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Rapidity evolution of TMDs with running coupling
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The scale of a coupling constant for rapidity-only evolution of transverse-momentum dependent (TMD)
operators in the Sudakov kinematic region is calculated using the Brodsky-Lepage-Mackenzie optimal
scale setting [S.J. Brodsky et al., Phys. Rev. D 28, 228 (1983).]. The effective argument of a coupling
constant is halfway in the logarithmical scale between the transverse momentum and energy of TMD
distribution. The resulting rapidity-only evolution equation is solved for quark and gluon TMDs.
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I. INTRODUCTION

The transverse-momentum dependent parton distribu-
tions (TMDs) [1-4] have been widely used in the analysis
of processes such as semi-inclusive deep inelastic scattering
or particle production in hadron-hadron collisions (for a
review, see Ref. [5]). The typical kinematics of TMD
applications corresponds to the case of Bjorken x ~ 1.
However, in recent years there is a surge of interest in a
possible extension of TMD formalism to small-x processes.
Moreover, the future EIC accelerator will study particle
production in the whole region of kinematics between
moderate x and small x. To this end, it is desirable to have
an adequate TMD formalism that smoothly interpolates
between those regions. Unfortunately, the classical Collins-
Soper-Sterman (CSS) approach cannot be extended to low
x since it was designed to describe the fixed-angle rather
than the Regge limit of large momenta.

In a series of recent papers [6—8] the evolution of TMDs
was studied by small-x methods. It was demonstrated that
using a small-x-inspired rapidity-only cutoff for TMD
operators one can obtain an evolution equation that smoothly
interpolates between the linear case at moderate x and
nonlinear evolution at small x. The obtained rapidity evo-
lution equation correctly reproduces three different limits:
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP),
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Balitsky-Fadin-Kuraev-Lipatov (BFKL), and Sudakov evo-
lutions, but unfortunately in the intermediate region this
equation is very complicated and not very practical. Another
disadvantage of rapidity-only evolution is that the argument
of the coupling constant is not fixed by the leading-order
equation and can be obtained only after next-to-leading order
(NLO) calculation. This is quite in contrast with the usual
DGLAP evolution (or CSS one) where the argument of
the coupling constant is assigned by renormgroup even in the
leading order. The rapidity-only evolution of TMDs in the
Sudakov region was obtained in Refs. [6,7] and studied in
Ref. [8] where it was demonstrated that the leading-order
TMD evolution was conformally invariant given the proper
choice of rapidity cutoff. To use this equation in real QCD
one needs to fix somehow the argument of the coupling
constant. In this paper, the argument of the coupling constant
is determined by the Brodsky-Lepage-Mackenzie (BLM)
approach [9] (see also [10] for higher-order analysis and [11]
for small-x application similar to what is considered here).
The essence of the BLM approach is to calculate the small
part of the NLO result, namely the quark loop contribution
to a gluon propagator, and promote — én ¢ to the full

by = 13- N —&n;. This procedure was successfully used
for studies of small-x evolution of color dipoles where the
argument of the coupling constant was fixed using NLO
calculation and renormalon/BLM considerations (see
Refs. [12,13]).

The paper is organized as follows. Section II is devoted
to the leading-order calculation of rapidity evolution of
quark TMDs and discusses the choice of rapidity-only
cutoff. In Sec. III we obtain the quark loop correction to this
evolution. Section IV is about the TMDs with gauge links
out to +oco. We derive the one-loop evolution for gluon
TMDs in Sec. V and discuss conclusions in Sec. VI. The
necessary technical details and sidelined explanations are
presented in the appendixes.
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I1. RAPIDITY EVOLUTION OF QUARK TMDS

We will start with the discussion of the evolution of
quark TMD operators. For definiteness, we consider quark
TMDs with gauge links going to —oo in the “+” direction
which appear in the description of particle production in
hadron-hadron collisions. The typical example is the Drell-
Yan (DY) process of production of the y*u~ pair in the so-
called Sudakov region where the invariant mass of y ™y~ pair
Q is much greater than the sum of their transverse momenta
¢ - In that region the DY hadronic tensor W,,(¢g) can be
represented in a standard TMD-factorized way [5,14],

Wa(q) = Z‘f}/dszDy}A(xA’kL)

flavors
x D)y (x5, 41— k1)Cpuq. k1)

+ power corrections + Y-terms, (1)

where Dy (x4.k ) is the TMD density of a quark f in
hadron A with fraction of momentum x, and transverse
momentum k |, Dy /g(xp, g, — k) is a similar quantity for
hadron B, and coefficient functions C,(g, k) are determined
by the cross section o(ff — u"u~) of production of a DY
pair of invariant mass ¢ in the scattering of two quarks.

The TMD densities D4 (x4, k) and Dy p(xp, k) are
defined by quark-antiquark operators with gauge links
going to —oo. For example, the TMD f; responsible for
the total DY cross section for unpolarized hadrons is
defined by

flf(xB’kl) :16”3/dZerzZlE_ixBﬁ\/%H(k’zh

Xl r(z421) 2.z =oonlityp(0)[py),  (2)

where |py) is an unpolarized nucleon with momentum

py~pyandn = (% ,0,0, \/Li) is a lightlike vector in the +

direction (almost) collinear to vector p,. Hereafter we use
the notation

[.X, y] = Peigfdu(x—y)”/\ﬂ(ux+(l—u)y) (3)
for a straight-line gauge link connecting points x and y. The
infinite lightlike gauge links are sometimes called Wilson
lines, and we will use this terminology. Note also that the
operator in the right-hand side (RHS) of Eq. (2) is not time
ordered.

In this paper we will study the rapidity-only evolution of
the operators

w(xt, x,)[x, x & con][*oon + x|, Foon + y, |
x T[Eoon + y. yly(y*.y1) (4)

for quark TMDs, and

F~(xT,x)[x,x £ con][toon + x, toon + y,]
x [oon + y. yIF/(y*,y1) (5)

for the gluon ones. Here I' is one of the matrices
Y .Y V5.7 YL, SO we single out “good” projections in
the light-cone language. Note that we do not multiply
operators (4) by the square root of the soft factor so, strictly
speaking, our operators (4) enter the “old version” of TMD
factorization [2,5] such as

W)= 3¢ [ @hus(au ko)D) ko)

flavors

X,D;i/)B(xB’qJ-_kL)Cﬂy(q,kl)—F...’ (6)

where S(q , k) is a soft factor. After assigning the square
root of a soft factor to each TMD one gets the “new”
version [15] of TMD factorization (1). Since the soft factor
1s a correlation function of semi-infinite Wilson lines, it will
be affected by using rapidity-only cutoffs. We postpone the
calculation of soft (and hard) factors in Eq. (1) until future
publication and right now concentrate on the rapidity-only
evolution of the operator (4) per se.

A. Leading-order evolution of quark TMDs

We will start with TMD operators (4) with gauge links
going to —oo. It is well known that TMDs (4) exhibit
rapidity divergencies due to infinitely long gauge links. The
rapidity-only cutoff corresponds to restricting the +
component of gluons emitted by Wilson lines,

a0 = [ {e50loe= et a . (1)

where we use the notation ¢ = \/g (Actually, as we will
see below, it is more convenient to use a smooth cutoff in
|k*| instead of a rigid one imposed by the 6 function).
As mentioned in the Introduction, the goal of this paper
is to find the evolution of the TMD operator (4) with
respect to the rapidity cutoff ¢ in the “Sudakov region”
oxps > k3 ~ g3 .

As usual, to find the evolution kernel we need to
integrate over gluons with ¢ > k™ /¢ > ¢’ and temporarily
freeze the fields with k¥ /¢ < ¢’. The result will be some
kernel multiplied by TMD operators with rapidity cutoff ¢’.
To get the evolution kernel in the leading order, we need to
calculate one-loop diagrams for the “matrix element” of the
operator (4) in the background fields

(W(x*, x )", =0T [x — oo™,y —o0¥]
X [=oo®, y Ty (", v 1))was (8)

where W and A are quarks and gluons with small k™ < .
Hereafter we denote lightlike gauge links by
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(9)

FIG. 1.

oy = 4yt + 2] 9)
for brevity. As discussed in Refs. [6,7,16,17], in the leading
order one can take ¥ and A fields with k™ = 0 which means
background fields ¥(x",x ;) and A(x",x,). Also, it is
convenient to use the A~ = 0 gauge for background fields.
Since the operator in Eq. (8) is not time ordered we need
to insert a full set of states at t = oo so the matrix element
(8) will be represented as a double functional integral for
“cut diagrams” in these background fields. The self-
consistency condition is that the background field should
be the same to the left of the cut and to the right of the cut.
Indeed, summation over the full set of intermediate states
corresponds to the boundary conditions that the fields to the
left and to the right of the cut coincide at t = 0. Since the
background fields do not depend on x~, if they coincide
at x* = oo, they have to be equal everywhere (see the
discussion in Refs. [16,17]). We choose the A~ = 0 gauge
for background gluon fields so an extra background gluon
line would mean an extra F,,. This gives a higher-twist
contribution which we neglect in this paper (see the
discussion in Refs. [16,18]). For quantum gluons, we
use the background-Feynman gauge which reduces to
the usual Feynman gauge in diagrams without background
gluons. It is well-known that in such a gauge the con-
tribution of the gauge link at infinity [x, — con,y, — con]
can be neglected, and we get diagrams shown in Fig. 1.
We will use Sudakov variables a = p™ /o and f = p~ /o
so that p = ap; + fp, + p, where p; =ng and p, is a
lightlike vector close to pp so that pg = xgpy + pg,- In
these variables p-g = (a,p, +a,f,)5— (p.q), where
(p.q), = —piq'. Throughout the paper, the sum over
the Latin indices i, j,..., runs over the two transverse

9000

(h)

One-loop diagrams for TMD operator (4) in the background quark field. The dashed lines denote gauge links.

components while the sum over Greek indices runs over the
four components as usual.

It is convenient to define Fourier transforms of the
background fields W,

‘P(ﬂBaPBJ _ Q/dz-‘rdZLlIl(Z-F’ZL>eiQﬂBZ+_i(quZ>L’
lf‘(ﬂ}g, p;n) = Q/dz+dqu’(Z+, ZL)eiQ/’"Bﬁ_i(ﬁ'g.z)l_ (10)

Hereafter we will use the notation 3 = xp since we will
calculate integrals using Sudakov variables.

Note that as discussed in Refs. [6,7,16,17], in a general
gauge one should replace

(ZJF, ZL)

i

[—oo™, 2", W(z". 2y ),

(11)
in the case of evolution equations for the operator (8), and

Pz, z1) = [0, 2", P(z", 20),

P(zt,z,) = @(Z+’ZL)[Z+’ °°+]z (12)

for evolution equations of operators (4) with gauge links
out to +oo.

B. Diagrams in Figs. 1(a)-1(c)
1. A choice of rapidity cutoff

Let us start with the diagram in Fig. 1(c) where all
propagators are of Feynman type. Note that a possible
diagram with Fig. 1(c) topology and with a three-gluon
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vertex in the left sector vanishes since the background field (/5. pg, ) cannot produce any real particles. Also, we do not

draw the diagrams with self-energy insertions in quark tails since they are not relevant for rapidity evolution. Simple
calculation yields'

(T{[=00, y*1,Tw(y*, y. ) EE 1 = —ig2e, / Budpy.

I 0(o—al 56~ Bs)
et /dadﬂdmﬂﬂLieaﬂs—PiﬂLiea(ﬂ—ﬁs)s—(P—p3)2l+i€rqj(ﬂ3’ph)
=—g cF/dﬂdeB e 'Pay/ da/dpj_ - aﬂBs_(/));s pB) +i€]FT(ﬁB’pB¢)' (13)

Hereafter we use space-saving A-inspired notations d"p = (2”),,. Note that the integral in the RHS of Eq. (13) diverges as

p. — 0, but one should expect that this divergence cancels with the contribution of diagrams in Figs. 1(a) and 1(b).
Next we calculate the diagrams in Figs. 1(a) and 1(b) with a combination of Feynman, complex conjugate, and cut
propagators. One obtains

([t —oo Ty (v y )Yy '™

' 1
= ey / dﬂ%deLe—l(PBuV) /dadﬂdpl |:27[5((X(ﬂ —Bg)s—(p— PB)i)(ﬂ _ﬂB)sg(a)m
1
(B—Pg)s ~ ( ~ |a|) ies i,
+a(ﬁ—ﬂ3)s—(p—pB)i+iez”5(“ﬂs p1)(a )] 5 iic AT HP ALY (B, pp )

»?
o [oda : (afgs — p? e Taer
_ 2 —ipp - i(p.A), B L
QC/Gﬂdp w(Pp. p )6“/ /dme { .
g BEEBTATE B pilapps + (p — pp)l — p} —ie]

(p p ) . (ﬁg+ﬁ PB )A+
~ FB)L

[apps + (p — pg)] + i€llapps + (p — )i — P — i€]

]FT(ﬂB’pBL)- (14)

Hereafter we use the notation A = x — y for brevity. The dimension of the transverse space is d —2 =2 4 2¢ (or d = 2 if
we do not need dimensional regularization).
It is convenient to rewrite Eq. (14) as a sum of two terms

([t —ool Ty (v, y 1))y = (T, =00l Ty (3, v 1))y + ([xF, —co Ty (y*, y. )5 . (15)
where
I’2 .
. [ dp ﬂBse_inQA++’<PaA)
x*, —oo] Twr(y*,y, N = e /d dpy TW (S, e"PB3’/ da/ L . (16
([ oo Tyr(y YJ_)>\P g cCr fpdps, (s PBL) o le aﬂBS-i-(P—PB)i‘i‘iG (16)

2 —i
<[x+,—°°]xFW(y+,YL)>Sp) :gch/dﬂdeBlFlP(ﬂ&pBL)e buy

p- PB)
At »
/ da/ (p = pp)ierole (). —eTraet]
apps + (p - PB) + i€llapps + (p — pp)i — Pl
The integral in the RHS of Eq. (17) is convergent while the one in the RHS of Eq. (16) diverges as p; — 0. As we
mentioned above, one should expect that this divergence cancels with the contribution (13) of diagram in Fig. 1(c). Indeed,

this divergence comes from the infinite length of gauge links in Eqgs. (10). As p; — 0 the integral (14) behaves in the same
way as such an integral at x;, =y, so the contributions of infinite gauge links should cancel,

(17)

([t =00t [=oo®, y Ty (y*, vy ))w = (X5, v ], Tw (v, y1))w. (18)

'"Throughout the paper we distinguish between @(x)p(y), T{p(x)p(y)}, and T{p(x)p(y)} = 0(yo — xo)@(x)p(y)+
O(xo — yo)@(y)@(x) so the notation (p(x)¢p(y)) is used only for Wightman-type Green functions.
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Unfortunately, “rigid” cutoff ¢ > |a| does not provide this property—the sum of Eqgs. (13) and (16) is still divergent as
p1 — 0. To ensure IR cancellations, we use a ‘“‘smooth” cutoff in a imposed by point-splitting regularization

l//(y+,y¢) - 1//(y+,yl,y‘). We get then

(T{[~o0. y*],Tyr(y*, y 1 =87) })y® ¢

= —ig*cr / dppdpp, e=7" / dadpdp, —— e_mgji - ilind ) T ¥(Bs pp,)
* p+icaps — pi +ica(p—Pg)s — (p—pp)] + i€ .
ﬁBS e
= dpgpd —ipgy d d I'Y(pg, s
=g CF/ ppdpp e / 0‘/ Pl 2 2 Tafigs + (p — PB) ] (Bs PBL)e
ﬂBs _ja
= — dpggd ’PB)F‘I’ d d ', 19
QCF/ fpdpp, e ﬁBpBL/ a/ P1L 2aﬂ3s—|—(p PB) +l.€]€ (19)
where
1
Q

Note that to get the last line in Eq. (19), we turned the contour of integration over a on angle x in the lower half-plane of

(P=ps)3

complex a. At f > 0 the singularity at @ = Fas

~——= + ie does not affect the rotation, while at 5 < 0O the rotation pushes the

singularity over a up to +ie.
For the diagrams in Figs. 1(a) and 1(b) with point splitting one obtains

i © dp ﬁBSe lm AT +i(p.A) .
x*, —oo] Ty (y*, y . —67)y) = ge /d dpy e iPT(fy, / da/ - e, (21
( WTw(y .y, =67))' = g°cr | dBsdps, (B Ps,) ; PR By p— (21)

<[‘x+’_oo]xrl//(y+’yJ_9_6_)>g) = gch/dﬂdeBLFlP(ﬂBs pBL)e_ipBy

> r
wd 2 pi(pA), [gmilByt e ljon* _ gminkor® N
/ . / L )

aﬁBS + (p— pp)i + ie] [aﬂBS +(p - pp)i — P1]

Now we see that the sum of Eqgs. (19), (21), and (22),

<[x+,—oo}x[—oo,y ] FW(y VL. —6" )>F1g la—c

ﬁBS(e_i%QA++i(p'A)i _ 1)

pilapgs + (p — pp)i + ie]

)2
(p = py) e/ e G ) (23)
alapps + (p — pp)} + i€ [aﬂBs +(p—-pp)i-ril)

:g2CF/dﬂdeBle_ipByF‘P(ﬁB,pBL)/ d(le_i(;/dpL<

)

Lyoat _

is given by a convergent integral. It should be emphasized that 5~ < 0; otherwise, we would not be able to make the rotation
of the contour in the last line in Eq. (19) and the cancellation of IR divergences would not happen. The reason for that is that
all quantum operators in [—co, y*] w(y*, y, ) commute since they are on the light ray, and to preserve this commutation
property [which is necessary for using Feynman propagators in Eq. (19)] we should shifty (y™, y ) to a point separated by a
spacelike distance from operators in the gauge link [—oo, y™] y (see the discussion in Appendix A).

It should be emphasized that we do not suggest the nonperturbative studies of TMDs with our “point splitting” and the
reason is that objects such as

_ 1 1
(pnlw <x+, X1, — Qa’) [x*, —o0] [~0o0, )’ﬂyrll/ <y+, Yi,— QG) |Pw) (24)

are meaningless since the operator is not gauge invariant. Our message is that the longitudinal integrals in the perturbative
diagrams for TMDs
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FIG. 2. Point-splitting regularization of rapidity divergence.

(Pnlw(xF, x ) [x ", =00, [—oo, yT|, Ty (T, y 1) [pn)  (25)

should be cut from above in a smooth way respecting
unitarity and causality, and a mnemonic rule how to choose
the proper sign of the cutoff e**/? is to consider the point
splitting (24). Also, the point-splitting representation of
rapidity cutoff in « helps to visualize the coordinate space
approximations that we make (see Fig. 2). Thus, we will be
using expressions such as (24) and defining rapidity-
regularized operators by

1
wo(xtx,) = 1/7<x+, x|, —) [xT, —o0],,
po
1
wo(yyL) = [0,y W (yﬂyb —E) (26)

but only for the perturbative calculations.” In this paper we
perform calculations in the (background) Feynman gauge,
but in Appendix B we demonstrate that for other gauges
such as the Landau gauge the extra terms in gluon

il
< 1.

It should be mentioned that the standard regularization of
TMD operator (25) at moderate x is a combination of UV
and rapidity cutoffs (see Ref. [5]). We discuss the relation
of that regularization to our rapidity-only cutoff in
Appendix F.

propagator lead to power corrections ~

2. Rapidity evolution of diagrams in Figs. 1(a)-1(c)

In this section we will calculate the ¢ dependence of the
integral (23),

2
d [ —igreA T Fi(p.A)
oo [T [ dm( Puote -
do Jo pilapps+(p—pp)i +iel

(p_pB)iei(p’M [ (ﬂ3+ ) oAt _ —t—gA*] >
alapps + (p— pp)i + i€ [aﬂBs Iy e—
(27)

First, note that the second term in the RHS. does not
contribute to the evolution. Indeed, characteristic ’s in that

2
m —
term are ~ 7~ where m% ~ A72 ~ plzgL so we can expand

fps
e~z and get approximately

/)mda/dm [1 - ige((;— a)]

(p m;)

(p — pB)iei(p’A) [ —i(Bpt—pg— )QA+
alapps + (p — pg)i +iellapps + (p — pp)i — P1]
(28)

»”
i +
—_ e_lEQA ]

The first term is a convergent integral independent of o

9PyS 50 it is a power
my

correction that we neglect.

Next, we study the dependence of the first term in the
RHS of Eq. (27) on A*. From TMD factorization (1) and
definition (2) we see that we need operator (4) in the region
Atopg ~ 1. Let us demonstrate that in this region one can
neglect A™. Indeed,

2
Y
Pos(emex — 1)

Japrs | [ aar [ aae
p.e B ale s
N

/ dp olP): [ /’—LQIA*I Pps(emed — 1)
Y2 e’

1lapgs + (p — pg)i + ie]

/°° da
- 2 _ 2 .
“olat| @ afps + (p — pg)1 + i€

pllaBgs + (p — pp)i + ie]

e A C N

which is a sum of terms independent of ¢ and power corrections.

2Alternatively, one may use the classical cutoff with off-light-cone gauge links, but from experience with rapidity evolution of color
dipoles we know that using off-light-cone gauge links enormously complicates the NLO calculations (see Refs. [19,20] and especially

Appendix B to Ref. [19]).
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Thus, we need to consider only

/ /dPL Ppse”7(e P —1) :/‘”dae -E/dPLﬂBS( (A —1) {] _ pi—(p-ps)l
P2 apps + (p—pp)l +ie Jo P2 afgs + p2 +ie apgs + (p — pp)? +ie

_/”aae-i%/dplﬂ”( ””—%/GPL( 8, 1y —PL +0<m2l), (30)
0 pi apps+pi +ie pi (p—rs)i ofps

where we neglected the e~'s cutoff in the second integral since it converges at a ~ 3] ﬁ;s.
The o dependence comes only from the first term in the RHS of Eq. (30) calculated in Appendix C [see Eq. (C4)] so from

Eq. (C6) we get
d 1
o (b =l (3 - oo ) )

2

. 2
g —i ! ; m
= _@CF/dﬁdeBLr\P(ﬁval)e Pe¥ In <_Z(ﬁB + 15)55A16y> + O(ﬁB;J
2 - 2
- _%CF / BT (g, y . )e P In (—i(ﬂg + ie)asAie7> + 0( my ) (31)
r

Ppos

where y = 0.577 is the Euler constant and ¥(fz,y,) = ¢ [ dy*e”s@ ¥ (y*,y,) [see Eq. (10)].

C. Diagrams in Figs. 1(d)-1(i)

The calculation of diagrams in Figs. 1(d)—1(i) repeats that of Figs. 1(a)-1(c) with minimal changes. Let us start with the
diagram shown in Fig. 1(f)

(Bt 67T, —oo] )T 1 = iy / adpy By pu, )T

} 1 —ias~
% e—lPBX/dadﬁdpL - ¢ 5 S(ﬂ+ﬂ8) ) ;
p—ieaps —pl —iealf+Pp)s — (p + pp)] — i€
ﬂBs e
= dppd “PsYP (B, d d o
QZCF/ ppdpp, e (s PBL / a/ P 2 aﬂBS—(p+p3) ie]e
ﬁBs ia
— _ dB.d ~iPsYP (B, d d i, 32
ch/ fpdpp, e (Bs. PB,) / 05/ PL ZaﬁBs—(p-i-PB)L""e]e (32)

Similar to Eq. (19), to get the last line we rotated the contour of integration over « in the upper half-plane of complex a.
Next, the contribution of diagrams in Figs. 1(d) and 1(e) is

_ _ ig. ld,e
(ot x, =67)[—e0, yT], D)y !

1
= gPcr / dppdpg, e PO (S, pp, )T /dadﬁdpl [m 2x8(a(f + Pp)s — (p + pp)i) (B + P)sO(a)
+ (B+Pp)s elaer”

_ — —ipAti(p.A),
B+ Pn)s— (p + pa) —ie 2rolabs — p1)0(a )}ﬂ—iee o

P
p— wda . , (afgs + p2)eiaer’
= ¢’ /d dpy €'PETY(fy, / —e’;/d el(P'A)L|: B L
g cCr B PB, (ﬁB PBL) o PL Pi[aﬁBS— (PJFPB)ZL +i€]

/3)

(p+ pu)3 e es”
[apps — (p + pp) + iellapps — (p + pp)] + pi]] ' 33
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The sum of Egs. (32) and (33) can be rewritten as

(p(xt,x, =87) o0,y ], Dy

. - o0 . . lrm ()A ])
= ¢*c /d dpg €7’ T (fp, / dae’s / dp, eiPA)L [ Pos(e
g F ﬂB pBL (ﬂB pBL> pJ_ pi[aﬂBs—(p—l—pB)l—ﬁ—le]
. (r+pp) + » +
(p+ )il a et — eiae] } (34)
alapps = (p + pp)i + ie] [aﬂBs ~(p+pp)i + 0l
Now, the integral
'pzigA+ | 2 il (17+PB)i)QA+ '17iQA+

o0 . o - B4 — e s

/ daez;/dplel(P.A)L|: 5 ﬂBs(e 2) 4 <p+pB)J_[ez : € j . :| (35)
0 pilapgs — (p+ pp)l +iel  alafgs — (p + pp)i +iellapps — (p + pp)1 + p1]

differs from the corresponding integral in Eq. (23) by complex conjugation and replacements x <> y, pp <> —pp so we get
the result obtained from Eq. (31) by the same manipulations

d ig. 1d—
0 i P xp, =)l —oo], [~o0. 3], )" 1

5 2
= _Sg_7;2 / dpp®(By. x )Le~Ps0*" In (—— (Bp +i€)d’ sAzleY> + 0<ﬁ36 s) (36)

Finally, let us discuss diagrams in Figs. 1(g)-1(i). Since the separation between operators (x) and w(y) is spacelike, we
can replace the product of operators by the T-product and get

(T{p(x*,x,, =8 Ty(y*,y,, 6" )}>Flg 1g-i

_ s ioph i W (pp)re(¥ = Po)L (P + Pp)r*¥(pi)
— de /d ' dp. dp’ e—ngx—zpsy/d ei0a(d'=0)_+igpA, —i(p.A), BIT¢ - B B . (37
ger | Pobudrn.py, 3 7+ i)l(p— po +iellp + P+ 7

Here we introduced two different point splittings 5~ and §~. This is a temporary auxiliary construction that simplifies the

solution of the differential evolution equations obtained below. In the final results we take &~ = 6~ = p%; where o is our
rapidity cutoff in a.
Let us demonstrate that the integral (37) does not depend on 6,5~ in the region
A% > AY6T AV T & ofips, o fgs > mA . (38)

Consider
[apers (# = Ps)T ¥ + #y)
(p* +i€)[(p — pp)* +iell(p + plp)* + ic]

e PR — ) + (p — pp) LB+ P + (P + Pl) ]
(aps — p7 + ie)[a(p - Py)s — (p - pB)i + i€][a(B + Pp)s — (p + pp)L + i€l

= / dadpdp | eiae(d=0) +ibeA™ (39)

2

where A = (§~ — 6=, A%, A,). Since due to Eq. (38) A% = —A2 4+ 2A" (5 — &)~ # 0, there is no overall divergence and
the integral in the left-hand side (LHS) is UV convergent. Also, since pg , pj_,gL # 0 the integral in the LHS of Eq. (39) is IR
convergent. Now, let us expand the RHS of this equation in powers of (6 —&')~. The first term of the expansion is the
integral (39) with A replaced by A which is also convergent since A> = —A2 < 0. Moreover, if one takes three residues

over f# in the RHS [corresponding to three diagrams in Figs. 1(g)-1(i)], one gets integrals over a which converge at a ~ ﬂ -

Next, the integral over « in the second term of the expansion has an extra « but is still convergent so ag(&' — &)~
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to Eq. (38). Thus, the expansion of ¢(¥~9)" gives the ¢, o’-independent term plus power corrections that we neglect. In
other words, the diagrams in Figs. 1(g)-1(i) do not contribute to the rapidity evolution in the Sudakov region.
Thus, the result of the calculation of diagrams in Fig. 1 reads

d d\,_ .
<"%+°"w> (7 (" x ). o], [=00. y ],y (v 31 )b
aY - _i/ X+—l' +
T TR Cr / ABpap ¥ (B, x )W (B, y 1 e Puer ey
i . 2 l / . / 2 mﬁ_ m%_
< |In _Z(ﬂB+l€>03bLeY +1n —Z(ﬂB—l—ze)asbleV + 0 205 Bo's)’ (40)

where b| = A is a standard notation for the transverse separation of the TMD operator.

D. Evolution equations for quark TMDs

Promoting background fields in the RHS of Eq. (40) to operators, one obtains the leading-order evolution equation of
quark TMD operators in the form

d d\ _.
(Uda + 0 M) W’ (B, x )Ty (Bp.y1)

= = S cn” Byx v ) (=5 0+ isater ) in( =G0 icasater) | )

where standard TMD gauge links are assumed. The solution of the evolution equation (41) reads

B ln%[lna’o‘é)qLZIn(—ﬁ(ﬁ;Jrie) sA% e?))

57 (Byx )T (v ) =e F0 (Bl x )Ty (B, y e Moot Haen] (g0

It appears that two exponential factors in the RHS describe two independent evolutions of operators (26). Of course, this is
not quite right since the left and right exponents come not only from “virtual” corrections of Fig. 1(c) type but also from
“emission” diagrams of Figs. 1(a) and 1(b) type which is reflected in the A | dependence of these factors. Still, as we will see
below, this “factorized” structure persists to quark-loop corrections.

1. Leading-order evolution in the coordinate space and conformal invariance

The evolution equation in the coordinate space is easily obtained by the Fourier transformation of Eq. (41),

d d\ _,
<0da + 0 Cw,) P (x x )T (v Ly )

a Ino(—xT 4+ z7 +ie —ln&isd
~Zer [ { i o )~ In7 e B )

4r? —x" +z" +ie
/1,2
.lng(—y++w++i€)—lnme7 .
e O] (43)

Note the “causality”: z+ < x™ and w™ < y™: the evolved y, w operators lag behind the original ones, similar to the case of
power corrections to TMD factorization where the emission of additional projectile/target gluons also lags behind the
original quark operators (see Refs. [17,18]).
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The solution of this equation has the form

_ascp
4n

/
. (In%-In o', +InZIn oo )
P (L x Ty (yhy ) =e 0 ’

a,

iF(1—%~1ng) iL(1—%~Ine)
X /dﬁ [ i I_Z;F s + c_cl /dw+ {(W+ - _|_2:€)1—(%ZF e +c.c.
(zF=xt+ie) 7 -
1 _ax;F(]n:—//+lnﬁi) — o
X o (B /s/8) T (T (v ). (44)

In the leading order one does not take into account QCD
running coupling so one should expect some symmetries

related to conformal invariance. Indeed, if we take ¢ =
V2
olA,]
(44) is invariant under a certain subgroup of conformal
group SO(2,4) (see the discussion in Ref. [8]).

o = where ¢ is an evolution parameter, the evolution

III. QUARK LOOP CORRECTION

It is well-known that the argument of the coupling
constant in the LO rapidity evolution equations [(41) or
|

|
(42)] cannot be determined. As we mentioned above,
we will use the BLM method to fix the argument of the
running coupling constant. According to the BLM pro-
cedure, we need to calculate the contribution of the first
quark loop to our TMD evolution (40) and promote — é ny
to full by %NC - &nf. Each gluon propagator in
diagrams in Fig. 1 should be replaced by a one-loop
correction, i.e.,

! L (14 b (o) 2"
- aS ni. k)
p’+ie  p?+ie O e
1 1 ji?
1+b 1 ,
pz—ie_)pz—ie( + boas () n—p2+i€>
i0 i i0 i
23(7)0(0) = 132 (14 b ) in—F— ) = P (14 by E ). (45)
p-+ie —-p° —le p-—ie —p-+ie

where ji? = ji;se>/3. The first two lines are trivial while the
third line corresponds to the sum of the diagrams shown in
Fig. 3. First, note that the convergence of integral (37)
representing diagrams in Figs. 1(h) and 1(i) is not affected
~2

- p/;—ie'
we see that the contribution of diagrams in Figs. 1(h) and

by extra In Repeating the arguments after Eq. (37)

FIG. 3.

m2
aﬁ;s
(multiplied by an extra log). Thus, we need to consider
diagrams in Figs. 1(a)-1(c) and 1(d)-1(f).

It is convenient to start again with the diagram in
Fig. 1(c). Replacing Feynman gluon propagator pz}&-ie in
Eq. (19) by the a, correction from the first line in Eq. (45)

1(i) with extra quark loops is still a power correction

’
1
I
!
: : |
1
I
!
1
7

s

Quark loop correction to cut gluon propagator.
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we get

<T{[—oo,y } FW()’ yL7_5 )}>100p Ic

2

o
= —idmbye (u)cp / dppdpy, emPw / dadpdp, ——— e~ae” ln”i‘“fs‘*. SO=Ps) gy py)
‘ - p+ie afs — p7 +iea(p—pg)s — (p — pp)] + i€ -
ﬁleng—2
= 4zxb dppd ~ippy d d = , o
7 Oas( )CF/ ppdpp e / 05/ P1 2 2 (afigs + (p — PB) —ie] '¥Y(pp PBL)e

ﬁlen—z )
= —4nb, dpgd ~ipgy d d 'Y (fp, =iz 46
T Oav( )CF/ ppdpp, e / a/ P 2 2 lafys + (p — PB) ¥ ie] (s PBL)e (46)

where we made the same rotation of contour over a on angle z in the lower complex half-plane as in Eq. (19). We get

d 00 C
O’d—<T{[— Y Tw(y*,y, —6° P!
o
aﬁlen@ '
= —idnb dppd ~ipgy d d L I'Y(pg, -7, 47
14 Oas( )CF / fp PB € / 0‘/ P1 2 aﬁ3s+(p PB) +ie] (Bs PBL)e ( )

Next, consider diagrams in Figs. 1(a) and 1(b). Using Eqgs. (45) for various gluon propagators, we obtain the correction in
the form

([, —oo] Ly (y*, y1 =67))g™ 1

— dmboa(u)cr / Bydpy, e PITW(By. py. )

i0(a) i0(a) ) (6= Pt
dadpd -
X/ adp pl[(“(ﬂ—ﬂB)S—(P—PB)Z +ie a(f—Pg)s—(p—pp)l —ie afs — p3 —

. o I
IS UUNAL  C ) RS
a(p—pg)s — (p— pp)l +ie aﬁs—pl—f—le afs — p| — p+ie
1

:4ﬂboa§(ﬂ)CF/dﬂ%dPBLe_i(pB’y)F\HﬁB,PBL)/dadﬂdple_ig_iﬁQNJri(p'A)Lm

{ i(p = By)s6(@) In ;i i(p = By)s6(@) In o
X - ’
(B =Pr)s = (p = pp)% + icl(aps = p +i€) [alB=Pu)s = (p = )l — icl(aps = p2 — ic)

(48)

where the second line comes from the Fig. 1(b) diagram while the third line is from the Fig. 1(a) diagram. The ¢ evolution
reads

od% ([=o0, x|, Ty (yt, vy, 67))g™
.
p+ie
ia(f = fp)s6(a) In s ia( = Py)sO(ar) In Ll
. [[a(ﬁ —Bg)s—(p— pB)L + ie](afs — Pi + ie) - [a(p—pg)s —(p - pB)L — ie](aps — le — ie) .

1 . v Ak
= i4ﬂb0a?(lu)cF_/dﬁdeBLe_l(pry>F‘P(ﬁB’pBL)/dadﬂdple—lg—lﬁQA +i(p.A) L

(49)

Now we shall prove that the dependence of RHS on A™ is a power correction. It is convenient to consider the derivative
with respect to x
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d d loop la,b
8oL oo s LTy =5
. AT o A
—4”%“?(#)0/7/dﬁ%dl’BLe_'(pB'y)r‘P(ﬂB,PBL)QT/dadﬁdple_'g_’ﬁw HilpA)L

|: la(ﬂ—ﬁB)se(a) ln#;y_le la(ﬁ—ﬂ3)59(0> IHW
X - .
(B = Pp)s — (p — pp)1 + i€l(aps — p1 +ie) [a(B—Pp)s — (p — pp)i — icl(aPs — p1 — ie)

(50)

Let us consider case A™ > 0. The second term in the square brackets in the RHS of Eq. (50) vanishes while the first one can
be rewritten as

—afis—ie
[a(p = Pp)s = (p = pp)] + i€l(afs — p7 + ie)
2 L
A" A ipo A In »? —zf s—ie l(p - pB) lnﬁ
:Q—/docdﬂdple—’;—lﬂgA +t(p~A)L9(a) P 2ﬁ : 7 . .
o afs — pi +ie  [a(p—Pp)s — (p = pp)i + i€l(aps — p7 + i)

ia(f — Bg)s6(a)ln 7 i

+
g/Clordﬂdple—i%—iﬂaAﬂri(p,A)L
o

]. (51)

The first term in the RHS can easily be calculated,

72

i ~ ; .
20A7 / & n—— oivh _ 2Ps0A" 1n(—A2y2 +ie)  2PpoAT In(AT4 + ie) ~ BpoAt x O mi C(52)
os p* +ie ofps 4’ (=A% + ie) ofps 4n* A% ofps
where A? = —2AT65 — A% ~ —A3. Since, as discussed in the Introduction, we consider fpA™ ~ 1, this term is a power

2
correction ~ % As to the second term in the RHS of Eq. (51), it can be estimated as follows: since the integral over p | is

convergent at p, ~A7! ~m,, one can replace (p — pp)? in the numerator approximately by m? and get

2

$2mL [ o P8 ~ pront ( 2)
a2 [ P ATl —par i’ " PEeR 0 s 59

=

9|

Indeed, the integral over momenta in the RHS can be represented as (i = 1 — u)

In—4— _ } = 2 s 2N
/ Cp__ Mot s / A, / &P yipa LI = Inlpj i = p* ~ ie)
i (p*+ie)l(p = pp)i + ie] 0 i (pp, it — p* — ie)

o A
ST A due(Prd)s (1 ﬁ” ~In ’;sz +1n ) o(\/ Py, Alau), (54)

where we used A> ~ —A3. This integral is obviously O(1) at p} ~ AT? ~m3.

Summarizing, we proved that at AT > 0 the RHS of integral (50) is a power correction. Also, at A™ < 0 only the second
term in square brackets in the RHS of integral (50) contributes, and a similar calculation shows that Eq. (50) is a power

2
correction. Thus, with power accuracy 0( we can set AT = 0.

)
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Returning to Eq. (49) and taking At = 0 we get
0 0 oo LTy i —5 )
do

1 o 1
= idabya? (u)cp / dpydpg, e PrITY (B, pp,) / dadpdp | e~stirA)L

p+ie
[ ia(f = Py)sO(a) In ia(f = Py)sO(a) In Lo
X —
[a(f = Pg)s — (p— pB)%_ + iel(aps — Pi +ie) [a(f—Pg)s—(p— pB)J_ ie|(afs — PZL — ie)
. 1 y © azﬂlenﬁ—2 »
— l4ﬂboa%(ﬂ)CF;/dﬂdeBLg PBYF\P(ﬂB,pBL)A da/dpj_ o + (7= PB) +i€]e .. (55)

The total contribution of diagrams in Figs. 1(a)-1(c) is a sum of Eqgs. (47) and (55),

d 1 a—C 100
o A[=o0y |, Ty (" YL, —8))gE e oo
O

(eiPD)1 — 1)apps Ink
Pl

1 lapps + (p — pp)i +ie]

. o “da _,
= idmboaiu)cr [ Apudpn, ¥ pa) [T E e [api (56)

Next, similar to Eq. (30) one can demonstrate that p ~dependence in the integral in the RHS can be omitted with power
accuracy. Indeed,

©da i 1 1
—e | @ (P81 — NafgsIn— [ - }
A c / pule Jabs p3 lapes + (p— pp)2 +ie aPps+ p? +ie

. 02 o d _ 2
z/dpl(el(p.A)L _ 1)ln”—2/ _a{ pJ_2 __ (p pB)J_2 . ]
i afps + p1 +ie  aPps+ (p—pp)i +ie

1 : (p—pp)i, oPps+ (p—pp)l +ie m>  ofps
=— [ dp, (1 —eiPAl i { L1n L —(pg. = 0)| ~0(—=1In . (57
2”/ Pl ) Pl opps (p—rps)i (Pa, ) ] 7

ofgs  mi

Thus, we get

d 1
6%([_00,)7 ] Ty(y™,y,,—6" )>Fg la—c loop

(eiPD)L — 1)apps Ink
P

P2 apgs + p? + i€l

; - —i >da
= 14”b00‘%(ﬂ)CF/dﬁBdPBL€ pByFLP(ﬁBvPBL)A ;e "/dpJ_ (58)

The integral in the RHS of this equation is calculated in Appendix C [see Eq. (C9)], so we get the result with one-loop
accuracy in the form

Gd— <[x+’ —OO]X[— } Fl//(y YL, =6 )>F1g la—c loop
o

o, (ji o ; |
=_ 2(7/:) CF/dﬁdeBLFlp(ﬂf%pBL)e pB){ln{_Z(ﬁB‘Fle‘)O‘SAiey]

by . A%t /4 i . * mi
+5 (i) Klnm + 3}’) In [— 7 (B + l€)6SAie7:| - ?} } +0 <ﬁ30s>

—-tlede, [ apreig e o (n[- 2 +iomsate| ot | +o(2L). (9

ﬁBUS
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where p2 = "I/j B‘s Thus, the BLM scale for Sudakov evolution is halfway between the transverse momentum and the

energy scale of TMD.
Performing a similar calculation of the loop contribution to diagrams in Figs. 1(d)-1(f) we obtain

& (x xy, =8, —oo] o0, ] ) 14
! 2
— _%2(/; o) /dﬁBF‘P( ,Xp)e "ﬁsgﬁ{ln [——(ﬂB te)a’sAie}’] + O((or (1, ))}} + O<ﬁ30's> (60)
where % = ”/K};fls.

Combining Eqgs. (59) and (60) and promoting background fields to operators we obtain the evolution equation for the
TMD operator in the form

d d
(6%+0 £> (ﬂB,xl)FW (ﬂB’yl)

CF _

= S By W ) |l 0 (= (0 i)ersbLe ) )= st )| o)

where b, = A| = (x —y), We see that in the Sudakov region we can define TMD operator (4) with two independent “left”
and “right” cutoffs ¢ and ¢’ defined in Eqgs. (26) and the evolutions with respect to those cutoffs are independent [except
forb, = (x—y),].

We can solve evolution equation (61) by replacing od% b“ 2(/45)

! %). We get then

2 d 2 d - (3! X c
(P00) g+ @ 00) gt ) B )W )

= e |:as (#y) In (_ % (Pp + i€)6/sbie7> + ay(u,) In <— i (Bg + ie)o-sbie”)] 7 (B x )Ty (Bg.y1)
0

_ 2cF as(:u ) as(ﬂo’) b a‘v(ﬂa’) ) . b a( ) o "
- _ﬂ_b(z){as(l;;l) +as(l~)11) —2_20 5 In[—i(7} + i€)] _OTln[ i(tp + 16)]}1// (Bl x )Ty (g, y1), (62)

~ 2
where b3 = % e’ and 75 = |§_§\ T8 =I5 ﬂ, - Note that formally a; In[—i(zj + i€)] exceeds our accuracy but we keep it to

ensure the correct causal structure in the coordinate space, similar to the leading order evolution (43).
The solution of Eq. (61) has the form

asly)

—Z‘F[ ——ln[ i(Thy+ie)]) In

1
T )
2 e sl ) astig) asn )
77 (B x )Ty (B.yL) = e ™ 0 0
S - 50 1n[—i(rgtie)]) Inlsle) 41 —
X e ﬂb(Z)Kfls(bLl) > [—i(zg+ie)]) as(oy) ' as(uo) (ﬂng (ﬂBaxJ_)Fl// (ﬂB’yJ_)' (63)
Using the expansion
1 bo . . a (/,t r) 1 1 b2 (o2 |: < 1
————In[—i(7y +ie >ln e - =g, In—|In —fﬁ +i€e)osb? e’ | +=Incoy| +0
(g i +io aslig) T alig) a4 oy M\ g ielosbler Jpinoo | +0(e)

(64)

it is easy to check that at the leading order we obtain the LO equation (42).

Note that, as in the leading order, the structure of Sudakov evolution (63) looks like two independent exponential factors
which describe two independent evolutions of operators (26) [see the discussion below Eq. (42)]. Of course, one should not
expect this property beyond the Sudakov region.
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Let us present the final result for the rapidity evolution of quark TMDs with running coupling

as(us)

2 1 bg P 1 1
70 (3 Tw° _ _@[(ax(i?ll)_Tln[_l(TBJ”e)])lna.\'(#(,/ )Jra.x(u”/)_%(u”r )
W (B x )Ty (Bp.yL) = e 0 0
_2Fr 1 boqai—; i as (4g) L1
s o el e ) e (65
b b 9

~ 2 !
where 2 = b7'\/o|Bgls, u2 = b7'\/o|Psls, b = % e’? and 75 = % Ty = % Equation (65) is one of the main results

B

of this paper, another being the similar Eq. (130) for gluon TMDs.

A. Quark loop contribution from light-cone expansion

There is a simple way to check Eq. (59). First, note that knowing the result (59), we can take pp = 0 from the beginning.
This means that our external field is on the mass shell so we can use the light-cone expansion (see, e.g., Ref. [21 1.? Second,
as we demonstrated above, the x™ dependence of the LHS of Eq. (59) is power suppressed so we can take x™ = y* from the
beginning:

d d o la
o[ =00l [0y Ty (v 3 1= ) = =5 ([ ool oo,y LTy (v v =8 ) T (66)

In this case, all relevant distances are spacelike so we can replace the product of operators in the matrix element in the LHS
by the T-product. Also, it is convenient to take y; = 0 and y™ = 0. Thus, we need to calculate

1 d

_ _ ig la—c looy
pac, O a5 (TH0". —eoli =00, 0oy (07,0, =87y ™
d 0 ln_’z—;2 'S
—25_%[/ dZ+<Z+,)CJ_ p2 FT? 0+,—5_,OJ_> —(XJ_—>O):| (67)

in the background field

W(et) = / A e W(py).

where we used the BLM prescription (45) for the Feynman gluon propagator. Hereafter we use Schwinger’s notations
defined as

(X|f(P)|y)=/dp6""’<"‘y>f(l7)’ (x[¥y) =¥ (x)5(x-y), (68)

and similarly (x|A|y) = A(x)6(x — y) for future calculations in the gluon background. The relevant diagrams are shown
in Fig. 4.
It is convenient to rewrite Eq. (67) as follows:

d [ [o In£ 1
RHS of Eq. (67) = —2i5_% [/ dz* (z*,xL pzp 0“1’? 0, —5‘,Ol) —(x, — 0)}
d me
+2l5_ﬁ [(O*,xl p2p T? 0+’_6_70L> —()Cl —)0):| (69)

The reader may wonder why here we use the expansion at small x} while in other sections we say that x2 is not small. The reason is
that the parameter of the near-light-cone expansion of Ref. [21] is x2D? and D? = 0 in our approximation so the first term of this light-
cone expansion is sufficient for our purposes at any x [see Eq. (D3) from Appendix D].
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FIG. 4. Quark loop correction to quark TMD evolution.

Since *¥(x*) = 0, we can use light-cone expansion (D2) from Sec. D. First, note that the second term in the RHS of
Eq. (69) can be omitted since the light-cone expansion of the expression in the square brackets depends only on x3 and does
not depend on 6. Second, using Eq. (D6) for the first line in Eq. (69) we get

d [ [o r
RHS of Eq. (67) =6 —— [ / drt— L)
dé™ | J-o  8mr(x% —27767)¢

y ({lnw—i—é—w(l—i—e)—i—y} A oW (uz) + /O ldulnﬁa“l’(uz+)> —(xLﬁO)]. (70)

Next, using formulas (D8) and (D9) one obtains

1 [o I'(e) - (x% =2z767) 1
RHS of Eq. (67) =—— dz* 1 ——y(l —y(l
of g (67) =~ [ e o D0 In T 1 )

Udr  xr=2xts
—A 1_tlnx;_’zxuré_]a“l’(ﬁ)—(xl -0)
1

Lo ¥ {

N 871'%1 —0 ozt

2
. X7
()| 0

1 0 0¥ (z* 3 —2716 3 —2776" —2z76" 3
[ P (e ) )]

1 ~2
Eln2 (x3 =2zt67) +In(x3 —22767) <ln% + 2y>

1673 ) ozt —2776" 4 X2 =276
(71)
To compare to Eq. (59) we should take ¥(z*) = [ dBze™ s (). After some algebra we get
, L | . (B
—igfp | dzteTiePs? Eln (=2z767) +In(-2z167) 1nz+2y
—ifp+¢€ i L[ (=ifs+e€)e 2o

= —|mn—2ET° I 42y ) 4= [m—EETEC - 72
{n 26 Q”](“ﬂL y)+2 " 7 T, (72)
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Also,

: O 1t pmiopsr L2 + + s ~ x
—lQﬂB _oodZ e B Eln( _2Z o )+ln( —2Z 5) lnz—l—2}/ —L12 m

1 i n? 6
=—In2x2 +In2 (In=+2y )| ==+ 0———), 73
2nxl+ nxl<n4—|— y) 6+ <Qx2lﬂ3) (73)

where we used the fact that 250~ ~ —L_ ~
X7 opfps opfgs

Using these two integrals for Eq. (71) we get

d + + Fig la—c loop
57 5= {TH[07, ~oo] [=00, 07]gly (07, 0., =67) })y

ba2cp x? X3 it r° 5
=7 [ dBz¥ In— n———+3y | —-——+0——], 74
16”2/ I (ﬂB)|:<n25 [~ lﬂ3+€]+7>(n 8(—ifp + )0 + 3y >t o fp (74)
which agrees with Eq. (59). We will use this method for calculation of quark loops in the gluon case below.

IV. EVOLUTION OF QUARK TMDS WITH GAUGE LINKS OUT TO +

The calculation of diagrams with Wilson lines going to +oo repeats that of the —oo case. For the diagrams of
Figs. 1(a)-1(c) with gauge links out to +o0, instead of Eq. (19), we get

([0, ], L (v, y L. 87))y 1P

; 1 el s(B = Pp)
= —ig? dppd ‘”’By/ddd B 'Y (B3,
lg CF/ ﬂB pBLe a /B plﬁ—leaﬂs—pi+l€a(ﬂ—ﬁ3)s—(p—p3)i+l€ (ﬁB pBl)
Bse’s
= - dppd ~ippy d d I'Y(pg, 75
g CF/ g PB € / a/ P 2 aﬂ3s+(p PB) ie] (P PBL) (75)

and in place of Eq. (14) or Egs. (21) and (22)
([t o] Ty (3, y 1, 67))y® 10 P
—er [ apudpy e [ dadpap, [2n5(a<ﬂ — )5 = (p = pp)2) (B — B)s0(@)
iagd~

(ﬁ—ﬂB)S e
aB=Ba)s = (p — po) + e T0Ps "’3)9(“)] Fic

. 0 ,”@A*+t(p AL _ 1)
= ¢ dB.d ’ —zpBy/ a /d ﬁBs(e
g CF/ g pBLW(ﬂB PBL)e ae's P PL [afss + (p — PB) ie]

1
—p2 _
affs — p] —ie

+

e IR T (B, py )

(p—

(p = pp)iePfePut
alapps + (p — pp)} + i€ [aﬂBs +(p—pp)i — 1]

) AT —ia—ﬁgAJr]

). i) (76)

Note that for gauge links out to oo the sign of cutoff 5~ does not matter: the IR cancellation occurs at whatever o. As
discussed above, we choose the sign of splitting in such a way that all relevant distances in the operators are spacelike. With
this sign of point splitting in the “—” direction we can use the complex conjugate versions of integrals (C4)—(C9) in the
Appendix C.

Similarly, one can easily demonstrate that the contribution of diagrams in Figs. 1(d)-1(f) with gauge links out to +oo
differs from Eq. (36) by replacements iz + ie — fip — ie and 6 — —o. Repeating the analysis of Sec. II and using (complex
conjugate) integral (C6) from Appendix C we get the evolution equation for quark TMDs with gauge links out to 4oo in the
form
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d d\ _,
(5% +0 @) W’ (B x )Ty (Bp.y1)

7

= —azcr [ WBpdByapy Aply 7 (B x )Ty (By. yu)e e e

x |In i(,B —ie)osbhie’ | +1In i(ﬂ’ —ie)o'sb’e’ || + O mml (77)
47" + 478 + ppos’ Ppo’s)’
and the solution is
_ascp o'_/’ /! i _; 2 , _agepy o g /
l,_UGI (ﬂﬁ;,xl)rl//"(ﬂg,h) —e * lnﬁo[lﬂf’ o T2In(3(By ’E)Sbj_ey)]l/_/% (ﬂ%ﬂﬂ_)rl//o—o (ﬂB»)’J_)e 4”Fln50[1n060+21n(4(ﬂ3 ie)sb? e7)], (78)
where 7 (. x,) and w°(fg,y, ) are given by formulas (26) with gauge links out to -+oo:
—6(t = | 1 + oyt - + + 1
s A] ) = s Ay T T s x° Y1) = | 5 y s Y1l 7 |-
po(xtx) =g xtx [x ", —oo] Wy y) =[-eoy Ly vy (79)
po po
In the coordinate space Eq. (78) corresponds to
~ . 1 -%E(n% Ind'o)+Inz In ooy
§7 (xFx )Ty (yF,yy) = 12¢ e
T
: _ ACr o . _agc ra
x/d;[ o ln%) +CC:| /der{ & ZﬂFlng]) +CC]
ascp o e _%CF 0 .C.
(xt —zt + ie)l_ g v —wh i) T
X oo (xt x )y (v yy). (80)

Now we have z© > x™ and wt > y* so the evolution goes out to +oo.
For completeness, let us present the final result for the evolution with running coupling which is obtained from Eq. (65)
by replacement —irg + € to itg + €,

2epp 1 boqries iyt 1 1
ot . G2 i) S e w )
V(P x )W (Pg.y) = e 0 0
_ml 1 —@1 . i 1 fl:(#5)+ ) B 1

x ¢ o o T e T o (g1 Py (B, v,). (81)

V. RAPIDITY EVOLUTION OF GLUON TMDS

A. Leading-order contribution
The gluon TMD is defined by the operator (5)

F/(x*.x ). x £ on][x 1.y 1 [ugon[F00m + y. IF 7 (3. y1). (82)

The typical process determined by gluon TMD (with gauge links out to —o0) is Higgs production by gluon-gluon fusion in
the Sudakov region. If one approximates the t-quark loop by a point vertex, the differential cross section is determined by
the “hadronic tensor” given by the formula similar to Eq. (1) with gluon TMDs [22],

1

Glopzion) = 5= [ e (PPt 2. (202 conl o1, 01y oom O (O)P), (83)

in place of quark ones (see the discussion in Ref. [16]).*

*It should also be noted that at small x the Sudakov double logs for Higgs production in pA collisions were studied in Refs. [23,24]
using the k7 factorization approach.
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The leading-order rapidity evolution was found in
Ref. [8]. Here we first repeat the LO derivation and then
obtain the running-coupling correction by the BLM pre-
scription. Similar to the quark case, we define rapidity-
regularized operators by
Fpo(xxt) = (F7)P(x*.x,. =67 [xt, —oote

X

Friviy) = ooy () (e, =87) (84)

where 6~ = Q—IU. Let us emphasize again that we use the
point-splitting operators in the RHSs only for the pertur-
bative calculations.

Similar to the quark case considered above, to find the
LO evolution equation we calculate diagrams in the back-
ground field A§*(x,,x,) and use point splitting for
regularization of rapidity divergencies,

(x

(T{AS ()AL (3))) = (

—i
PG, +2iF,, + i€

(T{AL ()AL (»)})

i

P2 +2iF ,, —ic
1

P2gﬂ§ +2l.7:”g=: —ie

2

)= (s

i) =~

g g (275(p2)0( o) ly) + 4 (

ab( |—ig,,g"
y - X 2 + .
p-+ie

i9,,9°

p-—ie

d d ;
<a%+a’ w) (i x =8 )x, ool

X [, y1]% [—eo, y+]§dFi_'d(y+vyL, =6 )4 (85)

Also, we use the A, = 0 gauge for the background field
and background-Feynman (bF) gauge for quantum gluons.
As we mentioned above, in such a gauge the contribution of
gauge link [x,y]_.+ can be neglected. Moreover, in the
bF gauge the product gA$*" is renorm invariant so there is no
need to consider self-energy diagrams, and the one-loop
evolution of the operator (5) looks the same as in Fig. 1 but
with gluons instead of quarks. We will also use the notation
A, =g¢A7 and F,, =9,A,-09,A,—i[A, A]. Gluon
propagators in the bF gauge are

1 1
-2 Fob 0(F?).
y) (x‘pz—i-ie ””p2+iey>+ ()

1
y>+2(x Fab—— y>+0(f2),
1

p>—ie

p-—ie

21; 2 2] 2
p°8(p*)0(po)p Pl 1207, Tie

ab
)

Fe25(5)0po) +5(P2)9(P0)}-ﬁ}5];')’> Lo(F).

p-—ie p?+ie
(86)
Here a and b are adjoint indices and
(xlf(p)ly) = / dpe Pt f(p).  (xlf(A)ly) = F(A)5(x — y)
are Schwinger’s notations for propagators in background fields.
Let us start with diagrams in Figs. 5(a)-5(c). The contribution of the virtual diagram i Fig. 5(c) is
ig. 5c . v —a i P _
(Foa(y y ) = —192/_ dy (AP (Y y (DAY = DIATP) (v .,y 1 =67))a
= —2¢4°N / "oyt Fia eyt s
‘oo P e p* +ie R
1 WP
= —-2i¢’N ) -6
1 C(yﬂ—l—iepz—l—ie p2+i€y >
= —is¢’N, | dpgdpy F I —irey [ @ d
= —ISg N, frdps, (ﬂB’PBJe aﬁ+ i
ﬁ _ﬂ e—iagé‘
X /dpj_ 5 N ( B) 2 RN (87)
(aps — p1 +ie)(a(p - Pp)s — (p — pp)1 + i€)
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FIG. 5.

(h)

where F~(Bg, pg ) is the Fourier transform of the background field:

Fi(By. py,) = / dztdz, Fi(z

One-loop diagrams for gluon TMD operator (5) in the background gluon field.

7 )ePrer =ilpp2)L

It is worth noting that similar to the quark case, in a general gauge one should replace background fields by

fﬁi(z+’zj_) -

[z+, Foo ] FP (27, 2)),

where the direction of Wilson lines corresponds to the choice of o0 in Eq. (82).
The integral over momenta in Eq. (87) is the same as in Eq. (19), so we get

. vt ) )
(Foyyh))hE > = —ig? / dy' AT (Y y 1, =67)(DTAMY = DIATP) (v, yy, —67)

_#N, / Bydpy, P F19(By. py ) / da / ps o

Next, consider diagrams in Figs. 5(a) and 5(b)

Pps

2 aPps + (p— ps)? + i€]

xt . R
(et —colbeFia(y*, y, , =67 )E P = ig? / dx'* AP (X' x| ) (DA — DIA=) (y*,y,, —57)

xt
= —2ig’N, / dx'* (x’

=2¢°N, (x‘
/dp ell

1
p+ic

(p —le

1 i
p> —ie

. . d -
— 5N, / Budpy, F (. pp Yeirn [ da— 3P gmiven

|

(8 — Pp)O(a )
afs — p3 —

e 1Y
F10218(p*)0(po) + 276(p*)0(po) F bp2+i€>p ‘y>

S(P2)0(po)f + Hp?)0(po) Fi0 — P )\y)

p+ie

2 8[(B—Ppas — (p— pp)i] +
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(B — P)0(a)275(aps — p?)

a(p—Pg)s — (p — pp)i + ic

J

(88)

(89)
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The integral over momenta is the same as in the quark case [see Eq. (14)] so similar to Egs. (21) and (22) we get
(It —oo] U F 4 (y ",y =67)) 4

— #N, / adpy, F-*(By. py, )evo" / da / dm{

2
P .
ﬁBse_’%QAtH(P A)

—e
pilapps + (p — pp)i + ic]

‘a
16

2
(p— pp)ieirs et hes _ e } 93)
e’ls
lapps + (p — pp)i + ie] [aﬂBS +(p—pp)i - P3]
and therefore
([t —00]®¥ [—o0, y b Fie (yt y  —67)) (94)

Pes(e 11130A++l(p Ay 1)

pilapps + (p — pp)i + ie]

_gch/dﬁBdPBL]:_j’b(ﬁB,PBL)e_i”B)’/) dae"%/dpl<

. rp)} »
(p = pa) (P [emitinthos" _ gmizies’] ) (95)

alapps + (p — pp)i + i€ [aﬂBs +(p—pp)i - ri

The integral is the same as in Eq. (23) for the quark case, so similar to Eq. (31) we get the contribution of diagrams in
Figs. 5(a)-5(c) in the form

Gi [x+ _oo]ab[_oo y+]bch_j’C y+ . _i Fig. 5a—c
dG ’ X ) y s s QG A

2 . 2
— - Lo [ F By e (=t iasater) + 0L, (96)

ppos

where

Fi(Bpzr) = / dzFi(zh 2 et (97)

in accordance with Eq. (88).
A similar calculation of diagrams in Figs. 5(d)-5(f) yields

(Frha(xt xy, =07 [x", —oo] P [—00. y¥]3) 4

— <(D‘Ai’“ — DA™ (xt, x, —87)ig? {/x

—0o0

+

y
dx’*A_'“"(xﬂxL) — /

[Se]

dy' TAT(y T, )’J_)] >A (98)

Bos(eir e )

_ 2N, /d dpp, e PregF i (B, /d / dae'_<
=g ppdpp e """y (B Ps, PL aPps — (p + pp)i + i€

(-+ py)3 e/ )se e ipea — i) ) (99)
alapps + pi — (p+ pB)L + 16} [afBps — (p + pp)i + ie]

and therefore [see Eq. (36)] we get
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L o R R
6 h—— 1s— , —00 —0Qo0,
do’ 0o’ * Y

= 89 N, /dﬂB}' (B, x| e Prex” 1n<——(,BB l€)GSAi€y) —I—O( i )

3 s (100)

Finally, let us discuss “handbag” diagrams in Figs. 5(g)-5(i). Similar to the quark case, since the separation between x
and y is spacelike, we can replace the product of operators in Eq. (85) by the T-product and get

(T{F~"(x*, x, =87 )F;7(y" ',y , =6 ) a =

1 1
=2 —t FT
g( PP2+ze P +ie” ' PP +ie
(p+ pp) 1 (p = pg);

—i(x] (77_5’

1
$P2ge, + 2igF 5, + i€

P 5 ) (P~ giy = Piby) )iy, s

y) = —4¢°N. / ABpdpp, Apdp' s e PPy (B piy )

<77 ) (4

(p+ pg)* + ie p* + ie (p — pp)* + i€

!

— —2S92NC / dﬁdeBLdﬁ%dp,BLe_ip;x_ipByf_i'a( %7P%L)-7:,'_'a(ﬂ37173l)

Yi(p+ pg)(p - pp)i

% /dadﬂdpLeiaQ(é/_6)+iﬁgA+

(aps = p1 +ie)la(p = Pg)s — (p — pp)i + i€lla(B+ By)s — (p + pp)] + i€]

The integral in the RHS is the same as for one of the terms in Eq. (39), namely the ~y;I'y; term. As discussed below
Eq. (39), it is a sum of contributions independent of &, §’ and power corrections so it can be neglected for the evolution with

respect to ¢ and o',

Thus, similar to the quark case (41), we get the leading-order evolution equation for gluon TMD in the form

d
(Ud—+6/d )F’aa<ﬁ8’xl) (ﬂB?yJ_)

= —g—;chi'“;’# (P x1)F(Pp,y1) {ln <—i(ﬂ% + i€)a’sbie”> +1In (—i(ﬂB + ie)asbiei’)] ,

and the solution is

Fre (Byox ) FE(Poyi) =e

where again b, = A . The only difference between the
evolution of quark and gluon TMDs at the leading order is
the replacement ¢ <> N,.. Also, the leading-order evolu-
tion of gluon TMDs in the coordinate space has the same
conformal form as Eq. (44) with the ¢ — N, replacement
(see the discussion in Ref. [8]).

B. Quark loop contribution from light-cone expansion

As we saw in Sec. III, while the diagrams for quark
TMDs in the external field depend on virtualities of
background-field gluons, the rapidity evolution of these
diagrams does not. It is natural to assume that the same
|

<T{AZ (X)Af (y)}>quark loop

1
= /dZIdZZ (X

PGy + 2iF 44

—Gsop 1n;—;[1na/ag)+21n(—§(ﬂ;;+ie)mie7)]

Fraoo (B, x1 ) Fi

am
Zl) Trt"y, (Zl

1
> Zz> "yp <Zz

P

(101)

LoF InZ{Inoog+21n(—

(ﬁB?yJ_)e E

(ﬂg+ie)sAieV)],

(102)

will happen for gluon TMDs. In this section we will
calculate the quark-loop contribution to the rapidity
evolution of gluon TMDs using light-cone expansion
of quark and gluon propagators. Similar to the calcu-
lations in Sec. III A, we assume that the background-field
gluons are on the mass shell and that x™ = y*. As we
discussed, at x* = y™ all relevant operators are at space-
like separations so we can calculate ordinary Feynman
diagrams (instead of cut diagrams depicted in Fig. 5);
see Fig. 6.

The quark-loop contribution to the gluon propagator in
the bF gauge has the form

(e

1
P

1
Pzg/h, + 2lfﬂy

y)”", (103)
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FIG. 6. Quark loop correction to gluon TMD evolution.

which we need to calculate near the light cone (x —y)? = 0 in the background field with the only component
Fi(xt) (104)

with one-F accuracy. The relevant diagrams for the gluon propagator are shown in Fig. 7.
We start from the calculation of the light-cone expansion of the quark loop. Using light-cone expansion of a quark
propagator [21]

(.

where it =1 — u and z, = uz;, + 4z,, we get

O~ O

FIG. 7. Quark loop correction to the gluon propagator in the background field.

1

~|Z
P

) _ 7120 ($)[z1 2] ANCENY
)T 2 -a er ()t

IAI du[zl’ th](u2/126f<zu) +u6f(zu)2/12)[zw Z2] +0(Dﬂ~7:;w’]:2)7 (105)
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Trt? ! b !
Iy 21 1322 s\ 22| 5121

P
B(g’g) ab(
=1 21,2
471_%4_5[1 2]
B¢.4-1)gr(d-1)

1
8l (_22 )d—l A du([zl’Zu]zelfzz'b(zmgagfﬂn(zu) - 2iu9ﬂ§~7:an(zu) + iZ%Z}—aﬂ(Zu))[Zu’ Z2])ab’ (106)
12

r —s)8 Zz)

21{(P*Gup — Palp) (_;j

where B(a,b) =T'(a)l'(b)/T'(a + b) and € = ¢ — 2. To perform integration over z; and z, in Eq. (103), it is convenient to
use Eq. (D14) from the Appendix D (at a = —s) and represent Eq. (106) as follows:

(Pou ey ’*) y
0) duF ,5(z,) [ ]Jr dg_dz (Z1

pT(1-¢)
(_pZ)l—e

1
Zg) /0 duiiu(D ,F pe(z,) +a< p)

—e

)
2 1 (1 [(1—¢)p¢
+ - / du |:_Mp§<fa§(zu)< 1+)e >>p/}+upa(fﬁ§(zu) <Zl %22>>:| }_‘_O(DF’FZ) (107)
d—2Jo (=p?) (=p?)
Subtracting the counterterm
1
Eangaﬂ( G — 2iF,, — DD, )P AL,

where §Z% = 5 492 -, we get
1 b 1
FTitye | 21| 5|22 |1 7| 22| x|<1 | — counterterm
P P
ig’ i i o TR
- p{gaﬂ <Zl P m—P Zz> - <Z1 Poln—55 Py Z2> + zg% du |:u<fa§(2u) Z) z2>>P,,
_ p° 7R 3 Pt
— Pa uf/jé(zu) <1 ? V) + 21 21[1_—[)2—5 Vé) faﬁ(zu) —|-2luu 71 ? 20 (Dafﬂf(zu) +a (—)ﬁ) (108)

(recall that ji*> = jiZ;ce>/?). Substituting this expression to Eq. (103), we obtain

()l )
A

)(D Frle(zy) +u<v) —|—<212ln - ( )) (Zz;

<T{A/3 (x)Allj (y) }>quark loop

s In —p*/ P?
EYPER B S

1
+g/dzldzz/ du [—u(x
0
1 ¢
— (x — zl) <2i12u (z1 P
p P

for one flavor of massless quarks. We will need also

In —ji?/ P?
Pﬂﬂ/

u v

y

Pe

I

¢ 1

) 120
N

2

034007-24



RAPIDITY EVOLUTION OF TMDS WITH RUNNING COUPLING PHYS. REV. D 106, 034007 (2022)

o) oo )5

(T{AG(x

el

quark loop

1 i }p
—14 Fooln— £
pz{ “r=pr) p?

2472

_g X| Py ? w dzydzy | dulin Fre(zu) | 21 p—izz 2 p—gy

4 o) [t [l a2 )mten (o ) (= 2)

_zg< 1 )<2mu<zli )(D Fyg(z)+a<—>y)+<z1 21n_ﬁ—22—§zz>.7-"m(zu)>(zz %y>:|}—,u<—>l/. (110)

Let us calculate now the quark-loop contribution to Eq. (85). As we discussed above, we can put x™ = y* = 0 and
Y1 = 0’

5 T{F9(0% =) [ e i oo™ OFJ/ET (0,04, ~57)}) o (1)

We start with the term coming from the diagram in Figs. 6(j)—6(1):

5 (T([0°, oo™ o0 0¥ (0%, 0, ~57) 1.

d . .
— =g e [ A0 ) FT(07. 0 =) = (5 = O (112)

First, let us demonstrate that the terms in the second line in Eq. (110) do not contribute to Eq. (112). Indeed, consider, for
example, the first term

d nts
6 — 5 dz <O‘,z+,xl P — 0+,yL,—5‘).7-"1»‘(0+,yL)—(xl - 0)
d N ln_ﬁ—;2
=45 5 <0 0", x O+,0J_,_6_>fi_(o+,0L)_(xJ_ -0)=0 (113)

2

Int=
because (0,0%, x*| 7”2 |0F,0,,—67) does not depend on §~. Similarly, for the second term in the second line of Eq. (110)

one gets
/dz/dquzx f(z)zlpfzz 2
s S p?
¢
(07, Ol,—5> (h<ov) xJ_—>0)]

—5 dé duuKO 0, xt pl:|21>-7:y§(zu><zl p—212>(

p

¢

P _
;Zo+,0L»—5 ) —(/,t<—>1/)—(xL—>O)}

d i(n +6),(x +67)° [ F(e 1
=5 — K / duulnufF ,:(0%) = (u < v) / du(Inu + au)F,, (0
dé‘[ 16722 A 00 o) gy ), 7 ul0)
1 _ d l.(XJ_ + (S_) xi
_(XJ__)O)] :—W}'W(O)ﬁ %{Tﬂ—(ﬂey) J (114)

where we used Eq. (E1) from the Appendix E and the fact that D¢F ¢ = 0 for our background field. Now, we have either
(u = i,v = —) or vice versa. In the first case nothing in square brackets depends on 6~ while in the second case F;; = 0 for
our background field (104)

The (x; = 0) term is singular as x| — 0 so one should regularize this divergency, for example, taking small gluon mass m, and then
X, X8 (r(l)+€> (x1 = 0)F,¢ should be replaced by [x,x(#)'*K . (mx ) — 85 m*** (=1 — €)]F . The second term here vanishes
L
for our background field (104), whereas the first term gives the expression in square brackets in the RHS of Eq. (114).
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Thus, the second line in Eq. (110) can be ignored, and we get

5 (T —nftefom, v (07,04, ~57)))

2 i -
g .. . d _ p
=" _iN. dzt42 07| = Fel )
242" G5 Z{Z<Z 1.0 ‘ { ! p}p2y5>
~2 3 ) —
/dzldzz/ du (z ,x1.0 )[ (zl —Z2>7:_”“(Zu)<22 p_2y6>
-p* 2 p
—|—2uu( p >

) + 4iiu <zl zz) D=F~4(z,) (zz
where |ys) =|07,0,,—5").

The first contribution to RHS of Eq. (115) is proportional to

— 2 ln
pz

i

;Ly)] S —-0),  (115)

Pj
2

_d . 1 P B P _
s dz <21<Z+,xl,0 ’pz {]-" In pz}?m,ob—a)
S
/d21d22/ du<2 ,x1,07 )(leln_—pz—522>}— (Zu>< —20 0¢7—5>—(X¢—>0)>
~2 1
~2 4 [0 {f"I“T}?°+’°N5‘>
P o5 y L] -
4| | 21nﬁ_522 F ’I(Zu) 22 ?0 0p,-6 _(xL_)O)

1
172

1

/dzldzz/ du(OJr x,.,0 ’—2
p

+5 d 2 D-F—i It !
LX), —

d5 ‘ o p p2 p?

1
—/dszzz/ du(z*,xb “—2 (Z1
0 p

where we used Eq. (E6). Similar to Eq. (113), the first term in the RHS vanishes since the expression in the square brackets
does not actually depend on 6~. Using Egs. (D16)—(D8), the second term can be rewritten as

0+,OL,—5‘>
2ln - —

> zz> D~F~i(z,) <

{1 3

0+,0,, -5 ) —(x, — 0)), (116)

p2

2In£, 49
RHSof Eq. (116) =6"—— dz /du[(z X0 ‘7];
p

0
:—/ dz"D=F~i(z ") KZJ“,xl,O‘

P[0 ! I'(e) 1 pP(x]=2267) 5
e d +D RSN I ST LT 0 ) 1 AN
8”2/;00 Z F (Z )|:(xi_2z+5_)g (8+ n 2 l//( +€)+7+4 (xL—)O>

2%, 49

/ —27zt5~ 2 _0st5- 275"
i ) [1 X7 =276 2776 5} (117)

2
dz*D~F~ adt 1 dy+=|.
167:/ ¢ (@)= L R A

We get
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2 ~2 _
g _d _ P
N .6 dzt |2 00| = Fi In—
247" da—/ ) [’(Z 0 { p}p y’s)
1 2 5 . -
_l/dzldzz/ du(z ,)CJ_, B —221> <Z1 2111%—522).7:_’1(2”) <Zz %y,;) —()CJ_ —)0):|
x2 =276 x2 —27t8 -2zt 5
= d*D =i In==—=" — |2t~ 4t mi? dy +=1. 118
3847: DT = [ ne 7+2} (118)

Let us now consider the two remaining terms in the RHS of Eq. (115). With our accuracy the last term in the RHS of

Eq. (115) reduces to
p.i
zl) (11 » Z2>D_7: (Zu)<

1
5‘— dz /dzldzz/ duuu(z xL,O‘ 5 —
p

O OJ_,—5)—(XJ_—)0)

3] ‘ 1
= —i—6 —_ a’z /ledZZ/ duiiu (z ,x,.0 ‘— Z1> ( p_z Z2>D‘]-“"(zu) (zZ —[0%, v, —5‘)
dy; db » o
(XL - 0)
9ij ( ) 2xixj o
= dzt | d D-Fi(uz*) - 0
647;2 dé'/ < / uuu[ XJ_—22+5 ) +xi e (”Z ) (XL - )
gijuuxy XiX; .
dz* d 2u(l =2u)———L | D~F7i(z1), 119
64” / - / MLXL—ZZW + 2u( “) uxi—Zz*ﬁ_] &) (119)

where we used Eq. (D20) to get the fourth line and Eq. (E2) to get the last line. As we discussed above, the characteristic z*

are zj, ~ 5580 X1 3> 22,67, and we get
5 IN:O / dz* /dzldzz/ du|4uu 2 |(D"F(z) | 2 %yé —(x1 —0)
A d6 p
g°N. Zohar® 2N 2
= " detDF- cha— ) = SFT0N) + 0 —=). 120
T 7687 )+ ( 2 ) “76ea2” 0+ <0ﬂ3s> (120)

Finally, from Eq. (E5) we get

1
6‘— dz /dzldzz/ duuu(z ,x1,0 ‘—2 )(
= / dz* /dzldzz/ duuu(z ,x1,0 ’
1], .
X | 22| [y, 0.,-6 —(x.—0)
p yr=0
0 _d (o Lo |t
——zay—+5 = _oodz+A duuu(zﬂxl,o ’F
0 3}
5 —— aV,Jr
T ds ) o
d +
— 0" —— dz*/ duﬁu<2+,)€¢,0_‘p—6
0 p

d b _|p*
=5 i dz+A duuu(z*,xL,O ’F

p2

oo

+ z2> D~F~(z,)

el

O OJ_,—5)—(XJ_—>0)

—(x. —0)

yh0,, —5‘> D~ F~H(uz" +ay™)
y =0

1 p+
duiiu (Z+,XJ_,O_‘ 5
p

0+,0,, —5‘>D‘.7-'"i(uz+) —(x; > 0)

0*,0,, —5‘) (D7)2F~H(uz") = (xL = 0)

0%,0,, —5‘) (D72 F =i (uzt) = (x, = 0) (121)

because the term in the fifth line vanishes similar to Eq. (113). Using the first of Eqs. (E2) with
O(uz") = uz*(D™)>F~(uz"), we obtain
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1 2716
RHS of Eq. (121) = 64 5 dz (D™)*F~i( +)/ duz, 1 %

i - 2776 ux?
dztD~F~i(z+ d i - L
~ 64n? / : ) / ”[ 276" ux? — 2z+5—]
i x2 2
dzt*D~F~ 1 -2 (0] 122
~ 64r? / ¢ 1 ){n—Zeré } * <oﬂ3s) (122)
because the characteristic z* ar N/ﬁ. Thus, the first term in the last line in Eq. (115) is
7
W l.Ncé_ K dZ /dZ]dZQ / duiu (Zl Z2> (D .7: (Zu) ( ? O OJ_, -0~ ) — (.X'J_ - 0)
&N, x
dz"D~F~ -2 o 123
7687 | @) { —2z76 ] - <0'ﬂ3s> (123)

Let us now assemble the result for the contribution (112) given by a sum of Eqs. (118), (123), and (120)

d . e _
5L ({07 ~oolt [0, 0" 4070, -57)))
N, [0 , x2 =2zt6" X2 =276 2776
— ¢ dztD-F-ia(7){ 1 1L 1 ~2v
384nt ) ° z ){n —276 {n

2:+6 1 m’
+Inf? Z4 +4y+3]_5}+0(6ﬂ3s> (124)

Note that double-log terms are the same as in the quark case [see Eq. (71)]
Performing Fourier transformation using Eqgs. (72) and (73) we get

_d

1 Fig. 5a—cloop
)

Qo A

ZNC ap —ifgoy* ln 2 [ B+ ]+ 11’1 2L:u45_ 43,43 1 7 +0 ZL ]:—ia(ﬁ 0 )
=—— e 'r ——[-i € — o “(Pg,
38474 | TP 25~ B ")\ "8o(=ipg+e) ¥ 276 Bpos BUL

(125)

Recall that we calculated the contribution due to one quark flavor, so for n flavors we should multiply Eq. (125) by ny, and
to use the BLM prescription we must replace —a-n, by by = {3-N, — &

oy We obtain then
T

B d a i 1 Fig. 5Sa—cloop
=)

A
2 2 2 ~4 2 2
g°N.bg —iBaov* X708, . XU 1 = my »
—— Appe-itrer ) (1 _ In—H 3,32 T F-ia(8,.0,).
64 / fe {(n l ’ﬁB“LeHy><“40s(—i/33+e)+ 72 ) 7376 Y9\ 5,05 (B-0.)

(126)
Adding the leading-order term and restoring y*,y, we get
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— N /dﬂB]: (B, y ) )e Py {ln<A42 (—ifp —I—e)ase}’) + 0( m )

ppos

1M

b(xs(,u) Aos . . A% it 1 m?
+—87r {(lnt1 [_lﬁ8+€]+y><ln4—as(—iﬂ3+€)+3y+3)_§_€+0<53;s)}

2

— -2y [ appritp et fnl =L g+ icosate] + o+ o(fL). 2

where p; = /%.
1

BOS

We see that the result is the same as Eq. (59) for quark TMD up to the replacement ¢ — N and O(a,(u,)) corrections.
Because of that, we can just recycle all formulas for the evolution from the quark TMD case replacing ¢ — N, when

appropriate. The evolution equation for gluon TMDs will be

a
(005 )71 B )72 B3

S G x T ) [ o (= B+ )5t ) + ) o (= + ot )|, (128)

where b| = A as usual. The solution of this equation is the same as (63) with ¢y — N replacement

_2Neqy as (/4”/)(

HIn[~i (T +ie)]) + i

J
F (3 ) FE (Bgy) = ¢ A W )
2N¢ 1y s (Ho) 1 . . 1 1
—=%[In e (— —i(tptie)) tots—ao)
X e lrh(z) s (Hog ) a,-(bll s (4o) A(#ao)]_—l_a,go( Bva_) (ﬂB yj_) (129)
Let us now set ¢/ = ¢ and present the final form of the evolution with the rapidity cutoff [cf. Eq. (65)]
4 . Bl i)
Frao (B x ) F 0 (Bp.yr) =e ™ i B
2N¢ as(po) ; ; 1
—= slingeeres(——tn[—i(tptie) )+~
xe ™o o)t Ty Frasoy (B, x1 ) F L (Bp,y1)- (130)

It should also be mentioned that the result for the
evolution of gluon TMDs with gauge links out to 4+oo is
Eq. (130) with the replacement —i(zp + i€) — i(7p — i€),
the same as in Eq. (81) for quark TMDs.

VI. CONCLUSIONS

This paper was devoted to the study of the rapidity
evolution of quark and gluon TMDs using the small-x
methods. As customary for studies of small-x amplitudes,
we used a rapidity-only cutoff for longitudinal divergencies
due to infinite gauge links. With such cutoff for TMDs,
there is only one evolution parameter—this rapidity cutoff.
However, as we mentioned in the Introduction, the argu-
ment of the coupling constant in such an evolution is
undetermined at the leading order. To fix it, one needs to go

beyond the leading order and employ some additional
BLM/renormalon considerations, as was done for NLO BK
(Balitsky-Kovchegov) evolution in Refs. [12,13]. In this
paper, we have done such BLM analysis for both quark and
gluon TMDs, and the result is very simple: the effective
BLM scale for Sudakov evolution is halfway (in the
logarithmical scale) between transverse momentum and
longitudinal “energy” of TMD.

Let us present the final form of the running-coupling

evolution for the cutoff ¢ such that 6 = ¢/ = ;‘X—‘ As we

mentioned above, in the leading order the evolution with
such a cutoff is conformally invariant [see Eq. (44)]. With
the running coupling, the evolution equation for quark
TMDs reads (b =x, —y,)
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d _
gd—gwg(ﬁ’B,xl)ng(ﬂB,yl)

= =L By T (B30 [asm;) In (—i (B + ie)gew) +aslie) ln(

V2

—\/%(ﬂg + ie)gebleyﬂ, (131)

where u. = b7 (|Bslocv2)V/4, pl = b7'(|Fslesv2)!/4, and the solution has the form

. !
2o Ve (e e )L ——L ]

U b2 ag (Wl ) Nag (b1
(B x )Ty (g, y 1) = e ™o @& w0

_2cppy aslug) 1
X e /rb(z)[]n“s(#go)(

72 _ by B
where b = %e”/ and 7p = i, vp = AR As we men-
B
1

Pr

tioned above, although formaﬁ’f}l agIn[—itp + €] exceeds
our accuracy, it determines the direction of evolution of
operators in the coordinate space: + positions of operators
move to the left as a result of evolution [see the discussion
after Eq. (43)]. Consequently, the evolution of quark TMDs
with gauge links out to 4+-oco has the same form (132) but
with In[izp + €] [see Eq. (80)], and + positions of operators
move to the right.

Another result of our paper is that with BLM scale
setting and the rapidity evolution of gluon TMDs has the
same form as the one for quark TMDs with trivial
replacement ¢ — N, [see, e.g., Eq. (130)].

It should be noted that, although we used the small-x
methods (rapidity-only factorization, etc.), our results (131)
and (132) are correct at any xp=fp as long as
oxps > ~bf.6 The difference between moderate and
small x comes at the end point of evolution. As discussed
in Ref. [8], the double-log logarithmical evolution [(63) or
(130)] can be used until oxps ~ bf. At this point, if xz ~ 1,
the situation is similar to Deep Inelastic Scattering (DIS) at
moderate x so one should use single-log DGLAP evolution
plus some phenomenological models for TMDs based on
relations to ordinary PDFs [2,25]. If, however, xp < 1, the
situation is more like DIS at small x so the BFKL/BK
evolution should be applicable. A plausible scenario of
matching these evolutions is discussed in Appendix G.

Also, we saw that one should be very careful with
rapidity cutoff in order not to spoil analytic properties of
Feynman diagrams which may bring out the noncancella-
tion of IR divergencies. While the “rigid cutoff” ¢ > a did
not cause any IR problems in the analysis of dipole
evolution, we saw that in such an analysis of TMD
evolution it is not applicable and one should use “smooth
cutoff” e=@/° to avoid IR divergence.’

°The usual requirement of pQCD applicability means that
a, (7b 1) should be a valid small parameter.

We checked that the use of a smooth cutoff instead of a rigid
one does not lead to any change in NLO BK calculations in
Refs. [12,19,20].

eyl el +

asG) astly)

<

1 1
as(pe) as ] —
stie) - asliy) l//gn(ﬂ};, xl)rwgo(ﬂBv )’J_)’ (132)

Finally, an obvious outlook is to study the TMD
factorization with rapidity-only cutoffs and find the
cross section of the Higgs production or the Drell-Yan
process at ¢g; ~few GeV in the one-loop approxi-
mation using Eq. (130) and the would-be result for the
one-loop “coefficient factor.” In addition, at that point it
would be possible to compare our result with the two-loop
results obtained by CSS method [26-29]. The study is in
progress.
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APPENDIX A: RAPIDITY CUTOFF AND
CAUSALITY

In this appendix we discuss the effects of rapidity cutoff
on general properties of Feynman diagrams. As we saw in
Sec. II B, the rigid cutoff does not ensure cancellation
between real and virtual gluon emissions while point-
splitting cutoff preserves this cancellation. Thus, one
should be very careful imposing cutoffs on Feynman
diagrams since one may violate properties of causality
and unitarity build-in into Feynman diagrams.

It is a textbook subject that perturbative series in a
quantum field theory preserve causality so if one calculates
diagrams for some commutator at spacelike distances one
should get zero as a result. (Some caution must be applied
in a gauge theory where this property is correct for gauge-
invariant operators.) Similarly, one should expect the same
property in a quantum theory in the background field,
namely diagrams in the background field for the commu-
tator at spacelike distances should sum up to zero. Let us
check this causality property for our typical commutators
and discuss whether this property survives our rapidity
cutoff for Feynman diagrams.
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To avoid the above-mentioned specific complications in gauge theories, we consider a massless scalar theory in the
background field described by the Lagrangian

1 A -
=—0d"qd Z 0%,
> ¢pr+2<p¢

where ¢p(x) = ¢(x*, x| ) is a background scalar field which does not depend on x~. Let us calculate the expectation value of
the commutator [¢p(x,,x"),¢(y,,y")] in this theory. A simple calculation yields

0" =y ) p(x".x1). 0y 1)) =00 =y ) (o™ x (v .y 1)) — (T{o(x " x)e(y".y1)))
= / dz[=i{T{p(x)0(2)})d(2) (9(2)p(»)) + i(@(x)0(2)) P () (T{w(2)e(¥)})
— ilp(x)9(2)d () (@(¥)0(2)) + {{T{p(x)p(2))p(2) HT{p(2)p(y)})]

l 2 ; N—_:pl + i : +7
—%/dz/dadﬂdpL/da’dﬁ’dp’le"aQ(Z‘Z) —if'o(x=2)"+i(p'x=2) | p=ife(z=y)*+i(p.z=y)1

_; —p2 _ e 12 ;
N { adfs—p | P—ie S(aps—pl)0(a)—&ap's—p', )aﬂs_pi_l_ie‘g(a/)
! 1 }
a +
la/ﬂ/s_l’ﬁ_z_kaﬂs—pi—ie]¢(z ,ZJ_)

- da ' L 7’ L
dZ+JZZJ_¢(Z+,ZJ_)/?/dpldpie_lﬁg(x_z)++l(p ’X_Z)J__lﬁg(z_y) +’(p~Z_Y)J_

:E
X [9(0!)9(2—)0+ —t9(06)<9(z—y)+ —0(-a)0(x—z)"0(z—y)"]
/ dz+ / iz, & ZL) / s = (A1)
3271' sQ L (x—2)T(z—y)"
because the expression is square brackets in the exponent is strictly positive.

Similarly,
OO =x")([p(x"x1), (" vy ) =007 —x ") ([{p(x", x )" y1))g — (T{e(x™ x )e(y".y1))5)
p/z 1,2
=— [ dzt Pz p(z, 7)) / p / dp | dp', e~ aele=a) il =) ~igre(z=y) " +ilp.a=y),
40 o’ L

x[0(a)0(z—x)" = 9(05)9(Z =¥ +0(-a)0(y —2)"0(z = x)"]

i Z ZJ_) / ~iagly ef | 091 |
s ) B¢ d = T = (), A2
~ 327 s[+ - / “o-a.-0. (A2)

We see that without rapidity cutoff we have causality. However, if we adopt a rigid cutoff ¢ > |a|, we get an integral

1 [o a0l 9 - 2 2 2 -1 2 2
_/ dre T ;J__[(x Z)J_++ (v Z)i} Smw[(x Z)LﬂL (v Z)i’
cJs 00 |2(x—2)"  2(z-y) 2(x—2)"  2(z-vy)

(A3)

which does not vanish. Thus, rigid cutoff violates analytical properties of Feynman diagrams, and hence there is no surprise
that there is no cancellation between “real and virtual emissions” represented by the fifth and the sixth lines in Eq. (A1),
respectively.

Let us now introduce a “point-splitting cutoff” §~ such that the separation between x and y° = y — §~ is spacelike. We get

O(xt =y )([p(x", x1), (" vy, 675

7 I e
PES A -yt dzt | d? Z ZJ_) /d mQ[Z(X*Z)++2(Zﬂ')++6 ] A4
327z sg Y )/ ‘ / e (x=2)"(z—y)" « A
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and

O(y" —x")(p(x".x1) (3" .y =07)]);

il y
_ 0 + _ + dz" 6[2
302 00T / ‘ / L) =)

We see that the sign of 6~ matters and should be chosen
in such a way that (x—°)?=(xt—y")(£5)-
(x —y)% < 0. In this paper we use such a point-splitting
cutoff for perturbative calculations [see the discussion after
Eq. (24)].

APPENDIX B: GAUGE INVARIANCE OF
RAPIDITY-ONLY EVOLUTION EQUATIONS

The proof of gauge invariance of evolution equa-
tions follows from Ward identities for propagators in the
background field and for Wilson lines. In this appendix
we will demonstrate that use of the background-Lorenz
gauge for gluon propagators leads to the same evolution
equation.

Let us start with the diagrams for leading-order evolution
of quark TMDs. As we discussed above, with our point-
splitting cutoff (26), all relevant distances are spacelike so
we can replace the product of operators in the matrix
element in the LHS by the T-product. The gluon propagator
in the Lorenz gauge has the form

‘ 1 1
(TAAD) = (5| (1= PugsPe ) 177

1 ab
(nrr))”

(B1)

(7

£ )R D) = 59z = ), (D) R (2] 5

d(z".z1)

R (A3)

P N
/ dae” 7Tl 2,

where all singularities are of the form —~—. For calculation

P2
of the logarithmic part of evolution of quark TMD we can
neglect extra F,; and use

%_p ipy

A 0A,0) = (x| % - Pum

y> B

We will demonstrate that the contribution of the second
term

14,0, 025 =

to

(T (x™, xp, =0")[x™, —eo],[—00

YTyt v, =67))
(B4)

2
leads to power corrections ~ —-
ayots

to the evolution equation.

The relevant diagrams are shown in Fig. 8 where the wavy
line denotes the gauge contribution to the gluon propagator
(B3). Let us start with the “handbag”* diagram in Fig. 8(a).
Using standard Ward identities and the equation of motion

for background fields ‘i’j‘_’ = P¥Y =0, we get

and therefore the contribution of gauge part of gluon propagator (B3) takes the form

(p(x =6 )Ty (y —67))8e = —ig?

=ig?P(x — 6)1 (x

1
X <x—5“—4
p

/dz,dzzF(y - 5—'%

1 -
PPl

5o

— x> =69 (z —x)¥(x)19, (B5)
z,);/ﬂzw(zl) (z, P+ %P” Zz)uh‘i‘(zg)yvtb (zz % x = 5—)
) 1TY(y —67) ~igrcpP(x —67)
(B6)
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(d) (e) (f)

FIG. 8. Diagrams with the gauge-dependent part of the gluon propagator (denoted by wavy line).

where x = x, +x7, y =y, +y", and superscript “gauge” means the contribution of the gauge part of the gluon
propagator (B3). Next, let us consider the diagram in Fig. 8(b). Using Eq. (B5) and a similar formula for Wilson lines

yt " 1 |, ab ) vyt . d " , ab .
dy zP’,FP y = —i dy e z YTy =—ilz

we obtain
auge - 1
F(x =8 )[—oot,y | I¥(y -6 )= - & / dz¥(z)r*t" <z i 5‘) <Z
ab
Y+ )’J_> Y(y—67)

1
P”ﬁ

1
P”F

ab
y++yl> . (B7)

[
Py o P

ab
Y+ y¢> T (y —67)

- 1
= —ig?P(x —&67)tt" (x - 5“ =

~ —ig?cpP(x — 67 )MP(y —67) <x -6

1], >
p4 1 ( )

(recall that we use AT = 0 gauge for background fields). Similarly, for the diagram in Fig. 8(c) we get

_ x* _ 1 1 ab
P(x— 6 )xt, —oot ] y(y — 6 )= / dxX T (x = 57)It” <y - 5“ 7 z> e 169 (x’+ +x,|P” FPM Z)
_ 1 ab
= —ig?P(x — 6 )t (y — 657) ()c+ +x; iy 5‘)
- 1
= —igch‘I’(x—5‘)1“‘I‘(y—5‘)<xJr +x; —4y—5‘>, (B9)
p

where we used Eq. (B5) and the formula

/_: dx't <x’+ +x) P‘%Pﬂ z)ab = l/_: ax'* dj”“ (x“r +x; #Pﬂ z)ab = i<x+ +x; %Pﬂ Z)ab. (B10)
Next, the contribution of the diagram in Fig. 8(d) can be obtained using Eqgs. (B7) and (B10):
W(x = 67", —oo™] [—oo™, y*| ¥(y - 67) (B11)
gauge. = _ . x* vt 1 ab
= ig?P(x — ) Ttt"P(y — 6§ )/_oo dx'* /_oo dy' ™ <x'+ +x,|P FP y't +yJ_>
= igch‘P(x—é_)F‘I’(y—é_)<x+ +x; #y’“ —|—yL>. (B12)
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Finally, let us consider diagrams in Figs. 8(e) and 8(f). The result for the diagram in Fig. 8(e) can be obtained by taking
x =y in Eq. (B8):

7(x —8)xt, —oot] TW(y — 6 ) *Eig2cp¥(x — 57 )IW(y — 57) <x+ +x, - 5-‘

1
—4x++xl>. (B13)
p
The integral in the RHS is a pure divergence which does not depend on 6~ and should be set to O in the dimensional

regularization framework. Similarly, the contribution of the diagram in Fig. 8(f) vanishes.
Thus, the sum of diagrams in Fig. 8 takes the form

g (x = 67", —eo ] [0 ™,y yr(y = 67)

= ig?cpP(x — 6 )MP(y —67) {(x*—l—xl

1
71y +M) - <X+ + Xy ?‘J’Jr +yL —5_>
(s

1
—4)’++)’¢—5_>}
p
gCF

= (g Plx =67 )M¥(y = 67) I AT ~In(AT — A*67) ~In(AT + A7) +In(A% + A% (5~ ~67)
2

96” (x—&)I'P(y—o) {— ln<1 - A;f) - ln<1 + A;T) + ln(l + %{6—))] : (B14)

AAf_ ﬂ L < 1, the sum (B14) is a power correction so the leading-order evolution equation (41) is gauge invariant.

Let us dlscuss now the invariance of the one-loop quark correction. Since the effect of the one-loop correction reduces to

replacement # - —%p‘ In(=p?/fi*), the corresponding contribution of “gauge correction diagrams” in Fig. 8 with the

y’—l—yl) +<x+—|—xL—5‘

Since

extra quark loop is

= In=2
.o bas - - + Sl + Syl -
—igier ST)MW(y—o7) [(x" +xp RS ST o e yhtyL =6
ln.—z2 lni”z2
—<x++xL—5‘ y+yL>+<x++xl—5‘ ; y++yl—5‘>]
920F

= T L= 5Ty - 5)IAT R — (A3 — A5

—In?(A2 + AT ) + In? (A2 + AT(8~ = 67))i?, (B15)

the running-coupling evolution equation (61) is gauge
invariant. In a similar way one can prove gauge invariance of the evolution equation of gluon TMD operators.

APPENDIX C: NECESSARY INTEGRALS

In this appendix we calculate some integrals used in the main text. Let us start with the integral

dp, o (1- e!(r: )ﬂBS
tor / / aﬂBS +(p—pp)i +ic’ (1)
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1_e(PA))

16 2/dm/ ((1=elPs ﬂBSA sy /dm/ it {
apps + p 1+ pi
dt A /—

:2/ — ik
0t

; 2
—m2( =t 2 o1 i Al
In ( 46ﬂBsAJ_e ) + 2 —l—O(O_ﬂBs),

At fp > 0 we get

while at fp < 0 we can rotate the contour of integration over «a in the lower half-plane of complex o and get
(1= €/PA)s)|Byls

l—e 1)fgs _ l6x /dpl/
a|ﬂB|s+pJ_

167 /dpL/
aﬂBS+pJ_+l€
i -2
=1In2(- AZe? 0]
! <4”'ﬂ3's le>+ ’ <o|ﬂ3|s>

The combination of Eqgs. (C2) and (C3) can be written as
) i . 2 7> m2l
=In _é_l(ﬁB + ie)osA] e’ —&—?—i— 0 Bpos)’

on /dm/ (1= P20 s
(ZﬂBS + pJ_ + i€
which reflects the “causal” structure discussed after Eq. (43). From Eq. (30) we get
162/dm/ o (1= elPd)pys
T apps + (p—pp)l + e
2 2

dp, (1- ei(p,A)L)ln(p —fB)L n O( mi )

P Ppos

2

— 1n2 _t ; 2 07 T _
ln< 4(ﬂB—|—L€)asALe>+2 871'/ )

|

SO
d [ a i(p.A)L — 1 1
c— dae™ a/ P Pps(e ) =& <—i (Bs + ie)asAﬁ_e}’).
do Jo (ﬂB—I—le)s—i—pl 27 4
Now let us consider the integral with an extra ln 1n Eq. (56),
. ~2
o d, » (el(p'A)L —Dapgsints o d » ) 1 fi
/ ae—l;/(jpl 5 - . Pl / ae_’«?/dpl(e’(p’A)i _ 1)[ :| ”T
0o © pilaPes + pi + ie] 0o © i aﬂBs+pl+l€ ri
o0 d(x - ei(p-A>L — 1 1 17
_/ —e"E/dpJ_{ 2 + 2 n'u_z
0o © P apps + p1 +ie]  pl
/oo da . / g PLEVI . 2
- [ —ehs —————In~-.
0o © Pt apgs + p3 +ie  pi
It is easy to see that the last term in the RHS is actually a power correction
i(p.A) ~2 ~2
/""@e-ii‘ / ap, T wE /dplei(!’sA)L 1n”—2/°° da 3 d | @Pys+ pltie
0o © afips + p1 +ie  pi piJo oPps da 2
2 2 .
o] /dwl«p.m LN / da) @y + pi T ie
ofps pe 2 i 0 O ft
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2

B

As to the first term in the RHS of Eq. (C7), it is easily calculated using the standard trick ()% =1 + 5ln’{:—22 + 0(8%),

oda . i(p.A) 1 1 72 i A2 2 2 —i 1 2 g2
ae_’n/dpl [e 3 + 2 ]lnﬂ2: l 2 {<1n £ +27> - (m la(ﬂi"‘le)s_y) _ﬂ}
0 © Pi afps+pi+ie| pi 16z 4 fi 2

f Kln%[—ia(ﬁgﬂe)SH}’) (mﬂw) _ﬂ_z]'

T l6n2 —io(fp+ie)s 2
(C9)

t&}|

This gives us Eq. (59).

APPENDIX D: THE LIGHT-CONE EXPANSION OF PROPAGATORS

In this appendix we derive the light-cone expansion of various propagators in the first order in the background field with
one (quark) loop accuracy. First, we present necessary formulas for quark propagators. The typical integral appears as

(x

where ®(z) is some operator, such as ¥(z) or F,,(z). Using expansion in powers of proper time s [21],

I(a) r(b)
P —ier (P i)

o0 1 . .o
0> :i“”’/ dss””’_l/ duﬁ“‘luh_l(x|e""“”2<1>e”””"|0), (D1)
0 0

1 1
(x| e’ Deisur?|0) = (x|e’sP*|0) {/ du®(ux) — is/ duiiud®®(ux) + O(SZ)], (D2)
0 0

we get the light-cone expansion
r r'(b r b
(lerremnt) = (i
-P

(=p)* (=p*)"
For our background fields that depend only on x™ we need only the first term of this expansion since *®(x") = 0 so

r b
( o) = (e
4
This is our master formula for light-cone expansions. In this appendix we discuss only Feynman propagators so p? always

means p? + ie.
Let us start from the light-cone expansion of Eq. (67). Using standard trick

1 r b+1
O>/ duﬁ“‘lub‘lcb(ux)—<x‘—<a+ +1)
0

(_pZ)a-HH-l

0>/Olduﬁ“ub62d>(ux)+~-.
(D3)

I'(a) I'(b)
(—p?)* ® (—p?)?

0) A ] duii® ' ub='®(ux). (D4)

(- lp—_“ppi o) =G0, )

~2
i

where |- -], denotes the first nontrivial term in the expansion in powers of A, we obtain
o

<x 0) - <x o) A ' dud(ux) + (x
iT(e)

_ ]6ﬂg(_xz)g([1n—ﬂ:x2 _,_é_y/(l—f—e)—ky} A ' dud(ux) + A ldulni@(ux)), (D6)

ln_ﬂ—z2 1
2p CD—2
p V4

% o> /01 du(1 + In ) ®(ux)

where we used Eq. (D4).
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Restoring the end point y we obtain

(11_) Y [ ot (1 + 0o (x,)
x|—® y —(X y)/du(l)xu+<x—y>/du1+lnu<l>xu,
rpr p* 0 p 0
ln_” 1 ln_’z—z2 1 1
< pp <I>p y> = <x p4p y>A dud®(x,) + <x P“y)A du(1 +1ni)®(x,), (D7)

where x, = ux + i1y as usual.
We will also need formulas for differentiation with respect to the point-splitting cutoff. The master formula is

d 0 2
= dz+f( —27%67) / dud(uzt)"E’ / dz ®(z") f<x2L —;zﬂs—) (D8)
and corollaries

d 1 0 dt 2
5 | dz+f(x —2z76 )/ dulnu(ID(uz+):/ dz*@(z““)/ f(x ——zt6" )
0 —00 0

t t

5‘% dztf(x3 =226 )/ldulnitd)(uf)I/(;dz*(b(ﬁ)[)l%[f(xi—zﬁfs_)—f<x2¢—%z+5_>]- (D9)

0 —

Next, let us present formulas relevant for the gluon propagator (109) (see Fig. 7):

1 P21
—i|x +2<x {.7-" D,ln}
y> < y) pr U =prp?
1 p* P _

? 21 Fﬂé(zu) 21| 73|%2 ||y ) —ulx

p p?
¢ ~2 5
> <2lﬁu <Z] % Zz) (Dﬂf,,,:(zu) +,u<—>z/) + <Z1 2In 'up 2

To get the light-cone expansion of the gluon propagator we need a formula

<Aa ( )A (y)>quark loop

gz In—p2/ P
=22 e\ T

1
—/dzldzz/ du{u(x
0
< 1
— | X|—51%1
p

1_~2 P2
p,n=H /P

H P4 PU

)
(o

1

2

e
W oo

2 2

- P 1 —
(e )= (e ) (Lo [l )45 )
1 u c2
w21 [ [ domola () x5 0001+ 0(7) ) = (e D)l + O(DF ) (@11
0 0
(where F,, = =x¢F ,£), and therefore

(el f(P)ly) = [x. Y (x£(P*)]y) (D12)

in our approximation. Hereafter + O(DJF, F?) is assumed in all equations. By differentiation of gauge link [x, y] using
formulas

0 u
ia [”x +uy, vx + T}y] = _MAM( )[xuvx ] + [XM,XD]UA”(XU) + / dtt[xth}}—w(xt)[xt’xv]’

u v

lux + iy, vx + 7] <—iai> A (x,) [ )] — [, )54, (x,) — / " T X F o (5 s 3, (D13)
v, ,

(where x, = tx + 7y as usual) one obtains
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r r

<x v (—p2)e! #(pryat y>
-t o i )
+ A ' du(ulx, x,)F o, (x,) [, Y] <x

pJ(a)

(=p))" y)

y) / . x) (F o () — 006(Dy Fon(x) + 1 < 1)) [xey] + O(DF. F?)
0

) = a7 ) ] (3

[(a) @ —a+1) [1 )
= [x,y] (x (Pupy ngﬂl/) (—p2) y> - 4117[%(_A2>%—a+1 /) dulx, x,)(uld, F 5, (x,) — 88, F 5 (%)) [X4, Y]
F§—a) 1 [1 _ X
+mgl dulx, x,J(F, (x,) = au(D,F 5 (x,) + p < v))[x,. ] + O(DF, F*), (D14)

where A = x — y. Using this formula it is easy to get the first term in Eq. (D10),

. In —i%/ P? . In —ji*/ P?
lgﬂ,,<x Ty —il x|P, TP |0
In —i*/ p? In—ji?/ p? i T(1+e) A?
— e S 1 —y(l —y(2
l<x L pz PuPy p4 |+ 8ﬂ2+g (_A2)l+g 1 4 l//( + 8) W( )

1
X/ du(uAquﬂ(xu) _ﬁAquu(xu))
0

il'(e) 1 —ji*A? 1 )
- m [E + lnT —y(l+e)— 1//(2)] A du(F,,(x,) — au(D,F a(x,) +u < v)).  (DI15)

Hereafter we drop gauge links for brevity.
The last term in the first line of Eq. (D10) follows easily from Eq. (D7):
= 4

et ) 205580 [ (o) [tz
X5 F . In— > — =2|x duF, (x,)+ | x du(2 + Inuu)F,, (x,
(pz{ﬂ e 1 ) J, dFw(x) ) ), ( )F (xu)

iT(e) A 1 ! L
= 1 ——y(l d = dul .
S Ay <{n PRI w(l+e)+y A ufF ,,(x,) +2/ uln aufF,,(x,)

0

~2
In —”p2
7
P

(D16)
To calculate terms in the second and third lines of Eq. (D10) we use formulas
<x plzz > (zl (F(c;))a zz> / duF op(uzy + uzz)< p12y>
- _iaA dsldsz/ / tldfitzz 2 (x|eb Fopet™ pyly)
= 7 dndsal ) = 5 = e e pyl)
= oy () [t =gt (017)

and
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r
2

(Bl el

, tzdtldtz - o

= m[) dsydsy[(s) + 52)" — asy (s + Sz)u_l —s{—s5+ asﬁl](x|l7§€”'pzfagei‘vzpzpﬂy)

] Tt | FASRLTEE TN

(=p?)*?
— (DT ge(ux + ity) (x‘ F((fp%;)ff y)] , (D18)

where we neglected D*F, «¢ s usual. Similarly

1
<x % z1> (Z] Zz) / duitF ge(uzy + z5) <zz
0

I(a)
(—p?)*

¢

P y)
2 p2

_a(zl—a)Al du |:—l_4+ v ulc:‘al_l] [J-‘,,f(ux+ iiy) <x }W y> + D, F e (x + ity) (x lw y)]
(D19)

and

1

(7

T 1
Z1> <Z] f—T(;)l‘)‘ Zz) A duﬁuDa]-"ﬁf(uzl + ﬁZQ) (Z2

G-a) (’ e

1
a2=a)G-a)\"| (=p)

2

1)
Y
p

2

1
y> / dull — u® — u® — aitu] D, F pe(ux + uty). (D20)
0

Using the above formulas, we obtain

1
—/dzld12/ du |:I/t<x
0
—I—2il_4u<Z1 P

¢

1
?} Zl) Fﬂg(zu) (Zl p_2

p
: Zz) (D, Fe(zu) + 1 < v) <Zz

¢

1)
p2

1
P’

)
)

)«
—Zy —u\x

p

%] Zl>~7:v§(zu) (Zl

!

1
P

i Lo i TI(e) 1 o
= _16712A2[) dulaInud,F a(x,) — ulnul,Fa(x,)] 327;%(—A2)£/0 du(ulnu +alnu)F,,(x,)
T |
—%%/ dulu* nuD, F,a(x,) + @ InaD,F,a(x,) + uu(D,F,a(x,) + p < v)] (D21)
3272 (=A%) Jo

and

1

zz> Fou(24) (zz p

2

1 ~2 5
/dzldzz/ du(x —Z1> (z12lnﬂ—2—— y)
0 —-p° 2

iC(e) A1 51 1 1 .
= O <[In 2 +; —y(l+e)+y ~1 A duF,,(x,) +/) dulnaufF,,(x,) ). (D22)
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Let us present the final formula for the one-loop correction to the gluon propagator in the background field (e = ‘51 -2):
' In—p?/p? In—p?/p?
a b :
<A ( )A ( )>quarkloop 24ﬂ2{l<x|g/w pz _pypu 4 y)
~2A2

P
—_ 1
{m H —1+27/} / du(ud, Fup(x,) = A, F,a(x,))

i1
+8 272

i Lo

/lA(
T ~2A2
+’(8)>/ (u)< R +z;/(1+€)—y—|—6—4lnﬁu—|—ulnu—|—ﬁlnﬁ>
€Jo
2

4 0

xu) - uln”Aﬂ]:yA (xu))]

327 (—A? 4
T 1 2 A
L (¢) [_ P
3272(—A?)¢

€ 4

i I'(e) [ 2 2210 7 @

- dulu*InuD,F z(x,)+ @ IniaD,F A(x,)] ¢ +O(D*F . F,F). (D23)
3272 (=A%) Jo

1
w(1+8)—2+7]/ duitu(D,F 5 (x,) +p <)
0

As usual, the lightlike gauge links are implied.

APPENDIX E: FORMULAS FOR THE LIGHT-CONE EXPANSIONS IN SEC. VB

In principle, we can use Eq. (D23) to find, e.g., Eq. (112), but calculations are greatly simplified by using some
intermediate results such as Eq. (110) since many of the terms in Eq. (D23) cancel after differentiation. To use Eq. (110), we
need some additional formulas listed here.

First, similar to Eq. (D19) one obtains

¢
/dZ1d22/ duu( :|Z1>]:v£(zu)<zl %@) (Zz %y) —(uov)
i T(e) /1 i T(e) /1 _

= duulnuF A (x . duulnufF, (x,) +— : duiulnuD,F z(x,) — (up < v
1671'5A2/ s+ Ty o w2 ATy Jy wFrala) = o)
iA, /1 i T(e) /1 _

= duulnuF z(x,) — (4 < v) +— du(lnu + uu)F ,, (x,). El
| () = (o )+ g e [ duinucs ) £ () (E1)

Second, we need formulas

_d [0 I'(a) ; ['(a)
5%/_md1+m/ duinO(uz™) /du/ dz"O(z 205 )a,
d ) L O(urt) — _ Foypay L(a)
o T / dz @25 i—2z+5_)”A duiuO(uz )A dr(1 2t)/_ dztO(z )(x2 25
Y i 276 T(a+1)
- [ azor) [fa Cale T (E2)

which follow from Eq. (D8), and

/dzldz2/ du(
- (3

which is obtained by differentiation of Eq. (D20). Also, from the general formula

1
7|%

1 .
) ( ? Zz) / dunuD~F 7 (uz; + uz,) (Zz
0

; ! . ny AA;
— o — . — — — gl] (8) i=j

duauD~F = (ux + aty) =i [ duauD~F = (ux + - ,  (E3
y)A uiu (ux + wy) l% uiiu (ux + iy) <64ﬂ§( A2)e 327z2x2> (E3)

Pi)
y
p

2
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1 1 1
/dzldzz/ du<x zl> <Zl zz>/ dunuO(uz, + uz,) <Zz » y>
0 0
1

T Ta2-a)(3-a) (x‘ ”{_Ff;‘;j) y) /01 dull = — u® — aiu]O(ux + ity)

i, I'(a+2) 1 u(a—4)(ﬁ"+1—u“‘”)—(a—2)(ﬁ”—u“)+2(ﬁ—u)
( P y>/0 d a(a-2)(a-3)(a—4)

pu(a)
(=p*)°

1
P’

0,0(ux + iy), (E4)

we get

1 1
/lede/ du <x Z2> / duﬁu(’)(uzl + ﬁZz) <Zz
0 0

in agreement with Eq. (D20). Finally, we used
!

1
P2

Py

p6

Zl) (Zl &

p2

4)-

p2

1
iz y)/ dunuO(ux + wy)  (ES)
p 0

[a(i?
o )-Lal

APPENDIX F: RAPIDITY-ONLY CUTOFF VS UV +RAPIDITY REGULARIZATION

P
»

)@l ))00) (=

p2

) @006 (=

! y>. (E6)

p2

2 )@l Pl (=

In this appendix we discuss the comparison between the small-x inspired rapidity-only cutoff used in this paper and the
combination of UV and rapidity cutoffs characteristic for the CSS approach. Consider the typical contribution to the quark
TMD operator shown in Fig. 9 at x™ = 0 and py . = 0. As discussed above, at such a separation we can use Feynman
diagrams instead of cut diagrams,

(T[O*,—oo}x[—oo,OJ’]OFy/(O))l;ig'g:gch/dﬁdeBlF‘P(/}B)I(ﬁB,xl),

e s(p=pa)

_ Li(px),
ﬂ+ieaﬁs—pi+iea(ﬁ—ﬂ3)s—pi+ie(1 eI (By). (F1)

1(Bp.x1)= —i/dadﬁdpl

Without the cutoff in a, the integral
] ! ! s(bs = ) .
I1(fp,x)) =—i ‘zg/dad d 1 = elilpx)y
(Bp.x1) H 'Bplﬁ+ieaﬁs—pi+iea(ﬂ3—ﬂ)s+p2l—ie( )
— / DL () _ i,y [ 9BPs =P _ 1 T(e) [indppy—p

pi o PpB+ic 8P (AW )0 Py B

(F2)

n
e:téz

diverges as # — 0 even at ¢ # 0. The so-called § regularization with A=(z") - A~(z") gives

(b)

FIG. 9. Typical diagrams for one-loop evolution of the quark TMD operator.
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0% =) f=00,07]y = i [ e[ ox) + A7 0L (F3)
so that
P(fg,x,) = Lz l;(gz) , Pudp Py __ﬁ o~ —% (—l + ln'lﬁ + 7) <1n& - 1) ; (F4)
8= (x ) Jo PP +id 8 € 4 )
which gives
P(Bg,x.) = SLJTZ% 0/33 Z_fﬂﬁB—_ig ~ _8%;2 (ln# + 7) <lnf—§ - 1) (F5)

after subtraction of the counterterm.

On the other hand, the rapidity-only cutoff 6~ = Qia gives [see Eq. (C4)]

e

S(ﬁ_ﬂB) (1—€i(p’x)l-)

1(Bpxs) = —i / dadpdp,

p+icaps — p? +ica(f—Pg)s — pt + ie

dp, , /00 Pgs o 1 ) x?
— [ 2L (1 = pilpx)L da—18" it — _ In2( - ZLor ). F6
/ . (1-e ) | a— » Pie 1622 n ipgos 2 ¢ (Fo6)

The integrals (F5) and (F6) coincide when p? is two times
BLM scale y? = 2u2 = 2x7'\/pgos and § = —*;. Hope-

asxi'
fully, the double evolution [30] along the line p?x*\/8 =
4+/pp will produce results compatible with Eq. (132).

APPENDIX G: RAPIDITY-ONLY EVOLUTION
BEYOND SUDAKOV REGION
AT SMALL AND MODERATE x

As we demonstrated in this paper, the Sudakov double
logs are universal and the evolution of quark and gluon
TMDs is the same for low and moderate x until
ofgs ~ b7* ~ ¢%. From that point, the evolution (or the
|

d i.a: a,0
‘7%<PN|~7:"a’”(ﬂB»xL)~7'—i’ (B8 01)|pN)
2

: . k
_4aSNC/dkL{el(kﬁx)L<pN|fz,a;0<ﬂB_I__J_’xl
oS

(0'/)735)2

lack of it) depends on fz = xp and ¢%. There are three
different scenarios. We will consider them for the case
of gluon TMDs since we can use the explicit formulas for
the leading-order rapidity evolution at arbitrary fip = xp
from Ref. [6].

First, if xz ~ 1 and ¢ 2 m3,, there is no room for any
evolution and one should turn to phenomenological
models of TMDs such as the replacement of b by b, in
Refs. [2,25].

If xz ~ 1 and g% > m%, there is room for DGLAP-type
evolution summing logs (a,Ing?/ mj,)”. The rapidity
evolution in this case has the form [6]

. 51 K2
>7:§w (ﬁB +—,0¢> |PN>9<1 —Ps ——>
(o) oS

ofips

NE 2
K2 ofys+ k2

Note that if ofgs > x7?, we get leading-order equa-
tion (101) at § = /. On the other hand, as demonstrated

in Ref. [6], if 0 < ﬁ% the factor ¢/*¥1 in the RHS of

*We have omitted the term ~(2k;k/ — &) F-4oF%° from
Eq. (3.25) from Ref. [6]. This term is not essential for our
discussion here.

(ofps + ki)“} K (ofps +K2)

<pNf"»dﬁ(ﬂg,xuf?;"(/fg,mpm}. @)

|
Eq. (G1) can be neglected and we have the leading-order
DGLAP equation with identification yd g xp = 6fps. The
result of this DGLAP evolution should be convoluted with
Eq. (130) using full Eq. (G1) for proper matching.
Similarly, if xz = g < 1, even at fizos = g7 there is
7 7

Bps to o =5

which corresponds to summing logs (a,Inxg)". The

room for BFKL-type evolution from ¢ =
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leading-order rapidity equation at arbitrary S has the form [6]

d -
o——(pn|F (B, x1)

Jo F(Pp.01)|pN)

2 k2
=4as/dh{ <l—ﬁ3——><pN|N f’“(ﬂs +— Xy

GﬂBS
¢ ki(O'ﬁBs + ki)

(7l Pyt it
x (p Tr<x U——~——U f’“(ﬂ + )
N ofps + p1

— 4N

where U(x, ) =[x,

o k2 eilkx),
e (2.0,

) (s

— 00", x; + oo0™] is a Wilson line (infinite gauge link) and dots stand for a number of nonlinear terms

K

. . k2
(ol F5 (B x ) FE By ) o) — (1 - )

K2 j
fa,;<ﬂ3+ >U p

U’ yJ.)lPN> +-, (G2

oPps + pl

similar to the last one [see Eq. (5.5) from Ref. [6]]. The small-x evolution is relevant from ¢ = 4 to o = ﬁ. As

demonstrated in Ref. [6], at o <<

Pps

the evolution equation (G2) reduces to the BK equation which can be studied using

standard small-x methods. After that the matching of the double-log Sudakov evolution (102) to a single-log BK evolution

should be done using full nonlinear equation (G2).
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