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Abstract
The dominant energy condition imposes a restriction on initial value pairs found
on a spacelike hypersurface of a Lorentzian manifold. In this article, we study the
space of initial values that satisfy this condition strictly. To this aim, we introduce an
index difference for initial value pairs and compare it to its classical counterpart for
Riemannian metrics. Recent non-triviality results for the latter will then imply that
this space has non-trivial homotopy groups.

Mathematics Subject Classification 53C21 · 53C27 · 83C05

1 Introduction

1.1 Dominant energy condition for initial values

According to general relativity, the universe can be modeled by a time-oriented Lo-
rentzian manifold (N , g) whose large-scale behavior is governed by the Einstein
equation

T = ricg −1

2
scalg g,

where T denotes the energy-momentum tensor. This does not only apply to the
dynamics, the field equations also constraint the physical quantities experienced on
a time-slice. More precisely, suppose that (N , g) contains M as a spacelike hyper-
surface. On M , the induced Riemannian metric g and the second fundamental form
k, defined with respect to the future-pointing unit normal e0, form a so-called initial
value pair (g, k). The Gauß–Codazzi equations imply that it is subject to the Einstein
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constraints (cf. [6])

2ρ = scalg +(tr k)2 − ‖k‖2
j = div k − d tr k,

(1)

where energy density ρ = T (e0, e0) and momentum density j = T (e0,−)|T M are
components of the energy-momentum tensor.

For physical reasons, the energy-momentum tensor is assumed to always satisfy
the dominant energy condition, which implies that ρ ≥ ‖ j‖. We will say that an initial
value pair (g, k) satisfies the dominant energy condition if ρ ≥ ‖ j‖, when ρ and j
are defined by (1). This condition plays a vital role in the positive mass theorem [18,
19] stating that for an asymptotically Euclidean manifold (M, g) with k tending to
zero at infinity, the ADM-mass is non-negative if (g, k) satisfies the dominant energy
condition.

In this article, we consider the case that M is a compact spin manifold of dimension
n ≥ 2. Our aim is to study the space I+(M) of initial value pairs (g, k) for which
the dominant energy condition holds strictly, i.e. ρ > ‖ j‖ everywhere. This is a
subspace of the space I(M) of all initial value pairs, with C∞-topology. The reason
for restricting to the strict version of the dominant energy condition is that it nicely
connects to positive scalar curvature, which in turn is rather well-studied. In [1],
Ammann and the author discuss some ideas how to extend the results to the (non-
strict) dominant energy condition.

1.2 Connection to positive scalar curvature andmain result

It is a simple observation that if k ≡ 0, then the strict dominant energy condition
for (g, k) reduces to the condition that g has positive scalar curvature. However,
whereas existence of positive scalar curvature metrics imposes a condition on the
manifold, this is not true for the strict dominant energy condition. More precisely,
we will see later that taking any metric g, the pair (g, 1

n τg) satisfies the dominant
energy condition strictly as long as the absolute value of the constant τ ∈ R is large
enough. Moreover, such a τ can be chosen in a way that it continuously depends on the
metric g (in C2-topology). This allows to define a comparison map � : SR+(M) �
R+(M) × [−1, 1] ∪ R(M) × {−1, 1} → I+(M) by (g, t) 
→ (g, 1

n τ(g)tg), where
R(M) is the C∞-space of metrics, R+(M) its subspace of positive scalar curvature
metrics and S denotes the suspension.

One of the main approaches to positive scalar curvature is by index theoretic meth-
ods. Assume that (M, g) is compact, spin, and of dimension n. Then, there is a spinor
bundle �ClM with a right Cln-action, called Cln-linear spinor bundle of M . Its Dirac
operator D commutes with the Cln-action and thus gives rise to a Cln-Fredholm
operator, which has a KO-valued index called α-index α(M). The Schrödinger-
Lichnerowicz formula

D2 = ∇∗∇ + 1

4
scal
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On the space of initial values strictly satisfying...

implies that D is invertible if g has positive scalar curvature and so its index vanishes.
By homotopy invariance of the index, it is independent of g, and so the α-index
provides an obstruction to existence of positive scalar curvature metrics on M if it is
non-zero for some spin structure on M .

In the case when there is a positive scalar curvature metric g0 on M , this invariant
can be refined to a secondary invariant known as index difference that allows to detect
non-trivial homotopy groups in the space of positive scalar curvature metrics. In order
to emphasize that it refines the α-index and to stress its connection with the α-invariant
for diffeomorphisms (cf. [8, eq. (2)]), we will call it α-index difference, or α-difference
for short. It is constructed as follows: As before, the Cln-linear Dirac operator defines
a map assigning to each metric a Cln-Fredholm operator, which is invertible if the
metric is of positive scalar curvature. Then applying the KO-valued index, we obtain
the map

α-diff : πk(R+(M), g0) ∼= πk+1(R(M),R+(M), g0) → KO−n−k−1({∗}).

A similar invariant exists in the case of initial values. For this, the Cln-linear spinor
bundle has to be replaced by the Cln,1-linear hypersurface spinor bundle �ClM . To
define it, we embed M as spacelike hypersurface into a time-oriented spin Lorentzian
manifold (N , g) such that the pair (g, k) arises as induced metric and second fun-
damental form. Then �ClM is the restriction of the Cln,1-linear spinor bundle of N
to M . It turns out that this bundle can be defined intrinsically – without reference to
N – by �ClM = �ClM ⊗Cln Cln,1, i.e. it is given by two copies of �ClM . The
role of the Dirac operator is now played by the Dirac-Witten operator D, which is
Cln,1-linear in our case, and which will be defined in Sect. 3.2 below. There is a
Schrödinger-Lichnerowicz type formula for D

D
2 = ∇∗∇ + 1

2
(ρ − e0 · j�·),

which ensures that D is invertible if (g, k) strictly satisfies the dominant energy con-
dition. With these changes, the same construction as before yields an index difference
for initial values

α-diff : πk(I+(M), (g0, k0)) ∼= πk+1(I(M), I+(M), (g0, k0)) → KO−n−k({∗}),

where (g0, k0) ∈ I+(M). Notice that there is a degree shift in the target compared to
α-diff: This results from the Cln,1-linearity of the Dirac-Witten operator in contrast to
the Cln-linearity of the Dirac operator.

Notation Toavoid clumsynotation,weoftenwriteα-diff(g−1, g1) for theα-difference
applied to the π0-class represented by (S0, 1) → (R+(M), g1), t 
→ gt . Likewise,
we write α-diff((g−1, k−1), (g1, k1)) for the α-difference of the π0-class defined by
(S0, 1) → (I+(M), (g1, k1)), t 
→ (gt , kt ).

Unlike the situation of theα-difference, where theα-index constitutes an interesting
invariant obstructing positive scalar curvature, there is no interesting primary invariant
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associated with the α-difference: The index of the Dirac-Witten operator D is always
zero. This follows for example from the observation that the dominant energy condition
is not obstructed, since, as mentioned above, (g, 1

n τg) ∈ I+(M) for g ∈ R(M) and
suitably large τ ∈ R. The α-difference, however, is an interesting invariant. This is a
consequence of themain theoremof this paper,wherewe compare it to theα-difference
or, in the case of the π0-part, to the α-index.

Main Theorem 1. For g0 ∈ R+(M) and all k ≥ 0, the diagram

πk(R+(M), g0) πk+1(SR+(M), [g0, 0]) πk+1(I+(M), (g0, 0))

KO−n−k−1({∗})
α-diff

Susp �∗

α-diff

commutes.
2. For g0 ∈ R(M),

α-diff

((
g0,−1

n
τ(g0)g0

)
,

(
g0,

1

n
τ(g0)g0

))
= α(M) ∈ KO−n({∗}).

The idea of the proof is the following: For a pair of the form (g, 1
n τ(g)tg), t ∈ R, the

Cln+1-linearDirac-Witten operator is given by D = D⊗Cln Cln,1−τ(g)t L(e0), where
D is the Cln-linear Dirac operator from before and L(e0) is left multiplication with
the future-pointing unit normal on M when M is considered as spacelike hypersurface
of N as above. Now, we observe that the Cln,1-structure of �ClM given by right
multiplication can be extended to aCln+1,1-structure by setting the rightmultiplication
by the additional basis vector as R̃(en+1) := L(e0)a, where a is the even-odd grading
operator. With this Cln+1,1-structure, �ClM corresponds to �ClM under the Morita
equivalence relating Cln- and Cln+1,1-modules. Moreover, under this equivalence
D ⊗Cln Cln,1 is associated to D and, by definition, the index map is invariant under
this correspondence. The second summand can be understood as coming from the Bott
map, which assigns to a Cln+1,1-Fredholm operator F the family of Cln,1-Fredholm
operators [−1, 1] � t 
→ F + t R̃(en+1)a = F + t L(e0). Again, invariance of the
index map under this assignment is a consequence of its definition, but an extra sign
has to be taken into account resulting from the fact that in the definition of the index
map Morita equivalence and Bott map are applied in the reverse order.

As a consequence of the main theorem, every element in πk(R+(M), g0) with
non-trivial α-difference gives rise to a non-zero element in πk+1(I+(M), (g0, 0)).
Such elements have been constructed for example by Hitchin [12], Hanke, Schick and
Steimle [13], Botvinnik, Ebert andRandal-Williams [4] aswell as Crowley, Schick and
Steimle [8] using different techniques. In particular, we obtain the following corollary.

Corollary 1.1 1. If M is a compact spin manifold of dimension n ≥ 6 that admits a
metric of positive scalar curvature, then I+(M) is not contractible.

2. If M is a compact spin manifold of dimension n ≥ 2with α(M) �= 0 (in particular,
M does not carry a positive scalar curvaturemetric), thenI+(M) is not connected.

123



On the space of initial values strictly satisfying...

The structure of the article is as follows. In the first chapter, we review the KO-
valued index map and the construction of the α-difference. Much of this material
is owed to Ebert [9]. The second chapter is devoted to the construction of the α-
difference. To this end, the Cln,1-linear hypersurface spinor bundle and its Dirac-
Witten operator are introduced.Wediscuss theCln,1-linear version of theDirac-Witten
operator in some detail, as it seems not to have been studied before. In the last chapter,
we construct the comparison map, prove the main theorem and discuss some more of
its consequences.

2 The classical˛-index difference

2.1 KO-theory via Fredholm operators

This section is devoted to the KO-valued index map, a map that associates to a family
of Clifford-linear Fredholm operators an element in KO-theory. In its description, we
will stick closely to the framework presented in Ebert [9] that we briefly recall. All
Hilbert spaces are understood as being real and separable. A Cln,k-Hilbert space H
is always Z/2Z-graded. Typically, the Z/2Z-grading is given in terms of a grading
operator ι : H → H , and the Clifford action is determined by a Clifford multiplication
c : Rn,k → End(H), whereRn,k is the pseudo-Euclidean vector spaceRn ⊕Rk with
the standard inner product that is positive definite the first summand and negative
definite on the second one. The convention for the Clifford multiplication is such that
c(v)c(w) + c(w)c(v) = −2〈v,w〉.

If (H , ι, c) is a Cln,k-Hilbert space, then c gives rise to a representation Cln,k →
End(H), which can be decomposed into irreducible ones. (H , ι, c) is called ample, if
it contains each irreducible representation infinitely often. By the structure theory for
real Clifford representations, this just means that H is infinite-dimensional if n−k �≡ 0
mod 4, and amounts to the condition that both the +1- and the −1-eigenspace of the
volume element ωn,k := ιc(e1) · · · c(en+k) are infinite-dimensional if n − k ≡ 0
mod 4.

Definition 2.1 Let (H , ι, c) be an ample Cln,k-Hilbert space. Then a Cln,k- Fredholm
operator F is a (bounded) Fredholm operator on H that is self-adjoint, odd with
respect to ι, Cln,k-linear and, in the case n − k ≡ −1 mod 4, satisfies the additional
condition thatωn,k F ι is neither essentially positive nor essentially negative.We denote
by Fredn,k(H) the space of Cln,k-Fredholm operators with operator norm topology.
Furthermore, wewriteGn,k(H) ⊆ Fredn,k(H) for the subspace of invertible elements.

Note that we have Fredn+1,k(H) ⊆ Fredn,k(H) and Fredn,k+1(H) ⊆ Fredn,k(H):
In the cases n−k = 1, 2 mod 4, this is immediate. If n−k = 0 mod 4, this follows
since the additional generator of the extended Clifford action on the Cln,k-Hilbert
space H anti-commutes with ωn,k . Finally, in case n − k ≡ −1 mod 4, we use that
for a Cln+1,k- or Cln,k+1-linear operator F , the additional generator of the extended
Clifford action anti-commutes with ωn,k F ι.

Remark 2.2 As was pointed out by the referee, ampleness of H and the additional
condition in the case where n − k ≡ −1 mod 4 are only needed to ensure bijectivity
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of the index map discussed below and are not necessary for its existence. For instance,
the inductive extension of the index map from degree n − 1 to degree n does not
require the left hand vertical map in diagram (2) to be an isomorphism. Since in this
article we will not use that the index map is an isomorphism, all discussions about
ampleness and the additional condition are included for the sake of completeness only
(and shifted to a large extent to the appendix).

Example 2.3 The archetypical example of a Cln,0-Fredholm operator is (the bounded
transform of) the Cln-linear Dirac operator on a closed Riemannian spin manifold
(M, g) of dimension n > 0: Let PSpin(n)M → PSO(n)M be a spin structure of M .
The Cln-linear spinor bundle is �ClM := PSpin(n)M ×� Cln , where � : Spin(n) →
End(Cln) is given by left multiplication. Its name derives from the fact that right
multiplication in Cln induces a right Clifford multiplication R : Rn → End(�ClM),
which commutes with the left Clifford multiplication by tangent vectors. Furthermore,
it carries a Z/2Z-grading a induced by Cln → Cln, Rn � v 
→ −v, the even-odd-
grading. The bundle metric induced by themetric onCln that makes the standard basis
(ei1 . . . eil )0≤l≤n+k,1≤i1<···<il≤n+k orthonormal allows to define an L2-scalar product
and the space of L2-sections H := L2(M, �ClM). Both a and R descend to H , turning
(H , a, R) into an ample Cln-Hilbert space. The Cln-linear Dirac operator D, i.e. the
Dirac operator of �ClM w.r.t. the connection induced by the Levi-Civita connection,
can be viewed as unbounded operator on H . By standard results on the analysis of
Dirac operators, its bounded transform F := D√

1+D2 is a Fredholm operator on H ,

and as D is Cln-linear (w.r.t. R) and odd (w.r.t. a), so is F . Thus, F ∈ Fredn,0(H),
whereby the additional condition for n ≡ −1 mod 4 is well-known to be satisfied for
Dirac type operators. In order to be self-contained, we recall this in the appendix. It is
worth noting that the Schrödinger-Lichnerowicz formula implies that F is invertible,

so F ∈ Gn,0(H), if g is a metric of positive scalar curvature.

The following consequence ofKuiper’s theorem is proven in [9]. It is one of themain
ingredients for translating the classical results from [2] into the present framework.

Proposition 2.4 The space Gn,k(H) is contractible for all n, k ≥ 0.

Theorem 2.5 [Index map] If H is an ample Cln,k-Hilbert space, then Fredn,k(H)

represents K O-theory: For compact relative CW-complexes (X ,Y ), there is a natural
(in (X ,Y )) bijection

ind : [(X ,Y ), (Fredn,k(H),Gn,k(H))] −→ KOk−n(X ,Y )

called indexmap. Moreover, ind is invariant under Cln,k-Hilbert space isomorphisms,
i.e. if U : H → H ′ is an isomorphism of Cln,k-Hilbert spaces, then

[(X , Y ), (Fredn,k(H),Gn,k(H))] [(X , Y ), (Fredn,k(H ′),Gn,k(H ′))]

KOk−n(X , Y )

∼=

ind ind

commutes, where the upper map is induced by Fredn,k(H) � F 
→ UFU−1.
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On the space of initial values strictly satisfying...

The index map is constructed inductively, the starting point being the index of a
family of Cl0,0-Fredholm operators, i.e. odd Fredholm operators on a Z/2Z-graded
Hilbert space. Here, the corresponding statement is known as Atiyah-Jänich theorem
(cf. [10, Thm. 2.17] for a detailed derivation from the version in [2]).

The generalization to arbitrary n (but still with k = 0) is provided by the Bott map.

Theorem 2.6 [Bott map, [2, Thm. A(k)]] For compact CW-pairs (X ,Y ), the map
[(X ,Y ), (Fredn+1,k(H),Gn+1,k(H))] −→ [(X , Y ) × (I , ∂ I ), (Fredn,k(H),Gn,k(H))]

[x 
→ Fx ] 
−→ [(x, t) 
→ Fx + tc(e)ι]

is a natural bijection.1 Here, e is the additional basis vector of Rn+1,k compared to
Rn,k and I = [−1, 1].
As (X× I )/(Y × I ∪X×∂ I ) ∼= �red X/Y the right hand isomorphism in the following
diagram exists, and the defintion of the index map can be extended inductively by
requiring that it commutes:

[(X , Y ), (Fredn,0(H),Gn,0(H))] KO−n(X ,Y )

[(X , Y ) × (I , ∂ I ), (Fredn−1,0(H),Gn−1,0(H))] KO−n+1(X × I , X × ∂ I ∪ Y × I ).

ind

∼= ∼=
ind

(2)

The extension to arbitrary k uses periodicity statements in the theory of Cln,k-Hilbert
spaces known as Morita equivalences. One of them states that the categories of Cln,k-
Hilbert spaces and Cln+1,k+1-Hilbert spaces are equivalent. Its construction is the
following: ACln,k-Hilbert space (H , ι, c) defines aCln+1,k+1-Hilbert space structure
on H ⊕ H by

ι̃ =
(

ι 0
0 −ι

)

c̃(v) =
(
c(v) 0
0 −c(v)

)
for all v ∈ Rn+k ⊕ 0

c̃(e) =
(
0 −1
1 0

)

c̃(ε) =
(
0 1
1 0

)
, (3)

where we view Rn+1,k+1 as Rn,k ⊕ Re ⊕ Rε. And a morphism F : H → H ′ of
Cln,k-Hilbert spaces gives rise to a morphism

F̃ =
(
F 0
0 F

)
: H ⊕ H → H ′ ⊕ H ′

of the corresponding Cln+1,k+1-Hilbert spaces. Conversely, for a Cln+1,k+1-Hilbert
space (H , ι, c), the restrictions of the structuremaps to H0 := ker(c(ε)c(e)−1) yield a

1 For two pairs (X , A) and (Y , B), we write (X , A) × (Y , B) := (X × Y , X × B ∪ A × Y ).

123



J. Glöckle

Cln,k-Hilbert space, andmorphisms ofCln+1,k+1-Hilbert spaces restrict tomorphisms
of these Cln,k-Hilbert spaces. These constructions are seen to be mutually inverse up
to natural isomorphism. Another Morita equivalence exists between Cln+4,k-Hilbert
spaces and Cln,k+4-Hilbert spaces. For this, we regard both Rn+4,k and Rn,k+4 as
Rn ⊕ Rk ⊕ span{e1, e2, e3, e4}, where e1, . . . e4 are the last four basis vectors of
Rn+4 or the last four basis vectors of Rk+4, respectively. Given a Cln+4,k-Hilbert
space (H , ι, c), we can define a Cln,k+4-Hilbert space (H , ι, c̃) by c̃|Rn,k = c|Rn,k

and c̃(ei ) = ηc(ei ) for η = c(e1) · · · c(e4). Morphisms are mapped to the morphisms
defined by the same underlying bounded linear maps. The inverse procedure is given
similarly, by assigning to a Cln,k+4-Hilbert space (H , ι, c̃) the Cln+4,k-Hilbert space
(H , ι, c) with c|Rn,k = c̃|Rn,k and c(ei ) = η̃c̃(ei ), where η̃ = c̃(e1) · · · c̃(e4). These
equivalences are accompanied by homeomorphisms between the spaces of Clifford-
linear Fredholm operators.

Proposition 2.7 The Morita equivalences discussed above induce homeomorphisms
of pairs

(Fredn,k(H),Gn,k(H)) −→ (Fredn+1,k+1(H ⊕ H),Gn+1,k+1(H ⊕ H))

F 
−→
(
F 0
0 F

)

and

(Fredn+4,k(H),Gn+4,k(H)) −→ (Fredn,k+4(H),Gn,k+4(H))

F 
−→ F .

In particular, there is a homeomorphism

(Fredn,k(H),Gn,k(H)) −→ (Fredn+8,k(H ⊗ R16),Gn+8,k(H ⊗ R16))

F 
−→ F ⊗ 1R16 .

The index map is then defined inductively for all (n, k) with 0 ≤ k ≤ n by the
requirement that

[(X ,Y ), (Fredn,k(H),Gn,k(H))] KOk−n(X ,Y )

[(X ,Y ), (Fredn−1,k−1(H0),Gn−1,k−1(H0))] KOk−n(X ,Y )

ind

∼=
ind

(4)
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commutes. Lastly, it is extended to the missing (n, k) with 0 ≤ n, k by commutativity
of

[(X ,Y ), (Fredn,k(H),Gn,k(H))] KOk−n(X ,Y )

[(X ,Y ), (Fredn+8,k(H ⊗ R16),Gn+8,k(H ⊗ R16))] KOk−n−8(X ,Y ),

∼=

ind

·x
ind

(5)
where x denotes a generator of KO−8({∗}).
Remark 2.8 The commutativity of (5) does not only hold for n < k (where it is true by
definition), but is also true for k ≤ n provided that the right generator x ∈ KO−8({∗})
is chosen. This follows from the last remark in [2].

Example 2.9 In the setting of Example 2.3, we can define the α-index ofM by α(M) =
ind(F) ∈ KO−n({∗}). This invariant was first defined by Hitchin [12] and is a well-
known obstruction to positive scalar curvature: From the continuity of the assignment
g 
→ Fg discussed in the next section, it follows that α(M) is independent of the
metric on M (in fact, it is even spin-bordism invariant) and so has to vanish for every
spin structure if M carries a positive scalar curvature metric.

2.2 Construction of the˛-index difference

Let M be a compact spin manifold of dimension n > 0 that has a positive scalar
curvaturemetric g0. Theα-indexdifference, also introducedbyHitchin [12], is a family
version of the α-index. More precisely, α-diff : πk(R+(M), g0) → KO−n−k−1({∗})
arises in the following way: As R(M) is contractible, the long exact sequence for
homotopy groups implies πk(R+(M), g0) ∼= πk+1(R(M),R+(M), g0). For each
metric g, the Cln-linear Dirac operator Dg defines a Cln-linear Fredholm operator

Fg = Dg√
1 + D2

g

,

which is invertible if g ∈ R+(M). The assignment g 
→ Fg gives rise to a map
(R(M),R+(M)) → (Fredn,0,Gn,0), which induces a map to πk+1(Fredn,0,Gn,0,

Fg0). Applying the index map from the last section, we obtain an element in
KO−n(Dk+1, Sk) ∼= KO−n−k−1({∗}).

In this outline, however, we glossed over the detail that theCln-linear spinor bundles
and hence the L2-spaces, onwhich theFredholmoperators Fg act, dependon themetric
g. These L2-spaces form a Hilbert bundle over R(M), which, by Kuiper’s theorem,
can be trivialized. Such a trivialization allows to define the map (R(M),R+(M)) →
(Fredn,0,Gn,0). We will make this more explicit: The Cln-linear spinor bundles for
different metrics can be identified using the method of generalized cylinders due to
Bär, Gauduchon and Moroianu [5]. This gives rise to a specific trivialization of the
Hilbert bundle of L2-spaces.
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Let us start with this construction by fixing a topological spin structure on M , i.e.
a double covering

PG̃L
+

(n)
M → PGL+(n)M

over the principal bundle of positively oriented frames of T M . This defines, for any
g ∈ R(M), a spin structure for (M, g) by pullback

PSpin(n)(M, g) PG̃L
+

(n)
M

PSO(n)(M, g) PGL+(n)M,

where PSO(n)(M, g) is the principal bundle of positively oriented orthonormal frames
with respect to g. Moreover, pulling back over the canonical projection M ×[0, 1] →
M , we obtain

PG̃L
+

(n)
M × [0, 1] PG̃L

+
(n)

M

PGL+(n)M × [0, 1] PGL+(n)M

M × [0, 1] M .

This gives rise a topological spin structure PG̃L
+

(n+1)M × [0, 1] → PGL+(n+1)M ×
[0, 1] on M × [0, 1] by extension along the standard embedding

GL+(n) −→ GL+(n + 1)

A 
−→
(
A 0
0 1

)

and its double covering. Now, given a metric g ∈ R(M), we can define a family
of metrics by gt = (1 − t)g0 + tg. Such a family in turn defines the generalized
cylinder (M × [0, 1], gt + dt2), t being the variable in [0, 1]-direction. As above, the
topological spin structure induces a spin structure PSpin(n+1)(M ×[0, 1], gt +dt2) →
PSO(n+1)(M ×[0, 1], gt + dt2) on the generalized cylinder. This has the property that
for all t0 ∈ [0, 1] it restricts to the spin structure of (M, gt0) in the sense that

PSpin(n)(M, gt0) PSpin(n+1)(M × [0, 1], gt + dt2)

PSO(n)(M, gt0) PSO(n+1)(M × [0, 1], gt + dt2)

is a pullback, where the lower map is the inclusion (e1, . . . , en) 
→ (e1, . . . , en,
∂
∂t ).
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On the space of initial values strictly satisfying...

The reasonwhywe do this is that on PSpin(n+1)(M×[0, 1], gt+dt2) the Levi-Civita
connection induces a canonical connection ∇, which provides parallel transports

P∇
γx

: PSpin(n+1)(M × [0, 1], gt + dt2)|(x,0) −→ PSpin(n+1)(M × [0, 1], gt + dt2)|(x,1)

along the curves γx : [0, 1] → M × [0, 1], t 
→ (x, t) for all x ∈ M . These assemble
into an isomorphism of principal bundles

P∇ : PSpin(n+1)(M × [0, 1], gt + dt2)|M×{0}
∼=−→ PSpin(n+1)(M × [0, 1], gt + dt2)|M×{1}.

The fact that ∂
∂t is parallel along the curves γx implies that P∇ restricts to

P∇ : PSpin(n)(M, g0)
∼=−→ PSpin(n)(M, g),

and this induces an isomorphism on the associated Cln-linear spinor bundles

P∇ : �Cl(M, g0)
∼=−→ �Cl(M, g).

[ε̃, φ̃] 
−→ [P∇ ε̃, φ̃]

Furthermore, it is immediate that P∇ is a point-wise isometry with respect to the
standard scalar products 〈−,−〉 defined on the Cln-linear spinor bundles.

We want to promote this to a unitary transformation between the associated L2-
spaces. As the L2-norm also depends on the volume element, we first compare those:
There exists a positive function β ∈ C∞(M) such that dvolg = β dvolg0 . Then√

βP∇ : �Cl(M, g0) → �Cl(M, g) induces a unitary transformation

�g : H := L2(M, �Cl(M, g0))
∼=−→ L2(M, �Cl(M, g))

as

(�g(φ),�g(ψ))L2 =
∫
M

〈√βP∇(φ),
√

βP∇(ψ)〉 dvolg

=
∫
M

〈φ,ψ〉 dvolg0 = (φ,ψ)L2 .

Moreover, it is clear that �g preserves the Z/2Z-grading and the right Clifford mul-
tiplication. The left Clifford multiplication by a vector field X ∈ X(M) satisfies
�g(X · φ) = P∇(X) · �g(φ) for any φ ∈ H , where P∇(X) is the vector field on
M = M × {1} obtained from X by parallel transport along the curves (γx )x∈M in the
cylinder (M × [0, 1], gt + dt2).

It is not surprising that using this identification of the L2-spaces (the bounded
transforms of) the Dirac operators depend continuously on the metric. For a detailed
proof of the following statement see [10, Thm. 2.22].
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Theorem 2.10 The map

(R(M),R+(M)) −→ (Fredn,0(H),Gn,0(H))

g 
−→ �−1
g ◦ Dg√

1 + D2
g

◦ �g

is well-defined and continuous with respect to the C1-topology on the space of smooth
metricsR(M). In particular, it is continuous if R(M) carries the C∞-topology.

Definition 2.11 The map from Theorem 2.10 gives rise to the composition

α-diff : πk(R+(M), g0) ∼= πk+1(R(M),R+(M), g0)

→ πk+1(Fred
n,0(H),Gn,0(H), Fg0)

ind−→ KO−n−k−1({∗})

that we call α-index difference or shortly α-difference.

The α-difference detects non-trivial homotopy groups in the space of metrics of
positive scalar curvature. The following two results of this kind were independently
obtained by different methods:

Theorem 2.12 [Crowley, Schick, Steimle [8]] Let (M, g0) be a compact Riemannian
spin manifold of positive scalar curvature and n = dim(M) ≥ 6. For all k ≥ 0 with
k + n + 1 ≡ 1, 2 mod 8, the α-difference

α-diff : πk(R+(M), g0) −→ KO−n−k−1({∗}) ∼= Z/2Z

is split surjective.

Theorem 2.13 [Botvinnik, Ebert, Randal-Williams [4]] Let (M, g0) be a compact
Riemannian spin manifold of positive scalar curvature and n = dim(M) ≥ 6. For all
k ≥ 0, the α-difference

α-diff : πk(R+(M), g0) −→ KO−n−k−1({∗})

is non-trivial whenever the target is non-zero, that is when k + n + 1 ≡ 0, 1, 2, 4
mod 8.

We will use these results to construct non-trivial homotopy groups in the space of
initial value pairs satisfying the dominant energy condition. The detection of these
groups then uses an index difference for initial values that will be defined in the next
chapter.
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On the space of initial values strictly satisfying...

3 An index difference for initial values

3.1 The Cln,1-linear hypersurface spinor bundle

Throughout this section, (N , g) denotes a space- and time-oriented Lorentzian spin
manifold. We follow the convention that the metric has signature (−,+, . . . ,+), so
that the induced metric g on a spacelike hypersurface M ⊆ N is positive definite.
The future-pointing unit normal on M will be called e0. If ∇ denotes the Levi-Civita
connection of g and ∇ the one of g, the second fundamental form with respect to e0 is
the symmetric 2-tensor k ∈ �(T ∗M ⊗ T ∗M) defined by ∇XY = k(X ,Y )e0 + ∇XY
for all X ,Y ∈ X(M).

We want to study the bundle obtained by restricting the Cln,1-linear spinor bundle
of (N , g) to the hypersurface M ⊆ N . Especially, we want to describe it intrinsically,
only in terms of the pair (g, k) induced on M . This will be of use later, when defining
the α-difference for initial values and comparing it to the α-difference.

The first step is to construct compatible spin structures on M and N . Fixing a spin
structure on (N , g), we obtain a spin structure on (M, g) by pulling back the one from
N :

PSpin(n)(M) PSpin0(n,1)(N )|M

PSO(n)(M) PSO0(n,1)(N )|M .

(5)

Here, the lower map is given by (e1, . . . , en) 
→ (e0, e1, . . . , en), where e0 is the
future-pointing unit normal on M . As the right hand map is a double covering, so
is the left hand one, and it suffices to construct a compatible Spin(n)-action. This,
we obtain by pulling back the action maps. More explicitly, there is a commutative
diagram

PSpin(n)(M) × Spin(n) PSpin0(n,1)(N )|M × Spin0(n, 1)

PSO(n)(M) × SO(n) PSO0(n,1)(N )|M × SO0(n, 1).

(6)

and the desired map is the unique map from its upper-left corner to the upper-left
corner of (5) building, together with the other action maps, a commutative cube out
of (5) and (6). Note, that this commutative cube shows that PSpin(n)(M) is not only a
Spin(n)-reduction of PSO(n)(M) but also a reduction of PSpin0(n,1)(N )|M with respect
to the inclusion i : Spin(n) ↪→ Spin0(n, 1).

Next, we study associated bundles. The Cln,1-linear spinor bundle

�Cl N = PSpin0(n,1)(N ) ×� Cln,1
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is defined via the representation induced by left multiplication on Cln,1:

� : Spin0(n, 1) ↪→ Cln,1 −→ End(Cln,1).

As noted above, PSpin(n)(M) → PSpin0(n,1)(N )|M is a Spin(n)-reduction. Hence, from
the theory of principal bundles (e.g. [3, Satz 2.18]), it follows that

�Cl N|M = PSpin0(n,1)(N )|M ×� Cln,1 ∼= PSpin(n)(M) ×�i Cln,1, (7)

so the bundle �Cl N|M → M only depends on the Riemannian manifold (M, g) and
its chosen spin structure.

Definition 3.1 The bundle �Cl N|M from above is called Cln,1-linear hypersurface
spinor bundle and denoted by �ClM .

Similarly to the case of the Cln-linear spinor bundle, the Cln,1-linear hypersurface
spinor bundle carries a right Clifford multiplication R : Rn,1 → End(�ClM) and
an even-odd grading a : �ClM → �ClM as the corresponding notions for Cln,1
are Spin0(n, 1)-invariant. Despite not being Spin0(n, 1)-invariant, the scalar product
〈−,−〉 on Cln,1 for which the basis2 (ei1ei2 · · · eik )0≤k≤n, 0≤i1<···<ik≤n is orthonormal
can be extended to �ClM : Due to (7), Spin(n)-invariance of 〈−,−〉 is sufficient. This
scalar product gives rise to a space of L2-sections H := L2(M, �ClM), on which R
and a define a Cln,1-Hilbert space structure.

Yet, the trivialization of T N|M by e0 allows us to do better. We immediately obtain
the following result:

Proposition 3.2 Setting

� · en+1 := e0 · a(�)

for all � ∈ �ClM, R extends to a Cln+1,1-multiplication

R̃ : Rn+1,1 → End(�ClM).

that commutes with left multiplication by any X ∈ T M. Moreover, (H , a, R̃) is an
ample Cln+1,1-Hilbert space.

This Cln+1,1-Hilbert space structure establishes the connection to the space H of
L2-sections of the Cln-linear spinor bundle �ClM .

Proposition 3.3 The Cln+1,1-Hilbert space (H , a, R̃) corresponds to the Cln-Hilbert
space (H , a, R) under the Morita equivalence described in (3).

Proof Via this Morita equivalence, the Cln+1,1-Hilbert space H corresponds to the
Cln,0-Hilbert space H0 = ker(R̃(e0)R̃(en+1) − 1) with the structure obtained by
restriction.

2 For consistency with Lorentzian geometry, the basis vector of the negative definite part ofRn,1 is called
e0 rather than en+1.
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On the space of initial values strictly satisfying...

Let us look at the endomorphism of Rn,1 given by reflection at the hyperplane
orthogonal to the line Re0. Viewing Rn,1 as subset of the Clifford algebra Cln,1, it
may be described as

Rn,1 −→ Rn,1

v 
−→ −e0ve0,

since e0e0 = 1. This reflection now successively induces an endomorphism: First on
the Clifford algebra Cln,1, then by the associate bundle construction on �ClM and
finally on its space of L2-sections H . The obtained endomorphism is R̃(e0)R̃(en+1) =
R(e0)L(e0)a. We are interested in its 1-eigenspace.

On the level ofCln,1, the 1-eigenspace is given byCln ⊆ Cln,1, the subalgebra gen-
erated by the fixed vectors e1, . . . , en , whereas the −1-eigenspace is the complement
R(e0)Cln ⊆ Cln,1. This implies that on the level of spinor bundles

�ClM ⊇ ker(R̃(e0)R̃(en+1) − 1) = PSpin(n)M ×� Cln = �ClM

holds. On the level of L2-sections, we get

H0 = L2(M, ker(R̃(e0)R̃(en+1) − 1)) = L2(M, �ClM) = H

as required. ��
As a consequence of (7), theCln,1-linear hypersurface spinor bundle possesses two

natural connections: On the one hand, the Levi-Civita connection (N , g) induces a
connection ∇ on PSpin0(n,1)N|M and �ClM . On the other hand, as bundle associated
to PSpin(n)M , the bundle �ClM carries a connection ∇ induced by the Levi-Civita
connection of (M, g). They are related by the Weingarten map (also known as shape
operator):

Lemma 3.4 For all X ∈ T M and ψ ∈ �(�ClM)

∇Xψ = ∇Xψ − 1

2
e0 · W (X) · ψ

holds, where W (X) = ∇Xe0 is the Weingarten map.

Proof On the tangent bundle the difference of the connections is given by ∇XY −
∇XY = k(X ,Y )e0. As k(X ,Y ) = −g(∇XY − ∇XY , e0) = −g(∇XY , e0) =
g(Y ,∇Xe0) = g(Y ,W (X)) for all X ,Y ∈ X(M), the Weingarten map W is the
endomorphism associated to the symmetric bilinear form k.

In order to transfer this to the spinor bundle, let ε̃ be a local section of PSpin(n)M ,
and (e1, . . . , en) its projection to PSO(n)M . Abusing notation, we denote by ε̃ also its
image in PSpin0(n,1)N|M , projecting to (e0, e1, . . . , en) ∈ PSO0(n,1)N|M . As the spinor
bundle is associated to these spin principal bundles, we may write a spinor locally as
ψ = [ε̃, ψ̃]. Using the local formula for the spinorial connection (cf. [5, (2.5)]), we
perform the following local calculation:
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∇Xψ − ∇Xψ = [ε̃, ∂X ψ̃] + 1

2

∑
0≤i< j

εi g(∇Xei , e j )ei · e j · ψ

−
⎛
⎝[ε̃, ∂X ψ̃] + 1

2

∑
1≤i< j

g(∇Xei , e j )ei · e j · ψ

⎞
⎠

= 1

2

∑
0< j

(−1)g(∇Xe0, e j )e0 · e j · ψ

= −1

2
e0 · W (X) · ψ,

where εi = g(ei , ei ) ∈ {±1}. ��
By the way a, R and 〈−,−〉 are defined, it is clear that they are ∇-parallel. The

left Clifford multiplication L : T N|M ⊗�ClM → �ClM is ∇-parallel as well, where
∇ is defined on T N|M by viewing it as bundle associated to PSO(n)M via the lower
map of (5). This can be reexpressed by saying that both the restricted left Clifford
multiplication T M ⊗ �ClM → �ClM and the endomorphism �ClM → �ClM
given by left multiplication with e0 are ∇-parallel. As a consequence, the extended
right Clifford multiplication R̃ is ∇-parallel as well.

With respect to the other connection, the following can be said. a, R and L are ∇-
parallel. The scalar product 〈−,−〉, however, in general is not, as it does not originate
from a Spin0(n, 1)-invariant scalar product on Cln,1. Instead, it satisfies the following
formula that follows from ∇-parallelism together with Lemma 3.4:

∂X 〈φ,ψ〉 = 〈∇Xφ,ψ〉 + 〈φ,∇Xψ〉 + 〈e0 · W (X) · φ,ψ〉.

3.2 Cln,1-linear Dirac-Witten operator and index difference for initial values

As in the previous section, let M be a spacelike hypersurface of a space- and time-
oriented Lorentzian spinmanifold (N , g). TheDirac-Witten operator is a kind ofDirac
operator on the hypersurface spinor bundle. In the case of classical spinor bundles,
it was first defined by Witten [19] in order to give his spinorial proof of the positive
mass theorem (cf. [16] for a rigorous formulation of the proof) and later studied in
more detail by Hijazi and Zhang [14]. We are interested in its Cln,1-linear version and
use it to define a kind of index difference for initial values. Furthermore, we compare
it to the Cln,1-linear Dirac operator, which will be of later use.

Definition 3.5 The composition

D : �(�ClM)
∇−→ �(T ∗M ⊗ �ClM)

�⊗1−→ �(T M ⊗ �ClM)
L−→ �(�ClM),

where L is the left Clifford multiplication, defines theCln,1-linear Dirac-Witten oper-
ator. The composition (with ∇ replaced by ∇)

D : �(�ClM)
∇−→ �(T ∗M ⊗ �ClM)

�⊗1−→ �(T M ⊗ �ClM)
L−→ �(�ClM)
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On the space of initial values strictly satisfying...

is the Cln,1-linear Dirac operator.

The following lemma justifies the names of these operators. It is a direct conse-
quence of the parallelism discussion at the end of the last section.

Lemma 3.6 D and D are both Cln,1-linear with respect to the right Clifford multipli-
cation R and odd with respect to a. Furthermore, D is Cln+1,1-linear with respect to
the extended right Clifford multiplication R̃.

Lemma 3.7 D = D − 1
2τ L(e0) holds, where τ = trW = tr k is the mean curvature

of M in N. Both D and D are formally self-adjoint.

Proof For ψ ∈ �(�ClM) and a local orthonormal frame e1, . . . , en we perform the
following local calculation applying Lemma 3.4:

Dψ − Dψ =
n∑

i=1

ei · (∇ei − ∇ei )ψ

= −1

2

n∑
i=1

ei · e0 · W (ei ) · ψ

= −1

2

n∑
i, j=1

g(W (ei ), e j )ei · e j · e0 · ψ

= −1

2

n∑
i=1

g(W (ei ), ei )e0 · ψ.

Here, we used that g(W (ei ), e j ) = k(ei , e j ) is symmetric in i and j .
The hypersurface spinor bundle �ClM together with the connection ∇, the (left)

Clifford multiplication by T M and scalar product 〈−,−〉 forms a Clifford bundle,
since these structures are compatible as mentioned in the end of the last subsection.
Since D is the Dirac operator associated to this Clifford bundle, it is formally self-
adjoint (cf. [17, Prop. 3.11]). As left multiplication with e0 is self-adjoint as well, the
same holds true for D. ��

The utility of the Dirac-Witten operator to general relativity results from following
observation due toWitten [19, eqs. (24)–(34)]. The proof (cf. also [16, Sec. 3]) verbatim
applies to the Cln,1-linear version considered here.

Proposition 3.8 The Dirac-Witten operator satisfies the Schrödinger-Lichnerowicz
type formula

D
2 = ∇∗∇ + 1

2
(ρ − e0 · j�·),

with

2ρ = scal+τ 2 − ‖k‖2
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j = −dτ + div k.

The Dirac-Witten operator D is elliptic, in fact it has the same principal symbol
as the Dirac operator D. So it possesses good functional analytic properties, some of
which we will state below. From now on, we assume that M is compact.

Corollary 3.9 If the pair (g, k) satisfies the strict dominant energy condition, i.e. if
ρ > ‖ j‖, then D has zero kernel.

Proof For any smooth section ψ ∈ �(�ClM) with ψ �≡ 0

‖Dψ‖2L2 = (ψ, DDψ) = ‖∇ψ‖2L2 + 1

2
(ψ, ρψ) − 1

2
(ψ, e0 · j� · ψ)

≥ 1

2
(ψ, ρψ) − 1

2
(ψ, ‖ j‖ψ) = 1

2
(ψ, (ρ − ‖ j‖)ψ) > 0

holds as |〈ψ, e0 · j� · ψ〉| ≤ ‖ j‖‖ψ‖2. Here, ‖ − ‖ (without subscript L2) denotes the
pointwise norm. The claim follows, since the kernel of the elliptic differential operator
D consists of smooth sections, see also Proposition 3.10 below. ��
Proposition 3.10 D and D extend to densely defined self-adjoint operators

D, D : L2(M, �ClM) ⊇ H1(M, �ClM) → L2(M, �ClM)

admitting a spectral decomposition with discrete spectrum and finite dimensional
eigenspaces consisting of smooth sections.

Proof This is true for any formally self-adjoint elliptic differential operator of order
one, for example cf. [15, Thm. III.5.2 and Thm. III.5.8]. ��
Corollary 3.11 If n = dim(M) > 0 and H := L2(M, �ClM), then there are well-
defined elements

F := D√
1 + D

2
∈ Fredn,1(H)

and

F := D√
1 + D2

∈ Fredn+1,1(H) ⊆ Fredn,1(H).

Furthermore, F is invertible if (g, k) satisfies the strict dominant energy condition
and F is invertible if g has positive scalar curvature.

Proof H is ample as Cln+1,1-Hilbert space, so it is ample as Cln,1-Hilbert space with
the restricted Clifford action as well. As D is odd and Cln,1-linear, so is F . From
Proposition 3.10 above, we conclude that F is a Fredholm operator. The additional
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condition in the case n − 1 ≡ −1 mod 4 is again a consequence of the discussion
of the spectral asymptotics in the appendix. Invertibility for (g, k) satisfying the strict
dominant energy condition follows from Corollary 3.9 and coker F = ker F . The
argumentation for F is completely analogous. Invertibility here uses the classical
Schrödinger-Lichnerowicz formula. ��

If the mean curvature τ is constant, we can relate the spectral decompositions of D
and D and refine the invertibility result.

Proposition 3.12 The spectral decomposition of D can be written as

D =
∞∑
k=0

λkπEk +
∞∑
k=0

(−λk)πa(Ek)

where all λk > 0 are pairwise disjoint and πEk and πa(Ek ) are the orthogonal pro-
jections on the finite dimensional subspaces Ek and a(Ek), respectively. If the mean
curvature τ is constant, then there are decompositions Fk ⊕ a(Fk) = Ek ⊕ a(Ek) for
all k ≥ 0 and K ⊕ a(K ) = ker D such that the spectral decomposition of D is given
by

D =
∞∑
k=0

√
λ2k + 1

4
τ 2 πFk +

∞∑
k=0

(
−

√
λ2k + 1

4
τ 2

)
πa(Fk) + 1

2
τπk − 1

2
τπa(K )

In particular, D is invertible for all constants τ �= 0.

Proof As a anti-commutes with D, for any eigenvector φ to the eigenvalue λ

Da(φ) = −a(Dφ) = −a(λφ) = −λa(φ).

So a(φ) is an eigenvector to the eigenvalue −λ. This implies that the spectral decom-
position can be written in the stated form. With the same argument, we observe that
the spectral decomposition of D to be of that form.

R̃ commuteswith D, so the eigenspaces are invariant under R̃(v) for all v ∈ Rn+1,1.
In particular,

a(Ek) = R̃(en+1)a(Ek) = L(e0)(Ek)

for all k ≥ 0. Thus we can identify Ek with a(Ek) via the map Ek → a(Ek), φ 
→
L(e0)(φ) and get Ek ⊕ a(Ek) ∼= Ek ⊕ Ek ∼= Ek ⊗ R2. Under this identification, by
Lemma 3.7, the restriction of the Dirac-Witten operator corresponds to

1Ek ⊗
(

λk − 1
2τ− 1

2τ −λk

)
.
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The characteristic polynomial of the 2×2-matrix is x2−λ2k− 1
4τ

2, so it is diagonalizable

with eigenvalues ±
√

λ2k + 1
4τ

2. This gives rise to a diagonalization of D|Ek⊕aEk with
the same eigenvalues, and we call the positive eigenspace Fk .

Now, we turn our attention to ker D. As L(e0) = R̃(en+1)a anti-commutes with D,
L(e0) operates on ker D. This operation is self-adjoint and squares to 1ker D , so by the
spectral theorem L(e0)| ker D is diagonalizable and its eigenvalues must be contained
in {1,−1}. Let K be the −1-eigenspace. Then a(K ) is the 1-eigenspace. Due to

D| ker D = −1

2
τ L(e0)| ker D,

K and a(K ) become the 1
2τ - and − 1

2τ -eigenspaces of D, respectively. ��
Remark 3.13 That D is invertible for constant mean curvature τ �= 0, can also be seen
directly from the fact that D anti-commutes with L(e0): As L(e0)2 = 1,

D
2 =

(
D − 1

2
τ L(e0)

)2

= D2 + 1

4
τ 2 1

and so coker D = ker D = 0.

In the remainder of this section, we want to use the Cln,1-linear Dirac-Witten
operator to define an index difference for initial values. For this, let M be compact,
spin and of dimension n > 0. We need no longer assume that it is embedded into a
manifold N , as we succeeded in expressing all the relevant structures in terms of M
and the pair (g, k). In fact, the Cln,1-linear hypersurface spinor bundle �Cl(M, g) ∼=
�Cl(M, g) ⊗Cln Cln,1 depends on the metric g alone, whereas its connection ∇ and
thus its Cln,1-linear Dirac-Witten operator D is affected by k as well.

In analogy to the case of the α-difference, we need to compare the spaces of L2-
sections of the hypersurface spinor bundles for different initial value pairs (g, k).
Adopting the notation from Section 2.2, there is a bundle map

√
βP∇ ⊗ 1Cln,1 : �Cl(M, g0) ⊗Cln Cln,1 → �Cl(M, g) ⊗Cln Cln,1,

which induces

�g : H := L2(M, �Cl(M, g0))
∼=−→ L2(M, �Cl(M, g)).

This allows to produce a continuous map from initial values to the space of Fredholm
operators.

Theorem 3.14 [cf. [10, Thm. 3.19]] The map

(I(M), I+(M)) −→ (Fredn,1(H),Gn,1(H))

(g, k) 
−→ �
−1
g ◦ D(g,k)√

1 + D
2
(g,k)

◦ �g
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is well-defined and continuous with respect to the C1-topology on the space of smooth
initial value pairs I(M). In particular, it is continuous if I(M) carries the C∞-
topology.

Definition 3.15 The α-difference is defined by the composition

α-diff : πk(I+(M), (g0, k0)) ∼= πk+1(I(M),I+(M), (g0, k0))

→ πk+1(Fred
n,1(H),Gn,1(H), Fg0,k0 )

ind−→ KOn−k({∗}),

where the middle map is the one from Theorem 3.14.

In the next chapter, α-diff will be compared to the α-difference. The first step will
be to establish a comparison map between the space of metrics of positive scalar
curvature and the space of initial value pairs satisfying the dominant energy condition
strictly.

4 Comparing the index differences

4.1 Positive scalar curvature and initial values

In the following, M is a compact smooth manifold of dimension n ≥ 2. The aim of
this section is to construct a continuous map � : SR+(M) −→ I+(M), which will
be used later to relate the index differences.

Lemma 4.1 For every C > 0, the function

τ : R(M) −→ R

g 
−→
√

n

n − 1
max{0, sup

x∈M
− scalg(x)} + C

is continuous.

Proposition 4.2 For any C > 0, the following is a well-defined continuous map of
pairs:

φ : (R(M),R+(M)) × (I , ∂ I ) −→ (I(M), I+(M))

(g, t) 
−→
(
g,

τ (g)

n
tg

)
.

Moreover, its homotopy class [φ] ∈ [(R(M),R+(M)) × (I , ∂ I ) , (I(M), I+(M))]
is independent of C > 0.

Proof Continuity directly follows from the lemma above. Moreover, varying the
parameter C > 0 defines a continuous homotopy between different such maps. Thus,
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it only remains to prove that R(M) × ∂ I ∪ R+(M) × I is mapped into I+(M). To
this aim, we first observe that for a pair of the form (g, τ

n g) with τ ∈ R

2ρ = scal+n − 1

n
τ 2

j = 1 − n

n
grad τ = 0

holds. Hence, such a pair fulfills the strict dominant energy condition if and only if

τ 2 > − n

n − 1
scal .

But by definition of the function τ , this is the case for
(
g,± τ(g)

n g
)
, which shows that

R(M) × ∂ I maps into I+(M). Moreover, the condition is automatically satisfied if g
has positive scalar curvature, soR+(M) × I is sent to I+(M) as well. ��
Proposition 4.3 LetC > 0 and h ∈ R(M)aRiemannianmetric. Then the composition

� : SR+(M) −→ R(M) × ∂ I ∪ R+(M) × I
φ−→ I+(M),

where the first map is given by

[g, t] 
−→

⎧⎪⎨
⎪⎩

((−2t − 1)h + 2(1 + t)g,−1) t ∈ [−1,− 1
2 ]

(g, 2t) t ∈ [− 1
2 ,

1
2 ]

((2t − 1)h + 2(1 − t)g, 1) t ∈ [ 12 , 1],

is a well-defined, continuous map. Its homotopy class is independent of C > 0 and
h ∈ R(M).

Proof By the previous proposition, we just need to study the first map: Plugging
in t = ± 1

2 , we see that the different definitions agree on the intersections, and for
the special values t = ±1 we observe that the result is independent of g, i.e. the
map descends to the suspension. This shows well-definedness. Continuity can now
be checked on each domain of definition, where it is obvious. Moreover, this map
continuously depends on h ∈ R(M), so by connectedness of R(M), its homotopy
class is independent of h. ��
Corollary 4.4 The inclusion R+(M) → I+(M), g 
→ (g, 0) is null-homotopic. In
particular, if there exists a metric g0 ∈ R+(M), the induced map on homotopy groups
πk(R+(M), g0) → πk(I+(M), (g0, 0)) is the zero-map for all k.

Proof Using the map defined above, we get a factorization of the inclusion map as
follows

R+(M) ↪→ C R+(M) ↪→ SR+(M)
�−→ I+(M),
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where the first two maps are the canonical inclusions of a space into the its cone and of
the cone into the suspension as upper half. As cones are contractible, the composition
is null-homotopic. ��

This shows that we cannot find non-trivial elements of homotopy groups in the
space initial data with strict dominant energy condition by simply considering the
space of positive scalar curvature metrics as subspace. However, the map � defined
above allows for a better construction: In the remaining section, we will show that
under certain conditions the composition

πk(R+(M), g0)
Susp−→ πk+1(SR+(M), [g0, 0]) �∗−→ πk+1(I+(M), (g0, 0))

has non-trivial image.

4.2 Main theorem

Let M be a compact spin manifold of dimension n ≥ 2. The aim of this sec-
tion is to relate the α-difference for initial values α-diff : πk(I+(M), (g0, 0)) →
KO−n−k({∗}), where g0 is a metric of positive scalar curvature, to the classical α-
difference using the map from Proposition 4.3. This will lead to a non-triviality result
for πk(I+(M), (g0, 0)). Moreover, the same argument shows that the α-difference
detects that I+(M) has least two connected components if α(M) �= 0.

Theorem 4.5 [Main Theorem]

1. If M carries a metric g0 of positive scalar curvature, then for all k ≥ 0, the
diagram

πk(R+(M), g0) πk+1(SR+(M), [g0, 0]) πk+1(I+(M), (g0, 0))

KO−n−k−1({∗})
α-diff

Susp �∗

α-diff

commutes. Here, Susp is the suspension homomorphism and � is the map from
Proposition 4.3.

2. For any metric g0,

α-diff

((
g0,−1

n
τ(g0)g0

)
,

(
g0,

1

n
τ(g0)g0

))
= α(M) ∈ KO−n({∗}),

where τ is defined as in Lemma 4.1.

123



J. Glöckle

Proof For the first part, we start by exploring the effect of the upper composition. The
claim is that

πk(R+(M), g0) πk+1(SR+(M), [g0, 0]) πk+1(I+(M), (g0, 0))

πk+1(R(M),R+(M), g0) πk+2(I(M), I+(M), (g0, 0))

[(Dk+1, Sk), (R(M),R+(M))] [(Dk+1, Sk) × (I , ∂ I ), (I(M), I+(M))]

Susp �∗

∼=
φ∗

∼=

φ∗

(8)

commutes, where the middle and the lower map are both induced by

φ : (R(M),R+(M)) × (I , ∂ I ) −→ (I(M), I+(M))

(g, t) 
−→
(
g,

τ (g)

n
tg

)
.

Note that φ preserves the base point, if the base point of (Dk+1, Sk)×(I , ∂ I ) is chosen
to be (∗, 0) when ∗ is the base point of Sk , so the middle map is well-defined. The
lower square obviously commutes. For the upper square, we start with a class [g] ∈
πk(R+(M), g0). Then the preimage under the boundary isomorphism is represented
by

g̃ : (Dk+1, Sk, ∗) −→ (R(M),R+(M), g0)

r x 
−→ (1 − r)g0 + rg(x)

for r ∈ [0, 1] and x ∈ Sk . Applying the horizontal map and restricting to the boundary
yields the class of

(∂(Dk+1 × I ), (∗, 0)) −→ (I+(M), (g0, 0))

(x, t) 
−→
(
g̃(x),−τ(g̃(x))

n
t g̃(x)

)
.

Using the homeomorphism

(S(Sk), [∗, 0]) ∼= (∂(Dk+1 × I ), (∗, 0))

[x, t] 
→

⎧⎪⎨
⎪⎩

(2(1 + t)x,−1) t ∈ [−1,− 1
2 ]

(x, 2t) t ∈ [− 1
2 ,

1
2 ]

(2(1 − t)x, 1) t ∈ [ 12 , 1],

this precisely gives the formula for � ◦ Sg (cf. Proposition 4.3).
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The core of the proof is showing that the following diagram commutes:

[(Dk+1, Sk), (R(M),R+(M))] [(Dk+1, Sk)×(I , ∂ I ), (I(M),I+(M))]

[(Dk+1, Sk), (Fredn,0(H),Gn,0(H))] [(Dk+1, Sk)×(I , ∂ I ), (Fredn,1(H),Gn,1(H))]

[(Dk+1, Sk), (Fredn+1,1(H),Gn+1,1(H))].

φ∗

∼= ∼=

(9)

Here, the first lower map is associated to the Morita equivalence between Cln,0- and
Cln+1,1-Hilbert spaces, that is the first map in Proposition 2.7. This uses that H and H
correspond to each other under this Morita equivalence according to Proposition 3.3.
The second lower map is the Bott map (cf. Theorem 2.6), associated to e = −en+1.

Before doing so, let us show that

[(Dk+1, Sk)×(I , ∂ I ), (Fredn,1(H),Gn,1(H))]

[(Dk+1, Sk), (Fredn+1,1(H),Gn+1,1(H))]

[(Dk+1, Sk), (Fredn,0(H),Gn,0(H))] [(Dk+1, Sk)×(I , ∂ I ), (Fredn,1(H),Gn,1(H))]

[(Dk+1, Sk)×(I , ∂ I ), (Fredn−1,0(H),Gn−1,0(H))]

KO−n(Dk+1, Sk) KO−n+1((Dk+1, Sk)×(I , ∂ I ))

KO−n−k−1({∗})

∼=

∼=

∼=∼=

∼=

ind

∼=
∼=

ind

∼=

∼=
ind

∼=

∼=

∼=

(10)

commutes. Here the central diamond is formed by the Bott maps associated to e = en
as well as maps induced by Morita equivalences. The topmost right hand map is
induced by aCln,1-Hilbert space isomorphism to be defined later. Notice that the right
hand vertical composition is the index map, which follows from the invariance of the
indexmap underCln,1-Hilbert space isomorphisms. So stitching the diagrams (8)-(10)
together, we obtain the diagram from the first claim.

Moreover, setting k = −1, the commutative diagram composed of (9) and (10)
implies the second assertion. Then (Dk+1, Sk) = ({∗}, ∅) and the upper left corner of
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the diagram is the one-point set [{∗},R(M)]. Now the left hand vertical composition
maps this point to the α-index of M , whereas the composition through the upper right
corner is seen to map it to the α-difference of the π0-class from the claim.

The lower half of (10) commutes by the definition of the index map, cf. (2) and (4).
The middle diamond commutes as well, this is obvious from the way its constituting
maps are defined. We are left with the upper triangle. Note first that we are dealing
with two different Cln,1-Hilbert space structures on H : Since the map from the center
upwards is the Bott map for e = −en+1, the Cln,1-structure is the one obtained
by forgetting the R̃(en+1)-action, whereas in the lower Hilbert space, we forget the
multiplication by en . These are connected by the Cln,1-Hilbert space isomorphism

U : H −→ H

φ 
→ 1√
2
R̃(en+1)R̃(en + en+1).

Indeed, a ∈ B(H) corresponds via U to a = UaU−1, R̃(ei ) to R̃(ei ) for i < n
and R̃(en) to R̃(en+1). The right hand map in the triangle is defined to be the map
induced by Fredn,1(H) � F 
→ UFU−1. As the analogous map on Fredn+1,1(H) is
the identity, the diagram relating the Bott maps gets the shape of a triangle rather than
a square. Its commutativity follows from

U R̃(−en+1)U
−1 = 1

2
R̃(en+1)R̃(en + en+1)R̃(−en+1)R̃(en + en+1)R̃(en+1)

= 1

2
(R̃(en+1) + R̃(en) + R̃(en) − R̃(en+1)) = R̃(en).

It only remains prove that (9) commutes. The first two maps of the lower compo-
sition map [g] ∈ [(Dk+1, Sk), (R(M),R+(M))] to the class of

(Dk+1, Sk) −→ (Fredn+1,1(H),Gn+1,1(H))

x 
−→ �−1
g(x)

Dg(x)√
1 + D2

g(x)

�g(x).

This is because it restricts to the correctmap on H = ker(R̃(e0)R̃(en+1)−1) ⊆ H , i.e.
the Cln-Hilbert space associated to H via the Morita equivalence (3). The remaining
map sends it to the class of

(Dk+1, Sk) × (I , ∂ I ) −→ (Fredn,1(H),Gn,1(H))

(x, t) 
−→ �−1
g(x)

Dg(x)√
1 + D2

g(x)

�g(x) − t R̃(en+1)a

= �−1
g(x)

⎛
⎝ Dg(x)√

1 + D2
g(x)

− t L(e0)

⎞
⎠ �g(x).
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In contrast, the result of the upper composition is represented by

(Dk+1, Sk) × (I , ∂ I ) −→ (Fredn,1(H),Gn,1(H))

(x, t) 
−→ �−1
g(x)

D(g(x),k(x,t))√
1 + D

2
(g(x),k(x,t))

�g(x)

with k(x, t) = τ(g(x))
n tg(x).

Remembering that D(g,k) = Dg − 1
2τ L(e0), these do not look too much different,

and we show that the following is a well-defined homotopy between them:

(Dk+1, Sk)×(I , ∂ I )×[0, 1] → (Fredn,1(H),Gn,1(H))

(x, t, s) 
→ �−1
g(x)

(
a(x,t,s)(Dg(x))Dg(x)

−b(x,t,s)(Dg(x))t L(e0)
)
�g(x)

for

a(x,t,s)(λ) = s√
1 + λ2

+ 1 − s√
1 + λ2 + 1

4 t
2τ(g(x))

b(x,t,s)(λ) = s + (1 − s) 12τ(g(x))√
1 + λ2 + 1

4 t
2τ(g(x))

.

As this operator family is obtained by linearly interpolating between two continuous
operator families, it is again continuous. So it remains to see that its target is indeed
(Fredn,1(H),Gn,1(H)). It is clear, that all the operators are bounded, self-adjoint, odd
and Cln,1-linear. To show that the operator F(x,t,s) associated to (x, t, s) is Fredholm,
we use the spectral decomposition of Dg(x) from Proposition 3.12: The restriction of
F(x,t,s) to Ek ⊕ a(Ek) ∼= Ek ⊗ R2 is given by

1Ek ⊗
(
a(x,t,s)(λk)λk −b(x,t,s)(λk)t
−b(x,t,s)(λk)t −a(x,t,s)(λk)λk

)
.

This is diagonalizable with eigenvalues±
√
a(x,t,s)(λk)2λ

2
k + b(x,t,s)(λk)2t2. Note that

due to
√
a(x,t,s)(λk)2λ

2
k + b(x,t,s)(λk)2t2 ≥ a(x,t,s)(λk)|λk |, their absolute values, for

any t ∈ I and s ∈ [0, 1], are bounded away from zero by

λ0√
1 + λ20 + 1

4τ(g(x))
> 0,

where λ0 > 0 denotes the smallest positive eigenvalue of Dg(x). A similar considera-
tion as in Proposition 3.12 shows that F(x,t,s) restricted to ker(Dg(x)) is diagonalizable
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as well, with eigenvalues ±b(x,t,s)(0)t . Putting this together, we find that F(x,t,s) has
finite dimensional kernel, co-kernel and closed image (for this, the boundedness away
from zero is needed). Furthermore, F(x,t,s) is invertible if Dg(x) is invertible or t > 0,
one of which is the case on ∂(Dk+1 × I ).

In the case n−1 ≡ −1 mod 4 one more tiny bit of thought is necessary. The space
self-adjoint Cln,1-linear Fredholm operators has three components (cf. [2]): Those F
for which ωn,1F ι is essentially positive, those for which it is essentially negative and
the rest. As for s = 0 (or s = 1) all operators F(x,t,s) fall into the last category, the
same has to be true for all s ∈ [0, 1] by continuity. ��

4.3 Corollaries and examples

In this final section, we explore some of the consequences of the main theorem (Theo-
rem4.5).We start by combining the first part of themain theoremwith the non-triviality
results for the α-difference from Theorems 2.12 and 2.13. This gives the following
conclusions:

Corollary 4.6 If M is a closed spin manifold of dimension n ≥ 6 that carries a metric
g0 of positive scalar curvature, then for all k ≥ 1 with k + n ≡ 1, 2 mod 8 the α-
difference for initial values α-diff : πk(I+(M), (g0, 0)) → KO−n−k({∗}) ∼= Z/2Z
is split surjective.

Corollary 4.7 If M is a closed spin manifold of dimension n ≥ 6 that carries a metric
g0 of positive scalar curvature, then for all k ≥ 1 the α-difference for initial values
α-diff : πk(I+(M), (g0, 0)) → KO−n−k({∗}) is non-trivial whenever the target is
non-zero, that is when k + n ≡ 0, 1, 2, 4 mod 8.

In particular, under the assumptions of the corollaries above,πk(I+(M), (g0, 0)) �= 0,
which shows the first part of Corollary 1.1. Note that the main theorem provides an
explicit construction of the non-trivial elements, provided that in πk−1(R+(M), g0)
the non-trivial elements detected by the α-difference are known.

Particularly much is known about connected components of the space of positive
scalar curvature metrics. If there are several components of R+(M) that can be dis-
tinguished by their α-index difference, the main theorem provides us with non-trivial
loops in I+(M).

Example 4.8 As explained in [15, Ex. IV.7.5], there is a sequence of positive scalar
curvature metrics gk ∈ R+(S7), k ∈ Z, on the (standard) 7-sphere with the following
property: If Vk → S4 is the real vector bundlewith Euler numberχ = 1 and Pontrjagin
number p1 = 4+ 896k, then, after identifying its sphere bundle ∂D(Vk) with S7, the
metric gk extends to a positive scalar curvature metric ĝk on the disk bundle D(Vk)
collared along the boundary. All these metrics gk lie in different path components
of R+(S7). More precisely, α-diff(gk, gl) = l − k. This can be seen as follows:
According to the main result of [9], α-diff(gk, gl) is equal to the index of the Cl8-
linear Dirac operator on S7 × R equipped with a metric of the form ĥ = ht + dt2,
where ht = gk for t ≤ −1 and ht = gl for t ≥ 1. Under complexification and Bott
periodicity KO−8({∗}) ∼= K−8({∗}) ∼= K 0({∗}) ∼= Z, this corresponds to the index of
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the classical Dirac operator on (S7 ×R, ĥ). We compute this using the cut-and-paste
version version of relative index theorem (cf. [7, Thm. 1.2]). We take the double of
(D(Vk), ĝk) and cut it along the former boundary ∂D(Vk). We also cut (S7 × R, ĥ)

along S7×{−1}. Then, using the identification S7 ∼= ∂D(Vk), we glue them together in
the other way that respects the boundary orientations. For the indices of the associated
Dirac operators, we obtain:

index(S7 × R, ĥ) = − index(D(Vk) ∪ (−D(Vk)), ĝk ∪ ĝk)

+ index((S7 × (−∞,−1]) ∪ (−D(Vk)), ĥ ∪ ĝk)

+ index(D(Vk) ∪ (S7 × [−1,∞)), ĝk ∪ ĥ).

Here, the two first indices vanish since the metric has positive scalar curvature. Pro-
ceeding similarly at S7 × {1}, we get

index(S7 × R, ĥ) = index(D(Vk) ∪ (S7 × [−1,∞)), ĝk ∪ ĥ)

= index(D(Vk) ∪ (S7 × [−1, 1]) ∪ (−D(Vl)), ĝk ∪ ĥ ∪ ĝl).

The latter is of course equal to Â(D(Vk)∪(−D(Vl))). Using cut-and-paste oncemore,
the claimed equality with k − l reduces to the statement Â(D(Vk) ∪ D8) = k from
[15, Ex. IV.7.5].

Now, the suspension construction from Section 4.1 produces an element in
π1(I+(S7)) out of the π0-class defined by gk and gl . If k �= l, the main theorem
shows that its α-difference is k − l �= 0, hence it is non-trivial. Tracking through the
definitions, it is represented by a loop that is concatenated from the following four seg-
ments: In the first segment the initial value pairs are all of the form (g, 1

n τ(g)g) and the
metric g interpolates between gl and gk . The second segment is a linear interpolation

between (gk,
1
n τ(gk)gk) and (gk,− 1

n τ(gk)gk). In particular, the first component of the

initial value pair is fixed throughout the second segment. The third piece consists of ini-
tial value pairs (g,− 1

n τ(g)g), where g runs from gk to gl . The final segment is again
an interpolation within the second component only, running from (gl ,− 1

n τ(gl)gl)
to (gl ,

1
n τ(gl)gl). We have thus found a rather explicit infinite family of non-trivial

elements in π1(I+(S7)).

Concerning path components of I+(M), we can say the following. It is easy to
see that all pairs (g, 1

n τ(g)g), g ∈ R(M), lie in the same path component of I+(M).
The same is true for all pairs of the form (g,− 1

n τ(g)g). If M carries a positive scalar
curvature metric, then the components of (g, 1

n τ(g)g) and (g,− 1
n τ(g)g) are actually

the same. If on the other hand α(M) �= 0 (and hence M does not admit positive scalar
curvature), the second part of the main theorem shows that these belong to different
path component as theirα-difference is non-zero. This immediately implies the second
part of Corollary 1.1. It is the purpose of the follow-up work [11] to show that we
can still distinguish these two path components if M does not carry a positive scalar
curvature metric due to the (also index-theoretic) enlargeability obstruction. In special
cases, we may be able to distinguish more components.
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Example 4.9 Consider the connected sum M = K3#K3, which we decompose into
(K3 \ D4) ∪ (S3 × [−L, L]) ∪ (K3 \ D4), L > 0. Choose a metric g on M that
is symmetric under the involution σ switching the two K3-surfaces and reflecting
the [−L, L]-component of the connecting neck. We assume moreover that g is the
standard product metric on the neck S3×[−L, L]. Observe that we can make the neck
longer, i. e. L larger, without changing τ(g). Since α(M) = 2α(K3) �= 0, we already

know that (g,− 1
n τ(g)g) and (g, 1

n τ(g)g) lie in different path components.

We now consider the following initial value pair (g, k). On the left K3 \ D4, it is
given by (g,− 1

n τ(g)g). On the right K3 \ D4, it is (g, 1
n τ(g)g). Along the neck, we

take (g, t
nL τ(g)g) at (x, t) ∈ S3 × [−L, L]. By the definition of τ , the so obtained

initial value pair satisfies the strict dominant energy condition along the two K3-parts.
Since the metric on S3 × [−L, L] has positive scalar curvature, the estimate

ρ − ‖ j‖ ≥ scalg −n − 1

nL
τ(g)

shows that this initial value pair also satisfies the strict dominant energy condition in
the neck region as long as L is chosen to be large enough. Thus we have constructed
an element (g, k) ∈ I+(M) and we claim that it is part of neither of two components
mentioned before. Assume that there were a path t 
→ (gt , kt ) in I+(M) connecting
(g, k) to (g, 1

n τ(g)g), say. Then (σ ∗gt ,−σ ∗kt )would be a path in I+(M) connecting
it also with (g,− 1

n τ(g)g), contradiction.
It might be worth noting that the component of the pair (g, k) constructed above

may be detected by the α-difference. Namely, it is not hard to see that it is additive in
the sense

α-diff

((
g, − 1

n
τ(g)g

)
, (g, k)

)
+ α-diff

(
(g, k),

(
g,

1

n
τ(g)g

))

= α-diff

((
g, − 1

n
τ(g)g

)
,

(
g,

1

n
τ(g)g

))
= 2α(K3).

Moreover, replacing the endomorphism L(e0) by −L(e0) the Dirac-Witten opera-
tors defining α-diff((g,− 1

n τ(g)g), (g,−k)) turn on the nose into the Dirac-Witten
operators defining α-diff((g, 1

n τ(g)g), (g, k)). Hence,

α-diff

(
(g, k),

(
g,

1

n
τ(g)g

))
= −α-diff

((
g,

1

n
τ(g)g

)
, (g, k)

)

= α-diff

((
g,−1

n
τ(g)g

)
, (g,−k)

)

= α-diff

((
g,−1

n
τ(g)g

)
, (g, k)

)
,

where the last step uses the invariance of the α-difference under the diffeomorphism
σ . We obtain
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α-diff

(
(g, k),

(
g,

1

n
τ(g)g

))
= α-diff

((
g,−1

n
τ(g)g

)
, (g, k)

)
= α(K3) �= 0.

This result can probably also be obtained with the help of a suitable relative index
theorem.
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AOn the spectral asymptotics

This appendix is devoted to the fact that the spectrum of a formally self-adjoint, first
order elliptic differential operator has both infinitelymany positive and infinitelymany
negative eigenvalues. This is used in the text when the operator is ωn,0Dι for n ≡ −1
mod 4 or ωn,1Dι for n ≡ 0 mod 4, where n > 0 is as always the dimension of the
manifold. Although this statement is probablywell-known, it is hard to find a reference
in the literature. The following argument was suggested by the anonymous referee.

Proposition A.1 Let M be a closed Riemannian manifold of dimension n ≥ 1 and
E → M be a vector bundle with a metric and a metric connection ∇. Assume that
D : �(E) → �(E) is a formally self-adjoint, first order elliptic differential operator.
Then D has infinitely many positive and infinitely many negative eigenvalues.

Proof First of all, after potentially passing to the complexification, we may assume
that E → M is a complex vector bundle. Note that the assumptions on D together
with the compactness of M guarantee that the spectrum of D is discrete and consists
of real eigenvalues with finite multiplicity (cf. [15, Thm. III.5.8]). We assume for
contradiction that the spectrum is bounded below. Then, replacing D by D + c for
some c ∈ R, we may assume that D is positive.

Now take a covector ξ ∈ T ∗
p M so that σD(ξ) �= 0, where the principal symbol σD

of D is defined by σD(d f ) = [D, f ] for any f ∈ C∞(M). In fact, since D is elliptic,
any ξ �= 0 will do the job. Since endomorphism iσD(ξ) is self-adjoint, we may choose
an eigenvector �p ∈ Ep of non-zero eigenvalue. Let f ∈ C∞(M) be a function with
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dp f = ξ and � ∈ �(E) be a section extending �p. Since 〈�p, iσD(ξ)�p〉 �= 0, we
will have (�, iσD(d f )�)L2 �= 0 – at least after multiplying � with a cut-off function
supported near p.

For any t ∈ R, we have

e−i t f D(eit f �) = D� + eit f [D, eit f ]� = D� + e−i t f σD(deit f )�

= D� + i tσD(d f )�

and thus

(eit f �, Deit f �)L2 = (�, e−i t f Deit f �)L2

= (�, D�)L2 + t(�, iσD(d f )�)L2 .

This yields the desired contradiction since positivity of D implies that the left-hand
side (eit f �, Deit f �)L2 ≥ 0 for every t ∈ R. ��
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