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Abstract: This article introduces the Database for Estimation of Road Network Performance (DERNP)
to enable wide-scale estimation of relevant Road Network Performance (RNP) factors for major
German cities. The methodology behind DERNP is based on a randomized route sampling procedure
that utilizes the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) in combination with
the tile-based HERE Maps Traffic API v7 and a digital elevation model provided by the European
Union’s Earth Observation Programme Copernicus to generate a large set of independent and realistic
routes throughout OpenStreetMap road networks. By evaluating these routes using the PHEMLight5
framework, a comprehensive list of RNP parameters is estimated and translated into polynomial
regression models for general usage. The applicability of these estimations is demonstrated based
on a case study of four major German cities. This case study considers network characteristics in
terms of detours, infrastructure, traffic congestion, fuel consumption, and CO, emissions. Our results
show that DERNP and its underlying randomized route sampling methodology overcomes major
limitations of previous wide-scale RNP approaches, enabling efficient, easy-to-use, and region-specific
RNP comparisons.

Keywords: road network performance; urban sustainability; economic sustainability; traffic congestion;
greenhouse gas emissions; data collection methods; navigation services

1. Introduction

Road Network Performance (RNP) remains an integral part to the evaluation of ur-
ban sustainability [1-4]. According to Chen [5], the economy of a nation or geographic
region depends heavily upon an efficient and reliable transportation system to provide
accessibility and promote the safe and efficient movement of people and goods [6-8]. Poor
RNP results in (1) decreased economical performance represented by increasing trans-
portation costs [9-12], (2) negative ecological effects in terms of higher greenhouse gas
(GHG) emissions [13-15] and (3) a decrease in social sustainability via a combination of
the aforementioned factors in addition to traffic induced health issues [16-20]. Despite its
importance for most aspects of everyday life [21,22] and its impact on productivity and
costs of constantly increasing [23] short-distance freight operations [9,10,24-26], efforts on
calculating RNP on a wide geographical scale remain scarce due to expensive equipment
requirements for observational vehicles and so-called ‘in situ’ technologies [27,28]. Mea-
surements are often restricted to predefined test tracks and restricted time intervals [29,30]
and often fail to account for infrastructural and temporal variances throughout large road
networks [20,25]. Furthermore, testing procedures may vary across cities and metropolitan
areas, rendering them unreliable for systematic comparisons [31].

To solve several of these issues, analysts increasingly rely on digitization, specifically
on open data platforms such as OpenStreetMap (OSM) and floating car data provided
via Application Programming Interface (API) offered by navigation service providers
such as HERE and TomTom, to estimate Road Network Performance on a wider scale
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by evaluating historical traffic data [23,29,32,33]. These digital procedures alleviate many
problems encountered in field-testing, i.e., expensive equipment, regulatory hurdles, low
area coverage, and low external validity [34], by leveraging the aggregated historical data
of a large fleet of private and commercial vehicles [35]. Unfortunately, most navigation
service providers require a set of predefined routes to enable the retrieval of route-specific
information, leaving analysts to figure out sensible ways to either obtain historical traffic
patterns on an individual basis or generate or extract such vehicle-specific data from
publicly available information.

In 2020, Braun et al. [36] presented a data collection methodology to overcome the
obstacle of route generation by referencing the TomTom Reachable Range API. The API
returns a polygon with exactly fifty corner points covering the geographical area reachable
within a given distance or time budget. This polygon enables a one-directional analysis of
traffic patterns from an outgoing centroid, delivering time-specific information on reachable
distances and corresponding travel time requirements within a region. Based on these
requests, researchers were able to estimate road network characteristics on a per air-distance
kilometer basis in an efficient way. By choosing comparable starting locations for multiple
regions, RNP became observable and comparable between the exemplary four German
cities. Nonetheless, this methodology introduced its own limitations, mainly concerning
the selection of comparable points of origin and the impact of a good or poorly chosen
node of origin on the model’s outcome. In addition to this major limitation, unidirectional
routes ignore the fact that inbound traffic should be considered equally important for a
generalizable RNP analysis.

To solve and remedy these shortcomings (i.e., unidirectional routes and subjective
points of origin), a solution to algorithmically generate and evaluate a large set of represen-
tative network paths is required in order to establish a general road network performance
measurement. To enable such a methodology, each path within a road network requires
traffic information, but historically this has led to large amounts of API transactions [10,37].
By utilizing a novel and previously unavailable feature of the HERE Traffic API [38], access
to real-time traffic flow data is provided for large geographic areas within a predefined
bounding box via a single request. Since each request delivers geographically referenced
information on speed and jam factors for all road sections contained within the specified
region, this new feature enables the efficient generation and enrichment of routable road
network representations. Based on this finding, we set out to answer the following research
question, deduced from the original publication by Braun et al. [36]:

How can representative routes be generated and evaluated to reliably measure
Road Network Performance and overcome limitations of contemporary RNP
estimation?

The remainder of this article introduces and describes the methodology applied to
generate the DERNP—the Database for Estimation of Road Network Performance in
Germany. Section 2 examines the current state of RNP research and its lack of suitable,
practical solutions. Section 3 presents the individual components utilized in generating and
evaluating the underlying network routes of the proposed methodology. By aggregating
all routes in a given region and distance class, DERNP includes polynomial regression
coefficients to estimate factors such as detour, travel time and speed (with and without
traffic), fuel consumption, and CO, emissions based on a set air distance in a specific region.
Section 4 demonstrates the applicability of these models by comparing four major German
cities in terms of their economic and ecological sustainability. In Section 5, theoretical and
practical implications are discussed. Section 6 summarizes the main takeaways of this
article and provides an outlook for further research.

2. Literature Review
2.1. Fundamentals on Road Network Performance

Literature on transport pricing is well aware of the fact that poor Road Network Per-
formance, generally defined as the network driven impact on sustainability [36] and mainly
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referred to in the context of traffic congestion, significantly reduces efficiency and increases
transportation costs [9,10,39-41]. Specific negative impacts of traffic congestion, i.e., delays
due to decreasing achievable travel speeds [42—44], economic losses to drivers [45], de-
grading ambient air quality [34,42,46,47] as well as general inconvenience and a reduction
in quality of life [26] are well-researched topics in the literature. While traffic congestion
can be subdivided into recurring and non-recurring traffic delays [39,48], i.e., regular and
predictable road usage in comparison to road incidents such as collisions, medical emer-
gencies, and vehicle breakdowns, studies on Road Network Performance tend to focus
on recurring or general congestion patterns. To account for non-recurring traffic patterns,
several studies have been carried out to allow for an improved estimation [49,50].

According to Mondschein and Taylor [51], geographic regions vary significantly in
terms of adaption to traffic congestion. While congestion can constrain mobility and reduce
accessibility, traffic is also associated with agglomerations of activity and is thus a byproduct
of proximity-based accessibility. Whether agglomeration and congestion have net positive
or negative impacts on activity participation thus varies substantially over space. In contrast
to earlier studies of urban network performance focusing mainly on network reliability
and resilience [5,52-58], this new perspective on RNP aims to provide geographically
comparable measurements of Road Network Performance to supply indicators on regional
attractiveness and infrastructural relevance [59].

In line with prior research [10,36] and supported by its predominant relevance for
road freight transportation, we focus on the economic dimension of sustainability, which
leads to a refined definition of RNP as the network driven economic costs of moving a
vehicle from a specified point of origin (O) to a specified destination (D) using the public
road network [36]. A public road network is characterized by the set of all roads within a
geographical region that are accessible by all network participants and excludes private
road infrastructure. To narrow down the scope of analysis presented in this article, the
methodology is predominantly concerned with urban transportation, i.e., short distance
traffic up to 20 km, also referred to as the last mile or urban cargo traffic [60,61].

In line with existing literature on road network transportation [9,10,39,42—44,46,53,
62,63], we suggest measuring the geographically distinct Road Network Performance by
answering the following general questions:

1. How efficient is the road infrastructure in terms of detour factor and achievable
travel speed?

2. How utilized is the road infrastructure in terms of traffic congestion?

3.  How resource-intensive is the utilization of the road infrastructure in terms of fuel
consumption and CO, emissions?

Each of these questions is dependent on region-specific characteristics. Interestingly,
as Bell [55] points out, network performance simultaneously depends on the state of
the infrastructure and on the behaviour of network users, while user behavior is also
governed by expectations about the general state of the network. Several studies have been
carried out in support to this claim by examining and evaluating user behaviour in varying
road networks. Milevitch et al. [64] apply agent-based traffic flow simulations to analyze
the impact of planned road network development on the dynamics of the automobile
transportation system during the departure of visitors after the semifinal match of the
2018 FIFA World Cup. Dia and Panwei [65] evaluate the impact of driving behaviour on
emissions and RNP. Snelder and Calvert [62] propose the Macroscopic Dynamic Traffic
Assignment and Marginal Model to evaluate the impact of weather conditions on driving
behaviour and RNP.

In terms of infrastructure analysis, the detour factor, defined as the ratio of required
road distance to cover a specific air distance, incorporates commonly used network at-
tributes, such as density [66] or connectivity [67]. Travel speed is defined as the average
speed achievable between origin and destination pairs considering vehicle and road con-
straints. Thus, travel speed implicitly accounts for road network attributes such as speed
limits, traffic lights, or the level of congestion within the network [42,68,69] as well as user
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behaviour [55,65]. By combining travel speeds and travel distances, travel times can be
derived [70]. Thoen et al. [71] show that longer travel times result in significantly higher
transportation costs, emphasizing the importance of determining travel times objectively.

2.2. Leveraging Floating Car Data

Recent studies increasingly rely on floating car data in order to appropriately mea-
sure RNP. Kellner [28] analyzes vehicle fleet data from German transportation service
providers to measure and compare network performance and its impact on distribution
costs between different service areas. Nuzollo et al. [72] provide distribution tour simula-
tions based on extracted floating car data from logistics operations, while Waadt et al. [73]
present a methodology to estimate traffic congestion based on GPS data extracted from
cellular networks.

Due to no generally accepted standard in floating car data extraction, the handling
of these data are considered difficult. The large size of datasets and the complexitiy and
dynamics of traffic phenomena [74] in combination with reliability problems [69] lead to
increasing requirements of data harmonization [31]. Additionally, vehicle fleet management
data is usually constrained to specific areas and routes serviced by the originating company,
enabling region-specific analyses but prohibiting general measurements of RNP.

In recent years, increasing availability of floating car data provided by navigation
service providers via APIs delivers potential solutions to efforts on data harmonization
and regional specificity [75]. According to Kellner [37], API data is considered a signifi-
cant improvement in contrast to individual data from fleet vehicle management systems
due to four primary reasons: (1) Reliability or “completeness”, (2) area-wide coverage,
(3) consistency, and (4) higher levels of representativeness. While APIs do not provide
access to a complete set of individual routes due to privacy regulations, they record and
deliver aggregated historic traffic information throughout many worldwide road networks
in a structured query language. These databases enable researches to ignore primary
data acquisition, shifting focus to automated generation or extraction of origin-destination
pairs. Kellner et al. [10] referenced navigation service providers’ data to generate distance
matrices for existing customers’ locations and requested travel times at different times
throughout the day. Wen et al. [76] propose a traffic congestion evaluation index system
based upon Beijing floating car data. In the same vain, Sun et al. [77] calculate a congestion
index for arterial roads in Changzhou, China. Li et al. [78] obtain real-time travel data from
web services to measure urban tourism accessibility in Nanjing, China. Nuzzolo et al. [72]
analyze freight delivery patterns through floating car data in Italy while Waller et al. [79],
comparable to Braun et al. [36], leverage data provided by TomTom, Google, and OSM to
estimate RNP in Sydney through their Rapidex data exploration and visualization tool.

In an attempt to generalize methodologies presented in previous studies and alleviate
many problems related to subjective trip generation, Braun et al. [36] suggest an improved
approach to generalizable route generation based on real-world floating car data: for a
given point of origin in the network, do not specify a destination and proceed to measure
detour and travel speed for any origin-destination pair generated by a reachability approach
using distance and time-based isochrones. While overcoming some limitations of previous
research, especially concerning the availability of suitable or publicly available tour data,
this methodology does not report RNP across the complete road network but manually
selects well-defined partitions [80], constituting a lack of generalizability.

To the best of our knowledge, contemporary literature does not provide a suitable
solution to the problem of limited individual route availability for wide-scale road network
performance. By leveraging the HERE Maps API Version 7 [81] and its tile-based catalogue
of historic traffic data in combination with publicly available OSM data on road network in-
frastructure [82], we propose a randomized route generation methodology which leverages
floating car data and model-based traffic and emission simulation. The resulting Database
for Estimation of Road Network Performance is inspired by the COPERT industry standard
emissions calculator [83] and constitutes the first generalizable methodology for wide-scale
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RNP measurement for German metropolises. Our approach is considered efficient as the
entirety of Germany can be analyzed by a total of 266 API calls per timestamp. Thus,
DERNP allows measuring RNP on a large scale with no prior knowledge of origins and
destinations and without a need to rely on second-best solutions, i.e., regional aggregation
as suggested by Casadei et al. [84], alleviating a main concern of previous data collection
methodologies.

3. Materials and Methods

The algorithmic measurement of RNP requires three main components: (1) a routable
representation of the road network including all relevant public road sections in the area of
interest, (2) traffic flow information for these sections, and (3) representative routes through-
out the network along which the RNP is measured. The underlying methodology behind
DERNP delivers solutions to acquire these components in combination with additional
information to allow for an artificial generation of network traffic for any given area of
interest. As depicted in Figure 1, the procedure consists of five phases.

Phase1 Phase 2 Phase 3 Phase4 Phase5

Data Collection Network Rasterization Route Generation Route Evaluation Transformation

@ Area Of Interest
Latitude/Longitude Bounding Box

R

Ol

— &\

OpenStreetMap
Road Network

HERE Traffic APl v7 rg-g Routable Road Network
Traffic Flow Information incl. flow & elevation

Copernicus $* .* Random Route Sampling
Digital Terrain Model ®-®- 1 =1000/ distance Class
150x150 Grid Driving Cycle Catalogue
rasterization N = 40,000
-_
.,|||,.,. WLTP Class 3 =
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DERNP
PHEMLight Germany
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Figure 1. The five phases comprising the core methodology behind DERNP.
3.1. Phase 1: Data Collection

The exemplary use cases in this article focus on German cities by defining the area of
interest as the outermost rectangular boundary of any given city. To harmonize extraction
procedures across data providers, DERNP relies on the commonly used, web-based Slippy
Map Tile system [85]. Based on a list of required tiles per bounding box, a routable represen-
tation of the road network within the tiles is created using the OSMnx Python package [86].
This representation only includes user-generated data from the OSM community [82],
which is prone to be incomplete, outdated, or incorrect. To alleviate this issue, the HERE
Traffic API [81] is utilized to retrieve current traffic flow information on a per-tile basis. All
tile references in this article rely on a set of HERE traffic data retrieved in between 25 July
2022 and 10 September 2022 at five different timestamps (08:00 a.m., 09:00 a.m., 12:00 p.m.,
02:00 p.m., and 04:00 p.m.). Traffic data is held constant for purposes of reproducibility
within this article but should be updated in regular intervals. The selected time frames are
related to main working hours of German Transportation Service Providers. Additional
time frames can be considered if relevant to the underlying business case. Figures 2 and 3
depict fluctuations of averaged flow speeds between the four exemplary German cities
during this time frame. Exact results can only be guaranteed by referencing identical data
at identical timestamps across all objects of comparison [54].
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Concerning nomenclature, a network’s free flow state describes the traffic flow without
congestion exceeding an agreed upon norm [87] and corresponds to the average historic
travel speed without extraordinary traffic incidents. Comparing free flow and traffic speeds
at 08:00 a.m. on a specific date results in an indicator whether or not the inspected date
is representative of average network usage or if higher-than-average traffic is occurring.
Comparing free-flow speeds between different areas at the same timestamp provides a
good indicator of average road network performance between geographies.
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Figure 2. Comparison between average free flow and traffic speeds across four different timestamps

for a period of seven weeks between 25 July 2022 and 10 September 2022.
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Using OSMnx [86], the network is initialized as a dynamic graph object [88] consisting
of nodes and edges. Traffic flow data is mapped onto this graph based on latitude/longitude
coordinate pairs. The mapping is validated by comparing the edge length attribute of both
input sources.

The last information added onto the graph object is elevation data extracted from the
digital elevation model provided by the European Union’s Earth Observation Programme
Copernicus [89]. To achieve compatibility with the given network structure, global elevation
data provided in .tff format is converted into tile-based raster files.

Successful application of Phase 1 results in a Routable Road Network (RRN).

3.2. Phase 2: Network Rasterization

During network rasterization, the RRN is subdivided into a grid of 150 x 150 equally-
sized cells. Each cell is geographically referenced using the same coordinate reference sys-
tem as the RRN. The centroid of each cell represents a point defined via latitude/longitude
coordinate pairs.

Due to the high level of subdivision created by 150 x 150 grid cells, the smallest
distance between two centroids is measured at 150 m air distance for large cities like
Munich. Based on this grid, a distance matrix between all centroids is calculated using the
great-circle distance formula, resulting in a matrix of air distances ¢ between all centroid
pairs. Based on this distance matrix, randomized route sampling with a default sample
size of n = 1000 is applied to extract observations for each distance class. Distance classes
for this study range from 500 m to 20.5 km air distance in increments of 500 m, resulting in
40 distinct classes.

Random route sampling enables the independent selection of travel path connections
across the entire network for each distance class. These travel paths need to be converted
from direct air connections to actual vehicle routes utilizing the existing Routable Road
Network. Non-routable connections are dropped.

Network rasterization returns a dictionary containing a key for each distance class
and a list of artificial network paths as corresponding value.

Figure 4 depicts the complete graph for Munich in comparison to the graph that is
traversed by all paths within the network rasterization dictionary generated using random
route sampling. While smaller road segments are left out due to not being located on any
fastest path between two nodes, the majority of arterial roads are covered and can therefore
be utilized in calculating the RNP in the subsequent steps.

(a) Full Road Network (b) Traversed Road Network

Figure 4. Comparison between the (a) full road network for Munich, Germany, and the (b) network
composed of edges that have been traversed at least once during Random Route Sampling.
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3.3. Phase 3: Route Generation

The network paths returned by the previous step correspond to the fastest path from
origin to destination, while these paths are sufficient to calculate average travel speed
under free flow and traffic conditions, realistic estimation of RNP in terms of economical
and ecological sustainability requires representative driving cycles. To achieve realistic
measurements without excessive field testing, the Worldwide Harmonized Light Vehicles
Test Procedure (WLTP) [90] is the standardized testing scenario for new vehicles since
1 September 2019. It includes a highly detailed set of representative driving cycles on a 1
Hz (per second) basis.

By referencing the WLTDP, custom driving cycles are calculated for each network route.
Although not perfectly accurate, especially on shorter road segments, these driving cycles
do allow for a much more realistic representation of actual driving behaviour than mean
speed calculations. A customized driving cycle for a 2.1 km route in Munich is depicted in
Figure 5.

60 1.5
50 1.0
~
0.5 ®
=40 <
S )
=) o
g 30 0.0 £
[} I
& g
[+
20 -0.5 3
<
10 -1.0
0 -1.5
0 500 1000 1500 2000
distance [m]

Figure 5. Customized Driving Cycle for a 2.1 km route in Munich based on the WLTP Driving Cycle
Class 3.

By applying the customized driving cycle logic to all routes in the dictionary returned
in Phase 2, a Driving Cycle Catalogue (DCC) comprised of up to 40,000 estimated driving
cycles across all 40 distance classes is generated.

3.4. Phase 4: Route Evaluation

All driving cycles in the DCC simulate real-world network paths throughout the
RRN, including acceleration and deceleration phases as well as stop times (speed = 0 kph)
at intersections or traffic lights. This information is crucial since the number of existing
intersections in a road network is heavily flow-regulating [91].

To achieve a realistic measurement of RNP, it is therefore mandatory to take specific
driving behaviours and road characteristics into account instead of relying on averaged cal-
culations. It is due to this that we dissuade from referencing COPERT emission curves [83]
and instead focus on the cycle-based Passenger Car and Heavy Duty Emission Model
(PHEM) [92]. An Open-Source version of PHEM tailored to Microscopic Traffic Simulation
titted PHEMLight is available in the software package SUMO [93,94]. For application in the
DERNP methodology, PHEMLight Version 5 was transposed to the Python programming
environment. In its Creative Common License, PHEMLight only includes two vehicle
types: light passenger vehicles rated EURO 4 for both gasoline and diesel engines. Due to
this, all calculations presented in this article are based on a standardized EURO 4 Diesel
Light Passenger Vehicle with a rated power of 74 kW, belonging to the WLTP Class 3.



Sustainability 2023, 15, 733

9 of 25

3.5. Phase 5: Transformation

After evaluation of all 40,000 driving cycles using PHEMLight5, results are saved in a
tabular structure. Individual data points are aggregated by their corresponding distance
class using a median calculation, resulting in a table of 40 rows with one column per
network performance factor as described in Table 1. Based on these aggregated results,
10th-degree polynomial regression curves are fitted for each factor to enable continuous
approximation on the basis of air distance.

Table 1. Description of Network Performance Factors included in DERNP.

Variable

Description Explanation

FC(da)
COy(da)

COL"8(da)

Air distance The air distance from a start point to an end point

Detour Factor regression
Free flow velocity regression
Traffic velocity regression
Free flow travel time regression
Traffic travel time regression
Fuel consumption regression
Avg. fuel consumption
per 100 km regression
CO;, emission regression

Avg. CO, emission
per 100 km regression

Continuous Detour Factor regression based on discrete measures
Continuous free flow velocity regression based on discrete measures
Continuous traffic velocity regression based on discrete measures
Continuous free flow travel time regression based on discrete measures
Continuous traffic traveltime regression based on discrete measures
Continuous free flow fuel consumption regression based on
discrete measures
Continuous fuel consumption regression based on discrete measures

Continuous CO; emission regression based on discrete measures

Continuous CO; emission regression based on discrete measures

After successful transformation of all included factors, the DERNP reference database
for the six largest German cities is depicted in Table 2. Additional cities or customized areas
of interest can be calculated using the methodology described above. To calculate a specific
factor F for a given air distance d, in kilometers, coefficients from columns a to k need to be
inserted into a 10th-degree polynomial function (Equation (1)).

F(da) = daa'® 4+ dab® + dac® + dad” + dae® + dof° + dag* + doh® + doi* +daj +k - (1)



Sustainability 2023, 15, 733

10 of 25

Table 2. Excerpt of the DERNP reference database for the top six largest German cities.

City Vehicle Engine Category Factor Unit Aoy Aayax a b c d e f g h i j k RMSE
Berlin PKW Diesel EUR4 df [-1 05 205 1.940 x 10710 ~1.872x 1078 7.288 x 1077 —1.408 x 1075 0.000 0.000 —0.015 0.124 —0.426 0.299 2684 0.0
Berlin PKW  Diesel EUR4 vf [kph] 05 205 4197 x 1077 —4.754 x 1077 2.285 x 1075 —0.001 0.010 —0.098 0.600 —2.076  3.068 2615 33630  0.03
Berlin PKW  Diesel EUR4 vt [kph] 05 205 4.708 x 1079 —~5.335 x 1077 2.567 x 1075 —0.001 0.011 —0.111 0.686 —2419 3912 0.820 33250 0.5
Berlin PKW  Diesel EUR4 tf [min] 05 205 1.980 x 1079 —2.118 x 1077 9.728 x 1070 —0.000 0.004 —0.039 0237 -0812 1187 2.019 0.644  0.02
Berlin PKW  Diesel EUR4 tt [min] 05 205 1.467 x 1079 ~1.568 x 107 7.214 x 107° —0.000 0.003 —0.030 0.180 —0.607  0.796 2.553 0.509  0.02
Berlin PKW  Diesel EUR4 fe [ 05 205 1.174 x 10710 —1.272 x 108 6.098 x 107 —~1.687 x 1075 0.000 —0.003 0.023 —0.092 0176 0.200 0.084  0.00
Berlin PKW  Diesel EUR4 FC [1/100km] 05 205 4292 x 10710 —~5.421 x 1078 3.082 x 1070 —0.000 0.002 —0.029 0247 -1.333 4251 7365 21185  0.01
Berlin PKW  Diesel EUR4 CO, [kgl 05 205 3.052 x 10710 —3.308 x 108 1.586 x 1070 —4.386 x 1075 0.001 —0.008 0.059 —0.240 0457 0.521 0217 0.00
Berlin PKW Diesel EUR4 CO™& [kg/100km] 0.5 205 1.116 x 1077 —1410 x 1077 8.014 x 1070 —0.000 0.006 —0.074 0.642 —3466 11.055 —19.151  55.090  0.04
Hamburg PKW  Diesel EUR4 df [ 05 205 ~1.792 x 10~10 1.714 x 108 —6.673 x 1077 1.310 x 10° —0.000 —0.000 0.014 —0.143 0719 —1.947 4226 0.00
Hamburg PKW  Diesel EUR4 vf [kph] 05 205 1.712 x 10~ —1.816 x 1077 8.242 x 1076 —0.000 0.003 —0.029 0.143 —0252 —0.907 6434 35914  0.05
Hamburg PKW  Diesel EUR4 vt [kph] 05 205 1.130 x 1079 ~1214x 1077 5.575 x 1076 —0.000 0.002 —0.019 0.088 —0.071 -1.138 5572 34787  0.07
Hamburg PKW  Diesel EUR4 tf [min] 05 205 —2.701 x 10~10 1.909 x 108 —4.088 x 1077 —~1.937 x 10°° 0.000 —0.004 0.041 0202 0414 1.655 1387  0.01
Hamburg PKW  Diesel EUR4 tt [min] 05 205 —3.435 x 10710 2495 x 1078 —5.875x 1077 3.964 x 1077 0.000 —0.005 0.045 —0222 0479 1.780 1411 0.01
Hamburg PKW  Diesel EUR4 fe [ 05 205 —6.406 x 10711 5.459 x 1077 —1.846 x 1077 3.011 x 10°° ~1.953 x 1075 —9.659 x 1075 0.003 —0.019  0.049 0.266 0158  0.00
Hamburg PKW  Diesel EUR4 FC [1/100km] 05 205 —3.231 x 10710 3.153 x 108 ~1.271 x 1070 2,663 x 1075 —0.000 0.001 0.018 —0.220  1.027 -238 19251  0.01
Hamburg PKW  Diesel EUR4 CO, [kgl 05 205 —1.666 x 10710 1.420 x 1078 —4.799 x 1077 7.830 x 107° ~5.079 x 1075 —0.000 0.007 —0.049  0.127 0.692 0410  0.00
Hamburg PKW  Diesel EUR4 CO™8  [kg/100km] 0.5 205 ~8.403 x 1010 8.199 x 108 —~3.305 x 10°° 6.925 x 107° —0.001 0.002 0.048 —0571 2671 —6199  50.061  0.06
Miinchen PKW  Diesel EUR4 df [ 05 205 —3.203 x 10710 3.440 x 108 —1.579 x 106 4082 x 107° —0.001 0.006 —0.033 0085 0060 —0.929 3302 0.00
Miinchen PKW  Diesel EUR4 vf [kph] 05 205 —2.995 x 1079 3313 x 1077 —~1.593 x 107° 0.000 —0.007 0.084 —0.610  2.840 -8.105  14.696  32.648  0.12
Miinchen PKW  Diesel EUR4 vt [kph] 05 205 —4.217 x 107 4.607 x 1077 —2.185 x 1075 0.001 —0.010 0.109 —0.765  3.388 —8926 13501  31.246  0.12
Miinchen PKW  Diesel EUR4 tf [min] 05 205 1.201 x 10~ —1.266 x 1077 5.731 x 10°° —0.000 0.002 —0.022 0.138 —0494 0818 1.393 1.013  0.00
Miinchen PKW  Diesel EUR4 tt [min] 05 205 1.424 x 1079 —1.503 x 1077 6.846 x 107° —0.000 0.003 —0.028 0179 —0.668  1.237 1.237 1159  0.01
Miinchen PKW  Diesel EUR4 fc [ 05 205 1.262 x 10710 —~1.505 x 108 7.663 x 1077 —2.180 x 1075 0.000 —0.004 0.028 —0.114 0233 0.079 0.160  0.00
Miinchen PKW  Diesel EUR4 FC [1/100km] 05 205 1.622 x 10~ —1.901 x 10~7 9.611 x 107° —0.000 0.005 —0.055 0401 —1.830 4919 —7311 21459  0.02
Miinchen PKW  Diesel EUR4 CO, [kgl 05 205 3.283 x 10710 3912 x 1078 1.993 x 10°© —5.668 x 1075 0.001 —0.011 0.073 —0.296  0.606 0.205 0416  0.00
Miinchen PKW  Diesel EUR4 CO™8 [kg/100km] 05 205 4219 x 1077 —4.944 x 1077 2.499 x 1075 —0.001 0.013 —0.143 1.043 —4759 12792 -19.013 55801  0.13
Koln PKW Diesel EUR4 df [-] 05 205 4.041 x 10710 —4.840 x 108 2,513 x 1076 —7.405 x 1075 0.001 —0.016 0.126 —0.623 1871 —3212 4473 0.00
Koln PKW  Diesel EUR4 vf [kph] 05 205 —4.075 x 1079 4.226 x 1077 —~1.879 x 1075 0.000 —0.007 0.072 —0466 1997 -5693 12228  33.587  0.09
Ksln PKW  Diesel EUR4 vt [kph] 05 205 ~5.960 x 10~ 6.259 x 1077 —2.827 x 1075 0.001 —0.011 0.114 —0.745 3114 -8138 14139 32156  0.11
Koéln PKW  Diesel EUR4 tf [min] 05 205 —~7.929 x 10710 7.798 x 1078 —3219 x 1070 7.206 x 1075 —0.001 0.007 —0.028  0.038 —0.035 1.991 1.148  0.01
Ksln PKW  Diesel EUR4 tt [min] 05 205 —6.828 x 10°10 6.973 x 1078 —2.976 x 10°° 6.854 x 1075 —0.001 0.007 —0.026  0.023  0.031 2.002 1197 0.02
Kéln PKW Diesel EUR4 fc M 05 205 3781 x 10711 —4.704 x 1077 2.545 x 1077 —~7.801 x 1076 0.000 —0.002 0.014 —0.063 0.150 0.107 0.178  0.00
Koln PKW  Diesel EUR4 FC [1/100km] 05 205 3.692 x 1077 —4.036 x 1077 1.903 x 10° —0.001 0.008 —0.089 0.615 —2.677 6995 —10279  21.893  0.01
Koln PKW  Diesel EUR4 CO, [kgl 05 205 9.833 x 10711 —1.223x 108 6.617 x 1077 —2.029 x 1075 0.000 —0.005 0.036 —0.165  0.389 0.279 0462 0.00
Koln PKW  Diesel EUR4 CO™& [kg/100km] 0.5 205 9.600 x 1077 ~1.050 x 10°® 4949 x 107° —0.001 0.022 —0.232 1599 6961 18191 -26730 56931  0.07
Frankfurtam Main PKW  Diesel EUR4 df [-] 05 205 2.676 x 1077 —2.965 x 1077 1419 x 10° —0.000 0.006 —0.070 0489 -2.167 5774 —8516 7485  0.00
Frankfurtam Main PKW  Diesel EUR4 vf [kph] 05 205 6.967 x 1079 ~7.318 x 1077 3.299 x 1075 —0.001 0.013 —0.129 0.796 —2904 5212 0590  39.073  0.09
Frankfurt am Main PKW Diesel EUR4 vt [kph] 05 205 6.223 x 1077 —6.530 x 1077 2.944 x 1075 —0.001 0.012 —0.115 0715 -2594  4.583 0373 37502  0.15
Frankfurtam Main PKW  Diesel EUR4 tf [min] 05 205 ~1.173 x 1079 1.201 x 1077 —5.301 x 10°° 0.000 —0.002 0.021 —0.143 0623 -1716 4126 0440  0.01
Frankfurt am Main PKW  Diesel EUR4 tt [min] 05 205 ~1.423 x 10~ 1.447 x 107 —6.337 x 10°° 0.000 —0.002 0.024 —0.157 0659 —1.721 4217 0552 0.01
Frankfurt am Main PKW Diesel EUR4 fc 0| 05 205 —2.836 x 10710 2938 x 1078 —1.306 x 1070 3.262 x 1075 —0.001 0.005 —0.032 0.125  —0.296 0.585 0.021  0.00
Frankfurtam Main PKW  Diesel EUR4 FC [1/100km] 05 205 —4.341 x 10710 4.092 x 108 —1.584 x 10°° 3.168 x 1075 —0.000 0.001 0.021 —0257 1355 —3.991 18952  0.01
Frankfurt am Main PKW Diesel EUR4 CO, [kg] 05 205 —~7.374 x 10710 7.639 x 1078 —3.396 x 1070 8.483 x 1075 —0.001 0.013 —0.082 0.324 —0.770 1.521 0.053  0.00
Frankfurtam Main PKW  Diesel EUR4 CO™8  [kg/100km] 05 205 ~1.129 x 10~ 1.064 x 107 —4.118 x 10°° 8.239 x 1075 —0.001 0.002 0.055 —0.669  3.524 —10379  49.282  0.05
Stuttgart PKW Diesel EUR4 df [-] 05 205 —6.547 x 10710 7.186 x 1078 —3.378 x 1070 8.867 x 107° —0.001 0.014 —0.087 0291 —0.349  —0.666 3596  0.00
Stuttgart PKW Diesel EUR4 vf [kph] 05 205 1.109 x 1079 —~8.093 x 1078 1.860 x 10° 4.439 x 107 —0.001 0.022 —0.233 1465 —5433 12278 33859  0.06
Stuttgart PKW  Diesel EUR4 vt [kph] 05 205 1.706 x 10~ —1.436 x 1077 4.676 x 10°° —6.634 x 1075 7.573 x 1075 0.011 —0.168  1.208 —4.713 9.908 32866  0.08
Stuttgart PKW Diesel EUR4 tf [min] 05 205 5.500 x 10710 —5.351 x 1078 2211 x 1070 —5.058 x 1075 0.001 —0.006 0.030 —0.068 —0.078 2.336 0987  0.01
Stuttgart PKW  Diesel EUR4 tt [min] 05 205 2.543 x 10~10 —2.566 x 1078 1.105 x 10© —2.659 x 1075 0.000 —0.004 0.020 —0.050 —0.055 2.567 1.031  0.01
Stuttgart PKW Diesel EUR4 fc 0| 05 205 9.131 x 1071 ~1.052 x 1078 5215 x 1077 —1.448 x 1075 0.000 —0.003 0.018 —0.070 0.141 0.132 0.151  0.00
Stuttgart PKW  Diesel EUR4 FC [1/100km] 05 205 5.594 x 10~10 —~7.621 x 1078 4361 x 10°° —0.000 0.003 —0.033 0263 —1.313 3892 —6399  19.014 001
Stuttgart PKW  Diesel EUR4 CO, [kg] 05 205 2.374 x 10710 —2.736 x 1078 1.356 x 10~° —3.766 x 10~° 0.001 —0.007 0.046 —0.182  0.366 0.344 0.391 0.0
Stuttgart PKW  Diesel EUR4 CO™8  [kg/100km] 05 205 1.455 x 1077 —1.982 x 1077 1.134 x 10° —0.000 0.007 —0.086 0.685 —3.414 10121 —16.639  49.445  0.07
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4. Results

The DERNP (Table 2) allows for fast and efficient regional comparisons in terms of
economical and ecological RNP. Since DERNP relies on air distance measurements as input
factors, it seamlessly integrates into existing calculation models. To visualize the impact of
differences in RNP between geographical regions, the upcoming section examines four of
the largest German cities: Berlin (North-East), Hamburg (North), Stuttgart (South-West),
and Munich (South-East). These cities rank highly in the 2021 TomTom Traffic Index [95]
but vary significantly in terms of road network size.

Figure 6 visualizes the size differences in road network length (measured in kilometers)
and the total length of network kilometers traversed for the DERNP generation. Due to
the fixed amount of 40 distance classes and the fixed number of n = 1000 generated
paths per distance class, larger networks feature less coverage than smaller road networks.
Additionally, as depicted in Figure 4, DERNP, due to being based on fastest network paths,
focuses on larger, arterial roads within networks and tends to ignore smaller residential
roads. Even though these smaller roads make up for a large amount of total network length,
they can be considered less important for overall RNP as they are less likely to be traversed
by a large number of vehicles.

71 Network Length covered
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Figure 6. Network size comparison and DERNP network coverage.

4.1. Detour Factor

The detour factor d ¢ (Equation (2)) is defined as the increase in road or travel distance
d; compared to a straight-line connection using air distance d, and measures the infrastruc-
tural efficiency of a road network. The less turns and intersections required to overcome a
specified air distance, the better the detour factor. A perfectly straight road without turns
or intersections corresponds to a detour factor of 1.0.

4y=5 @)

Figure 7 indicates that all investigated detour factors follow a similar pattern. Short
distances in a large city introduce a heavy detour penalty due to the densely populated
inner-city areas. As air distance increases, larger surrounding roads, also known as arterial
roads, are accessible, significantly decreasing the detour necessary to cover air distance. The
curve for Hamburg is noteworthy, as it decreases less rapidly compared to the other curves.
This indicates a strong deviation from a road network made up of straight connections,
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which is certainly the case in the city of Hamburg due to the river Elbe and its many
waterways inside the inner-city area. Interestingly, Munich’s detour factor is significantly
lower up to 10 km air distance, indicating a well-built road infrastructure which allows for
more direct connections. While Stuttgart’s road infrastructure appears to be comparable up
to 8 km air distance, a bump can be seen upwards of 10 km air distance. This indicates a
below-average road infrastructure at the outer city boundaries, coming close to Hamburg’s
detour factor. This phenomenon is caused by the city’s geographical location within the
valley basin of Stuttgart and its unusual city area which extends over an altitude difference
of almost 350 m.

2.8

2.6

N N
Y S

N
)

Detour Factor

1.6

1.4

air distance [km]

—©— Berlin —¢ Hamburg — Munich - Stuttgart

Figure 7. City comparison: detour factors.

4.2. Fuel Consumption and Impact of Network Elevation

The unusual geographical situation in the Stuttgart city area is further supported by
examining the fuel consumption per air distance kilometer. As can be seen in Figure 8§,
Stuttgart shows a significantly decreased fuel consumption curve both for (a) the total and
(c) the average fuel consumption. This observation is caused by the PHEMLight5 emission
calculation methodology which reports a less steep increase in fuel consumption for positive
slopes in comparison to its coasting fuel consumption on negative inclines. Therefore,
vehicles in areas containing large changes in altitude can save a disproportionately high
amount of fuel while coasting in comparison to the increased fuel consumption caused
by traversing positive slopes within the network. This hypothesis is further validated by
examining Figure 9, which depicts the absolute and relative difference in fuel consumption
caused by including elevation parameters in the PHEMLight5 calculation model.

Besides Stuttgart, the city of Berlin introduces another interesting observation in terms
of fuel consumption. While Hamburg is the most fuel-intensive city for short distances,
Berlin overtakes at d;, = 11 both in (a) actual and (c) average fuel consumption. This
indicates that while most of the inspected cities enable more efficient driving behaviour at
longer air distances, Berlin fails to achieve this effect. This is caused by the much larger
network size of Berlin compared to the remaining three cities (Figure 6), corresponding to a
larger diameter of the inner-city area where intersections and traffic stops are much more
frequent, resulting in a higher subdivision in driving cycles. This increase in subdivisions,
equaling a higher number of stops and acceleration/deceleration phases, significantly
increases fuel consumption, rendering driving in Berlin less fuel efficient.
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Figure 8. City comparison: (a) Absolute fuel consumption versus (b) fuel consumption per kilometer
across air distance classes versus (c) average fuel consumption per 100 km.
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Figure 9. City comparison: fuel consumption differences caused via inclusion of elevation data.
(a) depicts the absolute difference in liters while (b) depicts the relative difference in percent.

4.3. CO, Emission

In addition to fuel consumption, PHEMLight5 includes common emission calculation
models based on driving cycles, including Nitrogen oxides (NOy), carbon monoxide (CO),
hydrocarbons (HC), particulate matter (PM), particle number (PN), and carbon dioxide
emissions (CO,). This information enables potential CO, compensation calculations on
a per-vehicle-kilometer basis. Since CO, emission per liter Diesel can be described by
a ratio of 2.6391 kg/L [96], the emission curves depicted in Figure 10 follow the same
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general behaviour as their fuel consumption counterparts (Figure 8), leading to identical
interpretations. Nonetheless, we include the emission curves for ease of access to CO,
emission information.
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Figure 10. City comparison: (a) Absolute CO;, emission versus (b) CO, emission per kilometer across
air distance classes versus (c) average CO, emission per 100 km.

4.4. Speed Profiles and Travel Times

Speed profiles and travel time curves provide information on how cities position in
terms of infrastructure and congestion measurement. A well-built infrastructure enables
longer coasting and less stop times, leading to more efficient driving cycles and a decrease
in travel time per air distance kilometer. High levels of congestion decrease the achievable
average velocity during these driving cycles, leading to an increase in travel time.

Figure 11 depicts achievable travel speeds for each distance class in (a) free flow and
(b) congested state as well as (c) the traffic-induced relative decrease in average velocity.
Figure 12 focuses on the corresponding travel times.

In both free flow and congested state, the city of Hamburg is among the top curves in
terms of achievable travel speed. When looking at the traffic penalty curve for Hamburg,
the relative increase in travel time (Figure 12c) caused by traffic congestion peaks at 17
percent or, in other terms, an average increase of ¢¢(20) = 27.5/(1 —0.17) = 33.13 - 275 =
5.63 min when covering 20 km air distance. This indicates that Hamburg suffers from a
comparatively low congestion level among most of its network paths, which is in line with
average speeds depicted in Figures 2 and 3. Nonetheless, travel times remain similar to the
remaining cities, which is largely caused by the poorly designed infrastructure due to the
river Elbe as depicted by Hamburg’s detour factor (Figure 7).

Interestingly, the city of Berlin suffers the least from congestion (15 percent peak or
5.29 min at d, = 20 km) while achieving the slowest travel speed in free flow and the
second-to-last travel speed in congested state. Based on this observation in combination
with an average detour factor, it appears that Berlin suffers from an almost constantly high
level of congestion, influencing the historic free flow speed and significantly reducing the
gap between free flow and congested state.

The counterexample to this is Stuttgart. While the travel speed during free flow is akin
to Hamburg, it drops significantly when accounting for traffic within the observed time
frame, requiring an additional 12 min to achieve the same distance of 20.0 km. This effect
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is also displayed in the relative traffic penalty curve for Stuttgart, with a relative traffic
induced time penalty peaking at 30 percent.
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Figure 11. City comparison: (a) Average speed per air distance class during free flow versus (b) av-
erage speed per air distance class when accounting for traffic versus (c) relative speed difference
between free flow and congested state.
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Figure 12. City comparison: (a) Absolute travel time to cover air distance during free flow versus
(b) travel time per kilometer during free flow versus (c) traffic induced time penalty in percent.

The cities displaying the largest variation between free flow and congested state are
Munich and Stuttgart, with Stuttgart showing a constant increase in relative loss compared
to free flow, indicating a large congestion problem throughout the entire city. Munich, on
the other hand, is characterized by an increasing level of relative loss or penalty up to a
plateau value of 21 percent (difference in velocity) and 23 percent (traffic induced penalty)
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where it remains constant. This indicates a large congestion problem for short to medium
length travel distances, implying a high level of traffic in inner-city areas, while longer
paths upwards of d, > 17 allow for improved traffic flow, which might imply access to
larger roads with less congestion on the city boundaries.

4.5. Transportation Costs

The economic dimension of sustainability of infrastructure, congestion, and detour
factor is reflected in total costs of transport. In addition, DERNP allows translating en-
vironmental sustainability into economical impact by proposing the inclusion of CO,
compensation costs into transport cost evaluation. The price per ton CO; is set to EUR
180, in line with current political debates by the German Federal Environment Agency [97].
Additionally, we assume EUR 0.7 per kilometer driving costs, an hourly wage of EUR 20.5
as driver costs and EUR 7.5 per hour of vehicle occupation costs, which is in line with
other literature [98]. In contrast to comparable studies and based on their heavy impact on
transportation costs [99], fuel costs are split from distance-based costs and incorporated on
the basis of estimated vehicle fuel consumption derived from PHEMLight5 with a price
per liter for Diesel fuel of EUR 1.70.

Figure 13 depicts the conglomeration of individual costing factors (a) to (e) in EUR per
air distance which account for total costs of transportation in (f) free flow and (g) congested
state. Subplot (h) depicts the difference in transportation costs caused by traffic congestion.
Free flow data was compared to average traffic data for each city in between July 25 and
September 22 of 2022. Traffic-specific results may vary for different time frames. Free flow
data constitutes the historical average and is resilient to changes in specified time frames.

The total costs of transportation per air distance kilometer are highest in Hamburg
and Berlin both in free flow and congested state. While Hamburg suffers from less travel
time loss compared to Berlin, the difference is equalized by an increase in travel distance
and distance related costs due to inefficient infrastructure as measured by the detour
factor. Since both fuel and CO, compensation costs correlate only with travel distance,
both Hamburg and Berlin inflict a disproportionate cost surplus in comparison to Munich
and Stuttgart.

With the exception of fuel and CO, compensation costs, transportation is most cost-
efficient across all cost components in the city of Munich. A low detour factor due to well-
built infrastructure in combination with comparably less congestion and better optimized
free flow conditions allow for savings of up to EUR 0.6 per kilometer air distance in Munich
compared to Hamburg.

Stuttgart, on the other hand, inflicts higher distance and time related costs than Munich
but saves significantly in terms of fuel and CO, compensation due to increased coasting
possibilities based on its geographical location. Nonetheless, even combined, these savings
account for no more than one-third of total distance-related costs, resulting in transportation
costs slightly higher than in the city of Munich both in free flow and congested state.

Subfigure (h) depicts the difference in costs per air distance between historical network
speeds (free flow) and measured traffic speeds (congestion) within the specified time
frame. As explained earlier, Berlin appears to suffer from a constant state of congestion,
diminishing most differences between free flow and congested travel speeds. Stuttgart,
on the other hand, seems to suffer from a more temporary congestion problem during the
seven weeks of observation, accounting for a difference in transportation costs of up to
EUR 0.14 per air distance kilometer on short paths. As path lengths increase, the difference
between free flow and congestion rapidly decreases due to an increase in availability
for alternative routes and faster arterial roads. Converging onto EUR 0.01 per kilometer
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