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chaotic (non-)trivial topological insulators 
and an improved model for the AFM and STM 
characteristics in Cu-based quantum corrals

The 2016 Nobel Prize in Physics was awarded 
to David Thouless, F. Haldane, and J. Kosterlitz 
for "theoretical discoveries of topological 
phase transitions and topological phases of 
matter." Since then, new opportunities have 
emerged, e.g., the robust edge states in topological 
insulators could significantly reduce heat 
generation due to their reduced resistance in 
electrical devices. In this dissertation we will 
focus, moreover, on the application of edge 
states as waveguides in an electron quantum 
optical setup. When the waveguides are attached 
to a chaotic cavity one expects the emergence 
of universal signatures of chaotic scattering, 
explored in this thesis for the first time in this 
topological scenario. We go beyond extensive 
simulations based on numerical techniques, 
and present semiclassical results. Together 
with experimental results, a holistic view of 
universal scattering correlators in various 
systems ranging from trivial to nontrivial 
insulators is presented here.
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Herstellung: Universitätsbibliothek Regensburg

Erscheinungsort: Regensburg, 2023
Druck und Bindung: Digital Print Group o. Schimek GmbH, Nürnberg

Dieses Werk ist unter der Creative Commons-Lizenz
Namensnennung 4.0 International (CC BY 4.0) veröffentlicht.
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1. Introduction

The measurement of the celebrated Hong-Ou-Mandel (HOM) effect was done in 1987 [1].
Two photons hit with a certain time delay between each other a beamsplitter and leave
the setup at two possible exits. A detector is measuring the coinciding counts of both
particles outgoing at the same exit. For large time delays the classical situation is
present, namely 25% probability at each exit. In the setting of vanishing time delay,
when both photons encounter the beamsplitter simultaneously, constructive interference
leads to the boson-bunching: The probability of detecting both photons in one of
two exists increases to 100%, the probability of detecting the photons in separate
exists reduces to zero. This is caused by the vanishing phase aquired by the two-
particle wavefunction when interchanging both photons, in other words the symmetric
wavefunction for indistinguishable bosons. The classical to quantum transition appears
when tuning the time delay between these extrema, yielding a probability form depending
on the convolution of the shape of the two incoming wavepackets. Thereby, an crucial
ingredient is the coherency and indistinguishability of both photons, originally established
by a nonlinear crystal, where one photon entering the crystal split into two coherent
photons exiting with frequencies adding up to the incoming one.
A plurality of alike measurements has been investigated with other quantum systems
involving plasmons, phonons and even atoms [2–8]. A generalization to a multiparticle
version in a multichannel setup includes the computation of the permanent (unsigned
determinant) of a complex matrix and deals with an exponentially growing Hilbert space.
Solving this so-called Boson-sampling problem by computing the output probability
distribution is exponentially time or energy consuming for a classical computer, therefore
it represents a promising candidate for demonstrating quantum supremacy [8, 9]. So
far all (quasi)-particles obeyed the Bose-Einstein statistic. When considering electrons
satisfying the Fermi-Dirac statistic, an anti-bunching effect due to the Pauli principle is
expected. Here we focus ourselves into the topic of electron quantum optics (EQO), an
emerging field with single to few electron excitations in a ballistic conductor attempting
to transfer optical techniques to electronic setups. Beside quantum statistic effects,
the presence of the Fermi sea and Coulomb interaction are the major differences in
comparison to optical setups. Building EQO analogs to waveguides and beamsplitter was
necessary to experimentally realize the electronic analogue of the HOM effect. It becomes
apparent that working in the integer quantum Hall regime at very low temperatures
combined with an adjusted quantum point contact (QPC) to achieve equal outgoing
probabilities is a promising experimental setup [10]. The difficulty of generating two
coherent and indistinguishable single-particle wave packets is in turn solved by triggered
ac emitters.
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1. Introduction

As we will see, orientating towards chaotic systems can be achieved by replacing
the QPC by a chaotic cavity. It is important to mention now, at first glance, chaos in
quantum mechanics seems to be a contraction, e.g. due to the linearity of the Schrödinger
equation. Nevertheless, quantum signatures of irregular motion are present, such as
the spacing distribution of quantum energy levels: This distribution of a classically
integrable generic1 system follows an exponential function [16], the uncorrelated levels
tend to cluster.
In contrast, classical chaotic systems experience correlated quantum energy levels with
a repulsion strength depending on the underlying symmetry [17]. By generating random
elements of the Hamiltonian matrix fulfilling only the specific symmetry, Random matrix
theory (RMT) provides statistical accordance of the level spacing distributions [18]. For
half-integer spin systems, in the presence of time-reversal symmetry with (without) spin-
rotational symmetry the Hamiltonian is chosen real symmetric (self-dual) and is part of
the Gaussian orthogonal (symplectic) ensemble (GOE/ GSE). In the case of broken time-
reversal symmetry the Hamiltonian is hermitian and the ensemble class is called Gaussian
unitary ensemble (GUE). A link to number theory is present, the pair correlation of
zeros of Riemann’s zeta function obeys the GUE statistic, too [17, 19]. The generation
of Circular ensembles to simulate scattering (S)-matrices of chaotic systems provides
us with the benefit of S-matrix statistics, with according classes, Circular orthogonal
ensemble (COE), Circular symplectic ensemble (CSE) and Circular unitary ensemble
(CUE) of importance in the following investigations [20–22]. The inclusion of energy-
dependent Hamiltonians using the Heidelberg approach enables the study of energy-
dependent four-point S-matrix correlators within RMT. These objects are relevant to
consider, when the previously introduced HOM effect is modified by replacing the QPC
by a chaotic cavity. The HOM form, previously given by the convolution of the two
incoming wavepackets turns out to be dependent on the ratio of dwell time τD and
wavepacket width τs and on the shape of the four-point S-matrix correlators [23]. For
τD � τs, the wavepackets remain in the cavity for such long times, that the information of
the wavepacket form is lost. Therefore, the HOM shape aquires a shape with exponential
tails, independent on the incoming wavepacket form.
In this thesis we will focus on large systems compared to the Fermi wavelength and
therefore the semiclassical approach is a powerful tool to invest these S-matrix correlators
in the post-Ehrenfest time: Due to the saddle point approximation and the introduction
of Sieber-Richter orbit pairs, the computation of these correlators is reduced to a combi-
natorial task [24–27]. Only for action differences in the order of ~ for each trajectory
quadruplet the contribution is present after averaging, otherwise the strongly oscillating
phase account for a vanishing term. The minimal action difference is achieved by
separating the quadruplet structure in encounters and links, in the former trajectories
differ slightly and in the latter at least two trajectories are identical, therefore no action
difference is present. To address the computation semiclassically the generation of
relevant quadruplets and their contribution to the four-point correlator is the relevant

1The term ”generic” refers to an ongoing investigation of integrable systems providing level statistics
not following the Berry-Tabor conjecture [11], the exponential form [12–15].
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task, in which permutations play the major role. These permutations have an one-to-one
correspondence to a pair of Young diagrams, well known in RMT [18,28]. For reasons of
completeness here we want to mention the relation to the zero-dimensional sigma model
of quantum field theory, in which the topological analogy is given between encounters
and links with vertices and propagator lines of the Feynman diagrams [29–34].
The semiclassical and numerical analysis of S-matrix correlators is the main focus in
chapter 2, delving the following main topics: The semiclassical analysis results in an
approximated S-matrix correlator by a series expansion in orders of the inverse number
of open modes. To which extend is this computational accessible? Is a numerical
implementation of a chaotic cavity realizable, such that universal S-matrix correlators
appear? In the extreme limit of few open modes is the semiclassical approximation
still applicable and corresponding to numerical investigations? The extensive study
includes due to an collaboration also correlator result by the Heidelberg approach and
experimental realizations in microwave billiards.
In EQO the application of topology insulators (TIs) with helical edge states serving
as waveguides seems promising, whereby the few open modes regime is still present.
We extend our previous work by studying correlations in non-trivial TIs, substantiated
by experimental accessible current current correlations. The main focus lies on the
difference to trivial TIs and implications to the HOM effect in chaotic TI-based systems.

Experiments of chaotic cavities experiencing universal S-matrix correlations are rare.
Besides the experimental realization of a chaotic cavity by microwave billiards, a possibi-
lity one might think of is the two-dimensional electronic confinement on copper surfaces.
Since manipulating positions of atoms on a substrate is one key feature to build confine-
ment structures in a controlled manner, in 1990 [35] Eigler and Schweizer paved the
way for M. F. Crommie, C. P. Lutz and D. M. Eigler in 1993 [36] to utilize the circular
arrangement of iron atoms on a copper surface as a confinement for electrons. The
standing wave pattern in the local density of states (LDOS) was then measured by
scanning tunneling microscopy (STM). Afterwards a plurality of different confinement
forms, from triangulars, squares to billiard shapes [37, 38] and even fractal have been
investigated. Also with the study in Ref. [39] a different direction was introduced: the
’quantum mirages’, in which magnetic adatoms give rise to the spectroscopic signature
of the Kondo effect [40]. Plenty of different experiments and theoretical studies for
the quantum mirages [41–44] and the quantum corrals followed [44–49]. The search for
fingerprints of quantum chaos in stadium shaped corrals [37,38] was ended by Ref. [50].
It was shown that the corral is too leaky and therefore it is likely that no eigenstate is
ergodic and no quantum chaos as long time phenomena can be expected.

3



1. Introduction

However, it was not only the motivation of an experimental realization of chaotic
cavities, but also measurements of the original quantum corral by STM and atomic
force microscopy (AFM) gave further reasons for studying this setup [51]. Some of the
questions which arise in this context will be studied in chapter 4. Can the elementary
model with hard wall boundary conditions used in Ref. [36] be applied also in case of
an additional adatom in the quantum corral? How does the position of this additional
adatom influence the local density of states? Exploring bonding characteristics by AFM
measurements gives rise to further questions. Are the forces between mesoscopic surface
states of the artificial atom and the tip orbital mainly controlled by electrostatic Coulomb
interaction? If not, does the linear combination of atomic orbitals method describe the
chemical bonding between the tip orbital and the quantum corral eigenstates?

4



Outline of the thesis

In the following we summarize the topics investigated in the individual chapters:
Chapter 2 devotes to the computation of energy-dependent four-point S-matrix correla-
tors for a two-dimensional electron gas (2DEG). First the link of S-matrix correlators to
the HOM probability will be derived. The semiclassical analysis of S-matrix products
at different energies is then transformed into a mainly combinatorial task of generating
all relevant families of quadruplets contributing for a given order in inverse number of
modes. To increase the complexity step by step, we first consider a two-point correlator
with vanishing energy difference. The diagonal approximation, in which only identical
trajectories are considered yields the first order contribution. By introducing the Sieber-
Richter pairs a diagrammatic rule yields a general rule to compute the contribution of
any trajectory pair family. Extending this to energy-dependent two- and four-point
correlators is the final step to estimate the relevant correlators within the semiclassical
approximation.
Besides this analytical approach, we will implement a numerical tight-binding model,
such that universal S-matrix correlations are expected. The comparison of both methods
for low number of open modes will shed light on the validity of the semiclassical approach
in this regime. Finally, thanks to the collaborations with Barbara Dietz group the
experimental data of microwave billiards and RMT results within the Heidelberg
approach enables the extensive study of energy-dependent four-point correlators.

Based on the previous investigations, in chapter 3 we now concentrate on universal
S-matrix correlations in TI-based materials, the 2D HgTe-CdTe heterostructure. For
numerical adjustments we first solve the Schrödinger equation for a 2D waveguide
described by Bernevig-Hughes-Zhang (BHZ) Hamiltonian. Afterwards we extend the
electron coherence formalism for energy-dependent S-matrices, linking the four-point
S-matrix correlators to an experimental measurable observable, the current current
correlation. In the next step we concentrate on the numerical implementation of a
chaotic cavity experiencing universal S-matrix correlations, whereby step wise increasing
the amount of contributing orbitals. Finally the conclusion for the HOM effect in a TI-
based chaotic cavity is drawn by computing the current current correlation.

In chapter 4 the quantum corral is studied in different facets and motivated by both,
AFM and STM experiments done in a collaborating group in Regensburg. First we will
set the base by recapturing the experimental setting and the fundamental properties of
the measurement procedures. We recapture the first theoretical approach, the hard wall
model which describes the appearing local density of states (LDOS) for atomic force
microscopy (AFM) and scanning tunneling microscopy (STM) measurements. Intro-

5



Outline of the thesis

ducing another iron atom inside the corral leads to standing wave patterns not predictable
by the hard wall model. Therefore we want to adjust a tight-binding setup with the exact
scattering phase to simulate the LDOS more accurate. In the last part we concentrate on
the AFM measurements, experiencing a strong decaying force with increasing tip-sample
distance. The classical Coulomb interaction and first steps into a chemical bonding
description will be made.

6



2. Universal S-matrix correlations in
non-interacting many-body systems

For the electron analog to the optical HOM effect we consider two electrons, represented
by localized wavepackets, passing through a QPC and interfering with each other. As
we will see, replacing the QPC by a chaotic cavity requires the precise knowledge
about the universal correlations of S-matrix elements at different energies. In the first
section the connection between the two-particle probability and the S-matrix correlations
is provided, whereby non-interacting particles are assumed [23]. The semiclassical
approach enables us to approximate the relevant S-matrix correlations by a series
expansion in orders of the inverse number of open modes 1/N . In sec. 2.2 the detailed
description of this technique, based on correlations of interfering classical paths is made
explicit by applying combinatorics, following Ref. [29, 52]. Three types of energy-
dependent four-point correlations will then be semiclassically work out in detail in
sec. 2.2.5. These analytical results will then be compared in sec. 2.3 to a tight-binding
model with a cavity of billiard-shaped form. Furthermore we will compare our results
with experimental microwave billiards and RMT. The investigations of this extensive
analysis as presented here follows our manuscript in Ref. [53]1.

2.1. Many-body wavepacket scattering

In the spirit of Landau and Büttiker the quantum transport of non-interacting electrons
in a cavity correspond to scattering between leads [54, 55]. Asymptotically, each lead
is by definition translation-invariant in the longitudinal direction thus supporting wave
modes of plane wave type. For a two-dimensional (2D) system and a time-independent
Hamiltonian quadratic in momentum,

Ĥ =
~2

2m
k̂

2
+ V (x, y), (2.1)

and assuming hard wall boundary conditions in y-direction and a width of W yields
normalized transversal functions φn(y) of the form

φn(y) =

√
2

W
sin
(πny
W

)
, (2.2)

1©[2021] American Physical Society.
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2. Universal S-matrix correlations in non-interacting many-body systems

Figure 2.1: Sketch of the system illustrating the quantum state of two incoming fermions
in (a1, a2) represented by wavepackets with a Gaussian form in longitudinal direction.
The transition from effectively distinguishable particles to indistinguishable ones is
tunable by the relative position z2 − z1 = z.

with n being an integer. The momentum k in x-direction is restricted by the total energy
via

E =
~2

2m

(
n2π2

W 2
+ k2

)
. (2.3)

The wave modes, from now on called ”channels” are therefore identified by the index
n. Indeed, the plane wave solution in x-direction is only preserved if for a given energy
E the channels in lead i are restricted to n ∈ [1, Ni] with Ni = bW~π

√
2mEc, such that

k ∈ R where b. . . c is the floor function (largest integer less or equal than his argument),
while otherwise the plane wave eikx will be deformed to an evanescent (non-propagating)
solution. The summation over the number of open modes in each lead i determines the
total number of open modes N =

∑
i=1Ni and we assume from now on that all leads

share the same number of them Ni = N1. The transition amplitude from an incoming
flux in channel a to the outgoing flux in b is governed by the matrix element Sb,a of the
N ×N scattering matrix S(E).

Now we consider an incoming wavepacket |ζ(E)〉 at lead i with mean momentum
k̄ = mv/~ of the form

ζ(xi, yi) ∝
∫ ∞
−∞

dk e−ik(xi−z)X(k − k̄)φa(yi). (2.4)

The particle is initially localized around xi = z such that the variance s2 of the longitu-
dinal normalized profile X(x) fulfills z � s. This property enables us to write [23]

Ab,a(E) =
1√

2πvb
ei(kb−k̄)zX(k̄ − kb)Sba(E) (2.5)

as the probability amplitude to detect in channel b the electron with energy E which
is entering the system in channel a and is represented by Eq. (2.4). Now we want to

8



2.1. Many-body wavepacket scattering

study the two-particle scattering as a special case of n particles investigated in [23]:
Two non-interacting electrons, both sharing the same mean momentum and wavepacket
form X, differ in the incoming channel a = (a1, a2) and the mean x-position z1, z2

as illustrated in Fig. 2.1. When the two particles are distinguishable the many-body
probability amplitude reads

Ab,a(E) =
2∏
i=1

1√
2πvbi

ei(kbi−k̄)zi X
(
k̄ − kbi(Ei)

)
Sbi,ai(Ei), (2.6)

while the energy is replaced by E = (E1, E2) to describe the energy in the outgoing
channels b = (b1, b2) of both particles i = 1, 2. For identical fermions the indistinguisha-
bility demand an antisymmetric many-body state, given by the adapted probability
amplitude

A
′

b,a(E) =
∑
P

(−1)PAPb,a(PE), (2.7)

with the 2! = 2 different permutations P acting on b: P1(b1, b2) = (b1, b2) and
P2(b1, b2) = (b2, b1). The probability of detecting the electrons at exits b regardless of
their energies E is then given by

Pb,a =
1

a! b!

∫
dE |A′b,a(E)|2

=
1

a! b!

∫
dE

∑
P,P ′

(−1)P+P ′APb,a(PE)A∗P ′b,a(P ′E).
(2.8)

The normalization of the probability to
∑2

b1=1

∑2
b2=1 Pb,a = 1 is provided by counting

the multiplicity of the in- and outgoing channels d! =
∏n

i=1 mul(di). The summation
over permutations in Eq. (2.8) yields then four terms

Pb,a =
1

a!b!

∫
dE
[
Ab,a(E)A∗b,a(E) + AP2b,a(P2E)A∗P2b,a

(P2E)

− AP2b,a(P2E)A∗b,a(E)− Ab,a(E)A∗P2b,a
(P2E)

]
.

(2.9)

Here, the first and second terms are the incoherent contributions, where two identical
configurations (b,a or P2b,a) are considered. The parameter that controls the degree
of (effective) distinguishability, z2 − z1 = z vanishes for such incoherent terms. On
the contrary, the contributions in the second line are sensitive to interference between
different configurations and are therefore denoted as ”coherent” contributions. They do
have a dependence on z. An ensemble average leads to an averaged probability 〈Pb,a〉
depending on S-matrix correlators of the form

C=(∆) =〈|Sb,a(E1)|2 |Sd,c(E2)|2〉, (2.10)

Dx(∆) =〈Sb,a(E1)Sd,c(E2)S∗d,a(E2)S∗b,c(E1)〉, (2.11)

9



2. Universal S-matrix correlations in non-interacting many-body systems

with the energy difference ∆ = (E2−E1)/2. In case of pure disorder only effective in the
cavity, averaging is only acting on the S-matrices. This is also assumed to hold for energy
averages, as long as this energy interval is small compared to the wavepacket width v~/s.
The chaotic cavity, with its strongly undulating S-matrices, exhibits universal signatures
after averaging, semiclassically accessible in the considered regime. The detailed method
will be described in the following sec.2.2, here we will stick to the results of the first
order in 1/N for channels distinct from each other,

C=(∆) =
1

N2
,

Dx(∆) = − 1

N3(1 + 2∆τD
~ )

,
(2.12)

where τD is the dwell time at the mean energy Ē = (E2 + E1)/2. The contribution to
C= is in the first non-vanishing order independent on ∆ such that the incoherent terms
only contribute by a constant term proportional to N−2. The relevant parameter to
exhibit the transition from distinguishable to indistinguishable fermions, z = z2 − z1 is
only present in coherent terms which share the same form:

P coh
b,a =

1

a!b!

∫
dE 〈AP2b,a(P2E)A∗b,a(E)〉

=
1

a!b!

∫
dE 〈Ab,a(E)A∗P2b,a

(P2E)〉

=
1

a!b!

∫
dE
|X
(
k̄ − ka1(E1)

)
|2|X

(
k̄ − ka2(E2)

)
|2

4πva1va2N
3

ei(ka1−ka2 )z

(
1 +

2∆τD
~

)−1

.

(2.13)

For a Gaussian incoming wavepacket form,

X̃(x) =
1

2π

∫
dk X(k) eikx =

1

σ
√

2π
e−

x2

2s , (2.14)

with a width of the incoming wavepacket given by s = vτs. As shown in Ref. [23], when
tuning the ratio τD/τs from 0.1 to 5, the many-body transition probability changes from
a convolution, given by

∫
X̃(x)X̃(x − z) dx to a form with exponential, and therefore

universal, tails. For a chaotic system with a larger dwell time τD � τs, the HOM
probability is therefore independent on the form of the incoming wavepackets X(x) [23].
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2.2. Semiclassical approach of energy-dependent correlators in chaotic systems

2.2. Semiclassical approach of energy-dependent
correlators in chaotic systems

As we have shown, the two-body scattering probability relevant for the HOM effect in
a system, displaying chaos in the classical dynamics of single particles, is controlled
by energy-dependent four-point S-matrix correlators Dx and C=. In this section we
will provide a method to approximate these correlators semiclassicaly, following well-
stablished established methods [29,52].

To get the four-point S-matrix correlators of Eq. (2.10) and (2.11) we will now operate
in the semiclassical limit: The characteristic length of the system L is large compared
to the Fermi wavelength λ. For the lead width W small compared to the system length
L, the dwell time τD ∝ L

W
exceeds the Ehrenfest time τE ≈ λ−1

Ly log(L/λF ), the time
required to spread a wave packet of initial size λ to sizes of orders of L under the classical
chaotic flow with Lyaponov exponent λLy. In this regime the S-matrix elements can be
approximated by [24–26]

Sb,a ≈
1√
TH

∑
γ:a→b

Aαe
iSγ/~, (2.15)

with the Heisenberg time TH = NτD. Both, the stability amplitude Aγ and the classical
action Sγ =

∫
γ
p ·dq, depend on the trajectory γ solving the classical Lagrange equation,

where specular reflections are assumed at the hard-wall boundaries of the cavity. Each
trajectory γ is starting in the incoming lead and mode a and ending in the outgoing
lead and mode b as sketched in Fig. 2.2. The key point in deriving Eq. (2.15) is the
application of the stationary phase approximation assuming the typical actions of the
Feynman paths to be much greater than ~ [26], the so-called semiclassical regime.

In principle the S-matrix strongly depends on the detailed shape of the system.
However, our purpose is to investigate the setup in case of a fully chaotic cavity whereby
chaos is caused by the shape of the boundary. The appearing universal features enable
us to study this system without the detailed knowledge of the system (the specific
numerical values of the entries of the scattering matrix). It is worth to mention that we
understand chaos in quantum systems as the appearing signatures in quantum system
which exhibits classical chaotic motion in the classical limit [17]. For the definition of
classical chaos we refer to a few of the numerous accessible literature [56–58]. For later
reasons it is sufficient to know the implication of chaotic systems regarding ergodicity:
A typical trajectory will approach arbitrarily close any point in phase space when given
enough time.

Our focus in the following is to use the statistical properties of chaos to approximate
two-point and four-point S-matrix correlators using the semiclassical S-matrix in

11



2. Universal S-matrix correlations in non-interacting many-body systems

Eq. (2.15). The correlators, depending on two energies E± = Ē ±∆ have the form

C2(∆) = 〈Sb,a(E+)S∗b,a(E−)〉, (2.16a)

Dx(∆) = 〈Sb,a(E+)Sd,c(E−)S∗b,c(E+)S∗d,a(E−)〉, (2.16b)

C=(∆) = 〈|Sb,a(E+)|2|Sd,c(E−)|2〉 (2.16c)

B=(∆) = 〈Sb,a(E+)Sd,c(E+)S∗b,a(E−)S∗d,c(E−)〉 (2.16d)

with {a, b, c, d} being distinct open channels and an energy average over Ē is represented
by 〈. . . 〉. We will see that in chaotic systems these objects will acquire a universal form
which is independent of the exact system shape. Only conservation or absence of time-
reversal symmetry and spin-rotation symmetry, affect the correlator form. Here we will
concentrate on two cases of half-integer spin particles, the orthogonal and the unitary
one, where the time-reversal symmetry and the spin rotational symmetry is preserved
or absent. Following Dyson’s Threefold way [20] the S-matrices obey the statistics of
the Circular Orthogonal Ensemble (COE) and the Circular Unitary Ensemble (CUE) in
RMT.

To understand the semiclassical method we use to compute these correlators, we will
start with the two-point correlator C2 with ∆ = 0. Using Eq. (2.15) we get,

C2(0) =
1

TH

〈 ∑
γ:a→b
γ′:a→b

AγA
∗
γ′ e

i
~(Sγ−Sγ′)

〉
, (2.16)

while our restriction a 6= b enforces the two trajectories γ, γ′ to have to distinct endings,
the case a = b contains extra, so-called weak localization, effects that will be addressed
later on. We will refer from now on to trajectory pairs in contrast to periodic orbit pairs
which are closed. For most of these pairs the highly oscillating phase (Sγ−Sγ′)/~ yields
vanishing contributions to C2 when averaged. Only if the action difference is of the order
of ~ this summand survive the averaging and contribute to the two-point correlator.

2.2.1. Diagonal approximation and Sieber-Richter orbit pairs

The diagonal approximation includes only trajectory pairs, such that the action differ-
ence ∆S = Sγ − Sγ′ vanishes. For systems without exact discrete symmetries this implies
that both trajectories are equal, γ = γ′ [59], as illustrated in Fig. 2.2(a) by one exemplary
pair. The contribution from such pairs to C2 reads

C2(0) ≈ 1

TH

〈 ∑
γ:a→b

|Aγ|2
〉

(2.17)

and following [27], it can be evaluated to get

C2(0) ≈ 1

TH

TH
N

=
1

N
. (2.18)

12



2.2. Semiclassical approach of energy-dependent correlators in chaotic systems

The next order in the orthogonal case is the key point for generalizing the C2 evaluation.
The trajectory pairs contributing to C2 for this order should share the same path for
almost the total length, but containing a region where the two stretches differ, such that
∆S is of the order of ~. This situation is called ”2-encounter” and includes two stretches,
displayed as a gray box in Fig. 2.2(b). Therein the adjacency of both trajectories enables
to approximate their motion linearly [27] around the point where the γ (γ′) trajectory
exhibits an avoided crossing (self-crossing). The encounter separate regimes where γ and
γ′ coincide, named ”links”. In Fig. 2.2(b) three links and one 2-encounter appear. In the
second link the velocities of γ and γ′ are opposite, which can only occur in systems with
time-reversal symmetry. For interested readers we refer to Ref. [17, 27, 29, 52] for more
details, here we will concentrate on the major conclusion, the so called ”diagrammatic
rule”, when evaluating the effect of these trajectory pairs on C2: each link contribute
by a factor of 1/N and each encounter by a factor of −N . For each link or encounter
the Heisenberg time will cancel out, in analogy to Eq. (2.18). The trajectory pair with
one 2−encounter and three links, as depicted in Fig. 2.2(b) contribute therefore by
− N
N3 = − 1

N2 . In combination with Fig. 2.2(a) it results in C2(0) approximated by

C2(0) ≈ 1

N
− 1

N2
+O

(
N−3

)
. (2.19)

in the orthogonal case and

C2(0) ≈ 1

N
+O

(
N−3

)
. (2.20)

in the unitary case.

2.2.2. Diagrammatic rule

To generalize this rule for higher orders in 1/N a detailed description of trajectory
types is necessary. In the previous section, we dealt with a 2-encounter, which will
now be generalized to a l−encounter where l stretches are involved. The corresponding
structures with increased number of l−encounters and links substantially increases the
complexity. It is known that also l−encounters contribute by a factor of −N [29, 52].
Hence the ratio of links and l−encounters provides the contributing order in 1/N for
each trajectory pair. To characterize all possible trajectory pairs we define some useful
properties: The vector v = (v2, v3, . . . ) specifies that γ and γ′ differ in vl l−encounters.
The total amount of encounters is given by V (v) =

∑
l≥2 vl, at which L(v) =

∑
l≥2 lvl

encounter stretches appear. The number of links is limited to L(v) + 1. In case of
Fig. 2.2(b) it follows v = (1, 0, 0, . . . ) = (1), V = 1, L = 2 and by applying the diagram-
matic rule, the contribution to C2(0) is given by

(−N)V N−L−1 = − 1

N2
. (2.21)

By knowing the number of links and encounters in each trajectory pair, we can therefore
compute the contributing factor. However one major difficulty remains: What are the

13



2. Universal S-matrix correlations in non-interacting many-body systems

(a) (b)

Figure 2.2: The trajectory pairs contributing in first order in 1/N to C2 are illustrated in
configuration space. In (a) we illustrate trajectory pairs of the diagonal approximation,
where the two trajectories are identical across the whole path. In (b) trajectory pairs of
the next order in ∆S/~ are sketched. In each link the trajectories are again identically,
however the links are separated by one 2−encounter, displayed in the grayish area.
The opposite traverse directions in the second link require a system with time-reversal
invariance.

number of possible trajectory pairs N (v) for a given vector? In the next section we will
address this task of determining N (v) to estimate C2(0) by

C2(0) =
1

N
+
∑
v

(−1)V (v) 1

NL(v)+1−V (v)
N (v). (2.22)

2.2.3. Combinatorics

There exist a direct one-to-one correspondence between the periodic orbit pairs relevant
in closed systems and the open trajectory pairs with ingoing channel a distinct from
outgoing channel b [29,52]. Therefore we can use the recursive relation from Ref. [29] to
compute N (v). However, we will use a method provided in Ref. [52] which is slightly
more complex and time-consuming, but will straight the line for the energy-dependent
four-point correlators where it is the only known method to compute the correlators in
a semiclassical manner. In the following we will describe topologically different periodic
orbit pairs by permutations and yield N (v) for these closed orbits. To begin with, we
will picture the method of achieving N (v) for periodic orbits in the unitary case and
afterwards for the more complicated orthogonal case. In sec. 2.2.3 we illustrate that the
mapping from periodic orbit pairs to trajectory pairs results in an algorithm to construct
N (v) for trajectory pairs. For four-point correlators the relevant quadruplets with four
distinct endings will be generated in a more complex manner by periodic orbit pairs
fulfilling specific criteria.
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2.2. Semiclassical approach of energy-dependent correlators in chaotic systems

Unitary case

Each periodic orbit pair is classified by permutation operations. This mapping is trivial
for the permutation Plink which describes the connections between stretches exiting a
l−encounter and stretches entering the next l−encounter. In our chosen notation, it is
given by

Plink =

(
1 2 . . . L− 1 L
2 3 . . . L 1

)
, (2.23)

where the upper (lower) row corresponds to individual stretches exiting (entering) an
l−encounter. Both trajectories γ, γ′ of a periodic orbit pair share the same path outside
of a l−encounter and thus are described by the same Plink. The permutations of stretches
in the encounters are on the other hand depending on the trajectories γ, γ′. We choose
the notation such that the stretches are labeled in ascending order by 1, 2, . . . , L for the
γ trajectory and thus results in a P γ

enc given by

P γ
enc =

(
1 2 . . . L− 1 L
1 2 . . . L− 1 L

)
. (2.24)

The i−th stretch entering an encounter at entrance i is leaving the encounter at exit port
i, while the stretches of the trajectory γ′ are differently connected in the encounters, in
general given by

P γ′

enc =

(
1 2 . . . L− 1 L

Penc(1) Penc(2) . . . Penc(L− 1) Penc(L)

)
, (2.25)

with P γ′
enc(i) 6= i. To simplify the notation, we use from now on P γ′

enc = Penc. For a
periodic orbit pair with only one l−encounter, the Penc is a single cycle of length l. This
means that right after l steps we end up again at the beginning. A permutation for two
2−encounters has two cycles of length 2, e.g.

Penc =

(
1 2 3 4
3 4 1 2

)
(2.26)

with the cycle 1→ 3→ 1 and 2→ 4→ 2. The entire path of γ′ is the given by the
composition of the two permutations,

P = Plink ◦ Penc. (2.27)

In Fig. 2.3(a) the corresponding periodic orbit pair is displayed and we once explicitly
compute the composition,

P = Plink ◦ Penc

=

(
1 2 . . . L− 1 L
2 3 . . . L 1

)
◦
(

1 2 3 4
3 4 1 2

)
.

(2.28)
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2. Universal S-matrix correlations in non-interacting many-body systems

(a) (b) (c)

(d) (e)

Figure 2.3: All periodic orbit pairs with two 2−encounters are sketched. In the unitary
case the only periodic orbit pair contributing is displayed in (a) and described by
the encounter permutation in Eq. (2.26). In systems with time-reversal invariance
additionally the pairs in (b)-(e) are possible configurations at which opposite traverse
directions in links appear.

The γ′ trajectory is described by the L(v) steps (encounter and link combined)

1
enc→ 3

link→ 4
enc→ 2

link→ 3
enc→ 1

link→ 2
enc→ 4

link→ 1, (2.29)

with L(v = (2)) = 4. The criteria for the permutations Penc and Plink to describe physical
relevant periodic orbit pairs are

� Penc has vl l−cycles,

� P = Plink ◦ Penc has only one cycle with length L(v).

Successive passing through all L! possible Penc and counting the permutations P fulfilling
these criteria leads to all possible periodic orbit pairs.

Orthogonal case

In systems with time-reversal invariance the periodic orbits γ, γ′ are able to traverse a
link in opposite directions. This fact causes an increased number of possible periodic
orbit pairs for a given vector v compared to the unitary case. As an example, in
Fig. 2.3(b)-(e) are the additional periodic orbit pairs for v = (2) illustrated. To incor-
porate the freedom in directions we introduce

σ = (σ1, σ2, . . . , σL), (2.30)

in which each σi = ±1 represents two possible traverse directions at stretch i. Only
the relative direction between γ and γ′ are physically relevant, such that the first V (v)
stretches will be chosen to +1. The remaining σ elements are representing 2L(v)−V (v)

possibilities to consider in addition to the unitary case. In accordance to the unitary
case the restriction on Penc is still that of having vl l−cycles. However to detect all
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2.2. Semiclassical approach of energy-dependent correlators in chaotic systems

combinations of Penc and σ which fulfill the criteria of P having one cycle of length L
is more time-consuming. In comparison to the unitary case with L! possibilities of the
permutation Penc, now we deal with 2L(v)−V (v)L! possibilities for (Penc,σ) combinations
for each v. The total permutation P is not anymore given by a pure composition
Plink ◦ Penc as all steps of γ′ beginning at the first encounter, passing different links
and further encounters and finally ending at the start, need to be considered gradually.
Each step, following a link or passing an encounter, is thereby influenced by the previous
step, σi and Penc. The number of relevant tuples (Penc,σ) for a given vector v is then
reproducing the number of allowed periodic orbit pairs.

Mapping to trajectory pairs and quadruplets

So far we have described an algorithm to find the number of periodic orbits for each
given vector v. Our correlators of interest however depend on trajectory pairs (two-point
correlators) and quadruplets (four-point correlators). The former are directly mapped
by periodic orbits: As shown in Ref. [52] there exist a one-to-one correspondence,
cutting one link of each periodic orbit generates all relevant trajectory pairs. The
only requirement is that both trajectories share the same traveling direction in this
cut out link. In case of four-point correlators the relevant quadruplets are generated by
periodic orbits with at least one 2−encounter. The directions inside the 2−encounter
are chosen such that when cutting out this encounter, illustrated by the gray area in
Fig. 2.4(a) the remaining ones will always have crossing trajectories and therefore at
least one additional encounter. By introducing further encounters in the remaining
quadruplet, all possible quadruplets of the so called ”x-families” can be generated.
These quadruplets are the relevant ones for the Dx(0) = 〈Sb,a(Ē)Sd,c(Ē)S∗b,c(Ē)S∗d,a(Ē)〉
correlator, where the crossing is forced by the interchange of a ↔ c and b ↔ d. For
C=(0) = 〈|Sb,a(Ē)|2|Sd,c(Ē)|2〉 and B=(0) the quadruplets of relevance are called ”d-
families”. These families are equivalently generated by the periodic orbit depicted in
Fig. 2.4(b), whereby the direction of motion of one trajectory is reversed such that all
four share the same direction. The method is then used to compute four-point correlators
by removing the contribution of the cut out 2−encounter.

2.2.4. Diagrammatic rule for energy depended correlators

So far all correlators were considered at the same energy E. The next step in rising
complexity is introduced when considering the complete correlators of interest with
E± = Ē ±∆ from Eqs. (2.16a)-(2.16d). In the same manner as the previous diagramma-
tic rule of Eq. (2.22) was developed, in Ref. [52] a diagrammatic rule for energy-dependent
correlators was established2. Here we will sketch it for the two-point correlator

C2(∆) =
1

TH

〈 ∑
γ:a→b
γ′:a→b

AγA
∗
γ′ e

i
~(Sγ(E+)−Sγ′ (E−))

〉
. (2.31)

2In Ref. [52] this is also adapted to include magnetic fields.

17



2. Universal S-matrix correlations in non-interacting many-body systems

(a) (b)

Figure 2.4: The method to calculate the number of periodic orbits can be applied also
for four-point S-matrix correlators, where instead of pairs quadruplets are the relevant
objects. To generate the required quadruplets for the Dx correlator, only periodic
orbits with at least one 2−encounter are relevant. Cutting out the 2−encounter (gray
background) of the periodic orbit in (a) produces for example the first order contribution
to Dx. To gain instead the quadruplets for C= one cut out the 2−encounter of the
periodic orbits of the shape illustrated in (b).

Both energies E+, E− can be expressed in terms of the dimensionless quantity η, which
is rescaled by the dwell time τD = TH/N :

E± = Ē ±∆ = Ē ± η~N
2TH

= Ē ± η~
2τD

, (2.32)

while we approximate the action difference by

Sγ(E+)− Sγ′(E−) ≈ Sγ(Ē)− Sγ′(Ē) +
η~
2τD

(Tγ + Tγ′) (2.33)

introducing the traveling time Tγ = ∂Sγ
∂E

of an individual trajectory γ. The summation
of traveling times are expressible in terms of the time required for passing a link, ti or
an encounter tenc:

Tγ + Tγ′ =
L+1∑
i=1

χi ti +
V∑
α=1

κα tenc. (2.34)

Explicit analysis in Ref. [52] gives an adapted diagrammatic rule, where each link

yields a factor of N−1
(
1− iχiη

2

)−1
and each encounter a factor of −N(1− iκαη

2
). The

trajectory pair (γ, γ′) will always share each link and both trajectories will also pass
each l−encounter l times, such that χi = 2 and κα = 2l. Therefore, this results in an
adjustment of the previous rule in Eq. (2.22) to

1

NL+1(1− iη)L+1

V∏
l=2

[−N(1− ilη)]vl N (v), (2.35)

contributing to C2(∆) for each given vector v. Using this method the first orders of
C2(∆) in the orthogonal case are given by [60,61]

C2(∆) =
1

N(1− iη)
− 1− 2iη

N2(1− iη)3
+

5(1− 2iη)2

N3(1− iη)5
− 4(1− i3η)

N3(1− iη)4
+O(N−4), (2.36)
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2.2. Semiclassical approach of energy-dependent correlators in chaotic systems

where the vector v is (0), (1), (2) or (0, 1). In case of the unitary case the vectors
contributing to the maximal order of N−3 are (0), (2), (0, 1). Applying Eq. (2.35)
produces [60]

C2(∆) =
1

N(1− iη)
+

(1− 2iη)2

N3(1− iη)5
− (1− 3iη)

N3(1− iη)4
+O(N−4). (2.37)

For v = (2) the different prefactors for the term (1−2iη)2

N3(1−iη)5
in Eqs. (2.36)-(2.37) are 5

and 1. This is exactly representing the number of possible trajectory pairs sketched in
Fig. 2.3.
For quadruplets not every trajectory will pass each link and/or encounter, so that the
parameters χi and κα are not only dependent on the vector v but also on Penc and σ.
The knowledge of the exact path of each of the four trajectories, determined by Penc

and in the orthogonal case additionally by σ, is required to identify these parameters.
The benefit of our algorithm is based on this property and therefore is appropriate for
energy-dependent four-point correlators.

2.2.5. Applying the method for energy-dependent four-point
correlators

The above discussed method is now applied to carry on a semiclassical approach for the
correlators

Dx(∆) = 〈Sb,a(E+)Sd,c(E−)S∗b,c(E+)S∗d,a(E−)〉, (2.38)

C=(∆) = 〈|Sb,a(E+)|2|Sd,c(E−)|2〉, (2.39)

with E± = Ē ±∆. As described in sec. 2.1 these four-point correlators are relevant for
the two-particle scattering. For reasons of completeness and comparison with numerical
and experimental results later we will also investigate the semiclassical approximation
of

B=(∆) = 〈Sb,a(E+)Sd,c(E−)S∗b,a(E−)S∗d,c(E+)〉. (2.40)

Key for later applications to topological systems, our intention is also to study these
correlators for low number of open modes N such that we require a sufficient number
of terms. At the beginning we are generating all possible vectors v with at least one
2-encounter, because these are relevant for four-point correlators. The achieved vectors
are listed in Table 2.1, separated in contributing orders of N−α with α = L(v)−V (v)+1.
Thereby we use a short notation of vector v: (a)b describes b a-encounters, such that
v = (1, 0, 5) for example is then rewritten as (2)1(4)5. In the unitary case the permuta-
tions P = Plink◦Penc fulfilling the two criteria of Penc having vl l-cycles and P having one
L(v) cycle are then describing relevant quadruplets for either C= and B= (d-families)
or Dx (x-families). When we consider systems with time-reversal symmetry the possible
quadruplets are described by the tuples (Penc,σ). Compared to the unitary case the
amount of allowed quadruplets increase drastically, where the possibility of traversing

19



2. Universal S-matrix correlations in non-interacting many-body systems

the same link in different directions (governed by σ) allows here for extra quadruplets
to exist. To illustrate the computational effort to achieve Table 2.1, focus on the row
α = 6 in the unitary case. By adding all possibilities of Penc (given by L(v)!) for the five
different vectors, we achieve around 4 ·106. However, only a fraction of it, 881 encounter
permutations are of relevance for four-point correlators.
To compute now the contribution of each quadruplet we analyze the four trajectories of
each correlator regarding their traveling times. For the C2 correlator we extracted χi
and κα by Eq. (2.34), whereby i and α are counting the links and encounters. In the
same manner we are deriving the difference of traveling times ∆T of four trajectories
γ1, . . . , γ4:

∆T = Tγ1 − Tγ2 − Tγ3 + Tγ4 for Dx and C=,

∆T = Tγ1 + Tγ2 + Tγ3 + Tγ4 for B=.
(2.41)

The labeling of Dx and B= by the trajectories γi is given by their sequence in Eq. (2.38)
and (2.40). In case of C= we explicitly write the four S-matrices in the form

C=(∆) = 〈Sb,a(E+)Sd,c(E−)S∗b,a(E+)S∗d,c(E−)〉, (2.42)

such that the notation is also governed by the sequence. By extracting χi and κα,
the contribution of each link (encounter) is governed by N−1(1− iχiη

2
)−1 respectively

−N(1− iκαη
2

).

Following our method, we achieve finally a semiclassical approximation for the
energy-dependent S-matrix correlators.

Orthogonal case

In the case of systems with time-reversal symmetry the resulting approximations
for the HOM relevant correlators are given by

Dx(∆) = − 1

N3(1 + η2)
+

2η4 + 10η2 + 4

N4(1 + η2)3
− 8η8 + 30η6 + 145η4 + 56η2 + 13

N5(1 + η2)5

+
28η12 + 190η10 + 196η8 + 2832η6 + 392η4 + 258η2 + 40

N6(1 + η2)7

−96η16 + 834η14 + 3694η12 − 10940η10

N7 (1 + η2)9

−85701η8 − 25490η6 + 6108η4 + 1012η2 + 121

N7 (1 + η2)9

+O(N−8)

(2.43)
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α v
unitary orthogonal

d-families x-families d-families x-families

2 (2)1 1 0 1 0

3 (2)2 0 1 2 1

4 (2)3; (2)(3) 9 0 29 12

5 (2)4; (2)2(3); (2)(4) 0 57 470 277

6
(2)5; (2)3(3); (2)2(4);

881 0 11.977 7.352
(2)(3)2; (2)(5)

7
(2)6; (2)4(3); (2)3(4); (2)2(5);

0 10.769 367.594 249.961
(2)2(3)2; (2)(6); (2)(3)(4)

Table 2.1: For both symmetry classes and family types the number of contributing
quadruplets to the four-point correlators are shown. For each order in N−α we list
the contributing vectors defined by fulfilling L(v)− V (v) + 1 = α. For the unitary case
without time-reversal symmetry, the number of permutations P describing a quadruplet
is shown for Dx (x-families) and C=, B= (d-families). In accordance, we itemize the
number of tuples (Penc,σ) corresponding to individual quadruplets for the orthogonal
case, too.
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and

C=(∆) =
1

N2
− 2

N3
+

3η2 + 5

N4 (1 + η2)
− 2 (2η6 + 9η4 + 18η2 + 7)

N5 (1 + η2)3

+
5η10 + 47η8 + 146η6 + 404η4 + 181η2 + 41

N6 (1 + η2)5

−2 (3η14 + 60η12 + 323η10 + 585η8)

N7 (1 + η2)7

−2 (3417η6 + 806η4 + 393η2 + 61)

N7 (1 + η2)7

+O(N−8),

(2.44)

with η = 2∆τD/~. As expected, both correlators are real. This can be directly seen for
C= in Eq. (2.39). For Dx the complex conjugation and interchange of channels yields

Dx∗(∆) = 〈Sb,c(E1)Sd,a(E2)S∗b,a(E1)S∗d,c(E2)〉 a↔c,=
b↔d

Dx(∆), (2.45)

such that this correlator has a vanishing imaginary part, too. Our results in
Eqs. (2.43)-(2.44) share this characteristic for each order in 1/N . The first order contri-
bution to Dx stems from only one quadruplet illustrated in Fig. 2.5(a). The upper left
link is only traversed by γ1 and γ4. With respect to the signs in Eq. (2.41) it follows
χ1 = 1 − 0 − 0 + 1 = 2 and thus N−1(1− iη)−1. For the lower left link, only passed
by γ2 and γ3 we get χ2 = 0 − 1 − 1 + 0 = −2 and therefore the contributing factor
of N−1(1 + iη)−1. In the encounter all trajectories take part, such that it results in a
energy-independent factor of −N . In the two links after the encounter, each χi vanishes
because of the trajectory pairs sharing the same energy. Thus each link contribute
by a energy-independent factor of 1/N . The overall contribution is then given by
−NN−4(1− iη)−1(1 + iη)−1 = −N−3(1 + η2). In case of C=, Fig. 2.5(b) sketches the
only quadruplet of first order contribution. This quadruplet has no encounter and only
two links, in which two trajectories with the same energy appear. By that the total
impact is again a real number and given by N−2. It is important to mention, that in
principle one quadruplet can give a contribution which has a non-vanishing imaginary
part. Summing the contributions of all quadruplets for a given order in 1/N however
yields for Dx and C= always a pure real number.

For C=, at each order there exist quadruplets with two disconnected pairs as depicted
in Fig. 2.5(b). When introducing a 2-encounter in one of these pairs, the energies of each
pair will still be the same. In this scenario, there exist one 2-encounter and four links,
such that the contribution is given by −NN−4 = −N−3. By moving the 2-encounter to
the other trajectory pair, the same result appears, such that we have a total contribution
of −2N−3 for this disconnected pairs. The summation over all separated pairs for all
orders results in [62]

1

(N + 1)2
=

1

N2
− 2

N3
+

3

N4
+ . . . . (2.46)
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2.2. Semiclassical approach of energy-dependent correlators in chaotic systems

(a) (b)

Figure 2.5: First order contributions to Dx and C=. In (a) the quadruplet gives rise
to the first term of Dx(∆) in Eq. (2.43). The contributions of two links with different
energies, the encounter and the two links (with coinciding energies) are resulting in a
factor −N−3(1 + η2)−1. In (b) the first order contribution of C=(∆) is governed by two
disconnected pairs sharing the same energy. Therefore the first term in Eq. (2.44), N−2

is independent of ∆.

Finally, this energy-independent term can be separated in Eq. (2.44), to reformulate C=

by

C=(∆) =
1

(N + 1)2
+

2

N4(1 + η2)
− 6η4 + 24η2 + 10

N5(1 + η2)3
+O(N−6). (2.47)

Our results enable for a prediction of the next order terms for ∆ = 0. To estimate
Dx(0) ,

Dx(0) =
∞∑
i=1

(−1)i
Fi
N i+2

with F0 = 0; Fi = 3Fi−1 + 1

⇒ (F0,F1,F2,F3, . . . ) = (0, 1, 4, 13, 40, 121, 364, . . . )

(2.48)

seems reasonable. In Appendix A.1 we derive a closed form of this series and explicitly
show that Eq. (2.48) converge to the RMT result of the COE [28],

Dx(0) = − 1

N(N + 1)(N + 3)
.

In case of the correlators C=(0) = B=(0), [28] provides the RMT solution

C=(0) = B=(0) =
N + 2

N(N + 1)(N + 3)
. (2.49)

By analyzing Eq. (2.44), we suggest the series,

C=(0) =
∞∑
i=0

(−1)i
Gi
N i+2

with G0 = 1; Gi = 3Gi−1 − 1

⇒ (G0,G1,G2,G3, . . . ) = (1, 2, 5, 14, 41, 122, 365, . . . ),

(2.50)
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2. Universal S-matrix correlations in non-interacting many-body systems

to coincide with Eq. (2.49). The detailed analysis in Appendix A.1 confirms that, too.
For ∆ 6= 0, neither for C= nor for Dx is a pattern visible, such that higher orders terms
are predictable.
The last four-point correlator of interest in the orthogonal case is B=, which is governed
by

B=(∆) = − 1

N2(i+ η)2
+
−2 + 4iη

N3(i+ η)4
+

32η2 + 20iη − 5

N4(η + i)6

+
2 (−152iη3 + 99η2 + 42iη − 7)

N5(i+ η)8

+
−3624η4 − 1720iη3 + 1140η2 + 328iη − 41

N6(i+ η)10

+
2 (25192iη5 − 4516η4 − 7768iη3)

N7(i+ η)12

+
2 (2698η2 + 610iη − 61)

N7(i+ η)12

+O(N−8).

(2.51)

In principle, B= is complex but for ∆ = 0 this correlator reproduces C=(0) as expected.
A property, which only Dx and C= share, is the alternating sign. In the regime
of many open modes, N � 1, this fact is mostly inconsequential, because terms of
increasing order are significantly smaller. Certainly for low N both correlators show
drastic oscillations, when considering different truncation orders in 1/N . The correlator
B= does not share this property and is therefore expected to converge faster. We will
discuss these characteristics in combination with the correlators achieved in tight-binding
implementations later in sec. 2.3.

Last but not least, we also provide the energy-dependent four-point correlators in case
of chaotic systems without time-reversal invariance.

Unitary case

The semiclassical approximation of the three correlators is given by

Dx(∆) = − 1

N3 (1 + η2)
− 2η8 + 5η6 + 21η4 + 3η2 + 1

N5 (1 + η2)5 +O(N−6), (2.52)

C=(∆) =
1

N2
+

1

N4 (1 + η2)
+

2η8 + 5η6 + 21η4 + 3η2 + 1

N6 (1 + η2)5 +O(N−8), (2.53)

B=(∆) = − 1

N2(i+ η)2
+

8η2 + 4iη − 1

N4(i+ η)6
− 180η4 + 16iη3 − 32η2 − 8iη + 1

N6(i+ η)10
+O(N−8).

(2.54)
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2.2. Semiclassical approach of energy-dependent correlators in chaotic systems

The alternating sign for Dx and C=, visible in the orthogonal case, is not existing in the
unitary case anymore. A series similar to the geometric series,

Dx(0) = −
∞∑
i=1

N−(2i+1) = N−1 1

1− 1
N2

= − 1

(N − 1)N(N + 1)
, (2.55)

is again coinciding with the RMT predictions for CUE from Ref. [28]. For the other two
correlators we achieve from Eq. (2.53) again a geometric series,

C=(0) = B=(0) =
∞∑
i=1

N−2i =
1

1− 1
N2

=
N2

(N + 1)(N − 1)
. (2.56)

To complete the topic of approximating the four-point correlators by semiclassical
analysis and combinatorics, some remarks are necessary: The previous description is
intended for correlators with distinct channels {a, b, c, d}. When either the in- or the
outgoing channels coincide, additionally pairs or quadruplets need to be considered. By
doing so also the weak localization and coherent backscattering effects can be described
[63,64].
Another point is the asymptotic expansion we are dealing with: The semiclassical
S-matrix in Eq. (2.15) is deduced by applying the stationary-phase approximation
(SPA). The SPA is an asymptotic expansion and therefore diverges in general, but
a finite number of terms give a reasonable approximation to the exact value [65, 66].
This is the general background of convergence issues for the semiclassical approach.
However, generating for a S-matrix correlator stepwise higher orders in 1/N by using
the diagrammatic rule is not based on SPA. Therefore the convergence of the computed
series is expected and for ∆ = 0 we explicitly computed the limit.
The last remark we want to make are the cancellation effects when summing the contribu-
tions of individual quadruplets. In the unitary class and α = 4 there exist according
to Table 2.1 nine relevant quadruplets. However, the collective contribution for C=(∆)
is only given by N−4 (1 + η2)−1. Therefore most summands have to cancel each other
out. In case of energy-dependent correlators there exist so far no approach to avoid
counting these quadruplets. For energy-independent correlators of the form 〈T 〉 = 〈t†t〉
and their moments Mn = 〈Tr[T n]〉, in Ref. [67] an improved technique was established3.
Quadruplets differing only in one encounter (leading to a factor of −N) and one link
(factor of N−1) cancel out. By recursively converting quadruplets to their partner of
cancellation, one obtains a closed form for Mn in accordance to RMT, whereby only
relevant quadruplets are kept.

3Thereby t is the submatrix of the S-matrix describing only probability amplitudes between two
different leads.
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2. Universal S-matrix correlations in non-interacting many-body systems

2.2.6. Summary

In this section we introduced a semiclassical method to approximate the two-point
and four-point energy-dependent S-matrix correlators in a 2D chaotic system, mainly
following the powerful machinnery of action correlations to describe quantum interference
originally pioneered in Ref. [29,52]. First, we introduced the semiclassical approximation
to the S-matrix, where a sum over classical trajectories connecting the leads appear. In
sec. 2.2.1 this representation is used to approximate the two-point correlator C2(∆ = 0)
by identical classical trajectories, called the diagonal approximation, here the action
difference of the two classical trajectories vanishes. The next contribution in orders of
1/N to C2(0) is computed for the orthogonal case. Out of it a diagrammatic rule is
established, which replaces the problem of calculating the infinite sum over classical
trajectory pairs by a pure combinatorical task: Each link (encounter) contributes by a
factor of 1/N respectively −N to C2(0). The knowledge about the number of trajectory
pairsN (v) for a each encounter structure v yields C2(∆ = 0) by Eq. (2.22). To get access
to that we first consider periodic orbit pairs. In sec. 2.2.3 the method for generating all
available periodic orbit pairs is explained for both symmetry classes. The mapping from
periodic orbit pairs to the trajectory pairs relevant for the two-point correlators in the
transport setup is specified in sec. 2.2.3, just as the mapping to quadruplets for four-point
correlators. We discussed in sec. 2.2.4 the adapted diagrammatic rule for the energy-
dependent S-matrices. In case of C2(∆), Eq. (2.35) gives the contribution for each vector
v. For the four-point correlators, after generating all possible quadruplets, which are
characterized by the permutation P in the unitary case or by the tuple (Penc,σ) in the
orthogonal case, the effect of each individual quadruplet has to be computed separately
by extracting their traveling times. In sec. 2.2.5 we first applied the method to achieve
the quadruplets for d- and x-families in both symmetry classes, followed by computing
the contribution of each quadruplet for the C=(∆), Dx(∆) and B=(∆) in the orthogonal
case. An appearing alternating sign in Dx and C= will be of particular interest in sec. 2.3.
The consistency to RMT is also shown for ∆ = 0. Finally the semiclassical approximated
correlators in case of absent time-reversal symmetry are derived, whereby the agreement
to RMT for ∆ = 0 is again present.
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2.3. Implementations of chaotic cavities providing universal S-matrix correlators

2.3. Implementations of chaotic cavities providing
universal S-matrix correlators

Numerical tight-binding implementations with chaotic cavities display universal
S-matrix correlators, therefor several tools are necessary, ranging from boundary shap-
ing to introducing disorder. We will first develop two possibilities of estimating the
elastic mean free path of uncorrelated-disordered waveguides in sec. 2.3.1. This enables
us in sec. 2.3.2 to introduce a billard-shaped system with weak disorder, where universal
correlators are expected. Further improvements in the system shape are preformed in
sec. 2.3.3 and are linked to experimental realizations in microwave billiards and RMT
data in sec. 2.3.4.

2.3.1. Mean free path in disordered systems

The elastic mean free path lel is an important characteristic of the tight-binding imple-
mentation and defines the traveling distance before the initial momentum of the electron
is completely randomized [68]. By that, it depends on the disorder strength and the
spatial correlation of different disorder sites. Now we will illustrate two methods to
estimate lel in 2D for uncorrelated disorder used in the billiard setup. Moreover the
methods are also applicable for correlated disorder, e.g. in Ref. [69]. First, by applying
Fermi’s golden rule we investigate an analytical expression for the mean free path. The
second technique uses the averaged transmission or reflection to estimate lel by numerical
simulations.

Deducing mean free path by Fermi’s golden rule

The elastic scattering time τk = lel/vg, with vg being the group velocity, caused by the
disorder V (r) can be approximated by Fermi’s golden rule [70],

~
τk

= 2π

∫
dk′ δ(Ek − Ek′)|Ṽ (k − k′)|2, (2.57)

Ṽ (k) =
1

A

∫
dr e−ik·rV (r),

with A being the total 2D scattering area. For the chosen uncorrelated case, disorder is
expressible in terms of Heaviside step functions Θ(. . . ) by

V (r) = V0

N∑
i=1

αiΘ
(a

2
− |x|

)
Θ
(a

2
− |y|

)
with V0 > 0 characterizing the strength of the disorder, αi ∈ [−1, 1] being a random
number and N describing the number of sites in the area A with the lattice constant a.
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2. Universal S-matrix correlations in non-interacting many-body systems

Evaluating Ṽ (k) and using the assumption of low energies ka� 1, it follows [71]

Ṽ (k) =
V0

A

N∑
i=1

αi

∫ a/2

−a/2
dx e−ikxx

∫ a/2

−a/2
dy e−ikyy

=
V0

A

N∑
i=1

αi

(
2

k
sin(ka/2)

)2

≈ V0

A

N∑
i=1

αia
2. (2.58)

Inserting Eq. (2.58) into Eq. (2.57) yields

~
τk

=
2πV 2

0 a
4

A2

∣∣∣∣∣
N∑
i=1

αi

∣∣∣∣∣
2 ∫

dk′ δ(Ek − Ek′)

=
2πV 2

0 a
4

A2

∣∣∣∣∣
N∑
i=1

αi

∣∣∣∣∣
2

D(Ek),

(2.59)

with the density of states D(Ek). The randomness of lim
N→∞

1
N

∑N
i=1 αi = 0 allows us

to approximate ∣∣∣∣∣
N∑
i=1

αi

∣∣∣∣∣
2

αi∈R=

(
N∑
i=1

αi

)2

=
N∑
i=1

α2
i +

N∑
i=1

αi

N∑
j 6=i

αj

= N

[
1

N

N∑
i=1

α2
i +

1

N

N∑
i=1

αi

N∑
j 6=i

αj

]
N�1
≈

N∑
i=1

α2
i .

The elastic mean free path is then deduced from

~
τk

=
2πV 2

0 a
4

A2
D(Ek)

N∑
i=1

α2
i =

2V 2
0 Am

∗

~2N2

N∑
i=1

α2
i ,

⇒ lel =
~2Nk

V 2
0 a

2m∗

(
N∑
i=1

α2
i

)−1

, (2.60)

by substituting A = Na2 and for the 2DEG the density of states D(Ek) = Am∗/(π~2)
and the group velocity vg = 2k/~. To conclude, the elastic mean free path lel for a 2DEG
with uncorrelated disorder is given by Eq. (2.60) and is thereby proportional to V −2

0 .
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Determine mean free path by averaged transmission/reflection

Another method, applicable also for correlated disorder where no closed analytic form
can be achieved, is based on the system length L dependency of the transmission and
reflection coefficients [68, p. 203]:

〈T 〉 =
〈 l

L+ l
− 1

N

L

L+ l

〉
, 〈R〉 =

〈 L

L+ l
+

1

N

L

L+ l

〉
, (2.61)

where the transmission T (reflection R) is averaged over different disorder configurations
〈. . . 〉, N is the number of open modes and l being the characteristic length of the order of
the mean free path lel with the condition L� lel. Due to the weak localization effect the
transmission (reflection) is reduced (increased) compared to the classical expectation.
Implementing a waveguide using tight-binding method and computing the averaged
transmission or reflection coefficient is then determining lel by solving Eqs. (2.61)

lel ≈ L
〈T 〉+ 1

N

1− 〈T 〉
=

L

〈R〉

(
1 +

1

N
− 〈R〉

)
. (2.62)

To conclude, we are able to determine the mean free path lel for the uncorrelated
disorder analytically by Eq. (2.60) or by numerical simulations using Eq. (2.62).

2.3.2. Cavity with smooth boundary

All numerical simulations are preformed using the tight-binding approach and the Kwant
code [72]. We implement the 2DEG by the Hamiltonian Ĥ = ~2

2me
k2 with the preserved

time-reversal symmetry T 2 = 1 and free electron mass me. Connecting a scattering
region to two metallic contacts (leads) provides access to scattering properties by solving
the underlying problem using the wave function approach [72]. One crucial adjustment in
the Kwant code is thereby necessary: The lead transversal functions ψn(y) are in general
defined except for a multiplicative phase. In Kwant, for each energy this phases are
random and thus the phases in the S-matrix, too. Observables, which are independent
on the phase of Sb,a(E) at different energies are not affected by that. Here on the
contrary, this correlations are essential and we need to adjust the code for that. We
redefine the transversal function by ψn(y) → ψn(y)e−iζn with ζn = φ

(
〈ψ∗n(y)|ψn(y)〉

)
/2,

whereby φ(. . . ) gives the phase of the argument. It is important to note that this is
only appropriate as long as transversal functions at different energies are not linked by
physical relevant phases. In the case of the 2DEG, the transversal functions are given
by Eq. (2.2) and are independent on the energy, such that this amendment is applicable
and gives in general access to energy-dependent S-matrix correlations.

Now we can focus on shaping an adequate system. In Fig. 2.6(a) we sketch a system,
for which we expect in the classical limit an ergodic and chaotic motion. To avoid
direct paths between the two leads (red) we implemented a circular-formed obstacle.
Additionally to that, uncorrelated weak disorder (kF · lel � 1) is introduced, such that
the resulting elastic mean free path lel is fulfilling the condition of ballistic scattering
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Figure 2.6: The two-point correlator C2(∆) of the sketched system with N = 20 features
partial agreement to the semiclassical approach. (a) illustrates the system form and
a representative LDOS, whereby bright (dark blue) spots correspond to high (low)
densities. The numerical achieved real and imaginary part of C2(∆) (black) in (b) and
(c) agree after the fitting of τD with the semiclassical prediction (blue) from Eq. (2.36)
for ∆/d . 25. Strong oscillations for ∆/d & 25 are present when 3000 averages (over Ē
and disorder configurations) are performed.
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(λF < L < lel) in the non-localized regime (L . N · lel) with N = 20 being the number
of open modes and L the system length. Therefor we applied the methods introduced
in subsec. 2.3.1 to get access to lel. In Fig. 2.6(a) the local density of states (LDOS)
is plotted, whereby high (low) intensities are given by bright (dark blue) spots. The
smooth and uniform distribution supports the assumed ergodicity. The classical dwell
time τcl = πA

vgC , with scattering area A, group velocity vg and lead width C therefor seems

to exceed the Ehrenfest time τE ∝ L
λF

. In this configuration τcl is given by τcl ≈ 11τpass

with τpass = vgL. Asides from that, sec. 2.2 teaches us that a chaotic system experiences
universal two- and four-point S-matrix correlations. The semiclassical approach of
the two-point correlator C2(∆) in Eq. (2.36) with the first energy-dependent term
proportional to N−1 is a landmark for chaotic scattering. The four-point correlators
of interest contain at least energy-depended summands proportional to N−2, such that
a worse signal/noise ratio is expected.
To start with, the C2 correlator,

C2(∆) = 〈Sb,a(Ē + ∆)S∗b,a(Ē −∆)〉, (2.63)

with averages over 300 different mean energies Ē and 100 disorder configurations is
computed. We choose here one channel combination (a, b) = (0, 1), but the correlators
for different channels (a, b) share the same general form. The real and imaginary parts
are plotted in Fig. 2.6(b) and (c) in black, with a rescaled axis by d = ~2

meA being the
mean level spacing. The fit of the dwell time τD in Eq. (2.36) to this data yields the
semiclassical prediction plotted in blue. For ∆/d ≤ 25 the alignment of the semiclassical
approach and the numerical data is visible. However, for bigger energy differences the
data exhibits still drastic oscillations.

This lack of perfect agreement makes it reasonable to study further properties in
connection to chaos, e.g. the statistical nature of the appearing S-matrices. For off-
diagonal elements Sb,a with a 6= b a bivariate Gaussian distribution,

P (s) =
π

2
s exp

[
−π

4
s2
]
,

P (φ(Sb,a)) =
1

2π

(2.64)

with s = |Sb,a|/
√
〈|Sb,a|2〉 is expected due to RMT [73–76]. The range of validity is

given by the Ericson regime, Γ/d � 1 [77] this means that the average level width
Γ in the cavity is much greater than the mean level spacing d = ~2

meA . Using Γ ≈
~/τcl gives Γ/d ≈ 18 and therefore legitimate Eq. (2.64) in our setup4. In Fig. 2.7
both, the RMT prediction (red) from Eq. (2.64) and histograms of sb,a and φ(Sb,a)
for almost 50 · 103 different S-matrices are compared. The agreement to a bivariate
Gaussian distribution for absolute values of Sb,a is visible in Figs. 2.7(a), (b). The
uniform distribution of phases in (c) and (d) is in accordance with RMT plotted in red.

4An analytical result of the modulus and the phase of the S-matrix outside of the Ericson regime can
be found in Ref. [78]. The statistic of Sa,a is a bivariate Gaussian, too, as long as Γ/d � 1 and
|〈Sa,a〉| � 1 [79–81].
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(a) (b)

(c) (d)

Figure 2.7: Comparison of RMT predictions with numerical S-matrix statistics. In (a)
and (b) the histograms of the unfolded sb,a values (blue) for two channel combinations,
(b, a) = (1, 9), (1, 20) agree with bivariate Gaussian distributions of orthogonal matrices
from Eq. (2.64). The uniform distributions of the phases φ(Sb,a) in (c) and (d) is in
accordance with RMT, too.
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Figure 2.8: Numerical results for energy-dependent four-point correlators in comparison
to semiclassical analysis. The fast convergence of B=(∆) originates the alignment of real
and imaginary part (black) with the dwell time adapted to the semiclassical series (blue)
in Eq. (2.51), illustrated in (a) and (b). Both numerical correlators (black), C=(∆) in
(c) and Dx(∆) in (d) exhibit a discrepancy to semiclassical predictions (blue), whereby
Eqs. (2.43), (2.44) are plotted with τD = τcl.

Thus the S-matrix statistics support the general assumption of chaotic behavior. To
proceed, we analyze the four-point correlators with the same averaging process as used
for C2(∆). In Figs. 2.8(a), (b) the real and imaginary parts of the B=(∆) correlator are
plotted in black. A dwell time fitting of the semiclassical formula from Eq. (2.51) (blue),
yields reasonable agreements. It illustrates the alignment for small energy differences
and the low oscillation amplitude for larger ∆/d. Compared to the C2(∆) in Figs. 2.6(b)
and (c), B=(∆) exhibits lower undulations for ∆/d > 25. For C=(∆) and Dx(∆) the
numerical data (black) in Figs. 2.8(c) and (d) are not described by Eq. (2.43) and (2.44).

In (c) and (d) the semiclassical predictions (blue) with τD = τcl are illustrating these
discrepancies. Our assumption that the correlators with increased 1/N order dependency
show worse signal/noise ratios is partly confirmed, with the exception of B=(∆) in
Fig. 2.8(a)-(b). In comparison to C2(∆) in Fig. 2.6(a)-(b) a faster convergence of B= to
the semiclassical predictions in the hole range of ∆/d is visible. To progress in reaching
universal forms of C2(∆) and in particular C=(∆) and Dx(∆) an increase of number of
averages seems reasonable. However, beforehand we will improve the system shape.
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Figure 2.9: Adaption of the cavity to an undulating boundary yields less fluctuations
in C2(∆). The real (a) and imaginary part (b) of C2(∆) for N = 20 and almost 3000
averages are less undulating compared to a Fig. 2.6(b)-(c).

2.3.3. Cavity with undulating boundary

The cavity constraint by a smooth boundary is now replaced by an undulating boundary
as sketched in Fig. 2.9(a) with an representative LDOS again directly included. All
system parameters besides the boundary form and the position of the obstacle are
adopted from the previous system. C2(∆) is computed by the same averaging process
as done in Fig. 2.6(b)-(c) and we illustrate it in Fig. 2.9(b)-(c) (black) separated in real
and imaginary parts. The detailed comparison of the two-point correlators shows that
the undulations for energies ∆/d > 25 (where the semiclassical prediction yields zero)
are lower for the system with an undulating boundary compared to the smooth one.
Therefore the new system form improves the chaotic properties in the cavity.

Now we preform another adjustment, namely shrinking the lead widths such that the
classical dwell time τcl is doubled compared to the previous setup with τcl ≈ 22τpass. Then
the correlators of interest are according to Eqs. (2.36), (2.43)-(2.44) and (2.51) exhibit
a Lorentzian form of smaller width. Applying the same average leads to an two-point
correlator in Fig. 2.10(a)-(b). The increased signal/noise ratio compared to Fig. 2.9(b)-
(c) is justified by the 1/N dependency in semiclassical series. With this adjusted system
parameters we preform further averages to generate two-point and four-point correlators
where the forms predicted by the semiclassical approach is identifiable. In Fig. 2.10(c-
d) the numerical results (circles) for C2(∆) agree with semiclassical predictions (line).
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Figure 2.10: The system form of Fig. 2.9(a) with reduced lead widths yields N = 10 and
a less undulating two-point correlator. The signal/noise ratio is reduced, whereby in (a)
and (b) the real and imaginary part of the expected C2(∆) form is more pronounced.
Averages over 3.5·103 mean energies, 100 disorder configurations and all possible channel
combinations yield smooth real and imaginary parts of C2(∆) in (c) and (d) (circles).
These are in excellent agreement to Eq. (2.36) (line).

Therefor in total 3.1·107 averages including varying Ē, disorder and channel combination
are preformed. Computing the four-point correlators also by including these strong
averages, Fig. 2.11 illustrates the resulting data. The fast converging B=(∆) (circles)
is in very good agreement with the semiclassical fit (line) for real and imaginary part
plotted in (a) and (b). In Fig. 2.11(c)-(d) the numerical data for C=(∆) and Dx(∆)
(circles) reached a form, such that it coincides with expectations (line).

Reaching the low N limit

So far the semiclassical approach of the energy-dependent S-matrix correlators by series
in orders of 1/N was explored for N � 1. Now we will investigate the numerical
correlators and the semiclassical expansion for the lowest number of open modes possible,
N = 4. Due to the restriction on distinct channels (a, b, c, d), the four-point correlators
for N < 4 are given by additional diagrams and therefore experience a different form.
The lead widths of the tight-binding setup is now reduced such that N = 4 propagating
modes are available. By averaging over mean energies, disorder configurations and all
available channel combinations, the smooth form of the three correlators of interest are
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Figure 2.11: The billiard-shaped system with the undulating boundary and N = 10
yields four-point correlators of expected form. Adapting τD of the semiclassical
predictions (line) to numerical results (circles) of B=(∆) for real (a) and imaginary
part (b) gives convincing agreement. The same holds for C=(∆) and Dx(∆) in (c)
and (d).
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Figure 2.12: For N = 4, the numerical four-point correlators are partly aligned with
semiclassical predictions. (a) and (b) show, that for N = 4 the B=(∆) convergence,
such that all truncations of Eq. (2.51) align with numerical results of real and imaginary
part (black). The alternating signs in Eqs. (2.43), (2.44) leads to undulations for different
truncations in C= and Dx. Nevertheless, (c) and (d) illustrate the agreement of C=(∆)
andDx(∆) correlators to simulations, when an uneven number of summands are devoted.

plotted in black in Fig. 2.12. For different truncations of the 1/N sums, the formula for
B=(∆) is illustrated for real and imaginary part in (a) and (b). Thereby the dwell time
τD and a multiplicative factor are fitted. The different truncations share the same over
all agreement to numerics, besides on small differences. In case of C=(∆) and Dx(∆)
this changes. The alternating signs in Eqs. (2.43)-(2.44) are causing cancellations of
summands and indicating slow convergence of the semiclassical expectation for every
second term. The same fitting of τD and prefactors leads then to undulations for even
number of terms, such that no satisfying alignment to the numerics is available. However,
fitting of every uneven number of terms gives an approximation as illustrated by the blue
dashed and red dashed lines in Fig. 2.12(c)-(d).
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2. Universal S-matrix correlations in non-interacting many-body systems

2.3.4. Comparison to microwave billiards and the Heidelberg
approach

Besides the discussed methods, the semiclassical approach and the numerical
tight-binding simulations, two more possibilities of studying universal energy-dependent
S-matrix correlators are investigated in our manuscript [53]: The Heidelberg approach
within RMT and the experimental realization by microwave billiards.

The former uses random k-dependent Hamiltonians H(k),

H(k) = k1−H,

whereby H is a M ×M -dimensional random matrix of the GOE. The S-matrix is then
given by

Sb,a(E) = δb,a − 2πiΓb,a,

Γ = W †(H(k) + iπWW †)−1
W.

(2.65)

Here the coupling between the system, described by the hermitian matrix H(k) and
the leads is represented by the M ×N real matrix W with Gaussian distributed entries
with zero mean [82]. The poles of Sb,a are then coinciding with eigenvalues of the
effective Hamiltonian of the open system H(k) + iπWW †. The Bohigas-Giannoni-
Schmidt conjecture confirms the accordance between these RMT originated eigenvalues
and the ones arising in chaotic systems [83].

The latter one is an experimental realization by microwave billiards, which uses the
equivalence between the 2D Schrödinger equation with Dirichlet boundary conditions to
the stationary Helmholtz equation [70]

−
( ∂2

∂x2
+

∂2

∂y2

)
χn =

ω2
n

c2
χn, (2.66)

with speed of light c [84–86]. The electric field amplitude χn has to vanish at the
boundary in the same way as the electronic counterpart. The cavity is formed by metallic
plates and the coupling to leads is established by N = 4 antennas with microwave cables
attached5. By fitting the two-point correlator C2(∆) to the experimental data, one finds
a total number of open modes N ≈ 9 − 10. The experimental data is comparable to
quantum graphs when absorption is introduced by a small imaginary part of wavenumber
k [82]. In Fig. 2.13 the experimental four-point correlators are plotted (black dots) and
indicate agreement to fits of the semiclassical predictions (black lines) for all four-point
correlators. In analogue to our previous investigations a rescaled value ε = ∆/D, with
resonance spacing D of the quantum graph is used. Again the experiments show for
B=(∆) a faster convergence in comparison to C=(∆) or Dx(∆). Fig. 2.13 also illustrates
the RMT result using the Heidelberg approach (red dots) in comparison to semiclassical
adapted formulas (red lines) for N = 4 (with additional absorption) or N ≈ 9 − 10

5For frequencies lower than c
2d , with d being the distance of two plates in z-direction, the 2D Helmholtz

equation in Eq. (2.66) is valid.
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(a) (b)

(c) (d)

Figure 2.13: The data achieved from experimental microwave billiards (black dots)
coincide with semiclassics (black lines) with N ≈ 9 − 10, while fitting the dwell time
and a prefactor for B=(∆), C=(∆) and Dx(∆). The RMT results in the Heidelberg
approach (red dots) agree also with semiclassical analyzes (red lines) from Eqs. (2.43),
(2.44) and (2.51) with N = 9.

(without absorption). Here, also the RMT data show the best convergence for B=(∆).
Therefore the fast convergence ofB= in comparison to C2 and other four-point correlators
is undeniable. It seems thereby symptomatic, that all investigated methods share the
same convergence properties for S-matrix correlations.
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2. Universal S-matrix correlations in non-interacting many-body systems

2.4. Summary

In this chapter we investigated correlations in chaotic systems relevant for EQO of
HOM-type by semiclassical and numerical investigations, published in Ref. [53]. In
sec. 2.1 we introduced the studied system and linked the two-particle probability to
four-point S-matrix correlations following Ref. [23]. To compute the relevant energy-
dependent four-point S-matrix correlators, the basic idea and state of art is provided
in Ref. [29, 52, 62]: The semiclassical approach to the S-matrix yields a summation of
classical trajectories. Therefore in two-point correlators trajectory pairs and in four-
point correlators quadruplets are the relevant objects to consider. From this starting
point, we investigate the complex combinatorics of these objects, such that our imple-
mented method can deal with large number of relevant trajectories and therefore provides
an approximation for low number N of open modes. Correlators with a known first
order approximation are thus computed to significant higher accuracy. In addition we
investigate an four-point S-matrix correlator where so far not any approximations are
available. In sec. 2.2 we describe the computation by stepwise increasing the complexity
of S-matrix correlators, from energy-independent two-point correlators to energy-depen-
dent four-point ones, leading to an applicable technique to evaluate the correlators
semiclassically. Finally, in sec. 2.2.5 a series expansion in 1/N for the four-point
S-matrix correlators is achieved. For each order in 1/N we provide for both, unitary
and orthogonal symmetry class the number of contributing quadruplets. Out of that,
the four-point correlators are computed up to N−7 (orthogonal case) or N−6 (unitary
case). Besides the pure computational results, sketches of quadruplets given rise to the
first order contributions to Dx(∆) and C=(∆) are provided us with an intuitive picture.
The large amount of contributions is on the one hand dealing with a large number
of semiclassical diagrams, on the other hand enabled us to predict an infinite series for
vanishing energy difference. We prove the convergence of these series to RMT predictions
for all investigated correlators in both symmetry classes, orthogonal and unitary.
Besides this analytical approach, we established numerical tight-binding systems in
billiard-shaped form, where universal signatures of quantum chaos are expected. To
begin with, two methods of approximating the mean free path of (uncorrelated white)
disorder are introduced, by that we were able in sec. 2.3.3 the system with weak disorder
and a smooth boundary was implemented. By means of a phase correction of the
transversal lead modes, we have access to energy-dependent S-matrices in tight-binding
setups. Both, the alignment of an energy-dependent two-point correlator to semiclassical
predictions and the agreement of S-matrix statistics to RMT are the first promising
observations. By replacing the boundary by an undulating one, the two-point and the
four-point correlators agree excellently with the semiclassical expansions. When reaching
the low number of open modes regime the numerical correlators are still pronounced.
The numerical fast converging correlator B=(∆) also exhibits convergence in different
truncations of the semiclassical 1/N series. In contrast thereto, the alternating signs in
the semiclassical expansions of the other four-point correlators are producing undulations
for different truncations. Nevertheless the semiclassical predictions are in agreement
with simulations when only considering uneven number of summands. By comparing
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2.4. Summary

these results with data of a collaborating group in experimental microwave billiards
and applying the Heidelberg approach in sec. 2.3.4, we exhaust all known techniques of
describing universal energy-dependent S-matrix correlations.
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3. Universal S-matrix correlations in
topological insulators

In this chapter we will investigate universal S-matrix correlations, whereby the edge
states of a topological insulator (TI) serve as waveguides, the detailed analysis for
systems in the symmetry class AI in chap. 2 paves the way. The realization of the
Hong-Ou-Mandel (HOM) effect in an quantum point contact (QPC) using chiral edge
states arising from the integer quantum Hall effect is a keystone on the experimental side
of EQO [87,88]. However, only one study in the context of chaos in TIs is present [89]. To
start the discussion of this intermediate research field, in sec. 3.1 we solve for an infinite
waveguide the corresponding Schrödinger equation, whereby the TI Hamiltonian is given
by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian [90]. The governing information
enables us to adjust our numerical tight-binding model, such that the energy dependency
of S-matrices is achievable. The formalism of many-body scattering theory in sec. 2.1
disregards the effects arising from the Fermi sea inclusion, moreover, it lacks the property
of experimental measurability. To bypass these issues we extend and adjust in sec. 3.2
the electronic coherence formalism introduced in Ref. [87, 91, 92] to energy-dependent
S-matrices resulting in a current-current correlation of HOM-type ∆Q̄HOM. This prelimi-
nary work enables in sec. 3.3 the numerical computation of energy-dependent S-matrix
corre-lations. In contrast to chap. 1 in which the Hamiltonian symmetry is of the COE,
here we will concentrate on (broken) time-reversal symmetry with (without) T 2 = −1.
In sec. 3.3.3 the consequence of the correlator on ∆Q̄HOM is consolidated.

3.1. Topological insulator waveguide

In the previous chapter, a phase correction of the transversal modes in the Kwant code
was necessary, such that phase correlations of S-matrices were accessible. In accordance
thereto such an intervention is also required when studying S-matrix correlations in TIs.
Therefore we first deduce the solution of a TI waveguide and analyze the properties
arising from time-reversal symmetry. The phase relation of transversal modes will
afterwards specify the necessary correction.
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3. Universal S-matrix correlations in topological insulators

The 2D BHZ-Hamiltonian in the basis of the electron and hole bands
|E1, ↑>, |H1, ↑>, |E1, ↓> and |H1, ↓> is given by [90]

ĤBHZ =

 ĥ2x2(k̂)
0 −∆
∆ 0

0 ∆
−∆ 0

ĥ∗2x2(−k̂)

 (3.1)

with

ĥ2x2(k̂) =

(
C − (B +D)k̂

2
+M A(k̂x + ik̂y)

A(k̂x − ik̂y) C + (B −D)k̂
2
−M

)
, (3.2)

k̂
2

= k̂2
x + k̂2

y and the default parameters given in Table 3.1.

A[ meVnm] B[ meVnm2] C[ meV]
364.5 −686 0

M [ meV] D[ meVnm2] ∆[ meV]
−10 −512 0

Table 3.1: The default values of the BHZ-Hamiltonian parameters are mostly penned
by Ref. [90]. However, the influence of the bulk inversion asymmetry, accomplished in
lowest order by the Dresselhaus spin-orbit coupling ∆, will as default be set to zero [93].

The goal is to solve the Schrödinger equation ĤBHZψ = Eψ for a 2D waveguide
system with hard wall boundary conditions in y-direction, |ψ(x, y = ±W/2)|2 = 0 and
translation invariance in x-direction as depicted in Fig. 3.1(a). From now on we assume
a vanishing spin-orbit coupling, ∆ = 0, which facilitates the situation by uncoupling the
spin blocks. We first concentrate on the spin | ↑〉 electrons and later we will take the
spin | ↓〉 also into account.
First imagine a system, which is infinite in x− and y-direction. The plane wave ansatz

eikxxeikyyφ↑ (kx, ky)

for solving

ĥ2x2 e
ikxxχ↑,E (kx) = E eikxxχ↑,E (kx) (3.3)

results in four eigenvectors (i ∈ {1, 2, 3, 4})

φ↑,i (kx, ky,i) =

(
ai (kx, ky,i)
bi (kx, ky,i)

)
=

(
−M − E − (D −B)(k2

x + k2
y,i)

A(kx − iky,i)

)
and an energy-momentum relation given by

ky,i (kx) = (δ1i + δ2i − δ3i − δ4i)
√
−k2

x − F + (δ1i − δ2i + δ3i − δ4i)K
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3.1. Topological insulator waveguide

with

K =

√
F 2 − M2 − E2

B2 −D2
,

F =
A2 − 2(BM +DE)

2(B2 −D2)
.

Therefore one gets

ky,1 = −ky,3, ky,2 = −ky,4,
a1 = a3, a2 = a4,

and the general solution of Eq. (3.3) has the form eikxxχ↑,E(kx, y) with

χ↑,E(kx, y) =
4∑
i=1

cie
iyky,i

(
ai
bi

)
. (3.4)

The solution for the waveguide illustrated in Fig. 3.1(a) with a finite width W needs to
satisfy the Dirichlet boundary conditions

|χ↑,E(kx, y = ±W/2)|2 = 0. (3.5)

Therefore the restriction of the coefficients ci is given by
a1e

iky,1W/2 a2e
iky,2W/2 a3e

iky,3W/2 a4e
iky,4W/2

b1e
iky,1W/2 b2e

iky,2W/2 b3e
iky,3W/2 b4e

iky,4W/2

a1e
−iky,1W/2 a2e

−iky,2W/2 a3e
−iky,3W/2 a4e

−iky,4W/2

b1e
−iky,1W/2 b2e

−iky,2W/2 b3e
−iky,3W/2 b4e

−iky,4W/2


︸ ︷︷ ︸

=:M


c1

c2

c3

c4

 =


0
0
0
0

 , (3.6)

and the non-trivial result of the kernel Ker (M) = {c ∈ C4|Mc = 0} fulfills det (M) = 0.
By that, three of four coefficients ci are determined and the fourth is taking care of the
normalization condition ∫ W/2

−W/2
dy |χ↑,E,n(y)|2 = 1. (3.7)

The transcendental equation det (M (E, kx)) = 0 gives rise to the quantization condition
of kx for given energy E. The transversal function χ↑,E,n(y) describing different modes n
in the analogy of sin(πny/W ) for the 2DEG. Solving det (M (E, kx)) = 0 or the secular
equation in Ref. [94] numerically for W = 500 nm leads to the bandstructure illustrated
in Fig. 3.1(b). The quantization of bulk modes and the linear Dirac dispersion in the
band gap of [−10, 10] meV is thereby visible. In contrast to the 2DEG, the transversal
functions with fixed n are dependent on kx (or E) and hence change with varying kx, as
we shortly discuss now.
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Figure 3.1: (a) The 2D waveguide setup with W = 500 nm and Dirichlet boundary
conditions has a translational invariance in x-direction. Numerically solving the
corresponding transcendental equation det (M (E, kx)) = 0 with parameters used from
Table 3.1 results in the bandstructure in (b). This setup induces a subband structure
and a linear dispersion of the edge states in the bandgab [−10, 10] meV. The two states
marked as a circle (dot) are then plotted in Fig. 3.3(b) and (d).

Energy-dependent transversal modes

The eigenvectors of a hermitian matrix are orthogonal for distinct eigenvalues. It follows
that the solutions χ↑,E,n(y) for distinct energies E are orthogonal, too. For states
intersecting with the dashed line in Fig. 3.2(a) we verified their orthogonality,

B′b,a =

∫ W/2

−W/2
dyχ†↑,E′,a(y)χ↑,E,b(y) ∝ δ(E ′ − E), (3.8)

in Fig. 3.2(b). The probability density of the four transversal modes are plotted in
Fig. 3.2(c). In contrast to the previous setups, the transversal modes in the TI are
kx-dependent and therefore not necessarily orthogonal in different modes at the same
energy,

Bb,a =

∫ W/2

−W/2
dyχ†↑,E,b(y)χ↑,E,a(y) 6= δb,a. (3.9)

This is shown in Fig. 3.2(d) for two open and two evanescent modes (with kx ∈ iR).
The probability density for these states is plotted in Fig. 3.2(e). This non-orthogonality
makes a clear distinction with respect to the properties of Hamiltonians purely quadratic
in momentum.
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Figure 3.2: The TI transversal modes experience different properties than energy-
independent modes of quadratic Hamiltonians. (a) In the bandstructure for width
W = 500 nm, we concentrate on transversal modes at distinct (equal) energies,
illustrated as dashed (dotted) lines. (b) For distinct energies the overlap B′b,a of
transversal modes illustrated as intersections with the dashed line in (a) are orthogonal.
The probability density of the four considered modes are plotted in (c). Due to the
energy-dependency of χ↑,E,b(y), the overlap Bb,a in (d) is not delta-like. The probability
density at constant energy (dotted line in (a)) is illustrated in (e). Thereby two modes
are propagating (kx > 0) and two evanescent (purely imaginary kx).
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3. Universal S-matrix correlations in topological insulators

Time-reversal symmetry and Kramers degeneracy

So far we only considered the solutions of Eq. (3.3), the spin | ↑〉 block. ĤBHZ is invariant
with respect to the time-reversal symmetry operator T defined by

T = iσy ⊗ 1K =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

K, (3.10)

with T 2 = −1, the Pauli matrix σy and complex conjugation operator K. This
invariance, also holding for ∆ 6= 0 is expressed in the commutator relation
T ĤBHZψ = ĤBHZT ψ. The spin | ↑〉 solution in Eq. (3.4) can now be extended into the
four-dimensional space of electron and hole bands,

ψ↑,E,n(y) =
4∑
i=1

cie
iy ky,i


ai(kx)
bi(kx)

0
0

 , (3.11)

and give rise to the spin | ↓〉 solution by1

ψ↓,E,n(y) = T ψ↑,E,n(y). (3.12)

In Fig. 3.3 these solutions for the edge states are plotted for an energy in the bandgab
and for E = 11 meV. These energies correspond to the blue and black dots in Fig. 3.1(b)
with positive group velocity. Thereby the penetration depth into the bulk is rising for
both spin states when increasing the energy. Our analysis is thereby in agreement to
Ref. [95], wherein the edge states for energies in the bandgab are analytically solved.
By analyzing the implications of the underlying symmetry, further properties can be
discovered. For a Hamiltonian with time-reversal symmetry T 2 = −1, Kramers theorem
gives an important inside: The spectrum is doubly degenerate, and the two states
(Kramers pairs), here ψ↓,E,n(y) and ψ↑,E,n(y) are linked by time-reversal symmetry [96].
The overlap between this Kramers pair is vanishing and furthermore the forbidden back-
scattering between them is appearing: As long as time-reversal symmetry is preserved,
any Hamiltonian Ĥscatt with T Ĥscatt = ĤscattT is not able to produce backscattering
between the Kramers pair [95,97]. This can be deduced by

〈ψ↓|ĤscattT ψ↓〉 = 〈T ĤscattT ψ↓|ψ↓〉 = 〈ĤscattT 2ψ↓|T ψ↓〉
= −〈ψ↓|ĤscattT ψ↓〉 = −〈ψ↓|Ĥscattψ↑〉 = 0,

(3.13)

whereby using the anti-unitary property of T [17]

〈ψ↓|ψ↑〉 = 〈T ψ↑|T ψ↓〉,
1Be aware that the equation χ↓(kx, y) = −iσyKχ↑(kx, y) in Ref. [94] is misleading.
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3.1. Topological insulator waveguide

|E1,↑>

|H1,↑>

|E2,↓>

|H2,↓>

-200 -100 0 100 200

-2.0

-1.5

-1.0

-0.5

0.0

y (nm)

ψ
,1
(E
=
0
)
(1
0
-
1
n
m

-
1
)

(a)
|E1,↑>

|H1,↑>

|E2,↓>

|H2,↓>

-200 -100 0 100 200
-1

0

1

2

y (nm)

ψ
,1
(E
=
0
)
(1
0
-
1
n
m

-
1
)

(b)

|E1,↑>

|H1,↑>

|E2,↓>

|H2,↓>

-200 -100 0 100 200

-1.00

-0.75

-0.50

-0.25

0.00

y (nm)

ψ
,1
(E
=
1
1
m
e
V
)
(1
0
-
1
n
m

-
1
)(c)

|E1,↑>

|H1,↑>

|E2,↓>

|H2,↓>

-200 -100 0 100 200

0.0

0.5

1.0

y (nm)

ψ
,1
(E
=
1
1
m
e
V
)
(1
0
-
1
n
m

-
1
)(d)

Figure 3.3: The analytically computed wave functions in Eqs. (3.11) and (3.12) at
E = 0 meV and positive group velocity (circle in Fig. 3.1(b)) are pure edge states living
on opposite edges. Here, the spin | ↓〉 (a) and spin | ↑〉 (b) states are illustrated.
The penetration depth of the edge states ψ↓ (c) and ψ↑ (d) into the bulk is drastically
increased for energies above the band gab, e.g. E = 11 meV (dot in Fig. 3.1(b)).

and the short notation ψ↑ = ψ↑,E,n (ψ↓ = ψ↓,E,n). Another property originating from
preserved time-reversal symmetry is the spin-momentum locking. The effect of T on a
state of momentum k and spin | ↑〉 is

T |k, ↑〉 = | − k, ↓〉.

The spin of a state, propagating in one direction is perpendicular to the Kramers partner
which is moving in the opposite direction. This so-called helical spin texture is
responsible for the spin-momentum locking, wherein the spin is always coupled to
a propagating direction [95].

Phase relation

Now, knowing the transversal modes described by Eq. (3.11), we are able to investigate
the phase relation of transversal modes. The extended S-matrix S̃ is the solution of
a system of linear equations originating from wave matching conditions of scattering
states. The matrix of interest, S-matrix S is a submatrix of this extended S-matrix
S̃, which takes not only open modes into account, but also evanescent ones. In general
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3. Universal S-matrix correlations in topological insulators

it is crucial to compute first the extended S-matrix and then to extract the S-matrix
S [98–103]. However, changing the phase of an evanescent transversal mode is only
influencing S̃ elements depending on this particular mode. For this reason it is sufficient
to only intervene in the open transversal modes of Kwant. As pointed out in sec. 2.3.2,
the applied phase correction for Hamiltonians quadratic in momentum is accurate as
long as transversal modes at different energies are not connected by physical relevant
phases. Therefore, we will concentrate now on open transversal modes with the focus
on changes in phases.

In Fig. 3.4 the phases φ(. . . ) of ψ↑,E,n(y) are computed. Panel (a) and (b) illustrate
the phases separated in electron and hole band contributions of the edge state n = 1 for
seven energies. Both figures illustrate that no continuous change in phases are appearing.
Solely when rising the energy to E = 13 meV, an abrupt shift is visible in (a) and (b).
Considering the first bulk mode, n = 2 the electron and hole contributions are plotted in
(c) and (d). Thereby no changes of phases are visible. To conclude, no continuous phase
changes are present, when considering only energies in the bandgab (|E| ≤ 10 meV) as
we will assume in the TI leads later, not even abrupt changes are observable. It can
therefore be followed, that the phase correction applied for the 2DEG in sec. 2.3.2 and
2.3.3 is utilizable also for TI leads.
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3.1. Topological insulator waveguide
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Figure 3.4: The phases φ of transversal modes ψ↑,E,n are studied for n ∈ {1, 2} and
varying energy. Panel (a) and (b) illustrate the phase of edge states (n = 1) whereby a
separation in electron (a) and hole distributions (b) are made. For the first bulk mode
in the conduction band (n = 2) in (c) and (d) the phases are plotted, too. Neither for
edge states nor the first bulk mode continuous phase changes appear.
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3. Universal S-matrix correlations in topological insulators

3.2. Current-current correlation

The formalism discussed in Ref. [23] (and revisited in sec. 2.1) is practicable for theore-
tical considerations and originates from investigations for photon detection [1], however
an experimental realization to measure this observable is challenging in the present
context of electron quantum optics (EQO). The inclusion of the Fermi sea is reasonable
and an orientation towards time-dependent current measurements, too. In the framework
of EQO, Ref. [87] established an electron coherence formalism for one-dimensional edge
states. It was further developed and applied for quantum Hall edge states in quantum
point contact (QPC) setups [91, 92, 104–106]. Here we will adapt this formalism to
energy-dependent S-matrices and four open modes, N = 4 such that it is applicable for
chaotic systems with one-dimensional edge states.

An incoming wavepacket in channel i ∈ [1, 4] with a normalized waveform φi(E) is
obtained by means of the creation operator â†i by

|φi〉 =

∫
dE φi(E) â†i (E) |F 〉µ, (3.14)

while the Fermi sea is given by |F 〉µ at the chemical potential µ and the creation and
annihilation operators fulfill the anticommutation relations for fermions,

{â†i (E), âj(E
′)} = δij δ(E − E ′), {â†i (E), â†j(E

′)} = {âi(E), âj(E
′)} = 0. (3.15)

The fermionic field operator Ψ̂i(x, t) annihilates one electron at location x and time t,

Ψ̂i(x, t) =
1√
h v

∫
dε ei

ε
h

(x
v
−t) âi(ε), (3.16)

with v being the constant velocity of the edge state. In the following we neglect the
Coulomb interaction as also done in sec. 2.1. The current is given by

Îi(x, t) = −evΨ̂†i (x, t)Ψ̂i(x, t) (3.17)

and the first order electron (hole) coherence functions read [105]

Ge
i (t, t

′) = 〈φi|Ψ̂†i (0, t′)Ψ̂i(0, t)|φi〉 = 〈Ψ̂†i (0, t′)Ψ̂i(0, t)〉, (3.18)

Gh
i (t, t

′) = 〈Ψ̂i(0, t
′)Ψ̂†i (0, t)〉. (3.19)

To proceed we fix the setup parameters for our purposes: The direct connection between
location x and time t enables us to evaluate all operators at x = 0. With N = 4 open
in- and outgoing channels and incoming wavepackets in i = 1, 2, we can write the
annihilation operators as

â1̃(E)
â2̃(E)
â3̃(E)
â4̃(E)

 =


S1,1(E) S1,2(E) S1,3(E) S1,4(E)
S2,1(E) S2,2(E) S2,3(E) S2,4(E)
S3,1(E) S3,2(E) S3,3(E) S3,4(E)
S4,1(E) S4,2(E) S4,3(E) S4,4(E)



â1(E)
â2(E)
â3(E)
â4(E)

 (3.20)
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3.2. Current-current correlation

with âĩ (i ∈ [1, 4]) representing operators in the outgoing channel ĩ. The fermionic field
operator in the outgoing channel 3̃ can then be rewritten in terms of the annihilation
operators in the incoming channels:

Ψ̂3̃(t) =
1√
h v

∫
dε e−i

εt
h

4∑
i=1

S3,i(ε)âi(ε). (3.21)

With Eq. (3.17) the current operator in the outgoing channel follows

Î3̃(t) = −ev Ψ̂†
3̃
(x = 0, t)Ψ̂3̃(x = 0, t)

= −ev
4∑

i,j=1

Ψ̂†
3̃,i

(t)Ψ̂3̃,j(t),
(3.22)

where

Ψ̂3̃,i(t) =
1√
h v

∫
dε e−i

εt
h S3,i(ε)âi(ε). (3.23)

Taking into account δÎ = Î − 〈Î〉 the current-current correlation reads

σi,j(t, t
′) = 〈δÎi(t)δÎj(t′)〉 = 〈Îi(t)Îj(t′)〉 − 〈Îi(t)〉 〈Îj(t′)〉. (3.24)

When inserting Eq. (3.22) into Eq. (3.24) we obtain

σ3̃,4̃(t, t′) = e2v2

4∑
i,j=1

〈
δΨ̂†

3̃,i
(t) δΨ̂4̃,j(t

′)
〉
,

+ e2v2Q(t, t′)

(3.25)

Q(t, t′) =
4∑

i,j=1
j 6=i

〈
Ψ̂†

3̃,i
(t) Ψ̂3̃,j(t)Ψ̂

†
4̃,j

(t′) Ψ̂4̃,i(t
′)
〉
, (3.26)

whereby some summands in Q(t, t′) vanished (computed in app. B.1.1). In Q(t, t′) not
only coherences due to the wavepacket interference contribute, but also Fermi sea effects.
In app. B.1.2 we separate these contributions. They can be split into contributions of
Hanbury-Brown-Twist (HBT) type and into one Hong-Ou-Mandel (HOM) type,
schematically depicted in Fig. 3.5 in analogue to Ref. [92, p. 150]:

∆Q(t, t′) = ∆QHBT,1(t, t′) + ∆QHBT,2(t, t′) + ∆QHOM(t, t′). (3.27)

In app. B.1.3 we compute the averaged quantity

∆Q̄HOM =
2

TM

∫ ∞
−∞

dτ

∫ TM

0

dt̄∆QHOM(t̄+ τ, t̄− τ) (3.28)
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3. Universal S-matrix correlations in topological insulators

Fermi sea

Fermi sea
Fermi sea

source

(a)

Fermi sea

Fermi sea
source

source

(b)

Figure 3.5: Panel (a) illustrates the Hanbury-Brown-Twist (HBT) geometry, in which
the incoming wavepacket only interferes with the Fermi sea. (b) In the HOM geometry
two incoming wavepackets are entering the setup, whereby two-particle correlations of
both sources and Fermi sea contributions are present. A separation of these yields
Eq. (3.27).

with the time duration of the measurement given by TM explicitly. Here we concentrate
on the result given by

∆Q̄HOM = −16π2

TM
Re
[ ∫

dEdE ′ φ1(E)φ2(E ′)φ∗1(E ′)φ∗2(E)·

S∗3,1(E)S4,1(E ′)S∗4,2(E ′)S3,2(E)
]
.

(3.29)

With averaging over an ensemble (e.g. disorder) we recognize the Dx correlator:

∆Q̄HOM = −16π2

TM
Re
[ ∫

dEdE ′ φ1(E)φ2(E ′)φ∗1(E ′)φ∗2(E) · Dx

(
E − E ′

2

)]
. (3.30)

This equation is the final goal of linking the current-current correlation to the four-
point correlations investigated in chap. 1. In comparison to Eq. (2.13), only marginal
differences appear. Therefore the behavior of exponential tails when increasing the dwell
time to wavepacket width τD/τs is expected, too. In sec. 3.3.3 we will address this in
more detail.
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3.3. Implementation of TI setups with universal correlations

3.3. Implementation of TI setups with universal
correlations

The phase correction of TI edge states in the Kwant code established in sec. 3.1 paves
the way to transfer the achievements of trivial TI states in sec. 2.3 now to S-matrix
correlations in TIs. First we will focus on the S-matrix correlators and whereby start
with one spin block of the BHZ Hamiltonian. Afterwards we introduce spin-orbit
coupling in sec. 3.3.2. Finally, in sec. 3.3.3 the impact of these correlators on the current-
current correlation will be established.

3.3.1. Concentrating on one spin subblock

To start with, we focus on a subblock of the BHZ Hamiltonian, namely the Hamiltonian
ĥ2×2(k̂) = ĥTI(k̂) from Eq. (3.2), living in one spin-subspace |E1, ↑〉 and |H1, ↑〉. It is
implemented for the four leads (with gate voltage C = 0), sketched red in Fig. 3.6(a)
and the cavity (blue) obeys the 2DEG Hamiltonian

ĥm =
~2

2m∗
k̂

2
(

1 0
0 −1

)
+ Vg

(
1 0
0 1

)
(3.31)

with Vg = −47 meV and ~2
2m∗

= −(B + D) = 1198 meVnm2 adapted to the effective
mass of the |E1, ↑〉 TI-band. The time-reversal symmetry with respect to T ,

T = iσyK =

(
0 1
−1 0

)
K

is thereby fulfilled for ĥm and violated by ĥTI . It is important to note that this does
not imply the S-matrix to obey the statistic of CUE. The interface lead-cavity with
two different Hamiltonians generates additional non-chaotic scattering. Here we will
only observe the statistical result and later focus on the explanation. Instead of using
the complex formalism in Ref. [76] to compare the S-matrix elements, we generate 106

matrices of size N × N within the A symmetry class (representing the CUE ensemble
class [21, 22]) using Kwant [72, 107, 108]. The distribution of absolute values of the S-
matrix in Figs. 3.6 (b)-(c) plotted in blue shows promising consistency comparing with
the RMT distribution of CUE (orange) and therefore indicates chaos in the cavity. As
illustrated in Figs. 3.6(d)-(e), the uniform distribution of the angles is governed by RMT
and numerics.

In the next step we produce the two- and four-point correlators of interest. The
vanishing imaginary part of Dx(∆) and C=(∆) is a property which was explained
in Eq. (2.45) in sec. 2.2.5 and applies also here. The correlators are illustrated in
Fig. 3.7 (black dots) with mean level density d = ~2/(m∗A) for a cavity of area A.
No semiclassical prediction for these setups are available, such that we compare the
data to the semiclassical predictions (blue) of 1D Hamiltonians quadratic in momentum
in the CUE class established in sec. 2.2.5. The known C2 correlator from Ref. [60] in
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3. Universal S-matrix correlations in topological insulators

(a)

(b) (c)

(d) (e)

Figure 3.6: (a) The system, consisting of four TI leads (red) and one metallic cavity
(blue) has N = 4 number of edge modes (black arrows). The statistics of |Sb,a| (blue) in
(b) and (c) illustrate consistency to RMT statistics in the CUE class of 106 matrices of
size 4× 4 (orange) [72, 107, 108]. The uniform distributions of angles φ(Sb,a) in (d) and
(e) are in agreement to RMT, too.
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3.3. Implementation of TI setups with universal correlations

Eq. (2.37) and the results of the four-point correlators in Eqs. (2.52)-(2.54) are used.
The dwell time is estimated in the following way: The number of open modes is set to
N = 4 and the width of the leads are adapted to the effective penetration depth of the
TI edge states in the leads. Due to our preliminary work in sec. 2.2.5 and sec. 2.3.3 we
are aware of the fact that the S-matrix correlators are applicable for low number of open
modes N . Therefore a dwell time in units of the passing time τpass = L/vg is expected to
be τD,m/τpass ≈ 11. The comparison of the different correlators gives then an important
information, shown in Fig. 3.7: Even when the effective lead widths and number of open
modes are adjusted to correlator formulas (plotted blue), the correlators for the system
with TI leads (in black) are notably different to the correlators for metallic leads by
narrower widths. This corresponds to strongly increased dwell times when replacing a
metallic lead by the TI lead. A rough estimation of the dwell time for the TI setup can be
achieved when fitting C2(∆) with N = 4 to the data. We gain the adapted form (plotted
in red) in Fig. 3.7(a), (b) with the dwell time given by τD/τpass = 80− 93. The ratio of
this dwell time and the dwell time expected for metallic leads is thus τD/τD,m ≈ 7− 8.5,
demonstrating the significant increased survival probability in the cavity when TI leads
are attached. This derivation is of course only valid, if the fundamental C2 form in case
of TI leads can be approximated by Eq. (2.37). The correlator shapes with TI leads do
not differ from previously studied ones. However, the peaks around energy difference
∆ = 0 are strongly pronounced for the real parts of C2, B= and Dx and mark the
distinction between the two setups besides dwell time differences.

To proceed, we compute two-point and four-point correlators of a slightly deformed
setup: In comparison to Fig. 3.6(a) we extend the waveguides (with ĥm) before connect-
ing them to the TI leads as illustrated in the inset of Fig. 3.8(a). The comparison of
the S-matrix correlators indicate that usually no difference between setups with long
or short leads are noticeable. Here, we illustrate the alignment of B=(∆) in Fig. 3.8(a),
(b) and of Dx(∆) in Fig. 3.8(d) explicitly. The misalignment of C=(∆) in Fig. 3.8(c)
originates from the unconverged correlator for short leads, that experiences drastic
oscillations even for big energy differences ∆. We can conclude that the coupling of
the TI edge states to the waveguide states (with about 17 open modes) in the metallic
regime is as good as to the cavity itself. The transmission from the metallic waveguide
to the TI lead is 1 e2

h
and the reflection 17 e2

h
.

With this information we can draw an important conclusion: The substantial difference
in the number of open modes is forcing an increase of the dwell time. An incoming
electron from the TI lead enters the metallic waveguide and proceeds into the cavity. The
reduced probability to leave the system due to the mode mismatch in the TI and metallic
waveguides is then leading to the enhanced dwell time and therefore the reduced widths
in S-matrix correlators observable in Fig. 3.7. This points out an significant difference
to the previous studied cavity in chap. 1. Replacing in this setting the TI leads by the
same Hamiltonian as in the cavity leads to more open modes and a decreased dwell time.
For τE � τD ergodicity is lost and universal S-matrix correlators would vanish.
From Fig. 3.8 and analysis of S-matrix elements we can deduce further information. The
overlap of evanescent modes between different leads is marginal, otherwise the waveguide
extension would result at least in different magnitudes of the S-matrix correlators. Thus
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Figure 3.7: The system with TI leads illustrated in Fig. 3.6(a) has universal S-matrix
correlators. The real part of C2(∆) a sharp peak around ∆ = 0 (black) in (a), whereby
the imaginary part (black) has a more smooth form visible in (b). The semiclassical
prediction for a setup with metallic leads, N = 4 and lead widths similar to the
penetration depth of the TI edge state are plotted in blue. Adapting the dwell time
in the semiclassical formula for N = 4 is plotted in red. The dwell time ratio of the red
and blue function yields τD/τD,m ≈ 7 − 8.5. For B=(∆) (black) in (c), (d), in which
the real part contains also a strong gradient around ∆ = 0, the expectation for metallic
leads (blue) are again corresponding to lower dwell times. In case of C=(∆) in (e) and
DX(∆) in (f) the same holds. Dx(∆) is again containing a strong gradient around ∆ = 0
and in addition more fluctuations than (a)-(e).
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3.3. Implementation of TI setups with universal correlations

the S-matrix of the whole system St can be approximated by a composition of separate
S-matrices, namely the S-matrix Swg of the waveguide interface ĥTI , ĥm and the S-
matrix of the chaotic, metallic cavity Sc, such that multiple scattering is also taken into
account [68]. The result describing one element of St consists of summands with different
orders in Sc and several Swg elements. In principle thereby the statistic of the S-matrix
St can be approximated. The S-matrix statistics of St in Fig. 3.6 and the correlators
in Fig. 3.7 however indicate multiple scattering, such that concentration on only first
order scattering events are not sufficient enough. Depending on the detailed amplitudes
in Swg, the S-matrix St can obey the statistical properties of CUE, however it is not
valid in general2.
When considering two-point S-matrix correlators approximated by means of this compo-
sition, averaging over mean energy Ē is building a compound of the form
〈Swg,ba(Ē + ∆)Sc,dc(Ē + ∆)S∗wg,fe(Ē −∆)S∗c,hg(Ē −∆)〉. Although the S-matrices Swg
are not significantly energy-dependent inside an energy range in which the number of
open modes is constant, in the whole energy range relevant changes in Swg appear. This
prohibits a separation into products of the form 〈Swg,ba(Ē + ∆)S∗wg,fe(Ē −∆)〉 and
〈Sc,dc(Ē + ∆)S∗c,hg(Ē −∆)〉. The elements of Sc obey the RMT statistics of COE and
for (h, g) = (d, c) the correlator will have the form of S-matrix correlators investigated
in chap. 2. The separation would provide us with the benefit of partially known depen-
dencies, however several higher orders of S-matrix correlators with different permutations
of channels are appearing, too.

2A pure addition or multiplication of two elements of different matrices (each in the CUE) is not
resulting in an CUE statistic.
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Figure 3.8: A metallic waveguide between TI leads and the metallic cavity is added. The
inset of (a) is illustrating that. The difference of the appearing B=(∆) in comparison to
the system of Fig. 3.6(a) is thereby marginal. However, for C=(∆) panel (c) illustrates
a significant difference. The offdiagonal correlator Dx(∆) in (d) is again coinciding for
both system forms.
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3.3. Implementation of TI setups with universal correlations

Replacing the 2DEG Hamiltonian ĥm by ĥTI with a gate voltage of C = −47 meV in
the cavity, the entire system is violating time-reversal symmetry. The correlators (black)
have similar forms in Fig. 3.9, whereby for comparison reasons we replot the results from
Fig. 3.8 now in blue. The reflection and transmissions between a TI lead with C = 0
(with one open mode) and a lead with C = −47 meV (around 17 open modes) are
equivalent to the previous studied waveguide with ĥm. Therefore, the decreased widths
are not originating from increased mode mismatches but most likely from changed forms
due to violating time-reversal symmetry and/or the usage of ĥTI in the cavity. This
is supported by the following observation: Dx(∆) shows a very strong agreement for a
metallic cavity with the correlator of a TI cavity. In contrast to this the other correlators
are different for the two types of Hamiltonians in the cavity. The mode mismatch would
lead to equivalent behaving for all correlators and is therefore not responsible for this
effect.

Furthermore we compare the chaotic setup consisting purely of ĥTI with RMT predic-
tions of the CUE class in Fig. 3.10 [72,107,108]. Thereby we exclude the illustration of
uniform distributed phases of the S-matrix and concentrate on the absolute values. As
illustrated in Fig. 3.10(a)-(d), the agreement between both methods is convincing for all
S-matrix elements.
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Figure 3.9: Replacing the Hamiltonian in the cavity from ĥm to ĥTI is affecting the two
and four-point correlators slightly. In blue the correlators of a pure metallic cavity are
shown (reprinted from Fig. 3.8), while the data plotted in black represents the pure TI
based cavity. It is noticeable that Dx(∆) is the least affected by this change.
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(a) (b)

(c) (d)

Figure 3.10: A chaotic cavity represented purely by ĥTI produces S-matrix statistics in
agreement with RMT of the CUE, whereby the absolute values are illustrated and the
uniform distribution of phases are not depicted.
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3. Universal S-matrix correlations in topological insulators

The experimental realization of setups depicted in the inset of Fig. 3.8 are challenging.
More convenient is a setup with leads as broad as the scattering area itself. For this
purpose we tune the broadness of the leads from Wlead/Wsys = 15% (Fig. 3.8) to 80%
with an intermediate step of 50%. In the four lead setup with a width of 100%, the
direct paths between two neighboring leads are dominating such that ergodicity is lost.
In Fig. 3.11 the two-point correlator and the four-point correlators experience changes
when the leads are broadened. In black we replot the data from Fig. 3.10, such that we
can compare the three setups directly. An overall characteristic for all correlators is not
visible, which is why we will discuss the differences for each correlator separately. The
real part of C2(∆) experiences an reduced width for leads with increased broadness in
the same way as the real part of B=(∆). The amplitudes at ∆ = 0 are almost equivalent
for the three setups. For correlators obeying the semiclassical estimations received in
chap. 2 this corresponds to an increased dwell time for a lead broadness of 80% in
comparison to the setup with Wlead/Wsys = 50% and 15%. The data in Figs. 3.11(b)
and (d) however is not explicit enough to fortify this conclusion. The widths are reduced
when the leads are broadened but the amplitudes are simultaneously decreased. An
adaption of the amplitudes indicate no significant difference in the widths. The C=(∆)
experience different amplitudes but equivalent widths, too. The width of Dx(∆) is
certainly reduced for the setups Wlead/Wsys = 50% and 80%, while the amplitude at
∆ = 0 is almost stable under broadness changes. The data in Fig. 3.11 is not explicit
enough to interpret changes in the dwell time. However tuning the lead broadness results
in significant differences in the correlators, although the leads still consist of only open
edge states with the same penetration depth.

Furthermore, the statistic of S-matrix absolute values changes when the ratio of widths
is increased from 50% to 80%. As visible in Fig. 3.12 the agreement with RMT statistics
of the CUE is partly lost. The misalignment to CUE is marginal for |s1,i| with i ∈
{1, 2, 3}, while indeed |s1,4| experiences an significant difference. The lead width is
already broad enough to generate direct paths between neighboring lead modes, such
that the statistic is modified. The statistic of |s1,3| (connecting mode 3 of the second
neighboring lead to mode 1) is unchanged because the in- and outgoing modes are more
separated, as illustrated in Fig. 3.11(d). This argument is fortified by the analogue
statistic of |s4,1| in comparison to |s1,4|.

3.3.2. Introducing spin-orbit coupling

The spin degree of freedom was not yet implemented, but certainly gives further inter-
esting phenomena to investigate. We introduce this degree of freedom by the full 2D
BHZ-Hamiltonian [90],

ĤBHZ =

 ĥTI(k̂)
0 −∆
∆ 0

0 ∆
−∆ 0

ĥ∗TI(−k̂)

 , (3.32)
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Figure 3.11: Increasing the width ratio Wlead/Wsys step wise from 15%, 50% to 80%
changes the form of the relevant correlators. An overall agreement to higher dwell times
(corresponding to decreased widths) for Wlead/Wsys = 80% is only visible for Re[C2(∆)],
Re[B=(∆)] and Dx(∆). It is not fortified by the other correlators.
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(a) (b)

(c) (d)

Figure 3.12: In contrast to the Wlead/Wsys = 50% or 15% setups the statistic of |Sb,a|
for the setup with Wlead/Wsys = 80% is not given by CUE. (a)-(c) illustrate marginal
misalignments to RMT, however the statistics in panel (d) are significantly different.
Rising probabilities of direct paths between the modes 1 and 4 of two neighboring leads
are the explanation of this characteristic, illustrated in the inset of (d).
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3.3. Implementation of TI setups with universal correlations

that follows from Eq. (3.1) in the basis of the electron and hole bands |E1, ↑>, |H1, ↑>,
|E1, ↓> and |H1, ↓>. The default Dresselhaus spin-orbit coupling strength is set to
1.6 meV in the cavity and zero in the leads [90]. For a waveguide and an energy in the
band gab, E ∈ [−10, 10] meV two incoming edge states with opposite spin are arising,
as illustrated in Fig. 3.3. Thereby the two edge states are propagating at opposite edges
of the waveguide into (out of) the central system. The extra spin degree of freedom
enables us to reduce the number of leads from four to two and still remain with four
open modes. The BHZ-Hamiltonian only fulfills time-reversal symmetry with T 2 = −1,
such that AII is the tenfold classification of the Hamitlonian and the S-matrix obeys
ST = −S [21, 109]. The corresponding RMT ensemble is called circular symplectic
ensemble (CSE).

In Fig. 3.13 the statistics of the setup with two leads are illustrated. The system shape
is again given by Fig. 3.6 (a) with Wlead/Wsys = 15%, however only two leads on opposite
sides are present. As pointed out in sec. 3.1 for HBHZ forbidden backscattering is present.
In panel (a), a small discrepancy of the numerical data (Sii = 0) is shown. The averaged
value of 〈|S11|〉 = 10−4 differs due to a necessary adjustment: The time-reversed partner
states are energetically degenerate, such that Kwant chooses any arbitrary superposition
of these states as the incoming and outgoing modes and the symmetry class of the S-
matrix , ST = −S is not visible anymore. Therefore we introduce a small shift κ of the
spin up Hamiltonian block in comparison to the spin down such that the chosen basis
is given by time-reversed partner states:

ĤBHZ → ĤBHZ + κ


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (3.33)

This slightly broken time-reversal symmetry is then responsible for the non-vanishing
back reflection Sii 6= 0. Statistics of the off-diagonal elements |Si,j| in Fig. 3.13 (b)-(d)
are neither coinciding with the CSE ensemble nor with CUE, however phases are mostly
equally distributed again. When increasing the spin-orbit coupling by a factor of two, no
significant changes in the S-matrices are observable, such that the dwell time is expected
to be high enough to provide spin mixing.

Regarding the S-matrix correlators, Fig. 3.14 illustrates these for two lead widths,
Wlead/Wsys = 15% and 80%. Re[C2(∆)] and Re[B=(∆)] in (a) and (c) of Fig. 3.14
show a width decrease when the lead width is increased. The other correlators are not
showing this width decrease. The same mechanism appeared for one spin block, where
Re[C2(∆)] and Re[B=(∆)] experience a width decrease (Fig. 3.11). It is conspicuous
for the cavity with spin-orbit coupling that Re[B=(∆)] and Dx(∆) experience a delta-
like form, such that a determination of the precise shape is not possible even when
reducing ∆/d drastically. This effect is happening already for a width ratio Wlead/Wsys

for which the setup of Fig. 3.11 still experiences at detectable shape for both correlators.
From Fig. 3.11 (d) we know, that the amplitude of Im[B=(∆)] reduces for increasing
lead widths. Now, in Fig. 3.14 (d) we find again the same mechanism but with higher
intensity. Thus the amplitude is reduced to the level of noise, such that no clear signature
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3. Universal S-matrix correlations in topological insulators

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: In case of the setup of Fig. 3.6 (a) but with only two leads on opposite
sides, the extra spin degree of freedom generates four in-and outgoing modes. Absolute
values of Si,j are just coinciding roughly with RMT statistics of the CSE. The non-
vanishing back reflection, S1,1 6= 0 results from numerical necessary adjustments. The
other distributions share the characteristic of nearly equivalent averages 〈|Si,j|〉, however
significant difference to the CSE is noticeable. The statistic of phases are represented
by illustrations (e) and (f). Both absolute values and phases are hints, that direct paths
are perturbing the ergodicity.
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Figure 3.14: For a billiard-shaped setup with two leads, each hosting two edge states the
lead width Wlead is varied. The delta-like shape of Re[B=(∆)] and Dx(∆) for both lead
widths is marking a significant difference to Fig. 3.11(c) and (f). Furthermore no clear
shape of Im[B=(∆)] is visible. This can be caused by a reduced amplitude to noise ratio.
The reduced amount of accessible outgoing modes due to forbidden backscattering can
be a reason for the reduced widths of Re[B=(∆)] and Dx(∆).
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3. Universal S-matrix correlations in topological insulators

is visible. One possible explanation for the stronger width decrease in comparison to the
four lead setup is based on the time-reversal symmetry: In the setup consisting of one
spin block, the time-reversal symmetry is not fulfilled and therefore the backscattering
is non-zero. Each incoming plane wave can exit the cavity in all outgoing modes. In
contrast, with the application of both spin blocks, the time-reversal symmetry squares
to −1 and backreflection is forbidden (or drastically reduced in the numerics). Each
incoming mode has a reduced number of possible modes to exit, namely 3. This can
be a reason for increase dwell times. Why only Re[B=(∆)] and Dx(∆) are experiencing
this effect is one open question, here, more investigations in this direction are necessary
to support this argument.

3.3.3. Implications for current-current correlations

In the previous section we were able to determine Dx(∆) for several setup configurations
in non-trivial TIs. To study the impact of this on the current-current correlation depicted
in sec. 3.2, we repeat Eq. (3.30):

∆Q̄HOM = −16π2

TM
Re

[∫∫ ∞
−∞

dEdE ′ φ1(E)φ2(E ′)φ∗1(E ′)φ∗2(E) Dx

(
E − E ′

2

)]
.

The formalism introduced in sec. 3.2 is intended for four lead setups, whereby each lead
hosts one edge state. When neglecting interactions between particles as done in the
overall thesis, the adaption to setups with two leads and still four open modes is only
influencing the HBT contributions and not ∆Q̄HOM. Assuming Gaussian wavepackets,

φ1(t) =
1

4
√
π
√
τs
e
− (t−τ)2

2τ2s ,

φ2(t) =
1

4
√
π
√
τs
e
− t2

2τ2s ,

(3.34)

whereby the time delay τ between both wavepackets is included in φ1 and the width of
both packets is given by τs. For an off-diagonal correlator given by

Dx(∆) =
1

43
(

1 +
4∆2τ2D

~2

) , (3.35)

as expected for trivial TIs with N = 4 open modes, the resulting current-current
correlation of HOM type is illustrated in Fig. 3.15. In the same manner as the probability
in Eq. (2.13) experiences a transition from a Gaussian shape to a form with exponential
tails when tuning the ratio τD/τs from 0.5 to 5. The Dx(∆) correlator for non-trivial TIs
shares this Lorentzian form in principle, however we observe an increased dwell time τD
(corresponding to reduced widths), such that the ratio τD/τs is also increased and will
therefore result in a more flat current-current correlation ∆Q̄HOM as depicted in blue.
For chaotic cavities with TI edge states as in-and outgoing waveguides, ∆Q̄HOM shows
an time delay τ independent form over a huge τ range. Therefore the signal to noise
ratio is drastically reduced, however even at big time delays, τ � τs an effect on ∆Q̄HOM

is visible.
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Figure 3.15: The current-current correlation of HOM-type ∆Q̄HOM depends strongly on
the ratio of dwell time and width of the incoming wavepacket τD/τs, in the same way as
the probability studied in Eq. (2.13) of sec. 2.1 does [23]. For Gaussian wavepackets, the
shape transforms from a Gaussian form to a form with exponential tails when tuning
τD/τs = 0.5 → 5, whereby an exponential fit (dashed pink line) is illustrating this. For
non-trivial TIs the highly reduced width of Dx(∆) is then influencing the ratio to even
higher values, such that the shape is flattened as illustrated in blue.

3.4. Summary and outline

To numerically study universal S-matrix correlations of non-trivial TIs in Kwant a phase
correction of the in-and outgoing lead modes is essential. Therefore we started with the
analytical solution of the corresponding Schrödinger equation of an infinite waveguide
lead. The solution achieved for edge and bulk modes of the BHZ Hamiltonian displays
the expected Kramers degeneracy and forbidden backscattering due to time-reversal
symme-try with T 2 = −1. An abrupt phase change of edge modes when passing the
threshold of the band gap is observed. However, no continuous phase changes are
identified when considering energies in the band gab. This enables us to apply the
same phase correction as investigated in chap. 1 for 2DEG setups.

The formalism of probabilities adapted to study the electronic HOM effect is rooted
in previous investigations in optics, however for the electronic counterpart it is more
convenient to use a formalism based on current operators. The applied formalism
in the second quantization involves the Fermi sea and comprises an experimentally
feasible observable. We extend this electron coherence formalism to energy-dependent
S-matrices and four open modes. The resulting current-current correlation can be
separated in Hanbury-Brown-Twist and Hong-Ou-Mandel type of correlations. The
former consists of wavepacket-Fermi sea interference terms and the latter originates
from interferences of two wavepackets, thus encoding indistinguishability correlation in
the spirit of the optical HOM effect.
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3. Universal S-matrix correlations in topological insulators

To proceed, we computed numerical S-matrix correlations for one spin block of the
BHZ Hamiltonian using the tight-binding method. The system consists of four leads,
each hosting one helical edge state, and a billiard-shaped cavity intersecting these leads.
The correlators show similar forms as in case of a 2DEG model, however a reduced
width is observable. A reduced width of the correlators is also partially accounted for
by broadened leads. The alignment of the phase and absolute values of the S-matrix
to the CUE ensemble is given for different setup configurations. When implementing
the second spin block, the Dresselhaus spin-orbit coupling is also included. The arising
two modes for each lead enable us to reduce the number of leads to two. The achieved
S-matrix distribution of phase and absolute values are not in accordance to CSE, due
to the scattering at the lead-cavity interfaces and direct paths disturbing this statistic.
Only Dx(∆) is contributing to the current-current correlation ∆Q̄HOM and this correlator
shows a delta-like form. As a consequence, ∆Q̄HOM exhibits a form, almost independent
on the time delay between the two wavepackets entering the chaotic cavity.

In the end, we want to give a short outlook on reasonable investigations in this
context: The current-current correlation is experimentally accessible and extendable to
temperature dependent phenomena or higher number of open modes. The proceeding to
2D in-and outgoing lead channels would give us the benefit of studying 2DEG setups or
TI based setups with open bulk and edge modes. The most striking task is the theoretical
development of S-matrix correlators for the numerical setups. For S-matrices in CSE,
previous studies pave the way to study S-matrix correlators semiclassically [110–112].
However, the additional scattering occurring at the lead-cavity interfaces provides more
complex phenomena. This also applies to the energy-dependent S-matrix correlators in
the Heisenberg approach.
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4. The quantum corral

4.1. Electron confinement a copper surface

To investigate the different perspectives and questions of the quantum corral we start in
sec. 4.2 with the description of the default experimental situation, including the STM
and AFM properties of major importance. Afterwards we introduce a simple model, the
hard wall model, and solve it analytically in subsec. 4.3.2. The agreement between this
model and the STM measurements from 1993 as well as the experimental results of Prof.
Giessibls group is known [36,44,51]. A more detailed description can be made when using
multiple scattering formalism and adjusting the scattering phase of an individual iron
atom based on STM data. This adjustment becomes essential for understanding the level
broadening mechanism or the LDOS for more complex corral forms [113–115]. Instead of
changing the quantum corral form, adding an extra adatom into the corral is increasing
the complexity. In sec. 4.4 we learn that also in case of extra adatoms, the inclusion of
the scattering phases is relevant. Implementing this allows for correct predictions for all
adatom positions tested in the quantum corral, but instead of an analytical approach we
applied a tight-binding simulation [72]. Furthermore we will show that the symmetry
of the Cu (111) bulk is directly influencing the first radial maxima of the LDOS around
Fermi energy. The original quantum corral creates resonant states with a wave length
of λF = 3 nm on a diameter of 14 nm, it seems reasonable to consider these mesoscopic
states as orbitals of an artificial atom. Starting from that, Ref. [47] studied bonding
between two corrals of multiple shapes made up by CO molecules instead of Fe atoms.
In contrast to that, we will investigate the force characteristic of the mesoscopic wave
function to the tip orbital in subsec. 4.5.1 using a quasi-classical ansatz for the Coulomb
interaction. The fast decay of the force measured in experiments is conflicting with the
theoretically achieved slow decaying Coulomb force [51]. The hypothesis of a chemical
bonding between the artificial atom eigenstate and the tip orbital is therefore a more
convincing approach, although this model needs a more in-depth analysis. The results
of this analysis as presented here follows mainly our manuscript [51]1.

1©[2021] American Association for the Advancement of Science.
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Figure 4.1: Schematic illustration of the experimental setup. In top of the Cu atoms
(gray), the 48 Fe adatoms (blue) produce a standing wave pattern (green) of the
electronic probability density interacting with the AFM tip.

4.2. Experimental setup

All the experimental data we will discuss in detail in the following sections were obtained
in the group of Prof. Giessibl [51]. They used Cu (111) bulk material and on top they
arranged 48 iron adatoms in circular form with the STM tip [35, 116] as sketched in
Fig. 4.1. The radius R = 7.13 nm of the emerging form is chosen from the original
experiment in Ref. [36]. All data was measured in ultrahigh vacuum and at a low
temperature of T = 5.7 K with a combined STM/AFM. To understand and interpret
the measured STM (AFM) data we first discuss some fundamental properties of these
procedures.

4.2.1. Fundamental properties of STM and AFM measurements

The scanning tunneling microscope (STM) receives information about the surface struc-
ture of an electrically conducting substrate by the tunneling current [117]. For this
purpose a bias voltage V is applied, whereby electrons from the tip can tunnel through
the vacuum potential barrier to an unoccupied state of the substrate [44,118] or vice versa
for a negative bias voltage. For small temperatures and a point-like tip, the measured
current I(r) can be written as

I(r, eV ) ∝
∫ eV

0

LDOStip(ε)LDOSsurf(r, ε) dε, (4.1)

with the local density of states of the surface (tip) named LDOSsurf (LDOStip) and e
being the elementary charge. For small bias voltages the LDOS of the tip can usually
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be assumed to be constant in energy, such that the current is direct proportional to the
integral of the LDOSsurf,

I(r, eV ) ∝
∫ eV

0

LDOSsurf(r, ε) dε. (4.2)

A topographic measurement as used in Ref. [51] is keeping the current constant by
adapting the tip height position via feedback loop. This measurement procedure is
avoiding direct contact with e.g. the adatoms. To explore the level broadening of
discrete eigenenergies of the surface it is common to study the conductance dI/dV for
varying V ,

dI

dV
(r, eV ) ∝ LDOSsurf(r, eV ). (4.3)

Another used measurement procedure is the non-contact atomic force microscope
(AFM)2. In contrast to the STM no current is needed such that the substrate can be
isolating. A cantilever with stiffness k is oscillating in z-direction with a given frequency
f0 and amplitude A. If any external force F is acting on the cantilever tip, the frequency
will change depending on the z-component of the force. This frequency shift ∆f can be
estimated by first order perturbation theory: [121]

∆f(r) = − f0

πkA2

∫ A

−A

Fz(z − q) q√
A2 − q2

dq = f − f0. (4.4)

Normally the tip was terminated by metallic atoms, e.g Cu. In 2009 L. Gross et al. used
a CO molecule to terminate the tip, which enhanced the resolution significantly [122]
due to the locally well defined termination of the tip [123]. Both tip types are used
in the experiments of interest here. This information about the AFM and the STM is
necessary and sufficient for upcoming sections but for further details about the STM we
refer to Ref. [124] and for the AFM to Ref. [124,125].

Now knowing the precise experimental configuration, we will investigate the applied
theoretical approximation to describe the quantum corral by the first successfully used
model, the hard wall model.

4.3. Hard wall model

4.3.1. Bandstructure of Cu substrate

To understand the origin of the first theoretical model of the quantum corral, we need to
know the electronic structure of the Cu bulk material. The bandstructure of the Cu (111)
substrate allows for a powerful simplification [126,127]: The Fermi energy is lying in the
band gap for momenta perpendicular to the surface. In this direction, no Bloch states

2Here a self sensing quartz cantilever and a qPlus sensor was used. More details on the experimental
setting can be found in Ref. [51, 119,120].
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are available in a range of [−0.9 eV + EF , EF ]. The arising Shockley surface states3

exhibit exponential decay in the bulk and vacuum direction, meanwhile the motion in
plane can be described by a 2DEG with an effective mass of m∗ = (0.38±0.02)me and a
energy dispersion given by E = ~2

2m∗
k2
‖ − (440± 10) meV [36,118,127,128]. This enables

us to investigate the electronic confinement in the quantum corral by a single particle
description in two dimensions.

4.3.2. Analytical approach

The approach that the boundary of the quantum corral can be mimicked by an infinitely
high potential well in circular form, is resulting in the simplest description of the quantum
corrals [36]. Here we will shortly repeat the analytics of this model with extending the
model to 3D. The time independent Hamiltonian is defined by

H = − ~2

2m∗

[
∂2

∂ρ2
+ ρ−1 ∂

∂ρ
+ ρ−2 ∂

2

∂φ2
+

∂2

∂z2

]
+ V (ρ) + Vz(z) (4.5)

and

V (ρ) =

{
−440 meV for ρ ≤ R

+∞ for ρ > R.
(4.6)

The cylindrical coordinates are chosen such that ρ, φ are the variables in plane of
the copper surface, while z represents the perpendicular direction. The potential in
z-direction is represented by the work function Φ0 = 4.94 eV and the heaviside step
function Θ(z) [129]: Vz(z) = Θ(z)(440 meV + Φ0). Here we already introduced a shifted
energy scale, where the vaccum level lies at +Φ0 instead of 0 and the Fermi energy at
EF = 0 instead of EF = −Φ0. The effective mass in the perpendicular direction is
given by m∗z = me and in plane by a mass of m∗ = 0.38me [127]. The separation ansatz
ψ(ρ, φ, z) = χρ(ρ)χφ(φ)χz(z) for the Schrödinger equation yields:

− ~2

2m∗

[
∂2

∂ρ2
+ ρ−1 ∂

∂ρ
+ ρ−2 ∂

2

∂φ2

]
χρ(ρ)χφ(φ) = (E − E⊥ − V (ρ))χρ(ρ)χφ(φ), (4.7)

− ~2

2mz

∂2

∂z2
χz(z) = (E⊥ − Vz(z))χz(z). (4.8)

The only normalizable solution of Eq. (4.8) for the bound state E⊥ = 0 is

χz(z) =

√
2

λz
e−z/λz

λz =

√
~2

2m∗z(440 meV + Φ0)
= 84.2 pm.

(4.9)

3More detailed information about Shockley surface states can be found in Ref. [118].
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4.3. Hard wall model

The angular part of Eq. (4.7) is solvable by the ansatz

χφ,l(φ) = c1e
ilφ + c2e

−ilφ.

Due to ±l degeneracy, any superposition is possible. We will choose here

χφ,l(φ) =
1√
2π
eilφ

in which l is restricted by the requirement of single-valued functions:

χφ,l(φ) = ψφ,l(φ+ 2π) ⇒ l ∈ Z.

The radial solution of

− ~2

2m∗

[
∂2

∂ρ2
+ ρ−1 ∂

∂ρ
− l2

ρ2

]
χρ(ρ)χφ(φ) = (E − V (ρ))χρ(ρ)χφ(φ)

can be written as

χρ,l(ρ) = cJl(kρ),

k =

√
2m∗(E − V (r))

~2

(4.10)

where Jl(kρ) is the Bessel function of first kind [130]. The singularity of the second
solution, a Bessel function of second kind Yl(kρ), for ρ = 0 is in conflict with our
demand of well-behaving functions. To satisfy the boundary condition at ρ = R the
k-values depending on the n-th zero of the l-th Bessel function zn,l = zn,−l has to fulfill:

Jl(kR) = 0⇒ kn,l =
zn,l
R

(4.11)

⇒ En,l =
~2z2

n,l

2m∗R2
− 440 meV. (4.12)

The energies are thus double degenerate by ±l. To summarize, the normalized solution
of Eq. (4.5) is given by

ψn,l(ρ, φ, z) =
c√
πλz

eilφJl(kn,lρ)e−z/λz (4.13)

where c is given by [131, p. 643]

c−2 =
R2

2

[
J2
l (kn,lR)− Jl−1(kn,lR)Jl+1(kn,lR)

]
.

Each eigenstate ψn,l(ρ, φ, z) is therefore double degenerate for ±l and displays n − 1
nodes in radial direction. Due to the spin degeneracy each En,l is populated by two
electrons with antiparallel spin.
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4. The quantum corral

4.3.3. Comparison to STM measurements

Next we want to compare the eigenstates of the hard wall model with the current I(r)
measured by STM. The LDOS is given by a summation over all eigenstates at energy ε,

LDOS(r, ε) =
∑
(n,l)

2 |ψn,l(r)|2 δ(ε− En,l), (4.14)

while taking the spin degeneracy of two into account. The current I(r) is in accordance
with Eq. (4.2) depending on the LDOS by

I(r) ∝
∫ EF

EF−eV
LDOS(r, ε) dε.

As shown in the previous section, the integrated LDOS has the same decay rate in z-
direction at all positions on the surface plane. Thereby for the topographic measurement,
where the tip height positions for constant current are detected, it is sufficient to compare
the relative height with the 2D LDOS σFermi(ρ, φ),

σFermi(ρ, φ) =
∑
ν

2
∣∣∣ c√

2π
eilφJl(kn,lρ)

∣∣∣2, (4.15)

were ν denotes all tuples (n, l) with energies in the chosen energy range [EF − eV,EF ].
The ±l degenerate eigenvalues of the hard wall model calculated from Eq. (4.12) are
illustrated in Fig. 4.2(a). For a bias voltage of eV = 10 meV the tuples (n, l) with
energies in the relevant energy range are given by ν = {(2,±7), (4,±2), (5, 0)} and are
marked in green. The summation over these states results in σFermi(ρ, φ) shown in
Fig. 4.2(b) and coincides qualitatively with the experimentally achieved topographic
image in Fig. 4.2(c). In the experiment the Fe adatoms producing the quantum corral
are clearly visible as bright spots4. A direct comparison of σFermi(ρ, φ = 0) and angle-
averaged STM data in Fig. 4.2(d) is persuasively showing the agreement between the
hard wall model and the measured data, as already done in Ref. [36].

When studying other properties, e.g. the energy broadening of each individual state,
the hard wall model with its discrete eigenenergies illustrates its own limitation. Already
in Ref. [36] the dI/dV spectra identifies the finite lifetime of the surface states. A
multiple scattering expansion gave more information [38]. Around 50% of an incident
amplitude are getting transmitted through the boundary build up by the adatoms and
stay on the surface. 25% are getting absorbed into the bulk after being scattered at
the adatoms. Therefore only 25% are getting reflected back into the corral. According
to Ref. [36, 44] the adatoms are better described by a ”black dot” with a scattering
phase of the zero angular momentum state φl=0 = i∞ than by perfectly reflecting walls
as assumed in the hard wall model. In the following sec. 4.4 we will establish a new
tight-binding system which features more agreements with experiments than the hard
wall model by adapting the experimentally achieved scattering phase.

4The Fe atom at (x, y) = (−1,−0.8)R is not influencing the appearing standing wave pattern, it is
experimentally used as a backup when Fe atoms get lost.
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4.3. Hard wall model
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Figure 4.2: The hard wall model explains the topographic STM measurements for a
quantum corral of radius R = 7.13 nm. In (a) we show the eigenvalues of the hard wall
model where the double degeneracy for angular momentum ±l is visible. The energy
range in which the STM with an applied voltage of eV = 10 meV is sensible, is illustrated
as a green area. The summation of eigenstates in this range results in σFermi shown in
(b). A rotational symmetry and five radial maxima are clearly visible. The measured
constant current data in (c) exhibits the same characteristic. A linescan for varying ρ in
(d) displays the agreement between σFermi and angle-averaged height data zrel in more
detail.
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4. The quantum corral

4.4. Modeling the quantum corral including the
scattering phase

We want to investigate a new model to describe the quantum corral data received by STM
measurements in more detail as the hard wall model. For that, the crucial input is the
scattering phase. The common method to do so is called the multi scattering approach.
Here, the electron is incoming from the tip and scattered at the adatoms of the surface.
The interference of in- and outgoing amplitudes is then generating fluctuations of the
LDOS. The imaginary part of the retarded Green’s function is proportional to the LDOS
and is calculated by assuming only spherically symmetric (s-wave) scattering [36–38].
This approach was successfully applied to different corral shapes, from billiard, parabolas
to half circles [37, 114, 115, 132]. In contrast to that, we will establish a new model
of the quantum corral using a tight-binding approximation by the software package
Kwant [72]. The 2D Hamiltonian achieved by the neglect of all z-dependency in Eq. (4.5)
is discretized on a grid and by introducing a coupling to leads it gives access to the
LDOS. A fast implementation, convenient handling and broad spectrum of features are
the advantages of this method. To include a detailed scattering mechanism, we will first
adapt the experimental scattering phase to our numerical setup. Then, in sec. 4.4.2
we calculate the LDOS for a quantum corral hosting another Fe adatom inside and
find convincing agreement to experiments for all positions of this extra adatom. The
strength of our chosen approach is also confirmed by determining the Cu (111) symmetry
(sec. 4.4.3). We will not cover this here, but the same approach yields agreement to
experiments on a quantum corral build out of CO molecules instead of Fe atoms [133].

4.4.1. Scattering phase adaption

In this work we will stick to a real scattering phase, which is known to provide a satisfying
standing wave pattern for φl=0 = −80◦ in accordance to experiments [36,38].

It is not our goal to describe the complex interplay between the adatom and the Cu
substrate at the adatom. Our ambition is the description of the standing wave pattern
influenced by the adatoms. An adatom is simulated by a circular potential well,

V (ρ) =

{
0 for ρ ≥ Rad

a for ρ < Rad,
(4.16)

while the potential strength is chosen such that the resulting LDOS coincides with the
experiments. For this purpose we first need to know the regime for a and Rad where the
scattering phase is in the vicinity of φl=0 = −80◦. For purely real scattering phases, the
results are invariant for φl=0 + π and therefore φl=0 = +100◦ is also a possible choice. To
find the principle dependency of the scattering phase on the free parameters, one uses
2D scattering theory. The relevant equation is given by Eq. (28) in Ref. [134]. A mistake
in writing in Ref. [134] forces us to recapture the derivation, done in appendix C. The
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Figure 4.3: To simulate the scattering at each adatom, we adjust the parameters of
the circular potential well. In (a) the resulting scattering phase of Eq. (4.17) for
varying potential strength a and radius Rad is shown. To reach a scattering phase of
φl=0 = −80◦, either we chose a > 0 and a diameter of more than 1 nm or an attractive
potential well with a radius in Rad ∈ [0.1, 0.5] nm. To fulfill the s-wave approximation
a < 0 is necessary. In (b) the 2D scattering theory yields the scattering phase φl=0

for a given radius of the adatom Rad = 0.2 nm and varying potential strength a by
Eq. (4.17). The intended scattering phase of φl=0 = −80◦ is illustrated by the dashed
line. For a ∈ [−8,−4] eV this can be achieved. In (c) we adjust this further: The
topographic STM measurement for one single adatom gives the linescan profile shown
in black whereby we can fit the numerical LDOS of different potential strengths to it.
The potential strength of a = −7 eV results in the most convincing agreement.
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4. The quantum corral

correct formula is plotted in Fig. 4.3(a) for varying radius Rad and potential strength a:

tanφl=0 =
−k̃J0(kRad)J1(k̃Rad) + kJ0(k̃Rad)J1(kRad)

−kY0(k̃Rad)J1(kRad) + k̃Y1(k̃Rad)J0(kRad)
. (4.17)

Here, the momenta inside and outside of the potential well are given by
k̃ =

√
2m∗(E − a)/~ and k =

√
2m∗E/~. The exact radius of the potential well is not

important, but it should be in the same order of magnitude as the approximate Fe atom
size (≈ 0.27 nm [38]) such that the Fermi wavelength λF ≈ 3 nm is much bigger thanRad.
Therefore the assumption of only s-wave scattering is valid. For a repulsive potential
well (a > 0) the scattering phase is smoothly increasing when either Rad or a is rising.
For Rad < 0.5 nm, the maximal phase shift reachable is around −55◦. Our intended
phase φl=0 can be achieved, but due to Rad 6� λF , it violates the s-wave approach.
Therefore an attractive potential strength is required. For a < 0, the scattering phase
instead displays discontinuities and sudden extreme values of φl=0 generated by the
bound states of the circular potential well. This is visible in Fig. 4.3(b) where we
fixed the adatom radius Rad = 0.2 nm. The black dashed line illustrates the phase
shift of −80◦. The repeating structure allows for infinitely many negative potential
strengths a, but we will concentrate on the regime a ∈ [−8,−4] eV. The numerical
implementation of this potential well is neither perfectly describing a circular potential
well nor simulating the abrupt change in the potential strength exactly. For that reason
in addition to the 2D scattering theory, we compare the LDOS arising from different
potential strengths to the experiment to determine a more accurate value for a. In the
STM measurement, a bias voltage (10 meV) is applied and instead of the circular form
built by 48 adatoms, a single Fe adatom is positioned on the Cu (111) surface. A linescan
of the resulting topographic STM image is illustrated in Fig. 4.3(c) by a black dashed
line. When approaching the adatom with the tip, one needs to pass the additional
height of the adatom. Therefore the relative height hrel increases for ρ ≤ 1.2 nm. This
geometrical height difference to the surface is not included in our approach so that we
compare the resulting LDOS in a range of ρ ∈ [1.2, 6] nm. The vertical dashed line in
Fig. 4.3(c) illustrates the radius Rad of the simulated adatom. To compare the current
with the numerical results, we fit a prefactor and an offset to the LDOS. This is done
for every LDOS gained by individual potential strengths a and yields the three different
lines in Fig. 4.3(c). With a potential strength of a = −8 eV and a = +∞ the resulting
LDOS are almost equivalent and slightly disagree with the experiment in the range of
ρ ∈ [2, 5] nm. A better agreement to the STM data in the range ρ ∈ [1.2, 4.5] nm is
illustrated for a potential strength of a = −7 eV. It is worth to mention that we do not
succeed in determining a potential strength reproducing a more satisfying agreement.
Possible an adaption of Rad could enhance this further. Also the wave length of the
numerical achieved LDOS appears bigger than the experimental one. Certainly, a slight
modification in the range of uncertainty of the effective mass m∗ or the energy shift
(−440 meV) of the 2DEG can improve this. The description for scattering at individual
adatoms when using a potential strength of a = −7 eV will now be tested for different
situations. We will compare the STM measurements with the tight-binding model for
the quantum corral with and without additional adatoms.
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4.4. Modeling the quantum corral including the scattering phase

(a) (b)

Figure 4.4: The adjusted phase model for the quantum corral exhibits the same
undulations as the STM data. Panel (a) shows a sketch of the tight-binding
implementation, at which the four leads are marked red and the Fe adatoms are
illustrated by white circles. Panel (b) shows the numerically achieved LDOS in the
quantum corral for the tight-binding model. A qualitative agreement to Fig. 4.2(c) is
given. Reflection effects at the system-lead interface are minimized and therefore not
visible.

4.4.2. Variation of adatom position

Every adatom, 48 for building the corral and one optional adatom inside the circle, is
represented as a circular potential well with strength a = −7 eV in the tight-binding
model. Whereby all Fe positions in the simulation are determined by the experimental
setup. To avoid scattering at the artificial boundaries of a finite system, we use a large
squarish system with the corral centered in the middle and connect the boundaries of
that square to leads as sketched in Fig. 4.4(a). The implementation without an extra
adatom inside yields the LDOS shown in Fig. 4.4(b). The qualitative agreement to the
experiment in Fig.4.2(c) is clearly visible.

So far both the hard wall model and the tight-binding model with the adjusted phase
give sufficient agreement to experimental data. Now we turn to setups with an additional
adatom inside the corral. For the hard wall model the 48 Fe atoms building the corral
are still simulated by the hard wall for ρ ≥ R. The additional atom is described by a
circular potential well but with infinite potential strength a = +∞ 5. For the radius
of the potential well we choose also Rad. Of course this choice is arbitrary and is
only intended to show the discrepancy to an adjusted phase model. To solve the
Schrödinger equation for this scenario perturbation theory is one possible choice. We will
instead use a tight-binding model without leads. Diagonalising this Hamiltonian and
summing the eigenvectors in the operating energy range of [EF − 10 meV, EF ] yields the
LDOS of the hard wall model. The comparison of the hard wall model and the model

5Simulations show that using a circular potential well with radius Rad and a = +∞ also for each
adatom building the corral is not influencing the resulting LDOS.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: The topographic experimental data, the hard wall model and the adjusted
phase model display different agreements. In the first row, the STM data for an
additional Fe adatom at ρad = 1.2R = 0.88 nm (a) exhibits drastic differences to the
solution of the hard wall model shown in (b). The characteristic undulations are more
in coincidence with the LDOS of the adjusted phase model. Positioning the Fe atom at
ρad = 0.39R = 2.8 nm gives rise to azimuthal ripples in the second radial minimum of
the STM measurement shown in (d). The LDOS of the hard wall model shown in (e)
does not share this undulation. The result of the adjusted phase model in (f) with a
potential strength of a = −7 eV again qualitatively agrees with the experiment.
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(a) (b)

Figure 4.6: The topographic STM data for ρad = 0.22R = 1.6 nm in (a) qualitatively
agrees with the tight-binding model with adjusted scattering phase in (b).

with finite potential strength to experiments is shown in Fig. 4.5. Here we select two
(ρad = 1.2R = 0.88 nm and ρad = 0.39R = 2.8 nm) of several adatom positions where
the hard wall model fails. For ρad = 1.2R the LDOS of the hard wall model in (b)
exhibits in the first radial maxima an angular period of π/2, a signature not present in
the STM data shown in (a). The qualitative agreement to the adjusted phase model in
(c) on the contrary is definitely visible. The increased amplitudes of the second radial
maximas next to the adatom are in both images present. When moving the adatom
to ρad = 0.39R = 2.8 nm the topographic data in (d) shows undulations of the second
minimum in radial direction. This oscillation also appears when using the adjusted
phase model as plotted in (f). Again in the LDOS of the hard wall model shown in
(e) this characteristic is not observable. We conclude that due to discrepancies between
the scattering phase of the hard wall model and the actually measured one, the hard
wall model is only applicable when no Fe adatom is positioned in the quantum corral,
otherwise the resulting LDOS does not share the same characteristics as the topographic
STM measurements.

To confirm the shown agreement of the new model with experiments we now investigate
the setup for two more adatom positions. In Fig 4.6 we compare the data for
ρad = 0.22R = 1.6 nm where the measured relative height zrel in (a) shares again the
same undulations as the LDOS achieved by the adjusted phase model shown in (b). The
azimuthal and radial undulations coincide qualitatively.

Moving the Fe adatom to ρad = 0.57R gives rise to a different oscillation in the LDOS.
In Fig 4.7 the STM data in (a) coincides qualitatively with the numerical results of the
adjusted phase model in (b). Linescans of both data sets shown in (c), where we vary the
angle φ and fix ρ to ρ = ρad, illustrate the same azimuthal undulations with a period of
π/7. A rough but intuitive explanation of this periodicity can be given by the hard wall
model: As already pointed out in Fig. 4.2, without the adatom inside the corral the Bessel
functions shown in Fig 4.7(d) are solutions of the hard wall model in the energy range the
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STM is sensitive. When the extra adatom is positioned at ρad = 0.57/R, as sketched by
the black dashed line, the degenerate Bessel states with (n, l) = (2,±7) are most affected.
They will form new states of the form sin(lφ) and cos(lφ), whereas the one with high
amplitudes at the adatom position will be lifted up in energy. This state lying above
EF is then not occupied any more and thus not affecting the STM signal. Meanwhile
the other state is generating the azimuthal oscillations with a period of π/l = π/7. Of
course this is just an argumentation to understand the arising undulations, estimations
about the energy shift of each state have to be done more carefully, e.g by perturbation
theory or as chosen here a tight-binding implementation.

In the linescan of the STM data shown in Fig. 4.7(c) the amplitude of this oscillation
is decreasing with increasing distance to the adatom positioned at
(xad, yad) = (0.55, 0.014)R. This characteristic is not visible in the LDOS achieved by the
adjusted phase model. Reasons for this can be diverse: The scattering phase adaption is
not exact and a small discrepancy can result in different interference patterns. Another
possibility is the neglect of absorption effects into the bulk by using a purely real
scattering phase. The implementation of these effects by imaginary self-energy, can
shine some light on this disagreement.

The hexagonal structure of the first radial maxima in Fig.4.7(b) is a further visible
characteristic. When positioning an adatom in the center of the quantum corral this is
more pronounced and will be investigated in the following.

4.4.3. Determining the underlying copper symmetry

The surface of the Cu (111) face-centered cubic lattice is building a hexagonal grid with
a rotational symmetry of 60◦ [135]. In Fig. 4.8(a) a top view of the first two Cu layers
in blue and green is shown. A Fe atom, sketched in red, is most stable at swales of the
Cu grid. When now positioning 48 Fe atoms on the Cu surface, the resulting quantum
corral has specific geometrical properties: It is building a polygon of 24 sides, at which
three possible distances between two neighboring Fe atoms, a =

√
12d, b =

√
13d and

c = 4d with d = 255 pm arise [51]. The first quadrant of the quantum corral is displayed
in Fig. 4.8(b) [136]. In the topographic STM data (c) and better visible in the tight-
binding simulation (d) the first maxima appear in a hexagonal form. In the latter we
see the alignment of the hexagon to the longest side c of the polygon of 24 sides. In the
tight-binding simulation, the Cu substrate is not implemented, so no direct influence on
the LDOS is possible. Only the exact Fe positions are reproduced in the simulation. The
constraint of the Fe adatom positions stemming from the Cu substrate is a fact, which
affects the numerical LDOS as visible in (d). This argument is however not applicable in
general. When only states with low number of angular momentum l are involved, such
that 180◦/l � 60◦, the states can not adapt themselves to the Fe adatom structure.
The resulting LDOS will not share the same symmetry as the Cu substrate. This is
confirmed by further numerical investigations we made.
In the previous sections we analyzed the STM measurements in detail, while leaving the
experimental AFM results from Ref. [51] aside. Now we will move our focus on this
data, where the advanced measurement procedure give rise to new physical questions.
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(a) (b)

(c) (d)

Figure 4.7: The topographic STM picture for ρad = 0.57R = 4.05 nm in (a) qualitatively
agrees with the tight-binding model with adjusted scattering phase shown in (b). (c)
shows angular linescans at ρ = ρad of both data sets, which highlight the appearing
undulation with period π/7. The hard wall solutions of the quantum corral without
adatom are the Bessel functions shown in (d). The (n, l) = (2,±7) states, most affected
by an adatom at ρad (dashed line), will be perturbed and are therefore generating an
undulation with period π/7.
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(a) (b)

(c) (d)

Figure 4.8: The Cu substrate symmetry is affecting the Fe adatom positions and
therefore the resulting standing wave pattern. In (a) two layers (green, blue) of the
Cu (111) hexagonal lattice are shown. The Fe adatom is most stable at swales of the
Cu grid as illustrated in red. This constraint for the 48 Fe atom positions is affecting
the geometric structure of the quantum corral. The corral forms a polygon with 24
sides, while three atoms are always connected by one strait line with a length of a, b or
c. The first quadrant of this is shown in (b) [136], where the red circles again sketch
the Fe atoms. When positioning an adatom at the center of the quantum corral, the
topographic image in (c) and the numerically LDOS in (d) display a hexagonal structure
in the first radial maxima.
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4.5. Bonding properties between tip and quantum corral
states

Properties of the quantum corral concerning STM measurements are intensively studied
in the previous sections. However, one major aspect of the experimental data from
Ref. [51] are the AFM measurements of the quantum corral. The atomically resolved
AFM measurements of forces which are three orders of magnitude smaller than the
typically measured ones, enable deeper analysis of the appearing forces. The strong
decay of the involved forces between the mesoscopic surface state and the tip gives rise
to several questions: Is this decay caused by electrostatic interactions between the tip
and the surface states? Do the states of the artificial atom formed by the quantum
corral interact with the tip orbitals via chemical bonding? If so, which corral states are
building the analogy to open shell orbitals dominating the chemical bonds in molecule
physics?

To get a deeper understanding of the appearing phenomena, we first need to clarify
some basic facts. In the AFM measurements several forces are acting on the tip, all
depending on the sample-tip distance. Far away from the surface the Van-der-Waals
forces6 dominate, replaced by the chemical bonding or Pauli repulsion when the distance
is reduced [137,138]. To decrease the influence of the Van-der-Waals forces, contrasts of
∆f instead of ∆f are used. They are oppositional defined by

∆fCu = ∆f(ρmax1, z)− (∆f(ρmin1, z) + ∆f(ρmin2, z)) /2

∆fCO = −∆f(ρmin1, z) + (∆f(ρmax1, z) + ∆f(ρmax2, z)) /2.
(4.18)

It is experimentally validated and supported by density functional theory (DFT), that
the metallic tip is normally interacting with the surface states attractively [139], while the
CO terminated tip is exhibiting a repelling interaction due to Pauli repulsion [140–142]7.
To observe the attractive or repulsive force one has to isolate the effects of the surface
states by computing the contrast of the frequency shift. To deal only with positive
contrasts of frequency shifts, they are defined as shown in Eq. (4.18). In accordance to
Eq. (4.4) in sec. 4.2.1, an attractive (repulsive) force is influencing the frequency shift
to negative (positive) values. So that the metallic (CO) tip is normally resulting in
negative (positive) frequency shifts when interactions with surface states are considered.
The Pauli repulsion of the CO tip is normally sensitive to the total charge density, so we
first define the total charge density in the quantum corral setup: The 2D total charge
density σ̃ is in analogy to the LDOS in sec. 4.3.2 given by

σ̃(ρ, φ) = 2e
∑
µ

|ceilφJl(kn,lρ)|2, (4.19)

where µ is specifying all states (n, l) fulfilling

−440 meV ≤ En,l ≤ 0. (4.20)

6The Van-der-Waals force consists of (induced) dipol-(induced) dipol forces [124].
7Indeed for the CO terminated tip some exceptions of this are known [138,143].
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Figure 4.9: The measured frequency shift is proportional to the total charge density σ̃.
In panel (a) we show a linescan of σ̃ for φ = 0. In (b) the frequency shift govern by
an AFM linescan for a metallic tip (black) agrees with −σ̃ illustrated in green. In (c)
the principle agreement of the frequency shift (black) with a CO terminated tip and
the total charge density (green) is displayed, however the maximum at the center is less
pronounced.

The summation over all states is resulting in the total charge density σ̃ for which a
linescan for φ = 0 is displayed in Fig. 4.9(a).

In the experiment of Ref. [51] the frequency shift ∆f for two different tips, a metallic
Cu and a CO terminated one, is measured by AFM. The frequency shift ∆f for varying
ρ and fixed height ztip = 440 pm (ztip = 410 pm) is measured with a metallic (CO) tip
and the resulting data is displayed in Fig. 4.9(b) respectively (c). Both frequency shifts
are negative which illustrates that both tips experience a net attractive force due to
Van-der-Waals interactions. In both cases the radial oscillations partly are described by
the total charge density plotted in black. For a CO terminated tip there is less accurate
agreement to σ̃ around x/R = 0. This can be explained by perturbation theory: When
the metallic (CO terminated) tip is approaching the surface the attractive (repulsive)
force perturbs the quantum corral energies En,l of the 3D states ψn,l(ρ, φ, z) defined in
Eq. (4.13) by ∆En,l. Using first order perturbation theory, this energy shift is given by

∆En,l = 〈ψn,l(ρ, φ, z)|Vtip|ψn,l(ρ, φ, z))〉,

whereby ∆En,l is negative (positive) for the metallic (CO) tip. A detailed analysis also
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4.5. Bonding properties between tip and quantum corral states

(a) (b)

Figure 4.10: Measurements of the frequency shift result in exponential decaying
contrasts. (a) shows the measured values (black) and an exponential fit with
λCu = 55.7 pm in orange for a tip terminated by a single Cu atom. (b) shows an
similar behavior for the experimental results plotted in black with a fitted decay rate of
λC0 = 50.4 pm in orange with a CO terminated tip.

taking the energetic broadening into account [51] and gives approximate values of ∆E5,0,

∆E(5,0),Cu = −0.8 meV (4.21)

∆E(5,0),CO = +0.13 meV, (4.22)

for ψ5,0 and a sample-tip distance of ztip = 440 pm (ztip = 410 pm) for the metallic (CO)
tip. The proximity of the (n, l) = (5, 0) state to the Fermi energy makes this state most
sensible to the perturbation Vtip. Its main probability around ρ = 0 is then reasoning the
arising discrepancy between σ̃ and ∆f around ρ = 0. For the metallic tip the occupation
of the ψ5,0 state is slightly increasing. The positive shift in case of the Co terminated
tip reduces the ψ5,0 occupation and yields therefore a reduced magnitude around ρ = 0.

To summarize, the results shown in Fig. 4.9 present oscillations sensitive to the total
charge density σ̃. For a small sample-tip distance the force of the metallic (CO) tip
acting on the surface states is increasing (reducing) the ψ5,0 occupation.

Measuring the frequency shift also for varying distances z gives further information
about the appearing forces. When building the contrast as given by Eq. (4.18) the
z-dependence of both tip types displays exponential decay shown in Fig. 4.10. As
expected the contrast of the frequency shift is positive for both tip types. This implicates
an attractive (repulsive) force between the surface states and the metallic (CO) tip
in accordance to previous studies. In (a) the contrast ∆fCu for the metallic tip can
be described by an exponential function with a decay length of λCu = 55.7 pm for
z ∈ [450, 600] pm. In analogy ∆fCO in (b) has a decay length of λC0 = 50.4 pm for
z ∈ [410, 480] pm. Both decay rates are in the order of the decay length λz = 84.2 pm
(see Eq. (4.9) in sec. 4.3.2) of the quantum corral surface states. What is reasoning such
strong decays for the two fundamentally different tips?

We know that arising from dipole moments both tips are electrically charged by
qCO = −0.03e and qCu = +0.13e [144]. To exclude the possibility of a purely electrostatic
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interaction we numerically calculate the Coulomb interaction between a charged point-
like tip and the 2D surface states in a quasi-classical kind in sec. 4.5.1. This assumption
of a point-like tip is valid, because the appearing atomic radii of αCu = 132 pm and
αCO = 66 pm are both significantly smaller than the radial wave length of the quantum
corral eigenstates (λ ≈ 3 nm) [145]. And besides, the surface-tip distance z fulfills
z ≥ 132 pm > αCu/CO + 2λz and therefore justifies a 2D description of the surface states.
The resulting decay of ∆fCu/CO in this approach is in conflict with the measured decay
of the contrast from Fig. 4.10. Therefore we will investigate the overlap of the involved
orbitals seeing that as the first step to describing the bonding using linear combination
of atomic orbitals (LCAO) method in sec. 4.5.2.

4.5.1. Quasi-classical Coulomb interaction

The electric field of the surface charge density σ̃(ρ′, φ′)δ(z′) causes a Coulomb force
acting on the point-like tip at position r with charge qtip. This force vector is given by

F (r) =
qtip

4πε0ε

∫
dV ′

σ̃(ρ′, φ′)δ(z′)

|r − r ′|2
r − r ′

|r − r ′|
. (4.23)

The z-component, which is relevant for the AFM signal, reads

Fz(r) =
−2eqtip

4πε0ε

N∑
n,l

R∫
0

dρ′
2π∫

0

dφ′
σ̃(ρ′, φ′)ρ′z

|ρ2 + ρ′2 + z2 − 2ρρ′ cos(φ− φ′)|3/2
,

where the integral over z′ is already evaluated. The φ independence of the charge density
(| exp(ilφ′)| = 1) and the permittivity ε of vaccum (ε = 1) simplifies Fz to

Fz(r, φ = 0, z) =

−2eqtipz

4πε0

N∑
n,l

R∫
0

dρ′ρ′ |cJl (kn,l ρ′)|2
2π∫

0

dφ′
1

|ρ2 + ρ′2 + z2 − 2ρρ′ cos(φ′)|3/2
.

(4.24)

The positive denominator in Eq. (4.24) for {ρ, ρ′, z} ∈ R+
0 and φ′ ∈ [0, 2π] gives rise to

an expression in terms of the elliptic integral

E(ρ) = E(π/2, ρ) :=

∫ π/2

0

√
1− ρ sin2(θ)dθ

resulting in

2π∫
0

dφ′
1

|ρ2 + ρ′2 + z2 − 2ρρ′ cos(φ′)|3/2
=

2

ρ4 + 2ρ2(z2 − ρ′2) + (ρ′2 + z2)2
×

[√
(ρ− ρ′)2 + z2E

(
− 4ρρ′

(ρ− ρ′)2 + z2

)
+
√

(ρ+ ρ′)2 + z2E
(

4ρρ′

(ρ+ ρ′)2 + z2

)]
.
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Figure 4.11: The Coulomb interaction between the charge density σ̃ and the tip is
reducing the frequency of the AFM cantilever. The z-dependency of the contrast ∆fCO

obeys an exponential law. (a) shows the radial dependence of the two-dimensional charge
density σ̃ with a period in ρ-direction of approximately 0.25R = 1.7 nm. (b) shows the
contrast (orange) defined in Eq. (4.18) and an exponential fit (black) by ae−z/b with
a = (46± 0.14) mHz and b = (228± 5.8 · 10−5) pm.

Finally, the frequency shift ∆f of the AFM cantilever at position r results from the
z-direction of the Coulomb force through [121]

∆f(ρ, φ = 0, z) = − f0

kπA2

∫ A

−A

Fz(ρ, φ = 0, z − q) q√
A2 − q2

dq. (4.25)

Both, the integrals over ρ′ in Eq. (4.24) and over q in Eq. (4.25) must be evaluated
numerically. The AFM sensor has a cantilever stiffness of k = 1800N/m, an oscillation
amplitude of A = 50 pm and an oscillation frequency of f0 = 20.4 kHz. The numerical
solution of Eq. (4.25) for a CO terminated tip is plotted in Fig. 4.11. For a repulsive
force, the frequency shift is negative as expected and undulates with changing ρ in
the same manner as the charge density for small distances z. These oscillations smear
out for rising sample-tip distance. When approaching the boundary ρ = R the charge
density outside of the quantum corral gets relevant. Due to the neglection of these
charges, the frequency shift in that area is not physically relevant and is therefore not
plotted. In Fig. 4.11(b) a fitting of ae−z/b on the contrast ∆fCO illustrates a decay rate
b ≈ 228 pm. This is in consensus with an elementary electrostatic estimation [146]:
An oscillating charge density with a period λF/2 = 1.6 pm yields an approximated
exponential decay rate of λF/(4π) = 255 pm with the Fermi wavelength is given by
λF = 2π~/

√
2m∗440 meV ≈ 3 nm. Certainly, b is more than one order of magnitude

bigger than the experimental achieved value of λCu = 55.7 pm.
Two effects, which influence the electrostatics, need to be discussed. The Cu (111)

bulk is not charged, therefore a compensating charge density exists below the surface.
The distance of these two charge density layers d can be estimated by 15% of the Cu
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bulk Fermi wavelength of 73 pm [147, 148]. Also for the second layer, with a shifted
charge density by d = 11 pm, is the decay rate of 228 pm a good approximation. The
summation of forces arising from the two layers yields still a frequency shift decreasing
exponentially with b ≈ 228 pm. A surface dipole layer thus is not affecting the decay
ratio. Secondly, in case of a metallic tip only the tip charge is different. According to
that, only the magnitude will be modified by a factor of qCu/qCO ≈ −0.23 and the decay
length is unaffected.

It can be therefore concluded, even without discussing the magnitudes of the occurring
force, that the quasi-classical model, using a quantum mechanical charge density and a
classical Coulomb force description, does not explain the experimental achieved contrasts
∆fCu and ∆fCO.

As already pointed out, when the sample-tip distance is reduced, the importance of
chemical bonding increases. Therefore the next step would be a model to describe the
chemical bonding between the surface states and the tip orbitals.

4.5.2. Description by LCAO method: An outlook

Four characteristics gained by the experiments are of major importance for a chemical
bonding description. First, the force decays exponentially in orders of 50 pm and second
the energy of the state in proximity to EF for a metallic tip distance of z = 440 pm gets
shifted to E5,0 − 0.8 meV. Third, all quantum corral states are contributing to this
force and finally fourth, the force is attractive (repulsive) for the metallic (CO) tip.
To start with a linear combination of atomic orbitals (LCAO) method for describing
these effects, we will concentrate on the metallic tip here. From Ref. [149] it is known
that the metallic tip in our relevant energy regime is mostly dominated by the s-orbital.
This simplification is critical for the CO terminated tip where also p-like orbitals come
into play. So we will not make any predictions for the CO terminated tip yet. The
observation that all quantum corral states contribute to the force is an open question
which we want to discuss here shortly. In molecule physics the chemical bonding between
two atoms is initialized and caused by electrons of valence shells. If this shells are fully
occupied and therefore called closed shell, the chemical reactivity is dramatically reduced
(e.g. for noble gases). Open valence shells on the other hand are reactive and enable
chemical bonding. The valence shell is thereby defined by the outermost shell [150].
In the artificial atom called quantum corral, we know from sec. 4.3.2 that all states
are decaying in the relevant z-direction with the same decay length λz. So the valence
shell consists of all ψn,l. In contrast to atoms, where the outermost orbitals typically
correspond to the highest energies, the outermost quantum corral orbital’s energies range
from −440 meV to EF = 0. And this is then influencing the occupation of each orbital.
The orbitals with less energy are fully occupied, meanwhile the orbitals around Fermi
energy are partially filled. The reactivity is therefore low for orbitals far away from
EF and high for orbitals around EF . Now a contradiction arises: According to the
valence shell argument, all orbitals ψn,l contribute to the chemical bond, and thus give
a frequency shift depending on the total charge density σ̃ as displayed in Fig. 4.9. The
argument about the occupation rate is however suggesting a frequency shift depending
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on the charge density around EF in analogy to σFermi from sec. 4.3.3. In a typical atom,
the outermost orbitals also have the highest energy, so this problem does not appear. To
clear this contradiction is one goal we want to achieve in the future by applying LCAO
method. Now we want to link the first two force characteristics listed above to the
LCAO method. To do so we will first capture the main information about this method.
The huge scales which appear in the quantum corral setup, from single atomic tips to
mesoscopic standing wave patterns with diameters of 14 nm, makes the application of
DFT computationally very challenging. The LCAO method uses the atomic orbital ψi
as basis functions to represent the accruing molecule orbitals χj. This implies that the
molecule orbitals can be written as a linear superposition of the atomic orbitals. A
variety of other basis functions, e.g. Slater or Gaussian-type, are known and common.
The reason of choosing LCAO is firstly the knowledge about the analytical form of the
atomic orbitals and secondly the advantage of a qualitative and intuitive picture. For
detailed information about the basics of the LCAO method we refer to Ref. [151, 152].
The investigation of the LCAO method for chemical bonds between an artificial atom
and an atomic tip orbital is still under development [153]. Here we will just sketch
the functional dependence of the molecule orbitals by the atomic orbital overlaps where
just two atomic orbitals are involved. The two orbitals we will consider here are the
quantum corral eigenstate ψ1(r) = ψn,l(r) with (n, l) = (5, 0) (which has am eigenenergy

E1 ≈ EF ) and a 1s-like orbital of a Cu terminated tip ψ2(r, rtip) ∝ exp
(
−|r−rtip|

βtip

)
with

the same eigenenergie E2 = E1. The tip orbital is centered around the tip position rtip.
Similar to the decay length of the quantum corral state with 1

κ
= 84.2 pm known from

sec. 4.3.2, βtip is approximated by

βtip =

√
~2

2meΦ0

= 87.8 pm. (4.26)

The molecule orbitals are represented by a superposition of atomic orbitals,

χi(r) = ci,1 ψ5,0(r) + ci,2 ψ2(r) ∀i ∈ {1, 2}. (4.27)

By using the variational theorem, the ci,j coefficients are varied such that the energies
of the molecule orbital ei are minimized [151]:

ei =
〈χi|Heff|χi〉
〈χi|χi〉

. (4.28)

The effective single-particle Hamiltonian Heff is built by taking the potential of both
atoms into account. If H1,1 = H2,2 is given, the theorem yields

e1 =
H1,1 +H1,2

1 + γ1,2

,

e2 =
H1,1 −H1,2

1− γ1,2

,

(4.29)
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Figure 4.12: The overlap γ1,2 for the quantum corral eigenstate with (n, l) = (5, 0),
having a decay length of 1

κ
= 84.2 pm, and a 1s-orbital of the Cu terminated tip with

βtip = 87.8 pm, is illustrated (blue). The tip is for this purpose centered above the
quantum corral (ρtip = φtip = 0) and approaching the surface step wise. The fit of an
exponential function ae−z/η (black) results in a decay length of η = (121.49± 0.18) pm.
The validity of the model is given for z ' βtip. Additionally the overlap of two
exponential functions, Eq. (4.31) (orange) are displayed for comparing reasons.

where e1 and e2 are the energies of the (anti-)bonding molecule orbital in a single-particle
description. Here Hi,i′ is defined by Hi,i′ = 〈ψi|Heff|ψi′〉 and the overlap γ1,2 by

γ1,2(rtip) = 〈ψ1(r)|ψ2(r, rtip)〉. (4.30)

Eq. (4.29) shows the direct dependence of the single-particle molecule energies from γ1,2

and an indirect one in Hi,i′ . The sample-tip distance dependency is included in Hi,i′ and
γ1,2.

The analysis of the matrix elements Hi,i′ is still under current investigation [153]. We
will now concentrate on the overlap γ1,2, which we solve numerically. The solution of the
three-dimensional integral of the overlap γ1,2 for a tip position of ρtip = 0, φtip = 0 and
varying ztip is illustrated in Fig. 4.12 in blue. With decreasing distance between the tip
orbital and the quantum corral eigenstate, the overlap is increasing. Beyond a value of
around z = 87.8 pm = βtip, a relevant part of the tip orbital is located at z ≤ 0 pm but
the quantum corral eigenstates are only defined for z ≥ 0 pm. Therefore the model is not
applicable any more for z . βtip. The z range of interest is z ∈ [450, 600] pm given by
the experiment shown in Fig.4.10(a). An exponential fit ∝ e−ztip/η to the overlap in this
z-regime is displayed in black and yields η = 121 pm, a value more than a factor of two
bigger than the experimental decay length of the contrast ∆fCu. To confirm the principle
behavior of γ1,2 we also solve the overlap integral analytically for two one-dimensional
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exponential functions, ψ1D
surf(z) ∝ e−z/λz and ψ1D

tip (z, ztip) ∝ e−|ztip−z|/βtip :

γ1D
1,2 =

∫ ∞
0

dz ψ1D
surf(z)ψ1D

tip (z, ztip)

∝
∫ ∞

0

dz e−z/λze−|ztip−z|/βtip

∝

{
λzβtip
λz−βtip

(
e−ztip/λz − e−ztip/βtip

)
+

λzβtip
λz+βtip

e−ztip/βtip for λz 6= βtip(
λz
2

+ ztip

)
e−z/λz for λz = βtip.

(4.31)

When adjusting the maximum of γ1D
1,2 to γ1,2, Eq. (4.31) shows a similar trend as the 3D

overlap γ1,2. In the 1D overlap we see that only in the limit ztip � λz, βtip the overlap is
following an exponential law with a decay rate of βtip. Therefore it seems reasonable to
have a decay length η = 121pm bigger than the involved decay lengths βtip and λz for
z ∈ [450, 600] pm. Of course the frequency shift resulting from bonding has a complex
dependency on γ1,2 and therefore needs more intensive studies.
This is the first step for a chemical bonding description by usage of the LCAO method
of a 1s-orbital to an orbital generated by the artificial atom called quantum corral. The
next step will be the calculation of single-particle molecule orbital eigenenergies e1/2.
The bonding molecule energy e1 of the ψ5,0 can than be compared to the experimentally
achieved perturbed eigenenergy of Eq. (4.21),

e1 ≈ E5,0 −∆E(5,0),Cu = −1.12 meV (4.32)

below EF . In the future several aspects are important: From Fig. 4.9 we know that
the experimental frequency shift of the Cu terminated tip is sensitive to the total
charge density. So in principle all quantum corral states should be included. For
that more detailed information about the involved tip orbitals for the energy regime
of [−440, 0] meV is required. The complexity is raised even higher when including
Coulomb interaction and the spins of individual electrons. In principle the many-body
ground state offers then valuable clues on the bonding force given by the derivative of the
many-body groundstate with respect to the sample-tip distance. Finally by Eq. (4.25)
the appearing frequency shift resulting from chemical bonding can be calculated.

4.6. Summary and outline

In the quantum corral chapter we investigated several theoretical aspects of the
experimental STM and AFM results published in our manuscript [51]. To begin with we
concentrated on the STM measurements, where we analytically solved the single-particle
hard wall model in three dimensions. In case of a quantum corral constructed by Fe
atoms, this model is sufficient and gives an intuitive picture of the arising LDOS. When
the quantum corral is perturbed by an additional iron atom positioned in the circular
form, the hard wall model is not applicable any more. From previous studies we knew
that the scattering phase is a crucial factor influencing the LDOS and therefore also
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the measured topographic STM image. We established a new tight-binding model to
simulate the standing wave pattern. For a circular potential well we first found a regime
of the potential strength such that the correct scattering phase of one individual Fe
adatom is expected. A more detailed adjustment of this strength gave a convincing
agreement of the numerical LDOS and the topographic STM measurement. With
that the tight-binding model was ready to be tested for the quantum corral made of
48 Fe adatoms. We found persuasive agreement to the experiment for the quantum
corral without an adatom and for five adatom positions. Even more, the first radial
maximum of the LDOS arising from a corral with a Fe atom at the center exhibited
a hexagonal structure. This structure is directly governed by the detailed geometrical
setting of the adatom positions, which is itself constrained by the underlying Cu (111)
symmetry. Therefore this model describes the measured STM data in plenty of different
configurations. We did not show the data, but the same model can be used for quantum
corrals made of CO molecules, where only the potential strength of the circular well has
to be adjusted. This model is thus a powerful tool to describe the standing wave pattern.
In the future we want to extend this model by allowing also complex scattering phases
to appear. A complex scattering phase is not only generating a specific standing wave
pattern but also includes absorption effects at the adatom positions and can therefore
describe the life times of the quantum corral states [132]. We plan to realize the complex
scattering phase by a pure imaginary, infinite self-energy coupling to the 2D discretized
Hamiltonian [68]. This would lead to different possible investigations, ranging from the
level broadening effects due to absorbing channels to influences of the STM tip itself
while measuring. As pointed out, the quantum corral formed by Fe atoms, similarly to
the CO formed one, is too leaky to produce ergodic or even chaotic behavior. Replacing
the Cu substrate by graphene or a topological insulator gives more promising candidates
for achieving chaos in quantum corrals. To describe the arising patterns in these setups,
our developed model can be customized.

Another main focus was the theoretical analysis of the AFM quantum corral
measurements. The experiments displayed forces which strongly decay with increasing
distance between the quantum corral surface states and the tip. Depending on the tip
type, either Cu or CO terminated, the acting force is attractive or repulsive, but both
tips experience forces depending on the total charge density of the quantum corral. To
exclude a pure electrostatic effect, we numerically computed the frequency shift arising
from a Coulomb force of a two-dimensional surface charge acting on the point-like AFM
tip. The significant discrepancy between the decay length achieved by this force and
the measured one, exclude the Coulomb force as the major influencing factor. The
presumption of chemical bonding between the mesoscopic standing wave of the artificial
atom and the tip orbitals got fortified. To describe a bonding we chose the LCAO
model. First we argued that a contradiction appears when supposing that only not fully
occupied orbitals contribute to the bonding. The appearing force would be dependent on
the local density of states around Fermi energy and not on the total density as measured
in the experiment. Due to the universal decay length in z-direction, the valence shell is
specified by all corral orbitals such that this can be reasoning the observed dependency.
A first step to a LCAO description was done by computing the overlap of one surface
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4.6. Summary and outline

state to a 1s-orbital like function of the metallic tip. The achieved overlap exhibits
a decay length greater than the experimental values. However, the molecule orbital
energies are also functional depended on other parameter, such that an final statement
of the agreement between LCAO and experiment is not possible. The presumed chemical
bonding between orbitals of the artificial atom and the AFM tip is an interesting field
of research and certainly worth to study.
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5. Conclusion

At the end of this thesis, a summary of the achieved results and possible perspectives
for further developments is given. For a more detailed summary we refer to the end of
each chapter.
The main focus of this thesis was the development of energy-dependent S-matrix corre-
lations in (non-)trivial TIs responsible for an expected universal signature of indistin-
guishability expressed in the Hong-Ou-Mandel (HOM) effect in electron quantum optics
(EQO). For this purpose we started in chapter 1 to link these objects to the HOM
probability of detecting both electrons at the same exit. The development of a semiclassi-
cal approximation of energy-dependent four-point correlators was an important building
block. Semiclassical, the S-matrix is approximated by a sum of trajectories fulfilling the
classical equations of motion. The action difference of distinct trajectories that typically
appears when calculating transport properties gives rise to a highly oscillating phase,
such that only action differences in orders of ~ contribute after averaging. For identical
trajectories with vanishing action difference this yields the first order contribution in
inverse number of open modes N . More accurate description is available when also
considering trajectory pairs (for two-point correlators) or quadruplets (for four-point
correlators) with action differences in orders of ~. This appears in the so-called encounter
regions, while on the other hand the action difference vanishes in the links. The one-
to-one correspondence between closed orbit pairs and the trajectory pairs enables to
formulate a closed form for energy-dependent two-point correlators. For quadruplets,
however this simplification is not applicable anymore, as it can be presented in the
following way: In case of one pair, both trajectories are always passing each link and
each encounter. For quadruplets trajectories can intersect in an encounter, however
not all four trajectories have to pass this encounter and/or pass an link. This freedom
is challenging and forced us to compute step wise for each quadruplet the effective
contribution. The huge amount of possible quadruplets and the canceling effect is
computationally costly, and only for energy independent moments of the transmission
a reduction is known. We were able to predict an infinite series for vanishing energy
difference and proofed the convergence to a finite limit, such that the studied four-
point correlators coincide with random matrix theory (RMT) predictions for COE and
CUE. In the presence of time-reversal symmetry two correlators (C=(∆) and Dx(∆))
share the property of alternating signs for each contributing order in 1/N , an effect
that dominates for low number of open modes. The absence of time-reversal symmetry
results in no alternating signs and therefore correlators converging faster. This analytical
investigation is supported by numerical tight-binding simulations in 2DEGs.
In this context, we first introduced methods to compute the mean free path for Anderson
disorder. Afterwards the first system consisting of two leads intersected by a disordered
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5. Conclusion

cavity with smooth boundaries is implemented. The statistic of S-matrix elements is in
accordance with a bivariate Gaussian. An upgraded setup with undulating boundaries
yields clear and explicit correlator forms coinciding perfectly with the semiclassic treat-
ment. Afterwards, reaching the low number of open modes regime gives new insights:
The numerical result builds the backbone to investigate the semiclassical convergence
properties. For N = 4, drastic oscillations of the analytical approaches are present,
nevertheless taking only odd number of terms gives reasonable and convincing agreement
to numerics. Thus the semiclassical approach is even reliable at the edge of validity, when
convergence issues appear. Thanks to an collaboration, further approaches of studying
S-matrix correlators were available, namely an experimental realization in microwave
billiards and the numerical investigation using the Heidelberg approach. This complete
range of methods is in agreement and build the basis for investigations in non-trivial
TIs.
To address the task of S-matrix correlations in TIs, we start with solving the corres-
ponding Schrödinger equation for a 2D waveguide using the Bernevig-Hughes-Zhang
(BHZ) Hamiltonian. The result enables us to adjust the tight-binding setup, such
that correlations between S-matrices at different energies are trustful and no spurious
phases are occurring. In the next step we adjusted and extended the electron coherence
formalism for energy-dependent S-matrices. Thereby we are able to predict the experi-
mentally accessible current current correlation in terms of the S-matrix correlators.
The Hanbury-Brown-Twist (HBT) contributions originate from interferences of one
wavepacket with the Fermi Sea and can be separated from the HOM type ∆Q̄HOM.
Furthermore the resulting formalism enables to study temperature dependent phenomena
in this context, too. For the implementation of a billiard-shaped system, first only one
spin block of the BHZ Hamiltonian is considered that breaks time-reversal symmetry.
In consistency with RMT the statistic of S-matrix elements are given by CUE. The
correlators of interest share in principle the same form as done in 2DEG systems, however
reduced widths (corresponding to increased dwell times) are observable, most likely due
to mode mismatches at the interface lead-cavity. Introducing spin-orbit coupling gives
rise to the time-reversal symmetry with T 2 = −1 and S-matrix elements expecting to
obey CSE. However the scattering at the interface is dominant, such that the fidelity to
CSE is not fulfilled. The main dependency of ∆Q̄HOM is given by the four-point correlator
Dx(∆), itself aquiring a delta-like form. If the widths of the incoming wavepackets are
not adapted, the current current correlation is therefore almost independent on the
time delay and the shape of both wavepackets entering the setup. The experimental
realization of chaotic cavities using TIs is certainly one key aspect to consider in the
future. On the other hand theoretical investigations are necessary to improve the
understanding of interface scattering and pure chaotic scattering in the cavity.

Contrary to EQO, there is a disposability of experiments when considering the quantum
corral. Plenty of experiments are known and one, preforming first AFM measurements on
this setup gave the motivation to our investigations in this field. First we introduced the
quantum corral and explained the experimental basics of AFM and STM measurements,
following by the use of the first theoretical model, the hard wall model for the standing
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wave pattern in the local density of states. The success of this model for STM measure-
ments is already known, however the novel data included STM measurements on quantum
corrals perturbed by an additional iron adatom inside the circular form. The failure
of the hard wall model in this context enforced us to investigate more deeply. The
scattering phase adaption of our tight-binding model to the experimentally available
data results in first numerical model successfully describing the standing wave pattern
for all adatom positions that were measured. In addition we were able to ascribe the
sixfold symmetry of the maxima to the subjacent Cu symmetry, however this effect is not
applicable in general as verified by our investigations. At the end we concentrated on the
AFM measurement, which experiences a contrast of the frequency shift exponentially
decaying with the sample-tip distance. For the metallic and the CO terminated tip,
the frequency shift is proportional to the total charge density from by the hard wall
model. We computed the classical Coulomb interaction between the charge density in
the quantum corral and the charged tip, yielding a decay length almost five times larger
than the one measured by AFM. We excluded therefore the electrostatic interaction
being the reason of the small decay length measured. In the next step we introduced the
linear combination of atomic orbitals (LCAO) method to compute the chemical bonding
between the mesoscopic standing waves of the quantum corral and the strongly localized
tip. As an first contribution, the orbital overlap of the 1s-like metallic tip orbital and the
highest occupied quantum corral state was computed. The decay length of the orbital
overlap is at least twice the experimental decay length, however several more physical
dependencies need to be included. The development of a model describing the chemical
bonding between the mesoscopic charge density and the point-like tip using LCAO is
scheduled for future works.
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A. First appendix: correlations in
trivial TIs

A.1. Convergence of the four-point correlators for
vanishing energy difference

In subsec. 2.2.5 we provide for the orthogonal case a series for Dx(∆ = 0) and
C=(∆ = 0) = B=(∆ = 0) by Eqs. (2.48), (2.50). Here we will reformulate this recursive
series of Fi and Gi in a closed form, such that the convergence of the correlators to RMT
for ∆ = 0 is explicit. To start with we repeat the definition of Fi:

Fi = 3Fi−1 + 1, with F0 = 0.

With induction one can prove

Fi −Fi−1 = 3Fi−1 + 1−Fi−1

= 2Fi−1 + 1

= 2(3Fi−2 + 1) + 1

= · · · = 1 +
i−2∑
j=0

2 · 3j,

such that

Fi −F0 = Fi =
i∑

k=1

Fk −Fk−1

=
i∑

k=1

(
1 +

k−2∑
j=0

2 · 3j
)

=
1

2
(3i − 1).

This closed form for the factors Fi enables us to conclude the consensus to RMT:

Dx(∆ = 0) =
∞∑
i=1

(−1)i
Fi
N i+2

=
∞∑
i=1

(−1)i
3i − 1

2N i+2

= − 1

N(N + 1)(N + 3)
.

(A.1)
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A. First appendix: correlations in trivial TIs

For B=(0) = C=(0), we know the factors Gi are defined by

Gi = 3Gi−1 − 1; with G0 = 1.

We rewrite these as

Gi = Fi + 1

⇒ Gi − Gi−1 = Fi −Fi−1 = 1 +
i−2∑
j=0

2 · 3j,

which yields

Gi =
1

2
(3i − 1) + 1 =

1

2
(3i + 1).

Then the series is given by

B=(0) = C=(0) =
∞∑
i=1

(−1)i
Gi
N i+2

=
∞∑
i=1

(−1)i
3i + 1

2N i+2

=
N + 2

N(N + 1)(N + 3)
,

(A.2)

again in agreement to RMT predictions.

106



B. Second appendix: correlations in
TIs

B.1. Detailed analysis of current-current correlation

B.1.1. Computing Q(t, t′)

In this section we provide the detailed calculation to achieve Eq. (3.30) mostly following
Ref. [92,104,105], but without assuming energy-independent S-matrices and expand the
number of open modes to N = 4. Here we use the notation 〈. . . 〉 for the expectation
value with respect to |φi〉 and 〈. . . 〉µ relating to the Fermi sea |F 〉µ. Starting with Î3̃(t)

in Eq. (3.22) we evaluate 〈Î3̃(t)〉:

Î3̃(t) = −ev
4∑
i

Ψ̂†
3̃,i

(t)Ψ̂3̃,i(t)− ev
4∑

i,j=1
j 6=1

Ψ̂†
3̃,i

(t)Ψ̂3̃,j(t) (B.1)

⇒ − 1

ev
〈Î3̃(t)〉 =

4∑
i=1

〈Ψ̂†
3̃,i

(t)Ψ̂3̃,i(t)〉 (B.2)

while using the orthogonality of many-body states1,

〈Ψ̂†
3̃,i

(t)Ψ̂3̃,j(t)〉 =

=
1

hv

∫
dEdE ′ dεdε′ ei

t
~ (ε−ε′) S∗3,1(ε′)S3,2(ε)

〈
â1(E ′)â†i (ε

′)âj(ε)â
†
1(E)

〉
µ

=
−1

hv

∫
dEdE ′ dεdε′ ei

t
~ (ε−ε′) S∗3,1(ε′)S3,2(ε)

〈
F |â1(E ′)âj(ε)â

†
i (ε
′)â†1(E)|F

〉
µ

i 6=j
= 0

(B.3)

and the commutator relation in Eq. (3.15). Analogue to Eqs. (B.1), (B.2) the quantities
Î4(t) and 〈Î4〉 can be computed. Evaluating the current-current correlation σ(3̃,4̃)(t, t

′)
by using the definitions

Îj̃,i(t) = −ev Ψ̂†
j̃,i

(t)Ψ̂j̃,i(t)

σ(3̃,4̃),(i,j)(t, t
′) =

〈
δÎ3̃,i(t) δÎ4̃,j(t

′)
〉

1This is visible by the uneven numbers of âi and â†i . The choice of evaluating with respect to |φ1〉 or
|φ2〉 is thereby irrelevant.
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yields

1

e2v2
σ(3̃,4̃)(t, t

′) =
4∑

i,j=1

σ(3̃,4̃),(i,j)(t, t
′)

+
4∑

i,j=1
j 6=i

4∑
i′,j′=1
j′ 6=i′

〈
Ψ̂†

3̃,i
(t)Ψ̂3̃,j(t)Ψ̂

†
4̃,i′

(t′)Ψ̂4̃,j′(t
′)
〉

︸ ︷︷ ︸
=Q(t,t′)

,

Q(t, t′) =
4∑

i,j=1
j 6=i

〈
Ψ̂†

3̃,i
(t)Ψ̂3̃,j(t)Ψ̂

†
4̃,j

(t′)Ψ̂4̃,i(t
′)
〉

(B.4)

With the same argument as in Eq. (B.3) in Q(t, t′) only summands fulfilling
i = j′ ∧ j = i′ are not zero.

B.1.2. Separating HOM from HBT correlations

By applying Wicks theorem the remaining summands can be rewritten [154,155]2:

Q(t, t′) =
4∑

i,j=1
j 6=i

Ge
(3̃,4̃),i

(t′, t)Gh
(3̃,4̃),j

(t′, t), (B.5)

with

Ge
(3̃,4̃),i

(t′, t) =
〈

Ψ̂†
3̃,i

(t)Ψ̂4̃,i(t
′)
〉
,

Gh
(3̃,4̃),i

(t′, t) =
〈

Ψ̂3̃,i(t)Ψ̂
†
4̃,i

(t′)
〉
.

Each coherence function can be reformulated [92],

Ge
(3̃,4̃),i

(t′, t) = ∆Ge
(3̃,4̃),i

(t′, t) +Ge
µ,(3̃,4̃),i

(t′, t),

Gh
(3̃,4̃),i

(t′, t) = −∆Ge∗

(3̃,4̃),i
(t′, t) +Gh

µ,(3̃,4̃),i
(t′, t)

(B.6)

with

Ge
µ,(3̃,4̃),i

(t′, t) =
1

hv

∫
dε ei

ε(t′−t)
~ S∗

3̃,i
(ε)S4̃,i(ε) fµ(ε),

Gh
µ,(3̃,4̃),i

(t′, t) =
1

hv

∫
dε ei

ε(t−t′)
~ S∗

4̃,i
(ε)S3̃,i(ε) (1− fµ(ε))

2It is not obvious that it applies for the non-equilibrium states used here. We recom-
mend Ref. [91] appendix C for detailed information about the application in this formalism.
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B.1. Detailed analysis of current-current correlation

for i ∈ [1, 4] and

∆Ge
(3̃,4̃),i

(t′, t) =


∫
dEdE ′ φ∗i (E

′)φi(E) e
i
~ (E′t′−Et)S∗

3̃,i
(E ′)S4̃,i(E) for i ∈ {1, 2}

0 for i ∈ {3, 4}.
(B.7)

Here we used the fact that our wavepackets are entering the system in i = 1 and i = 2.
We further assume that the wavepacket excitation is far apart from the Fermi sea with
Fermi-Dirac statistic fµ(ε) at zero temperature,

∫
dε f(ε)φ(ε) ≈ 0. Inserting Eq. (B.6)

into (B.5) we have access to ∆Q(t, t′) given by

Q(t, t′) = ∆Q(t, t′) +
4∑

i,j=1
j 6=i

Ge
µ,(3̃,4̃),i

(t′, t)Gh
µ,(3̃,4̃),j

(t′, t),

∆Q(t, t′) = ∆QHBT,1(t, t′) + ∆QHBT,2(t, t′) + ∆QHOM(t, t′). (B.8)

The Handbury-Brown-Twist contribution depend on interferences between φi(E) and
the Fermi sea,

∆QHBT,i(t, t
′) =

4∑
j=1
j 6=i

[
∆Ge

(3̃,4̃),i
(t′, t)Gh

µ,(3̃,4̃),j
(t′, t)−∆Ge∗

(3̃,4̃),i
(t′, t)Ge

µ,(3̃,4̃),j
(t′, t)

]
.

The contribution of interest here, ∆QHOM(t, t′) only dependent on ∆Ge/h by

∆QHOM(t, t′) = −
[
∆Ge∗

(3̃,4̃),1
(t′, t) ∆Ge

(3̃,4̃),2
(t′, t) + ∆Ge∗

(3̃,4̃),2
(t′, t) ∆Ge

(3̃,4̃),1
(t′, t)

]
. (B.9)

B.1.3. Time-averaged HOM contribution

The time averaged quantity

∆Q̄HOM =
2

TM

∫ ∞
−∞

dτ

∫ TM

0

dt̄∆QHOM(t̄+ τ, t̄− τ)
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with ∆QHOM(t, t′) given by Eq. (B.9) can be simplified by inserting ∆Ge/h from
Eq. (B.7):

∆Q̄HOM = − 2

TM

∫ ∞
−∞

dt

∫ ∞
−∞

dt′
[
∆Ge∗

(3̃,4̃),1
(t′, t) ∆Ge

(3̃,4̃),2
(t′, t)

+ ∆Ge∗

(3̃,4̃),2
(t′, t) ∆Ge

(3̃,4̃),1
(t′, t)

]
=
−2(2π)2

TM

∫
dE
[
φ∗1(E)φ1(E ′)φ∗2(E ′′)φ2(E ′′′)δ(E − E ′′′) δ(E ′ − E ′′)·

S∗3,1(E)S4,1(E ′)S∗4,2(E ′′)S3,2(E ′′′)

+ φ∗2(E)φ2(E ′)φ∗1(E ′′)φ1(E ′′′)δ(E − E ′′′) δ(E ′ − E ′′)·

S∗3,2(E)S4,2(E ′)S∗4,1(E ′′)S3,1(E ′′′)
]

=
−16π2

TM
Re
[ ∫

dEdE ′ φ∗1(E)φ2(E)φ1(E ′)φ∗2(E ′)·

S∗3,1(E)S4,1(E ′)S∗4,2(E ′)S3,2(E)
]
.
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C. Third appendix: the quantum corral

C.1. Scattering phase of a circular potential well

The Hamiltonian

H = − ~2

2m∗

[
∂2

∂ρ2
+ ρ−1 ∂

∂ρ
+ ρ−2 ∂

2

∂φ2

]
+ V (ρ)

with a circular potential well of the form

V (ρ) =

{
a ρ ≤ Rad =̂ region I
0 ρ > Rad =̂ region II.

gives rise to a solution of the form ψ(ρ, φ) = ψφ,l(φ)Rl(ρ) with two different radial
solutions for regions I, II:

Rl(ρ) =

{
cI Jl(k̃ρ) for region I

c1,II Jl(kρ) + c2,II Yl(kρ) for region II,

with

k̃ =

√
2m∗(E − a)

~2
,

k =

√
2m∗E

~2
.

Thereby we demand a normalizable wave function in both regions, such that for region I
the Bessel function of second kind, Yl(k̃ρ) is excluded. The angular part is given by

ψφ,l(φ) =
1√
2π
eilφ

with l ∈ Z. When introducing the scattering phase in the general solution,

Rl(ρ) = Al (cos δlJl(kρ)− sin δlYl(kρ))

and logarithmic derivatives matching at the interface ρ = Rad results in

tan δl =
Jl(kRad) ∂ρJl(k̃ρ)|ρ=Rad

− Jl(k̃Rad) ∂ρJl(k̃ρ)|ρ=Rad

Yl(k̃Rad) ∂ρJl(kρ)|ρ=Rad
− Jl(kRad) ∂ρYl(k̃ρ)|ρ=Rad

.

For l = 0 and using the derivatives ∂xJ0(x) = −J1(x) and ∂xY0(x) = −Y1(x), we achieve

tan δ0 =
−k̃J0(kRad) J1(k̃Rad) + kJ1(kRad) J0(k̃Rad)

−kJ1(kRad)Y0(k̃Rad) + k̃J0(kRad)Y1(k̃Rad)
. (C.1)
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J. Rech, T. Jonckheere, T. Martin, C. Grenier, D. Ferraro, P. Degiovanni, and
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[118] S. G. Davison and M. Stȩślicka, Basic theory of surface states, volume 46 (Oxford
University Press, 1992).

[119] F. J. Giessibl, “High-speed force sensor for force microscopy and profilometry
utilizing a quartz tuning fork”, Applied Physics Letters 73, 3956 (1998).

[120] F. J. Giessibl, “The qPlus sensor, a powerful core for the atomic force microscope”,
Review of Scientific Instruments 90, 011101 (2019).

[121] F. J. Giessibl, “A direct method to calculate tip–sample forces from frequency
shifts in frequency-modulation atomic force microscopy”, Applied Physics Letters
78, 123 (2001).

[122] L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, “The Chemical Structure
of a Molecule Resolved by Atomic Force Microscopy”, Science 325, 1110 (2009).

[123] N. Moll, L. Gross, F. Mohn, A. Curioni, and G. Meyer, “The mechanisms
underlying the enhanced resolution of atomic force microscopy with functionalized
tips”, New J. Phys. 12, 125020 (2010).

[124] C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University
Press, 2007).

[125] F. J. Giessibl, “Advances in atomic force microscopy”, Rev. Mod. Phys. 75, 949
(2003).

[126] W. Lawrence and B. Bragg, “XLII. The crystalline structure of copper”, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
28, 355 (1914).

[127] S. Kevan, “Evidence for a new broadening mechanism in angle-resolved
photoemission from Cu (111)”, Phys. Rev. Lett. 50, 526 (1983).

[128] W. Shockley, “On the Surface States Associated with a Periodic Potential”, Phys.
Rev. 56, 317 (1939).

121



Bibliography

[129] P. O. Gartland, S. Berge, and B. J. Slagsvold, “Photoelectric Work Function of
a Copper Single Crystal for the (100), (110), (111), and (112) Faces”, Phys. Rev.
Lett. 28, 738 (1972).

[130] R. Haberman, Applied Partial Differential Equations - With Fourier Series and
Boundary Value Problems (Pearson Prentice Hall, New Jersey, 2004), fourth
edition.

[131] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products
(Academic press, 2014).

[132] M. J. Kelly, R. E. Palmer, and S. Crampin, “Electron states in quantum
corrals”, Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences 362, 1149 (2004).

[133] M. Weiß, Tunnelspektroskopie an einem Kohlenstoffmonoxid-Quantum-Corral,
Master’s thesis, Universität Regensburg (2021).

[134] P. G. Averbuch, “Zero energy divergence of scattering cross sections in two
dimensions”, J. Phys. A 19, 2325 (1986).

[135] S. Hunklinger, Festkörperphysik (De Gruyter Oldenbourg, 2017).

[136] F. Stilp, Untersuchung der Eigenzustände eines Quantum Corrals aus
Eisen-Adatomen auf Cu(111) mittels kombinierter Rasterkraft- und
Rastertunnelmikroskopie, Master’s thesis, Universität Regensburg (2021).

[137] J. Lennard-Jones, “Processes of adsorption and diffusion on solid surfaces”,
Transactions of the Faraday Society 28, 333 (1932).

[138] F. Huber, J. Berwanger, S. Polesya, S. Mankovsky, H. Ebert, and F. J.
Giessibl, “Chemical bond formation showing a transition from physisorption to
chemisorption”, Science 366, 235 (2019).
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[149] M. Ellner, N. Pavliček, P. Pou, B. Schuler, N. Moll, G. Meyer, L. Gross, and
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