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Abstract
We study the spectrum of simplicial volume for closed manifolds with fixed fundamental
group and relate the gap problem to rationality questions in bounded (co)homology. In par-
ticular, we show that in many cases this spectrum has a gap at zero. For such groups, this
leads to corresponding gap results for the minimal volume entropy semi-norm and for the
minimal volume entropy in dimension 4.
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1 Introduction

The simplicial volume of an oriented closed connected manifold is the �1-semi-norm of
its R-fundamental class [9] (Sect. 2.1). The simplicial volume is connected to amenability,
negative curvature, and Riemannian volume estimates [9].

Definition 1.1 (Spectrum of simplicial volume) Let d ∈ N and let Mfdd denote the class of
all oriented closed connected d-manifolds. The spectrum of simplicial volume in dimension d
is the set

SV(d) := {‖M‖ ∣∣ M ∈ Mfdd
} ⊂ R≥0.

Given a group �, we write

SV�(d) := {‖M‖ ∣∣ M ∈ Mfdd , π1(M) ∼= �
} ⊂ R≥0.

A subset V ⊂ R≥0 has a gap at 0 if there exists a c ∈ R>0 with V ∩ (0, c) = ∅. The
sets SV(d) are known not to have a gap at zero whenever d ≥ 4 (Sect. 1.1). However, the
problem is open for the spectrum with fixed fundamental group:
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Question 1.2 (Gap problem with fixed fundamental group) Let d ∈ N and let � be a finitely
presented group with dimR Hd(�;R) < ∞. Does the set SV�(d) have a gap at zero?

Fundamental groups of closed manifolds are finitely presented. In the context of homo-
logical properties of groups, it is reasonable to further restrict the class of groups: We say
that a group � has type FHd if it is finitely presented and satisfies dimR Hd(�;R) < ∞.

In the present article, we give partial positive answers to Question 1.2 and put this problem
into a geometric context.

1.1 The spectrum of simplicial volume

We first recall known results on the spectrum of simplicial volume. On the one hand, we have
generic structural results:

Theorem 1.3 (General structure [11, Remark 2.3] [13, Theorem B/E]) Let d ∈ N.

1. The set SV(d) is countable and closed under addition.
2. The set SV(d) is contained in the set of right-computable real numbers; in particular, if

A ⊂ N is a subset that is recursively enumerable but not recursive, then
∑

n∈A 2
−n is not

in SV(d).

On the other hand, classification results in low dimensions and stable commutator length,
respectively, can be used to exhibit concrete real numbers as simplicial volumes:

Theorem 1.4 ((no) gap [11, Example 2.4/2.5, Theorem A])

1. The sets SV(0), . . . ,SV(3) have a gap at zero.
2. If d ∈ N≥4, then SV(d) is dense in R≥0.

The most specific information is available in dimension 4:

Theorem 1.5 (Dimension 4) The set SV(4) contains

• all non-negative rationals [11, Theorem B];
• a dense set of transcendental numbers that is linearly independent over the field of

algebraic numbers [13, Theorem A, Theorem C];
• certain irrational algebraic numbers [6, Theorem 1.10].

The constructions from Theorem 1.5 can be performed with fundamental groups with a
bounded number of generators and relations [11, Section 8.4], but it is not clear from the
constructions whether it is possible to fix the group.

In contrast to the closed case, the spectrum of the (locally finite) simplicial volume of
oriented connected not necessarily compact manifolds without boundary in dimensions ≥ 4
coincides with R≥0 ∪ {∞} [12].

1.2 Gaps and rationality

We show that the gap behaviour of a given fundamental group is driven by the rationality
properties of the zero-norm subspace of singular homology.

Definition 1.6 Let d ∈ N and let X be a topological space or a group.
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• Then we write

Nd(X;R) := {
α ∈ Hd(X;R)

∣∣ ‖α‖1 = 0
} ⊂ Hd(X;R),

Bd(X;R) := {
ϕ ∈ Hd(X;R)

∣∣ ϕ is bounded
} ⊂ Hd(X;R).

• A subspace V ⊂ Hd(X;R) is rational if V ∩ Hd(X;Q) generates V overR. A subspace
V ⊂ Hd(X;R) is rational if V ∩ Hd(X;Q) generates V over R.

Theorem 1.7 (Section 3) Let d ∈ N≥4 and let � be a group of type FHd . Then the following
are equivalent:

1. The set SV�(d) has a gap at zero.
2. The set

{‖α‖1
∣∣ α ∈ Hd(�;R) is integral

}
has a gap at zero.

3. The subspace Nd(�;R) is rational in Hd(�;R).
4. The subspace Bd(�;R) is rational in Hd(�;R).

The proof in Sect. 3 shows that the implication 2 �⇒ 1 as well as the equivalence of the
properties 2, 3, and 4 also hold for d ∈ {0, 1, 2, 3}.

The rationality property 4 is related to a problem of Frigerio and Sisto in the context of
quasi-isometrically trivial extensions [8, Question 16].

1.3 Examples

The characterisation in Theorem 1.7 allows us to establish that many groups admit a positive
answer to Question 1.2. Let d ∈ N. We write Gap(d) for the class of all groups � of type FHd

such that SV�(d) has a gap at zero.
If Nd( · ;R) is trivial or the full homology, then Nd( · ;R) is rational in Hd( · ;R) (and

similarly for cohomology). Therefore, we obtain:

Example 1.8 (Base cases) Let d ∈ N≥4. The class Gap(d) contains the following groups:

• all amenable groups of type FHd because they have trivial bounded cohomology [9, 14]
(and thus SV�(d) = {0} [9]);

• more generally, all boundedly acyclic groups of type FHd ; this includes the Thompson
group F [22];

• all hyperbolic groups because they are of finite type and the �1-semi-norm is a norm by
the duality principle and Mineyev’s results [19];

• all finitely presented groups with dimR Hd(�;R) ≤ 1;
• all groups � of type FHd whose comparison map Hd

b (�;R) −→ Hd(�;R) is trivial;
this includes all groups of type FHd whose classifying space admits an amenable open
cover of multiplicity at most d [9, 14, 18]. Good bounds for such amenable multiplicities
are, e.g., known for right-angled Artin groups [16]. More generally, one can also consider
multiplicities of (uniformly) boundedly acyclic open covers [15, 17].

Example 1.9 (Thompson group T ) The Thompson group T lies in Gap(d) for all d ∈ N≥4:
It is well-known that T is finitely presented and has finite-dimensional cohomology in every
degree [10]. Moreover, B∗(T ;R) is generated by the cup-powers of the Euler class [7, 20].
Because the Euler class is rational, we see that B∗(T ;R) is rational. We can thus apply
Theorem 1.7 to conclude.

We have the following inheritance properties (proofs are given in Sect. 4):
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Example 1.10 (Inheritance properties) For d ∈ N≥4, we have:

• The class Gap(d) is closed under taking (finite) free products.
More generally, there is an inheritance principle for graphs of groups with amenable edge
groups and vertex groups in Gap(d) (Lemma 4.2).

• Let � ∈ ⋂
k∈{2,...,d} Gap(k) and � ∈ ⋂

k∈{2,...,d} Gap(k). Then

� × � ∈ Gap(d).

• If � is a group that contains a finite index subgroup in Gap(d), then also � ∈ Gap(d).
• Let 1 −→ A −→ � −→ � −→ 1 be an extension of groups with boundedly acyclic

(e.g., amenable) kernel A. If � ∈ Gap(d) and � is of type FHd , then � ∈ Gap(d).
• More generally: Let f : � −→ � be a group homomorphism that induces a surjec-

tion Hd
b ( f ;R) : Hd

b (�;R) −→ Hd
b (�;R). If � ∈ Gap(d) and � is of type FHd , then

also � ∈ Gap(d).

However, it remains an open problem whether for all groups � of type FHd the
space Nd(�;R) is rational or not.

If we drop the finiteness conditions, then, in general, we cannot expect a gap on integral
classes:

Example 1.11 There exists a countable group � such that {‖α‖1 | α ∈ H2(�;R) is integral}
has no gap at zero: For each n ∈ N>0, there exists a finitely presented group �n with an
integral class αn ∈ H2(�n;R) satisfying

0 < ‖αn‖1 <
1

n
;

for example, such groups and elements can be constructed via stable commutator length
[11, Theorem C]. Then the infinite free product � of the (�n)n∈N has the claimed property.
Clearly, this example � is not finitely generated and dimR H2(�;R) = ∞.

Taking products with fundamental groups of oriented closed connected hyperbolic mani-
folds and the standard cross-product estimates for ‖ · ‖1 [11, Proposition 2.9] show that such
examples also exist in all degrees ≥ 4.

1.4 Gap phenomena for geometric volumes

In dimensions d ≥ 4, it does not seem to be known whether the set of minimal volumes
of all oriented closed connected smooth d-manifolds has a gap at 0 or not. For a smooth
manifold M , the minimal volume is defined by

minvol(M) := inf
{
vol(M, g)

∣∣ g ∈ Riem1(M)
}
,

where Riem1(M) denotes the set of all complete Riemannian metrics on M whose sectional
curvature lies everywhere in [−1, 1]. The following connections with the simplicial volume
are classical [9, Section 0.5]:

• Main inequality For all oriented closed connected smooth d-manifolds M , we have

‖M‖ ≤ (d − 1)d · d! · minvol(M).

• Isolation theorem For each d ∈ N, there exists a constant εd ∈ R>0 with the fol-
lowing isolation property: If M is an oriented closed connected smooth d-manifold
with minvol(M) < εd , then ‖M‖ = 0.
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It is not known whether the vanishing of simplicial volume implies the vanishing of the
minimal volume. Therefore, the gap results from Sect. 1.3 do not directly give gap results
for the minimal volume with fixed fundamental group.

Similarly, the corresponding gap problem for the minimal volume entropy is open.
For d ∈ N, we write Gapminvolent(d) for the class of all groups � of type FHd such that
the set of minimal volume entropies minvolent(M) of oriented closed connected smooth
d-manifolds M with fundamental group isomorphic to � has a gap at 0. In dimension 4, gaps
for simplicial volume lead to gaps for minimal volume entropy:

Corollary 1.12 (Minimal volume entropy gaps in dimension 4)

1. We have Gap(4) ⊂ Gapminvolent(4).
2. In particular, all the examples of groups inGap(4) listed in Sect. 1.3 lie inGapminvolent(4).

Proof The second part is clear. For the first part, on the one hand, we use that the minimal
volume entropy is a linear upper bound for the simplicial volume [4]; on the other hand, in
dimension 4, the vanishing of simplicial volume implies the vanishing of theminimal entropy
[25, Theorem A] and whence of the minimal volume entropy [4]. ��

The volume entropy semi-norm ‖ · ‖E is equivalent to the �1-semi-norm on singular
homology [5]. Let GapE(d) be the class of all groups � of type FHd such that the set of
volume entropy semi-norms ‖[M]R‖E of oriented closed connected smooth d-manifolds M
with fundamental group isomorphic to � has a gap at 0.

Corollary 1.13 (Volume entropy semi-norm gaps) Let d ∈ N.

1. We have Gap(d) ⊂ GapE(d).
2. In particular, all the examples of groups in Gap(d) listed in Sect. 1.3 lie in GapE(d).

Proof The first part follows from the fact that ‖ · ‖E and ‖ · ‖1 are equivalent on singular
homology [5, Theorem1.3],whence on fundamental classes of smoothmanifolds. The second
part is clear. ��

The smooth Yamabe invariant can be viewed as a curvature integral sibling of the minimal
volume, defined in terms of scalar curvature instead of sectional/Riemannian curvature. If
d ∈ N≥5 and � is of type FHd , then it is known that the truncated smooth Yamabe invariant
on oriented closed connected smooth spin d-manifolds with fundamental group isomorphic
to � has a gap at 0; this is implicitly contained in the surgery inheritance results for this
version of the Yamabe invariant [1, Section 1.4].

Organisation of this article

Basic notions are recalled in Sect. 2. In Sect. 3, we prove Theorem 1.7. Finally, Sect. 4 treats
the inheritance properties listed in Sect. 1.3.

2 Preliminaries

We collect basic terminology and properties on simplicial volume/bounded cohomology [9].
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2.1 The �1-semi-norm and simplicial volume

Definition 2.1 (�1-semi-norm) Let X be a space or a group and let d ∈ N. For α ∈ Hd(X;R),
we set

‖α‖1 := inf
{|c|1

∣∣ c ∈ Cd(X;R), ∂c = 0, [c] = α
} ∈ R≥0.

Here,C∗(X;R) denotes the singular chain complex if X is a space; if X is a group,C∗(X;R)

can be taken to be the chain complex of the simplicial resolution or the singular chain complex
of a classifying space B� (these chain complexes are boundedly chain homotopy equivalent
with respect to | · |1). Moreover, | · |1 denotes the �1-norm on C∗(X;R) with respect to the
basis given by all singular simplices (or all simplicial tuples, respectively).

The �1-semi-norm on H∗( · ;R) is functorial in the following sense: If f : X −→ Y is a
continuous map (or group homomorphism, respectively) and α ∈ Hd(X;R), then

∥∥Hd( f ;R)(α)
∥∥
1 ≤ ‖α‖1.

Definition 2.2 (Simplicial volume [9, 23]) The simplicial volume of an oriented closed con-
nected d-manifold M is defined as

‖M‖ := ∥∥[M]R
∥∥
1,

where [M]R ∈ Hd(M;R) denotes the R-fundamental class of M .

2.2 Bounded cohomology and duality

The bounded cohomology of groups or spaces is H∗
b ( · ;R) := H∗(C∗( · ;R)#

)
, where

C∗( · ;R)# denotes the topological dual with respect to | · |1 (the latter is introduced in Defini-
tion 2.1). Forgetting boundedness induces a natural transformation comp∗ : H∗

b ( · ;R) �⇒
H∗( · ;R), the comparison map. Classes in the image of the comparison map are called
bounded. Evaluating cocycles on cycles induces a Kronecker product 〈 · , · 〉, which is
compatible with the comparison map.

Proposition 2.3 (Duality principle [9, p. 16]) Let d ∈ N, let X be a space/group, and let
α ∈ Hd(X;R). Then

‖α‖1 = sup
{ 1

‖ϕ‖∞

∣∣∣ ϕ ∈ Hd
b (X;R), 〈ϕ, α〉 = 1

}
.

We will also use the following version of the duality principle:

Corollary 2.4 Let d ∈ N, let X be a space/group with dimR Hd(X;R) < ∞. Then

Bd(X;R) = {
ϕ ∈ Hd(X;R)

∣∣ ∀α∈Nd (X;R) 〈ϕ, α〉 = 0
}
.

Proof By the duality principle (Proposition 2.3), we have

Nd(X;R) = {
α ∈ Hd(X;R)

∣∣ ∀ϕ∈Hd
b (X;R) 〈ϕ, α〉 = 0

}

= {
α ∈ Hd(X;R)

∣∣ ∀ϕ∈Bd (X;R) 〈ϕ, α〉 = 0
}
.

Because Hd(X;R) is finite-dimensional and Hd(X;R) ∼=R HomR(Hd(X;R),R) via the
evaluation map, the annihilator

{
ϕ ∈ Hd(X;R)

∣∣ ∀α∈Nd (X;R) 〈ϕ, α〉 = 0
}

of this null space coincides with Bd(X;R). ��
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2.3 Normed Thom realisation

Classical Thom realisation and surgery allow us to construct manifolds from group homology
classes with controlled simplicial volume:

Theorem 2.5 ([11, (proof of) Theorem 8.1]) Let d ∈ N≥4. Then, there exists a constant Kd ∈
N>0 with the following property: If � is a finitely presented group and α ∈ Hd(�;R) is an
integral class, then there exists an oriented closed connected d-manifold M with π1(M) ∼= �

and a K ∈ {1, . . . , Kd} such that

‖M‖ = K · ‖α‖1.

3 Gaps via rationality

In this section, we prove Theorem 1.7. More precisely, we show:

• the equivalence 1 ⇐⇒ 2 in Sect. 3.1 via the mapping theorem and normed Thom reali-
sation;

• the equivalence 2 ⇐⇒ 3 in Sect. 3.2 through basic properties of integer lattices in vector
spaces;

• the equivalence 3 ⇐⇒ 4 in Sect. 3.3 by the duality principle;

3.1 The integral lattice

Let X be a space or a group. A class in Hd(X;R) is called integral if it is in the image of the
change of coefficients map Hd(X;Z) −→ Hd(X;R). We write

Zd(X) := {
α ∈ Hd(X;R)

∣∣ α is integral
}

for the Z-submodule of Hd(X;R) of integral classes. Normed Thom realisation shows that
SV�(d) is roughly the same as {‖α‖1 | α ∈ Zd(�)}:

Proof of Theorem 1.7, 2 �⇒ 1 Let M ∈ Mfdd satisfying π1(M) ∼= � and let f : M −→
B� be the classifying map. As f induces an isomorphism on the level of fundamental
groups, we obtain from the mapping theorem [9, Section 3.1] and the duality principle
(Proposition 2.3) that

‖M‖ = ∥∥[M]R
∥∥
1 = ∥∥Hd( f ;R)([M]R)

∥∥
1.

Moreover, [M]R ∈ Hd(M;R) is an integral class and so Hd( f ;R)([M]R) ∈ Zd(�).
Hence, if ‖ · ‖1 has a gap at zero on Zd(�), then also SV�(d) has a gap at zero. ��
Proof of Theorem 1.7, 1 �⇒ 2 Let SV�(d) have a gap c at zero and let Kd ∈ N>0 be a

constant for normed Thom realisation in dimension d (Theorem 2.5). Then c/Kd is a gap
for ‖ · ‖1 on Zd(�):

Let α ∈ Zd(�) with ‖α‖1 �= 0. Normed Thom realisation shows that there exists an M ∈
Mfdd with π1(M) ∼= � and ‖M‖ = K · ‖α‖1 with K ∈ {1, . . . , Kd}. In particular, we
obtain ‖α‖1 ≥ ‖M‖/K ≥ c/Kd , as claimed. ��
Remark 3.1 (Lattices) Let V be a finite-dimensionalR-vector space. Then V carries a canon-
ical topology (induced by any Euclidean inner product on V ). A lattice in V is aZ-submodule
that is discrete with respect to the canonical topology. We recall two basic facts on lattices:
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• If ‖ · ‖ is a norm on V and L ⊂ V is a lattice, then {‖x‖ | x ∈ L \ {0}} has a gap at zero.
(The corresponding statement for semi-norms is false, in general: The semi-norm x �→
|x1 − √

2 · x2| on R
2 does not have a gap on the standard lattice Z2 ⊂ R

2. Even worse,
this semi-norm is non-degenerate on Z2.)

• If L ⊂ V is a cocompact lattice, then V has an R-basis consisting of elements of L .

Our main example is: Let d ∈ N and let X be a space/group satisfying dimR Hd(X;R) <

∞. Then, by the universal coefficient theorem, Zd(X) is a cocompact lattice in Hd(X;R).

3.2 Rationality of the zero-norm subspace

In the following, we consider the quotient space Qd(�;R) := Hd(�;R)/Nd(�;R). By
construction, the quotient semi-norm of ‖ · ‖1 on Qd(�;R) is a norm and the canonical
projection π : Hd(�;R) −→ Qd(�;R) is isometric. We denote the quotient norm also
by ‖ · ‖1.

Proof of Theorem1.7, 3 �⇒ 2 Let Nd(�;R) be rational in Hd(�;R). Because Nd(�;R)

is rational and Zd(�) is a lattice in Hd(�;R) (Remark 3.1), the image π(Zd(�)) is a lattice
in the finite-dimensional R-vector space Qd(�;R) [2, Corollary 10.3]. In particular, the
norm ‖ · ‖1 has a gap at 0 on π(Zd(�)) (Remark 3.1). Therefore, also

{‖α‖1
∣∣ α ∈ Zd(�)

} = {‖π(α)‖1
∣∣ α ∈ Zd(�)

} = {‖β‖1
∣∣ β ∈ π(Zd(�)

}

has a gap at zero. ��
Proof of Theorem1.7, 2 �⇒ 3 Let ‖ · ‖1 have a gap c at zero on Zd(�). We show that

Nd(�;R) is rational in Hd(�;R):
Because Zd(�) is a lattice in Hd(�;R) (Remark 3.1), there exists a tuple (v1, . . . , vn) of

elements of Zd(�) that is an R-basis for Hd(�;R) (Remark 3.1). Let α ∈ Nd(�;R). We
write

α =
n∑

j=1

λ j · v j

with λ1, . . . , λn ∈ R. Given N ∈ N>0, simultaneous Dirichlet approximation [24, Theo-
rem II.1.A] shows that there exist pN ,1, . . . , pN ,n ∈ Z and qN ∈ {1, . . . , N } with

∀ j∈{1,...,n}
∣∣∣λ j − pN , j

qN

∣∣∣ <
1

qN · N 1/n .

Then the class αN := ∑n
j=1 pN , j · v j lies in Zd(�) and

‖qN · α − αN‖1 ≤
n∑

j=1

|qN · λ j − pN , j | · ‖v j‖1 ≤
n∑

j=1

1

N 1/n · ‖v j‖1.

Because qN ·α ∈ Nd(�;R), we obtain ‖αN‖1 = ‖qN ·α−αN‖1 and so the previous estimate
and the gap c show that ‖αN‖1 = 0 for all large enough N . Hence, αN ∈ Nd(�;R)∩ Zd(�)

and 1/qN · αN ∈ Nd(�;R) ∩ Hd(�;Q).
Wenowconsider the standard topologyon thefinite-dimensionalR-vector spaceHd(�;R).

Then the choice of the approximating coefficients shows that limN→∞ 1/qN · αN = α.
In conclusion, α lies in the closure of Nd(�;R) ∩ Hd(�;Q) with respect to the standard

topology. As R-subspaces of finite-dimensional R-vector spaces are closed in the standard
topology, α lies in the R-subspace generated by Nd(�;R) ∩ Hd(�;Q). This shows that
Nd(�;R) indeed is rational. ��
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3.3 Rationality of the bounded subspace

Proof of Theorem 1.7, 3 ⇐⇒ 4 This is a consequence of Corollary 2.4: By linear algebra
over Q, an R-subspace of Hd(�;R) is rational if and only if its annihliator is rational in
the dual R-vector space. Thus, Nd(�;R) is rational in Hd(�;R) if and only if Bd(�;R) is
rational in the dual Hd(�;R) of Hd(�;R). ��

4 Inheritance properties

We prove the inheritance properties from Sect. 1.3.

Lemma 4.1 (Free products) Let d ∈ N≥4. Then Gap(d) is closed under taking (finite) free
products.

Proof Let �,� ∈ Gap(d). We show that � ∗ � ∈ Gap(d):
With � and � also � ∗ � is of type FHd (finitely presented groups are closed under

free products and the homology is finite-dimensional by the Mayer–Vietoris sequence). By
Theorem 1.7, we know that Nd(�;R) and Nd(�;R) are rational and it suffices to show that
Nd(� ∗ �;R) is rational:

The inclusions/projections i, j and p, q , respectively, of the summands of the free prod-
uct � ∗ � induce the Mayer–Vietoris R-isomorphism ϕ : Hd(� ∗ �;R) −→ Hd(�;R) ⊕
Hd(�;R). Under this isomorphism, Nd(� ∗ �;R) corresponds to Nd(�;R) ⊕ Nd(�;R):
If α ∈ Nd(� ∗ �;R), then

∥∥Hd(p;R)(α)
∥∥
1 ≤ ‖α‖1 = 0 and

∥∥Hd(q;R)(α)
∥∥
1 ≤ ‖α‖1 = 0

and so ϕ(α) ∈ Nd(�;R) ⊕ Nd(�;R). Conversely, if (α, β) ∈ Nd(�;R) ⊕ Nd(�;R), then
∥∥ϕ−1(α, β)

∥∥
1 = ∥∥Hd(i;R)(α) + Hd( j;R)(β)

∥∥
1 ≤ ‖α‖1 + ‖β‖1 ≤ 0

and thus ϕ−1(α, β) ∈ Nd(� ∗ �;R).
Because ϕ maps rational subspaces to rational subspaces, also Nd(� ∗ �;R) is rational.

��
Lemma 4.2 (Graphs of groups) Let d ∈ N≥4, let G be a graph of groups on a finite
graph (V , E), whose vertex groups (Gv)v∈V lie in Gap(d) and whose edge groups (Ge)e∈E
are amenable. Let� be the fundamental group of G. If� is of typeFHd , then also� ∈ Gap(d).

Proof By Theorem 1.7, Nd(Gv;R) is rational for all v ∈ V and it suffices to show that
Nd(�;R) is rational.

We consider the following commutative diagram:

Here, Fb and F denote themaps induced by the inclusions of the vertex groups on bounded
cohomology and cohomology, respectively. The upper horizontal arrow Fb is surjective [3].
Hence, the diagram implies that

F
(
Bd(�;R)

) =
⊕

v∈V
Bd(Gv;R).
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The hypothesis that Gv ∈ Gap(d) for all v ∈ V shows that the right-hand side is rational.
Moreover, themap F is rational because it is induced by group homomorphisms; in particular,
the kernel of F is rational. Therefore, also Bd(�;R) is rational. ��

The statement of Lemma 4.2 can be generalised to uniformly boundedly acyclic edge
groups by using the corresponding result on bounded cohomology of such graphs of groups
[17, Theorem 8.11].

In the situation of Lemma 4.2, we have the following sufficient condition for the group �

to be of type FHd : By hypothesis, all vertex groups are of type FHd . If all edge groups are
of type FHd+1, then the Mayer–Vietoris sequence for graphs of groups shows that � is of
type FHd .

Lemma 4.3 (products) Let d ∈ N≥4 and let � ∈ ⋂
k∈{2,...,d} Gap(k) and � ∈⋂

k∈{2,...,d} Gap(k). Then � × � ∈ Gap(d).

Proof As � and � are of type FHd , also � × � is of type FHd (finitely presented groups are
closed under finite products; and the cohomological Künneth theorem).

By Theorem 1.7, we know that Nk(�;R) and Nk(�;R) are rational for all k ∈ {2, . . . , d}
and it suffices to show that Nd(� × �;R) is rational:

More precisely,we show that, under theKünneth isomorphism, Nd(�×�;R) corresponds
to

N :=
d∑

j=0

(
N j (�;R) ⊗R Hd− j (�;R) + Hj (�;R) ⊗R Nd− j (�;R)

)
.

Because the Künneth isomorphism preserves rational subspaces and because N0( · ;R) = 0
and N1( · ;R) = H1( · ;R) are always rational, this would finish the proof.

The standard estimate for the homological cross-product (via the shuffle description of
the Eilenberg–Zilber map) shows that N ⊂ Nd(� × �;R). In order to prove the converse
inclusion Nd(� × �;R) ⊂ N , we proceed as follows:

We consider the bilinear form

〈 · , · 〉 : B≤d(�;R) × H≤d(�;R) −→ R.

The description of the bounded part fromCorollary 2.4 and elementary finite-dimensional lin-
ear algebra show that there exist families (ϕi )i∈I1 in B≤d(�;R) and (αi )i∈I1�I0 in H≤d(�;R)

with the following properties:

• The family (αi )i∈I0 is an R-basis of N≤d(�;R).
• The family (αi )i∈I0�I1 is an R-basis of H≤d(�;R).
• The family (ϕi )i∈I1 is an R-basis of B≤d(�;R).
• For all i, j ∈ I1, we have

〈ϕi , α j 〉 = δi j .

Similarly, we obtain such families (ψ j ) j∈J1 and (β j ) j∈J1�J0 for �.
Let α ∈ Nd(� × �;R). Using the Künneth isomorphism, we write (where I := I1 � I0

and J := J1 � J0)

α =
∑

(i, j)∈I×J

λi j · αi × β j
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for suitable real coefficients λi j . Let (i1, j1) ∈ I1 × J1. Then λi1, j1 = 0 as the following
computation shows:

|λi1, j1 | =
∣∣∣
〈
ϕi1 × ψ j1 ,

∑

(i, j)∈I×J

λi j · αi × β j

〉∣∣∣

= ∣∣〈ϕi1 × ψ j1 , α〉∣∣
≤ ‖ϕi1‖∞ · ‖ψ j1‖∞ · ‖α‖1
= 0

Therefore, α ∈ N . ��

Lemma 4.4 (Finite index supergroups) Let d ∈ N≥4 and let � be a group that contains a
finite index subgroup � with � ∈ Gap(d). Then � ∈ Gap(d).

Proof By Theorem 1.7, Nd(�;R) is rational and it suffices to show that Nd(�;R) is rational
and that � has type FHd :

Let i : � −→ � denote the inclusion. Because [� : �] < ∞ and [� : �] is a unit in R,
there is a homological transfer map td : Hd(�;R) −→ Hd(�;R), which satisfies

Hd(i;R) ◦ td = [� : �] · idHd (�;R) .

In particular, dimR Hd(�;R) ≤ dimR Hd(�;R) < ∞. Moreover, because � contains a
finitely presented subgroup of finite index (namely �), also � is finitely presented.

We now show that Nd(�;R) = Hd(i;R)
(
Nd(�;R)

)
: Clearly, the right-hand side is

contained in Nd(�;R). Conversely, let α ∈ Nd(�;R). We consider α̃ := 1/[� : �] · td(α) ∈
Hd(�;R). The explicit construction of the transfer td through lifts of singular simplices
shows that

‖α̃‖1 ≤ 1

[� : �] · [� : �] · ‖α‖1 = 0.

Hence, α̃ ∈ Nd(�;R). By construction,

α = 1

[� : �] · Hd(i;R)
(
td(α)

) = Hd(i;R)(̃α).

This proves the claimed description of Nd(�;R).
Finally, because Hd(i;R) preserves rational subspaces, the rationality of the sub-

space Nd(�;R) implies the rationality of Nd(�;R).
Alternatively, one could also use the cohomological transfer in (bounded) cohomology. ��

Lemma 4.5 (Epis on bounded cohomology) Let d ∈ N≥4, let f : � −→ � be a group
homomorphism that induces a surjection Hd

b ( f ;R) : Hd
b (�;R) −→ Hd

b (�;R), let � ∈
Gap(d), and let � be of type FHd . Then � ∈ Gap(d).
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Proof By Theorem 1.7, Bd(�;R) is rational and it suffices to show that Bd(�;R) is rational.
The commutative diagram

and the surjectivity of the upper arrow Hd
b ( f ;R) imply that

Bd(�;R) = Hd( f ;R)
(
Bd(�;R)

)
.

As Bd(�;R) is rational in Hd (�;R) and as the induced homomorphism Hd( f ;R) preserves
rationality, we obtain that also Bd(�;R) is rational. ��
Lemma 4.6 (Boundedly acyclic extensions) Let d ∈ N≥4, let 1 −→ A −→ � −→ � −→ 1
be an extension of groups with boundedly acyclic kernel A, let � ∈ Gap(d), and let � be of
type FHd . Then � ∈ Gap(d).

Proof Let π : � −→ � be the epimorphism of the given short exact sequence. Because
ker π ∼= A is boundedly acyclic, the map Hd

b (π;R) : Hd
b (�;R) −→ Hd

b (�;R) is an
isomorphism; this can be seen from the Hochschild–Serre spectral sequence in bounded
cohomology [21, Chapter 12]. Therefore, Lemma 4.5 applies. ��
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