscopic in-plane field to be identical to the applied magnetic
field. For a few-nm-thick Al film this is in good approximation true (since the thickness is much smaller than both
λ and ξ), however, it is difficult to model the effect of the thicker 2DEG, which also plays a role. The discrepancy
between local microscopic field and the applied field By might be the reason for the difference between the estimated
Bc = 13 mT and the value of B∗c = 96.1 mT obtained from the fit.

We notice that the model nicely captures the prompt decrease of the vortex inductance with the in-plane magnetic
field, and the magnitude of the vortex inductance anisotropy. The fit quantitatively reproduces the data up to fields
of the order of 100 mT. Above that field range, it systematically overestimates the vortex squeezing effects. A possible
explanation for this overestimate is the suppression of the order parameter in the proximitized 2DEG, which recent
experiments showed to take place precisely in this magnetic field range [4]. At the moment this is just an hypothesis,
further study is needed to elucidate the relative contribution of 2DEG and Al to the superfluid density, as well as the
role of the unconventional pairing to the vortex inductance, as discussed in the main text.

INDUCTANCE PER VORTEX IN THE LINEAR REGIME OF Lv(Bz)

Figure 1c of the main text shows the dependence of the vortex inductance Lv on the out-of-plane field Bz. In
particular, the inset makes it evident that for moderate fields (up to 20 mT) the behavior is linear, i.e., each vortex
added into the system contributes with the same additional inductance. This is what one would expect if the
interaction between vortices is negligible. This is the case if the separation between votices is much larger then ξ
or, equivalently, if Bz � Bc2. Eventually, when Bz becomes a significant fraction of Bc2 (in our case for Bz =
20 mT≈ Bc2/3) then neighboring cores start overlapping and each new vortex also contributes to the reduction of
the superfluid density in its vicinity, producing a superlinear increase in the vortex inductance.

It is interesting to verify whether the measured slope Lv/Bz = 118 nH/mT is compatible with Eq. 1 of the main
text, with a reasonable assumption for k. From the theory we know that k ≈ 0.25dB2

c/µ0 [5, 6], where Bc = 13.9 mT
is the thermodynamic critical field and d ' 4.5 nm [7] the effective Al thickness, i.e. the nominal one minus 2.5 nm
of oxide. With this value of k, using Eq. 1 we obtain Lv/Bz = N�Φ0/k = 36 nH/mT, which is of the same order
of magnitude as the measured value. The factor three discrepancy between the expected and the measured value
of Lv/Bz is acceptable, in particular when considering the relatively large theoretical uncertainty for the numerical
prefactor 0.25 [5]. Also, our synthetic Rashba superconductor has a complex structure along the z direction (a metallic
film, an insulating barrier and a proximitized 2DEG), which is clearly not considered in the simple models.
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FIG. S1. a, Inductance measured for Bz = 0 mT (blue) and Bz = 2 mT (green) as a function of the angle θ between in-plane

field ~Bip and current ~I, for | ~Bip| =0.5 T and T = 0.1 K. The graph corresponds to that in Fig. 2b of the main text, displayed
in a cartesian plot. b, Zoom in order to highlight the data for Bz = 0.The outlier is most probably caused by a flux jump in
the compensation coil. c, Same data as in panel b, but displayed in a polar plot.

ISOTROPY OF THE KINETIC INDUCTANCE IN THE ABSENCE OF VORTICES

Figure S1 focuses on the inductance measurements at Bip = 0.5 T for Bz = 0 mT (blue) and Bz = 2 mT (green).
The former case corresponds, in good approximation, to the absence of vortices, while the latter case to a small but
finite vortex density. In this section we show how different is the symmetry of the inductance measured in the two
cases.

Panel c shows a magnified view of the inductance curve for the Bz = 0 case in Fig. 2b of the main text. This
nearly isotropic graph must be compared to the highly anisotropic ones at finite Bz in Fig. 2b. For ease of comparison
we displayed both the graph for Bz = 0 (blue) and for Bz = 2 mT (green) in a cartesian plot, see Fig. S1a. The
residual anisotropy, barely discernible in the zoom-in plot displayed in panel b, might be due to residual vortices.
In fact, the orthogonal coils used for compensating Bz (the compensation procedure is outlined in the last section)
produce a field which is not perfectly homogeneous. As a consequence, if the sample is large, it is possible to locally
have uncompensated vortices, even when the average Bz is globally set to zero. Since vortices provide a much larger
inductance contribution than the bare kinetic inductance, their effect can be important. Therefore, Fig. S1 sets an
upper limit for the anisotropy of the bare kinetic inductance, which is evidently very low.

From Fig. S1 we deduce that, at least in good approximation, the superfluid density is isotropic even when subjected
to in-plane fields. In the absence of Lifshitz invariant terms in the free energy, one would then expect a similar isotropy
also for the vortex core structure (and correspondingly for the measured vortex inductance). The observed strong
anisotropy of Lv for finite Bz and Bip is a strong signature of the Lifshitz invariant. This is further corroborated by
control measurements in samples with largely reduced SOI (see next section), where both pinning enhancement and
inductance anisotropy are not observed.
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ISOTROPY OF KINETIC INDUCTANCE AND VORTEX INDUCTANCE IN Al/GaAs SAMPLES

Figure S2 shows the results of inductance measurements performed on our control sample. As mentioned in the
main text, this sample is a meander structure similar to the main device discussed in this work, see Fig. 1b of the main
text. This meander is patterned starting from a heterostructure consisting of Al grown on top of a GaAs substrate.
While the Al film is similar to that grown on InAs, the absence of a quantum well, together with the reduced atomic
weight of Ga compared to In, guarantees that SOI is greatly reduced.

The graph in Fig. S2 shows the inductance measured on such control device for selected values of Bip, Bz and θ.
For Bip < 1 T the inductance is nicely isotropic. Also, as anticipated in the main text (Fig. 2a, grey symbols) the
vortex inductance increases with Bip. Only at very large Bip and at finite Bz, a slight anisotropy emerges. Such
anisotropy is comparable with the data point scatter and it is much smaller than the vortex anisotropy observed in
the epitaxial Al/InAs sample discussed in the main text. Data in Fig. S2 unambiguously demonstrate the crucial role
of the SOI in determining the observed anisotropic vortex squeezing.
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FIG. S2. Inductance measured on a meander device patterned on a Al/GaAs sample, where spin-orbit effects are largely

reduced. Measurements are performed for different angles θ between in-plane field ~Bip and current ~I [θ = 0◦ (red), θ = 45◦

(grey), θ = 90◦ (blue)], for different values of Bz [0 mT (5), 2 mT (4), 5 mT (�), 10 mT (©)] and of Bip [abscissas]. We notice
that the inductance always monotonically increases. The anisotropy in the inductance is negligible: it can only be discerned
for finite Bz (vortex inductance) and large Bip (larger than 1 T).

WEAK ANISOTROPY FOR Bc,ip

Figure S3 shows the temperature dependence of the in-plane critical magnetic field Bc,ip. The critical field values
correspond to the emergence of a resistance R(Bc,ip) = 0.5Rn where the normal state resistance Rn = 9.2 Ω. The
measurement has been repeated for θ = 0◦ (blue curve, Bip parallel to the current) and for θ = 90◦ (red curve, Bip

perpendicular to the current).

We notice a small anisotropy (of the order of 8%) in Bc,ip, which implies the same anisotropy for ξ ∝ Bc,ip. Since
the width and thus the curvature of the potential U(r) scale as ξ, in principle the anisotropy in ξ should determine an
anisotropy in the measured vortex inductance. From a quantitative point of view, however, the observed ξ anisotropy
is too small to justify a large difference between Lv(θ = 0◦) and Lv(θ = 90◦). In fact, the ratio Lv(θ = 0◦)/Lv(θ = 90◦)
(i.e. the ratio k⊥/k‖) is about 4.7 at Bip = 1 T, see Fig. 2c of the main text.

What we learn from the small anisotropy in the in-plane critical field Bc,ip (Fig. S3) and in the kinetic inductance Ls
(Fig. S1) is that the presence of Bip does impact the isotropy of the condensate (as highlighted by recent studies [4]),
but this effect is small and thus insufficient to explain the strong anisotropy of the vortex inductance. On the other
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FIG. S3. The graph shows the critical in-plane magnetic field Bc,ip as a function of the temperature T for θ = 90◦ (red,
Bip ⊥ I) and θ = 0◦ (blue, Bip ‖ I).

hand, the vortex anisotropy naturally emerges as a result of the Lifshitz invariant term in the Ginzburg-Landau free
energy.

VORTEX INDUCTANCE FOR LOW IN-PLANE FIELDS: ZOOMING IN FIG. 2a

Figure S4 shows a zoom-in view of the low in-plane field region in Fig. 2a of the main text. The graph makes it
evident that what in the full range graph in Fig. 2a appeared as noise near zero field, is indeed a double peak with a
cusp-like minimum at zero, where the values for θ = 90◦ and θ = 0◦ become approximately equal. This double-peak
is visible also for the θ = 0◦ data (blue in Fig. S4), although in a less pronounced fashion.

The study of these peaks is beyond the scope of this article. Investigation on these peaks is ongoing, and it will be
discussed elsewhere.
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FIG. S4. Zoom-in of Fig. 2a of the main text.
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FIG. S5. a, Depinning current versus in-plane field Bip, measured at Bz = 5 mT for in-plane field perpendicular (red symbols
θ = 90◦) and parallel (blue symbols θ = 0◦) to the current. The measurement is performed on the same sample discussed
in Fig. 3 of the main text, where the current is directed along the [100] crystallographic direction. The arrow indicates the
anomalous minimum at zero field. b, Out-of-plane field Bcomp(Bip) that must be applied to obtain an effective zero out-of-
plane field Bz in the measurements in panel a. The finite slope originates from the misalignment of Bip, which is not perfectly
perpendicular to Bz. c, IV-characteristics measured on a different device, with the same geometry as the one of the previous
panels, but oriented along the [1-10] crystallographic direction. The arrow indicates the threshold (2.5 µV) used to determine
the depinning current. d, Depinning current as a function of the in-plane field for the latter sample. A minimum at zero field
is again visible, indicated by the arrow.

FURTHER MEASUREMENTS OF THE DEPINNING CURRENT VERSUS IN-PLANE FIELD

In this section we shall discuss further measurements of the in-plane field dependence of the depinning current.
These measurements were performed with different orientations of the in-plane magnetic field with respect to the
current (θ = 0◦ and θ = 90◦). At the end of the section, we also present measurements on a different device.

Figure S5a shows the same measurements reported in Fig. 3 of the main text (red symbols, θ = 90◦), together with
the same measurements performed with the in-plane field oriented parallel to the current (blue symbols, θ = 0◦). We
notice that the minimum of the depinning current at zero bias (black arrow) is reproducible. The minimum for θ = 0◦

is less pronounced compared to that for θ = 90◦, which possibly mirrors the fact that the anomalous inductance
decrease is less pronounced for θ = 0◦ compared to θ = 90◦, see Fig. 2 of the main text.

We stress that the depinning current measurements here shown were much more difficult compared to inductance
measurements, owing to the fact that the devices we used had a very large contact resistance. These required the
use of very fast (9 ms) IV sweeps, followed by long cooling times (30 s). More importantly, the large resistance made
it impossible to make use of the compensation field routine described in the next section, which we followed for the
inductance measurements. In this case we followed a different routine, described in the following:

1. The desired in-plane field Bip is set.

2. The Bz field component is set to the expected zero value.
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3. The sample is heated above Tc, then a waiting time of 15 minutes allows the sample to cool down to base
temperature.

4. A series of of IV-traces is taken for different Bz values. The set Bz = Bcomp value such that critical current is
maximal is taken as effective Bz = 0 value.

5. The operations above are repeated for several in-plane field values Bip that cover the desired range of values
for the final measurements. As a result, one obtains a graph as the one in Fig. S5b, showing the necessary
Bcomp(Bip) component necessary to compensate the each Bip.

After Bcomp(Bip) is determined, we start the final measurement of the depinning current versus Bip, by applying
for each Bip the corresponding compensation field plus 5 mT, i.e., Bcompz (Bip) + 5 mT. Then, the sample is heated
above Tc, cooled down back to base temperature, then finally 45 IVs are measured as discussed in the main text. As
an alternative, we applied the compensation routine at each Bip point. This is the case of the θ = 0◦ points (blue
symbols) in Fig. S5a. However, this makes the entire measurement series much longer, with an increased risk of drift
of important measurement parameters.

In Fig. S5c,d we show depinning current measurements versus in-plane field for another device, with exactly the
same geometry as the one discussed above. In this case, however, the current (i.e., the axis of the Hall bar) is directed
along the [1-10] crystallographic direction. Again, each depinning current value is determined after averaging of many
fast IV-characteristics. The orientation of the in-plane field is θ = 90◦, while the out-of-plane Bz = 5 mT. The panel
c shows selected IV characteristics, while panel d shows the deduced depinning current values as a function of By.
Again, we observe a clear minimum at zero-field, consistent with our other observations reported above and with the
inductance measurements in the main text. As for the anomalous inductance decrease discussed in the Fig. 2 of the
main text, this anomalous increase of the pinning strength is a clear signature of the impact of the Lifshitz invariant
on the condensate.

OUT-OF-PLANE FIELD COMPENSATION PROCEDURE

Owing to misalignment of the different parts of the cryostat, the sample surface will hardly be perfectly parallel
to the axis of the main superconducting coil, which we use to apply the in-plane field Bip. Owing to the large
inductive contribution of vortices, the undesired out-of-plane component of Bip will have a significant impact on the
inductance measurements. In particular, it will mask the measurement of the kinetic inductance of the condensate. For
measurements that demand zero out-of-plane magnetic field, residual out-of-plane field components must be manually
compensated using additional orthogonal coils. In this section we outline the procedure we used to zero the out-of-
plane field in inductance measurements. The ideas is to identify a physical quantity which is very sensitive to the
absolute perpendicular fields, as e.g. the resistance near the superconducting transition near the critical temperature.
In Fig. S6 a typical compensation measurement is depicted. In this case, the resistance of the sample slightly above
the critical temperature (see inset of Fig. S6) is measured. In this regime, the resistance is strongly dependent on
the perpendicular field, which is applied via the additional orthogonal coils. Perpendicular field sweeps are always
performed back and forth to ensure that the resistive response is non-hysteretic in order to exclude e.g. flux trapping.
The compensation field is determined by finding the minimum of a parabolic fit of the magnetoresistance data
measured in the fluctuation regime of the superconductor. In that regime surface barriers for vortex entry and exit
are absent and hence magnetoresistance curves are non-hysteretic. With this procedure the compensation field can
be easily determined with an uncertainty below 10 µT.

The perpendicular field Bcomp needed to compensate for the sample misalignment is therefore

Bcomp(Bip) = Bip sin(α), (S.64)

where α is the angle between the film plane and the applied in-plane field Bip. The compensation field is clearly
proportional to Bip. Owing to the imperfect homogeneity of the compensation field, together with the fact that
the sample position within the field distribution changes with θ (since the rotation axis of the piezo is not perfectly
centered on the sample), the misalignment angle α also depends on θ. Thre angle α is typically less than 2◦.



14

 !"#!

 !"#$

%
&'
(
%
)

*$+$$,+$,*$

-.&'/0)

 $

!

$

1
2
&'
3
)

 "!+ "!$ "*4

0&'5)

-67&8&$&0

FIG. S6. Exemplary magnetoresistance measured at T > Tc. Data are taken at a temperature corresponding to the fluctuation
regime of the superconductor, where R(Bz) is non-hysteretic. This regime is highlighted in the inset. Black solid line is a
parabolic fit to the measured data.
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