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Chapter 1

Preliminary Concepts

1.1 Introduction

Research in the notion of brain connectivity aims to improve our understand-
ing on how neural populations, organized in complex networks, communi-
cate and exchange their information in the human brain. Until now, different
concepts of brain connectivity could provide us with distinct, but complemen-
tary aspects of the information processing in brain networks [128, 78]. On one
hand, non-invasive neuroimaging techniques like functional magnetic reso-
nance imaging (fMRI) allow us to temporally resolve dynamic neural activity
distributions in distinct locations in the brain, when a subject is stimulated,
performs a task or simply rests. Statistical approaches that describe the co-
herency of activity profiles in separate units of the nervous system were de-
veloped in the field of functional connectivity (FC) [113]. Such measures of
coherency are highly time-dependent, and thereby characterize dynamic as-
pects of the communication in brain networks. On the other hand, neuroimag-
ing modalities like diffusion weighted imaging (DWI) provide us a possibility
to resolve aspects of structural organization of the brain [61]. By measuring
the diffusion of water, this modality allows us to reconstruct tracks of white
matter bundles, which form the structural substrate for the information ex-
change in brain networks. This type of connectivity between brain areas is
usually denoted as the anatomical or structural connectivity (SC) and is con-
sidered as the static counterpart of functional connectivity. In comparison to
rapid fluctuations in FC, SC is usually associated with alterations on consid-
erably longer time-scales. Such fundamental changes in the brain structure
are mainly related to the natural development of the brain, aging or disease
[10, 62]. While correlation-based FC and SC constitute undirected measures
of connectivity, a third category of brain connectivity was introduced, which
deals with directed and potentially causal relationships between brain regions
[113]. Such directed dependencies in brain networks are typically inferred
from Granger causality or dynamic causal modeling [47]. Based on these dif-
ferent concepts of functional and structural brain connectivity, a central ques-
tion in neuroscience is how the structure of the brain is related to its functions.
Between regions with strong SC we can usually observe also a pronounced
FC, but the inverse observation can not always be made [69]. Accordingly, the
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structure-function relation in brain networks is apparently more complex and
is still a current topic in brain connectivity research.

First, comprehending this interplay between different areas in brain net-
works can supplement our understanding of how information is distributed
and processed in the human brain. On shorter timescales, changes in the func-
tional organization of such brain networks can be related to different cognitive
states of a subject, while on longer timescales, alterations of the functional and
structural networks can be caused naturally by aging or learning [36]. More-
over, concepts of brain connectivity find initial applications in clinical research
topics. For example changes in the structural and functional connectivity can
serve as biomarkers for the diagnosis of multiple sclerosis [43, 84]. In Parkin-
son’s disease, functional and structural connectivity profiles can be used as
predictors for the outcome of the treatment with deep brain stimulation [70].
By this means, brain connectivity analysis has established itself as a useful
research method for various applications in neuroimaging studies.

Recently, the analysis and processing of data with graph-like structures
has also received increasingly attention in the field of machine learning [133,
22]. Artificial neural network based models were developed in the notion of
graph neural networks (GNNs), which are able to effectively account for the
non-Euclidean geometry in graph-structured data [23, 40]. This makes GNNs
also interesting for applications in brain connectivity research [99, 126, 77, 8,
81, 75, 128], where the dynamic states of a brain network can be associated
with graph-like signal distributions. On one hand, neural activity in different
regions in the brain network would represent the temporally varying signal
on the graph structure. On the other hand, edges in this graphical model
of a the brain would then reflect the strength of interactions between segre-
gated neural populations. For such dynamic graph signals a specific type
of GNN has been developed, denoted as spatio-temporal graph neural net-
work (STGNN). The idea of STGNNs is to simultaneously model spatial and
temporal dependencies in graph-structured signals. As such they allow us
to combine information on temporal neural dynamics, as observed in fMRI,
with structural spatial information, derived from DWI. In this manner they
are able to provide us a new possibility to study spatio-temporal dynamics in
brain networks from a multi-modal perspective. The concept of this graphical
representation of a brain state is further illustrated in figure 1.1.

As of date, in machine learning research different STGNN architectures
have been developed, proposing different strategies to model the information
propagation across time and space in graph-structured signals [133]. To cap-
ture spatial dependencies in graph-like signal distributions, driven by their
success in computer vision, convolutional neural networks (CNNs) have been
recently extended for data with graphical structures [40]. In a subsequent
step, these graph convolutional networks have been combined with recur-
rent neural networks (RNNs) [100], which enable us to account for temporal
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FIGURE 1.1: An illustration of a spatio-temporal graph signal is pro-
vided in (a). Based on the definition of a brain atlas (a2), the human
brain can be segregated into functionally distinct regions, which are
represented by the nodes in the graphical representation of a brain net-
work. The neural signal strengths in these different regions or nodes of
the network can be observed with neuroimaging techniques like func-
tional magnetic resonance imaging (fMRI). An example of a volumetric
fMRI image is shown in (a3). Dynamic functional interactions between
different regions are spatially constrained by the structural layout of the
brain. These structural white matter tracks can be reconstructed from
diffusion weighted imaging (DWI), which would characterize the edge
strengths in the brain graph (a1). These spatial and temporal dependen-
cies in dynamic brain networks can be modeled with spatio-temporal
graph neural networks (STGNNs), as illustrated in (b). The objective of
a STGNN model is to predict from a sequence of Tp past brain network
states a sequence of Tf future network states. Thereby the STGNN can
learn to detect temporal and spatial dependencies in the imaging data,
what allows us to study spatio-temporal characteristics of neural dy-

namics in brain networks.
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relations in graph-structured signals. This variant of STGNN, denoted as dif-
fusion convolution recurrent neural network (DCRNN) [82], will be the first
architecture studied in its task of spatio-temporal modeling of neural dynam-
ics in brain networks. As an alternative to this RNN based approach, one-
dimensional convolutions were implemented in the so-called graph WaveNet
(GWN) architecture to capture temporal dependencies in the graph signals
[134]. In addition to these different temporal models, different strategies will
be compared, to model the neural signal propagation between different brain
regions in the network. Based on the idea that white matter tracks estab-
lish the physical substrate for the propagation of neural signals, the structural
connectivity as observed in DWI will be incorporated as the substrate for the
information exchange between brain regions. In a recent study, Rosenthal et
al. [99] have shown that so-called connectome embeddings (CEs) of struc-
tural connectivity can inherently capture higher order topological relations
between nodes in the structural brain graph. Therefore, as an alternative
to the original structural connectivity, these CEs will be used to account for
higher order transitions of information between regions in the structural net-
work. Finally these scenarios are compared to the case when there is no pre-
defined spatial layout integrated into STGNN models, thereby trying to learn
all spatial relations between brain areas during the training of the STGNN
model. Based on these comparisons the objective is first to identify the most
efficient STGNN architectures to model spatial and temporal dynamics ob-
served in complex brain networks.

In a next step these STGNN based approaches are then compared to the
currently most popular data-driven approach for directed connectivity anal-
ysis in brain networks. The analysis with Granger causality follows the idea
that if one event A would cause another event B, then event A should pre-
cede B, and the occurrence of event A should contain information about the
occurrence of event B [9]. In the context of neuroimaging the idea of Granger
causality is implemented in a predictive framework, by testing if adding in-
formation on the activity in a certain brain region A improves the prediction
of activity in another region B. Until now the underlying predictive model
in Granger causality is most often based on a vector auto regression (VAR)
for multivariate timeseries forecasting [47, 9]. But in a brain network with
N regions, the number of parameters which determine the coupling between
all individual regions grow in a VAR with order N2, so for larger brain net-
works it can be challenging to accurately fit the model if only limited data are
available. This limitation is especially problematic in fMRI, where the tem-
poral sampling rate is relatively low, while its high spatial resolution would
allow for a detailed network analysis including a high number of regions N.
Therefore it would be advantageous for fMRI studies to have a predictive
model that learns interactions between all N brain areas of interest, and in ad-
dition naturally scales to larger brain networks. For this purpose the STGNN
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approaches will be compared to a classical VAR model in this thesis. To ac-
count for different scenarios in their applications, the test accuracy of these
models will be studied on a variety of network sizes and dataset sizes. The re-
sults will show that by learning localized functional interactions based on the
structural network, STGNN models are able to accurately forecast functional
neural dynamics, even when the brain network of interest becomes very com-
plex and only few data are available to fit the model. This demonstrates that
the STGNN approaches perform reliably among a large variety of fMRI study
scenarios, and can also be utilized for investigations of smaller subject cohorts,
like in studies of patients with rare neurological diseases.

In a subsequent step a concrete application of STGNN for directed con-
nectivity analysis will be presented. In this context, a method is introduced
to make spatial dependencies learned by STGNN models explainable, which
allows us then to reconstruct interactions between brain regions captured in
these models. By combining information inferred from fMRI and DWI data,
these STGNN models can provide us a new multi-modal perspective on di-
rected relations between individual areas in brain networks. Unlike the major-
ity of current approaches that investigate the structure-function relation in the
brain, which mostly try to infer only the overall functional connectivity from
the structural graph [69, 39, 88, 41, 1, 12, 4], the STGNN models are able to
directly replicate the observed neural activity distributions and their dynamic
interactions on the structural substrate. Thus, this concept of simultaneously
modeling spatio-temporal dynamics allows us to study the structure-function
relationship in the human brain from a novel perspective.

Usually more complex machine learning models require a larger amount
of data to achieve a very good performance, but often it is not economical
feasible in MRI to conduct studies with very large sample sizes. To address
such issues, a model training strategy will be presented that can improve the
accuracy of STGNN models in small MRI studies. So-called transfer learning
can enhance the performance of machine learning models by pre-training the
model on a large dataset and transferring the acquired knowledge to the new
target domain [94]. Based on this idea the DCRNN will be pre-trained on a
publicly available large-scale dataset of 100 resting-state fMRI sessions pro-
vided by the Human Connectome Project [122]. It will be shown that this pre-
training strategy can considerably improve the model accuracy on a smaller
dataset of 10 MRI sessions collected at the Brain Imaging Center of the Univer-
sity of Regensburg. This demonstrates that the DCRNN is able to generalize
across MRI scanner types and acquisition protocols, which grants us the pos-
sibility to apply transfer learning in this context of brain connectivity analysis.

Before discussing these possible applications of STGNNs in MRI, the the-
sis will at first in section 1.2 treat the general theory on artificial neural net-
works, which will provide a foundation for introducing the STGNN models.
Further the relevant neuroimaging techniques will be outlined in section 1.3,
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in addition with the currently established concepts of brain connectivity anal-
ysis in section 1.4. The second part of the thesis will then discuss in chapter
2 the concepts and results of STGNN applications in neuroimaging in more
detail.
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1.2 Neural Networks

The following section will introduce the basic concepts of artificial neural net-
works, and then focus on several neural network variants, which are relevant
for applications in the field of brain connectivity. The derivations rely on the
books of Goodfellow et al. [55] and Bishop [19], together with the publications
of the original research. Research in artificial neural networks and research
in neuroscience have a rich history of inspiring and influencing each other.
On one hand early neural network models were designed to achieve a better
understanding on how information is processed in biological brain networks
[87, 98, 48]. On the other hand neural network algorithms nowadays have
successfully contributed to our ability to process and interpret complex large-
scale data, which are often available in neuroimaging studies [35, 127]. This
thesis presents an application of artificial neural networks for analyzing and
interpreting network structures observed in the human brain.

For different types and structures of data, specialized variants of artificial
neural networks have been developed. Feedforward neural networks constitute
the most elementary form of artificial neural networks, which will be intro-
duced in section 1.2.1. The subsequent section 1.2.2 elaborates on current opti-
mization techniques for successfully training neural network models in order
to find relevant patterns in the data. In the subsequent parts some more spe-
cialized neural network architectures will be described. Section 1.2.3 starts to
outline convolutional neural networks (CNNs), which are specifically designed
for data with a grid-like structures. These principles are then generalized to
graph-like structures in section 1.2.4 and subsequently in section 1.2.5 net-
work architectures for sequential data structures are introduced. These geo-
metric variants are then combined in the notion of spatio-temporal graph neural
networks (STGNNs), which are designed to model dynamic signals on graph-
like structures. In this manner, the theory on artificial neural networks will
provide a foundation to understand their applications in brain connectivity
analysis presented in the second part of this thesis in chapter 2.
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1.2.1 Feedforward Neural Networks

Feedforward neural networks, also denoted as multi-layer perceptrons in literature,
were the first and simplest form of artificial neural networks, and represent
the elementary components of recent neural network architectures. In general
a neural network model can be considered as an universal approximator for
a function f ∗. As an example we can consider a classification problem, where
an input x is related to a category y via the function y = f ∗(x). Then a feed-
forward neural network can be used to learn a mapping y = f (x, θ) by opti-
mizing its parameters θ such that it best approximates the underlying relation
between observed variables y and x. In a feedforward network model the infor-
mation is propagated in one way from the input x through the computations
performed by f to its output y, without any feedback or cyclic connections in
the network. Such models f (x) are typically composed of multiple functions
f (l), which are then concatenated in a chain-like structure, like for example
f (x) = f (3)( f (2)( f (1)(x))). In this context the individual functions f (l) are re-
ferred to as layers of the neural network, and the number of layers define the
depth of the network. Models with multiple layers are usually referred to as
deep neural networks. They are loosely inspired by biological neural networks
in the sense that the layers f (l) are often vector-valued functions, and each el-
ement of the vector could be associated with a neuron in the brain. Each such
unit (neuron) receives its input from multiple other units (neurons), which
then determine its output value (activity level). Therefore research in neural
networks is often guided by insights drawn from neuroscience and biology,
but in practical applications the main goal is still to acquire good statistical
generalization, instead of representing an exact replication of biological intel-
ligence.

The layer-wise structure for neural networks can be motivated by at first
considering a single-layer network. Assume we would like to learn a relation
f ∗ between some vector-valued P-dimensional data points x ∈ RP and its
corresponding Q-dimensional output values y ∈ RQ by using a single-layer
neural network denoted as f (1)(x; θ). With its parameters θ consisting of W
and b, a single-layer neural network f (1)(x; W, b) can be defined as:

y = Φ(Wx + b) (1.1)

The individual entries xp of an observed data sample x ∈ RP are called the
features of the dataset. The multiplication with a parameter matrix W ∈ RQ×P

yields then a weighted sum of the input features x and the parameters W are
therefore referred to as weights of the neural network. The parameters in the
second term b ∈ RQ add an additional offset to the input values and are de-
noted as biases. Further Φ(ν) denotes the (element-wise applied) activation
function, what is usually defined to be a non-linear function of its argument
ν = Wx + b. The structure of this single-layer network can be illustrated like
in figure 1.2 (a). Typical functions to model the activation level Φ(ν) include
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the sigmoid function Φ(ν) = 1
1+e−ν , the signum function Φ(ν) = sgn(ν), the

hyperbolic tangent Φ(ν) = tanh(ν), or the rectified linear unit (ReLU) func-
tion Φ(ν) = max(0, ν). These commonly used activation functions Φ(ν) are
shown in figure 1.2 (c).

FIGURE 1.2: Figure (a) shows an example of a single-layer network. In
this example an element x1 of the input x is directly connected to an
output neuron y1 via a scalar weight w11, as defined in equation 1.1. In
a multi-layer network (b) an input x1 is first mapped to an intermediate
representation h1 via a weight in the first layer w(1)

11 . Then this hidden
state is connected to an output neuron y trough a weight in the second
layer w(2)

11 . Figure (c) shows functions that are commonly used to define
the activation level Φ(ν) in neural networks.

A multi-layer network structure can then be obtained by using the out-
put of single layer h = f (1)(x) as an input for a subsequent layer f (2)(h).
This intermediate representation h is seen only by the network itself and is
therefore called the hidden state. The comparison between the structure of
a single-layer network and a multi-layer network is illustrated in figure 1.2
(a) and (b). It is necessary to choose Φ(ν) as a non-linear function, in order
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to avoid that the concatenation of two functions f (x) = f (2)( f (1)(x)) results
again in a linear model. For example if we neglect the bias terms and de-
fine f (1) = W(1)x and f (2) = W(2)x, then we would obtain the trivial repre-
sentation f (x) = W(2)W(1)x = Ŵx. This shows that a non-linear activation
function Φ(ν) is required in order to also learn non-linear relations between
the input variables x. Concatenating multiple functions f (l) allows us to rep-
resent more complex patterns in the data, and enables us to also solve non-
linear tasks. An illustration of the effect of using such hidden layers is given
in figure 1.3. On the other hand using more layers f (l) increases the num-
ber of parameters and complexity of the neural network model, and makes it
considerably more challenging to find the optimal parameters θ to achieve a
model with good statistical generalization. In the following section some tech-
niques will be introduced, which were developed to account for such complex
optimization problems.

1.2.2 Neural Network Training

The goal of training a neural network f (x, θ) is to approximate some empirical
relation y = f ∗(x) as accurately as possible by optimizing its model parame-
ters θ. An essential aspect is therefore the definition of a suitable cost function1

for this optimization problem. In most cases such functions can be derived
from the maximum likelihood principle. If we define the probability distribu-
tion of our model outputs as pmodel(y|x; θ), we can obtain a cost function as
the negative log-likelihood of the distribution:

J(θ) = −Ex,ylog pmodel(y|x; θ) (1.2)

Here Ex,y denotes the expectation value over samples x and respective targets
y. If we assume that the distribution of our model follows a Gaussian dis-
tribution pmodel(y|x; θ) = 1

σ
√

2π
e−

1
2 (

y− f (x;θ)
σ )2

we would then recover the mean
squared error (MSE) cost function:

J(θ) =
1
2

Ex,y ‖y− f (x; θ)‖2
2 + const (1.3)

with a scaling factor of 1
2 and a constant term, which is independent of the

models parameters θ. Another cost function can be derived from the family
of exponential distributions by replacing the squared L2 norm in the argument
of the Gaussian distribution by a L1 norm. This yields then the mean absolute
error (MAE):

J(θ) = Ex,y ‖y− f (x; θ)‖1 (1.4)

Based on the learning task, a suitable cost function can be designed, and be-
sides those already introduced above, also entropy-like functions and other

1In machine learning literature the cost function of neural network optimization is also
often denoted as objective function or error function.
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FIGURE 1.3: This figure illustrates the differences between a single and
multi-layer neural network in their capabilities of learning structures
in data. In this example the data samples x ∈ R2 are points in a two-
dimensional space, as shown in (a). The target values y ∈ R1 are either
0 (depicted in blue) or 1 (depicted in red). In dataset 1, in the top row,
the two categories of data points can be separated linearly, while in
dataset 2, in the bottom row, there exists a more complex relationship
between the features x1 and x2. The predictions of a single-layer net-
work are illustrated in the second column in (b), after fitting the neural
network parameters to the observed data. The predicted values of the
neural network are illustrated by the blue and red contours across the
feature space, whereby blue contours illustrate the areas where the net-
work predicts a 0 and red areas where its output is 1. It is apparent
that a single-layer network can successfully solve the linearly separable
problem, but it is not able to learn the non-linear relationship between
x1 and x2 in dataset 2. In contrast thereto, the last column (c) shows the
predictions of a multi-layer network, which consists of an input and
output layer, and additionally a hidden layer h ∈ R100. By learning an
intermediate non-linear representation h, such a multi-layer network
architecture can also solve the non-linear problem given in dataset 2.

specialized cost functions have been developed [55]. Because they were not
used for the applications in this thesis, they will here not be outlined in more
detail.

Using a nonlinear neural network model for y = f (x, θ) causes the cost
functions J(θ) to become non-convex, which makes it considerably more chal-
lenging to find optimal parameters θ than in linear models. The problem can
be visualized by considering a geometric view of the cost function landscape,
like that shown in an example in figure 1.4. Because it is not possible to find
analytic solutions for such optimization problems in most cases, specialized
algorithms have been developed for the training of neural networks, which
mainly emerged from gradient-based optimization.

Suppose we would like to minimize the cost function with respect to the
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FIGURE 1.4: An example of a cost function is illustrated in this figure.
If we would like to find optimal values for some network weights w,
then the values of the non-convex cost function J(w) can be viewed as
a surface on the model weight space w, as illustrated in red. A local
optimum is located in point wA and the global optimum can be found
in point wB. The local gradient of the cost function in any point wC can
be represented by a vector ∇J(wC), shown here in green, which points

into the direction of steepest increase. Adapted from [19].

parameters θ, then the gradient g = ∇θ J(θ) would point into the direction of
greatest increase of the cost function J(θ) with respect of θ, like that shown
in figure 1.4. Accordingly, taking a small step into the direction of −∇θ J(θ)
would reduce the cost. To obtain a scalar value for the cost function J(θ) dur-
ing learning, the initial information in form of inputs x is propagated through
all hidden layers in the network to obtain the predictions y of the neural net-
work, which is denoted as forward propagation. In a second step, to derive the
gradients of the cost function, the information is passed backwards through
the network. This algorithm to compute the gradients is therefore called back-
propagation, and is described in more detail in Appendix A.1. Using these
gradients g = ∇θ J(θ) allows us then to deduce different learning rules for
optimizing the models parameters θ. Based on this idea, a simple iterative
update rule denoted as gradient descent can be defined as:

θ← θ− η∇θJ(θ) (1.5)

The parameter η in this equation determines the step size of the parameter
update and is referred to as learning rate of the algorithm. The original cost
functions J(θ) include the expectation value Ex,y across the complete set of
data samples and labels x, y (as defined in equations 1.3 and 1.4), but com-
puting the exact gradient can be become computationally very expensive for
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large datasets. Therefore most often the gradient is evaluated on a subset
of data samples denoted as minibatch. Additionally using small batches of
training samples has a regularization effect on the optimization and can be
beneficial for the generalization performance of neural network models [131].
By drawing a random subset of samples {x(1), . . ., x(S)} an unbiased estimate
of the gradient ĝ can be computed as:

ĝ =
1
S
∇θ

S

∑
s=1

J( f (x(s), θ), y(s)) (1.6)

And the model parameters θ can be updated respectively with:

θ← θ− ηĝ (1.7)

Such gradient-based techniques do not guarantee that we will find the global
minima for such optimizations problems, but for many applications local min-
ima often have a sufficiently low value to achieve a satisfactory model perfor-
mance [38, 55].

In areas of flat spots in the cost function landscape the gradient of the
cost function ∇θ J(θ) can become very small, and using an update rule like in
equation 1.7 would slow down the learning process of the model. To address
this problem, the concept of momentum learning was introduced. In analogy
to physics the gradient of the algorithm can be interpreted as force which
accelerates the learning according to the following update rule:

v← αv− η
1
S
∇θ

S

∑
s=1

J( f (x(s), θ), y(s)) (1.8)

θ← θ+ v (1.9)

with velocity v, a parameter α ∈ [0, 1) that describes the weight decay of the
subsequent update step, and a parameter η that determines the contribution
of the new gradient. Increasing the value of α would lead to an update which
points more strongly into the direction of the previous gradient, so if the suc-
cessive gradients are aligned to each other, such update would accelerate the
learning into the prevailing direction. This approach helps us to mitigate the
problem of finding the proper learning rate, but comes with the cost of intro-
ducing an extra hyperparameter, which can affect the optimization process.
In addition, individual parameters might require different learning rates in
order to optimally converge.

This gave rise to the idea of using separate learning rates for each param-
eter individually, and automatically adapting those during the optimization
process. Based on this concept various algorithms have been developed [102]
and one of the most prominent is the adaptive moments algorithm, denoted as
the Adam optimizer [76]. Similar to the concept of momentum learning in-
troduced above, this algorithm keeps an exponentially decaying average of
gradients g in the past. At first the Adam optimizer computes the decaying
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averages of the gradient and the squared gradient as described in the follow-
ing:

s← ρ1s + (1− ρ1)g (1.10)

r← ρ2r + (1− ρ2)g� g (1.11)

were s and r represent the estimates for the first moment (mean) and second
moment (uncentered variance) of the gradients g. In equation 1.11 the symbol
� denotes the elementwise (Hadamar) product. The parameters ρ1, ρ2 ∈ [0, 1)
determine the decay rate for the moment estimates. Initializing s and r with
0 can lead to a bias in the early training towards 0, which motivates us to
introduce the following bias correction in dependence of training time step t:

ŝ← s
1− ρt

1
(1.12)

r̂← r
1− ρt

2
(1.13)

With these bias corrected moments the model parameters θ can then be up-
dated with:

∆θ = −η
ŝ√

r̂ + δ
(1.14)

θ← θ+ ∆θ (1.15)

where the constant δ is chosen to be a small number to stabilize the division
in 1.14, usually set to 10−6 and η represents the global learning rate. Such al-
gorithms with adaptive learning rates have been shown to perform well on a
large variety of tasks [102], but another crucial aspect that can determine the
result of the optimization is the initialization strategy of the model parame-
ters.

The learning strategies introduced above are all based on iterative update
rules, and therefore require the user to predefine initial values for the param-
eters θ. This initial point can have a strong influence on how quickly an op-
timization algorithm converges or even, if it converges at all. One crucial
property, which the weights w of a neural network should have, is that activa-
tions in the forward pass and the gradients in the backward pass should not
explode nor vanish. A popular initialization strategy based on this idea was
proposed by Glorot and Bengio [52], who recommended to initialize weights
w of a layer with Qin input neurons and Qout output neurons as the following:

w ˜ pU

( √
6

Qin + Qout

)
(1.16)

Here pU(a) denotes a uniform distribution in the interval from −a to a. Glo-
rot and Bengio [52] have showed in their study that initializing w by sampling
from this distribution allows us to preserve the variance in the forward and in
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the backward pass at the beginning of model training. Originally the initial-
ization strategy in equation 1.16, was derived for neural networks containing
only linear activation functions, but this principle has shown to be useful for
also non-linear models [55]. However for highly non-linear functions like the
ReLU activation function (as illustrated figure 1.2 (c)), an improvement was
proposed by He et al. [65]. They could demonstrate that the variance in the
forward and backward pass in networks with ReLU activations can be pre-
served by initializing the weights w with:

w ˜ pG

(√
2

Qin

)
(1.17)

Whereby pG(a) denotes a zero-mean Gaussian distribution with variance a.
This strategy could improve the convergence in large multi-layer neural net-
works with ReLU activation functions and is typically denoted as Kaiming or
He initialization [65].

A sometimes even more efficient strategy used to initialize the neural net-
work parameters is offered by the so-called transfer learning. This learning
strategy uses the knowledge gained from training in one domain and trans-
fer this knowledge to a second domain, with the goal to improve the per-
formance in the new learning task. The intuition behind this can be illus-
trated by an example in computer vision, if one for instance has the goal to
detect foxes in an image. If for the learning task only few example images
of foxes are available, one could at first train the model on a large dataset of
cat images, and use this prior information contained in the pretrained model
weights to learn to recognize foxes in the new task. More formally speaking
we can define a source domain dataset as DS ∈ {(x(1)S , y(1)S ), . . . , (x(N)

S , y(N)
S )},

where x(n)S represent data samples and y(n)S the corresponding labels. We can

first learn a function fS(xS; θS) which predicts the labels y(n)S from data sam-

ples x(n)S in the source domain. If we have our target domain data DT ∈
{(x(1)T , y(1)T ), . . . , (x(N)

T , y(N)
T )} we can then try to improve the generalizability

of our target function fT(xT; θT) by using prior knowledge obtained from our
learning problem fS(xS; θS) in DS. This can be achieved by using the parame-
ters θS of our model in the source domain, and initialize with these parameters
the training of our target function fT(xT; θT). The hope is that some factors
which determine the relation between y(n)T and x(n)T can also be found in the
relation between y(n)S and x(n)S . For example some basic visual shapes which
are relevant to recognize a cat might be similar to the patterns which can be
used to detect a fox.
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1.2.3 Convolutional Neural Networks

For data with a fixed, grid-like geometry, specialized neural network archi-
tectures were developed in the notion of convolutional neural networks (CNNs)
[48, 80]. Typical examples of data with such a geometry are images, which
can be considered as a 2-dimensional grids of pixel values, or time-series data,
which could be thought of as 1-dimensional grids of points regularly sampled
in time. As their name already suggests, they are based on the mathematical
convolution operation, which can be defined as the product of two functions
x(t) and θ(t) after the function θ(t) is flipped and shifted:

(x ∗ θ)(t) =
∫

x(τ)θ(t− τ)∂τ (1.18)

In the context of neural networks the first argument x is here referred to as
the input to the convolution and the second argument θ as the kernel. The flip-
ping of the kernel in a convolution is based on the property that if τ increases,
the index of the input x(τ) increases, while the index of the kernel θ(t − τ)

decreases. In practice the input is most often data sampled from discrete mea-
surements, so therefore we can correspondingly use the discrete convolution
defined as:

(x ∗ θ)(t) =
∞

∑
τ=−∞

x(τ)θ(t− τ) (1.19)

In our context, the input is a multidimensional array of data, and the kernel
represents a multidimensional array of parameters, which are adapted during
the training of the neural network model. This operation can then further be
generalized to higher-dimensional data structures, for example to a convolu-
tion of a two-dimensional image X with a two-dimensional kernel Θ:

(X ∗Θ)(i, j) = ∑
n

∑
m

X(m, n)Θ(i−m, j− n) (1.20)

An example of such a convolution operation with a two-dimensional kernel
is visualized in figure 1.5.

The motivation to employ convolution operations in neural networks has
multiple facets. First it enables us to gain sparse interactions between input
and outputs units. As introduced in section 1.2.1, in a fully connected net-
work layer with P input and Q output units the number of weight parameters
would sum up to P ·Q. But often it is sufficient for a unit to detect only small
local features, for example in an image it would be possible to detect contrast
edges by considering only a small number of pixels. Therefore one can choose
the size of a kernel K usually to be much smaller than the input size K � P,
which significantly reduces the number of parameters and the computational
cost of the model.

The second principle entailed by convolutional neural networks is param-
eter sharing. By using convolutions each parameter of the kernel is applied at
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FIGURE 1.5: This figure shows an example of a two-dimensional con-
volution operation. The input array with size 3× 4 is convolved with a
2× 2 kernel, so shifting the kernel to every position of the input results
in a 2× 3 output array. The elements of the kernel are adapted by the
CNN during the training and by evaluating the similarity of the kernel
with the input at every position, the CNN can learn to detect patterns
in all different locations of the input array. Note that in violation to
the formal definition of a convolution, the flipping of the kernel is here
omitted, as the values of the kernel are ultimately adapted by the algo-
rithm during training. The operation without flipping of the kernel is
denoted as cross-correlation, but in the context of machine learning it is

usually equivalently referred to as convolution. Adapted from [55].

every position of the input in a layer2. This principle of parameter sharing
is illustrated in figure 1.6. By learning only one set of parameters, instead of,
as in fully connected networks, learning a separate parameters for every lo-
cation, the storage and memory requirements of the model parameters can be
reduced considerably.

This form of parameter sharing leads to another characteristic of CNNs
referred to as equivariance to translation. If we characterize the convolution
operation by a function f and define a second function g that translates its in-
put, then we would obtain the equivariance property f (g(x)) = g( f (x)). This
implies that if we shift our input, this would shift the output of the convolu-
tion layer the same way. This property is useful for instance when detecting

2Note that the kernel can be also applied at the boundary of a data array by adding proper
boundary conditions, for example by padding an image with zeros.
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edges in an image, which can appear at multiple locations, what motivates to
share the parameters of the kernel across the whole input space.

FIGURE 1.6: This figure illustrates the principle of parameter sharing
like that used in CNNs. In this example each unit in the first hidden
layer h(1) is connected with 3 weights to the input x. These weights
are shared across the units in layer h(1) and in this illustration shared
connections are depicted in the same color. This example resembles a
convolution with a kernel of size of K = 3. Multiple of such convo-
lution layers can be stacked in neural network architectures to obtain
more complex representations of the input. Even though each of the
single units has only sparse connections, units in higher layers can be
indirectly connected to a larger portion of the input. The region of the
input that affects a neuron is called the receptive field, which grows for
neurons in higher layers. The receptive field of a unit in the layer h(2)

is highlighted in blue in this figure.

In practice we do not only apply a single convolution, but multiple convo-
lution operations taking place in parallel as introduced in equations 1.19 and
1.20. Using a number of such convolutions simultaneously, with different pa-
rameterized convolution kernels θ(q), allows us to detect distinct features in
the data. The outputs of such a convolution operation are usually referred
to as feature maps. By applying Q convolution operations simultaneously, we
would obtain Q different feature maps, whereby each feature map can capture
different characteristics of the data. For example if our convolution kernels
were trained to simply detect local contrast edges, one feature map could de-
tect horizontal edges in an image and another feature map the vertical edges.

Another technique which is often used in CNN architectures is the pooling
operation. The idea of incorporating pooling is to create a summary statis-
tic of nearby neurons in a CNN layer. This can be achieved by for example
max pooling, which only selects the neuron with highest activation within a
certain neighborhood. The principle of max pooling is illustrated in figure
1.7 (a). An alternative thereto is average pooling, where the average value of
a neighborhood is computed. The effect of incorporating pooling is also that
learned representations of the data become relatively invariant to small trans-
lations. This is convenient in computer vision tasks for example, where it is
more import if a feature is present in an image, but the exact location is less
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FIGURE 1.7: In figure (a) the principle of max pooling is shown. Max
pooling aggregates the activity of layer h(l) by taking its maximum
value within a pre-defined neighborhood of 3 in this example. The dis-
tance between the pooling regions here is d = 2, which reduces the
number of neurons from 7 to 3 in the subsequent layer h(l+1). Another
possibility to process the input on a coarser scale is to utilize dilated
convolutions, as illustrated in (b). In this example a dilation factor of
2 is used for the convolution between layer h(l) and h(l+1) and a factor
of 4 between h(l+1) and h(l+2). This allows the receptive field to grow
exponentially fast in higher network layers, highlighted here in blue,

and additionally helps to preserve the order structure of the inputs.

relevant. Creating such summaries of neurons we can then effectively reduce
the number of parameters in a model, if we choose the distance between two
pooling regions as d, we have roughly d times fewer neurons to process in the
subsequent layer, as shown in figure 1.7 (a). On the contrary in some applica-
tions it is crucial to preserve the exact ordering of the data input, for example
in time series analysis, where certain events in the past can be identified as
the potential cause for some events in the future. For processing temporally
structured data with CNNs, the WaveNet architecture was proposed by van
de Oord et al. [121]. The main idea of this CNN architecture is to implement
so-called dilated causal convolutions, which are depicted in figure 1.7 (b). Such
convolutions skip input values with a certain step, what allows the receptive
field then to grow exponentially fast in higher layers of the neural network.
The causal convolution operation ∗C can be derived from equation 1.19 by
additionally introducing a dilation factor d:

(x ∗C θ) (t) = ∑
τ

x(τ)θ(t− d · τ) (1.21)
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Using a dilation factor of d = 1 would resemble again a standard convolution.
Figure 1.7 (b) illustrates the convolution when considering a dilation factor of
2 between layer h(l) and layer h(l+1), and a dilation factor of 4 between layer
h(l+1) and layer h(l+2). Similar to pooling this principle enables the neural net-
work to process the data on a coarser scale, thereby using only a few hidden
layers and also preserving the causal structure of the data.

Several aspects of CNNs are inspired by findings in neuroscience research
on the human visual system [48]. Some of those principles implemented by
CNNs can be roughly compared to the processing in the primary visual cor-
tex, also denoted as V1. In a simplified view, V1 can be considered as the
area in the brain that performs the first significant processing of the visual
input. For instance V1 has a two-dimensional structure, which mirrors the
mapping of a an image in the retina. Similar to this characteristic, also CNNs
for image processing have arranged their features in two-dimensional maps,
as illustrated in figure 1.5. Further by moving to higher layers in an artifi-
cial neural network, we can find neurons that encode higher level concepts of
the network input from a composition of simple representations in the lower
layers. This concept is illustrated in figure 1.6, and can be compared to hierar-
chical processing also appearing in the ventral stream. These principles have
helped CNNs to become very successful in image processing problems, what
encouraged to transfer these ideas also to other geometric domains. While
convolution operations can be well defined on Euclidean data with grid-like
structures like images, it is less intuitive to define such convolution operations
in the irregular domain of graphs. Only relatively recently practical concepts
have been developed to generalize CNNs for data on a graph-like geometries,
which will be the focus in the following section.

1.2.4 Graph Neural Networks

Inspired by their numerous applications of CNNs in computer vision and
language processing, recently the interest emerged to modify CNNs to also
operate in the non-Euclidean domain of graphs. Data with graph-like struc-
ture can be found in various domains, for instance in citation networks with
papers interconnected via citationships, biochemistry where the structure of
molecules can be represented as graphs, or in neuroscience where neural in-
teractions can be described by functional brain networks. Such architectures
which are designed to deal with graphical representations of data are devel-
oped in the notion graph neural networks (GNNs) [133]. But unlike data on a
regular grid, graphs can have an irregular structure with a varying number
of unordered nodes, where each node can have a different number of neigh-
boring nodes. This renders it considerably more challenging to define useful
operations like convolutions in the irregular domain of graphs. A comparison
between a regular grid structure and an irregular graph structure is depicted
in figure 1.8.
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FIGURE 1.8: Comparison of a regular grid with a graph-like struc-
ture. Data structures like images can be interpreted as regular grids
(a), thereby representing a special case of a graph structure. In this case
each node (marked in red in this example) has a regular neighborhood.
In contrast thereto, in an irregular graph structure, as illustrated in (b),

each node can have a varying number of neighbors.

In graph signal processing we can define a graph as G = (V , E , A), with
V denoting a set of |V| = N nodes (or vertices), E representing a set of corre-
sponding edges, and A ∈ RN×N denoting the weighted adjacency matrix. One
entry wnn′ of the adjacency matrix A would indicate the connection strength
between node n and node n′ of a graph G. Then a feature or signal x : V → R

on the nodes of the graphs can be defined as a vector x ∈ RN where one en-
try xn describes the signal strength in node n. As we cannot simply define
a meaningful translation operation in the non-Euclidian geometry of graphs,
the graph convolution operation ∗G is defined by exploiting the graph Fourier
transform of the signal. This transformation can be defined using the combi-
natorial graph Laplacian operator [33]:

L = D−A (1.22)

where D ∈ RN×N represents the diagonal degree matrix with its entries ob-
tained as dnn = ∑n Wnn′ . The normalized graph Laplacian can then be defined
as:

L = I−D−1/2AD−1/2 (1.23)

with I ∈ RN×N representing the identity matrix. The graph Laplacian L
is defined as a real symmetric positive semidefinite matrix, and therewith a
complete set of orthonormal eigenvectors un ∈ RN can be associated with L.
The eigenvectors un are denoted as graph Fourier modes, and its corresponding
eigenvalues λn are called the frequencies of the graph. The Laplacian can be
diagonalized by the Fourier basis U = [u0, . . . , uN−1] ∈ RN×N with:

L = UΛUT (1.24)
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where Λ = diag([λ0, . . . , λN−1]) ∈ RN×N denotes the eigenvalue matrix.
Incorporating this basis allows us to define the graph Fourier transform of a
signal xt as:

xw = UTxt (1.25)

and its inverse:

xt = Uxw (1.26)

This enables to define a graph convolution operator ∗G in the Fourier domain
[23], obtained as:

yt = xt ∗G fθ (1.27)

= U((UTfθ)� (UTxt)) (1.28)

= U(θw � xw) (1.29)

where fθ represents a graph filter parameterized by θ and � the Hadamar
product in the conjugate domain. The parameterized filters θn are captured in
the conjugate vertex domain by the vector UTfθ ≡ θw = [θ1(ω), . . . , θN(ω)]T.
If it is replaced by a diagonal matrix of free parameters, which can be learned
by the model θw → Θw = diag(θ1(ω) . . . θN(ω)), it resembles a convolution
kernel and we obtain for the filtered signal:

yt = UΘwUTxt (1.30)

Learning such filters depends on the number of nodes N in the graph, which
can be computationally expensive for large graph structures. Therefore it
would be desirable to have geometric properties similar to CNNs, as intro-
duced in the previous section 1.2.3. To reduce the learning complexity and to
obtain filters, which are strictly localized in space, Defferrard et al. [40] pro-
posed to approximate the filter kernel by an orthogonal basis of Chebyshev
polynomials. The Chebyshev polynomial Ck(x) of order k can be computed
by the recurrence relation Ck(x) = 2xCk−1(x) − Ck−2(x) with C0 = 1 and
C1 = x. Accordingly, the graph filters can then be approximated be the fol-
lowing truncated expansion of polynomials:

Θw =
K

∑
k=0

θkCk(Λ̃) (1.31)

of order K. Here the parameters θk represent the Chebyshev coefficients and
matrix Ck(Λ̃) ∈ RN×N is the Chebyshev polynomial of order k, with Λ̃ =

2Λ/λmax − I denoting the eigenvalues re-scaled between [−1, 1]. Using this
polynomial filter defined in equation 1.31 and applying the transformation of
the graph signal in equation 1.30 leads to the following relation:
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yt =
K

∑
k=0

θkUCk(Λ̃)UTxt (1.32)

=
K

∑
k=0

θkCk(L̃)xt (1.33)

with L̃ = 2L/λmax − I representing the scaled Laplacian. In equation 1.33 we
obtain a spectral formulation of graph filtering, which is strictly localized in
space, i.e. restricted to K steps from the central vertex. This also effectively
reduces the learning complexity, because often only the local neighborhood
is most relevant for extracting features for a node, and K can be chosen with
an order K � N. In analogy to classical CNNs, multiple graph convolutions
q can be incorporated to learn different feature representations on the graph
structure, and by including a suitable non-linear transformation σ(·), the hid-
den state in a graph neural network can be obtained as follows:

h(q)
t = σ

(
y(q)

t

)
= σ

(
K

∑
k=0

θ
(q)
k Ck(L̃)xt

)
(1.34)

The spectral graph convolution defined in 1.33 is similar to a K-step diffusion
process on the graph. If we define a state transition matrix of a diffusion
process as T = D−1A we can define a diffusion convolution layer as:

h(q)
t = σ

(
K

∑
k=0

θ
(q)
k (D−1A)kxt

)
(1.35)

More precisely it can be shown that the diffusion convolution operation in
equation 1.35 is equivalent to the spectral formulation in 1.34 up to a simi-
larity transform [82, 126]. Based on this principle, the diffusion convolution
operation follows the spatial interpretation of the K-step truncation of a diffu-
sion process, where to each step k is assigned a trainable weight θ

(q)
k .

This derivation of a graph convolution operations presupposes a knowl-
edge about the spatial structure of the underlying graph, represented in its
adjacency matrix. Still there may exist hidden spatial relations of signals in
the network that are not represented in the original adjacency matrix used to
construct the Laplacian operator. For this purpose we can introduce an addi-
tional self-adaptive, normalized adjacency matrix AAdap ∈ RN×N [134]. The
latter is defined as a matrix of trainable weights VAdap ∈ RN×N , which can be
trained via gradient descent based optimization [76]. Inspired by the study of
Wu et al. [134], a normalized self-adaptive adjacency matrix can be defined as
[128]:

AAdap =
σAdap

(
VAdap

)
N

(1.36)

The function σAdapt(·) ≡ tanh(·) confines the weights within the range [−1, 1],
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which are normalized by the number of nodes N of the graph structure. This
self-adaptive adjacency matrix can help to uncover any hidden unknown de-
pendencies between nodes of a given graph structure. By including this adap-
tive adjacency structure AAdap into equation 1.35, we can extend a graph dif-
fusion convolution layer to yield its output as:

h(q)
t = σ

(
K

∑
k=0

(
θ
(q)
k Tk + β

(q)
k

(
AAdap

)k
)

xt

)
(1.37)

In this equation T represents the transition operator, which was defined for a
diffusion convolution as T = D−1A and θ

(q)
k denote the parameterized filter

kernels on the graph. The normalized self-adaptive adjacency matrix AAdap

may be considered as an additional transition operator here, with its respec-
tive filter parameters β

(q)
k . If no prior knowledge about the graph is available,

the first term within parentheses can be skipped and the self-adaptive adja-
cency matrix may possibly identify the underlying graph structure from the
data alone. This convolution operation can in that case be formulated as:

h(q)
t = σ

(
K

∑
k=0

β
(q)
k

(
AAdap

)k xt

)
(1.38)

Higher order relations between nodes have been characterized in graph con-
volutions by filter parameters θ

(q)
k , β

(q)
k which determine the influence of k-

hop transitions on the graph. Still the learning complexity of the GNN model
grows linearly with k when accounting for higher order transitions.

An alternative possibility for inherently capturing higher order relations
in a graph structure is provided by so-called node embedding algorithms.
The goal of such an embedding is to represent each node v ∈ V in the graph
G by a Q-dimensional vector, and thereby preserving the neighborhood role
of the node within network in this Q-dimensional embedding subspace [59].
One efficient variant is the node2vec model [59], which follows the idea of the
word2vec model, originally proposed by Mikolov et al. [89]. The word2vec
model learns vector-valued embeddings of words that can inherently cap-
ture their semantic context within a sentence. This idea can be transferred
to graph-like structures, by replacing sequences of words by sequences of
nodes, obtained from a biased random walk along neighboring nodes in a
graph [59]. To gain an intuition how node embeddings can be learned, the
Skip-gram model will first be introduced. In the context of graph signal pro-
cessing, the learning objective of this model is to predict from an input node
denoted as vI the C surrounding context nodes vO,c with c = 1, . . . , C. There-
fore the Skip-gram model has the objective to maximize the following average
log-probability [89, 97] of observing some context nodes vO,c within the neigh-
borhood of an input node vI :

J(vI) =
C

∑
c=1

log p(vO,c | vI) (1.39)
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where C determines the size of the training context around an input node vI .
The Skip-gram model is composed of an input layer x ∈ RJ , one hidden layer
h ∈ RQ and C output panels, consisting of C vectors denoted as yc ∈ RJ . In
the input and output layers nodes are represented using a one-hot encoding,
meaning that each element of the vector is 0 except for one element xk = 1.
An overview of the Skip-gram model is provided in figure 1.9. For the hidden
layer the model uses a linear activation function, so the hidden state h can be
computed as:

h = W(1)x = W(1)
:,k := w(1)

vI (1.40)

where W(1) ∈ RQ×J denotes the weight matrix of the first layer. Because x is
only non-zero at the k-th entry, this equation can be interpreted in a way that
x selects the k-th column of W(1) and simply copies it to the hidden layer h.
Each column of the matrix W(1) is accordingly selected by one specific node
in the graph, which motivates us to use the column w(1)

vI ∈ RQ of W(1) as a
vector representation of the respective input node vI . In a second step, one
shared weight matrix W(2) ∈ RJ×Q is used to generate predictions for the C
context nodes, as illustrated in figure 1.9. With the hidden state h, a single
unit j of the output layer uc = W(2)h of the c-th output panel can be obtained
by:

uc,j = W(2)
j,: h = W(2)

j,: w(1)
vI := w(2)T

vj w(1)
vI (1.41)

Here w(2)T
vj denotes the j-th row of weight matrix W(2), which determines the

activation corresponding to the j-th output node. To obtain a probability to
select a specific output node vj for a given input node vI , a softmax function
is finally applied:

p(vc,j | vI) =
exp(uj)

∑J
j′=1 exp(uj′)

=
exp(w(2)T

vj w(1)
vI )

∑J
j′=1 exp(w(2)T

vj′
w(1)

vI )
(1.42)

Because of the weight sharing between the c panels, like those illustrated in
figure 1.9, the output probabilities p(vc,j | vI) are identical for the c output
panels. With the output probability defined in equation 1.42 the objective
function in equation 1.39 can be maximized using stochastic gradient descend
based optimization techniques [89].

If two nodes appear frequently within a similar context c, then the out-
put probabilities generated by the Skip-gram model are optimized to become
similar for these two nodes during training. Equation 1.42 shows that the out-
put probabilities are derived from the dot products between w(2)

vj and w(1)
vI .

Therefore, in order to generate a similar response in the output, two input
node representations that appear frequently in a similar context are thereby
also optimized to have a high (cosine) similarity to each other. This can give
us a first intuition why representations of nodes w(1)

vI preserve meaningful
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FIGURE 1.9: This figure shows an illustration of the Skip-gram model.
The input x is a one-hot encoded node, which is first linearly projected
onto its hidden state h by a weight matrix W(1). The prediction of the
C context nodes is obtained by projecting h onto C one-hot encoded
vectors yc, which represent the output nodes. The weight matrix W(2)

is thereby shared between all output panels yc.

relations to neighboring nodes in their Q-dimensional subspace.
To learn the node representations, we have to additionally find a proper

definition of the context. In language processing the context of a word within
a text can be simply generated by sliding windows of neighboring words
across a text. But it is less straightforward for graphs to find an appropriate
definition of the context of a node v ∈ V within a graph structure G = (V , E).
The node2vec algorithm proposed one efficient procedure for sampling such
sequences of nodes that capture higher order topological relations between
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nodes [59]. In general different node sampling strategies have to find a trade-
off between local walks on the graph, e.g. visiting only nodes within the in-
termediate neighborhood of source node v, or a more global exploration by
sampling nodes with increasing distances from the source node v [59]. Im-
plementing the idea of a biased random walk to generate a node sequence
c1, c2, . . . , cC, the node2vec algorithm defines the probability of a transition
between node v and v′ as:

p(ci = v′ | ci−1 = v) =


πvv′

Z if (v, v′) ∈ E
0 otherwise

(1.43)

with πvv′ representing the unnormalized transition probability between node
v and v′, and Z denoting a normalization constant. The transition probability
is computed as πvv′ = αpq(t, v′) · wvv′ whereby wvv′ denotes the edge strength
between node v and v′ derived from the weighted adjacency matrix A. The
parameter αpq(t, v′) determines how quickly the walk will leave a previously
visited neighborhood. If t denotes the previously visited node, then the pa-
rameter is computed as:

αpq(t, v′) =


1
p if dtv′ = 0

1 if dtv′ = 1
1
q if dtv′ = 2

(1.44)

whereby dtv′ represents the shortest path distance between two nodes t and v′.
In this formulation dtv′ = 0 would represent the case returning back to node
t, dtv′ = 1 visiting a node within the neighborhood of t, and dtv′ = 2 leaving
the neighborhood of the previous node t. The different parameter settings of
αpq(t, v′) are additionally illustrated in figure 1.10.

FIGURE 1.10: The figure illustrates the values of parameter αpq(t, v′) for
the different pairs of nodes. The transition probability between node v
and the previously visited node t is weighted with α = 1

p . For visiting
a node v′1 within the intermediate neighborhood of t it will take a value
of α = 1. And for transitions to nodes v′2 and v′3 in a new neighborhood

it is obtained with α = 1
q .
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Accordingly, the parameters p and q would characterize the ratio of local
and global walks on the network. Setting p to a high value would lower the
probability of returning to an already visited node and support a more global
exploration. Setting q to a high value would bias the random walk to visit
more nodes within the neighborhood of the previous node t, favoring a rather
local exploration [59]. Using such a sampling strategy allows us to obtain a
sequence of nodes which captures the local and global neighborhood of nodes
within the graph, and helps us to define a meaningful context for a target node
in the node2vec model.

1.2.5 Recurrent Neural Networks

Similar to CNNs, which were developed to process data on grid-like struc-
tures, or GNNs, which are designed to deal with graphical representations,
so-called recurrent neural networks (RNNs) were established for analyzing data
with sequential structures [100]. Such RNN architectures were based on the
idea to iteratively process a sequence of data samples and to share parame-
ters across different processing steps in the recurrent model. This parameter
sharing across a sequence is useful in language processing applications for
example. If we consider two sentences "I visited Regensburg in 2019" and "In
2019 I visited Regensburg" and we would like to ask when the narrator has
visited Regensburg, the relevant information appears at different positions in
the two sentences [55]. Sharing the parameters across the sequence therefore
avoids to learn patterns for every possible position in the sequence separately
and allows us to detect features independently of their positions. If we as-
sume the data is represented by a sequence of vectors x(1), x(2), . . . , x(T) with
length T, then we can in generally describe the principle of a RNN with the
following equation:

h(t) = f (h(t−1), x(t); θ) (1.45)

In RNNs h(t) is referred to as the state, x(t) is the data input to the network
at step t, and θ summarizes the parameters of the model. The RNN model
therewith combines the information of the input x(t) at step t and its previous
state h(t−1) to recursively generate the subsequent state h(t). For example
in a prediction task the state h(t) could represent a condensed summary of
relevant information in the past up to timestep t. With this idea in mind, a
very basic form of a RNN can be defined as:

h(t) = Φh(Wh(t−1) + Ux(t) + b) (1.46)

y(t) = Φy(Vh(t) + c) (1.47)

In this notation the matrices W,U and V contain the trainable weights of the
model, and b and c summarize the bias terms. Further Φh and Φy represent
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some activation functions as introduced in section 1.2.1. The schematic lay-
out of a RNN is further illustrated in figure 1.11. Analogous to section 1.2.1
we can define a cost function which describes the distance between the model
outputs y(t) and the desired target outputs ŷ(t) and minimize the cost by using
optimization algorithms as introduced in section 1.2.2. Computing the gradi-
ent of the cost function with respect to the model parameters θ requires us to
backpropagate the error through the individual steps t of the sequence, which
is referred to as backpropagation through time (BPTT) [130]. The principle of the
BPTT algorithm is described in more detail in appendix A.2.

FIGURE 1.11: The structure of a RNN can be illustrated in two different
ways. In a compact representation, as shown in (a), the RNN model re-
ceives an input X = [x(1), x(2), . . . , x(T)] containing a sequence of states
x(t). The model parameters θ are reused for every input x(t) in order
to generate a sequence of hidden states H = [h(1), h(2), . . . , h(T)]. The
RNN model repeatedly uses its hidden states h(t) to generate an out-
put sequence of target values Y = [y(1), y(2), . . . , y(T)]. The individual
processing steps t can be explicitly displayed by unfolding the circuit
shown in (a) to the stepwise computations represented in (b). At each
step the input x(t) is combined with its previous hidden state h(t−1) to
generate the subsequent state h(t) and a target value y(t). The parame-
ters of the RNN summarized in θ are shared across the whole sequence.

One drawback of the recursive formulation in equation 1.46 is that by ac-
cumulating the gradient across very long sequences, the gradient tends to
become very small (vanishing) or extremely large (exploding) [67]. To ad-
dress this issue so-called gated RNNs were proposed. They are based on the
idea to introduce paths through time where the gradient values are more sta-
ble. The first very popular neural network architecture which implements
such mechanisms is the long short-term memory (LSTM) network proposed by
Hochreiter and Schmidhuber [67]. A LSTM network includes different gating
mechanisms, which allow us to dynamically control the temporal scale of in-
tegration of information. The weight of the self-loops is first controlled by a
so-called forget gate, which is computed as the following:

f(t) = σ(W( f )h(t−1) + U( f )x(t) + b( f )) (1.48)
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where x(t) denotes the input, and h(t−1) the hidden state vector. The weights
and biases of the forget gate are summarized in W( f ), U( f ) and b( f ). The activ-
ity of the forget gate is scaled between 0 and 1 by a sigmoid activation func-
tion σ(·). The crucial component of the LSTM is its internal state s(t) which is
updated as follows:

s(t) = f(t) � s(t−1) + g(t) � tanh(W(i)h(t−1) + U(i)x(t) + b(i)) (1.49)

with W(i), U(i) respectively denote the recurrent and input weights for the
LSTM and b(i) the bias term. In equation 1.49 the forget gate f(t) controls how
much information from the previous state s(t−1) is kept and the input gate
g(t) how much new information is added from its current data input x(t) and
previous hidden state h(t−1). The input gate is obtained as the following:

g(t) = σ(W(g)h(t−1) + U(g)x(t) + b(g)) (1.50)

Finally the output of the LSTM is controlled by an output gate o(t):

o(t) = σ(W(o)h(t−1) + U(o)x(t) + b(o)) (1.51)

h(t) = o(t) � tanh(s(t)) (1.52)

The schematic layout of a LSTM cell is illustrated in figure 1.12. This archi-
tecture has shown to efficiently capture long-term dependencies in data, and
made it possible to make reliable predictions for large horizons into the fu-
ture [67]. More complex representations of the sequence data can be learned
by including multiple concatenated LSTM cells at each time step.

A simplification of the gating introduced above was put forward in the
notion of gated recurrent units (GRUs) [32], which implement the idea of using
a single gating mechanism to determine the forgetting factor and the update
of the hidden state. They introduce an update gate z(t) and a reset gate r(t) as
depicted in the following:

z(t) = σ(W(z)h(t−1) + U(z)x(t) + b(z)) (1.53)

r(t) = σ(W(r)h(t−1) + U(r)x(t) + b(r)) (1.54)

The reset gate r(t) is used to control the amount of information which is trans-
ferred to the so-called candidate state c(t):

c(t) = tanh(W(c)(r(t) � h(t−1)) + U(c)x(t) + b(c)) (1.55)

The update gate u(t) can take values between 0 and 1 and therewith deter-
mines the proportion of the candidate c(t) which is passed to the new state in
the following way:

h(t) = (1− z(t))� h(t−1) + z(t) � c(t) (1.56)
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FIGURE 1.12: This figure shows an overview of the different gating
mechanisms in a single LSTM cell. The data input x(t) and the previous
hidden state h(t−1) are used to determine the activation of the forget
gate f(t) which controls the amount of information which is kept from
the state s(t−1). In a next step the proportion of new information is reg-
ulated by the input gate g(t) to compute the new cell state s(t). Finally
the output gate o(t) is used to control the information flow from the
cell state s(t) to the new hidden state h(t). The hidden state h(t) and
cell state s(t) can be passed to the subsequent LSTM cell to recurrently

update the model.

The schematic layout of a GRU cell is further depicted in figure 1.13. Besides
the LSTM and GRU other variants of gated RNNs were proposed, but these
two RNN architectures still proved to be the most reliable across a wide vari-
ety of tasks [57].

In various applications like speech recognition, machine translation or
time series forecasting, it is required to map a sequence of input values to
a sequence of generated outputs. For example in timeseries forecasting we
would like to infer from a sequence of historical observation a sequence of
future values. The so-called sequence-to-sequence learning [114, 32] provides
one possibility to process such sequentially structured data. The structure of
sequence-to-sequence architecture is illustrated in figure 1.14. A sequence-
to-sequence model is composed of two components, the first is an encoder
RNN, which recursively processes an input sequence of Tp past observations
[x(1), . . . , x(Tp)]. The encoder RNN summarizes the information in the input
sequence in its final hidden state h(Tp), which is also called the context state.
In a next step the context state h(Tp) is passed to an decoder RNN which uses
the information in h(Tp) to recursively generate a corresponding output se-
quence of Tf future values [x(Tp+1), . . . , x(Tp+Tf )]. Typically LSTMs or GRUs,
as introduced above, are used as encoding and decoding models. The advan-
tage of this architecture is that by using such an encoder-decoder framework
it can also be applied to sequences with arbitrary input lengths Tp and output
lengths Tf .
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FIGURE 1.13: This figure illustrates the gates implemented in a GRU
cell. At first the data input x(t) and the previous hidden state h(t−1) are
used to compute the activation of the reset gate r(t), which determines
the amount of information which is preserved from the previous hid-

den state h(t−1) to compute a new candidate state ĥ
(t)

. The update gate
z(t) then regulates which proportion of the previous hidden state h(t−1)

and the candidate state ĥ
(t)

enter the new hidden state h(t).

FIGURE 1.14: The figure shows an overview of the architecture used
in sequence-to-sequence learning. The encoder receives an input se-
quence x(1), . . . , x(Tp) and iteratively updates its hidden state h(t). When
the encoder has seen the complete input sequence, it passes its finals
state h(Tp) to the decoder, which generates the corresponding output
sequence x(Tp+1), . . . , x(Tp+Tf ). As an input the decoder uses its own
predictions made in the previous step. The first input (<GO> label) of

the decoder can be simply be defined as a vector of zeros.
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1.2.6 Spatio-Temporal Graph Neural Networks

In section 1.2.4 we introduced GNNs, which allowed us to model spatial de-
pendencies in graph-like data structures. But in many real-world problems
we have to additionally consider the temporal dynamics of graph structured
signals. One typical example for such an application would be the task of
traffic prediction, where the traffic speed is measured over time by different
sensors, which are connected to each other by a network of streets [82]. Dy-
namic graph-signals also show up in the context of neuroimaging, where we
temporally resolve the neural activity in different areas of the brain, which are
anatomically interconnected by a network of white matter tracks. Figure 1.15
illustrates such a time-varying signal with a graph-like structure.

FIGURE 1.15: The figure shows an example of a dynamic signal with
graph-like structure. The nodes in the graph are depicted in black, and
for each node n a signal x(t)n that varies over time t = 1, 2, . . . can be
associated, as illustrated in red. The spatial dependencies between the
individual signals are characterized by the edges of a graph, which are

marked here in blue.

To deal with this specific type of structure in timeseries data, so-called
spatio-temporal graph neural networks (STGNN) were developed. To capture
the temporal patterns of the dynamic signal, they typically employ techniques
for sequential data structures, like RNNs (as described in section 1.2.5) or one-
dimensional CNNs (section 1.2.3). In addition, to model spatial interdepen-
dencies between multivariate timeseries data, they make use of the graphical
structure of the signal by invoking graph convolution operations, as intro-
duced in section 1.2.4. We can formally describe the task of graph signal pre-
diction by first considering a signal x(t)n in node n, sampled at timestep t. We
can collect these n = 1, . . . , N signals sampled in a time interval t = 1, . . . , T
into a matrix X ∈ RN×T. Then the spatial relationship between the nodes can
be defined by a graph G = (V , E , A), including a set of nodes (vertices) V ,
with |V| = N, and edges E . The graph structure is captured by the weighted
adjacency matrix A ∈ RN×N , where each entry wnn′ describes the edge weight
between node n and n′. Accordingly, the goal in graph signal prediction is to
learn a function f (·) which maps Tp past states of x(t), to Tf future states:

[x(1), . . . , x(Tp);G] f (·)−−→ [x(Tp+1), . . . , x(Tp+Tf )] (1.57)
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Besides the information in the past states of the system x(t) with t = 1, . . . , Tp

the characteristic of STGNN is to additionally incorporate information on the
graph structure G to predict the future states t = Tp + 1, . . . , Tp + Tf . For this
kind of task numerous variants of STGNN have been developed [133], and in
the following two established STGNN architectures will be introduced.

One of the first STGNN architectures was proposed by Li et al. [82], who
introduced the so-called diffusion convolution recurrent neural network (DCRNN)
for the application of traffic forecasting. The DCRNN model is based on a
RNN, using a sequence-to-sequence architecture as described in section 1.2.5.
In this RNN based variant, the idea is to capture the information of past nodes
states t = 1, . . . , Tp in the encoding part of the sequence-to-sequence model,
and use the encoding (or context) state H(Tp) ∈ RN×Q to predict the future
states of the nodes t = Tp + 1, . . . , Tp + Tf in the decoding part. As an en-
coder and decoder the DCRNN model employs GRU cells (introduced in sec-
tion 1.2.5), which are additionally modified to process multivariate graph-
structured signals. The idea is to replace the multiplications with weight ma-
trices in GRUs by the diffusion convolution operations introduced in section
1.2.4:

y(q) =
K

∑
k=0

θ
(q)
k (D−1A)kx (1.58)

Here A ∈ RN×N represents the adjacency matrix of our graph G, and D the
diagonal node degree matrix. The graph filters θ

(q)
k characterize the influence

of walks of order k on the graph, and are learned by the model during the
training. Usually the number of walks k which have to be considered are
relatively small with K � N, because the relevant information comes mainly
from the neighboring nodes, which effectively reduces the number of model
parameters. If we denote the diffusion convolution operation on the graph
with ∗G, we can rewrite gating mechanisms in a GRU cell as:

r(t) = σ
(

Θ(r) ∗G

[
x(t), H(t−1)

]
+ b(r)

)
(1.59)

z(t) = σ
(

Θ(z) ∗G

[
x(t), H(t−1)

]
+ b(z)

)
(1.60)

c(t) = tanh
(

Θ(c) ∗G

[
x(t), (r(t) �H(t−1))

]
+ b(c)

)
(1.61)

H(t) = z(t) �H(t−1) + (1− z(t))� c(t) (1.62)

where x(t) ∈ RN denotes the graph signal in the N nodes at a timestep t.
Furthermore H(t) ∈ RN×Q is the hidden state of the GRU cell and [x(t), H(t−1)]

denotes their concatenation. In these equations r(t), z(t), c(t) represent the reset
and update gates, and the candidate state at a time step t, and b(r), b(z), b(c),
respectively denote the corresponding bias terms. In addition the parameters
Θ(r), Θ(z), Θ(c) denote a set of the corresponding graph filters. An illustration
of the gating mechanisms in this so-called diffusion convolution gated recurrent
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unit (DCGRU) cell is provided in figure 1.16. Incorporating these DCGRU
cells in a sequence-to-sequence architecture then allows us to simultaneously
account for temporal and spatial dependencies in the graph signal data.

FIGURE 1.16: The figure provides an overview on the individual pro-
cessing steps in a DCGRU cell. The input data x(t) together with the
previous hidden state H(t−1) are concatenated and enter the reset gate
r(t) and the update gate z(t). The reset gate r(t) determines the propor-
tion of the information in H(t−1) and x(t) which enters the candidate
state c(t). Finally the old hidden state H(t−1) is updated by c(t), whereby
the proportion of new information is controlled by the update gate z(t).

As an alternative to this RNN based architecture, also one-dimensional
convolutions can be incorporated to detect temporal relations in the multi-
variate timeseries data. Following this idea, the graph WaveNet (GWN) com-
bines dilated causal convolutions, as introduced in section 1.2.3, with the
graph convolution operations, described in section 1.2.4, to simultaneously
capture the temporal and spatial features of the signal [134]. Replacing the re-
current computations of the DCRNN with temporal convolutions avoids the
iterative computation of the gradient and can help us to prevent vanishing
or exploding gradients. The characteristic components of the WaveNet, the
dilated causal convolutions, were defined as the following:

(x ∗C θ) (t) = ∑
τ

x(τ)θ(t− d · τ) (1.63)

whereby d denotes the dilation factor and θ represents the filter kernel. This
dilated convolution can be implemented by sliding over the input sequence
x(t) while skipping input values by increasing the step size d · τ from layer
to layer. This leads to an exponential growth of the receptive field with in-
creasing layer depth, as illustrated in figure 1.7. The WaveNet architecture
is organized in blocks of layers, whereby the dilation factor d is doubled in
every subsequent layer within a block as d = 1, 2, 4, . . . up to a certain limit.
This dilation scheme is repeated in the same manner in the next block of lay-
ers, until a fixed output size is reached [121]. In addition a gating mechanism
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is introduced to control the flow of information in the temporal convolution
layers:

H = tanh (Θ1 ∗C X + b1)� σ (Θ2 ∗C X + b2) (1.64)

In this equation the input of the temporal convolution layer is referred to as
X ∈ RN×P×T(in)

, with N representing the number of nodes, P the number of
input features and T(in) the temporal dimension of the input. The activation
function for the output is a tanh(·) function, ∗C describes the causal convo-
lution operation, and Θ1, Θ2 and b1, b2 represent filter parameters and biases
respectively. Further � denotes the Hadamard product and σ(·) is a logistic
function, which controls the information passed to the subsequent layer. The
output is denoted as H ∈ RN×Q×T(out)

. By applying Q temporal convolutions,
the input X is projected onto a Q-dimensional feature map with a temporal
dimension of T(out). Using such a gated temporal convolution network (TCN)
layer, the GWN architecture is able to detect patterns in the temporal domain
of the signal.

To additionally account for the spatial dependencies in the graph signal,
the GWN model applies after each gated TCN layer a graph convolution op-
eration, as defined in equation 1.35. A complete overview of the GWN ar-
chitecture is shown in figure 1.17. In the beginning the input graph signal
X(in) ∈ RN×Tp is linearly transformed into a P-dimensional feature represen-
tation X(1) ∈ RN×P×Tp . This representation is passed through in total L layers,
each containing a gated TCN followed by a graph convolution operation. To
account for vanishing gradients, residual connections are also applied in each
layer [64]. Due to the causal convolutions, each layer reduces the temporal
dimension T(in) of its input state to T(out) , and the number of layers can be
chosen in a way to reduce the temporal dimension to T(out) = 1 in the final
layer. After each TCN operation, a skip connections is applied (as illustrated
in figure 1.17) and the information from all L layers is finally aggregated by
adding these skip connections up. This sum is passed through two fully con-
nected layers with non-linear ReLU functions to generate the predicted graph
signal X(out) ∈ RN×Tf , thereby directly generating the prediction for all Tf fu-
ture timepoints at once. Based on these above introduced machine learning
techniques, the DCRNN and GWN model will provide a novel possibility to
investigate the spatio-temporal dynamics in human brain networks. The neu-
roimaging techniques used for the acquisition of the data and the different
concepts of brain connectivity will be discussed in the subsequent sections of
this chapter.
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FIGURE 1.17: This figure shows an overview of the complete GWN
architecture. The input graph signal X(in) is at first linearly projected
onto a P-dimensional feature representation (a). Then recursively gated
TCNs and graph convolutions are applied in each layer l = 1, . . . , L
of the GWN. The gating mechanism of the TCN is illustrated in more
detail in (b). By using skip connections the information in each of the L
layers is combined in a sum, and finally two nonlinear transformations
are applied to generate the predictions of the temporal graph signal

X(out).
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1.3 Magnetic Resonance Imaging

In this section a short introduction to the physical and physiological founda-
tions of magnetic resonance imaging (MRI) will be provided. MRI is an imag-
ing technique that allows us to collect high-resolution volumetric images of
the human anatomy and different physiological processes in a non-invasive
manner [71]. First in section 1.3.1 the physical foundations of MRI will be out-
lined. This imaging technique has been later extended to functional magnetic
resonance imaging (fMRI), what made it possible to additionally study dynamic
functions in the human brain in vivo [27]. The physiological origin of the sig-
nal obtained in fMRI will be then discussed in section 1.3.2. More recently,
additional aspects of the brain structure became of interest, and techniques
like diffusion weighted imaging (DWI) have been developed, which will be in-
troduced in section 1.3.3. This imaging modality allows us to resolve bundles
of white matter tracks, and to obtain an image of the structural connectivity
within the human brain [61]. These different types of MRI modalities pro-
vide us different possibilities to define distinct concepts of brain connectivity,
which will be later discussed in section 1.4. The following section on MRI
relies mainly on the references [71, 27, 54, 61, 66, 53].

1.3.1 Magnetic Resonance Imaging Basics

MRI is based on a fundamental property of particles denoted as spin, which
is characterized by a spin quantum number s, taking values of multiples of 1

2 .
If they are unpaired, particles like protons, neutrons and electrons have a spin
of s = 1

2 , and they thus carry a magnetic momentum µ. The signal observed
in MRI is based on the interaction of a particle with non-zero net spin with
a radio frequency pulse, and therefore nuclei with non-zero nuclear spin and
high natural abundance are mainly of interest in MRI. One such element with
high abundance in the human body is the isotope of the hydrogen nucleus
1H [71], which will be referred to as proton for simplicity in the following.
In presence of a magnetic field B0 such a particle with non-zero net spin can
interact with a photon. Modern MRI systems typically have field strengths
between B0 = 1.5T and 7T for clinical routines and research studies. When
a subject is placed in the MRI scanner, the static magnetic field B0 = B0êz

follows the direction of the body, pointing from feet to the head of the subject.
The body axis will be defined as the z-axis in the following, while the y-axis
is defined pointing from the back to the chest, and the x-axis from the left to
the right hand of the subject. An illustration of this three axis in relation to the
subject in the MRI scanner is provided in figure 1.18.

In the presence of the static magnetic field B0, the z-component of the
magnetic momentum µ of the protons aligns either parallel or anti-parallel to
the magnetic field. These two configurations are represented by two different
energy states, whereby the number of particles in the lower energy state NP
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FIGURE 1.18: In this figure the three axis and the orientation of the static
magnetic field B0 (depicted in blue) relative to the subject is illustrated.
In addition the orientation of the three anatomical imaging planes are
illustrated, referred to as the axial, sagittal and coronal plane. The equi-
librium magnetization M0 (depicted in red) is oriented in parallel to the

magnetic field along the z-axis. Adapted from [66].

(parallel alignment) slightly outnumbers the one in the higher state NAP (anti-
parallel alignment). In the equilibrium the ratio is described by the Boltzmann
statistics [71]:

NAP

NP = e−
E∆

kBT (1.65)

whereby E∆ represents the energy difference between the two states, T the
temperature of the system and kB = 1.3806× 10−23 J

K is the Boltzmann con-
stant. To understand MRI it is helpful to first change to a more macroscopic
view of the process. Multiple of such spins can be summarized in spin pack-
ets, and each spin packet can be represented by a magnetization vector M0.
The equilibrium magnetization M0êz is parallel to the magnetic field, as de-
picted in figure 1.18, and its strength is determined by the number of spins
aligned in parallel NP or anti-parallel NAP to the magnetic field. The equi-
librium magnetization can be characterized by M0 ∝ (NP − NAP) and in
the equilibrium state there exists no transverse magnetization Mx = My =

0. Now to generate a measurable signal, the magnetization M0 is tipped
away from its equilibrium by applying a radio frequency pulse, whose energy
matches the energy difference between the two states E∆. The magnetization
then precesses around the z-axis with the so-called Larmor frequency [27]:

ωL = γB0 (1.66)

where γ denotes the gyromagnetic ratio, which for Protons is γ = 2.675 ×
108 rad

s·T . If the radio frequency pulse matches the frequency ωL, the system can
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be excited in resonance, and for a typical MRI scanner with a field strength of
3T, the resonance frequency fL = ωL

2π is approximately fL = 128MHz [27].
This rotation of the magnetization generates an oscillating magnetic field,
which can in turn be detected by a receiver coil by measuring the inductive
voltage. After the excitation, the magnetization vector then returns back to its
initial state again in a so-called relaxation process. This leads to a decay in the
signal amplitude measured by the coil, which is denoted as free induction decay
(FID). When the magnetization vector was tipped away from its equilibrium
state along B0, the magnetization vector can be described by two components.
The magnetization starts to relax back into its equilibrium state M0, and the
relaxation process of the longitudinal component of the the magnetization as
a function of time t can be described by the following equation:

Mz = M0

(
1− e−

t
T1

)
(1.67)

In this equation T1 characterizes the time, after which the difference between
the longitudinal magnetization Mz and its equilibrium state M0 is reduced by
a factor of e, which can be mainly related to spin-lattice interactions [71]. Di-
rectly after the excitation with the radio-frequency pulse, the spin packets are
in phase and precess around the z-axis with a magnetization of Mxy0 . Mainly
due to spin-spin interactions, these spin packets begin to dephase over time,
leading to a decrease of the transverse magnetization Mxy over time t:

Mxy = Mxy0 e−
t

T2 (1.68)

The constant T2 determines thus the time after the transverse magnetization
is decreased by a factor of e. In addition to the relaxation due to molecular
interactions, captured in T2, also inhomogeneities in the static magnetic field
B0 lead to a faster decrease in the transverse magnetization. The impact of the
inhomogeneous magnetic field can be characterized by a second time constant
T(in)

2 , which leads to an effective relaxation time T(∗)
2 :

1

T(∗)
2

=
1

T2

+
1

T(in)
2

(1.69)

To obtain a signal that lasts long enough to allow for the reconstructing of a
complete image, multiple fine-tuned radiofrequency pulses can be applied to
the system. A radiofrequency pulse can flip the magnetization at a certain
angle θ, depending on its duration tP and its magnetic field component B1:

θ = 2πγtPB1 (1.70)

For most MRI sequences two flip angles are commonly employed. At first
the 90◦ pulse rotates the equilibrium magnetization M0 vector by 90 degrees
into the xy-plane, resulting in a precision of the magnetization vector around
the z-axis. This precision can induce a current into a nearby coil, but due to
the transversal relaxation, the signal strength would decay quite rapidly. To
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recover some of the signal, a second type of pulse is applied to the system.
The 180◦ pulse flips the net magnetization vector by 180 degrees. If the pulse
is applied in parallel to the magnetization, it would orient the magnetization
vector into its opposite direction. The 180◦ pulse thus also reverses the order
of the spins, what allows a rephasing of the magnetization of spin packets.
This trick can thereby be used to recover some of the original signal magni-
tude, as illustrated in figure 1.19. If the 180◦ pulse is applied after time τ the
restored signal reaches its maximum at 2τ, what is referred to as the echo time
(TE).

FIGURE 1.19: The figure depicts the process of the so-called spin echo.
After applying the 90◦ pulse, the free induction decay (FID) decreases
with time constant T(∗)

2 . The original signal amplitude can be partially
recovered by applying a 180◦ pulse at run time τ, what allows the spins
to rephase again, until 2τ. The time between the 90◦ pulse and the max-
imum of the recovered signal as denoted as echo time (TE). Adapted

from [66].

Such a sequence of pulses would only yield a signal generated by the
average transverse magnetization of all spins in the system, but to obtain a
spatially resolved signal, an additional sequence of gradients has to be intro-
duced. The goal in MRI is to obtain high-resolution volumetric images of the
body part, and in anatomical MRI it is possible to resolve a cubic unit (voxel)
with a spatial resolution of around 1mm× 1mm× 1mm, while in temporally
resolved fMRI the typical resolution is in the range of 3mm× 3mm× 3mm. The
idea is therefore to exploit the linear dependence of the Larmor frequency ωL

on the magnetic field strength B, based on the relation described in equation
1.66. By turning on a linear gradient in z-direction, the Larmor frequency
will therefore show a linear dependence on the location along the z-axis ωL ∝
z. The gradient in z-direction is denoted as slice selection gradient, because
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due to the induced spatial dependency of the Larmor frequency the radiofre-
quency pulse will excite only spins in a specific slice in the axial plane. The
thickness of the slice is determined by the bandwith of the pulse, as well as
the steepness of the gradient. The next step to resolve a volumetric image
is to introduce a second gradient in the x-direction. After the slice selection
gradient determined the axial examination area, the frequency encoding gra-
dient along the x-axis is switched on during the readout of the signal. This
leads to a linear dependence of the precession frequency ωL along the x-axis.
After the signal is acquired, which is composed of different frequency com-
partments emitted by spatially distinct voxels, this signal can be projected
back into the spatial domain by applying a Fourier transformation. Finally
for the third spatial dimension, a so-called phase-encoding gradient is em-
ployed. This gradient induces a phase shift in the rotation of the transverse
magnetization along the y-axis, whereas the phase depends on the location
along the y-direction. To recover the signal by using Fourier transformation,
the phase-encoding gradient has to be switched on with different magnitude
for every row of voxels along the y-axis [66]. An illustration of the frequency
and phase encoding is provided in figure 1.20 (a), and the timing diagram of
the gradient sequence is shown in figure 1.20 (b). The time interval between
two such acquisitions is referred to as the repetition time (TR) of the MRI se-
quence. Based on these basic physical principles, MRI allows us to resolve
volumetric images of the human brains with high spatial resolution in a non-
invasive manner. Its different variants allow us to gain contrasts for different
types of tissues and physiological processes observed in the human brain. In
the following two for this thesis relevant imaging modalities, namely fMRI
and DWI, will be discussed in more detail.
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FIGURE 1.20: Figure (a) illustrates the frequency and phase encoding in
one slice of voxels. By switching on the frequency encoding gradient,
each voxel along the x-direction exhibits a specific Larmor frequency
ωL. Employing a phase encoding gradient along the y-axis, the phase
of the precessing transversal magnetization becomes dependent on the
y-direction. These local dependencies allow us then to spatially resolve
the measured signal. Figure (b) depicts the sequence of the three gra-
dients. At first, simultaneously with the radio frequency pulse (RF) the
slice selection gradient is switched on (GS), so only one axial slice gets
excited by the RF pulse. In a next step the phase encoding gradient
(GP) is turned on, encoding the voxel intensities along the y-axis. In a
third step the frequency encoding gradient (GF) is employed to encode
the third dimension along the x-axis. These three steps are repeated for
each of the K voxels along the y-axis, each time using a phase encoding

gradient with different magnitude. Adapted from [66].
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1.3.2 Functional Magnetic Resonance Imaging

Functional MRI (fMRI) allows us to temporally resolve regional modulations
of neural metabolism [53]. If a region in the brain is activated (due to vi-
sual stimulation for example) the region requires a larger amount of energy,
leading to a higher cerebral metabolic rate of oxygen (CMRO2) in that particu-
lar region [28]. To offset the rise of the CMRO2, the bloodflow increases in
that area to restore the local amount of O2 [53]. First this process denoted as
hemodynamic response leads to a decrease in oxygenated hemoglobin, and
an increase in deoxygenated hemoglobin, while due to the vasodilatory re-
sponse, afterwards the oxygenated hemoglobin level increases again and de-
oxygenated hemoglobin level decreases.

The contrast which is typically exploited in fMRI is based on magnetic
properties of hemoglobin, and is denoted as the blood oxygen level dependent
(BOLD) contrast. In its oxygenated state, hemoglobin is diamagnetic, and can-
not be distinguished from the brain tissue, but in its deoxygenated state it be-
comes highly paramagnetic. This change in the magnetic susceptibility leads
to magnetic field distortions and causes local gradients in the magnetic field,
whereby the gradients magnitude depend on the amount of deoxygenated
hemoglobin [53]. Nearby (water) protons are affected by these local distor-
tions, which modifies their transversal relaxation times T(in)

2 and T(∗)
2 [92].

As described in the previous section 1.3.1 the MRI signal strength depends
on the strength of the transverse magnetization. Due to the decrease of de-
oxygenated hemoglobin this signal decay is slowed down, which results in a
stronger signal in regions with higher neural activity [27].

Exploiting this kind of contrast, fMRI allows us to observe fluctuations in
the BOLD signal in the brain with a temporal resolution of around 2 seconds
and a spatial resolution of around 3mm× 3mm× 3mm. After the fMRI data
have been collected, commonly several steps for preprocessing and denoising
are applied to the data [54]. Typical steps include slice timing correction, to ac-
count for the time delay between the acquired axial slices, and re-alignment of
the collected volumetric images, to correct for movements of the head during
the experiment. For further analysis the data of different subjects are usually
transformed into a common space, using non-linear registration methods to
transform the data in the volumetric MNI space or employing cortical surface
constrained methods [50]. An example of pre-processed fMRI data is depicted
in figure 1.21.

1.3.3 Diffusion Weighted Imaging

While fMRI allows us to temporally resolve neural activity distribution across
the human brain, more recently it became of interest to additionally under-
stand how these dynamic patterns are constrained by the structure of the
brain. Diffusion weighted imaging (DWI) is a method that allows us to recon-
struct bundles of white matter tracks, providing insights into the structural
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FIGURE 1.21: The figure shows a sequence of volumetric images as ob-
tained from fMRI. With this functional imaging technique the BOLD
signal can be obtained across the whole brain, sampled at different
timepoints t = 1, 2, 3, . . . during an experiment. The signal values can
be projected onto the surface of the brain and the intensity of neural
activity values can be encoded using different colors, as illustrated in
this figure. The resting-state fMRI data was obtained from a subject
provided by the human connectome project database [122] and the fig-
ure was created employing the Connectome Workbench software (version

1.4.2).

connections between different brain areas. This imaging modality relies on
the idea of measuring the diffusion of water in the human brain. In the ab-
sence of any boundaries, water molecules at room temperature would move
randomly, without any preferred direction, which is denoted as isotropic dif-
fusion [31]. But in neural tissue we can find aligned bundles of axons that con-
strain the movement perpendicular to their orientation [61]. This constraint
results in an anisotropic diffusion of water predominantely in a direction par-
allel to the axon orientation. This diffusion of water protons can be detected
in MRI by introducing two additional gradients. First the dephasing gradient
induces a phase shift, depending on the position of the spin at t = 0. This
dephasing gradient is applied before the 180◦ pulse in the MRI sequence, so
the 180◦ pulse would reverse the phase shift caused by the first dephasing
gradient [61]. A second gradient pulse applied after the 180◦ pulse would
therefore rephase the spins again, but only if the spins at t = ∆ are in the
same position as before. On the other hand, spins that undergo some kind
of diffusion would have changed their position during that time. Due to the
spatial dependency of the gradients, spins that have changed their location
would experience now a different gradient strength and the second gradient
would not fully rephase them again. This would result in a signal loss in areas
of high diffusion motion, which results in a contrast exploited in DWI. This
process of spin dephasing is additionally illustrated in figure 1.22.

The difference in the signal intensity caused by the diffusion can be char-
acterized by the so-called Stejskal-Tanner equation [31]:

S(b) = S0ebD (1.71)

Whereby S(b) denotes the measured signal after applying the DWI gradients.
The factor S0 is the signal strength without applying the diffusion gradients,
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FIGURE 1.22: This figure illustrates the process of spin dephasing uti-
lized in DWI. In this example of a single voxel, in the initial state (1)
all spins are in phase. The first gradient pulse dephases the spins (2),
and due to the diffusion, some of the spins move out of the voxel, while
some spins remain in their original position (3). The second gradient
pulse would completely rephase the stationary spins again, but due to
the spatial dependency of the gradient, spins which diffused in or out
of the voxel, will experience a different magnetic field strength and will
not fully rephase again (4). This will result in a weaker signal in vox-
els with higher motion of spins, creating a diffusion weighted contrast.

Adapted from [66].

and D denotes the diffusion coefficient, describing the magnitude of the wa-
ter diffusion. The diffusion gradients are characterized by their so-called b-
values, which depend on the following quantities:

b = γ2G2δ2
(

∆− δ

3

)
(1.72)

Here γ denotes the gyromagnetic ratio of a hydrogen proton, G is the diffu-
sion gradient magnitude, δ the duration of the applied gradient and ∆ the time
span between the dephasing and rephasing gradient. These quantities deter-
mine the amount of signal loss due to the diffusion of protons and by adjust-
ing these parameters the contrast in an image can be influenced. An example
of two diffusion weighted images acquired with b = 0 s

mm2 and b = 1000 s
mm2

is shown in figure 1.23 (a). By switching on a diffusion weighted gradient
along a certain direction, the amount of molecular diffusion in this specific
direction can be estimated. Modern DWI sequences sample multiple of such
images with diffusion gradients along numerous directions and using differ-
ent b-values. Based on these images the predominant diffusion directions can
be estimated, and by randomly generating tracks following these directions,
fiber-tracking algorithms are able to reconstruct paths of axon bundles [118,
14, 119], as shown in an example in figure 1.23 (b). In the context of fiber track-
ing, such a DWI sequence is also often referred to as diffusion tensor imaging
(DTI) [11].
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FIGURE 1.23: In (a) two axial image slices without diffusion weight-
ing (b = 0 s

mm2 ) and with a diffusion gradient strength of b = 1000 s
mm2

are shown. Areas with stronger diffusion motion of protons exhibit
a stronger signal loss and appear correspondingly darker in the image.
The illustration in (b) shows a reconstruction of fiber tracks based on the
acquired DWI data. In this example the spherical deconvolution model
and porbabilistic fibertracking was employed to estimate the orienta-
tion of the depicted fiber bundles [118]. The different colors encode dif-
ferent orientations of white matter tracks. The DWI data were obtained
from a subject provided by the Human Connectome Project database
[122] and the figure was created employing the MRtrix3 (version 3.0)

software package [119].
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1.4 Concepts of Brain Connectivity

A central question in neuroscience is how distinct neural populations in the
brain exchange information when a participant is stimulated, performs a task,
or simply is at rest. For studying such networks of communication in the hu-
man brain, research on the notion of brain connectivity has emerged, which cur-
rently gains increasingly more attention in the field of neuroscience [113, 78].
Different concepts of connectivity have emerged over the past years, ranging
from anatomical links based on fiber tracks to statistical or potentially causal
dependencies based functional neuroimaging data [113]. These types of con-
nectivity can be roughly divided in two categories, denoted as structural con-
nectivity (SC) and functional connectivity (FC). These concepts will be discussed
in more detail in the subsequent sections, which are based on the literature in
[78, 113] and our recently published survey on brain connectivity [127].

1.4.1 Structural Connectivity

As introduced in section 1.3.3, DWI (or DTI) can be used to reconstruct struc-
tural anatomical networks in the human brain. This network describes the
spatial layout of white matter tracks, linking cortical and sub-cortical struc-
tures in the brain [127]. In most MRI studies the first step for constructing a
connectome is to find a proper definition of the nodes in the brain network.
Such pools of neurons can be aggregated in distinct areas defined by a brain
atlas, as shown in figure 1.24 (a). But also data driven methods like indepen-
dent component analysis (ICA) can be used to identify functionally indepen-
dent areas in subject groups [30, 125]. Such areas of brain networks would
thus represent the nodes in the graphical representations of brain networks.
The edge strength in the graphical model can be defined by incorporating in-
formation on the brain structure derived from DTI. The most common quan-
tification of SC strength is to simply count the number of fiber tracks, gener-
ated by probabilistic tracking methods, which connect two areas in the brain
atlas, as illustrated in figure 1.24 [14, 119]. This brain network can now be
formally defined as a graph G = (V , E , Aw), with V , |V| = N denoting a set
of vertices (or nodes), E representing the edges, and Aw ∈ RN×N symbolizing
the weighted adjacency matrix. In our context one entry wnn′ of the adjacency
matrix would characterize the anatomical connectivity between two nodes n
and n′. This type of connectivity can be summarized and visualized in a SC
matrix as shown in figure 1.24 (c).

The anatomy of the structural brain network is characterized by its sub-
stantial plasticity on longer time scales, usually due to its natural develop-
ment, aging or disease [10, 62]. On shorter time scales, like the duration of
a single fMRI experiment, it usually can be considered as static when com-
paring it to rapid fluctuations in functional brain activity [29]. Activity distri-
bution, as observed in fMRI are mediated via propagating action potentials.
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FIGURE 1.24: The figure illustrates how a structural connectivity ma-
trix is reconstructed from DTI data. An atlas can be used to define seg-
regated brain regions, which will represent the nodes in the structural
brain network (a). The connectome of fiber tracks (b), reconstructed
from DTI data, determines the edge strength between the nodes in the
structural graph, so each pair of the N brain regions can be associated
with a anatomical connection strength. These values can be collected in

a N × N structural connectivity matrix (c).

Therefore the structural organization of neuron assemblies and their dendritic
and axonal connections are considered to be the underlying physical substrate
for information processing [127]. Following this idea, it became of interest to
study the relationship to the functional organization of the brain, which can
be described in the notion of functional connectivity.

1.4.2 Functional Connectivity

Functional connectivity (FC) characterizes the coherency of temporal activ-
ity fluctuations in two brain regions and is often considered as the dynamic
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counterpart of SC [113]. As described in section 1.3.2, with fMRI we can tem-
porally resolve the activity patterns in different spatial locations of the brain.
In analogy to SC, we can also first use a brain atlas to define the nodes in our
brain network, as illustrated in figure 1.25 (a). Then the activity of one region
n at a certain timepoint t is usually computed as the average activity across all
voxels within that region. If during one fMRI session T images are collected,
we would thus obtain for each of the N regions an activity timecourse x(t)n

with t = 1, . . . , T. Functional connectivity is expressed as a statistical depen-
dence between such temporal activity patterns, and most commonly Pearson
correlation is used to quantify the strength of FC between two regions n and
n′ [78]:

rxnxn′ =
∑T

t=1(x(t)n − x̄n)(x(t)n′ − x̄n′)

σxn σxn′
(1.73)

whereby x̄n describes the mean of activity values x(t)n over the time t, and

σxn =

√
∑t(x(t)n − x̄n)2 their variance over time. Besides Pearson correlation,

also partial correlation or mutual information are common choices to derive
statistical dependencies of temporal dynamics between different ROIs [113,
109]. If such a connectivity measure is computed for every pair of brain re-
gions n and n′, we can interpret those values as the edge weights in our graph-
ical model of the brain, and visualize them by collecting them into a N × N
matrix as shown in figure 1.25.

As in SC, with this coherency based definition of FC we obtain a symmet-
ric measure of connectivity, so we cannot identify if a brain region A drives
region B or vice versa. For such directed relations a third category of directed
connectivity measures was introduced, studied in the notion of directed func-
tional connectivity or effective connectivity [113]. This concept of directed con-
nectivity analysis is in addition illustrated in figure 1.26. Even if the directed
functional connectivity and effective connectivity have the same goal of infer-
ring potentially causal dependencies in networks, they conceptually differ in
their methodology [47].

Effective connectivity is typically derived from dynamic causal modeling
(DCM), which is based on a mechanistic input-state-output model of neurons,
with the goal to replicate the effective coupling strength between brain areas
[46]. In DCM experimental conditions and stimuli can be encoded in prede-
fined input functions, and the model output can then be related to hemody-
namic responses as observed in fMRI. A Bayesian framework then estimates
the effective couplings of neural populations, which can provide us with a
neurophysiological perspective on potentially causal relationships between
areas in brain networks. But due to the relatively high computational com-
plexity of this type of modeling, the connectivity analysis with DCM is typ-
ically limited to a few pre-defined regions in the brain only. This limitation
again might lead to the neglect of relevant areas for the brain connectivity
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FIGURE 1.25: The figure illustrates how a functional connectivity ma-
trix can be derived from fMRI data. A brain atlas can be used to identify
brain regions, which define the nodes in the functional network (a). The
temporally resolved activity patterns observed in fMRI (b) can be incor-
porated to characterize the activity within each brain region at different
timesteps t = 1, 2, . . . , T. Then statistical measures like Pearson correla-
tion can be used to quantify the temporal coherency of neural activity
in a pair of regions xn and xn′ . The values of all N × N region pairs can

be collected in a N × N functional connectivity matrix (c).

analysis [37], so it would be favorable to have an approach which also scales
to large networks.

The second approach denoted as directed functional connectivity follows
a simple idea proposed by the British econometrician Clive Granger [56]. If a
certain event A causes another event B, then event A would precede event B,
and information about the occurrence of A could contribute to the prediction
of the occurrence of B. The temporal dependencies in fMRI data between the
neural activity timecourses are usually described in the predictive framework
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of a multivariate vector auto regressive (VAR) model [103]. With the objective
to make accurate inferences about the temporal evaluation of neural signals,
Granger causality tests if adding information about activity in one brain re-
gion B can help to improve the prediction of the activity in another region A
(and vice versa). The VAR model is based on an linear autoregressive process,
which assumes that a time series x(t) can be described as a superposition of
the first Tp of its lagged values [85]:

x(t) = β + α1x(t−1) + α2x(t−2) + · · ·+ αpx(t−Tp) + u(t) (1.74)

with coefficients α1, . . . , αp, the intercept β and an error term u(t). The for-
mulation of the auto regression model can be extended to a multivariate VAR
model, with in total N time series x(t) = [x(t)1 , . . . , x(t)N ]T as [85]:

x(t) = b + A1x(t−1) + A2x(t−2) + · · ·+ Apx(t−Tp) + u(t) (1.75)

In this multivariate formulation the coefficients are stored in matrices A ∈
RN×N , and the intercepts and errors are represented by vectors b ∈ RN and
u(t) ∈ RN . In our context of functional MRI, the goal of this model is to predict
the BOLD signal x(t) in all N brain regions from its past values x(t−1), . . . , x(Tp).
A measure for the directed connectivity strength in the notion of Granger
causality can then be derived by comparing the prediction errors in ROI n
with and without the information of activity in another ROI n′. This can con-
firm if n′ contains some additional information on the activity in n and can
provide a basis to identify a possible causal relation between n′ and n [9].

FIGURE 1.26: The figure illustrates the difference between undirected
functional connectivity and directed functional/effective connectivity.
Correlation based functional connectivity (a) provides us an undirected
measure for connectivity strength, so we can not identify if a brain re-
gion n drives region n′ or vice versa. Measures of directed functional
connectivity or effective connectivity based on Granger causality or dy-
namic causal modeling try to reconstruct directed relations in brain net-
works (b). In this manner a change in the activity level in region n′ can
be identified as a potential cause for a change in the activity observed

in another region n. Adapted from [127].
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Chapter 2

Spatio-Temporal Graph Neural Networks for Brain
Connectivity Analysis

2.1 Materials and Methods

Comprehending the interplay of spatial and temporal dynamics of neural ac-
tivity is one key aspect for understanding how information is distributed and
processed in the human brain. This chapter will discuss how spatio-temporal
graph neural networks (STGNNs) can contribute to the study of such neu-
ral dynamics in complex brain networks. In general a brain network can be
first defined by segregating the brain into distinct regions based on a brain
atlas, thereby characterizing the nodes in our graphical model of the brain.
In this graphical representation, the time-varying functional activity in the in-
dividual brain regions can be interpreted as a temporal signal in the nodes
of our network. The edges in our network, shaping the interactions between
the different regions, can be characterized by including spatial information on
the brain anatomy. Based on this idea, such a neural activity distribution in
a brain network can be interpreted as a graph-structured, time-varying sig-
nal. For this kind of geometric data structures the above discussed STGNN
architectures provide novel possibilities to account for such spatial and tem-
poral dependencies we observe in dynamic brain networks. The following
section 2.1.1 will describe in which manner the STGNNs, introduced in sec-
tion 1.2.6, can be applied to the analysis of spatio-temporal dynamics in brain
networks. The subsequent section 2.1.2 provides a more detailed description
of the acquisition protocols and preprocessing of the MRI datasets used in this
thesis. Section 2.1.3 then discusses how the graph signals are generated from
the functional and structural imaging data and finally section 2.1.4 outlines
how the STGNN models are trained for the prediction of these neural signals.
In the second part of this chapter, in section 2.2, the results of different appli-
cations for STGNN will be discussed. The following chapter is based on our
publication [126] and the preprint of a manuscript [128].
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2.1.1 Model Description

In the presented context of neuroimaging, the goal of the STGNN architec-
tures will be to model the BOLD signal as accurately as possible, in order
to precisely capture the underlying mechanisms of the spatio-temporal dy-
namics observed in brain networks. The objective of this learning task can be
formalized by introducing a graph signal x(t) ∈ RN , representing the BOLD
signal intensity in N different brain regions at a timestep t. Based on this idea,
the STGNN will then try to learn to predict from an input sequence of Tp

past neural activity states t = 1, . . . , Tp a sequences of Tf future activity states
t = Tp + 1, . . . , Tp + Tf . In addition to the temporal information in the BOLD
signal x(t), also prior knowledge on spatial dependencies can be included in
these GNN architectures. The spatial layout which connects the N brain re-
gions can be represented in the notion of a graph G = (V , E , Aw), composed
of vertices (nodes) V , with |V| = N and edges E . The structure of the graph is
defined by a weighted adjacency matrix Aw ∈ RN×N , whereby one entry wnn′

of the matrix describes the spatial connection strength between brain region n
and n′. An illustration of the graphical representation of a dynamic brain state
is given in figure 2.1. Based on this definition of a brain state, the task of the
STGNN models can be summarized in learning a function f (·) which predicts
Tf future neural activity states from an input sequence of Tp past states:

[x(1), . . . , x(Tp);G] f (·)−−→ [x(Tp+1), . . . , x(Tp+Tf )] (2.1)

As the first predictive model, the diffusion convolution recurrent neural net-
work (DCRNN) model will be studied in its ability to replicate empirically
observed neural dynamics. This RNN based architecture provides one effi-
cient way to detect patterns in such sequential data structures, like in our
context the BOLD signal subsequently sampled at different timesteps t. In this
sequence-to-sequence based architecture the encoder recursively processes an
input sequence of Tp past neural activity states x(t) and encodes the temporal
information into a hidden state H(Tp) [114]. The decoder part uses the in-
formation in H(Tp) to generate a prediction for Tf future activity states. To
account for vanishing gradients during training, the encoder and decoder of
the DCRNN consist of gated recurrent unit (GRU) cells [34], which are modi-
fied to process graph-structured signals by invoking graph convolution oper-
ations. The detailed description of the DCRNN architecture DCRNN is pro-
vided in the first chapter in section 1.2.6.

As an alternative to this RNN based approach, patterns in sequential data
structure can also be efficiently detected by convolutional neural network
(CNN) models, as introduced in section 1.2.3. This principle is implemented
in the graph WaveNet (GWN) architecture, which will be additionally in-
cluded as a candidate to model spatio-temporal activity distributions in brain
networks. By incorporating one-dimensional convolutions in the time do-
main, this model is able to capture dependencies in the temporal dynamics
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FIGURE 2.1: The figure shows the spatio-temporal representation of a
graph-structured signal in a brain network. The temporal component
of the signal is here marked in green (a). It is represented by the BOLD
signal x(t) ∈ RN in N brain regions, measured at different timesteps
t. The edge connections of the graph signal, are highlighted in red (b).
The connection strength between brain region n and n′ is defined as
an entry wnn′ of the weighted adjacency matrix Aw ∈ RN×N , which

characterizes the spatial relations between all N brain areas.

of neural signals. To account for long-term dependencies in temporal data, a
WaveNet (WN) architecture serves as the foundation for this spatio-temporal
model [121]. The WN exploits dilated causal convolution operations to gener-
ate a large receptive field with relatively few network layers, which alleviates
the processing of long temporal input horizons. This principle of CNN based
temporal modeling is then combined with graph convolution operations to
account for the spatial dependencies in the graph-structured signal. The com-
plete GWN architecture is described in detail in section 1.2.6.

In these two presented STGNN architectures, graph convolution opera-
tions model the propagation of information between adjacent nodes in graph-
like signals x(t) [40]. Here the neighborhood structure of the vertices or nodes
V in the network are captured in an adjacency matrix Aw. In the following
further possibilities for defining this spatial layout for the information propa-
gation between brain regions will be compared. As the first choice for an ad-
jacency matrix the structural connectivity ASC will be employed, which can
be reconstructed from DTI data as described in section 1.3.3. This choice is
motivated by the idea that white matter tracks obtained from DTI establish
the anatomical layout for information exchange between brain areas. As an
alternative approach, Rosenthal et al. [99] proposed to use the node2vec al-
gorithm for projecting the nodes of the structural network ASC into a contin-
uous vector space. As discussed in section 1.2.4, such node representations
can capture meaningful topological relations between different areas in a net-
work. This so-called generated connectome embeddings (CEs) can capture long
range and inter-hemispheric homotopic connections, which are usually only
weakly expressed in DTI based anatomical connectivity [115]. In the context
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of anatomical MRI, this technique is used to represent the edge weight wnn′

in the adjacency matrix as the Pearson correlation-based similarity between
the vector representations of two nodes n and n′. The pairwise similarities be-
tween all N brain areas can be collected in an adjacency matrix which will be
denoted in the following as ACE. Based on this definition the information is
propagated between brain regions which possess a high similarity regarding
to their neighborhood role within the anatomical layout. Finally these tech-
niques will be compared to the case when the model is given the freedom to
learn the spatial dependencies between the N regions itself during training.
In this case the adjacency relation is characterized by a self adaptive transition
operator AAdap ∈ RN×N , as described in section 1.2.4 (equation 1.38). In the
following the effectiveness of these different spatial and temporal modeling
approaches will be evaluated by comparing their predictive performance on
empirical MRI data.

2.1.2 Datasets

In this study of STGNNs, two different MRI datasets will be incorporated for
the evaluations [126, 128]. The first one was provided by the Human Connec-
tome Project (HCP) data repository [68, 122]. The HCP S1200 release contains
resting-state fMRI sessions, each with a duration of 14.4 min, whereby 1200
volumes were collected per session. Customized Siemens Connectome Skyra
MRI scanners with a field strength of B0 = 3T and using multi-band (factor
8) acceleration were employed for the measurements [91, 44, 104, 135]. The
data was collected using a gradient-echo echo-planar imaging (EPI) sequence
with a repetition time of TR = 720 ms and an echo time of TE = 31.1 ms.
In total Ns = 72 slices with a field of view FOV = 208 mm × 180 mm and
with a thickness of ds = 2 mm were acquired, containing voxels with a res-
olution of 2 mm× 2 mm× 2 mm. The standard HCP preprocessing pipeline
includes motion-correction, structural preprocessing and ICA-FIX denoising
[50, 73, 72, 45, 110, 101, 58]. For the definition of the ROIs, the multi-modal
parcellation scheme proposed by Glasser et al. [49] was used to divide each
hemisphere into 180 segregated regions. Then the average of the BOLD sig-
nal in each brain region was taken to compute the overall temporal activity in
each area. Next global signal regression was applied to the timeseries, firstly
because it can effectively account for movement artifacts in HCP datasets [25].
Also in an application of directed connectivity analysis, the main objective is
to extract the additional information, which certain regions contain about the
activity in other regions, so that local interactions rather than global modu-
lations in the signal are of interest for this analysis. The time courses were
further bandpass filtered in the 0.04− 0.07Hz frequency range. In a summary
of several studies that account for different artifacts in the BOLD signal re-
lated to MRI scanner drift [106], respiratory and cardiac frequencies [20, 13,
18], and fluctuations in arterial carbon dioxide level [132], Glerean et al. [51]
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and have found this 0.04 − 0.07Hz frequency band to be most reliable and
relevant for gray matter activity in resting-state fMRI [2, 139, 24].

In the HCP, diffusion MRI data was acquired in 6 runs, whereby dur-
ing each run approximately 90 diffusion directions were sampled, employ-
ing three shells with b-values of b = 1000, 2000, and 3000 s/mm2, including 6
b = 0 images [111]. A spin-echo EPI sequence was incorporated for the im-
age acquisition, with a repetition time of TR = 5520 ms, a echo time of TE =

89.5 ms, and using a multi band factor of 3. The volumetric images included in
total Ns = 111 slices, with field of view size of FOV = 210 mm× 180 mm and
a voxel resolution of 1.25 mm × 1.25 mm × 1.25 mm. The DTI preprocessing
incorporates intensity normalization across runs, EPI distortion correction, re-
moving motion artifacts, eddy-current corrections, and gradient non-linearity
corrections [50, 112, 5, 7, 6]. The definition of regions in the structural brain
network were in accordance to the functional preprocessing also based on
the multi-modal cortical parcellation [49]. For the probabilistic reconstruc-
tion of fiber tracks, the MRtrix3 software package was incorporated [119].
Multi-shell multi-tissue constrained spherical deconvolution [74] was used to
compute the response functions for fiber orientation distribution estimation
[118, 117]. Then anatomical constrained tractography was used to sample 10
million streamlines [107] and further spherical-deconvolution informed filter-
ing was applied [108], reducing the number of streamlines to 1 million. The
structural connectivity was defined as the number of streamlines connecting
two brain regions, additionally normalized by the region volumes. The group
structural connectivity matrix was computed as an average across the first 10
subjects, because the variance in the anatomical connection strength is typ-
ically very low across subjects [138], while probabilistic tractography meth-
ods are computationally very demanding. For the HCP dataset, including
only young and healthy probands, the similarity in their structural connec-
tivity profiles was relatively high. When computing the Pearson correlation
between every possible pair of the 10 subjects, the correlation between the
SC values was on average 0.91. But in other applications, when comparing
considerably different subject groups to each other, for example in studies in-
cluding healthy and patients with brain disorders, the SC matrices should be
computed separately for each group.

The second MRI dataset was acquired at the Brain Imaging Center of the
University of Regensburg (UR) at a Siemens Magnetom Prisma scanner with a
field strength B0 = 3 T. Resting-state fMRI data of 10 different subjects was
acquired with a scanning time of 7.3 min, thereby collecting 600 volumetric
images per session. All subjects have provided written informed consent and
the study was approved by the local ethics committee of the University of
Regensburg. All methods were performed in accordance with the relevant
guidelines and regulations. An EPI sequence was used with multi-band (fac-
tor 8) acceleration, employing a repetition time of TR = 730 ms and an echo
time of TE = 31 ms. In total Ns = 72 slices with thickness of ds = 2 mm
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were collected, with a field of view of FOV = 208 mm × 208 mm, and con-
taining voxels with a resolution of 2 mm × 2 mm × 2 mm. For the prepro-
cessing, the HCP pipeline (version 4.0.0) was incorporated, as proposed by
Glasser et al. [50]. To obtain a good correspondence between the HCP and
the UR dataset, the subsequent processing was implemented as described for
the HCP data. The average of the BOLD signal was taken within each brain
region of the multi-modal parcellation atlas [49], and global signal regression
was applied to the timecourses. Again those time courses were then bandpass
filtered within the range of 0.04− 0.07 Hz.

The diffusion MRI data was collected in 4 runs by sampling approximately
90 diffusion directions, incorporating two shells with b-values of b = 1500
and 3000 s/mm2, including 7 b = 0 images. For data acquisition a spin-
echo EPI sequence was used with a repetition time of TR = 3222 ms with
an echo time of TE = 89.2 ms, additionally using a multi-band (factor 4) ac-
celeration. In total Ns = 92 image slices were collected, including a field
of view of FOV = 210 mm × 210 mm, and containing voxels with a resolu-
tion of 1.5 mm× 1.5 mm× 1.5 mm. The further DTI preprocessing was based
on the HCP pipelines [50], and for reconstructing the structural connectiv-
ity strength, again constrained spherical deconvolution was incorporated, as
provided in the MRtrix software package [119]. Finally the group SC matrix
was computed as the average over the 10 subjects.

2.1.3 Data Preparation

The following section will outline how the training, validation and test sam-
ples for the STGNNs are generated from the MRI datasets. To define the nodes
in our brain network, each hemisphere was segregated into 180 regions based
on the multi-modal parcellation proposed by Glasser et al. [49]. The signal
in these network nodes are represented by the average BOLD activity within
each region, so thereby in total N = 360 time courses were obtained (180 per
hemisphere). During one resting-state fMRI session T = 1200 images were
collected, and here the activity timecourses can be collected in a data matrix
X ∈ RN×T.

After applying global temporal signal regression [25] and filtering the time-
courses within the 0.04− 0.07Hz range [51, 24, 21, 2], pairs of input and out-
put samples were generated from the timeseries data in X [127]. The idea of
the different models is to replicate the spatio-temporal dynamics in brain net-
works by learning to predict from a past sequence of brain states a sequence
of future neural states. Therefore input and output pairs were generated from
the data by selecting windows of length Tp to obtain input sequences of neu-
ral activity states [x(1), . . . , x(Tp)], and respective target sequences of length Tf

denoted as [x(Tp+1), . . . , x(Tp+Tf )]. The time index t can be propagated through
each session dataset, so in total T − Tp − Tf + 1 input-output samples were
generated per fMRI session. The first 80% of those pairs were used for train-
ing the STGNN models, the subsequent 10% as a validation set, and the last
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10% have been incorporated for testing. For the following evaluations of the
models, the length of the input and output sequences were selected to be
Tp = Tf = 60, which corresponds to a time span of roughly 43 s, based on
a sampling interval of TR = 0.72 s [120]. The length of this time window
has been shown to be long enough to be sufficiently challenging for the dif-
ferent models and to make clear the differences in their prediction accuracy.
Likewise, the window of 60 timepoints is short enough for them to make rea-
sonable, non-random forecasts of the signal.

In addition to the information on functional dynamics, which was derived
from fMRI, knowledge on the spatial connectivity between regions can be ob-
tained from DTI data. Here the DTI dataset provided by the HCP was pro-
cessed using the multi-shell, multi-tissue constrained spherical deconvolution
model [74], and the number of fiber tracks connecting two regions was used
to determine the structural connectivity strength between the regions. The
structural connectivity values between all N regions were then collected in a
adjacency matrix ASC ∈ RN×N .

As an alternative to this adjacency relation defined by the original struc-
tural connectivity (ASC), connectome embeddings allow us generate repre-
sentations of nodes that capture higher order topological features of nodes
in the structural network [99]. As introduced in section 1.2.4, the idea of a
graph embedding is to represent each node in the graph by a Q-dimensional
feature vector. In such an embedding subspace similar embeddings charac-
terize the k-step (k = 1, 2, . . . , K) relation between the vertices and their k-step
neighbors [99, 59]. This technique was used to embed each brain region n
of the SC network into a Q = 64-dimensional vector representation. There-
fore the gensim python package [140] was incorporated, using the skip-gram
model to learn the node representations [89]. In our application, the objective
of the skip-gram model is to predict from a target node in the structural net-
work its neighborhood context, whereby a sequence of neighboring nodes is
sampled by performing a biased random walk on the graph, as described in
section 1.2.4. For generating the node sequences, in total 100 random walks
were performed for each node, with each walk consisting of 80 nodes. The re-
turn parameter of the random walk was set to p = 2 and in-out parameter to
q = 1. To quantify the similarity of brain regions based on their role within the
anatomical brain network, the Pearson correlation was used to compute a sim-
ilarity score between all N brain regions. The correlation coefficients between
all pairs of regions were then collected into an adjacency matrix ACE ∈ RN×N .
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2.1.4 Model Training

This section will describe how to the DCRNN and GWN are trained to make
neural signal inference. For both models, the mean absolute error (MAE) was
used as a cost function, quantifying the difference between the true BOLD
signal intensity x(t) ∈ RN and predicted signal x̂(t):

MAE(x, x̂) =
1
N

N

∑
n=1

1
Tf

Tf

∑
t=1
|x(t)n − x̂(t)n | (2.2)

Here MAE is obtained as the average across all N brain regions and all Tf

predicted signal values. The DCRNN model, which is based on a RNN ar-
chitecture, was trained with the backpropagation through time (BPTT) algo-
rithm [130], with the objective to maximize the likelihood of predicting true
BOLD signal states. In addition, to account for a potential mismatch between
training and testing distributions, a scheduled sampling technique was incor-
porated during the training of the DCRNN [82, 15]. The probability of using
a true label during training as an input for the decoder decayed accordingly
to:

ε(i) =
τ

τ + exp(i/τ)
∈ (0, 1) (2.3)

whereby τ > 0 denotes the decay parameter and i ∈ N counts the training
iteration. In this learning task instances to be predicted are represented by the
empirically observed BOLD signal. For the optimization of the DCRNN, the
Adam algorithm [76] (as described in section 1.2.2) was used. The model was
trained in total for 70 epochs on batches consisting of 16 samples. To improve
convergence of the gradient-descent based optimization, an annealing learn-
ing rate was employed, initialized as η = 0.1, and decreased by a factor of 0.1
at epochs 20, 40 and 60, or if the validation MAE did not improve for more
than 10 epochs. Every time before decreasing the learning rate in this man-
ner, the weights with lowest validation error were restored, in order to escape
local optima. The influence of the DCRNN model hyperparameters on the
prediction accuracy are discussed in more detail in appendix B.1 (figure B.1).
For the application of the DCRNN model, the hyperparameters were chosen
to yield a reasonable trade-off between model accuracy and computational
requirements. The encoder and decoder of the DCRNN consist to 2 diffusion
convolution GRU layers each, and the hidden state size was set to 64. The
experiments were performed using a Nvidia RTX 2080 Ti GPU, running on
a desktop PC with an Intel(R) Core(TM) i7-9800X CPU under Linux Ubuntu
20.04. One epoch of the DCRNN on a dataset including 25 subjects and pre-
dicting the activity within one hemisphere (180 regions) took approximately
3.4 minutes with this setup.

Like the DCRNN, the GWN model was also trained using the Adam op-
timizer [76] to minimize the forecasting error of the BOLD signal defined in
equation 2.2. It was found sufficient to train the GWN for 30 epochs with a
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batch size of 8 samples, thereby initializing the learning rate as η = 0.0001
and decreasing it by a factor of 0.1 at epochs 10 and 20. The influence of
the hyperparameters of the GWN is evaluated in appendix B.1 (figure B.2),
and a good trade-off between model accuracy and computational complexity
could be found using 32 feature maps in each CNN layer. In this architecture
2 causal convolution layers were used per block, with a total number of 12
blocks. With this setup one epoch on a dataset with 25 subjects including 180
ROIs took around 12.2 minutes.
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2.2 Results

In the following different aspects of STGNNs in will be studied in their appli-
cation for brain network analysis in MRI. At first in section 2.2.1, two different
temporal modeling strategies will be compared to each other: The RNN based
model, as implemented in the DCRNN, with the WN based architecture, as
implemented in the GWN. In addition to these temporal models, different
possibilities to account for the spatial information exchange between brain re-
gions will be studied. Therefore the structural connectivity as a substrate for
information propagation is compared to the structural connectome embed-
ding similarity and to a self-adaptive adjacency relation. Based on these com-
parisons the most efficient STGNN architectures will be identified in order to
model the spatial and temporal dynamics as observed in brain networks.

In a subsequent step in section 2.2.2, the STGNN based approaches are
then contrasted to a currently popular data-driven approach for modeling di-
rected relationships between brain areas. Granger causality is usually based
on a vector auto regressive (VAR) model for multivariate timeseries inference,
as introduced in section 1.4.2. In a brain network including N ROIs the pa-
rameters in a VAR model grow with N2, so for large brain networks it can be
challenging to accurately fit the model if only limited data are available in a
study. Thus, for their application it would be practical to have a model for
neural dynamics that is able to learn functional interactions between all ar-
eas of interest, and in addition it should scale to larger brain networks. The
STGNN approaches will be therefore compared to the classical VAR model
on a number of network and dataset sizes, to compare model predictions for
different applications.

Moreover, spatial interactions between brain regions, which were learned
by the STGNN models will be studied in more detail in section 2.2.3. It will
be discussed how a perturbation based approach can be used to reconstruct
directed relations between ROIs captured in these STGNN models. By inte-
grating prior knowledge on the brain anatomy in form of structural connec-
tivity or based on connectome embeddings, these models are able to provide
us a multi-modal perspective on directed dependencies between brain areas.

Finally, the concept of transfer learning, as introduced in 1.2.2, will be pre-
sented for an application of connectivity analysis with STGNNs. It will be
demonstrated in section 2.2.4 that by pretraining the DCRNN on 100 subjects
of the HCP, the model accuracy on a smaller dataset from a different study,
consisting of 10 subjects, can be improved. By transferring some of the learned
characteristics of neural dynamics, this strategy can help us to a achieve a high
model accuracy also on datasets from studies with limited sample sizes.
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2.2.1 Spatial and Temporal Modeling in GNNs

Before studying the performance of the above-described STGNN architec-
tures on a larger variety of MRI datasets from different experiments, we first
focus on the effects of the temporal and spatial modeling in STGNNs. For
this analysis, a dataset with a sample size of a medium sized fMRI study in-
cluding data from 25 subjects was incorporated. From each resting-state fMRI
session windowed input and output samples were created, as described in
section 2.1.3, and the generated training, validation and test samples were
then aggregated across all 25 fMRI sessions. The signals of regions within the
right hemisphere were included in the following comparison, consisting of
N = 180 ROIs based on the atlas proposed by Glasser et al. [50]. First the pre-
diction accuracy of the different temporal modeling strategies will be evalu-
ated, thereby comparing the recurrent neural network (RNN) based sequence-
to-sequence learning with the convolutional neural network based WaveNet
(WN) model. The STGNN hyperparameters, which are used for the follow-
ing comparisons were discussed in the previous section 2.1.4 ‘Model train-
ing’. The BOLD signal data was scaled to zero mean and unit variance for
the following evaluations, to obtain values of a magnitude that is easier to
interpret. Figure 2.2 (a) shows the test mean absolute error (MAE) between
the predicted and the true activity values. The error was averaged across all
test samples, brain regions and the 60 predicted time points (corresponding
to roughly 43s of activity). The comparison reveals that the RNN and WN
model have very similar capabilities in predicting the BOLD signal. Despite
their conceptual differences in their architecture, this points out that the RNN
and WN based approach are able to both recover a comparable and consistent
amount of temporal information from the fMRI data.

In a next step we will investigate the impact of adding information on spa-
tial dependencies between the different regions in the brain network. This will
be implemented by including graph convolution operations to the temporal
prediction models. The definition of a adjacency matrix determines how infor-
mation is propagated between the different nodes in the brain network, and
in the following three conceptually different approaches will be compared
to each other. First the structural connectivity as derived from DTI will be
incorporated as the substrate for information exchange between ROIs. This
SC based adjacency matrix ASC is illustrated in figure 2.2 (b). The informa-
tion can propagate along direct connections in the network (K = 1), but also
higher orders (K = 2, 3, . . .), describing the influence of indirect connections,
can considerably contribute to interactions between ROIs [12, 83, 16]. A walk
order of K = 0 represents the case when accounting for no spatial information
exchange between network areas, exclusively integrating temporal informa-
tion for the predictions. Figure 2.2 (c) shows the test MAE in dependence of
the walk order K when using the SC derived from DTI as substrate for the
information propagation. The RNN based model in combination with graph
convolution operations was referred to as DCRNN [82] (section 1.2.6) and the
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FIGURE 2.2: A comparison of the two different temporal modeling
strategies for the BOLD signal is shown in (a), comparing the test MAE
of the recurrent neural network (RNN) and the WaveNet (WN). The
test error was obtained as an average across samples, brain regions and
subject sessions. The error bars represent the standard deviations of
the test MAEs across subjects. Spatial relations are added to the tem-
poral models in form of graph convolution operations, and the spatio-
temporal extensions of the RNN and WN models are respectively de-
noted as diffusion convolution recurrent neural network (DCRNN) and
graph WaveNet (GWN) [82, 133]. Spatial transitions are captured in the
weighted adjacency matrix, which is either based on structural connec-
tivity (ASC), connectome embedding similiarity (ACE), or adapted dur-
ing model training (AAdap). In (b) the adjacency matrix ASC based on
structural connectivity within the 180 regions of the right hemisphere is
illustrated, together with the adjacency matrix ACE based on structural
connectome embedding similarities. The regions in this illustration are
ordered according to the atlas proposed by Glasser et al. [49]. Figure (c),
(d) and (e) show the forecasting errors of the DCRNN and GWN model
in dependence on the walk order K. Note that K = 0 represents the
case, when no spatial information exchange between regions is consid-
ered. In figure (c) the overall test MAE is shown when including the SC
as an adjacency matrix ASC, figure (D) displays the test error when em-
ploying CEs in an adjacency matrix ACE to define spatial relations, and

(E) depicts the case when using a self-adaptive weight matrix AAdap.

MAE of its predictions, averaged across test samples, brain regions and pre-
dicted timepoints is shown here in blue. Figure 2.2 (c) points out that the
DCRNN has the lowest test MAE when incorporating walks on the structural
graph up to a order of K = 2. The WN incorporating graph convolution op-
erations is denoted as GWN [134] (section 1.2.6) and its average test MAE is
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depicted in red in figure 2.2 (c). The dependency of the walk order K on the
GWN accuracy suggests that its performance can be successively improved
by including first-order connections, followed by the second- and third-order
connections. As an alternative to the original SC, the structural similarity be-
tween ROIs can be characterized based on their CE similiarity ACE, as also
illustrated in figure 2.2 (b). A comparison between ACE and the structural
connectivity matrix ASC reveals that in the adjacency relation based on struc-
tural CEs, long range connections between areas are considerably more pro-
nounced. Figure 2.2 (d) shows the test MAE of the STGNNs when using ACE

in the graph convolution operations. In this case we can observe for both
models a sharp drop in the error at walk order K = 1, what suggests that the
similarity of node embeddings inherently account for higher order relations
between nodes in the brain network. Finally, in figure 2.2 (e) the test MAE is
shown when treating spatial connections between nodes as adaptive weights.
In this case we do not observe an improvement in the error, which indicates
that it is rather challenging to freely learn all N2 connections between brain re-
gions without prior knowledge. In general both STGNN architectures could
profit the most when using CEs to characterize the spatial layout for func-
tional interactions between brain areas. The DCRNN model had a test error
of MAE = 0.1388 when including no information from other brain regions in
the network, which could be then reduced to MAE = 0.1158 (for K = 1) when
incorporating CEs to model the spatial information exchange within the brain
network. To test the significance of this improvement on the accuracy in com-
parison to the case incorporating no structural modeling (K = 0), the overall
test MAE for each subject was computed, and based on a paired t-test the im-
pact of structural modeling has shown to be significant with p ≤ 0.0001 for
both STGNN models and both structural adjacency relations (ASC and ACE).
Although the performance differences between the GWN and DCRNN are
quite small in general, the DCRNN slightly outperformed with a test error of
MAE = 0.1158 the GWN with a test error of MAE = 0.1211 (also significant
with p ≤ 0.0001). This observation can show us that around 17% more in-
formation on functional dynamics can be directly retrieved from nodes with a
similar higher-order context within the anatomical network. In contrast, using
the SC to model transitions could only reduce the test error of the DCRNN by
5% at K = 1, which supports the idea that the structural node embeddings can
directly strengthen the relationship between structural data derived from DTI
with functional data observed in fMRI [99]. When applying a paired t-test,
the improvement in the model performance when using the CE similarity in
comparison to the original SC became for both, the DCRNN and GWN model,
significant with p ≤ 0.0001. By inherently capturing higher order transitions
in ACE, only a low walk order K is only needed to account for information
from structurally connected ROIs. In this way, this technique can contribute
to efficiently reducing the number of parameters in STGNN models.
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2.2.2 Model Accuracy and Network Scaling

In this section we have a closer look on the prediction accuracy of the above
introduced STGNN based approaches. We evaluate their performances on
different MRI study scenarios and compare their accuracy to the VAR, which
is currently a popular method for directed functional connectivity analysis
[47, 9, 17]. In real applications of such methods, the amount of available fMRI
data may vary depending on the project size and on the type of subject co-
hort. Also the size of the brain network of interest can range from a few areas
in a specific functional network to a large-scale whole brain analysis. For this
purpose in the following different scenarios will be considered for analyzing
the models’ performance in dependence of the brain network size and the
fMRI dataset size. For these evaluations one larger dataset including resting-
state fMRI sessions from 50 subjects will be incorporated, one medium sized
dataset of 25 subjects and one smaller dataset only consisting of data from 10
subjects. In addition, the size of the analyzed brain network will be varied.
The first smaller network consists of 22 ROIs per hemisphere involved in vi-
sual processing as defined by the Glasser parcellation [49]. The complete list
of selected ROIs is provided in the appendix B.2. The second, medium-sized
network includes the regions within one hemisphere, and for this purpose
the 180 ROIs within the right hemisphere based on the Glasser atlas were se-
lected [49]. Finally the whole brain network consisting of in total 360 regions
was used for the evaluation. As described in section 2.1.3 ‘Data preparation’,
windowed input and output sequence pairs were created from the timeseries
data. The goal of the different forecasting models is accordingly to predict
Tf = 60 timepoints of neural activity from the past Tp = 60 activity values.
The hyperparmeters used for the STGNNs in this comparison are described in
section 2.1.4 ‘Model training’. Further in this evaluation the CE similarity ACE

with transition order of K = 1 was used in the STGNN models, which has
shown to improve the GNNs forecasting accuracy with low computational
cost, as discussed in the previous section 2.2.1.

The VAR model was fitted to the BOLD signal timecourses using the ordi-
nary least squares (OLS) method as implemented in the multivariate Granger
causality (MVGC) toolbox [9], and for each dataset, the VAR model with order
p that achieved the best MAE on the test set was selected. To check for sta-
tionarity of the BOLD signals, an augmented Dickey-Fuller test for unit roots
was applied [63, 86], using a p-value of p < 0.01. For the 25 subjects dataset,
roughly 10.0% of the BOLD timecourses did not fulfill the stationarity criteria
of the augmented Dickey-Fuller test (p > 0.01) when using a high lag order
of Tp = 60. But as the criterion for the following evaluations is the prediction
accuracies of the models, the VAR model with the highest accuracy is chosen
here for comparison with the STGNNs.

Figure 2.3 illustrates the test accuracy of the VAR, DCRNN and GWN
model in dependence on the dataset size and brain network size. It is ap-
parent in figure 2.3 (a) that if a large dataset of 50 subjects is available, all
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three models are able to accurately predict the BOLD signal with a very low
test MAE. A notable increase in the test error only becomes present for the
VAR model, when it is fitted to the large whole brain network. Figure 2.3 (b)
shows the test MAE when data from 25 subjects is incorporated. In that case
the error of the VAR model starts to increase already noticeably when model-
ing activity distributions within a single hemisphere, and becomes quite large
when including the whole brain network. In contrast to the VAR, the predic-
tion accuracies of the DCRNN and GWN models remain stable in all cases. In
the last case, when only 10 subject datasets are available, the test MAE of VAR
model strongly depends on to the analyzed network size, as illustrated in fig-
ure 2.3 (c). On the contrary, the DCRNN and GWN model can still achieve a
high accuracy also in this case when data are limited and the network size of
interest is relatively large. Based on a paired t-test, the accuracy improvement
of the DCRNN and GWN in comparison to the VAR were shown to be in all
cases highly significant with p ≤ 0.0001, except when the VAR is only fitted to
the single visual network, where it still could make highly reliable forecasts.

FIGURE 2.3: The figure shows a comparison of the prediction accura-
cies of the three models when varying the amount of data and the size
of the network. The test MAE of the VAR is in this figure depicted in or-
ange, the MAE of the DCRNN in blue and the MAE of the GWN in red.
The MAE was computed as an average across brain regions, timesteps
and test samples. In (a) the test MAE when employing a dataset includ-
ing 50 subjects is shown for the visual network, the network within the
right hemisphere and the whole brain network [49]. Figure (b) and (c)
depict the test performances in dependence of the network size when
using the 25 and 10 subject dataset, respectively. The error bars rep-
resent the standard deviations of the test MAEs across subjects, which
are very small for the STGNN models, but clearly notable for the pre-

dictions of the VAR, when the datasize is limited.

To illustrate the prediction accuracies of the different forecasting models
in more detail, an example of the predictions incorporating the dataset with
25 subjects, and modeling the activity within one hemisphere is shown in fig-
ure 2.4. Figure 2.4 (a) depicts the MAE of the models computed as an average
across test samples and ROIs in dependence of the forecasting horizon. Within
the first 15 timesteps all three models can generate very accurate predictions,
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but after that period the test error of the VAR model starts to accumulate,
while the GNN based approaches remain considerably more stable and pre-
cise. The predicted BOLD signals of the different models in a few represen-
tative samples are depicted in figures 2.4 (b), (c) and (d). To further validate
the results, the analysis was replicated using a frequency filter for the BOLD
signal in the 0.02− 0.09Hz frequency range, and the respective results are pre-
sented in appendix B.3. In addition, this evaluation were replicated using a
different dataset provided by the Brain Imaging Center of the University of
Regensburg (UR), and the findings are discussed in appendix B.4.

FIGURE 2.4: The prediction accuracy of the three models is presented in
more detail for the 25 subject dataset and the brain network including
the ROIs within the right hemisphere [49]. In (a) the test MAE in de-
pendence of the forecasting horizon is shown, computed as an average
across test samples and brain regions. Figure (b) depicts a representa-
tive example of predictions generated by the VAR model, and the error
of the predictions in this example are with MAE = 0.376 slightly below
its overall test MAE. Figure (c) illustrates an example of GWN predic-
tions and the error in this example is with MAE = 0.137 slightly higher
than its average MAE. Finally (d) shows the predictions of the DCRNN
and the error is with MAE = 0.120 slightly higher than its average er-

ror.
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Another interesting aspects of the predictive models is the dependence of
the forecasting error on the respective analyzed brain region. Figure 2.5 illus-
trates the test MAE of the DCRNN, GWN and VAR model in dependence of
the brain region within the right hemisphere. For all three models there ap-
pears a consistently greater prediction error in the posterior cingulate cortex
and medial orbitofrontal cortex, which could possibly point towards a more
complex temporal dynamic in those regions. Alternatively, the prediction ac-
curacy might be affected by a lower signal-to-noise ratio observed in medial
brain regions [93].

FIGURE 2.5: The distribution of the test error across the cortical surface
is illustrated. In (a) the test MAE across brain regions of the DCRNN is
first visualized in a boxplot, as shown on the left side. Accordingly on
the right side of the figure, the MAE values projected onto the cortical
surface are shown for the right hemisphere. The colormap was linearly
scaled between 0 and 0.18. Respectively in (b) the MAE of the GWN is
shown across regions and in (c) the MAE values of the VAR model. For
the VAR model, the colormap was adjusted to account for larger error

values by scaling it between 0 and 0.6.
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2.2.3 Multi-Modal Directed Connectivity

Different approaches were compared in section 2.2.1 for the spatial model-
ing of dynamic interactions between regions in the brain network. The re-
sults have shown that adding information on the spatial relation between re-
gions in the form of structural connectivity (ASC) or connectome embedding
similarity (ACE) could considerably improve the prediction accuracy of the
STGNN models. This points out that STGNNs are able learn relevant and
functional informative transitions of neural activity based on the structural
scaffold. By following the idea of Granger causality that the observation of
one certain event A carries information about about the future occurrence of
another event B, this could represent initial evidence for a potentially causal
relation between A and B [56]. In this spirit, propagating the information be-
tween ROIs based on their SC or structural CE similarity would provide us
a multi-modal perspective of such a directed and potentially causal relation-
ship between brain areas. A perturbation based approach can be utilized to
reconstruct the amount of information one ROI carries about other ROIs in
the network [136, 126]. By learning a function f (·), the STGNN models try
to infer from an input sequence of activity states [x(1), . . . , x(Tp)] a sequence
of future states [x̂(Tp+1), . . . , x̂(Tp+Tf )], whereby x(t) ∈ RN denotes the neural
activity at timestep t in all regions n = 1, . . . , N. For inducing a perturbation
into the model of neural dynamics, all information on activity in a specific ROI
n′ is removed by setting its activity values to the sample mean xn′ = 0. In a
next step, by using the perturbed timeseries as an input for our trained model
f (·), the model generates then a prediction [x̂′(Tp+1), . . . , x̂′(Tp+Tf )]. Finally, to
reconstruct the directed influence of ROI n′ on ROI n in our STGNN model,
the overall difference between the original prediction and the prediction with
perturbation in the input can be quantified as described in the following:

In(n′) =
1
S

S

∑
s=1

1
Tf

Tf

∑
t=1
|x̂(t)n (s)− x̂′(t)n (s)| (2.4)

where In(n′) denotes the impact of ROI n′ on n. Here x̂(t)n (s) and x̂′(t)n (s) denote
the predictions in ROI n with and without the perturbation in n′ of one test
sample s at a time step t.

In the following this proposed measure of directed influence I(n′) will
be compared to classical undirected types of brain connectivity. First it will
be contrasted to structural connectivity as derived from DTI, characterizing
the number of fiber tracks connecting two brain regions (as described in sec-
tion 1.4.1). Then the functional connectivity will be incorporated, defined as
the Pearson correlation of BOLD signal timecourses between two brain areas
(section 1.4.2). The above introduced GWN will be used in the following ex-
ample to obtain a multi-modal measure of directed connectivity I(n′), as de-
fined in equation 2.4. First by employing the SC as substrate for information
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propagation, captured in ASC, and then also using the similarity of CEs, rep-
resented by ACE. In the following example the connectivity of V1 within the
right hemisphere will be studied incorporating the medium-sized 25 subjects
dataset. For the comparison, all connectivity values are rescaled by normal-
izing them between 0 and 100. Then the connectivity values are visualized
by projecting them onto the cortical surface as displayed in figure 2.6. In fig-
ure 2.6 (a) the structural connectivity is illustrated and the target region V1 is
marked here in light blue. The strength of connectivity to all other regions is
encoded in red color. Figure 2.6 (a) illustrates that we can mainly observe a
pronounced structural connectivity between V1 and V2 and some structural
connections leading to V3. Figure 2.6 (b) shows the undirected functional
connectivity pattern in resting-state. In this variant of connectivity we can
observe predominantly correlations to the functional activity in V2 and V3,
but also a notable connectivity strength to V3, V4 and V6. In figure 2.6 (c) the
directed connectivity strength I(n′) is depicted, when using the SC as spatial
backbone for the information exchange between brain regions in the STGNN
model. In comparison to the plain SC, in addition to V2 a more pronounced
relationship to areas V3 and V4 can be observed, and also to some anatomi-
cally more distant areas like V6 and the ventromedial visual area VMV1. This
shows that this multi-modal type of brain connectivity additionally reflects
the role of indirect structural connections by modeling higher order transi-
tions on the structural scaffold, which are captured by the STGNN model. As
an alternative to the SC, figure 2.6 (d) shows the directed connectivity patterns
when using CE similarity as the spatial layout in the GWN. In this case we can
recognize an even stronger integration of V1 within the visual network, which
is in agreement with the observation that CEs can capture higher order topo-
logical relations in the anatomical connectivity [99]. Appendix B.6 illustrates
additionally the spatial relations between brain areas captured by the DCRNN
model. In this DCRNN based connectivity distribution a pronounced similar-
ity to the directed connectivity pattern learned by the GWN architecture can
be noticed, revealing more pronounced connectivity to areas like V3 and V4.
Based on this observation, such a STGNN based connectivity approach can
serve as a link between structural and functional connectivity and as such it
can provide us a multi-modal perspective on directed dependencies between
individual areas in brain networks.
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FIGURE 2.6: Different types of connectivity between V1 and all other re-
gions are illustrated within the right brain hemisphere. In (a) the struc-
tural connectivity is depicted, whereby the target region V1 is marked
here in light blue and the connectivity strength is encoded in red. In
(b) the correlation-based functional connectivity is shown, which was
computed as an average across the 25 subjects. Further (c) illustrates the
measures of directed influence I(n′), derived from the GWN model us-
ing the SC for information propagation. Finally figure (d) depicts the in-
fluence when incorporating CEs for the information exchange between
ROIs. The values of the connectivity measure were linearly mapped be-
tween 0 and 100 (and between−100 and 100 for FC). The default scaling
of the color values provided by the connectome workbench (version 1.4.2)
was used, adjusting the colormap between the 2th and 98th percentile

of the values respectively.
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2.2.4 Model Generalization

Often a limitation in applications of more complex machine learning models is
the amount of data available to properly train them. Especially in MRI studies
it can be time-consuming and costly to acquire such large datasets. To address
such issues, the concept of transfer learning was proposed in machine learn-
ing [94]. As introduced in section 1.2.2, the basic idea behind transfer learning
is that if there are only limited amounts of data available for model training,
one can pretrain the model on a large-scale dataset of a similar task. In a sub-
sequent step, the feature representations learned on the large database can be
used as an initialization for learning the desired target task. If the feature rep-
resentation of the source domain is diverse enough, model performance can
be improved in comparison to starting the training without any prior knowl-
edge, e.g. relying on a random initialization of the model weights [94].

To investigate if transfer learning might also be suitable for spatio-temporal
modeling in MRI, the capabilities of the DCRNN to generalize across differ-
ent datasets will be studied in the following. Therefore the DCRNN was
pretrained using the large-scale dataset provided by the HCP [122], as de-
scribed in the section 2.1.2 ‘Datasets’. The input and forecasting horizons of
the BOLD signals have been here selected to be of length Tp = Tf = 30 for
the following analysis [126]. The DCRNN model was pretrained for in total
70 epochs on 100 resting-state fMRI sessions (4 sessions from 25 subjects), in
addition using their structural connectivity as reconstructed from DTI. Then
the dataset acquired at the University of Regensburg (UR) was used, as de-
scribed in section 2.1.2. Here 10 different subjects participated in a resting-
state fMRI sessions, including a DTI session. Each resting-state session of the
UR dataset lasted 7.3 min, whereby 600 fMRI images were collected during
each session. In correspondence to the larger HCP dataset, the UR data were
further processed by windowing the average BOLD signals in the ROIs de-
fined by Glasser et al. [49], thereby obtaining windows with an input and
output length of Tp = Tf = 30 timepoints. The first 80% of these input-output
samples were used for training, the subsequent 10% for validation and the
final 10% for testing. Then the DCRNN, pretrained on the HCP data, was
fine-tuned in a next step by training it for 70 more epochs on the UR dataset.
The second training was initialized with a smaller learning rate of 0.001. This
pretrained model was compared to the model only trained on the UR dataset,
and with weight parameters initialized randomly with Xavier/Glorot initial-
ization (as introduced in section 2.1.4).

A comparison between relying on standard training with a random initial-
ization, and utilizing transfer learning is illustrated in figure 2.7. Figure 2.7 (a)
depicts the training and validation error during learning when starting with a
random initialization of the weights in red. This model was trained in total for
140 epochs on the UR dataset only. In blue the training and validation error
is depicted of the model, initially pretrained on the larger HCP dataset for 70
epochs, and then fine tuned on the UR dataset for the subsequent 70 epochs.
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Figure 2.7 (a) shows that at onset, the training error on the UR data is rela-
tively high, but as the pretrained model adapts to the new dataset, the MAE
becomes considerably smaller than without the pretraining. In figure 2.7 (b)
the test MAE in dependence of the prediction horizon is illustrated. In total
540 test samples from 10 different subjects were used for the model testing on
the UR dataset. The overall test error could be reduced by 27% from 0.0388 to
0.0284 by encompassing transfer learning. In this way, the model accuracy on
the small UR dataset, containing 10 sessions a 7.3 min, becomes comparable
to the accuracy on the large HCP dataset with 100 sessions a 14.4 min with a
MAE = 0.0279. In addition, to evaluate the significance of this improvement
across subjects, the test MAE with and without pre-training the model was
computed for each of the 10 subjects. Then a paired t-test was incorporated
and the difference was significant with p ≤ 0.0001.
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FIGURE 2.7: The performance difference between standard training and
encompassing transfer learning is shown. Figure (a) illustrates the val-
idation and training MAE during model training from epoch 70 on-
wards. The errors with and without pretraining are depicted in blue
and red respectively. The error values were computed as the average
over all subjects, sessions, brain regions and test samples. At the very
beginning of fine tuning, the error of the pretrained model is relatively
high, but decreases after the model adapts to the new UR dataset. In
figure (b) the final test MAE of both models is shown in dependence on

the forecasting horizon. Adapted from our publication [126].
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Chapter 3

Conclusion

3.1 Discussion

In this thesis a novel technique based on spatio-temporal graph neural net-
works (STGNNs) was presented for studying the characteristics of spatial
and temporal dynamics in complex brain networks. After deriving the the-
ory of STGNNs, the basics of MRI and current concepts of brain connectivity
in chapter 1, several aspects and applications of STGNN for brain connectiv-
ity analysis were introduced in chapter 2. At first, different artificial neural
network architectures for replicating the temporal dynamics in the BOLD sig-
nal have been studied in section 2.2.1. The comparison could reveal that a
RNN based model and a WN based model have very similar capabilities in
detecting temporal patterns in the neural activity dynamics. Despite their
conceptual differences in their architectures, they demonstrated almost the
exact same prediction accuracy, which indicates that they are both very con-
sistent in capturing the temporal information in functional imaging data. In
a subsequent step the impact of adding spatial dependencies was examined,
which was realized by adding graph convolution operations to these tempo-
ral models. Different spatial layouts have been compared to account for the
information propagation between brain regions, either based on the structural
connectivity (ASC), the CE similarity (ACE), or a self-adaptive adjacency ma-
trix (AAdap). While the model performance of the GWN and DCRNN steadily
improved by including higher walk orders K on the anatomical substrate, a
more pronounced improvement was already observed when incorporating
structural CEs with a walk order of only K = 1. This embedding strategy
turns out to be therewith also interesting in applications of STGNNs, because
it has the potential to effectively incorporate indirect structural connections
with a considerably lower learning complexity, which depends linearly on
the walk order K [40]. These observed characteristics of CEs in this proposed
application support the ideas of Rosenthal et al. [99], which have demon-
strated in their study that node embeddings of the structural network can
naturally capture higher order topological relations between ROIs. Also in
the presented context of modeling spatio-temporal dynamics this method has
shown to strengthen the relationship between brain structure and functional
dynamics.
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The STGNN models were then compared to the current popular approach
for directed brain connectivity analysis. In Granger causality analysis the VAR
model is still predominantly used for the inference of directed relationships
between brain regions [47, 9, 17]. For this comparison in section 2.2.2, the
accuracy of the different approaches was evaluated on a variety of brain net-
work sizes and dataset sizes to account for different possible scenarios in their
applications in MRI studies. The results could demonstrate that if a suffi-
ciently large cohort of 50 subjects is available in a study, a VAR model is able
to make very reliable long-term predictions, and only for a large network con-
sisting of N = 360 regions there is a notable increase in the prediction error.
But the dependency of the accuracy on the size N of the brain network be-
comes more apparent when data from only 25 subjects are used to fit the VAR
model. Finally in a case where only 10 subjects are available for the analysis,
the error of the VAR grows strongly with N. This demonstrates that a VAR is
a fast and reliable model for fMRI studies with a sufficiently large test subject
size and for connectivity studies including a limited amount of pre-defined
regions. But in certain cases it might be desirable to include a larger amount
of brain areas into the brain connectivity analysis, in order to avoid omitting
relevant areas in the studied network of interest. Also in some MRI studies it
can become very costly and time-consuming to collect a large amount of data,
which is, for example especially challenging in studies on rare neurological
disorders. While the number of parameters in a VAR based approach grow
with an order N2, the spatial modeling in STGNNs, based on localized graph
convolutions, is independent of the number of ROIs N. This property enables
the presented STGNN based approaches to make very robust inferences also
on large networks and when only limited data are available, thereby provid-
ing a considerably more flexible method for different network analysis sce-
narios.

In a subsequent step, spatial interactions between regions learned by the
STGNN models have been studied in more detail in section 2.2.3. By inte-
grating information on the anatomical substrate into the STGNNs, a multi-
modal measure of connectivity strength could be derived from these models
for identifying directed and potentially causal relationships between brain re-
gions. When comparing this measure of directed influence to classical struc-
tural connectivity, some transitions along higher order structural connections
in the brain network could be additionally observed in this multi-modal mea-
sure. The STGNN models could detect links between V1 and V2, but also ad-
ditional prominent connections to V3 and V4. The influence of such higher-
order connections became even more apparent, when a CE based similarity
ACE was incorporated to define spatial node relations. In that case a very high
integration of V1 within the visual system could be observed in the connec-
tivity profiles. In this manner, this spatio-temporal analysis approach based
on STGNNs can serve as a link between features observed in structural and
functional imaging data for studying brain connectivity from a multi-modal
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perspective. Due to the relatively low temporal resolution in fMRI [47], and
the indirect measurement of the underlying neural signals based on their
hemodynamic response [124], one should also be aware of these limitations
in the inference of directed and potentially causal connections in fMRI studies
[109]. A lag-based predictive approach based on STGNN models might there-
fore also be affected by the same limitations as classical Granger causality in
fMRI. On the other hand, a combined fMRI-MEG study by Mill et al. [90]
and different computational simulations of fMRI data [123, 103, 129, 42] could
meanwhile establish evidence that Granger causality is still able to identify
meaningful directed relationships between brain regions in fMRI, despite the
indirect inference based on the hemodynamic response. As an alternative, de-
convolution based approaches can have the potential to reconstruct from the
measured BOLD signals the underlying neural timeseries [26, 90] for assess-
ing effective brain connectivity, rather than only estimating directed functional
connectivity from the original BOLD signals [17]. But the estimation of the
underlying hemodynamic response from the data might come with the cost
of introducing additional assumptions and uncertainties into the analysis [96,
17]. Despite these current potential limitations in fMRI, a multi-modal GNN
based approach allows us to join structural and functional imaging data in
a new manner, and reveals thereby its potential for supplementing current
analysis methods in brain connectivity research [95].

Finally, in section 2.2.4 an approach was presented, which can improve
the model performance on smaller MRI datasets. It was demonstrated that
the concept of transfer learning [94] finds also an application in our context of
spatio-temporal modeling in MRI. Features learned from the large-scale data
of the HCP repository [122] could be well transferred to a smaller dataset,
acquired with a Siemens Magnetom Prisma 3T at the UR. This strategy made
it possible to achieve almost the same accuracy on the smaller UR dataset in-
cluding 10 fMRI sessions (each 7.3 minutes in duration) as with a large dataset
including 100 sessions (each 14.4 minutes in duration). The acquisition and
preprocessing protocols of the two datasets were relatively comparable in this
example, so in other cases with larger differences in the temporal resolutions
of the fMRI data, downsampling one dataset might be necessary in order to
achieve a higher similarity between them and to obtain comparable feature
representations. In this manner, in studies with a limited amount of data
available, this pre-training strategy has the potential to improve the accuracy
of STGNN models in such challenging cases.
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3.2 Outlook

For applications and investigations based on STGNNs, several conceptual
and methodological aspects might be of interest in neuroimaging research in
the future. In the presented analysis in section 2.2.3, a perturbation based ap-
proach was used to reconstruct the spatial dependencies between ROIs which
were learned by the STGNN models. Alternative ways to detect such depen-
dencies among the models input variables could be provided by recent ap-
proaches proposed in the notion of explainable artificial intelligence (XAI) [116].
Techniques developed for artificial neural networks like sensitivity analysis
[105] or layer-wise relevance propagation [79] might be interesting alterna-
tives to explain the relations between brain regions learned by STGNN mod-
els.

Further these whole-brain models might be of interest for clinical research
questions. These spatio-temporal models could provide a possibility for study-
ing neural dynamics in the diseased brain and could be utilized to investi-
gate how functional interactions between different areas might be affected by
pathological brain states. Similarly, these multi-modal STGNN models could
also be applied to simulate the impact of a structural lesion to investigate the
effects of such lesions on the brain functions [3].

Besides applications of STGNN in fMRI studies, alternative functional
neurophysiological techniques like electroencephalography (EEG) or magne-
toencephalography (MEG) might be interesting for analyzing temporal dy-
namics in the high frequency range. This could allow us to study dynamic
functional interactions with a considerably higher temporal resolution, and
could provide us a more detailed perspective on directed and causal depen-
dencies in brain networks. Further, structural imaging techniques like neu-
rite orientation dispersion and density imaging (NODDI) [137] might capture
additional interesting aspects the brain structure, which could be included
as structural spatial information in these STGNN based models. In general
GNNs still comprise a relatively new field in machine learning research and
recent developments in this area have the potential to likely make further
interesting contributions to our understanding of information processing in
brain networks [60].
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3.3 Epilogue

In this thesis a new approach based on STGNNs was developed for model-
ing spatial and temporal dynamics observed in complex brain networks. One
of the main advantages of this method is its effective scaling to large brain
networks. This property of STGNNs allows us to study large-scale neural
dynamics, also in cases where the amount of MRI data is very limited. The
second main contribution of STGNNs to brain connectivity research is that
they provide us with a new possibility to link structural and functional neu-
roimaging data. Based on dynamic functional interactions, constrained by the
structural backbone, directed relations captured in STGNN models allow us
to study the structure-function coupling in brain networks from a new view-
point. The codes and a demo version for the DCRNN and GWN model, mod-
ified for the analysis of brain connectivity, are publicly available under:

https://github.com/simonvino/DCRNN_brain_connectivity
https://github.com/simonvino/GraphWaveNet_brain_connectivity

This STGNN based method for brain connectivity analysis was first published
in:

Wein, S., Malloni, W., Tomé, A.M., Frank, S., Henze, G-I., Wüst,
S., Greenlee, M., Lang, E.. A graph neural network framework
for causal inference in brain networks. Scientific Reports. 11.
https://doi.org/10.1038/s41598-021-87411-8 (2021).

In a follow up study, different spatial and temporal GNN architectures were
compared in their application of brain connectivity analysis. A preprint of
this study is available under:

Wein, S., A. Schüller, W., Malloni, Tomé, A.M., Greenlee, M., Lang,
E.. Modeling Spatio-Temporal Dynamics in Brain Networks: A
Comparison of Graph Neural Network Architectures. Preprint at
arXiv::2112.04266. https://arxiv.org/abs/2112.04266 (2021).

A literature review on current methods in brain connectivity analysis with a
focus on machine learning techniques was published in:

Wein, S., Deco, G., Tomé, A.M., Goldhacker, M., Malloni, W.,
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Neural Networks

A.1 Backpropagation Algorithm

Based on the description in the book of Bishop [19] the backpropagation al-
gorithm for a feedforward neural network is here outlined in more detail. As
defined in equation 1.1 in a feedforward neural network architecture each unit
computes a weighted sum of its inputs:

νq =
P

∑
p=1

wqpzp (A.1)

where zp denotes the activation or input for an arbitrary layer, which is con-
nected to a unit q via a weight wqp. In order to not have to deal with the biases
bq explicitly, they can be represented by an additional input unit with con-
stant activation at +1 [19]. Then the activation of unit q can be computed by
transforming the sum in A.1 with a nonlinear function Φ(·):

yq = Φ(νq). (A.2)

To evaluate the derivative of our cost function J with respect to a weight wqp,
the chain rule for partial derivatives can be applied:

∂J
∂wqp

=
∂J
∂νq

∂νq

∂wqp
(A.3)

Further we can then introduce the definition:

δq ≡
∂J
∂νq

(A.4)

In this context the δ’s are often referred to as errors. By evaluating A.1 we then
obtain:

∂νq

∂wqp
= zp (A.5)

And by substituting A.4 and A.5 into A.3 we get the expression:

∂J
∂wqp

= δqzp (A.6)
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Equation A.6 illustrates that the derivative can be computed by multiplying
δq at the output end of the weight with the value at the input zp. So the deriva-
tives can be obtained by evaluating δq for all hidden and output units in the
network and then applying equation A.6. If we want to obtain the value of
δq of a hidden unit q which is connected to the networks output units r in a
subsequent layer, we can use the chain rule for partial derivatives:

δq ≡
R

∑
r=1

∂J
∂νr

∂νr

∂νq
(A.7)

which yields a sum over all units r which are connected to unit q. Finally we
can substitute the definition of δ in A.4 into A.7, and use A.1 and A.2 to derive
the following expression for the backpropagation of the output error:

δq = Φ′(νq)
R

∑
r=1

wrqδr (A.8)

which shows that the value of δ can be computed by propagating the values
of δ from higher units backwards through the network. So by recursively
applying the rule in A.8, every value for δ for all hidden units in a feedforward
neural network can be evaluated.

A.2 Backpropagation Through Time Algorithm

To outline the principle of the backpropagation through time (BPTT) algo-
rithm we can consider a basic one-dimensional RNN with some parameters θ,
which has the goal to learn a mapping from an input sequence x(1), x(2), . . . , x(T)

to a sequence of target values ŷ(1), ŷ(2), . . . , ŷ(T). Then, in order to describe the
difference between the outputs of our model y(t) and corresponding targets
ŷ(t), we can define a cost function for all T target values as:

J(x(1), . . . , x(T), ŷ(1), . . . , ŷ(T), θ) =
1
T

T

∑
t=1

J(x(t), ŷ(t), θ) (A.9)

Now if we want to compute the derivative of J with respect to for example a
certain weight w, we obtain the expression:

∂J
∂w

=
1
T

T

∑
t=1

∂J
∂y(t)

∂y(t)

∂h(t)
∂h(t)

∂w
(A.10)

In section 1.2.5 we defined the state of a RNN h(t) depending on its previous
state h(t) = Φh(wh(t−1) + ux(t) + b). Because the RNN shares its parameters
across the whole sequence, h(t−1) also depends on the parameter w again, and
we have to backpropagate the derivative with respect to w in time by comput-
ing ∂h(t−1)

∂w , ∂h(t−2)

∂w , . . . recursively. This recursive computation of the gradient
across the T (time) steps is denoted as backpropagation through time.
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Appendix: Spatio-Temporal Graph Neural Networks for
Brain Connectivity Analysis

B.1 Influence of Hyperparmeters

In this appendix the influence of the STGNN hyperparameters on their per-
formance is discussed. The hyperparameters of the DCRNN and GWN are
chosen as outlined in section 2.1.4 and are held constant, while only the hy-
perparameter of interest is varied in the following evaluation. Figure B.1 and
B.2 show that the performance of he DCRNN and GWN can in general slightly
be improved when using a larger number of model parameters. However as
the computation time and memory requirements linearly grow with the num-
ber of parameters, the STGNN hyperparameters are chosen as described in
2.1.4 to yield a reasonable trade-off between model performance and compu-
tational requirements.

FIGURE B.1: Influence of hyperparameters on the prediction accuracy
of the DCRNN model. In (a) the test MAE is shown in dependence of
the number of neurons in each layer, and in (b) the error in dependence
of the number of DCGRU layers used in the encoder and decoder of the

DCRNN.
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FIGURE B.2: Influence of the GWN hyperparameters on the prediction
accuracy. In (a) the test MAE in dependence of the number of feature
maps is illustrated. The GWN architecture is organized in blocks of di-
lated causal convolution (DCC) layers, whereby the dilation factor is
doubled in every subsequent layer as d = 1, 2, 4, . . ., and reset to d = 1
in the first layer of each block (section 1.2.6). Figure (b) shows the in-
fluence of the number of DCC layers used in each block, and (c) shows

the impact of the number blocks on the GWN performance.
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B.2 List of ROIs in Visual Network

TABLE B.1: In this table a list of ROIs involved in visual processing
according to the multi-modal parcellation proposed by Glasser et al.
[49]. The table lists the index of the region in the atlas for the right/left

hemisphere including the name of the region.

Index Name
1/181 V1
2/182 MST
3/183 V6
4/184 V2
5/185 V3
6/186 V4
7/187 V8
13/193 V3A
16/196 V7
19/199 V3B
20/200 LO1
21/201 LO2
22/202 PIT
23/203 MT
152/332 V6A
153/333 VMV1
154/334 VMV3
156/336 V4t
158/338 V3CD
159/339 LO3
160/340 VMV2
163/343 VVC
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B.3 Accuracy in the 0.02 - 0.09 Hz Frequency Range

In figure B.3 the prediction accuracies of the DCRNN, GWN and VAR model
are illustrated for the BOLD signal filtered in the 0.02 − 0.09 Hz frequency
range. By including more frequency compartments of the BOLD signal, the
temporal dynamic of the signal is more complex and becomes correspond-
ingly harder to predict for the models. All three models are able to generate
accurate predictions for the first 15 TRs (approximately 11s) but for longer
forecasing horizons, the DCRNN and GWN remain considerably more accu-
rate in comparison to the VAR.

FIGURE B.3: The prediction accuracy of the three models is shown here
for BOLD signal filtered in the 0.02− 0.09 Hz frequency range. The 25
subject dataset and the brain network including the 180 ROIs within
the right hemisphere was incorporated for the comparison [49]. In (a)
the test MAE in dependence of the forecasting horizon is shown, com-
puted as an average across test samples and brain regions. Figure (b)
depicts a representative example of predictions generated by the VAR
model, figure (c) illustrates an example of GWN predictions and figure
(d) shows the predictions of the DCRNN. The examples were chosen to
be representative for the average prediction accuracy of the models, by
selecting a test samples on which the MAE of the three models maxi-

mally deviates by ±0.03 from their average MAE.
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B.4 Accuracy UR Dataset

In figure B.4 the prediction accuracies of the DCRNN, GWN and VAR model
are illustrated for the UR dataset. The acquisition parameters and data pre-
processing of the UR dataset is described in detail in section 2.1.2. Due to the
smaller number of datasets, including data from only 10 subjects, and due to
the shorter duration of the resting-state fMRI sessions (600 images per ses-
sion) in comparison to the HCP data (1200 images per session), the number of
training samples used to fit the different models is relatively small (3850 sam-
ples in total). With this smaller amount of training data, it is very challenging
to fit the VAR model to the BOLD signal of all N = 180 within one hemisphere
[49], and the test MAE is accordingly relatively large, as shown in figure B.4.
In contrast, the DCRNN and GWN generate very accurate predictions also on
this smaller MRI dataset.
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FIGURE B.4: The prediction accuracy of the three models is shown for
the UR dataset. The brain network within the right hemisphere includ-
ing the 180 ROIs was incorporated for this comparison [49]. In (a) the
test MAE in dependence of the forecasting horizon is shown, computed
as an average across test samples and brain regions. Figure (b) depicts a
representative example of predictions generated by the VAR model, fig-
ure (c) illustrates an example of GWN predictions and figure (d) shows
the predictions of the DCRNN. The examples were chosen to be repre-
sentative for the average prediction accuracy of the models, by selecting
test samples for which the MAE of the three models maximally deviates

by ±0.1 from their average MAE.
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B.5 Comparison with DCGRU and DCLSTM

To further emphasize the efficiency of the DCRNN and GWN architecture,
these two models will be compared with simpler graph convolution based
machine learning models. For this purpose the DCRNN and GWN will be
first compared to a simple DCGRU model. The DCGRU is based on a GRU
[32], modified by including diffusion convolution operations, as described in
section 1.2.4. In this simple DCGRU architecture, no sequence-to-sequence
learning is employed as in the DCRNN model. As another baseline, a LSTM
model was implemented, as described in section 1.2.5, also including diffu-
sion convolution operations. Accordingly, the gating mechanisms in a LSTM
cell are obtained as:

f(t) = σ
(

Θ f ∗G

[
x(t), H(t−1)

]
+ b f

)
(B.1)

g(t) = σ
(

Θg ∗G

[
x(t), H(t−1)

]
+ bg

)
(B.2)

o(t) = σ
(

Θo ∗G

[
x(t), H(t−1)

]
+ bo

)
(B.3)

s̃(t) = tanh
(

Θs̃ ∗G

[
x(t), H(t−1)

]
+ bs̃

)
(B.4)

s(t) = f(t) � s(t−1) + g(t) � s̃(t) (B.5)

H(t) = o(t) � tanh(s(t)) (B.6)

This modified LSTM variant will be denoted as diffusion convolution LSTM
(DCLSTM) in the following. In correspondence to the DCRNN, the DCLSTM
and DCGRU were trained using the Adam optimizer [76], and the architec-
tures were composed of 2 layers with a hidden state size of 64. Figure B.5
shows a comparison of the forecasting error of the different models on the 25
subjects dataset including the brain regions within the right hemisphere, as
defined by Glasser et al. [49]. The comparison reveals that within the first 5
predicted timesteps, the DCLSTM and DCGRU are also able to make very ac-
curate predictions of the BOLD signal, but for larger forecasting horizons the
errors of the DCRNN and GWN remain considerably lower. This highlights
the effectiveness of the sequence-to-sequence learning as used in the DCRNN
architecture, and the multi-timestep inference implemented in the GWN ar-
chitecture for making reliable long-term predictions of the BOLD signal.



94 Appendix B. Appendix: STGNNs for Brain Connectivity Analysis

FIGURE B.5: Comparison of the prediction accuracy of the DCRNN and
GWN with a DCLSTM and DCGRU architecture. The brain network
within the right hemisphere including the 180 ROIs was incorporated
for this comparison [49]. The test MAE is shown in dependence on the
forecasting horizon, computed as an average across test samples and

brain regions.
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B.6 Multi-Modal Directed Connectivity DCRNN

FIGURE B.6: Directed spatial relations learned by the DCRNN model
are displayed. Figure (a) shows the measures of directed influence
I(n′), derived from the DCRNN model when using the SC for infor-
mation propagation and figure (b) depicts the influence when incorpo-
rating CEs for the information exchange. The values of the connectiv-
ity measures were linearly mapped between 0 and 100 and the default
scaling of the color values provided by the connectome workbench (ver-
sion 1.4.2) was used, adjusting the colormap between the 2th and 98th

percentile of the values respectively.
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