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1 Introduction

According to Moore’s empirical law [1], the transistor density of electrical inte-
grated circuits doubles roughly every 12 to 24 months [2]. However, it is expected
that this trend cannot be sustained in the long term. The increasing miniaturiza-
tion requires more sophisticated lithographic approaches, but also new concepts
regarding heat dissipation [3]. Additionally, for smaller devices the contact re-
sistances and the gate capacitance become comparable to parasitic resistances
and capacitances, which poses additional challenges with regard to the circuit de-
sign [4]. At the same time, quantum mechanical effects and temperature noise have
to be taken into account for feature sizes approaching the atomic scale [3]. These
limitations of conventional electric circuits require investigating novel concepts,
one of which is spintronics. While in conventional electronic devices charge cur-
rents are controlled, spintronics is based on the manipulation of spin currents. One
of the first commercial spintronic devices was a hard drive storage, which was in-
troduced by IBM in 1997 [5]. This device is based on the giant magneto-resistance
(GMR) effect, which was discovered by the A. Fert et al. [6] and P. Grünberg [7].
Data storage spintronic devices are well established by now and mainly based
on metal spintronics. Semiconductor spintronic devices which allow data manip-
ulation, on the other side, have not yet been realized. A well-known example
for such a device is the spin field effect transistor (spinFET) proposed in 1989
by S. Datta and B. Das [8]. This conceptual device operates in the 1D ballis-
tic transport limit, and requires efficient electrical spin injection and detection,
but also gate control of the spin precession frequency. Electrical injection and
detection in semiconductor (SC) structures have already been achieved and pro-
foundly investigated in all-electrical spin injection devices [9–17], and also in fully
SC-based device geometries [18, 19], in which ferromagnetic semiconductors are
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1 Introduction

implemented. Gate manipulation of electrically injected spins, on the other hand,
could only be demonstrated by H. Koo et al. [20] in an InAs quantum well (QW)
structure in the ballistic transport limit, followed by a number of subsequent pub-
lications with similar device setups [21–25]. One of the main restrictions for the
realization of a spinFET-like device geometry is the strict prerequisite of ballis-
tic transport, which, in particular, requires the injector-detector distance to be
smaller than the electron’s mean free path. In such devices a strong spin orbit
coupling (SOC) strength is essential, in order to rotate the injected spin on such
a small distance, which considerably limits the material choice. Thus, it is highly
desirable to investigate spin device geometries, which allow inducing gate control-
lable spin precession in the diffusive spin transport regime.

Here, we present spintronic devices which allow efficient electrical spin injection
and detection into a semiconductor heterostructure with a 2DEG channel. Intro-
ducing an enhanced device geometry allows realizing narrow transport channels
with a width down to wc = 400 nm, thus approaching the 1-dimensional spin
transport regime. This considerable spatial confinement gives rise to a significant
suppression of spin relaxation, for instance, but also allows identifying spin or-
bit coupling (SOC) related signatures in non-local spin transport measurements.
One of the major findings presented in this thesis is the demonstration of the gate
tunability of these SOC related spin signal characteristics. Thus, it is possible
to extract gate voltage dependent non-local spin signal oscillations, similar to the
expected signal modulation in a spinFET device. Contrary to the spinFET pro-
posal by S. Datta and B. Das [8], however, spin transport is not purely ballistic in
the investigated devices, instead it takes place in an intermediate regime between
ballistic and diffusive transport. This is a considerable relaxation of the prerequi-
sites required for the realization of a spinFET device, in particular allowing larger
device dimensions, for instance, which significantly facilitates investigations of the
fundamental physical properties.

The conceptual structure of this thesis is summarized in the following. In the
theoretical part (Chapter 2), basic concepts of electrical spin injection and detec-
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tion, spin transport, and SOC related phenomena are introduced. Additionally,
an extended spin diffusion model is presented that includes SOC. In Chapter 3
the heterostructure system is described and the device geometry is explained,
along with the experimental non-local measurement setup. The required micro-
fabrication steps are also shortly summarized. The experimental part of this thesis
(Chapter 4) is divided into three main sections. First, a novel sample geometry
is introduced in Chapter 4.1, which allows investigating spin transport in narrow
channels, approaching the 1-dimensional limit. The spin transport properties in
dependence on the channel width are extensively studied in this section. In the
following experimental subsection (Chapter 4.2) the new sample design is imple-
mented in order to identify and investigate SOC related signal features in non-local
spin transport measurements. This confirms the presence of a finite SOC strength
in the investigated devices, and implies a strong anisotropy of SOC with regard
to the crystallographic orientation. Additionally, the SOC related signal charac-
teristics can be qualitatively reproduced by finite element simulations, based on
the extended spin diffusion model, which is introduced in the theoretical part of
this thesis. In the final section (Chapter 4.3), the central experimental findings of
this thesis are presented. There, the gate tunability of the SOC related features,
described in the previous chapter, is demonstrated and discussed in detail. Addi-
tionally, it is possible to extract gate dependent oscillations of the non-local spin
signal. A detailed evaluation strongly suggests that these spin signal oscillations
can be attributed to the gate tunability of SOC and the accompanying change of
the spin precession frequency.
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2 Theoretical Framework

2.1 Spin transport

Before discussing electrical spin injection from a ferromagnetic (FM) into a non-
magnetic (NM) conductor in Chapter 2.2, basic quantities and fundamental re-
lations describing spin transport are introduced, following the treatment and no-
tation of the comprehensive description by J. Fabian et al. [26] and I. Žutić et
al. [27]. In the model described in the following, spin transport is treated as a
parallel circuit of two separate transport channels for majority and minority spins.
This so-called two current model was introduced by N. Mott [28], and extended
by I. Campell et al. [29] and A. Fert et al. [30]. It allows introducing separate
quantities for the two spin species, like separate carrier densities for spin-up n↑

and spin-down n↓. Thus, the total carrier density n and the spin density s can be
defined in terms of n↑ and n↓:

n = n↑ + n↓

s = n↑ − n↓.
(2.1)

The spatial and temporal evolution of the spin density can be described by the
spin drift-diffusion equation, which can be derived from a random walk approach,
as presented by J. Fabian et al. [26], yielding:

∂s

∂t
= D

∂2s

∂x2 + µeE
∂s

∂x
− s

τs

, (2.2)

with the spin relaxation time τs, diffusion coefficient D, electric field E, and
electron mobility µe. Another important quantity is the spin diffusion length λs,
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2 Theoretical Framework

which is related to τs and D:
λs =

√
Dτs. (2.3)

In a rather simplified picture, spin injection from a ferromagnet (x < 0) into a
non-magnetic conductor (x > 0) can be regarded as a configuration in which a
constant spin current Js(0) = −D ∂s/∂x|x=0 enters the non-magnetic channel at
x = 0 (Fig. 2.1). The corresponding accumulated spin at the interface is thus
given by

s(0) = Js(0)λs

D
. (2.4)

The steady state solution of the spin diffusion equation without drift (E = 0) yields
the spatial distribution of the spin density in the NM, which decays exponentially
with the distance from the interface, with the decaying behavior being determined
by the spin diffusion length λs:

s(x) = s(0) exp
(

− x

λs

)
. (2.5)

Figure 2.1. Schematic under-
standing of electrical spin injec-
tion from a FM (x < 0) into a
NM (x > 0) with a constant spin
current Js at x = 0. The spin
density s decays exponentially
for x > 0. Adapted from [26].

For modeling spin injection across a FM-NM junction in detail, it is beneficial
not to directly regard the spin density s, but rather introduce the so-called quasi-
chemical potential for two spin species (µ↑ and µ↓), which allows defining the total
quasi-chemical potential µ and the spin quasi-chemical potential µs:

µ = 1/2 (µ↑ + µ↓)

µs = 1/2 (µ↑ − µ↓) .
(2.6)
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2.1 Spin transport

The spin quasi-chemical potential µs is related to the spin density s by the fol-
lowing expression:

s = s0 + 4eµs
g↑g↓

g
, (2.7)

where s0 is the equilibrium spin density and g↑/↓ are the corresponding densities of
state (DOS) for spin-up and spin-down electrons. A gradient in the quasi-chemical
potential gives rise to a current of the corresponding spin component:

j↑/↓ = σ↑/↓∇µ↑/↓, (2.8)

with the conductivities σ↑/↓. An important relation can be derived from Eq. 2.6
and Eq. 2.8, which relates the electric charge current j and the spin current js to
the quasi-chemical potentials µ and µs (spin-charge coupling):

j = j↑ + j↓ = σ∇µ + σs∇µs

js = j↑ − j↓ = σs∇µ + σ∇µs,
(2.9)

with σ = σ↑ + σ↓ and σs = σ↑ − σ↓. These two relations imply, that in a ferro-
magnetic conductor with σs ̸= 0, a gradient in the spin quasi-chemical potential
can generate a charge current j. For a non-magnetic conductor, on the other
hand, where σs = 0, a spin current can only be due to a gradient of the spin
accumulation µs, while a charge current can only flow in the presence of a gradi-
ent of the quasi-chemical potential µ. This is indeed relevant for both injection
and detection of spin polarized electrons, as discussed in the following. Another
relevant quantity with regard to spin injection and detection is the current spin
polarization Pj, which is given by

Pj = js

j
= Pσ + 4

j
∇µs

σ↑σ↓

σ
, (2.10)

where Pσ = σs/σ denotes the conductivity spin polarization. In particular, this
equation implies, that for non-magnetic conductors, in which Pσ = 0, a large
gradient in the spin quasi-chemical potential ∇µs is necessary in order to obtain
a finite spin polarization of the current. Moreover, the spatial profile of µs can be
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2 Theoretical Framework

described by the following diffusion equation:

∇2µs = µs

Ls

, (2.11)

with the generalized spin diffusion length Ls, which is related to the generalized
diffusion constant D:

Ls =
√

Dτs, with D = g

g↑/D↓ + g↓/D↑
. (2.12)

In a non-magnetic conductor, D corresponds to the diffusion coefficient D intro-
duced in connection with the drift-diffusion equation of the spin density (Eq. 2.2).
Thus, also the corresponding spin diffusion lengths are equal in this case (Ls = λs).

2.2 Electrical spin injection and detection

The basic theoretical concepts of electrical spin injection and detection within the
scope of the standard model of spin injection were introduced by A. Aronov [31],
and later expanded and generalized mainly by M. Johnson and R. Silsbee [32, 33],
P. van Son [34], T. Valet and A. Fert [35], S. Hershfield and H. Zhao [36], and
numerous other authors [37–40]. The following summary of the fundamental con-
cepts of electrical spin injection and detection is based on the comprehensive
review articles by J. Fabian et al. [26], I. Žutić et al. [27], and E. Rashba [41].
The notation is adapted from Ref. [26] and Ref. [27]. A typical device configu-
ration allowing electrical spin injection and detection is shown in Fig. 2.2. This
so-called non-local spin injection geometry was introduced by M. Johnson and
R. Silsbee [42], and, in a very simplified schematic representation, consists of a
non-magnetic conduction channel (NM) and two ferromagnetic contacts (FM).
By passing a charge current through one of the FM contacts into the channel,
a non-equilibrium spin accumulation is generated in the NM conductor (spin in-
jection). As this current is passed to a non-magnetic reference contact (left), no
charge current flows between the two ferromagnetic contacts, or in the detection
circuit respectively (non-local setup). The injected spin accumulation then dif-
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2.2 Electrical spin injection and detection

Figure 2.2. Non-local spin injection and detection setup introduced by M. John-
son and R. Silsbee [42]. Spins are injected at the left FM contact and diffuse in
each direction in the NM channel (color gradient). The generated spin accumula-
tion underneath the detecting contact (right FM) can be measured as a non-local
voltage drop Vnl. Adapted from [26].

fusively spreads in the NM, which, for a sufficiently large spin diffusion length,
results in a finite non-equilibrium spin distribution underneath the detecting FM,
the magnitude of which can be measured as a non-local voltage drop Vnl.

Standard model of spin injection

Electrical spin injection from a ferromagnet into a non-magnetic conductor can
be described theoretically with the so-called standard model of spin injection, in
which spin transport across a FM-NM junction is regarded [26, 27, 33, 34, 36,
39–41]. A schematic structure, consisting of a ferromagnetic and a non-magnetic
layer with an infinitesimally narrow contact region C in between, is shown in
Fig. 2.3. The spatial extent of the FM, as well as that of the NM, are larger than
the corresponding spin diffusion lengths LsF and LsN . The current polarization
in the NM, in which case Pσ = 0 and σ↑ = σ↓, can be obtained by solving the spin
diffusion equation (Eq. 2.11) in combination with Eq. 2.10, and an appropriate

Figure 2.3. Schematic depic-
tion of a FM-C-NM junction,
allowing a basic theoretical de-
scription of electrical spin injec-
tion. Adapted from [26].
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2 Theoretical Framework

boundary condition (µsN(+∞) = 0), which yields

PjN(0) = −1
j

µsN(0)
RN

, (2.13)

with the effective spin resistance in the NM RN = LsN/σN . Thus, a larger spin
diffusion length LsN leads to a greater spin accumulation µsN(0) = −jPjN(0)RN .
The current polarization PjF (0) in the FM at the interface (x = 0), and that of
the contact region PjC , can be derived based on similar considerations, yielding

PjF (0) = PσF + 1
j

µsF (0)
RF

and PjC = PΣ + 1
j

∆µs(0)
RC

, (2.14)

with

RF = σF

4σF ↑σF ↓
LsF (effective resistance of FM)

RC = Σ↑ + Σ↓

4Σ↑Σ↓
(effective contact resistance)

PΣ = Σ↑ − Σ↓

Σ↑ + Σ↓
(conductance spin polarization of the contact),

and the conductances Σ↑ and Σ↓. Assuming the continuity of the spin cur-
rent at the contact, i.e. neglecting spin flip scattering in the contact, so that
PjF (0) = PjC(0) = PjN(0) ≡ Pj, allows deriving an expression for the spin injec-
tion efficiency Pj:

Pj = RF PσF + RCPΣ

RF + RN + RC

, (2.15)

which is also referred to as spin injection coefficient [39, 41]. This equation for Pj

is one of the main results derived from the standard model of spin injection and
can be related to the spin accumulation:

µsN(0) = −jPjRN . (2.16)

The configuration in which electrons flow from the FM into the NM (j < 0,
µsN(0) > 0) is typically referred to as spin injection, while spin extraction relates
to the opposite case (j > 0, µsN(0) < 0). In the following, however, there is no
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2.2 Electrical spin injection and detection

Figure 2.4. Equiva-
lent electrical circuit of
a FM-C-NM junction
with separate chan-
nels for spin-up and
spin-down electrons.
Adapted from [26].

explicit differentiation, instead the term spin injection is used for both cases. Ad-
ditionally, it can be remarked that Eq. 2.15 can also be derived more descriptively
by regarding the equivalent electrical circuit of the FM-C-NM junction, which
consists of two separate channels for spin-up and spin-down electrons in parallel
(Fig. 2.4). Each region (FM, C and NM) is characterized by different resistances.
The injection efficiency can then be obtained by evaluating the current in each
channel: Pj = (I↑ − I↓)/I.

Figure 2.5. Spatial distribution
of µs in the FM (x < 0) and the
NM (x > 0): µs decays expo-
nentially in both regions on the
scale of the corresponding spin
diffusion lengths, and is discon-
tinuous at the interface (∆µs).
Adapted from [26].

The spatial profile of the quasi-chemical potential µs is shown in Fig. 2.5. In
the absence of spin-flip scattering in the contact region, the spin current js is
continuous at the contact (x = 0), while there occurs a distinct discontinuity of
µs (∆µs), which directly follows from the equation describing PjC (Eq. 2.14):

∆µs(0) = µsN(0) − µsF (0) = jRC(Pj − PΣ). (2.17)

Note that for a FM-NM junction without a contact resistance (RC = 0), µs is
continuous at the interface. Within the FM and NM region, µsF and µsN decay

11



2 Theoretical Framework

exponentially with the distance from the interface (x = 0) on the scale of the
corresponding spin diffusion length LsF , or LsN respectively (Eq. 2.11):

µsN/sF (x) = µsN/sF (0) exp
(

∓ x

LsN/sF

)
. (2.18)

Spin bottleneck

The presence of a non-equilibrium spin distribution in the FM and the contact
leads to a spin diffusion away from the contact. This spin current gives rise to a
charge current in the FM and the contact region (Pσ ̸= 0) according to Eq. 2.9
(spin charge coupling), which flows in the opposite direction compared to the
charge current flowing due to the externally applied voltage. This, in turn, leads
to an additional resistance δR (spin bottleneck [43]), such that the total resistance
of the junction adds up to:

R̃N + R̃F + 1/Σ + δR, (2.19)

where R̃F and R̃N are the actual electrical resistances of the FM and NM region,
normalized to the cross-sectional area. In case of an equal contact conductance
for both spin species (Σ↑ = Σ↓), 1/Σ equals the contact resistance RC . The
non-equilibrium contribution to the junction resistance δR is given by [26, 27, 39,
41]

δR = RN(P 2
ΣRC + P 2

σF RF ) + RF RC(PσF − PΣ)2

RF + RC + RN

. (2.20)

In case of neglecting spin-flip scattering in the contact, δR is always larger than
zero. Thus, a spin accumulation increases the junction resistance, while in the
absence of a non-equilibrium spin distribution δR vanishes.

Conductivity mismatch

Considering an ohmic contact (RC ≪ RN , RF ) between the ferromagnet and the
NM region, the spin injection efficiency (Eq. 2.15) can be approximated by

Pj ≈ RF

RF + RN

PσF . (2.21)
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2.2 Electrical spin injection and detection

For spin injection from a ferromagnetic metal into a metallic NM (RF ∼ RN),
Pj ∼ PσF can be sufficiently large. On the contrary, spin injection into semicon-
ductors (SC), in which case RN ≫ RF , yields a substantially suppressed injection
efficiency Pj ≪ PσF , which is commonly referred to as conductivity mismatch
problem [38]. This conductivity mismatch problem can be resolved by imple-
menting highly spin polarized half metallic ferromagnets, in which either σ↑F or
σ↓F is very small, such that RF = LsF σF /4σ↑F σ↓F is large [27, 41], or, which is
the more common approach, by introducing a spin selective tunnel barrier with
RC ≫ RF , RN [26, 27, 37, 39–41, 44]. Thus, the spin injection efficiency is deter-
mined by PΣ, even if RN ≫ RF , such that

Pj = PΣ. (2.22)

Sharvin resistance

For spin injection into 1-dimensional NM channels, in which transport is ballistic,
while interface scattering is considered to be still diffusive, an additional resistance,
the so-called Sharvin resistance Rsh, has to be taken into account [27, 45–48]. It
becomes relevant for NM channels with a width smaller than the corresponding
electron mean free path and is given by

Rsh = 2πh

e2k2
F A

, (2.23)

where A is the contact area, and kF denotes the Fermi wave-vector. Taking
into account the ballistic Sharvin resistance in the diffusive model modifies the
electrical resistance of the channel, such that R̃ → R̃ + Rsh [45].

Electrical spin detection - Silsbee-Johnson spin charge coupling

Due to the coupling between spin and charge in the FM and the contact region
(Pσ ̸= 0), as described by Eq. 2.9, a spin accumulation in the NM gives rise to
a charge current in the FM in case of a closed electric circuit, while for an open
circuit an electromotive force (emf) builds up across the junction [26, 27, 33, 41,
42, 49]. This effect leads to the additional resistance contribution δR described
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above (spin bottleneck). For the emf the following expression can be derived:

emf = −RF PσF + RCPΣ

RF + RC + RN

µsN(∞) = −PjµsN(∞). (2.24)

The emf at a FM contact can be measured as a non-local voltage drop, thus pro-
viding an experimental access for probing the non-equilibrium spin accumulation
in the NM channel. In combination with electrical spin injection, the non-local
device geometry presented above (Fig. 2.2) can be realized. There, spins are in-
jected through a FM-C-NM junction into the NM channel, diffuse in all directions,
and can be detected as a non-local voltage at another FM-C-NM junction (detec-
tor). Following from Eq. 2.15, the observation of a large emf requires RN to be
smaller than RC and RF , similar to the requirement for obtaining a large injection
efficiency Pj. The detection scheme for measuring the emf related voltage drop
at the detecting FM junction was conceptually introduced by R. Silsbee [49] and
later experimentally demonstrated by M. Johnson and R. Silsbee [42].

Experimental realization of spin injection

One of the first experiments successfully establishing electrical spin injection into
a paramagnetic metal was published in 1985 by M. Johnson and R. Silsbee [42].
They introduced the non-local spin injection and detection scheme described above
(Fig. 2.2), thus achieving spin injection into an aluminium channel with a spin
injection efficiency of Pj ≈ 5 % − 8 % [42, 50]. Spin injection from a FM metal
directly into a semiconductor (SC) 2DEG channel could be demonstrated in 1999
by P. Hammar et al. [51], yet only considerably low injection efficiencies on the
order of 1 % were observed. Only after the conductivity mismatch problem was
identified as the major obstacle for spin injection into SC structures, FM-SC struc-
tures with a tunnel barrier in between resulted in the observation of more efficient
spin injection [9, 17]. In most publications reporting efficient electrical spin injec-
tion into SC structures, spin-LED heterostructures were implemented, which rely
on the optical detection of the spin accumulation [52–63]. Fewer reports [9–17]
present all-electrical FM-SC lateral devices, which allow electrical injection and
detection as introduced by M. Johnson and R. Silsbee [42]. Fully SC-based lateral
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2.3 Spin orbit coupling

device geometries could be experimentally realized by M. Ciorga et al. [18]. There,
spin-polarized electrons are injected from the ferromagnetic SC (Ga,Mn)As, which
is intrinsically p-doped, into an n-GaAs bulk channel. Spin injection is based on
electrons tunneling through the depletion zone of a highly doped pn-junction, from
the valence band of (Ga,Mn)As into the conduction band of GaAs. Subsequently,
a similar spin injection structure could be established which allowed electrical spin
injection into a GaAs/(Al,Ga)As 2DEG channel, yielding spin injection efficien-
cies of about Pj ≈ 75 % [19]. A similar heterostructure system with an (In,Ga)As
QW channel is the basis of the experiments conducted within the scope of this
thesis. The corresponding heterostructure layer sequence and the spin injection
process are explained in detail in Chapter 3.

2.3 Spin orbit coupling

In a simplified picture, spin orbit coupling (SOC) can be regarded as an effective
magnetic field, which can interact with the spin of a moving electron. This gives
rise to spin precession, if the spin is not aligned with the SOC related effective
magnetic field, which in turn leads to fundamental effects observed in spintronics,
like spin relaxation phenomena for instance (Chapter 2.4). One of the most im-
portant properties of SOC with regard to spintronic applications is the possibility
of tuning its strength by an external electric field. This allows externally manip-
ulating the spin precession angle for instance, which is the basis for realizing the
spin field effect transistor (spinFET) proposed by S. Datta and B. Das [8] (Chap-
ter 2.5). In the following, the general concept of spin orbit coupling (SOC) is
introduced, especially focusing on 2D semiconductor systems. There, depending
on the origin of SOC two contributions are distinguished: a contribution arising
from a bulk inversion asymmetry (BIA), and one that is due to a structural inver-
sion asymmetry (SIA). Moreover, typical values of the SOC strength in (In,Ga)As
and InAs heterostructures are summarized, and the effect of quasi-1-dimensional
confinement on SOC is discussed. The following overview of spin orbit interac-
tion in semiconductors is primarily based on the comprehensive review articles by
J. Fabian et al. [26] and S. Ganichev et al. [64], while additional remarks and brief
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summaries can be found in Refs. [65–67].

General aspects

An electron moving in an external electric field E⃗ with velocity v⃗ experiences an
effective magnetic field

B⃗eff = 1
c2

(
E⃗ × v⃗

)
= ℏ

mc2

(
E⃗ × k⃗

)
, (2.25)

which can interact with its spin. This interaction between the spin and the effective
magnetic field is commonly referred to as spin orbit coupling (SOC), or spin orbit
interaction (SOI). In the most general form, the corresponding SOC contribution
to the Hamiltonian is given by

HSO = ℏ
4m2

0c
2 p⃗ ·

(
σ⃗ × ∇⃗V

)
, (2.26)

with σ⃗ = (σ⃗x, σ⃗y, σ⃗z) being the vector containing the Pauli matrices, p⃗ is the
kinetic momentum operator, and V the crystal potential, the gradient of which
corresponds to the electric field E⃗ = −∇⃗V . Depending on the origin of the electric
field, two contributions to the SOC are generally distinguished in the solid state.
One contribution arises from the absence of an inversion symmetry of the bulk
crystal itself, which is the case for zinc-blende or wurtzite semiconductors for
instance, and is commonly referred to as bulk inversion asymmetry (BIA), or
Dresselhaus contribution [68]. The other one is due to the absence of an inversion
symmetry of the confining potential in QW structures, the so-called structural
inversion asymmetry (SIA), or Rashba contribution [69]. As a consequence of
SOC, the energy bands for spin-up and spin-down split. Unlike Zeeman splitting
in a magnetic field, however, which leads to a shift of the energy dispersion by a
certain energy difference, the SOC related splitting results in a shift of the energy
bands by a certain wave-vector.
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Bulk inversion asymmetry in 2D systems (Dresselhaus)

Of particular interest, especially with regard to the heterostructure analyzed
within the scope of this thesis, are 2-dimensional (001)-grown III-V zinc-blende
systems with a confining potential along the growth direction (z-direction). Taking
into account only bulk inversion asymmetry (BIA), the corresponding Hamiltonian
is given by [65]:

HD = HD1 + HD3

= β1 (kxσ⃗x − kyσ⃗y)︸ ︷︷ ︸
linear

+ γ
(
kxk2

yσ⃗x − k2
xkyσ⃗y

)
︸ ︷︷ ︸

cubic

, (2.27)

for x ∥ [100], y ∥ [010], and z ∥ [001]. Note that it contains both a linear-in-k and
a cubic contribution. The linear Dresselhaus parameter β1 in the Hamiltonian is
defined as [26, 70, 71]

β1 = −γ⟨k2
z⟩ ∝ −γ

(
π

d

)2
, (2.28)

with the bulk Dresselhaus parameter γ, and the expectation value of the squared
wave-number in z-direction ⟨k2

z⟩, which is determined by the strength of the con-
finement of the electron wave-function in the quantum well (QW). In the limit
of an infinite QW, β1 can be approximated based on the QW thickness d. The
Dresselhaus Hamiltonian can be conveniently rewritten by defining the angle θ

between k-vector and x-axis ([100]), such that kx = kF cos(θ) and ky = kF sin(θ),
which results in:

HD = β (kxσ⃗x − kyσ⃗y) + β3k (cos(3θ)σ⃗x + sin(3θ)σ⃗y) . (2.29)

There, the cubic Dresselhaus parameter β3 is introduced, which is given by

β3 = −γ
k2

F

4 = −γπns

2 . (2.30)

Substituting the Fermi wave-vector kF =
√

2πns allows expressing β3 in terms of
the charge carrier density ns. Usually, this cubic contribution is especially impor-
tant for semiconductors with a narrow band-gap, or for highly doped quantum
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wells (QWs), but it is also found to be the dominating contribution in wide QWs.
Additionally, the parameter β is defined as

β = β1 − β3. (2.31)

It is typically referred to as Dresselhaus parameter and should not be confused with
the linear Dresselhaus parameter β1. Comparing the Dresselhaus Hamiltonian to
the Zeeman Hamiltonian HSOC = gµB

(
σ⃗ · B⃗eff (k⃗)

)
, allows defining an effective

magnetic field B⃗eff . For the Dresselhaus SOC this effective magnetic field contains
linear and cubic contributions, and is given by [65]

B⃗D = B⃗D1 + B⃗D3

= 2k

gµB

 β cos(θ)
−β sin(θ)

+ 2k

gµB

β3 cos(3θ)
β3 sin(3θ)

 ,
(2.32)

where µB is the Bohr magneton and g denotes the effective gyromagnetic factor
(g-factor).

Structural inversion asymmetry in 2D systems (Rashba)

The so-called structural inversion asymmetry (SIA) or Rashba contribution to
SOC was originally introduced by F. Ohkawa and Y. Uemura [72], who derived
the spin splitting in 2D zinc-blende SC structures. The model was subsequently
expanded and generalized by F. Vasko [73], and by Y. Bychkov and E. Rashba [69].
SIA originates from the absence of an inversion symmetry due to an asymmetric
confining potential in QW structures. This contribution can be influenced by
an asymmetric doping distribution or non-symmetric interfaces, for instance. A
detailed discussion of the tunability of the Rashba SOC strength can be found in
Chapter 2.5. The corresponding SIA Hamiltonian can be written as:

HR = α (σ⃗xky − σ⃗ykx) = α
(
σ⃗ × k⃗

)
· ẑ, (2.33)
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with the Rasbha parameter α determining the strength of the Rashba SOC. The
corresponding effective magnetic field is given by [65]

B⃗R = 2α

gµB

 ky

−kx

 = 2k

gµB

 α sin(θ)
−α cos(θ)

 . (2.34)

There, θ is defined as the angle between the k-vector direction and the x-axis
([100]). Note that the direction of the Rashba spin orbit field (SO-field) is al-
ways oriented perpendicular to the k-vector, independent of the crystallographic
orientation.

Interplay between Rashba and Dresselhaus SOC

In 2D heterostructures, typically both contributions have to be considered. Their
interplay can be expressed as the sum of the Rashba (Eq. 2.33) and Dresselhaus
Hamiltonian (Eq. 2.27):

HSO = HR + HD. (2.35)

Similarly, the total effective magnetic field is given by sum of the individual ef-
fective field contributions B⃗D (Eq. 2.32) and B⃗R (Eq. 2.34). For x ∥ [100] and
y ∥ [010] this total SO-field is given by

B⃗SO = B⃗R + B⃗D

= 2k

gµB

 α sin(θ) + β cos(θ) + β3 cos(3θ)
−α cos(θ) − β sin(θ) + β3 sin(3θ)

 .
(2.36)

For regarding the total SO-field along the [110] and [1̄10] direction, it is most
convenient to rotate the coordinate system, such that x ∥ [110] and y ∥ [1̄10],
which results in:

B⃗SO = 2k

gµB

 (α − β) sin(θ̃) − β3 sin(3θ̃)
−(α + β) cos(θ̃) + β3 cos(3θ̃)

 . (2.37)

The angle θ̃ is now the angle between the new x-axis ([110]) and the k-vector direc-
tion. The SO-fields for the main k-vector directions can then be easily calculated.
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For x ∥ [100] and y ∥ [010] it thus follows:

Bk∥[100] = 2k

gµB

β + β3

−α


Bk∥[010] = 2k

gµB

 α

−β − β3

 ,

(2.38)

while for x ∥ [11̄0] and y ∥ [110] the SO-fields are given by:

Bk∥[110] = 2k

gµB

−α − β + β3

0


Bk∥[11̄0] = 2k

gµB

 0
α − β + β3

 .

(2.39)

In Fig. 2.6 the individual SO-fields for the main k-vector orientations are shown.
Note that the signs of the SO parameters are defined such that α > 0, β =
β1 − β3 > 0, β1 > 0, and β3 > 0, while g < 0. From this representation it is
apparent that the effective Rashba field is always perpendicular to the k-vector
direction, independent of the crystallographic orientation. The orientation of the

Figure 2.6. Orientation of the individual SO-fields for the main k-vector direc-
tions for Rashba SOC α (a), Dresselhaus contribution β = β1 − β3 (b), and cubic
Dresselhaus parameter β3 (c). In this representation α > 0, β = β1 − β3 > 0,
β1 > 0, β3 > 0, and g < 0. Adapted from [65].
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linear and cubic Dresselhaus fields, on the other hand, strongly depends on the
direction of the k-vector. This gives rise to an anisotropy of the total SO-field, the
magnitude of which depends on the relative strength of the individual parameters.
In the Dyakonov-Perel spin relaxation regime this leads to a dependence of the
spin relaxation rates on the spin orientation, for instance (Chapter 2.4). Notably,
the total SO-fields for k ∥ [110] and k ∥ [11̄0] are oriented perpendicular to the
direction of the k-vector.

SOC strength in (In,Ga)As based QWs

The SOC parameters and the relative strengths of SIA and BIA depend strongly
on the specific heterostructure, thus it is not possible to find generally valid values
for α and β in literature. Especially the value of the Rashba parameter exhibits
a significant dependence on the symmetry of the QW and can be tuned over a
large range by means of an external gate electric field [22, 23, 74–76]. Thus,
the following values have to be considered as rough approximations of the order
of magnitude of the corresponding values. For (In,Ga)As structures with a low
indium content of 10 %, similar to the heterostructure under investigation in this
thesis, the values for α and β can be expected to lie in the low 10−13 eV m range [77,
78]. Consequently, both SIA and BIA have to be taken into account. More reports
can be found on structures with higher indium contents above 50 %, and InAs
QW heterostructures. With increasing indium content, the Rashba contribution
typically dominates over the Dresselhaus related SOC. There, values for α lie in
the 10−12 eV m range for In0.53Ga0.47As QWs [79–81], as well as for InAs QWs [82–
84].

SOC in quasi-1D systems

The SOC related properties of a quasi-1-dimensional channel can be examined
by introducing an additional in-plane confining potential V (x). This leads to a
coupling between the quantum wire subbands [85–89], the relevance of which can
be estimated by the parameter s:

s ≈ w

LSO

, (2.40)
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where w denotes the width of the wire and LSO = ℏ2/ (2 SOC m∗) is the spin
precession length with the SOC strength SOC [8, 90]. In case of a weak SOC
(w ≪ LSO) the subband coupling contribution is small and the energy dispersion
is still parabolic. Similar to the 2-dimensional case, the presence of SOC leads
to a spin splitting of the energy bands in k-direction. For large SOC strengths
(w ≳ LSO), on the other hand, the energy dispersion becomes strongly non-
parabolic, which requires taking into account changes of the SOC strengths due
to the coupling between neighboring subbands. This can result in crossings of
energy bands even at low energies, thus implying non-trivial alterations of spin
precession and spin transport patterns [85–89]. In case of the (In,Ga)As QW
structures examined within this thesis, the SOC strength can be assumed to lie in
the low 10−13eV m range and m∗ ≈ 0.0625 m0, so that the spin precession length
LSO ≈ 6 µm largely exceeds the width of the narrowest channel (w = 400 nm), i.e.
the coupling parameter s is small (s ≪ 1). Thus, effects of spatial confinement on
SOC can be neglected in this case.

2.4 Spin relaxation

2.4.1 Spin relaxation mechanisms in semiconductors

In general, spin relaxation describes the decay of the non-equilibrium spin polariza-
tion. For conduction electrons in semiconductors four major spin relaxation mech-
anisms can be identified: Elliott-Yafet, Dyakonov-Perel (DP), and Bir-Aronov-
Pikus mechanism, as well as spin relaxation due to hyperfine interaction with
nuclear spins. The fundamental concepts and theoretical consideration are com-
prehensively presented by J. Fabian et al. [26, 91], I. Žutić et al. [27], and M. Wu
et al. [92], while an additional brief summary is provided by M. Dyakonov [93].
The suppression of spin relaxation in narrow conductive channels approaching the
quasi-1-dimensional limit is discussed in Chapter 2.4.2.
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Figure 2.7. Simplified illustration of the basic spin relaxation mechanisms in
semiconductors. In case of the Elliott-Yafet mechanism (a), spin flip events at
momentum scattering sites lead to spin relaxation, while for the Dyakonov-Perel
mechanism (b) spin relaxation is due to spin precession around the k-vector depen-
dent SO-field. Bir-Aronov-Pikus spin relaxation (c) is a result of the electron-hole
exchange coupling. Spin relaxation can also be due to localized electrons inter-
acting with the spin of the lattice nuclei (d). Adapted from [26, 91].

Elliott-Yafet

In the presence of SOC the Bloch states are no longer spin eigenstates, instead
the eigenstates consist of a mixture of spin-up and spin-down states. In combi-
nation with momentum scattering, this coupling between spin-up and spin-down
states gives rise to spin relaxation. This contribution to spin relaxation was in-
troduced by R. Elliott [94]. Momentum scattering events are typically induced
by impurities, which are dominating at low temperatures, and phonons, which
are relevant at higher temperatures. An additional momentum scattering related
contribution to spin relaxation occurs, if the impurity, which gives rise to the mo-
mentum scattering event, induces a SOC potential. This gives rise to a certain
spin flip probability at each scattering site, which ultimately leads to spin relax-
ation (Fig. 2.7a). Spin flip scattering can also be introduced by phonons, which
modulate the SOC potential of the lattice-ions. This phonon induced effect was
first taken into account by A. Overhauser [95] and later applied to band-structure
systems by Y. Yafet [96]. Typically, the Elliott-Yafet spin relaxation is particu-
larly relevant for small band gap semiconductors with large SOC strengths, like
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InSb [27].

Bir-Aronov-Pikus

Bir-Aronov-Pikus spin relaxation [97] is based on the electron-hole exchange in-
teraction, such that a spin-up electron, for instance, can exchange its spin with a
spin-down hole (Fig. 2.7c). Due to the strong SOC induced spin mixing in the va-
lence band, spin relaxation for holes is fast, so that the electron spin polarization
is lost to quickly decaying holes. This mechanism is found to be the most relevant
in p-doped semiconductors.

Dyakonov-Perel

SOC can be regarded as an effective k-vector dependent magnetic field B⃗eff (k⃗),
which gives rise to spin precession with the Larmor frequency

Ω⃗(k⃗) = ge

2m∗ B⃗eff (k⃗). (2.41)

Strength and orientation of B⃗eff (k⃗) vary with the direction of the electron’s mo-
mentum vector k⃗, which, in the diffusive transport regime, randomly changes due
to momentum scattering events. This, in turn, leads to a random variation of both
the precession axis, as well as the precession frequency, which results in a random-
ization of the initial spin orientation. This spin relaxation process is referred to as
Dyakonov-Perel (DP) mechanism [93], and is schematically illustrated in Fig. 2.7b.
Within the DP regime, two limiting cases are generally distinguished [27, 92, 93].
If the spin undergoes many rotations in between two momentum scattering events,
such that the product of averaged precession frequency ⟨Ω⃗⟩ and momentum relax-
ation time τp is large (⟨Ω⃗⟩τp ≳ 1), the spin relaxation time τs is proportional to the
momentum relaxation time τp (τs ∝ τp). In the other limiting case, which is the
usual definition of the DP regime, the precession angle in between two scattering
events is small (⟨Ω⃗⟩τp ≪ 1), i.e. the collision rate 1/τp is large compared to ⟨Ω⃗⟩.
In this regime the spin orientation dependent spin relaxation times τs,i (i = x, y, z)
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are given by [26, 27, 92]
1

τs,i

= γ−1
l

(
Ω2 − Ω2

i

)
τp, (2.42)

where the average is taken over all directions of k⃗, and Ω⃗i corresponds to the pre-
cession frequency, which is due to the SO-field oriented parallel to the considered
spin orientation. The parameter γl is defined as γl = τp/τ̃l, with the effective
momentum scattering time τ̃l, where l is the order of k⃗ in Ω⃗(k⃗). For linear-in-k
SOC terms (l = 1) τl is equal to the momentum scattering time τp, such that
γ1 = 1, while in general γl > 1 for l > 1 [27]. Regarding the Dresselhaus related
cubic SOC terms, the parameter γ3 becomes important. Its value depends on
the dominating scattering mechanism. Considering DP spin relaxation in bulk
III-V semiconductors, γ3 ≈ 6 for impurity dominated scattering for instance [27].
Setting γl = 1 can be considered a lower bound for the spin relaxation time. The
equation for τs,i (Eq. 2.42) implies that an increased momentum scattering leads
to a longer spin lifetime, which is referred to as motional narrowing. Additionally,
according to this equation, the spin relaxation rates 1/τs,i are linked to the SO-
field. For a QW grown along the z-direction [001], with x ∥ [11̄0], and y ∥ [110],
the corresponding spin relaxation rates can thus be expressed as a function of the
SOC parameters [98–100]:

1
τx

= 4Dm∗2

ℏ4

[
τ1

τp

(α − (β1 − β3))2 + τ3

τp

β2
3

]
1
τy

= 4Dm∗2

ℏ4

[
τ1

τp

(α + (β1 − β3))2 + τ3

τp

β2
3

]
1
τz

= 8Dm∗2

ℏ4

[
τ1

τp

α2 + τ1

τp

(β1 − β3)2 + τ3

τp

β2
3

]
.

(2.43)

If either BIA (β ≡ β1 − β3) or SIA (α) dominates, in-plane spin relaxation is
isotropic, with

1
τx

= 1
τy

= 1
2 τz

. (2.44)

In case of Dresselhaus and Rashba contribution being similar in strength, on the
other hand, the spin relaxation of spins oriented in-plane can become strongly
anisotropic. In this case, τx can get significantly larger compared to τy, or vice
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versa. This is especially relevant for asymmetric (In,Ga)As QW structures with
low indium contents, in which case both SOC contributions are found to be of a
similar order of magnitude [77, 78]. An additional remark concerns the importance
of the cubic Dresselhaus coefficient β3, or the parameter γ−1

3 = τ3/τp respectively.
If the corresponding term in Eq. 2.43, i.e. (τ3/τp) β2

3 , becomes dominating, the
isotropy of spin relaxation is restored. The spin relaxation anisotropy can be
quantified by introducing the parameter k, which is defined as the ratio of τx to
τy:

k ≡ τx

τy

=
(α + (β1 − β3))2 + τ3

τ1
β2

3

(α − (β1 − β3))2 + τ3

τ1
β2

3

, (2.45)

where τ1 = τp. In the DP regime the spin relaxation anisotropy k is thus deter-
mined by the SOC components.

Hyperfine interaction

The interaction between electron spin and the disordered effective magnetic field,
which originates from the spin of the lattice nuclei, results in an additional con-
tribution to spin relaxation. It is relevant for localized electrons, for example in
quantum dots, while for higher-dimensional systems the effect on spin relaxation
is typically negligible, as the spatially extended electron states experience only
the vanishing average effective magnetic field of the nuclei.

2.4.2 Suppression of spin relaxation in the quasi-1D limit

The main source of spin relaxation in III-V semiconductor heterostructures is
the DP mechanism. In general, momentum scattering events result in a random-
ization of the electron’s direction of motion. In the presence of a k⃗ dependent
effective spin orbit field (SO-field), which induces spin precession, this leads to
a randomization of the spin orientation, thus giving rise to spin relaxation. The
DP spin relaxation in 2D structures can be strongly suppressed by introducing
a lateral confinement, such that the electron’s motion is restricted to a narrow
transport channel [101–105]. As the motion perpendicular to the channel orien-
tation is limited, there is only a single precession axis in the 1-dimensional limit.
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Figure 2.8. (a) Categorization of different spin relaxation regimes, characterized
by the channel width wc and the spin precession length LSO. Adapted from [101].
(b) Experimentally determined spin relaxation time in dependence of the channel
width by P. Altmann et al. [102], showing the 1/w2

c dependence of τs ≡ τ 0 in the
intermediate regime between 2D and 1D spin transport (τIM). Adapted from [102].

Thus, spin relaxation due to randomly changing precession angles and frequencies
is suppressed. The effect of confinement on the spin transport characteristics can
be categorized by regarding the ratio of channel width wc and spin precession
length LSO = 2m∗ SOC/ℏ2, as sketched in Fig. 2.8a. For a mean free path Lp

larger than the spin precession length (Lp ≥ LSO) the accumulated precession
angle between two momentum scattering events is large, which gives rise to a fast
decay of the initial spin polarization (no motional narrowing). In this case, the
spin relaxation time τs is determined by the momentum relaxation time τp, such
that τs ∝ τp. In the regime of motional narrowing, on the other hand, the preces-
sion angle in between two subsequent scattering events is small, and Lp < LSO.
In this case, as described in the previous section, the DP spin relaxation time in
the 2D case (wc > LSO) is inversely proportional to the momentum scattering
time (τs ∝ 1/τp). Within the motional narrowing regime spin transport is quasi-
1-dimensional for a channel width wc smaller than LSO, yet larger than the mean
free path Lp (Lp < wc < LSO). The 1-dimensional limit is reached for a channel
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width smaller than the mean free path (wc < Lp). In this case, the linear-in-k
contributions of the SOC are suppressed, yet the cubic Dresselhaus term yields a
finite value for the spin relaxation time, which, for out-of-plane oriented spins, is
then given by

1
τ1D

= 6Dm∗2

ℏ4 β2
3 , (2.46)

with the cubic Dresselhaus parameter β3 = −γπns/2. In the intermediate regime
between the 2-dimensional case and the 1D limit, the spin relaxation time is found
to be inversely proportional to the squared channel width wc:

τIM ∝ 1
w2

c

. (2.47)

The increase of the spin relaxation time with decreasing channel width is ex-
perimentally confirmed by a number of reports for out-of-plane oriented spins
in optical [102, 106, 107], and weak antilocalization measurements [90, 108]. In
Fig. 2.8b the experimental results of P. Altmann et al. [102] visualize the increase
of τs with decreasing channel width wc in the regime between the 2D case and
the 1-dimensional limit. In this intermediate regime, the spin relaxation time is
expected to satisfy Eq. 2.47. Within this thesis, the dependence of spin relax-
ation on the channel width is investigated experimentally for an (In,Ga)As QW
structure (Chapter 4.1).

2.5 Gate induced spin precession (spinFET)

The main focus of this thesis is the experimental realization of spin injection
devices which allow tuning the SOC strength by an external gate voltage Vg, thus
giving rise to spin precession related phenomena. In the following, a brief summary
of the gate tunability of the Rashba parameter, the most common spin field effect
transistor (spinFET) proposal introduced by S. Datta and B. Das [8], as well as
experimental works on this topic are presented. It is important to keep in mind,
however, that the Rashba parameter α is not the only gate tunable parameter in
the experimentally investigated (In,Ga)As 2DEG structures. Instead, applying a
gate voltage can also affect the charge carrier density ns, which gives rise to a gate

28



2.5 Gate induced spin precession (spinFET)

dependence of the cubic Dresselhaus contribution β3 ∝ ns. This is discussed in
detail in the experimental part of this thesis (Chapter 4.3).

Gate tunability of Rashba SOC

The strength of the SIA in heterostructure systems consists of several main con-
tributions and can be qualitatively described as [74]:

α ∝ a⟨EA⟩︸ ︷︷ ︸
SOC from QW

+ b (⟨EB,u⟩ + ⟨EB,l⟩)︸ ︷︷ ︸
barrier leakage

− c
(
|Ψu|2 − |Ψl|2

)
︸ ︷︷ ︸

interface term

, (2.48)

where ⟨EA⟩ is the average electric field in the QW, ⟨EB,u⟩ and ⟨EB,l⟩ are the cor-
responding electric field values in the upper and lower barrier of the QW, while
|Ψu|2 and |Ψl|2 refer to the electron probabilities at the upper and lower barrier
of the QW. The first term describes a linear dependence of α on the average
electric field ⟨EA⟩ in the quantum well [8, 71, 74, 75, 79, 109–113]. The elec-
tric field in the QW additionally affects the charge carrier density ns, which, in
turn, self-consistently influences E ∝ ns [75, 114]. Thus, α is typically, yet not
necessarily, found to be a linear function of ns [71, 111–113, 115, 116], which is
also confirmed by experimental works [71, 111, 115]. An additional contribution
arises from the electron wave-function penetrating the barrier of the potential well
(barrier leakage), which leads to an increase of the spin splitting [71, 74, 75]. The
third considered contribution originates from an abrupt potential change at the
heterojunction interfaces [71, 74]. Taking into account different electron probabil-
ities at both sides of the QW adds an additional term to the Rashba parameter,
which in general also increases the magnitude of α.
Applying an external electric field allows tuning α by directly affecting the elec-
tric field in the QW and/or the corresponding charge carrier density ns, or by
altering the potential profile of the QW, which gives rise to a shift of the electron
probability function [23, 71, 74, 76, 79, 104, 115]. Thus, the term describing the
penetration of the wave-function into the barrier, as well as the interface contri-
bution can be functions of the gate voltage. A further modification of the Rashba
parameter is found to be due to electron-electron interactions, which additionally
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increase α [116, 117]. As the strength of the Coulomb interaction increases for
decreasing electron density ns, electron-electron interaction can also be gate de-
pendent. Hence, also the corresponding contribution of α can be a function of Vg.
It has to be emphasized that α is not the only SOC contribution that is tunable
by a gate voltage, however. Instead, the total SOC also contains the linear and
cubic Dresselhaus contributions β1 and β3. The latter is dependent on the charge
carrier density ns (β3 ∝ γns). Hence, in systems in which ns changes with Vg, also
β3 is a function of Vg.

SpinFET functionality

A well-known concept of a spin field effect transistor (spinFET) was introduced by
S. Datta and B. Das [8], who proposed a gated device in which unidirectional, bal-
listic spin transport takes place between an injecting and a detecting spin polarized
contact (Fig. 2.9a). Applying a gate voltage allows tuning the Rashba SOC con-
tribution α, which gives rise to a gate dependent spin precession frequency. Thus,
depending on the gate voltage, the angle at which the spins arrive at the detector
changes, which gives rise to an oscillating voltage signal Vnl (Fig. 2.9b). Note that
in the original spinFET proposal a local device setup is considered, i.e. the charge
current is passed directly between the two spin polarized contacts. However, the
concept can be directly transferred to the non-local device configuration, as shown
in Fig. 2.9a.
Taking into account only the Rashba contribution to SOC implies that the effective
SO-field is always perpendicular to the k-vector. This SO-field gives rise to spin
precession, if the injected spin has a component which is perpendicular to this
field, i.e. parallel to the orientation of the channel. The strength of the Rashba
SO-field is determined by the Rashba parameter α(Vg) [22, 23, 76]:

BR = 2kF

gµB

α(Vg), (2.49)

and is thus tunable by an external gate voltage Vg. Note that in this simplified
case, only the Rashba contribution is taken into account. In general, however,
the effective SO-field also contains the linear and cubic Dresselhaus parameter,
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Figure 2.9. (a) Spin transistor concept similar to the one introduced by S. Datta
and B. Das [8]. (b) Gate dependent oscillatory non-local spin signal Vnl. Adapted
from [23].

according to Eq. 2.36 in Chapter 2.3. The gate tunability of the SO-field gives
rise to a gate dependent spin precession angle Θ:

Θ = 2m∗d

ℏ2 α(Vg), (2.50)

where d is the distance between injecting and detecting contact. Thus, depending
on the applied gate voltage, the precession angle of the spins arriving at the
position of the detector can be manipulated. Consequently, the orientation of
the spins underneath the detector relative to the magnetization of the detecting
contact changes as a function of Vg, which gives rise to an oscillating voltage signal:

Vdet = A cos
(

2m∗d

ℏ2 α(Vg)
)

= A cos (Θ) . (2.51)

This signal oscillates between the level at which the orientation of the detected
spin is parallel (P) to the magnetization of the detector, and the antiparallel level
(AP), as shown in Fig. 2.9b. The amplitude A of the oscillation corresponds to
the spin accumulation in the channel and is thus given by [118]

A = PinjPdetIinjRsλs

2wc

, (2.52)

with the injecting and detecting efficiency Pinj and Pdet, the injection current Iinj,

31



2 Theoretical Framework

sheet resistance Rs of the channel, and the channel width wc. There, spin trans-
port is assumed to be ballistic, which can be experimentally realized by choosing
an injector-detector distance smaller than the corresponding mean free path [22–
25, 113]. Alternatively, the channel width can be reduced (lateral confinement),
such that the mean free path increases [117, 119, 120].
In case of a 2D channel, scattering events at lattice imperfections lead to ran-
dom changes of the electron wave-vector. Depending on the direction of motion,
the strength of the effective magnetic field a spin experiences differs. Thus, de-
pending on the path an electron takes, the precession angle at the detector varies
for different electrons, resulting in spin relaxation (Dyakonov-Perel mechanism,
Chapter 2.4.1). In this context, A. Bournel et al. [104] derived from Monte-Carlo
transport simulations that oscillating spin precession signals are also observable in
2D channels, yet significantly suppressed due to spin relaxation (Fig. 2.10). De-
creasing the width of the channel consequently leads to the 2D signal approaching
the oscillating signal of the 1D case. Other theoretical publications also confirm
SOC related conductance oscillations in 2D systems [105, 121, 122].

Figure 2.10. Simulated spin
signal in dependence of an ex-
ternal electric field for different
channel widths wc, in a device
similar to the spinFET setup
shown in Fig. 2.9. Oscilla-
tions are observable not only in
the ballistic 1-dimensional case
(green, dashed line), but also
for 2D channels (solid lines).
Adapted from [104].

A. Zainuddin et al. [123] extended the 1-dimensional spin precession equation
(Eq. 2.51) to the 2-dimensional case, whereby spin transport is still assumed to be
ballistic. One of the major differences is the dependence of the oscillation ampli-
tude on the precession frequency, so that the amplitude becomes gate dependent
(A → A(Vg)). Additional differences compared to the 1-dimensional case are due
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2.5 Gate induced spin precession (spinFET)

to the spatial extent of the injecting and detecting contact along the channel, for
instance. A finite extent of the contacts gives rise to a variation of the electron’s
path length depending on the injection and detection point, thus resulting in a
spread of precession angles for different electrons. This gives rise to an additional
phase shift of the oscillatory signal, but also reduces the oscillation amplitude. Ad-
ditionally, oscillation frequency and amplitude can be affected due to a variation
of the SOC strength underneath the contacts. This can be caused by the metal-
lic contacts screening the effect of the gate underneath, or by affecting the SOC
strength due to the local magnetic field of the ferromagnetic contact material.

Experimental demonstration of gate-induced spin precession

The tunability of the SOC strength by a gate voltage has been confirmed in nu-
merous reports for various heterosturcture systems [20, 22, 23, 71, 74–76, 79,
111, 115], while the experimental demonstration of gate induced spin precession
is more challenging. A collaboration of several research groups successfully es-
tablished gate control of spin precession in InAs QW structures in a number of
connected publications [20–25]. In one of the earlier reports [23] a device is pre-
sented in which spins are injected electrically into an InAs 2DEG channel via
a Ni81Fe19 ferromagnetic electrode. The non-local voltage is measured at the
FM detector, while a gate electrode allows modulating the Rashba SOC contri-
bution. The distance between injector and detector is chosen smaller than, or
comparable to the corresponding mean free path, which justifies claims of oper-
ating in a quasi-ballistic transport regime. Analyzing the beating pattern in the
Shubnikov–de Haas oscillations allowed confirming the gate tunability of α for a
constant electron density ns [71, 74, 124, 125]. The corresponding gate dependent
values of α and ns are shown in Fig. 2.11b. It has to be remarked that for the
spin precession measurements an external magnetic field of about 0.5 T is nec-
essary in order to overcome the shape anisotropy of the FM, and magnetize the
contacts along the orientation of the channel. Thus, also the orientation of the
injected spins is set perpendicular to the effective SO-field and spin precession is
induced. The gate dependent non-local voltage signals are presented in Fig. 2.11a
for two different injector-detector distances, which both show an oscillating behav-
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Figure 2.11. (a) Experimentally observed gate dependent spin signal oscillations
by H. Koo et al. [23]. The device geometry is similar to the one shown in Fig. 2.9a.
(b) The corresponding gate dependence of α and ns, which confirms the tunability
of α, while ns hardly depends on Vg. From [23].

ior. The signal is modeled by a simple cosine function with a SOC related period
and a phenomenological phase shift (Eq. 2.51), which only roughly resembles the
measurement, however. In subsequent publications involving contributing authors
of Ref. [23], spin precession measurements were performed on similar InAs QW
structures, confirming previous results [20–22]. Later, special ferromagnetic ma-
terial combinations were implemented, which allowed a stable magnetization of
the contacts perpendicular to the orientation of the channel, thus enabling spin
precession experiments without having to apply an external magnetic field [24,
25]. Even basic logic operations could be realized [25].

2.6 Spin diffusion equation with spin orbit coupling

In the following, an extended version of the spin diffusion equation (Eq. 2.2 in
Chapter 2.1) is presented, which additionally takes into account SOC. This ex-
tended model is provided by J. Fabian [126], and is solved numerically in order
to obtain the spatial profile of the spin signal in the presence of SOC. For that
purpose the software tool COMSOL is implemented, which solves the system of
partial differential equations (PDE) numerically for a specific device geometry,
based on a finite element approach. Compared to other software environments,
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2.6 Spin diffusion equation with spin orbit coupling

the advantage of COMSOL lies in the convenient implementation of a least-squares
optimizer, which allows fitting the obtained solution of the PDE to experimental
data.

Expanded diffusion equation with SOC

The spatial and temporal evolution of the diffusively spreading spin density s =
(n↑ − n↓) in the presence of an external magnetic field B⃗ can be derived from a
random walk approach, which results in the spin drift-diffusion equation [26]:

∂s⃗

∂t
= D ∆s⃗ + ω⃗0 × s⃗ − s⃗

τs

, (2.53)

with the diffusion constant D, spin relaxation time τs, and Larmor frequency
ω⃗0 = γB⃗, where γ denotes the gyromagnetic ratio. In order to introduce SOC to
the spin diffusion equation, the random walk derivation has to be expanded, i.e.
spin precession due to SOC has to be additionally taken into account [126]. As
shown in Fig. 2.12a, electrons at position (x, y) can move there either from (x±a, y)
or (x, y ± a). Orientation and magnitude of the effective SO-field depend on the
direction of the electron motion, such that the electron spin is exposed to different
precession angles and frequencies. Note that in case of an external magnetic

Figure 2.12. Illustration of the random walk approach: electrons at position
(x, y) can move there either from (x ± a, y) or (x, y ± a). In the presence of a SO-
field spin precession is induced, whereby precession angle and frequency (ω⃗1/2)
depend on the k-vector direction (a). For an actual external magnetic field B⃗ext,
ω⃗ does not depend on k⃗ (b). Adapted from [126].
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field, precession frequency and precession angle do not depend on the direction of
motion (Fig. 2.12b). Taking into account the direction-of-motion dependent spin
precession frequencies ω⃗1 and ω⃗2 in the random walk approach yields an expanded
form of the spin diffusion equation, which includes SOC [126]:

∂s⃗

∂t
= D ∆s⃗ −

(
a

2 ω⃗1 × ∂s⃗

∂x
+ a

2 ω⃗2 × ∂s⃗

∂y

)
︸ ︷︷ ︸

SOC

+ ω⃗0 × s⃗ − s⃗

τs

. (2.54)

Based on the relations of the effective SO-field in Chapter 2.3 (Eq. 2.37), the
precession frequencies for x ∥ [11̄0] and y ∥ [110] are given by

ω⃗1 = α − β + β3

ℏ
kF ŷ

ω⃗2 = −α − β + β3

ℏ
kF x̂,

(2.55)

while the step length a of the random walk is related to the mean free path Lp:

a =
√

2 Lp. (2.56)

Implementation in COMSOL

Implementation of the expanded spin diffusion equation (Eq. 2.54) requires intro-
ducing SOC and an external magnetic field B⃗ext = (Bx, By, Bz)T to the partial
differential equation module in the COMSOL model, which has the following gen-
eral form:

ea
∂2u

∂t2 + da
∂u

∂t
+ ∇ · (−c̃∇u − α̃u + γ) + β̃ · ∇u + ãu = f, (2.57)

with the vector of the spin components u = (sx, sy, sz)T , which corresponds to
s⃗, and the vector containing the partial derivatives ∇ = (∂x, ∂y). Comparison to
Eq. 2.54 allows reducing this equation to:

da
∂u

∂t
= ∇ · (c̃∇u) − β̃ · ∇u − ãu, (2.58)
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with da = I3 being the 3 × 3 unit matrix. The matrix c̃ contains the diffusion
constant D, whereby diffusion is assumed to be isotropic:

c̃ =


D 0 0
0 D 0
0 0 D

 , (2.59)

while the SOC is introduced to the model via β̃:

β̃ = −



0
0

 0
0


−a

2ω1

0


0

0

 0
0


 0

−a

2ω2


a

2ω1

0


 0

a

2ω2


0

0




. (2.60)

There, for x ∥ [11̄0] and y ∥ [110], the components can be expressed in terms of
the SOC parameters α, β ≡ β1 − β3, and β3:

a

2ω1 =
√

2kF Lp

2ℏ (α − β + β3)

a

2ω2 =
√

2kF Lp

2ℏ (−α − β + β3),
(2.61)

where Lp is the mean free path, and kF refers to the Fermi wave-vector. It is
important to remark that only the SOC terms along the channel direction are
relevant for the result of the simulation, i.e. for a channel oriented along the y-
direction only the contributions containing w2 have to be taken into account, for
instance. The matrix ã is defined as

ã =



1
τx

0 ge

2me

By

0 1
τy

= k

τx

− ge

2me

Bx

− ge

2me

By
ge

2me

Bx
1
τz

= 1 + k

τx


. (2.62)
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It contains the spin relaxation τx and introduces an external magnetic field in the
x-y-plane B⃗ext = (Bx, By, 0)T . An additional anisotropy of the spin relaxation rate
is introduced by the parameter k, such that, depending of the spin orientation, the
spin relaxation rates differ. As a reference, the spin relaxation time τx for spins
oriented perpendicular to the channel (x-direction) is used, so that τy is related
to τx via k (τy = τx/k). The relaxation time τz is determined by τx and τy:

1
τz

= 1
τx

+ 1
τy

= 1 + k

τx

. (2.63)

It has to be remarked that in the COMSOL model a compact operator notation
is defined, such that

∇ · (c̃∇u) = ∂

∂x

(
c̃
∂u

∂x

)
+ ∂

∂y

(
c̃
∂u

∂y

)
(2.64)

= D∆u⃗, (2.65)

and

β̃ · ∇u = β̃x
∂u

∂x
+ β̃y

∂u

∂y
(2.66)

=



a

2ω1
∂sz

∂x
a

2ω2
∂sz

∂y

−a

2ω1
∂sx

∂x
− a

2ω2
∂sy

∂y


(2.67)

= a

2 ω⃗1 × ∂s⃗

∂x
+ a

2 ω⃗2 × ∂s⃗

∂y
, (2.68)

with β̃x and β̃y being the matrices consisting of the x and y component of the
matrix β̃. In the model, a simplified device geometry is investigated. It consists
of a single transport channel along the y-direction with a width of wc = 1 µm
(Fig. 2.13a). The injecting contact (blue) is spatially extended along the x-
direction, while the spins are detected at single points, which does not imply
any restrictions concerning the obtained spin signal, yet it is more convenient for
the practical implementation in the model. Introducing a spatial extent of the
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2.6 Spin diffusion equation with spin orbit coupling

Figure 2.13. (a)
Device geometry in
COMSOL, consist-
ing of a spatially
extended injector
(blue), and multiple
detection points
(green). The an-
gle φ determines
the orientation of
the injected spin
s⃗ (inset). Injected
spin and B⃗ext are
parallel in the model.
(b) Automatically
generated mesh for
FEM.

detectors would require integrating the spin signal over the width of the channel,
which only rescales the detected signal, compared to a detection point. Moreover,
the spatial extent of the channel in y-direction (100 µm) is much larger than the
channel width wc, and the injector-detector distances, and also compared to the
spin diffusion length. Thus, effects originating from the boundaries at the far
end of the channel can be neglected. Setting a constant flux of spins through
the injector is realized by implementing the following boundary condition in the
model:

−n · (−c̃∇u) = g, (2.69)

where n = (0, 1)T is the normal vector on the injection line (Fig. 2.13a), so that
the equation can be written as

D
∂u

∂y
= g. (2.70)

The vector g is given by

g =


f cos(φ)
f sin(φ)

0

 , (2.71)
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and determines orientation φ and magnitude f of the injected spin density. There,
φ refers to the angle between the x-axis and the orientation of the injected spin
(Fig. 2.13a). In the model, the orientation of the injected spin is parallel to
direction of the external magnetic field B⃗ext. The parameter f quantifies the spin
flux through the injector and can be related to physical quantities by comparison
to the definition of the spin current [26]:

js = j Pj = eD
∂s

∂y
. (2.72)

Thus, the parameter f in the model is determined by the charge current j through
the injector, and the injection efficiency Pj:

f = j Pj

e
, (2.73)

while the orientation of the spin can be set arbitrarily in the model. At the
detection points, the projection of the spin along the orientation of the external
magnetic field is regarded:

sdet = sx cos(φ) + sy sin(φ). (2.74)

The finite element method (FEM) itself is based on reducing a set of partial dif-
ferential equations to a discrete set of algebraic equations, which can be solved
numerically [127]. The geometry V , in which the PDEs are defined, is divided
into a finite number of elements V e (mesh), such that V = ∑

V e. COMSOL
implements triangular elements, as show in Fig. 2.13b. In each subdomain the
solution of the PDE, or system of PDEs respectively, is calculated separately. A
global solution in V is then obtained by assembling the solutions of the subdo-
mains, whereby the continuity of the solution at the element boundaries has to
be taken into account. A more detailed description of the finite element method
can be found in Ref. [127], for example. It has to be remarked that the spatial
dependence of the spin density can also be calculated with other numeric solvers,
like Maple for instance. The major advantage of the COMSOL software is the
convenient implementation of a least-square solver, which allows fitting the so-
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lution of the PDEs to the corresponding experimentally obtained data, which is
discussed in detail below.

Limitations of the model

For specific input parameter constellations, which include large spin relaxation
times τs and/or large SOC strengths for instance, the extended diffusion equa-
tion cannot be solved numerically. This shortcoming is illustrated in Fig. 2.14
for an exemplary set of parameters. There, magnetic field sweeps with B⃗ext ori-
ented along the direction of the channel are calculated for several combinations
of SOC strength and spin relaxation time τx. For small values of SOC and τx,
a peak-like/dip-like magnetic field dependence is obtained (Fig. 2.14a), while for
parameter combinations containing larger values the numeric solver does not yield
a solution (Fig. 2.14b). In Fig. 2.14c the parameter combinations yielding a so-
lution are marked in green, while the set of parameters for which the expanded
diffusion equation cannot be solved are highlighted in red. The lack of finding a
solution for certain parameter constellations could be related to non-converging
terms occurring during the solving process, i.e. fractions with largely differing
values in the numerator and the denominator, for instance. It is important to re-
mark that this issue is not related to COMSOL itself, and it also does not depend
on the geometry or the resolution of the mesh. Instead, non-converging solutions
are also obtained when solving the expanded diffusion equation numerically with
software tools like Maple.
Another remark concerns the purely diffusive character of the model, so that bal-
listic effects, which can occur for narrower transport channels, cannot be taken
into account in the model. In particular, the obtained solution does not depend on
the channel width in the model, such that identical results are obtained even for
a purely 1-dimensional geometry, in which case the channel is only a line. How-
ever, in the investigated devices, which are presented in the experimental part
of this thesis, spin transport takes place in an intermediate regime, approaching
the 1-dimensional limit, which is discussed in detail in Chapter 4.1. This imposes
limitations concerning the quantitative analysis of the experimental data.
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Figure 2.14. (a,b) Calculated spin signal for an external magnetic field orienta-
tion along the channel, for different SOC strengths and spin relaxation times τx,
but fixed µe = 3.7 m2/V s, ns = 7 × 1015 m−2, and k = 3. For large SOC strength
and/or τx, or τy respectively, the system of PDE cannot be solved numerically (b).
(c) Visualization of this limitation of the model: a solution for the exemplary set
of parameters can be obtained only for a limited range of SOC strengths and spin
relaxation times (green), while other combinations do not yield a solution (red).
The parameter combinations which yield the spin signals shown in (a) and (b),
are marked by the dots in the corresponding color.
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In the following, the experimental realization of electrical spin injection and detec-
tion is presented. The spin injection devices are based on an Esaki-diode structure
with (Ga,Mn)As as a ferromagnet, which is described in Chapter 3.1. The layer
sequence of the corresponding heterostructure system and the geometry of a stan-
dard spin injection device are presented subsequently, focusing on the fabricational
methods, as well as process optimization. The measurements presented in the ex-
perimental part of this thesis (Chapter 4) are based on magnetic field dependent
non-local measurements, which are described in Chapter 3.4, with special focus
on the non-local spin valve (SV) setup.

3.1 Spin injection through an Esaki-diode structure

Overcoming the conductivity mismatch problem can be achieved by introducing
a tunnel barrier between the ferromagnet (FM) and the non-magnetic conduc-
tor (Chapter 2.2). Such a junction can be conveniently realized by a fully-SC
Zener-Easki-diode [128] structure with (Ga,Mn)As [129] as a ferromagnet [18, 57,
63, 130]. Before discussing spin injection through such an Esaki-diode structure,
basic properties of (Ga,Mn)As are summarized first. (Ga,Mn)As belongs to the
group of diluted ferromagnetic semiconductors (DFS), which combine the prop-
erties of SCs and ferromagnets [5, 131–133]. The ferromagnetism is introduced
by the magnetic moment of the Mn atoms, which partially replace Ga atoms in
the GaAs crystal. (Ga,Mn)As is intrinsically p-doped, whereby antiferromagnetic
order is mediated by holes for Mn concentrations between 2 % and 10 %. The mag-
netic anisotropy of (Ga,Mn)As strongly depends on a variety of parameters, like
temperature, strain, external fields, or doping density [134, 135]. For (Ga,Mn)As
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films grown on a (001) GaAs substrate with low Mn concentrations of 3 % to 6 %,
compressive strain leads to a reduction of the cubic symmetry with the cubic easy
axes along ⟨100⟩, resulting in a biaxial anisotropy with in-plane easy axes along
[100] and [010] [5, 134, 136, 137]. The magnetic anisotropy can be additionally
tailored by lithographically defined narrow stripes, which induce anisotropic strain
relaxation, leading to a magnetically hard axis perpendicular to the stripe and an
easy one along the stripe [5, 138–141].

Figure 3.1. (a) Highly doped p-(Ga,Mn)As/n-GaAs Esaki-diode junction in
equilibrium. (b) Spin injection under reverse bias. Spin polarized electrons can
tunnel from the valence band of the (Ga,Mn)As layer into the conduction band
of the GaAs heterostructure. (c) Spin extraction under forward bias. Adapted
from [5].

The spin injection process through a highly doped p-(Ga,Mn)As/n-GaAs Esaki-
diode structure is schematically depicted in Fig. 3.1. Due to the high doping
concentrations on both sides of the junction, the valence band (VB) edge in the
(Ga,Mn)As layer is energetically higher than the conduction band (CB) edge on
the GaAs side. Thus, in equilibrium the Fermi energy EF lies within the CB of
the GaAs layer, while in the (Ga,Mn)As it lies below the VB edge (Fig. 3.1a). By
applying a reverse bias across the junction (Fig. 3.1b), spin polarized electrons can
tunnel from the valence band of the (Ga,Mn)As layer into the conduction band
of the GaAs, thus generating a non-equilibrium spin accumulation in the GaAs
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structure (spin injection). Similarly, a forward bias leads to a non-equilibrium
spin distribution in the GaAs layer due to spin extraction (Fig 3.1c). First all-
electrical spin injection experiments by M. Ciorga et al. [18] showed spin injection
efficiencies of P ∼ 50 % and later up to about P ∼ 80 % [142] into bulk n-GaAs.

3.2 Heterostructure layout and sample preparation

The MBE-grown fully-SC heterostructure system, which is the basis of the spin
injection experiments conducted within the scope of this thesis, is sketched in
Fig. 3.2. In the following, the layer sequence is described in the order of growth.

Figure 3.2. Layer se-
quence of the heterostruc-
ture system, which allows
electrical spin injec-
tion and detection. It
basically consists of a
p-(Ga,Mn)As/n-GaAs
Esaki-diode structure
and an (In,Ga)As QW.
In between the contacts,
the top layers of the
structure are removed
(detch = 75 nm) in order
to prevent parallel con-
duction.

Starting point is a (001) GaAs substrate, followed by a 1 µm GaAs/(Al,Ga)As
superlattice, which eliminates the influence of impurities, strain or other crystal-
lographic defects of the substrate. The subsequently grown Al0.33Ga0.67As layer
(95 nm) is interrupted by Si δ-doping, which provides free charge carriers, thus al-
lowing the formation of a conductive channel in the quantum well (QW). The QW
itself is formed in the In0.09Ga0.91As layer (20 nm), which is followed by 100 nm
of lightly Si-doped n-GaAs (ndoping = 7 × 1016 cm−3). In the following transition
layer the doping level of the n-GaAs layer is continuously increased, such that it
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matches the doping concentration of the 8 nm thick, highly n+-doped GaAs layer
(ndoping = 5 × 1018 cm−3) above. On top, (Ga,Mn)As (50 nm) with a Mn content
of 5.5 % forms the ferromagnetic layer of the spin injection structure. Based on
SQUID measurements, the Curie temperature is found to lie between 60 K and
70 K. The (Ga,Mn)As layer is additionally separated from the n+-GaAs by 2.2 nm
of Al0.33Ga0.67As, which prevents diffusion of Mn atoms into lower layers. The top
layers of this heterostructure, i.e. the (Ga,Mn)As and the highly doped GaAs lay-
ers, form the above mentioned Esaki-diode, which enables electrical spin injection
and detection, while spin transport takes place in the In0.09Ga0.91As QW below.
Typical values of the corresponding electron mobility µe and charge carrier density
ns in the QW are µe ≈ 74 000 cm2/Vs, and ns ≈ 8.4 × 1011 cm−2 after external
illumination.
The simulated lowest conduction band (CB) of this heterostructure is shown in
Fig. 3.3a, along with the corresponding electron density, which result from self-
consistent Schrödinger-Poisson calculations. There, between the intrinsically p-
doped (Ga,Mn)As and the highly n-doped GaAs layer the CB is strongly bent,
thus forming the Esaki-diode structure, which allows efficient spin injection and
detection. Note that the peak in the band-structure between the (Ga,Mn)As and
the GaAs layer is due to the (Al,Ga)As spacer (2.2 nm). Towards the QW the
doping concentration of the GaAs layer is continuously decreased (n+ → n), such
that the conduction band smoothly bends, until it matches the CB energy of the
n-GaAs layer. The QW is formed by the (In,Ga)As layer (20 nm) between the
n-GaAs and the (Al,Ga)As. Due to the different band-gaps of the adjacent layers,
the QW is slightly asymmetric. Within the (Al,Ga)As a Si δ-doping layer is grown,
which provides free charge carries for the population of the 2DEG. This δ-doping
gives rise to a dip in the CB. In order to limit conduction between the contacts
to the 2DEG channel, thus preventing spin/charge transport in the doped layers
above the QW, or within the (Ga,Mn)As, the top layers of the heterostructure have
to be removed up to a depth of detch ≈ 75 nm (Fig. 3.2). Thus, the (Ga,Mn)As
layer, as well as the highly doped GaAs layers are removed, such that the bending
of the CB towards the surface is increased (Fig. 3.3b). This gives rise to an
increased confinement of the electron wave-function in the QW. In experiment,
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Figure 3.3. Band-structure (black) and electron density (red) for the heterostruc-
ture shown in Fig. 3.2, resulting from self-consistent Schrödinger-Poisson simula-
tions. z = 0 corresponds to the top of the structure. (a) Simulation of the entire
heterostructure. (b) Simulation without the top-layers (decth = 75 nm), which
increases the confinement of the electron wave-function in the QW.

parallel conductance can be identified in magneto-transport measurements as an
additional parabolic magnetic field dependent signal on top of the Shubnikov-
de Haas (SdH) oscillations in the longitudinal resistance [143]. Additionally, it
has to be remarked that the 2DEG channel is typically sparsely populated, i.e.
the charge carrier density ns is low directly after cooling down the sample to
cryogenic temperatures. This issue can be resolved by external illumination, which
generates additional free charge carriers due to optical excitation of deep donor
states (DX centers) in the Si-doped region of the (Al,Ga)As layer (persistent photo
effect) [144–146].
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3.3 Device geometry and fabrication

Device geometry

In the following, the basic device geometry of standard samples is schematically
described. All devices investigated within the scope of this thesis are based on
the SC heterostructure presented in Chapter 3.2. A standard spin injection device

Figure 3.4. (a) Schematic sketch of a standard spin injection device (not to
scale), consisting of a transport channel (mesa), spin injection and detection con-
tacts (yellow), large reference pads, and probes for magneto-transport measure-
ments. (b) Side-view of the device structure shown in (a). The top layers of the
heterostructure are removed up to a depth of detch in order to avoid electrical con-
duction in the layers above the 2DEG (red). (c) SEM image of the spin injection
and detection contacts. Scale: wc = 20 µm.

geometry is show in Fig. 3.4. It basically consists of a conducting channel, also
referred to as mesa (gray), an injecting and at least one detecting contact (yellow),
reference pads (yellow, large), as well as probes for magneto-transport measure-
ments. In between the contacts the top layers of the heterostructure are removed
(detch) in order to ensure that transport takes place only in the 2DEG channel
(red). It has to be remarked that the reference pads consist of the identical layer
sequence as the spin contacts, thus these pads are also ferromagnetic. In order
to make sure that the spin injection experiments are not affected, the distance
between the reference pads and the spin contacts is required to be sufficiently
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3.3 Device geometry and fabrication

large, i.e. much larger than the corresponding spin diffusion length [5, 11, 142,
147]. Thus, the injected spin accumulation is completely dephased when arriv-
ing at the reference pads, such that no additional electromotive force builds up at
these reference contacts due to spin charge coupling. For the presented sample the
distance between spin contact and reference pad is about 300 µm, which is much
larger than a typical spin diffusion length of λs ≈ 5 µm. A typical channel width
of a standard spin injection device is wc = 20 µm, while the width of the spin in-
jection and detection contacts ranges from 300 nm to 800 nm. The varying widths
of the spin contacts give rise to differing coercive fields due to the different degrees
of lithographically induced lattice relaxation. This is an important requirement
for the spin injection experiments described in Chapter 3.4. The optimal etching
depth ensuring the formation of an ideally developed 2DEG channel lies between
70 nm and 75 nm.

Fabrication

Fabricating the device structure described above (Fig. 3.4) involves standard semi-
conductor (SC) fabrication techniques. In the following, the fabrication steps are
briefly summarized, without going into technical details. Further information can
be found in Refs. [148, 149], for instance. It has to be emphasized, however, that
sample fabrication and process optimization has to be considered one of the major
challenges of this thesis. The basic fabrication steps are schematically depicted
in Fig. 3.5. First, the conductive channel (mesa) is patterned lithographically by
electron beam lithography (EBL). There, a negative EBL resist (AR-N 7500.18) is
utilized. After developing the resist, the pattern is transferred to the heterostruc-
ture by physical ion beam etching (IBE) with argon, which, compared to wet
chemical etching approaches, yields a homogeneous, vertical etching profile, and
highly reproducible etching rates (Fig. 3.5a). The remaining resist is removed
afterwards with acetone. The reference pads and spin contacts are also defined by
EBL, yet with multilayer PMMA (positive) as a resist, followed by evaporation of
10 nm of titanium (Ti) and 100 nm of gold (Au) (Fig. 3.5b). There, the Ti layer
ensures the adhesion of the subsequently evaporated Au film. Immediately before
the evaporation process the sample is immersed into an HCl:H2O solution, which
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Figure 3.5. (a) Physical etching of the mesa channel with argon based ion beam
etching. The structure is defined by lithographically patterned resist. (b) Evap-
oration of the Au/Ti spin contacts and reference pads. (c) Top-etching step, in
which the conductive layers other than the 2DEG channel are removed. (d) Ad-
ditional gate electrode, consisting of an oxide layer and a metal film.

removes native oxides, thus considerably enhancing the contact quality between
the metal layer and the semiconductor heterostructure. After lift-off, the parts of
the metal film which are on top of the resist are removed along with the resist
itself. Subsequently, the top layers of the heterostructure have to be removed in
between the contacts in order to avoid electrical conduction in the layers above the
2DEG channel (Fig. 3.5c). For that purpose, wet chemical etching with an acetic
acid based solution (5C2H4O2:H2O2:5H2O) is implemented. There, the gold layer
acts as an etching mask. In this step the top 70 nm to 75 nm are removed. Etching
too deep leads to a complete depletion of the 2DEG at cryogenic temperatures,
which cannot be counteracted by external illumination. Removing not enough
material from the top layers, on the other hand, leads to an undesirable parallel
conduction channel above the 2DEG, which can be observed in magneto-transport
measurements as an additional parabolic magnetic field dependent signature on
top of the Shubnikov-de Haas oscillations in the longitudinal resistance. As the
etching depth detch is critical, etching is conducted iteratively in multiple short
steps. After each etching step detch is determined by atomic force microscopy
(AFM). For device geometries which require a gate electrode, additional fabrica-
tion steps are necessary (Fig. 3.5d). There, EBL patterned multilayer PMMA is
used as a mask. Subsequently, an oxide layer is grown, which consists of a 10 nm
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PECVD1-grown SiO2 layer at a process temperature of 80 °C, followed by 100 nm
of ALD2-grown Al2O3 at 120 °C. There, the SiO2 seed layer ensures the homo-
geneous growth of the Al2O3. Without a further lithographic step, 2 nm Ti and
20 nm Au are evaporated, followed by a lift-off process. The thickness of the metal
electrode is chosen such, that it forms a homogeneous layer, yet is still transparent
enough to allow external illumination, which is required in order to fully popu-
late the 2DEG channel at cryogenic temperatures. Finally, the metallic gate layer
has to be electrically connected, which requires an additional EBL pattering step
with multilayer PMMA, followed by evaporation of Ti/Au (10 nm/100 nm). After
these micro-fabrication steps the spin contacts, reference pads and gate electrode
have to be electrically connected to a chip-carrier by conventional wire bonding.
There, the large reference pads can be directly bonded, while the spin contacts
are electrically accessed via larger pads, which are directly fabricated in the corre-
sponding fabrication step, i.e. in the same step as the spin contacts. A depiction
of an exemplary actual sample geometry is shown in Fig. 3.6, where all Au/Ti
areas are fabricated in the same step.

Figure 3.6. An entire device geometry, including the large Au/Ti pads, some of
which directly contact the mesa, while others are connected to the spin injection
and detection contacts (zoomed in on the right). These pads allow electrical access
via wire bonding at the exemplarily marked position (red circle).

1plasma enhanced chemical vapor deposition
2atomic layer deposition
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Fabricational challenges

The fabrication process required extensive optimization in order to eliminate se-
vere shortcomings of previously conducted fabrication routines. One major ob-
stacle arose from wet chemical etching of the mesa structure, which is not repro-
ducible concerning etching depth and profile, and is accompanied by significant
underetching of the resist mask. In particular, this can lead to a distinct undercut
profile of the mesa sidewall (Fig. 3.7a), such that in the following evaporation step
the metal film on top of the mesa is not connected to the part on the substrate.
Indeed, this used to be a common problem of previous approaches, resulting in
a low stochastic yield of properly functioning spin contacts. Additionally, due to
severe underetching of the resist and lacking reproducibility of the etching profile,
devices with narrow channels (≲ 4 µm) could not be realized. Therefore, a dry

Figure 3.7. Depiction of shortcomings of previous sample fabrication approaches.
Wet chemical etching typically leads to an undercut profile of the mesa sidewall,
preventing electrical connection of the Au/Ti layer across the mesa edge (a). This
can be resolved by physical dry etching with IBE, which results in sloped mesa
sidewalls (b). Especially for low resist thicknesses the resist at the side of the mesa
is too thin (c). For small resist thicknesses, however, the evaporated metal film
can overlap (d), which could damage the metal layer during the lift-off process.
This can be resolved by implementing resist combinations with a significantly
larger thickness (e).
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etching technique was established, with the aim of a stable process and the pos-
sibility of fabricating narrow channels (wc ∼ 500 nm). Process development and
optimization required extensive testing of a variety of resist combinations (CSAR
(positive), multilayer PMMA (positive), double layer AR-N 7500.18 (negative)).
Double layer AR-N 7500.18 was found to yield the best results in terms of with-
standing dry etching processes, while CSAR resist has a better resolution, yet
could not be completely removed after etching, even by applying a high-power
oxygen plasma. PMMA resist, on the other hand, is strongly attacked during the
dry etching process and is therefore not applicable for this type of etching. Also,
different dry etching techniques were implemented, including reactive ion etching
(RIE) and ion beam etching (IBE) with argon ions. In case of the RIE process a
variety of gases, primarily SiCl4 alone, but also SiCl4 in combination with methane
for an increased etching rate of the (In,Ga)As layer, or a mixture with argon for
an additional physical etching component, were tested. Additionally, the gas flow
rate and process power were varied, but also trials with short periodic etching
intervals were conducted in order to remove residues of the wafer material in the
plasma, thus trying to stabilize the etching rates. However, even after extensive
testing no stable process could be established, which can be assumed to be due to
the RIE system itself. Ion beam etching with argon ions in combination with the
AR-N 7500.18 negative resist, on the other hand, yields a reproducible etching
rate and highly anisotropic etching profiles, giving rise to slightly sloped mesa
sidewalls, which allows ideal connection of the evaporated metal layer across the
mesa edge (Fig. 3.7b).
The spin injection and detection contacts typically used to be patterned with dou-
ble layer PMMA resist (200k9 % + 950k2 %), yielding a layer thickness of roughly
400 nm. However, at the sides of the mesa for instance, the resist thickness can
be assumed to be much thinner (Fig. 3.7c). In areas on the sample, in which the
resist is thinner, the evaporated metal layer can overlap (Fig. 3.7d), such that the
parts of the metal, which are supposed to stay on the substrate, could be ripped
off during the lift-off process. This shortcoming could be resolved by introducing
a triple layer PMMA resist (2 × 200k9 % + 950k2 %) with a thickness of about
800 nm, which additionally involved adjusting EBL dose and development time.
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The increased thickness of the resist prevents an overlap of the metal layers, thus
significantly facilitating the lift-off process (Fig. 3.7e).
Concerning the top-etching step, different solutions were tested, including phos-
phoric, citric, and acetic acid. The most reproducible results concerning etching
rate and spatial homogeneity could be achieved with an acetic acid based solution
(5C2H4O2:H2O2:5H2O).

3.4 Experimental methods

Non-local device geometry

The non-local device geometry, which allows electrical injection and detection of
spins, was first introduced and experimentally realized by M. Johnson and R. Sils-
bee [42]. This measurement setup is the basis of the experiments conducted within
the scope of this thesis (Chapter 4). The non-local setup is schematically sketched
in Fig. 3.8a. It consists of a non-magnetic conduction channel (NM), a ferromag-
netic injecting contact FM1, at least one detecting contact FM2, and reference
contacts at the far end of the channel (R1, R2). The FM/NM junction consists of
the Esaki-diode structure described in Chapter 3.1, while the NM channel is an
(In,Ga)As QW. The entire layer sequence of the heterostructure is presented in
Chapter 3.2. Spin injection is achieved by passing a charge current Iinj through the
FM1/NM interface to the reference contact R1, which generates a non-equilibrium
spin accumulation s in the NM channel underneath the injecting contact FM1. In
this non-local setup no charge current flows between the ferromagnets, and spin
transport can be considered purely diffusive in this region. The diffusive spread of
the injected spin accumulation s is accompanied by spin relaxation, which gives
rise to an exponential decay of s ∝ exp(−x/λs). A sufficiently large spin dif-
fusion length λs in the NM channel, however, can result in a non-equilibrium
spin distribution underneath the detecting contact FM2, the magnitude of which
can be measured as a non-local voltage drop Vnl. The magnitude of this non-
local voltage signal can be determined by regarding the spatial distribution of
the quasi-chemical potential µ, which is introduced in Chapter 2.2 (Fig. 3.8b).
There, a gradient of µ = 1/2 (µ↑ + µ↓) (green) in the injection circuit between

54



3.4 Experimental methods

FM1 and R1 (x < 0), gives rise to a charge current j = j↑ + j↓, which generates a
non-equilibrium spin accumulation µs(0) = 1/2 (µ↑(0) − µ↓(0)) in the NM channel
(spin injection). This spin accumulation decays exponentially with the distance

Figure 3.8. (a) Device geometry of the non-local spin injection setup. A charge
current j is passed from the ferromagnetic spin injection contact FM1 to the ref-
erence contact R1. The thus injected spins diffuse in each direction (js), so that
underneath the detecting contact FM2 a finite spin accumulation is present, which
can be measured as a non-local voltage drop Vnl. (b) Spatial profile of the quasi-
chemical potentials for spin-up µ↑ (red) and spin-down µ↓ (blue) electrons, along
with the total quasi-chemical potential µ (green). The non-local voltage drop at
the position of the detector is related to the difference between µ↑ and µ↓. (c) SV
measurement for a magnetic down-sweep. The step-like signal characteristic re-
sults from a change of the magnetization orientation of injecting and detecting
contact (arrows). (d) Experimental non-local SV signal for magnetic up- and
down-sweep. Adapted from [5].

55



3 Methods

from the injector (x = 0). In Fig. 3.8b µs is shown for majority (red) and minority
(blue) spins. The non-local voltage drop Vnl at the detector is related to µs and
given by [5, 19]

Vnl(d) = ∓Pdetµs(d) = ±PinjPdetIinjRsλs

2wc

exp
(

− d

λs

)
, (3.1)

with the injection current Iinj, the injection and detection efficiencies Pinj and
Pdet, the sheet resistance Rs of the channel, the spin diffusion length λs, and the
channel width wc.

Non-local SV measurement

A common method of probing a non-equilibrium spin accumulation relies on the
so-called non-local spin valve (SV) effect. Spin valve measurements can be con-
ducted with non-local devices, as shown in Fig. 3.8a, by additionally applying an
external in-plane magnetic field B⃗ext, which is oriented parallel to the easy mag-
netic axis of the injecting/detecting contact. The non-local voltage drop Vnl is
then measured as a function of Bext. A typical non-local SV signal is schemati-
cally sketched in Fig. 3.8c. For large magnetic fields the magnetization of both
ferromagnetic spin contacts is aligned parallel to B⃗ext. This configuration does
not change until the magnetic field direction is reversed and one of the contacts,
either the injecting or the detecting one, eventually switches its magnetization by
180◦. In this situation the magnetization of the contacts is antiparallel relative to
each other. Thus, also the spin orientation underneath the detector is antiparallel
relative to its magnetization direction, and Vnl changes sign. At larger reversed
magnetic fields, also the other contacts switches, so that again the parallel con-
figuration is established, which again gives rise to a change of sign of Vnl. The
change from P to the AP level and back to P yields the typical rectangular SV
signal shown in Fig. 3.8c. The height of the SV signal ∆Vnl is related to the
non-local voltage drop (Eq. 3.1):

∆Vnl(d) = 2|Vnl(d)| = PinjPdetIinjRsλs

wc

exp
(

− d

λs

)
, (3.2)
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with the injector-detector distance d. It has to be remarked that the clear for-
mation of the AP configuration requires different coercive fields of injecting and
detecting contact. This can be realized by different widths of the contacts, thus
inducing different degrees of lattice strain relaxation. Additionally, experimentally
obtained spin valve signals are typically shifted by an offset voltage (Fig. 3.8d).
This can be related to inhomogeneities of the FM/NM junction, like a non-uniform
tunnel barrier thickness along the spin contacts, or pinholes, which give rise to
a spatially varying injection and detection distribution along the contacts [150].
Also thermoelectric contributions, like Seebeck voltages resulting from Peltier or
Joule heating, can lead to a significant voltage offset [151]. As the quantitative
evaluation of the SV signal relies on the difference between the P and the AP
level (∆Vnl), however, the offset contribution cancels out. This offset voltage can
be corrected by defining the 0-spin-signal (0-SG), for which no spin dependent
voltage drops at the detector. It can be determined as sketched in Fig. 3.8c from
SV measurements and basically lies in the middle between the parallel and the
antiparallel level of the SV signal. Extracting the SV signal height ∆Vnl from ex-
periment for various injector-detector distances d, allows determining important
spin related quantities, like the spin diffusion length λs, or the injection/detection
efficiency Pinj/det.
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The experimental part of this thesis is divided into three main topics. Their or-
der sketches the conceptual approach towards the aim of this thesis, which is the
realization of devices that allow the manipulation of the spin signal by means of
an external gate voltage. In the first experimental part (Chapter 4.1), a device
geometry is introduced, which allows realizing transport channels with widths
down to wc = 400 nm, while still achieving large spin injection efficiencies. There,
the expected suppression of spin relaxation upon decreasing the channel width is
experimentally confirmed by investigating the channel width dependence of the
spin diffusion length. In these narrow transport channels the motion of spins is
restricted mainly to one principle axis. Therefore, the SO-field for k⃗ along the
direction of the channel can be considered to be the main source of spin preces-
sion, which facilitates the qualitative interpretation of the measured spin signals.
Signatures of this effective magnetic field can be observed in non-local spin trans-
port measurements, which are presented in Chapter 4.2. In combination with
qualitative finite element simulations, it is thus possible to relate magnetic field
dependent characteristics of the non-local spin signal to SOC. Additionally, crys-
tallographic orientation dependent investigations show a distinct anisotropy of
the SO-field strength. In the subsequent chapter (Chapter 4.3), devices with an
additional gate electrode are investigated. There, the gate dependence of charge
transport properties is examined first, followed by a detailed analysis of the influ-
ence of the electric field on spin related quantities, like the spin diffusion length,
and the spin injection efficiency. Subsequently, the tunability of the SOC related
signal features is confirmed. There, it is possible to extract gate dependent spin
signal oscillations from non-local SV measurements, which can be related to spin
precession due to a change of SOC strength. In previous publications similar spin
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precession signatures could only be observed in InAs QW structures in the ballistic
transport limit, i.e. for small injector-detector distances [20–25]. In the presented
devices, on the other hand, an In0.09Ga0.91As QW structure provides the conduct-
ing channel, in which a relatively low SOC strength on the order of 10−13 eV m
is expected. Additionally, in these devices spin transport is not ballistic, instead
it takes place in an intermediate regime, which is still diffusive, yet approaches
the quasi-1D limit. Despite the low SOC strength and the diffusion dominated
spin transport, gate induced spin precession oscillations can be observed, which
is indeed a remarkable finding and has to be considered the central result of this
thesis.

4.1 Spin transport in narrow channels

As discussed in Chapter 2.4.2, Dyakonov-Perel spin relaxation can be strongly
suppressed by introducing lateral confinement, which can be realized by decreasing
the width of the transport channel, thus approaching the 1-dimensional limit. In
contrast to reports which confirm the increase of the spin relaxation time τs for
out-of-plane spins in narrow transport channels [90, 102, 106–108], in this chapter
an all-semiconductor electrical spin injection and detection device is investigated
in which spins are injected in-plane.

4.1.1 Device geometry and measurement setup

In the following, two different device geometries are examined, both based on
the heterostructure presented in Chapter 3.2. The standard spin valve (SV) de-
vice geometry shown in Fig 4.1a, is described in detail in Chapter 3.4. It basi-
cally consists of a 2DEG transport channel (In0.09Ga0.91As QW), which is in this
case oriented along the [010] crystallographic direction, and two ferromagnetic
(Ga,Mn)As contacts allowing electrical spin injection and detection. Note that
injecting and detecting contacts are oriented along one of the magnetic easy axes
of the (Ga,Mn)As layer, i.e. along ⟨100⟩. In the following, the distance between
these contacts is denoted d (center-center), while wc refers to the width of the
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Figure 4.1. (a) Standard SV geometry and non-local measurement setup.
(b) SEM image of a standard SV device, which is divided into region 1 and
region 2 (between the contacts). The corresponding widths of region 1 and 2
are denoted w1 and w2. The spin contacts are 300 nm and 500 nm in width (ws).
(c) SEM image of a device geometry with an array of N narrow channels between
injecting and detecting contact (region 2 ). The width of a single channel is wc,
while the effective width of region 2 is given by the sum of the narrow channels
w2 = Nwc. Scale: w1 = 20 µm, wc = 1 µm.

channel (Fig. 4.1a). Spin transport is probed by means of non-local SV measure-
ments, which are described in Chapter 3.4. For the standard device geometry
the investigation of the suppression of Dyakonov-Perel (DP) spin relaxation due
to a reduced channel width, is experimentally limited mainly by the aspect ratio
of the injecting and detecting contact (contact width ws/channel width wc). For
disadvantageous aspect ratios, i.e. wc ≲ ws, the effect of lithographically induced
lattice relaxation is reduced, thus no dominating magnetically easy axis along the
contact is formed. In this case, no clear AP signal level can be observed in SV
experiments, which is already noticeable for channel widths below about 4 µm
(aspect ratio ≳ 0.125). Thus, for the realization of devices with narrow channel
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widths below about 4 µm, it is necessary to introduce a new sample design, which
is shown in Fig. 4.1c. In this array geometry the contacts lie on the wide part of
the channel (w1 = 20 µm), while the diffusive path between the contacts consists
of an array of narrow channels. In the following, the part of the channel between
injecting and detecting contact is labeled as region 2 with an effective width w2,
while region 1 denotes the remaining sections of the channel, i.e. the part between
a spin contact and the closest reference pad (Fig. 4.1b). In case of the array geom-
etry with N narrow channels, each with a width wc, the effective width of region 2
is given by w2 = N · wc. The width of region 1 is labeled w1, which in case of the
standard geometry is equal to that of region 2 (w1 = w2 = wc). With the array
geometry it is possible to realize spin transport in channels with considerable lat-
eral confinement, approaching the ballistic 1-dimensional limit, yet, at the same
time, the advantageous aspect ratio of the contacts allows ideal magnetic switch-
ing characteristics, in particular regarding the formation of the AP magnetization
configuration in SV experiments. Another main advantage of this device setup is
the larger injection efficiency Pinj in the array geometry, compared to a standard
sample with only one narrow channel. This is related to the voltage drop Vint at
the spin injection contact, which is inversely proportional to the channel width wc

for a given injection current. A smaller channel width results in a larger voltage
drop Vint at the interface, which in turn yields a smaller spin injection efficiency
Pinj in (Ga,Mn)As/GaAs Esaki-diode structures [18, 63, 152]. The array geometry
therefore allows combining the advantages of narrow spin transport channels, i.e.
the partial suppression of spin relaxation, with the larger spin injection efficiency
of device geometries with wider channels.

4.1.2 Experimental results

In Fig. 4.2 non-local spin signals are exemplarily shown for a standard device
with a channel width of 20 µm (a), and a sample with an array of 400 nm wide
channel segments between injecting and detecting contact (b). Different injector-
detector distances d are investigated, while all measurements are conducted at a
cryogenic temperature of 1.4 K. The most notable feature is the almost textbook-
like magnetic switching characteristic of the signal and the clear formation of the
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Figure 4.2. Exemplary distance dependence of non-local SV signals for a stan-
dard device with a 20 µm wide channel (a), and a device with an array of 400 nm
wide channels (N = 18) between injector and detector (b). Both measurements
were conducted at a temperature of 1.4 K with an injection current Iinj = −50 µA
(DC).

AP configuration. Such clearly defined SV signals could not be achieved in the
standard geometry with channel widths below about 1 µm. The decaying behavior
of the spin signal height with distance already provides qualitative information
about the spin diffusion length λs. It is obvious from a qualitative point of view
that the decay of the SV signal with distance d is significantly decreased for the
sample with an array of 400 nm wide stripes between the contacts, compared to
the 20 µm wide standard sample. This becomes most apparent when regarding
the signal of the array sample in a distance of d = 35 µm from the injector,
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which is still clearly visible (∆Vnl ≈ 1.8 µV). This is remarkable, as for the
standard device geometry no spin signal can be observed for such a large injector-
detector distance. The significant increase of the spin diffusion length for the
narrow channel geometry is quantitatively analyzed in the following.

4.1.3 Evaluation and discussion

From the distance dependence of the non-local SV signal height (Fig. 4.2) the spin
diffusion length λs can be extracted, which quantifies the decay of the injected
spin accumulation. For the standard geometry, the magnitude of the non-local
SV signal ∆Vnl is related to the non-local voltage drop at the detector, thus it is
expected to decay exponentially with the distance d from the injecting contact:

∆Vnl(d) = PinjPdetIinjRsλs

w2
exp

(
− d

λs

)
, (4.1)

with the injection current Iinj, the width of the channel w2 in region 2 (Fig. 4.1b),
the sheet resistance Rs of the channel, and the spin injection and detection effi-
ciencies Pinj and Pdet. For small injection currents, Pinj and Pdet can be assumed
to be equal [5], such that P ≡ Pinj = Pdet. For the following discussion, the

Figure 4.3. Splitting of the in-
jected spin current js,inj (x = 0)
into two, not necessarily equal,
components js(0−) and js(0+).
As there is no current through
the detector js,det ≈ 0 (x =
d), js(d−) ≈ js(d+). Adapted
from [118].

channel section between the contacts is labeled as region 2, while the part of the
channel between the spin injection/detection contact and the closest reference
contact is referred to as region 1, as shown in Fig. 4.1b and Fig. 4.3. In case of
region 1 and 2 having the same width, which corresponds to the standard spin
injection geometry, Eq. 4.1 describes the exponentially decaying distance depen-
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dence of the non-local SV signal. In the array geometry, however, the effective
channel width of region 2 (w2 = Nwc) is smaller than the width of region 1 (w1),
giving rise to a larger channel resistance of region 2 compared to region 1. This
in turn leads to unequal values of the spin resistances rN ∝ ρNλs in these two
regions, where ρN denotes the resistivity of the channel. As a result, the injected
spin current js,inj splits into two unequal components js(0−) and js(0+), as indi-
cated in Fig. 4.3, which leads to a modification of Eq. 4.1. The basic idea of the
derivation is sketched in the following, while a detailed description can be found
in the supplemental material of Ref. [118]. As illustrated in Fig. 4.3, passing a
charge current Iinj through the injecting FM contact into the channel leads to
the generation of a spin accumulation in the NM. The accompanied splitting of
the spin quasi-chemical potential is given by µs = 1/2 (µ↑ − µ↓). Assuming spin
injection in the tunneling regime and limiting the discussion to one dimension,
i.e. the thickness of the channel is much smaller compared to the spin diffusion
length λs, the spatial distribution of this spin accumulation µs is given by the spin
diffusion equation:

∇2µs(x) = µs

λs

. (4.2)

The differing channel resistivities of region 1 and 2 (ρN,1 and ρN,2) give rise
to different spin diffusion lengths λs in each section (λ1 and λ2). Solving the
spin diffusion equation with appropriate boundary conditions yields an expression
for µs(x), which depends on µs(0) (injected spin accumulation) and µs(d) (spin
accumulation at the detector). In order to obtain expressions for µs(0) and µs(d),
the continuity of the spin currents js(x) at the contacts is implemented, where
js(x) = λs/rN∇µs(x). There, the injected spin current density splits into two
unequal components, js(0−) and js(0+), while at the detector no charge current
flows through the contact, such that js,det ≈ 0 and js(d−) ≈ js(d+) (Fig. 4.3).
Continuity therefore implies:

js,inj = js(0+) + js(0−) (injector)

js(d−) ≈ js(d+) (detector).
(4.3)
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This yields a set of two equations, which allows calculating µs(0) and µs(d). In
the tunneling regime the latter can be related to the non-local voltage signal at
the detector:

V s
nl(d) = −Pµs(d), (4.4)

where P is the spin detection efficiency, which is assumed to be equal to the
injection efficiency. Additionally, the spin current density js can be related to the
injection current Iinj, and the spin resistance rN to the sheet resistance Rs of the
channel:

js = Iinj

w1ws

rN = Rs,1/2λ1/2ws,

(4.5)

with the effective widths of region 1 and 2 (w1/2), the spin diffusion lengths in
the corresponding region λ1/2, and the spatial extent of the injecting spin contact
along the channel direction ws. Ultimately, the following expression for the non-
local voltage at the position of the detector for the array geometry is obtained:

V s
nl(d) = ± 2P 2IinjRs,2λ2

w2

1

(1 + A)2 exp
(

d

λ2

)
+ (1 − A)2 exp

(
− d

λ2

) , (4.6)

with
A = Rs,2λ2w1

Rs,1λ1w2
.

A more detailed derivation of this formula can be found in the supplemental
material of Ref. [118]. In case of the standard geometry, the sheet resistances
(Rs,1 = Rs,2), the spin diffusion lengths (λ1 = λ2), and the effective widths of the
channel sections (w1 = w2) are equal for both regions, which allows simplifying
Eq. 4.6, resulting in the previously discussed expression (Eq. 4.1).
Assuming the ratio of the effective spin resistances in region 2 and region 1 to
be larger than 1 (A = Rs,2λ2w1/Rs,1λ1w2 ≳ 1), and d/λ2 ≳ 1, allows reducing
Eq. 4.6 to a simple exponential decay, which is determined by the spin diffusion
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4.1 Spin transport in narrow channels

length λ2 of region 2 :

V s
nl(d) ≈ ±2P 2IinjRs,2λ2

w2

1
[1 + Rs,2λ2w1/Rs,1λ1w2]2

exp
(

− d

λ2

)
. (4.7)

Spin diffusion length

The approximation for the non-local spin signal V s
nl(d) (Eq. 4.7) can be imple-

mented for the evaluation of the experimentally obtained SV signals, as the spin
resistance of the array section of the channel (region 2 ) is larger compared to re-
gion 1, and the smallest used injector-detector distance is on the order of the
longest measured spin diffusion length λ2. This allows extracting λ2 directly
from the distance dependence of the SV signal height by linearly fitting the
semi-logarithmically plotted distance dependence of ∆Vnl(d) = 2|V s

nl(d)|, which
is exemplarily shown in Fig. 4.4a. For the standard sample with a 20 µm wide
channel, a spin diffusion length of around 4 µm can thus be extracted, while for
the array geometry with 400 nm wide transport channels, λs is significantly larger
with values around 9.2 µm. This corresponds to a major increase by a factor of
2.3. The change of λs in dependence of the channel width wc is shown in Fig. 4.4b.
For channel widths larger than wc ≥ 7.5 µm, λs is nearly constant at a value of
about λs ≈ 4 µm. By decreasing the channel width, especially for wc ≲ 1 µm, the
spin diffusion length increases significantly up to 9.2 µm for wc = 400 nm. This
large increase of λs can be explained by the suppression of the DP spin relaxation
mechanism for narrow channels, as described in Chapter 2.4.2. Depending on the
channel width wc in comparison to the spin orbit length LSO and/or the mean
free path Lp, three regimes of spin relaxation can be defined. For wide channels,
i.e. for channels wider than the spin orbit length (wc > LSO), spin relaxation is
dominated by the DP mechanism. The corresponding spin relaxation rate is given
by (Chapter 2.4.1, Eq. 2.43)

1
τ2D

= 4Dm∗2

ℏ4

[
τ1

τp

α2 + τ1

τp

(β1 − β3)2 + τ3

τp

β2
3

]
, (4.8)

for spins oriented along [100]. In the quasi-1D limit, on the other hand, where wc

is smaller than the corresponding mean free path Lp, spin relaxation is strongly
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suppressed and only due to the cubic Dresselhaus contribution β3, such that

1
τ1D

∝ β2
3 . (4.9)

In the intermediate regime between the 2-dimensional case and the quasi-1D limit,
the spin relaxation time is found to be inversely proportional to the squared chan-
nel width (τs ∝ 1/w2

c ). Thus, the spin diffusion length is expected to scale with
1/wc (λs ∝ √

τs):
τIM ∝ 1

w2
c

. (4.10)

Figure 4.4. (a) Semi-logarithmically plotted distance dependence of the non-
local SV signal height for a standard device with a channel width of 20 µm (red),
and a device with an array of narrow channels (wc = 400 nm) (blue). The spin
diffusion length λs is obtained from the slope of the linear fit. (b) Double-
logarithmically plotted channel width dependence of λs (determined as shown
in (a), averaged over various injection currents). λs clearly increases with decreas-
ing wc, whereby three regions are distinguished: 2D limit with DP spin relaxation
dominating (λs,2D); quasi-1D limit in which linear-in-k contributions of SOC are
suppressed, so that DP spin relaxation is only due to the cubic Dresselhaus term
(λs,q1D); intermediate regime in which λs,IM is expected to be inversely propor-
tional to wc.
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4.1 Spin transport in narrow channels

Note that the spin diffusion length λs is linked to the spin relaxation time τs via
the diffusion constant D:

λs =
√

Dτs. (4.11)

In Fig. 4.4b the 2D limit for large channel widths wc ≳ 7.5 µm can be clearly iden-
tified. In this regime λs hardly depends on the channel width. For decreasing wc

the spin diffusion length significantly increases and slowly begins saturating for the
smallest width of 400 nm, thus entering the quasi-1D limit. The width dependence
of λs is phenomenologically highlighted in Fig. 4.4b by the green line. Due to the
smooth transition between the three regimes, the 1/wc dependence in the inter-
mediate regime is not clearly distinguishable. As a tendency, the increase of λs is
slower than expected from theory (∝ 1/wc), which could be related to a decrease
of the momentum relaxation time τp for decreasing channel widths, which was al-
ready observed by A. Holleitner et al. [107]. This counteracts the enhancement of
τs, thus suppressing the increase of λs ∝ √

τpτs. The decrease of τp = µee/m∗ [153]
for narrower channels can be confirmed by experimentally determining the channel
width dependence of the electron mobility µe from magneto-transport measure-
ments (Fig. 4.5). There, a decreased value of τp for smaller channel widths gives
rise to a lower mobility, which can be measured as an increased sheet resistance Rs

Figure 4.5. (a) Exemplary magneto-transport measurements for channel widths
of 20 µm (blue) and 200 nm (green). (b) Extracted electron mobility µe in depen-
dence of the channel width.

69



4 Experimental results

for narrower channels (µe = 1/(ensRs) [153]). The channel resistivity for narrow
channels can increase due to diffuse boundary scattering at a non-smooth con-
fining potential (boundary roughness), for instance, which is especially relevant
for ion beam etched channels [153, 154]. These size effects become important for
channel widths smaller than, or similar to the corresponding mean free path Lp.
In experiment, Lp lies around 1 µm for channel widths larger than 1 µm, while
for the narrowest channel (wc = 200 nm) Lp ≈ 0.5 µm (Tab. I). Thus, size ef-
fects are expected to be relevant for wc ≲ 1 µm, which is reflected in the width
dependence of µe (Fig. 4.5b). The parameter values extracted from the magneto-
transport measurements in dependence of the channel width, are summarized in
Tab. I. It is important to note that the mean free path is on the order of the
channel width for the narrow channels, so that transport is neither fully diffu-
sive nor ballistic, but rather takes place in a crossover regime. Additionally, it
has to be remarked that the magneto-transport devices are fabricated separately.
Due to fabricational variations the channel widths can therefore slightly vary,
such that, depending on EBL dose or development time for instance, the chan-
nels can be slightly wider/narrower than intended. Thus, the channels widths of
the magneto-transport devices slightly differ from the samples which spin trans-
port is investigated on. Interpolation allows relating charge and spin transport
measurements.
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4.1 Spin transport in narrow channels

wc N Rs ns µe Lp Dc sample
(µm) (Ω) (1011 cm2) (cm2/V s) (µm) (m2/s) geometry

0.2 16 216 7.7 37790 0.47 0.11 array
0.45 15 142 9.1 48430 0.76 0.17 array
0.8 13 121 8.9 58004 0.90 0.19 array
1.3 10 108 8.7 66514 1.0 0.22 array
4 1 119 7.8 67033 0.98 0.20 single
7 1 111 7.8 72297 1.1 0.21 single
10 1 111 7.8 71527 1.0 0.21 single
20 1 98 8.4 75733 1.1 0.24 single

Table I. Summary of the values derived from magento-transport measurements in
dependence of the channel width wc. N : number of channels in region 2 ; Rs: sheet
resistance; ns: charge carrier density; µe: electron mobility; Lp: mean free path;
Dc: charge diffusion constant; sample geometry: either standard geometry with a
unifrom channel width, or array geometry.

Spin relaxation time

In order to obtain the channel width dependence of the spin relaxation time
τs(wc) = λ2

s(wc)/D from λs(wc) (Fig. 4.4b), the diffusion constant D has to be
determined. In particular, D is the spin diffusion constant in this case, which
is denoted Ds in the following. Often, Ds is not distinguished from the charge
diffusion constant Dc, which is determined by the electron mobility µe and the
charge carrier density ns:

Dc = πℏ2µens

m∗e
≥ Ds. (4.12)

However, Ds and Dc are not necessarily equal. Instead, Ds is in general smaller
compared to Dc in 2DEG structures, due to electron-electron interactions, which
do not conserve the spin current, thus implying an additional damping of spin
diffusion (Coulomb drag) [102, 155–157]. Yet, Ds is not accessible experimentally
in the investigated devices, as no Hanle signal is observable, which would allow
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the direct experimental determination of τs [5]. Thus, τs has to be approximated
on the basis of the charge diffusion constant Dc:

τs(wc) = λ2
s(wc)
Dc

≤ λ2
s(wc)
Ds

. (4.13)

As Ds ≤ Dc, the thus evaluated values of τs have to be regarded as a lower limit.
The charge diffusion constant Dc is calculated based on Eq. 4.12 with the ex-
perimentally obtained values of µe and ns (Tab. I). As ns hardly changes as a
function of the channel width, averaging about ns ≈ 8.3 × 1011cm−2, Dc conse-
quently follows a similar trend as the width dependence of the electron mobility
µe (Fig. 4.5b). The values of the spin relaxation time τs calculated from Eq. 4.13
are plotted in Fig. 4.6a. For devices with narrow channels, τs is found to be larger
by nearly an order of magnitude, compared to wider channel widths. Similar to
the width dependence of λs (Fig. 4.4b), the increase of τs with decreasing chan-
nel width is slower compared to the expected w−2

c dependence. The decrease in
momentum relaxation time τp for narrower channels, which is discussed above, is

Figure 4.6. (a) Extracted channel width dependence of the spin relaxation time
τs = λ2

s/Dc. (b) τs as a function of wc for out-of-plane oriented spins, experi-
mentally determined by P. Altmann et al. [102] for different channel orientations
(x ∥ [11̄0], y ∥ [110]).
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4.1 Spin transport in narrow channels

already taken into account via the charge diffusion constant, however. Thus, the
slower increase of τs compared to theory is presumably due to an overlap of the
1D and 2D regime. The channel width dependence of τs resembles the results
of the optical spin injection experiments conducted by P. Altmann et al. [102],
shown in Fig. 4.6b. In this case, however, the injected spins are oriented out-
of-plane, yet τs is also found to increase by an order of magnitude for narrow
channels (wc ≲ 1 µm), while the increase of τs in the intermediate regime between
2-dimensional spin transport and the quasi-1-dimensional case is also slower com-
pared to theory (∝ 1/w2

c ).

Spin injection efficiency

Before evaluating the spin injection efficiency, the channel width dependence of
the non-local spin valve signal magnitude ∆Vnl is discussed for a given injector-
detector distance d. In case of the standard geometry with a uniform channel
width (w1 = w2 = wc) the signal height is given by Eq. 4.1:

∆Vnl(d) = P 2IinjRsλs

wc

exp
(

− d

λs

)
, (4.14)

while in case of a geometry with an array of N narrow channels between injecting
and detecting contact with an individual width wc (w2 = Nwc), the signal height
is described according to Eq. 4.7:

∆V s
nl(d) ≈ 4P 2IinjRs,2λ2

w2

1
[1 + Rs,2λ2w1/Rs,1λ1w2]2

exp
(

− d

λ2

)
. (4.15)

In Fig. 4.7a the SV signal height ∆Vnl is plotted as a function of the effective chan-
nel width of region 2, i.e. the part of the channel between injecting and detecting
contact. For exemplary visualization, an injection current of Iinj = −20 µA (DC),
and an injector-detector distance of d = 12 µm are regarded. For the standard
geometry with a uniform channel width (w1 = w2 = wc) the signal height (gray
squares) clearly follows a 1/wc dependence, as expected from Eq. 4.14 for the
standard geometry (gray line). There, the injection efficiency is assumed to be
P = 0.48, while Rs = 100 Ω and λs = 4.25 µm are obtained experimentally. Ac-
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Figure 4.7. (a) SV signal height ∆Vnl in dependence of the effective chan-
nel width w2 = Nwc. Symbols: experimental data for standard geometry (gray
squares) and array device (circles). The signal height of the standard geome-
try can be described according to Eq. 4.14 (gray line). For the array geometry
Eq. 4.15 yields a decreasing signal height for narrower channel widths w2 (red
line). (b) Number of channels N and corresponding effective channel width w2
for the array samples. (c) Sketch of the device geometry, which is divided into
region 1 and region 2.

cording to Eq. 4.14 the SV signal height thus increases for narrower channels in
the standard geometry. In the array geometry, on the other hand, a decrease of
the effective channel width w2 leads to a decrease of the signal height, due to an
increasing value of w1/w2 (Eq. 4.15). Fig. 4.7a shows this decrease of ∆Vnl (red),
based on Eq. 4.15 for a generic injection efficiency P = 0.48, and experimentally
determined values for Rs = Rs(wc), and λs = λs(wc) (Tab. I and Fig. 4.4). Thus,
with only one narrow channel between injector and detector the array geometry is
in general inferior to the standard device setup in terms of the SV signal height.
It is therefore preferable to implement a large number N of narrow channels, such
that w2 = Nwc is close to w1. This allows achieving larger spin signals, close to
that of the standard geometry, while at the same time spin relaxation can be sig-
nificantly suppressed due to the spatial confinement perpendicular to the channel
in region 2. In Fig. 4.7a the experimental values of the signal height for the array
geometry with multiple narrow channels between injector and detector are shown
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4.1 Spin transport in narrow channels

as circles. The obtained signal heights lie indeed close to that of the standard
geometry. The corresponding number of channels N and the effective widths w2

are summarized in Fig. 4.7b.

The spin injection efficiency P for the array geometry (Fig. 4.7c) can be determined
by rearranging Eq. 4.15:

P 2 = ∆V s
nl(d) w2Rc

4VintRs,2λ2
[1 + Rs,2λ2w1/Rs,1λ1w2]2 exp

(
d

λ2

)
. (4.16)

There, the injection current Iinj is replaced by Iinj = Vint/Rc, where Rc is the
contact resistance and Vint is the voltage drop at the interface of the injecting
contact. For the standard geometry (w1 = w2 ≡ wc), in which case Rs,1 = Rs,2 ≡
Rs, and λ1 = λ2 ≡ λs, Eq. 4.16 simplifies:

P 2 = ∆V s
nl(d) wcRc

VintRsλ2
exp

(
d

λs

)
. (4.17)

There, the values of the sheet resistances of region 1 and 2 (Rs1 and Rs2) can
be derived from transport measurements (Tab. I), the injection current Iinj =
Vint/Rc and the dimensions of the device are known, and the corresponding spin
diffusion lengths can be extracted from the distance dependence of the magnitude
of the spin signal (Fig. 4.4b). In Fig. 4.8 the calculated spin injection efficiency
P for an exemplary injection current of Iinj = −20 µA and an injector-detector
separation of d = 12 µm is plotted as a function of the voltage drop at the injector
Vint, for different channel widths. For comparison, the values of P obtained from
the injection current dependence for a standard sample with w1 = w2 = 40 µm
are additionally shown (gray line). There, another major disadvantage of the
standard geometry with a single narrow channel becomes apparent. For a narrower
channel the contact area of the injecting contact is smaller, which results in a larger
voltage drop |Vint| at the injector for a given current. This, in turn, leads to a
reduction of the injection efficiency, which is found to decrease with increasing Vint

in (Ga,Mn)As/GaAs Esaki-diode structures [18, 63, 152]. In the array geometry,
on the other hand, the channel width wc in region 2 can be reduced, while the
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Figure 4.8. Spin injec-
tion/detection efficiency P in
dependence of the interfacial
voltage drop at the injector Vint

for different channel widths.
Filled squares: standard geom-
etry; unfilled squares: array ge-
ometry; line: P (Vint) from in-
jection current dependence of
a standard sample with w1 =
w2 = 40 µm for comparison.

contact area is still large enough to achieve a small interfacial voltage drop Vint, as
the spin contacts lie on the wide part of the channel, i.e. in region 1 (Fig. 4.7c).
Thus, the voltage drop at the interface is roughly the same as in case of the 20 µm
wide standard sample (unfilled squares). The obtained injection efficiencies are
slightly lower than for the standard device with w1 = w2 = 20 µm, yet still larger
compared to the standard device with a narrow 4 µm wide channel. Thus, in the
array geometry larger injection efficiencies can be achieved compared to a standard
sample with a single narrow channel of width wc. At the same time, spin transport
between the injecting and detecting contact approaches the quasi-1-dimensional
limit in the narrow channel segments (region 2 ), thus giving rise to a significant
suppression of DP spin relaxation.
For the previous discussion, spin injection is assumed to take place in tunneling
regime, i.e. the spin resistance of the channel R∗

ch = Rsλs/wc is assumed to be
much smaller than the spin resistance of the tunnel contact R∗

c = Rc/(1 − P 2).
A typical value of R∗

ch for a standard device with a channel width of 20 µm is
R∗

ch ≈ 20 Ω (Rs ≈ 100 Ω, λs ≈ 4 µm), while for a device with an array of 400 nm
wide channels R∗

ch ≈ 190 Ω (Rs ≈ 150 Ω, λs ≈ 9 µm, w2 = 18·0.4 µm). Both values
are significantly smaller than the spin resistance of the contact R∗

c ≈ 9.3 kΩ for
an injection efficiency of P ≈ 0.5. Thus, the tunneling condition is fulfilled in the
devices under investigation. An additional remark concerns the effect of lateral
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confinement in the array geometry. There, albeit spin transport in the presented
devices can be considered to take place in a crossover between the 2D and the
quasi-1D regime, the effect of the Sharvin resistance Rsh (Chapter 2.2) has to be
discussed, which yields an additional contribution to the channel resistance in the
ballistic limit (Chapter 2.2):

Rsh = 2πh

e2k2
F A

, (4.18)

where A is the contact area, and kF denotes the Fermi wave-vector. For the
narrowest investigated channel width (wc = 400 nm), a Sharvin resistance of Rsh ≈
390 Ω is obtained for a single channel of the array, with ns ≈ 8.3 × 1011cm−2, and
A = 400 nm · 20 nm. For N = 18 channels in parallel, Rsh is consequently around
22 Ω. This total contribution of the Sharvin resistance is much smaller than the
contact resistance R∗

c ≈ 9 kΩ ≫ Rsh, so that the condition for efficient spin
injection is not compromised. This is true, independent of the channel width, as
both R∗

c and Rsh scale with 1/wc. Compared to the channel resistance R∗
ch ≈

190 Ω, Rsh is only slightly smaller. Taking into account Rsh modifies the channel
resistance R∗

ch = Rsλs/wc, such that R∗
ch → R∗

ch + Rsh, which consequently enters
the evaluation of the injection efficiency. Note that in the calculated values shown
in Fig. 4.8 the Sharvin resistance is already taken into account. Neglecting Rsh

yields values of P which are about 20 % larger, yet follow the similar trend.

4.1.4 Conclusion

In this chapter the effect of narrowing the channel width on spin transport prop-
erties was investigated. In particular, for narrower channels the Dyakonov-Perel
spin relaxation mechanism is expected to be strongly suppressed by introducing a
lateral confinement, as discussed in Chapter 2.4.2. One of the main issues regard-
ing devices with narrower channels, however, is the disadvantageous aspect ratio
of the injecting and detecting contacts. There, for narrower channels the spatial
extent of the contact along the channel becomes comparable to the channel width,
such that no clearly defined magnetically easy axis along the contact is formed.
Thus, in non-local SV measurements the AP magnetization level is typically not
resolved, such that the magnitude of the spin signal cannot be determined. There-
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fore, a new device geometry was introduced in this chapter, which consists of an
array of narrow channel segments between the injecting and the detecting contact,
while the contacts themselves lie on the wide part of the channel. With this array
geometry it is possible to realize spin transport in channels with considerable lat-
eral confinement, approaching the ballistic 1-dimensional limit, yet, at the same
time, the advantageous aspect ratio of the contacts allows ideal magnetic switch-
ing characteristics. A detailed investigation of this device geometry confirmed a
significant increase of the spin diffusion length λs for narrow transport channels.
There, in the 2-dimensional limit λ2D ≈ 4 µm, while for the narrowest channel
(wc = 400 nm) the spin diffusion length is considerably larger λ400 nm ≈ 9.2 µm.
Regarding the width dependence of λs, the suppression of DP spin relaxation due
to lateral confinement could be confirmed. An additional crucial advantage of
the array geometry is the larger spin injection efficiency compared to a standard
sample with only one narrow channel, which is related to the lower voltage drop
Vint at the injecting contact for a given current [18, 63, 152]. This could also be
confirmed experimentally.

4.2 Signatures of spin orbit coupling in spin
transport measurements

In the previous chapter, it could be shown that an array of narrow channels
between injecting and detecting contact results in a significant increase of the
spin diffusion length λs. At the same time, large spin injection efficiencies and
sharp magnetic switching of the contacts along their symmetry axis could be
achieved. In the following chapter, SOC related effects are investigated. Due
to the considerable lateral confinement in these narrow channel segments, spin
transport can be regarded as being restricted to one principle axis. Therefore,
the SO-field for k⃗ along the direction of the channel can be considered to be the
main source of spin precession, which facilitates the qualitative interpretation of
the measured spin signals. In this chapter, the SOC related signal characteristics
are identified in non-local spin transport measurements and qualitatively modeled
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with the extended spin diffusion equation presented in Chapter 2.6. Additionally,
a distinct anisotropy of the SOC strength with regard to the crystallographic
orientation is observed.

4.2.1 Device geometry and measurement setup

Sample design and measurement setup, which are based on the heterostructure
system described in Chapter 3.2, are schematically sketched in Fig. 4.9. The
device structure itself consists of a 20 µm wide conductive channel and two ferro-
magnetic (Ga,Mn)As contacts, allowing electrical injection and detection of spins.
In between these contacts an array of 1 µm wide channels imposes a spatial con-
finement, such that spin transport between injector and detector approaches the
quasi-1-dimensional limit, resulting in a partial suppression of spin relaxation
(Chapter 4.1). At the same time, spin transport is restricted mainly to one axis,
such that the SO-field for k⃗ along the direction of the channel can be considered to
be the main source of spin precession. In order to probe the spin accumulation in
a given distance d from the injecting contact, non-local spin injection experiments
are conducted at a cryogenic temperature of 1.4 K (Fig. 4.9). For spin injection,
a current of Iinj = 4 µA (AC) is passed through one of the ferromagnetic contacts
to a reference contact, while the other contact allows the detection of the spin
accumulation by measuring the non-local voltage drop Vnl. The spin transport
between the two spin contacts is therefore not affected by drift, as the charge cur-
rent only flows between the injector and the left reference contact. More details
on this non-local SV setup can be found in Chapter 3.4. In addition to standard

Figure 4.9. Device geome-
try for non-local SV measure-
ments (array geometry) for dif-
ferent orientations of the exter-
nal magnetic field Bext (nota-
tion, i.e. angle and color, is
kept consistent regarding sub-
sequent measurements).
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spin valve (SV) experiments, where the magnetic field is oriented parallel to the
spin contacts (0◦, Fig. 4.9), magnetic field sweeps are also performed along the
main crystallographic directions, as indicated in Fig. 4.9 (45◦, 90◦, and 135◦).
In these configurations already small magnetic fields on the order of 100 mT are
sufficiently large to magnetize the ferromagnetic contacts parallel to the external
field, thus setting the orientation of the injected spins. The notation describing
the external magnetic field direction relative to the channel orientation is based
on the angles shown in Fig. 4.9 and is consistently used in the following chapters.
There, 0◦ refers to the external magnetic field being swept parallel to the contact
(standard SV measurement), while in case of 90◦ the magnetic field points along
the channel.

4.2.2 Experimental results and discussion

In the following, channels oriented along [110] and [11̄0] are investigated, as along
these directions the largest and smallest SOC is expected, in case of Rashba and
Dresselhaus contribution being similar in strength. Additionally, the effective
SO-field is oriented perpendicular to the k-vector direction in these cases (Chap-
ter 2.3). Although spin transport is not strictly 1-dimensional in the presented
devices, the discussion of SOC related effects is limited to the k-vector direction
along the channel orientation, due to the strong lateral confinement in these nar-
row channels. Fig. 4.10a and Fig. 4.10b exemplarily show the spin signal for these
two crystallographic directions for an injector-detector distance of d = 7 µm. For
each orientation, magnetic field sweeps are performed along different directions,
which are specified in Fig. 4.10c. It is important to remark that the presented data
is background and offset corrected. Detailed information on this phenomenological
signal correction approach can be found in the appendix (App. A.1). Additionally,
the 0◦ and 90◦ signals are symmetrized with respect to B⃗ = 0 T, which is justified,
as in these configurations the absolute angle between the SO-field B⃗SO and the
external magnetic field B⃗ext does not change upon reversing the direction of B⃗ext,
as illustrated in Fig. 4.10d. In particular, for the 0◦ signal no spin precession is
expected, as B⃗SO is parallel to B⃗ext. Additionally keep in mind that the orienta-
tion of the injected spin is parallel to B⃗ext.
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Figure 4.10. (a) Background and offset corrected non-local spin signal for a
channel oriented along [110], for different orientations of the external magnetic
field B⃗ext, which are specified in (c). Injection current Iinj = 4 µA (AC), injector-
detector distance d = 7 µm, and measurement temperature T = 1.4 K. (b) Similar
measurement as in (a), but for a channel along [11̄0]. (c) Definition of the external
magnetic field orientations, which correspond to the orientation of the injected
spin. For channels along [110] and [11̄0] the SO-field B⃗SO is oriented perpendicular
to the orientation of the channel. (d) Visualization of the effective magnetic field
B⃗eff , resulting from the sum of external field and SO-field (B⃗eff = B⃗ext + B⃗SO),
for the 45◦, 135◦, and 90◦ configuration.

As expected, the spin signal for a channel orientation along [110] (Fig. 4.10a) does
not show a magnetic field dependence when B⃗ext is swept parallel to the contact
(0◦, blue), as the SO-field is parallel to the external field in this case. Therefore,
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also the orientation of the injected spins is parallel to B⃗SO, so that no spin pre-
cession occurs in this configuration. In case of the external magnetic field being
oriented perpendicular to the contact (90◦, red), i.e. parallel to the channel, a
distinct dip-feature can be observed. This feature could be related to SOC in-
duced spin precession, as the orientation of the injected spins does not align with
the direction of the effective magnetic field B⃗eff = B⃗ext + B⃗SO (Fig. 4.10d). It
is important to point out, that the observed dip-like spin signal characteristic of
the 90◦ signal changes sign. As the signal shown in Fig. 4.10a is already shifted
to 0-spin-signal, negative values indicate a spin component which arrives AP at
the detector, relative to the magnetization of the detecting contact. This can only
be the case if the spins precess in between the contacts, due to the presence of a
SO-field. That this magnetic field dependence of the spin signal is indeed related
to SOC, is further discussed in Chapter 4.2.3. Another striking characteristic is
the large difference in signal magnitude at high magnetic fields between the 0◦

and the 90◦ signal, which is labeled ∆Vk in Fig 4.10a. It is shown in the following
qualitative analysis (Chapter 4.2.3), that this is a result of the spin relaxation
anisotropy k. As discussed in Chapter 2.4.1, the spin relaxation times can depend
on the spin orientation in the DP spin relaxation regime. The spin relaxation
anisotropy k = τx/τy is then defined as the ratio of the spin relaxation time τx for
spins oriented along [11̄0], to the relaxation time τy for spins along [110]. More-
over, also for spins injected at an angle of 45◦ and 135◦ relative to the channel
orientation spin precession is expected, as the injected spin has a component which
is perpendicular to the effective magnetic field B⃗eff (Fig. 4.10d). In these con-
figurations an asymmetric signal with respect to Bext = 0 is obtained, which can
be understood by regarding the angle between the effective magnetic field B⃗eff

and the orientation of the injected spin, which corresponds to the direction of the
external magnetic field B⃗ext (Fig. 4.10d). There, direction and magnitude of B⃗eff

change upon reversing the sign of B⃗ext, which leads to a different spin precession
frequency and precession axis for Bext < 0 and Bext > 0, thus giving rise to the
asymmetry. Moreover, the 45◦ signal is mirror-symmetric to the 135◦ signal at
Bext = 0. There, the relative orientation and magnitude of Beff is the same for
the 45◦ signal for Bext < 0, and the 135◦ signal for Bext > 0 (Fig. 4.10d). Similarly,
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4.2 Signatures of spin orbit coupling in spin transport measurements

Figure 4.11. Background and offset corrected non-local spin signal for various
directions of the external magnetic field (Fig. 4.10), and an injector-detector dis-
tance of d = 11 µm. Channel orientations along [110] (a), and along [11̄0] (b) are
investigated.

the 45◦ signal for Bext > 0 corresponds to the 135◦ signal for Bext < 0. This gives
rise to the mirror-symmetry at Bext = 0 T between the 45◦ signal and the 135◦

signal.
An entirely different signal constellation is obtained for spins moving along the
[11̄0] direction (Fig. 4.10b). In this case, neither the 0◦ nor the 90◦ signal exhibit
a relevant magnetic field dependence. One explanation could be, that the SOC
strength is much weaker in this direction compared to the [110] orientation, such
that no measurable spin precession is induced, even for spins oriented perpendic-
ular to the SO-field. Furthermore, the 45◦ and 135◦ signals do not show the clear
asymmetry observed in case of the channel being oriented along the [110] direc-
tion. Moreover, contrary to the [110] direction, the magnitude of the 0◦ signal at
high magnetic fields is smaller than that of the 90◦ signal, while the magnitude of
the absolute difference is similar. These observations are analyzed in more detail
in Chapter 4.2.3.

Similar measurements are also conducted for another set of devices with a larger
injector-detector distance d. In Fig. 4.11 the non-local spin signal is shown for
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d = 11 µm and channels oriented along [110] (a) and [11̄0] (b), which can be
compared to the previously presented measurements for d = 7 µm (Fig. 4.10).
Most features are similar, including the magnetic field independence of the 0◦

signal, and the dip-shape of the 90◦ signal for a channel along [110], while the
90◦ curve for a channel orientation along [11̄0] does not depend on the magnetic
field. The magnitude of the signal, on the other side, is in general smaller for the
larger distance d, due to spin relaxation. The obvious deviation of the 45◦ and
135◦, which are almost symmetric with respect to B = 0 T for d = 11 µm, is also
discussed in more detail in Chapter 4.2.3.

4.2.3 Qualitative analysis

Summary of the extended spin diffusion model

In the following, the most relevant features of the measurements presented in
the previous chapter are discussed qualitatively, based on the expanded diffusion
model, which is introduced in Chapter 2.6. There, the diffusion equation, which
contains SOC, is given by:

da
∂u

∂t
= ∇ · (c̃∇u) − β̃ · ∇u − ãu, (4.19)

with the 3 × 3 unit matrix da = I3. The matrix c̃ contains the diffusion constant
D (isotropic diffusion):

c̃ =


D 0 0
0 D 0
0 0 D

 , (4.20)
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while the SOC is introduced to the model by β̃, which is given by (x ∥ [11̄0],
y ∥ [110]):

β̃ = −
√

2kF Lp

2ℏ



0
0

 0
0

 −(α − β + β3)
0


0

0

 0
0

  0
−(−α − β + β3)


(α − β + β3)

0

  0
(−α − β + β3)

 0
0




,

(4.21)
where Lp is the mean free path, and kF refers to the Fermi wave-vector. It is
important to remark, that only the SOC terms along the channel direction are
relevant for the result of the simulation, i.e. for a channel oriented along the y-
direction only the contributions containing (−α − β + β3) have to be taken into
account, for instance. The matrix ã contains spin relaxation and introduces an
external magnetic field B⃗ext = (Bx, By, 0)T in the x-y-plane:

ã =



1
τx

0 ge

2me

By

0 1
τy

= k

τx

− ge

2me

Bx

− ge

2me

By
ge

2me

Bx
1
τz

= 1 + k

τx


. (4.22)

An additional anisotropy in the spin relaxation rate is introduced by the parameter
k = τx/τy, such that, depending of the spin orientation, the spin relaxation rates
differ. As discussed in Chapter 2.4.1, k is related to the SOC parameters in a DP
dominated spin relaxation regime, and is in this case defined as the ratio of τx and
τy (x ∥ [11̄0], y ∥ [110]):

k ≡ τx

τy

=
(α + (β1 − β3))2 + τ3

τ1
β2

3

(α − (β1 − β3))2 + τ3

τ1
β2

3

. (4.23)
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According to this expression, k not only depends on the linear Rashba (α) and
Dresselhaus (β = β1 − β3) contributions, but also on the cubic Dresselhaus pa-
rameter β3. The importance of the latter is determined not only by its absolute
strength, but also by the factor τ3/τ1, which contains the effective momentum
scattering times τ1 = τp, and τ3 < τp. There, τ1 is equal to the momentum scat-
tering time τp, while τ3 depends on the electron scattering mechanisms in the
regarded structure. Considering DP spin relaxation in bulk III-V semiconductors,
τ3 ≈ τp/6 for impurity dominated scattering [27]. The spin relaxation time τz for
spins oriented out-of-plane (z-direction) is then determined by the in-plane spin
relaxation times τx and τy:

1
τz

= 1
τx

+ 1
τy

= 1 + k

τx

. (4.24)

Qualitative analysis of the extended spin diffusion model

For the simulations presented in the following, the effect of varying SOC strengths
and a finite spin relaxation anisotropy k ̸= 1 on the spin signal is investigated in
detail. The simplified device geometry consists of a single channel with a width
of wc = 1 µm. In the model, the SOC term (Eq. 4.21) is sensitive only to the
total SOC strength for spins moving along the channel direction. For a channel
oriented along [110] the only relevant SOC contributions in Eq. 4.21 are therefore
the components of the tensor, which contain (−α − β + β3), while for [11̄0] only
the terms containing (α − β + β3) have to be taken into account. Thus, from
the simulation only the total SOC strength is obtained, while it is not directly
possible to distinguish between α, β, or β3. The spin relaxation anisotropy k is
regarded as an independent parameter, although it could be directly connected to
SOC related quantities by Eq. 4.23. However, it is more convenient and intuitive
for the qualitative analysis to vary k independently. Similar to the non-local spin
injection experiments described in Chapter 4.2.1, an external in-plane magnetic
field B⃗ext is applied in the simulation, which is introduced in Eq. 4.22. The in-
jected spins are oriented parallel to B⃗ext. The orientation of B⃗ext is either parallel
to the channel (90◦ signal), or perpendicular thereto (0◦ signal). Note that for
the considered channel orientations along [110] and [11̄0], the SO-field is perpen-
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Figure 4.12. (a) Simulated magnetic field dependence of the 90◦ spin signal for
different values of SOC, but with isotropic spin relaxation k = 1. The channel
is oriented along [110], and d = 7 µm. The dip-feature observed in experiment
(Fig. 4.10a) occurs only in the presence of a finite SOC. The 0◦ signals coincide
with the 90◦ curve for SOC = 0 eV m, and are independent of SOC strength.
(b) Influence of the spin relaxation anisotropy k on 0◦ and 90◦ signal, without SOC.
Note that for k = 1 (no anisotropy), 0◦ and 90◦ signal coincide. (µe = 6.2 m2/V s
(exp.), ns = 8.7 × 1015 m−2 (exp.), τs = 86 ps (assumed)).

dicular to the channel. Thus, in the 90◦ configuration the injected spins, which
are oriented parallel to B⃗ext, are perpendicular to the SO-field, which gives rise to
spin precession.
In Fig. 4.12a the effect of SOC on the simulated magnetic field sweep is investigated
in case of isotropic spin relaxation, i.e. k = 1. There, a distinct dip-feature
becomes increasingly pronounced with increasing SOC strength, while there is
no external magnetic field dependence in the absence of SOC. As orientation and
magnitude of the effective magnetic field Beff , which consists of external magnetic
field and SO-field, is the only changing quantity in the regarded configuration, the
dip-like signal characteristic can be related to spin precession. For the simulated
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0◦ signal, on the other hand, in which case injected spin, external magnetic field,
and SO-field are all oriented perpendicular to the channel direction, no magnetic
field dependence is observable. The resulting signal is equal to the 90◦ signal in
the absence of SOC (Fig. 4.12a).
According to Eq. 4.22, a finite spin relaxation anisotropy k ̸= 1 introduces different
spin relaxation times, depending on the orientation of the spin. In Fig. 4.12b
simulated spin signals (0◦ and 90◦) for various values of k are shown in the absence
of SOC. Without SOC the effective total magnetic field only consists of Bext, which
is parallel to the injected spin. Thus, no spin precession is induced, and the non-
local spin signal is independent of the external magnetic field. For isotropic spin
relaxation (k = 1), i.e. τx = τy = 2τz, 0◦ and 90◦ signal are identical, while
introducing a finite spin relaxation anisotropy results in a shift of the non-local
voltage level. In Fig. 4.12b this voltage shift, relative to the level obtained for
k = 1, is labeled ∆Vk. There, for the 90◦ signal an increasing value of k results
in a larger ∆Vk, while the signal level in the 0◦ configuration does not change.
According to Eq. 4.22, an increase in k leads to a decreasing spin relaxation time
τy for spins oriented along the channel (y-direction), which in turn results in a
smaller spin signal for the same injector-detector distance. For spins oriented
along the x-direction, on the other hand, the corresponding spin relaxation time
τx does not change as a function of k, such that the 0◦ signal is not affected. This
difference between τx and τy gives rise to the difference ∆Vk between the 0◦ and
the 90◦ signal.
In the experimentally investigated structure, a finite SOC strength can be ex-
pected (Chapter 4.1.3), which, according to Eq. 4.23, also gives rise to a finite
spin relaxation anisotropy k. Thus, both SOC and a finite value of k have to
be taken into account in the simulations. In Fig. 4.13a magnetic field sweeps for
various values of k and a fixed SOC strength are shown. There, the voltage level
difference ∆Vk is found to increase for increasing k, but also the shape (width
and amplitude) of the 90◦ signal is affected. The SOC strength dependence of the
simulated spin signal for a fixed value of k (Fig. 4.13b), on the other hand, shows
that ∆Vk is independent of SOC. However, the shape of the 90◦ signal changes as
a function of SOC. As a tendency, the dip-like magnetic field characteristic of the
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Figure 4.13. Simulated 0◦ and 90◦ spin signal. (a) Dependence of the spin signal
on the spin relaxation anisotropy k, for a fixed SOC strength of 4.45×10−13 eV m.
(b) SOC strength dependence for a fixed spin relaxation anisotropy k = 1.6.
(µe = 6.2 m2/V s (exp.), ns = 8.7 × 1015 m−2 (exp.), τs = 86 ps (assumed))

90◦ configuration, which originates from SOC, increases in amplitude and width
for an increased SOC strength. From these qualitative simulations, it becomes
apparent that amplitude and width of the dip-shaped spin signal strongly vary as
a function of SOC and spin relaxation anisotropy k. The interplay between SOC
strength and k thus limits the possibilities of a quantitative analysis, as discussed
below in Chapter 4.2.4.

Qualitative comparison to experiment for channel ∥ [110]

A parameter range, in which the simulated spin signals qualitatively reproduce the
angle dependence of the measured signal, can be approached manually. Fig. 4.14a
and Fig. 4.14b show a comparison between experimental data and simulated
spin signal, with a manually adjusted finite SOC strength and spin relaxation
anisotropy k. The modeled 0◦ signal exhibits no magnetic field dependence
(Fig. 4.14b), while a distinct dip-feature is observable for spins injected perpen-
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Figure 4.14. (a) Non-local spin signal for channel oriented along [110] for differ-
ent orientations of the external magnetic field. (b) Simulated spin signal, which
qualitatively reproduces the experiment (a) by adjusting SOC strength and k in
the model. (k = 3.2, SOC = 4.2 × 10−13eV m, τx = 265 ps, g = −0.3)

dicular to the contact orientation (90◦), which results from a finite SOC. An
important characteristic of the 90◦ signal is the change of sign, which indicates
that a spin component arrives at the detector antiparallel to the magnetization of
the detecting contact. As injecting and detecting contact are magnetized parallel
by the external magnetic field, also the injected spin is oriented parallel to the
magnetization of the detector. Thus, an antiparallel spin component at the de-
tector can only be due to spin precession, causing the injected spin to precess by
an angle between π/2 and 3/2 π, or integer multiples thereof. Another important
characteristic of the signal is the voltage difference ∆Vk between the 0◦ and 90◦

signal at large magnetic fields. This can be reproduced by introducing a spin
relaxation anisotropy k, which is basically a result of the presence of a finite SOC
according to Eq. 4.23. For a magnetic field angle of 45◦ and 135◦ relative to the
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orientation of the contacts, the simulated signals are asymmetric with respect to
Bext = 0 T, with the 45◦ signal being mirror-symmetric at Bext = 0 T to the 135◦

signal. The symmetry properties of the signal can be understood by regarding the
direction of the effective magnetic field Beff , as discussed above (Fig. 4.10d).
The simulated spin signal (Fig. 4.14b) agrees well with the experimentally ob-
tained data (Fig. 4.14a), with all key features of the signal being qualitatively
reproduced. This requires introducing a finite SOC strength, which also gives rise
to an anisotropy of spin relaxation k. The dip-feature of the 90◦ signal can be
attributed to the presence of SOC, while the non-local voltage difference ∆Vk is
a result of the spin relaxation anisotropy k. Thus, a signature of SOC can be
observed experimentally in the 90◦ signal, which is a central finding, especially,
as SOC related spin precession is typically linked to ballistic spin transport. For
the presented devices, however, spin transport is dominated by diffusion, which is
apparent from the exponential decay of the spin signal with increasing injector-
detector distance, but is also supported by the qualitative agreement with the
purely diffusive model.
Additional remarks concern the features of the experimental non-local signals for
|Bext| ≲ 100 mT. There, for large magnetic fields (|Bext| ≳ 100 mT), injecting
and detecting contact are magnetized parallel to Bext, while in the low magnetic
field range their magnetization can rotate, preferably towards one of the magnet-
ically easy axes. Thus, for small external magnetic fields the magnetization of
the contacts, especially their relative orientation, is not determined, such that an
interpretation of the signal is not possible in this range. Additionally, it has to be
remarked that the scale of the simulated curves is phenomenologically set in order
to roughly match the experimental data. The main limitation of determining the
scaling factor in the model is the lacking knowledge on the spin relaxation time
τx, which cannot be accessed experimentally in the presented structure and can
only be estimated on the basis of the spin diffusion length λs. This, however,
requires assuming the spin diffusion constant Ds to be equal to the charge dif-
fusion constant Dc, which is not necessarily the case. Instead, Ds is in general
smaller compared to Dc in 2DEG structures, due to electron-electron interactions,
which do not conserve the spin current, thus implying an additional damping of
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spin diffusion (Coulomb drag) [102, 155–157]. Furthermore, a minor inconsistency
between experiment and simulation are the voltage levels at high magnetic fields.
Especially for the 45◦ and 135◦ configuration these signal levels are closer to the
90◦ signal in experiment compared to the model. This is most likely related to
an inaccurate experimental determination of the 0-spin-signal (0-SG). The 0-SG
can be extracted from SV measurements and basically lies in the middle between
the parallel and the antiparallel level of the SV signal. Inaccuracies can be due
to imperfect magnetic switching of the ferromagnetic contacts, which can inhibit
the formation of a clearly distinguishable antiparallel magnetization level, for in-
stance. Also, it has to be kept in mind that the parallel and antiparallel levels of
the SV signal typically form along the magnetically easy axes of the ferromagnet,
i.e. along [100] or [010]. The thus determined 0-SG is therefore only valid for spins
oriented along these directions, yet in experiment this 0-SG is used as a reference
for all orientations, as it is not possible to determine the specific 0-SG levels for
spins oriented along the [110] or [11̄0] direction. This could lead to a shift of the
experimentally obtained spin signals relative to each other, which could explain
the discrepancy with regard to the simulation.

Qualitative comparison to experiment for channel ∥ [11̄0]

For the measurements regarded above, the channel is oriented along the [110]
direction. By comparison to finite element simulations, the dip-like signal char-
acteristic of the 90◦ signal could be related to the presence of a finite SOC. For a
channel orientation along the [11̄0] direction, on the other hand, the experimental
90◦ signal shows no magnetic field dependence, apart from irrelevant features in
the low field range (Fig. 4.15a). This implies that the SOC which affects spins
moving along the [11̄0] direction, is much weaker compared to the previously
investigated [110] orientation. This anisotropy can be understood by regarding
the absolute values of the total SOC strength for channels along k⃗ ∥ [110] and
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k⃗ ∥ [11̄0], which are given by (x ∥ [11̄0], y ∥ [110]):

SOCk∥[110] = | − α + 2 β3 − β1|

SOCk∥[11̄0] = |α + 2 β3 − β1|.
(4.25)

There, the linear Dresselhaus parameter β1 is related to the expectation value of
⟨k2

z⟩, and the bulk Dresselhaus parameter γ [26, 70, 71]:

β1 = −γ⟨k2
z⟩ ≈ 1.37 × 10−13 eV m. (4.26)

For (In,Ga)As/GaAs quantum well structures with low In-contents of 10 % and
12 %, which is similar to the heterostructure investigated within the scope of
this thesis (9 % In-content), and an identical QW width of 20 nm, a value of
γ ≈ −7.5 eVÅ3 is reported by M. Studer et al. [77]. The expectation value of ⟨k2

z⟩
can be obtained from self-consistently solving the Schrödinger-Poisson equation,
which allows determining the electron wave-function for the given heterostructure.
Calculating the quantum mechanical average then yields ⟨k2

z⟩ ≈ 1.83×1016 m−2 for
ns = 8.3 × 1011 cm−2. With these values for γ and ⟨k2

z⟩, β1 ≈ 1.37 × 10−13 eV m.
The cubic Dresselhaus parameter β3, on the other hand, is determined by the
charge carrier density ns [26, 100, 158]:

β3 = −γ
k2

F

4 = −γπns

2 ≈ 9.78 × 10−14 eV m. (4.27)

For ns the experimentally determined value of ns = 8.3 × 1015 m−2 is taken.
The lacking dip-like characteristic in the 90◦ signal for a channel along [11̄0] implies
that the SOC strength for k⃗ ∥ [11̄0] is much weaker compared to k⃗ ∥ [110]:

SOCk∥[110] > SOCk∥[11̄0] (4.28)

Therefore,
| − α + 2 β3 − β1| > |α + 2 β3 − β1|

| − α + 5.9 × 10−14 eV m| > |α + 5.9 × 10−14 eV m|,
(4.29)
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which strongly suggests that
α < 0. (4.30)

A further analysis of the experimental data presented in Fig. 4.15a, shows that,
unlike in case of the channel directed along [110], the signal level of the 0◦ signal is
lower than that of the 90◦ signal. Another difference is the symmetry of the spin
signal obtained for an external magnetic field orientation of 45◦ and 135◦. In order
to model the spin signal for a channel along [11̄0], the model geometry which is
introduced in Chapter 2.6 has to be rotated by -90◦, and the nomenclature of the
external magnetic field direction has to be adjusted accordingly, such that B⃗ext

is again directed perpendicular to the channel for the 0◦ signal. The resulting
simulations are shown in Fig. 4.15b. Qualitatively reproducing the measurements

Figure 4.15. (a) Experimental non-local spin signals for a channel orientation
along [11̄0] and various magnetic field directions. (b) Corresponding simulations,
qualitatively reproducing the experimental data in (a). (k = 3.2, SOC = 0.5 ×
10−13eV m, τx = 265 ps, g = −0.3)

requires setting a small SOC strength, which is around an order of magnitude
weaker compared to the [110] direction. The small SOC in the model results in
a very weak modulation of the 90◦ signal and introduces a minor asymmetry of
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the 45◦ and the 135◦ signal with respect to Bext = 0 T. Without SOC the 90◦

signal is independent of the external magnetic field, and the 45◦ and 135◦ signals
are identical. Comparison to experiment indicates the presence of a small SOC
contribution due to the minor asymmetry of the 45◦ and the 135◦ signal. For
the spin relaxation anisotropy k the same value as for the previously conducted
calculations for a channel orientation along [110] is taken. This is reasonable, as,
according to Eq. 4.23, the spin relaxation anisotropy k is given by the ratio of the
spin relaxation times τx and τy, which does not change for a channel along [11̄0]
compared to the [110] direction. Due to the same value of k, the voltage level
difference ∆Vk is identical to the simulations for a channel orientation along [110],
which is in good agreement with the experimental findings.
For the channel along [11̄0] the external magnetic field is oriented along the x-
direction for the 90◦ signal in the model, not along the y-direction as for the
previously regarded channel along [110]. Thus, the relaxation of spins oriented
along the channel (90◦) is now determined by the spin relaxation time τx, while
for spins perpendicular to the channel (0◦) spin relaxation is determined by τy.
Due to the finite spin relaxation anisotropy k = τx/τy > 1, τx is now larger than
τy. Thus, for the same injector-detector distance, the spin signal is larger for spins
oriented along the channel (90◦) compared the spins oriented perpendicular to the
channel direction (0◦). This gives rise to the reversal of the signal level magnitudes
of the 0◦ and 90◦ signal compared to the [110] direction.
Furthermore, also the asymmetry of the 45◦ and 135◦ signal arises from the pres-
ence of a finite SOC strength. Without SOC the spin signals in these configu-
rations are symmetric with respect to Bext = 0 T, and the 45◦ and 135◦ signals
are identical. Introducing a finite SOC leads to an asymmetry of the spin signal,
which gets more pronounced for an increased SOC strength, as shown in Fig. 4.16.
Note that the 135◦ signal is mirror-symmetric to the 45◦ signal at Bext = 0 T. For
a SOC strength of 4×10−13 eV m, the signal approaches that of the simulation for
a channel along [110] (Fig. 4.14b).
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Figure 4.16. Dependence
of 45◦ spin signal on SOC
strength. In the absence of
SOC the signal is symmet-
ric (red), while a finite SOC
strength introduces an asym-
metry with respect to Bext =
0 T. (k = 3.2, τx = 265 ps,
g = −0.3, µe = 6.2 m2/V s,
ns = 8.7 × 1015 m−2)

4.2.4 Semi-quantitative evaluation

Quantitative evaluation and fitting is subject to restrictions, yet a rough estima-
tion of the order of magnitude of some parameters, like spin relaxation anisotropy
k and SOC strength, is possible. As there is a mutual dependence between many
of the parameters in the model, however, some prerequisites and assumptions have
to be made in order to extract conclusive values. First of all, the spin relaxation
time τx = λ2

s/Dc has to be determined by the charge diffusion constant Dc and the
spin diffusion length λs. There, λs is obtained from the SV signal for an external
magnetic field orientation parallel to the contact (0◦). However, the switching
between the parallel and antiparallel level of the SV signal takes place along one
of the magnetically easy axes of the contacts, i.e. along [100] or [010]. Thus, the
extracted spin diffusion length of λs = 7.4 µm is valid for spins oriented along
these directions. In the model, however, the x-direction is along [11̄0], so that the
spin diffusion length, which is extracted for [100], or [010] respectively, can only
be used as an approximation for the spin relaxation time τx. Additionally, the
charge diffusion constant Dc, which can be obtained from the experimental values
of the charge carrier density ns and the electron mobility µe, is implemented for
calculating τx, instead of the spin diffusion constant Ds. This approximation has
to be used, as there is no direct experimental access to the spin relaxation time
in this structure. In general, Ds can be smaller compared to Dc due to electron-
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electron interactions [102, 155–157]. Based on these approximations, a value of
τx = 265 ps is obtained.
The fitting routine itself is based on two separate steps. First, the scaling factor in
the model is determined in such a way that it matches the simulated signal height
with the experimental one. For a given τx and Ds = Dc, a unique value of the
scaling factor in the model can be determined from the level of the experimental
0◦ signal, which is magnetic field independent, and also does neither depend on
the SOC strength, nor on the spin relaxation anisotropy k. The dip-like feature
of the 90◦ signal is then fitted with the thus extracted scaling factor. There, SOC
strength, and spin relaxation anisotropy k are the main fitting parameters. In
order to obtain matching fits, however, it is additionally found to be necessary to
allow variations of the electron g-factor, which basically scales the magnetic field
axis. The spin relaxation anisotropy k is the only parameter, which introduces
a voltage difference ∆Vk between the 0◦ and 90◦ signal at large magnetic fields.
Therefore, k could be uniquely determined from the fitting routine. The dip-
feature of the 90◦ signal, on the other hand, depends not only on the strength of
SOC, but also on k and the g-factor. Although k is assumed to be given by the
difference between the 0◦ and 90◦ data, it is therefore still not possible to obtain
a unique value of the SOC strength.
The main sources of error come from a dependence of the shape of the 90◦ signal
on the background removal procedure (App. A.1), as it affects the obtained values
of SOC strength and g-factor. Significant inaccuracies may also arise from the
erroneous determination of the 0-spin-signal (0-SG), which potentially gives rise
to an additional artificial voltage offset. The 0-SG can only be determined from
the SV signal (0◦) and is then subtracted from all experimental curves, assuming
it is the same for all external magnetic field directions. When this is not the
case, there is an artificial shift between the considered curves, which affects the
obtained values of the scaling factor and the spin relaxation anisotropy k. As a
different value of k not only affects the difference between the 0◦ and 90◦ signal
(∆Vk), but also changes the shape of the 90◦ curve, also different values for the
SOC strength and the g-factor are obtained. Thus, it has to be kept in mind
that the parameter determination can only be understood as a semi-quantitative
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approximation, yielding a rough order of magnitude of the extracted parameters.
In Fig. 4.17a and Fig. 4.17b the internal fitting routine of the COMSOL software
is applied to the experimental data obtained for two different injector-detector
distances d. The magnetic field range for |B| < 200 mT is not taken into account
in the fitting process. The 0◦ signal is fitted separately in order to obtain a value
for the scaling factor. Subsequently, the 90◦ data is matched with k, SOC and
g-factor as free parameters. As the 0◦ signal shows no magnetic field dependence,
both in experiment and simulation, the fit can be adjusted perfectly by setting
the scaling factor (Fig. 4.17). The fit of the 90◦ signal for a injector-detector
distance of d = 7 µm shows some deviations from the experimental curves, which
are most likely related to the limitations of the fitting routine, due to the before
mentioned sources of inaccuracies. For a distance of d = 11 µm, on the other hand,
a significantly better fitting result is obtained.

Figure 4.17. Fitted 0◦ and 90◦ spin signals for a channel orientation along [110],
for two different injector-detector distances of d = 7 µm (a) and d = 11 µm (b).
The resulting fitting curves are shown in green.

The extracted parameter values are summarized in Tab. II. There, a value for the
spin relaxation anisotropy of around k ≈ 3 can be estimated, and the strength of
the total SOC lies in the lower 10−13 eV m range. For the electron g-factor a value
of g = −0.34 for d = 7 µm, and g = −0.26 for d = 11 µm is obtained from the fit.
These values are in good agreement with the g-factor value of g = −0.29, which
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was experimentally determined by M. Studer et al. [159] in an In0.1Ga0.9As/GaAs
QW structure with a similar indium concentration as the heterostructure under
investigation.

d scale f ′ k SOCk∥[110] g-factor Pinj

(µm) (10−13 eV m)

7 0.79 2.94 4.20 -0.34 0.41
11 0.78 3.11 3.29 -0.26 0.40

Table II. Summary of the parameter values obtained from the fitting routine,
i.e. scaling factor f ′, spin relaxation anisotropy k, total SOC strength SOCk∥[110],
and electron g-factor, for a channel orientation along [110]. The value of Pinj is
calculated separately.

Additionally, from the scaling factor f ′, which results from the fitting approach,
it is possible to obtain a value of the spin injection efficiency Pinj. The model
simulates the spatial distribution of the spin density accumulation s = n↑ − n↓.
In this context, the scaling factor f in the model can be related to Pinj by the
following expression (Chapter 2.6):

f = j Pinj

e
. (4.31)

However, in experiment the spin accumulation is measured as a non-local voltage
drop Vnl at the detector. Thus, the scaling factor obtained from the fitting routine
cannot be connected to Pinj based on this equation. Instead, an additional factor
has to be taken into account, which connects Vnl to the spin density s. Generally,
the non-local voltage can be expressed in terms of the spin accumulation µs:

Vnl = Pdetµs ≈ Pinjµs. (4.32)

There, Pdet is assumed to be equal to the injection efficiency Pinj, which is valid
for small injection currents [18]. The spin accumulation µs itself is related to the
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spin density s by the following expression:

µs = s

e DOS
, with DOS = m∗

πℏ2 , (4.33)

where DOS is the density of states of the 2-dimensional system. Thus, the non-
local voltage drop Vnl can be linked to the spin density s:

Vnl = Pinj

eg
s, (4.34)

which requires taking into account an additional factor of Pinj/eg. The scaling
factor f ′, which results from fitting the non-local voltage signal, can therefore be
related to Pinj by the following formula:

f ′ = Pinj

eg
f =

P 2
injj

e2g
. (4.35)

Rearranging yields:

Pinj =

√√√√f ′e2g

j
. (4.36)

For a current density of j = 4 µA/20 µm, which assumes a 1-dimensional contact
with no spatial extension along the channel, similar to the simplified geometry
implemented in the simulation, a spin injection efficiency of Pinj ≈ 40 % is ob-
tained for both distances. This value is in excellent agreement with the previously
determined injection efficiencies for an array geometry with a channel width of
wc = 1 µm (Chapter 4.1.3).

4.2.5 Conclusion

In this chapter, the array device geometry introduced in Chapter 4.1 was imple-
mented in order to investigate SOC related phenomena. The transport channels
were oriented along [110] and [11̄0], such that the corresponding SO-fields are
perpendicular to the channel. Thus, if the injected spin has a component which
is perpendicular to this SO-field, spin precession is induced. There, an external
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magnetic field allowed setting the orientation of the injected spins, which is con-
sidered parallel to Bext. For an orientation of the injected spins which is parallel
to the channel direction (90◦ signal), a distinct dip-feature was observable in the
magnetic field sweep for a channel along [110]. This signal characteristic could
be attributed to the presence of a finite SOC strength, which could be confirmed
qualitatively by simulations based on the extended spin diffusion model presented
in Chapter 2.6. A semi-quantitative approach additionally allowed fitting the ex-
perimental data. There, the total SOC was found to lie in the low 10−13 eV m
range. For a channel orientation along [11̄0], on the other hand, no distinct SOC
related features could be observed in the 90◦ signal, which suggests that the SOC
strength along this direction is significantly smaller compared to [110]. This crys-
tallographic orientation dependence of the SO-fields gives rise to a dependence of
the spin relaxation time on the spin orientation, which is referred to as spin relax-
ation anisotropy k. A consequence of a finite k could be observed in experiment
as a difference ∆Vk in the signal levels between the 0◦ and the 90◦ signal, at high
magnetic fields. This could also be confirmed qualitatively by the extended spin
diffusion model.

4.3 Gate control of spin precession

In the previous chapter, the presence of a finite SOC strength in the structure
under investigation could be confirmed. There, specific spin signal characteristics
could be assigned to SOC. In a next step, the gate tunability of the SOC re-
lated features is investigated. First, however, basic properties and general aspects
regarding gated devices are discussed, before focusing on gated spin transport
measurements, and on a qualitative comparison of the experimental data to sim-
ulations.

4.3.1 General aspects

In common semiconductor devices, gate electrodes allow modulating the proper-
ties of the transport channel, in particular the charge carrier density ns and the
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electron mobility µe [143, 160–162]. In most cases, gated structures consist of a
thin metal layer which is electrically separated from the channel by an insulating
oxide. For industrial applications, SiO2 is commonly used as an oxide material, in
particular for Si-based structures [163–165]. However, in order to reduce leakage
currents between the gate electrode and the channel, it is advantageous to imple-
ment so-called high-k materials with a dielectric constant kdiel larger than that
of SiO2 (kdiel = 3.9) [163, 164, 166, 167]. Due to the higher dielectric constant,
these oxides can be grown thicker while the capacitive coupling remains the same
compared to materials with lower values of kdiel. In the following experiments alu-
minium oxide (Al2O3) is implemented, the dielectric constant of which lies around
kdiel = 8 − 10 [163, 164, 166]. This oxide can be fabricated in a good quality by
atomic layer deposition (ALD). Additionally, the large bandgap of Al2O3 (7 eV
to 9 eV) compared to other high-k materials effectively prevents charge transfer
through the oxide [163, 166, 168]. The effect of an applied gate voltage on the
conductive channel can be described in a simplified picture as a parallel plate
capacitor, consisting of the gate electrode and a 2DEG with a dielectric layer
in between [165]. In this approximation, the relation between the charge carrier
density ns in the 2DEG and the gate voltage Vg can be given by:

Vg = Vth + ens

Cg

, (4.37)

with the total capacitance Cg per unit area of the layers between the gate electrode
and the channel, and the threshold voltage Vth. The latter defines the gate voltage
at which the channel starts becoming conductive, or gets pinched-off respectively.
Above Vth the charge carrier density changes linearly as a function of the gate
voltage. It directly follows from Eq. 4.37 that applying a gate voltage allows
tuning the charge carrier density ns. A change in ns, in turn, affects the electron
mobility µe, which therefore also indirectly depends on Vg [143, 160–162, 169–173].
Determining the actual dependence of the electron mobility on carrier density
requires distinguishing two cases. For densities below about ns = 2 × 1012 cm−2

the electron mobility increases with increasing ns, which is ascribed to Coulomb
scattering at charged dislocation lines or ionized impurities [160–162, 169]. For
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Figure 4.18. Experimen-
tal results of M. Manfra et
al. [160], showing the depen-
dence of electron mobility µe

on the electron density ns.
There, two regions for low ns ≲
2 × 1012 cm−2 and high ns ≳
2×1012 cm−2 are distinguished.
Adapted from [160].

higher densities interface roughness and alloy scattering dominate, which leads to a
decrease of mobility with increasing ns [160, 161, 169, 170]. In Fig. 4.18 a typical ns

dependence of the electron mobility is shown, which is based on the experimental
results of M. Manfra et al. [160]. In general, an increase of ns leads to a larger
Fermi wave-vector kF =

√
2πns [160, 174]. Considering only Coulomb scattering,

which is the dominant scattering mechanism for low carrier concentrations, a
larger kF results in a smaller scattering angle for a given scattering wave-vector.
Therefore, the electron mobility increases with increasing ns. In the low density
regime, a power law dependence is found to describe the relation between µe and
ns [160–162, 169, 171–173]:

µe ∝ na
s . (4.38)

Introducing Coulomb scattering at charged dislocation lines, D. Jena et al. [171]
found a theoretical value of a = 1.5, while the experimentally observed values
range from a = 0.6 to a = 2.1 [160–162, 169, 172, 173].
A common issue with dielectric layers grown on a SC structure is the presence of
so-called trap states, which act as charge traps and limit the performance of the
device. These trap states arise from defects at the interface between the dielectric
layer and the SC, or within the oxide layer itself [143, 167, 175–184]. Defects in
Al2O3 can originate from aluminium or oxygen vacancies, or from aluminium or
oxygen interstitials [185]. W. Choi et al. [185] derived the defect type from cal-
culating the corresponding energy levels of these states, finding that aluminium
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Figure 4.19. Visualization of the filling process of deep trap states, which are
located at the interface between oxide and SC structure. (a) In the unbiased case
the Fermi levels of the metal gate EF m and the heterostructure EF s are equal. The
trap states are filled up to the Fermi level. (b) Applying a positive bias at the gate
makes charge transfer from the 2DEG into the trap states possible, thus resulting
in the population of more trap states. (c) Returning to the unbiased situation
only leads to a partial depopulation of the trap states. Adapted from [178].

vacancies and oxygen interstitials act as deep acceptor sates, while aluminium
interstitials act as deep donors. Oxygen vacancies, on the other hand, can form
either acceptor or donor states, depending on the position of the Fermi level.
Additional states within the bandgap can arise from dangling bonds at the inter-
face between the dielectric layer and the SC. In Fig. 4.19 the trapping process is
schematically depicted for a general heterostructure system with a 2DEG chan-
nel. In equilibrium, the Fermi level of the metal gate EF m and that of the SC
heterostructure EF s are equal, and only the trap states below the Fermi energy
are occupied (Fig. 4.19a). Applying a voltage at the gate electrode leads to a tilt
of the bandstructure (Fig. 4.19b). If the applied voltage is large enough, a charge
transfer from the 2DEG to the interface between oxide and SC is possible, which
results in the population of additional trap states [177, 178, 181]. Subsequently
decreasing the voltage at the gate leads to the emission of the trapped charges, es-
pecially those which populate energy levels close to the conduction band (shallow
traps), while traps which lie deeper within the bandgap (deep traps) remain popu-
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lated (Fig. 4.19c). Due to the extremely long emission times of the deep trap states
(up to ∼ 1020 s at room temperature [177]), their population can be considered
permanent [177, 178, 181]. Depopulation by applying a large reverse gate volt-
age or by thermal emission, even at room temperature, is not possible. However,
populated deep trap states can be ionized by optical excitation via external illu-
mination [177]. As a result of the additional quasi-permanently trapped charges
between the gate electrode and the channel, the capacitive effect of the gate on
the 2DEG is screened. A consequence observed in experiment is the irreversible
shift of the threshold voltage Vth towards higher voltages once the applied gate
voltage exceeds a critical value, a phenomenon which is commonly reported for
gate-oxide-semiconductor structures [143, 167, 175–185]. Also the linear change
of the charge carrier density ns with gate voltage (Eq. 4.37) is affected, such that
ns can become independent of Vg. There, the additional electrons in the QW
for an increased gate voltage can be partially transfered to the deep trap states
instead of populating the transport channel, such that ns in the channel does not
increase. Additionally, at even larger gate voltages, the populated trap states
can completely screen the capacitive effect of gate electrode, so that ns does not
change with Vg.

4.3.2 Gated charge transport measurements

Magneto-transport measurements are conducted on a separate set of devices,
which consist only of a conductive transport channel, reference contacts, and volt-
age probes, allowing experimental access to the longitudinal voltage Vxx. The

Figure 4.20. Gated
magneto-transport
measurement setup
from the top (a) and
from the side (b).
For simplicity, the
gate is not show in
(a).
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device geometry is schematically depicted in Fig. 4.20. The transport channel
itself is 20 µm wide, yet between the longitudinal voltage probes the channel is
divided into an array of 1 µm wide stripes, similar to the spin injection device
geometry (Chapter 4.1.1). For reasons of simplicity, the gate itself is not shown in
the top view (Fig. 4.20a), while on the actual sample the entire channel is covered
by the gate electrode, separated from the heterostructure by 20 nm of SiO2 and
100 nm of Al2O3 (Fig. 4.20b). On these devices no spin injection or detection con-
tacts are fabricated, however, the same heterostructure system is used. Applying

Figure 4.21. (a) Longitudinal resistivity ρxx in dependence of gate voltage Vg

and out-of-plane magnetic field B, showing clear Shubnikov-de Haas oscillations.
Gate control of the oscillation period, which is related to ns, is only possible
up to a gate voltage of about 3 V. (b) Single exemplary magnetic field sweeps
(horizontal cut-lines in (a)). (c) Gate dependence of electron mobility µe, charge
carrier density ns, and sheet resistance Rs = ρxx(B = 0 T), extracted from the
magneto-transport measurements shown in (a).

106



4.3 Gate control of spin precession

a current (AC) across the channel in combination with an external out-of-plane
magnetic field, gives rise to Shubnikov-de Haas oscillations in the longitudinal volt-
age Vxx (magneto-transport measurement). From the period of these oscillations
the charge carrier density ns can be extracted [153], so that it is possible to resolve
the gate dependence of ns. In Fig 4.21a the longitudinal resistivity ρxx obtained
from magnetic field sweeps for different gate voltages is summarized in a color-
plot, along with exemplary single magnetic field sweeps in Fig 4.21b (horizontal
cut-lines). There, clear Shubnikov-de Haas oscillations can be observed, especially
for larger gate voltages, i.e. higher charge carrier densities. However, the period
of these oscillations, thus also ns, changes as a function of gate voltage only up
to about Vg ≈ 3 V, while the influence of the gate is significantly suppressed for
larger voltages. The charge carrier density ns can be directly obtained from the
period of the Shubnikov-de Haas oscillations (Fig. 4.21c). Additionally extract-
ing the sheet resistance Rs = ρxx(B = 0 T) from the transport measurements
allows calculating the electron mobility µe = 1/(ensRs) [153] (Fig. 4.21c). In the
gate range below Vg ≈ 3 V, both ns and µe change approximately linearly with
Vg. According to Eq. 4.37, the linear change of ns with gate voltage is expected,
while the loss of capacitive coupling for larger gate voltages can most likely be
attributed to the population of trap states. There, either the additional charge
carriers in the channel for higher Vg directly populate these trap states, such that
ns in the 2DEG does not increase with Vg, or the effect of the gate electrode is
capacitively screened for even larger gate voltages, in which case most trap states
are populated (Chapter 4.3.1). Similar gate dependent transport characteristics
are also reported by M. Trottmann [143] for InAs QW heterostructures.
The linear change of the charge carrier density ns with a gate voltage is expected
from Eq. 4.37. As according to Eq. 4.38 the electron mobility µe is related to ns,
the gate dependence of µe is a consequence of the dependence of ns on Vg. In
Fig. 4.22 the experimentally determined dependence of µe on ns is shown, which
can be compared to the experimental findings of M. Manfra et al. [160] (Fig. 4.18).
As the maximum carrier density is below 1 × 1012 cm−2, the above mentioned
power law dependence (µe ∝ na

s) is expected to describe the correlation between
µe and ns (Eq. 4.38). Fitting this dependence to the experimental data yields a
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Figure 4.22. Electron mobility
µe in dependence on charge carrier
density ns. For ns ≲ 2×1012 cm−2

µe is expected to be proportional
to n1.5

s [171], which is in perfect
agreement with the experimental
findings.

value of a = 1.52, which agrees exceptionally well with theoretical consideration
(atheor = 1.5 [171]). This suggests that the gate dependent transport properties
of the investigated samples are dominated by Coulomb scattering, which affects
the mobility as a function of ns. For larger charge carrier densities (ns ≳ 8 ×
1011 cm−2) the relation between µe and ns deviates from the n1.5

s dependence,
similar to the findings of M. Manfra et al. [160] (Fig. 4.18). The decrease of µe

with increasing ns for higher densities is attributed to an increasing importance
of interface roughness and alloy scattering [160, 161, 169, 170]. As µe is linked
to ns, the gate dependence of µe is introduced by the dependence of ns on the
gate voltage. The observed increase of the electron mobility µe with increasing
gate voltage (Fig. 4.21c) is commonly observed in gated 2DEG structures in this
charge carrier density range [143, 160–162, 169–173].
Another effect of the capacitive shielding of the gate electric field due to trapped
charges can be observed as a shift of the threshold voltage (Vth). There, a con-
stant voltage Vappl is applied to the channel and the current through the channel
is measured as a function of the applied gate voltage Vg (Fig. 4.23c). At a certain
threshold gate voltage Vth the channel is fully depleted and the conduction is sup-
pressed accordingly (pinch-off), while for larger gate voltages electrical conduction
is possible. The value of the threshold voltage hardly changes and shows no sig-
nificant hysteretic behavior, when sweeping the gate only in a small voltage range
up to about Vg = 2.5 V (Fig. 4.23a). Applying large positive voltages to the gate
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Figure 4.23. Current through the channel as a function of the applied gate
voltage. There, a constant voltage Vappl = 4 V (AC) is applied across the channel
with an additional 10 MΩ resistance in series, and the current through the channel
is measured as a function of Vg (c). Sweeping the gate in a small voltage range (a)
causes no hysteresis, while applying a large gate voltage (b) leads to a significant
shift of the threshold voltage Vth towards higher values, which can only be reversed
by external illumination.

leads to a shift of the pinch-off voltage towards a higher gate voltage (Fig. 4.23b).
This effect cannot be reversed by applying a large negative bias at the gate. This
shift of the threshold voltage is a common phenomenon observed in gated SC
structures and is typically attributed to the population of deep trap states [143,
167, 175–185], as described in Chapter 4.3.1. The effect of charge trapping can
only be reversed by external illumination, thus inducing optical emission of the
trapped charges [177]. In the presented experiments an LED with a wavelength
of about 645 nm (1.9 eV) is used for this optical excitation. In order to illumi-
nate the structure underneath the gate electrode, the gate itself is required to be
sufficiently transparent, which can be achieved by choosing a small metal layer
thickness of 20 nm of gold. This thickness is, on the other hand, large enough to
ensure homogeneous evaporative deposition during fabrication.
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4.3.3 Gated spin transport measurements

In case of the well-known spinFET device proposed by S. Datta and B. Das [8],
a gate electrode allows tuning the strength of the SOC, thus altering the spin
precession frequency (Chapter 2.5). In previous publications spin precession sig-
natures could be observed in InAs QW structures in the ballistic transport limit,
i.e. for small injector-detector distances below the mean free path [20–25]. The
main objective of this thesis is the experimental demonstration of gate induced
spin precession in the all-semiconductor (In,Ga)As based 2DEG system described
in Chapter 3.2. In the following, the general influence of the gate electric field on
spin related properties, like the spin diffusion length, is discussed first, followed by
gated spin precession experiments. There, gate dependent spin signal oscillations
are presented, the origin of which is discussed and attributed to a gate voltage
induced change of the SOC strength. The relative change of SOC with a gate
voltage is evaluated and the oscillations are modeled qualitatively.

Device geometry and measurement setup

The device geometry is similar to the one described in Chapter 4.2.1, with an
array of 1 µm wide stripes between the injecting and detecting contact, which
themselves lie on the 20 µm wide part of the channel (Fig. 4.24). In addition, this
structure is covered with an electric gate, consisting of 10 nm SiO2 as an oxide
seed layer, 100 nm of ALD-grown Al2O3, and 20 nm of gold on top. The thickness
of the gold layer is chosen such that it is sufficiently transparent for external

Figure 4.24. Gated device geometry and non-local measurement setup in side-
view (a) and from the top (b). The notation of the external magnetic field orien-
tations is shown on the right.
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illumination, while still allowing homogeneous deposition during fabrication. The
gate structure covers the entire length of the channel. Separate samples with three
different distances d between injector and detector are investigated (7 µm, 11 µm
and 15 µm). The following gated measurements are conducted in the non-local
configuration (Fig. 4.24), while a gate voltage is applied with respect to ground.
The notation concerning the external magnetic field is kept consistent with regard
to previous chapters: 0◦ refers to the magnetic field parallel to the long axis of
the contacts, while 90◦ denotes the orientation parallel to the channel direction.
Moreover, the following measurements are conducted at a cryogenic temperature
of 1.4 K with an injection current of Iinj = 4 µA (AC).

Gate dependence of spin transport properties

First, the effect of the applied gate voltage on basic properties of spin trans-
port is discussed. Therefore, the gate dependence of the standard non-local spin
valve signal with an external magnetic field parallel to the long axis of the in-
jection/detection contact (0◦ signal) is investigated. In Fig. 4.25a the SV signal
for an injector-detector distance of d = 7 µm and for an exemplary gate voltage
of Vg = 2 V is shown. The channel is oriented along the [110] crystallographic
direction. The spin contacts are consequently parallel to [11̄0], so that for a large
external magnetic field their magnetization is parallel to Bext, i.e. both contacts
are magnetized along [11̄0] in this case. The magnetization configurations of the
contacts are schematically shown as arrows in Fig. 4.25a. In the low magnetic field
range, the contacts are still magnetized parallel, yet start to rotate towards one of
the magnetically easy axes, i.e. towards [100] or [010]. Upon reversing the external
magnetic field direction, one of the contacts eventually switches its magnetization
by 180◦, such that the antiparallel configuration is established. Notably, in the
antiparallel configuration both contacts are also magnetized along [100], or [010]
respectively. From these non-local SV measurements two important quantities can
be extracted. First of all, the signal height ∆Vnl,SV of the standard SV signal can
be obtained. In this case, injecting and detecting contact are magnetized along
[100] or [010], i.e. at a ±45◦ angle with respect to the channel orientation. Another
important value is the difference between the 0-spin-signal (0-SG) and the spin

111



4 Experimental results

Figure 4.25. (a) Exemplary SV signal for Vg = 2 V and d = 7 µm. For large
magnetic fields the contacts are magnetized parallel to their long axis ([11̄0]),
as indicated by the arrows. For smaller fields, the contacts rotate towards one
of the magnetically easy axes ([100], or [010]), eventually switching to the an-
tiparallel configuration (AP). From these SV measurements, two quantities can
be extracted: the SV signal height ∆Vnl,SV (A), and the non-local voltage drop
for spins oriented along [11̄0], 1/2∆Vnl,[11̄0] (B). (b) Gate dependence of SV signal
height ∆Vnl,SV , i.e. for spins oriented along [100], or [010] respectively. (c) Gate
dependence of the spin signal ∆Vnl,[11̄0], in which case the spins are oriented along
[11̄0].

signal level for high external magnetic fields. In this case, the contacts are magne-
tized parallel to their long axis ([11̄0]). This quantity is denoted as 1/2 ∆Vnl,[11̄0], as
indicated in Fig. 4.25a. Notably, the 0-SG corresponds to the middle between the
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parallel and antiparallel signal level of the SV signal for the contacts magnetized
along [100], or [010] respectively. The signal height ∆Vnl,[11̄0] can be considered as
an equivalent to the SV signal height with contacts oriented along [11̄0], which is
not directly observable in experiment, as the magnetic switching of the contacts
is along the [100] or [010] direction instead (∆Vnl,SV ). The gate dependence of the
spin signal heights for all investigated injector-detector distances is summarized
in Fig. 4.25b for ∆Vnl,SV , and in Fig. 4.25c for ∆Vnl,[11̄0]. In both cases, the spin
signal height clearly decreases with increasing gate voltage. There, the decrease
of the signal height for spins oriented along the contact (∆Vnl,[11̄0]) is significantly
larger compared to ∆Vnl,SV . In order to explain these observations, the general
form of the SV signal height for the array geometry is regarded, which can be
approximated by Eq. 4.7:

∆Vnl(d) ≈ 4P 2IinjRs,2λ2

w2

1
[1 + Rs,2λ2w1/Rs,1λ1w2]2

exp
(

− d

λ2

)
, (4.39)

which is discussed in detail in Chapter 4.1.3. The spin diffusion length of the
channel segment between the contacts is denoted λ2, while for the other regions
of the transport channel it is referred to as λ1. Note that this equation does
not directly depend on the orientation of the injected spin, such that it holds
for the spin signal height ∆Vnl,SV , as well as for ∆Vnl,[11̄0]. The decreasing trend
of these two quantities with increasing gate voltage could be related to a gate
dependence of the sheet resistance Rs, the spin diffusion length λ2, and/or the
injection efficiency P . Accordingly, differences between ∆Vnl,SV and ∆Vnl,[11̄0]

could be due to differences in the spin diffusion length, and/or differing injection
efficiencies for spins oriented along [100] compared to [11̄0]. The sheet resistance
Rs, on the other hand, is an electronic property and therefore does not depend
on the spin orientation. Additionally, Rs,1 and Rs,2, as well as λ1 and λ2, are
assumed to exhibit a similar gate dependence, such that the ratio of Rs,2λ2/Rs,1λ1

in Eq. 4.39 is independent of the gate voltage.
In the following, the gate dependent parameters entering Eq. 4.39 are investigated
in detail. First of all, based on the charge transport measurements presented in
Chapter 4.3.2, the sheet resistance Rs ≡ Rs,2 is found to decrease with increasing
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Figure 4.26. (a) Gate dependence of spin diffusion length λ[100], for spins oriented
along [100], or [010] respectively, and λ[11̄0] for spins along [11̄0]. Both values are
determined experimentally from distance resolved SV measurements (Fig. 4.25).
(b) Gate dependence of injection efficiency Pinj ≡ P , for spins oriented along [100]
or [010], and along [11̄0]. Note that the error bars indicate the error of the fit.

gate voltage (Fig. 4.21), which partially contributes to the decreasing trend of
∆Vnl with increasing gate voltage (Fig. 4.25). Moreover, the spin diffusion length
λs ≡ λ2 can be obtained from the exponential decay of the spin signal with
injector-detector distance d. As two different spin signals are investigated, i.e.
∆Vnl,SV and ∆Vnl,[11̄0], the corresponding spin diffusion lengths λSV ≡ λ[100] and
λ[11̄0] are also determined separately. In Fig. 4.26a the gate resolved spin diffusion
lengths are shown, which both exhibit a clear decreasing trend with increasing gate
voltage, with a distinct change of slope at about Vg ≈ 2.7 V, which coincides with
the value at which screening effects reduce the influence of the gate on the channel,
as already discussed in connection with the charge transport measurements in
Chapter 4.3.1. The decrease of λs with increasing gate voltage indicates a gate
dependent change of the DP spin relaxation rates, which could result from a gate
voltage dependence of the SOC strength. In particular, for spins oriented along
[11̄0] the DP related spin diffusion length λ[11̄0] can be linked to the SO related
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parameters by the following expression:

λ2
[11̄0] = ℏ4

2m∗2

[
(α + (β1 − β3))2 + γ−1

3 β2
3

]−1
, (4.40)

as discussed in Chapter 2.4.1. For spins oriented along [100] or [010] the corre-
sponding spin diffusion length λ[100] is given by:

λ2
[100] = ℏ4

4m∗2

[
α2 + (β1 − β3)2 + γ−1

3 β2
3

]−1
. (4.41)

Thus, the difference in spin diffusion length between spins oriented along [11̄0]
and [100], or [010] respectively, can be a result of the anisotropy of the SO-fields
with respect to the crystallographic orientation.
Another quantity which can contribute to the gate dependence of the spin signal
height ∆Vnl, is the spin injection efficiency Pinj. It can be estimated by rearranging
Eq. 4.39:

P 2 = ∆Vnl(d) w2

4IinjRs,2λ2
[1 + Rs,2λ2w1/Rs,1λ1w2]2 exp

(
d

λ2

)
. (4.42)

There, the gate dependence of the spin diffusion length λs ≡ λ2 (Fig. 4.26a), as well
as the experimentally obtained values of the sheet resistance Rs,2 (Chapter 4.3.2),
and the SV signal height ∆Vnl (Fig. 4.25) are implemented. The injection current
is Iinj = 4 µA, the effective width of channel segment between injecting and de-
tecting contact is w2 = (13 · 1 µm), and the width of the channel in the remaining
regions is w1 = 20 µm. The ratio of Rs,2λ2/Rs,1λ1 is regarded to be independent
of the gate voltage, as Rs,1 and Rs,2, as well as λ1 and λ2, are assumed to exhibit
a similar gate dependence. Therefore, the corresponding values of the un-gated
devices (Chapter 4.1) are taken to calculate this ratio (Rs,1 ≈ 100 Ω, Rs,2 ≈ 115 Ω,
λ1 ≈ 4 µm, and λ2 ≈ 7.5 µm). The calculated spin injection efficiencies Pinj for
spins oriented along [11̄0], and along [100], or [010] respectively, are shown in
Fig. 4.26b. For both orientations Pinj shows a clear increasing trend with increas-
ing gate voltage. Also a change of the gate dependence at about Vg ≈ 2.7 V is
observable. This can be related to the changing gate response of the spin diffusion
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length, which directly enters Eq. 4.42, and is itself a result of screening effects
due to the population of deep trap states (Chapter 4.3.1). The difference between
Pinj,[100] and Pinj,[11̄0] could be either related to measurement errors, or indicate
a minor anisotropy of the injection efficiency with respect to the orientation of
the injected spin, which is reported for similar structures [137, 186]. In the inter-
mediate gate voltage region between Vg = 2 V and Vg = 3 V, in which the spin
diffusion length λs, as well as the charge transport properties (ns, Rs, and µe) are
comparable to the un-gated devices presented in Chapter 4.1, the obtained values
of the spin injection efficiency P lie in a range between 35 % and 45 %, similar to
the value of P for the un-gated samples.

Gate induced spin signal oscillations

For narrow channels along [110] and [11̄0] the SO-field is expected to be oriented
perpendicular to the channel direction. Thus, in the standard SV configuration
(0◦) the orientation of the injected spins aligns with the direction of the effective
SO-field, so that no spin precession due to SOC is expected. This measurement
setup therefore allows probing basic spin transport properties of the channel, like
the spin diffusion length. SOC related effects, on the other hand, are expected to
be most pronounced for spins oriented parallel to the channel, i.e. perpendicular
to the SO-field. This configuration is established by setting the magnetization
of the contacts by applying an external magnetic field perpendicular to the long
axis of the contacts (90◦, Fig. 4.27). The gate dependent non-local spin signals
for magnetic field sweeps along the 0◦ and 90◦ direction are shown in Fig. 4.27
for an exemplary injector-detector distance of d = 7 µm and a crystallographic
orientation of the channel along [110]. There, the spin independent background
is removed and the voltage offset is corrected (App. A.1). For the 90◦ signals
shown in Fig. 4.27a, a distinct dip-like feature is observable, which, concluding
from the simulations presented in Chapter 4.2, can be attributed to the presence
of SOC. The orientation of this dip-like signal characteristic changes, depending
on the applied gate voltage. This is indeed a remarkable observation, as it hints
at a gate tunability of the SOC strength, which is discussed in more detail in
the following. The gate resolved 0◦ signal, on the other hand, does not show a
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Figure 4.27. (a) Gate dependent 90◦ non-local spin signal for an injector-
detector distance of d = 7 µm and a channel orientation along [110]. The focus
is on the dip-like/peak-like magnetic field dependence of the signal, especially its
change of orientation, thus the color-coded gate voltage values are not labeled.
(b) Similar measurements as shown in (a) for a magnetic field orientation along
the contact (0◦). There, the signals are independent of the external magnetic field,
apart from the low magnetic field range (SV signal).

dependence on the magnetic field (Fig. 4.27b), as the injected spins are oriented
parallel to the SO-field. For both magnetic field orientations, a spread of the
signal level at high magnetic fields can be observed, which is presumably related
to the gate dependent change of injection efficiency P , sheet resistance Rs, and
spin diffusion length λs, according to Eq. 4.39. But also inaccuracies concerning
the determination of the 0-SG could add an artificial signal offset. Notably, the
features occurring in the low magnetic field range for |B| ≲ 100 mT, which are
observable for both magnetic field orientations, are not considered relevant for the
interpretation of effects associated with spin precession. Instead, for low magnetic
fields the magnetization of the contacts starts to rotate towards a magnetically

117



4 Experimental results

Figure 4.28. (a) Gate dependent non-local spin signal for a magnetic field ori-
entation along the channel (90◦ signal), for selected gate voltage values. (b) Gate
dependent oscillations of the spin signal for a fixed external magnetic field of
Bext = 200 mT, extracted from the cut-line through the magnetic field sweeps
shown in (a). The oscillations can be reproduced for different injector-detector
distances d. The arrows highlight the minimum and maximum of the signal, show-
ing a clear decrease of the oscillation period with increasing distance d.

easy axis ([100] or [010]), such that the relative magnetization of the contacts is
not determinable, which prevents an interpretation of the spin signal.
The gate induced alteration in the shape of the 90◦ signal, which changes from a
dip-like feature to a peak-like signal characteristic, strongly implies a tunability of
SOC. In the following, this signature of spin precession observed in the 90◦ signal
is further analyzed by regarding the spin signal at a fixed external magnetic field
value, which corresponds to a cut-line through the magnetic field sweeps at a fixed
value of Bext, as indicated in Fig. 4.28a. There, for a sufficiently large magnetic
field (|Bext| ≳ 100 mT), the magnetization of injecting and detecting contact, and
hence also the orientation of the injected spin, is parallel to B⃗ext, which, in case
of the 90◦ signal, is parallel to the channel orientation. For an exemplary cut-line
along Bext = 0.2 T, remarkably well-defined gate dependent spin signal oscillations
are observable for all three investigated injector-detector distances (Fig. 4.28b).
This observation agrees well with the expected behavior. There, the SOC strength
is expected to change as a function of the applied gate voltage, which gives rise to
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a gate dependent variation of the SOC induced spin precession frequency. Thus,
the angle at which the injected spins arrive at the detector depends on Vg, such
that the measured spin signal is expected to oscillate between the P and the AP
signal level as a function of Vg. Details can be found in Chapter 2.5.

Figure 4.29. (a) Unprocessed raw data (0◦ and 90◦ signal) for a distance of
d = 7 µm and a gate voltage of Vg = 1.2 V, along with the difference between
these signals (90◦ − 0◦), i.e. using the 0◦ signal as a reference. (b) From the spin
signal difference (a) at a certain magnetic field (Bext = 200 mT), gate dependent
oscillations can be extracted for different distances d, which can be compared to
the oscillatory signal obtained from the background and offset corrected 90◦ signal
shown in Fig. 4.28b.

The gate dependent spin signal oscillations presented in Fig. 4.28b are extracted
from background and offset corrected magnetic field sweeps. In order to confirm
that these oscillations are not artificial, the unprocessed raw data, i.e. the mea-
sured non-local voltage at the detector, can be further analyzed. By regarding the
0◦ spin signal, in which case no spin precession is expected, as a reference, it is
possible to extract similar gate dependent spin signal oscillations from the differ-
ence between the 90◦ and the 0◦ signal (Fig. 4.29). The thus obtained oscillations
exhibit similar characteristics compared to the ones extracted from the magnetic
field sweeps, especially concerning relative phase relation for different distances,
position of extrema, and oscillation period. This strongly indicates that the os-
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cillating spin precession signal is not an artifact. The signal offset, however, is
clearly differing compared to the one extracted from the offset and background
corrected data, especially for the smallest injector-detector distance of d = 7 µm.
This could be a result of the dependence of the background signal on the direction
of the external magnetic field. When the background is different for the 0◦ and the
90◦ signal, signatures of this background remain in the signal difference (90◦−0◦),
which could also give rise to an additional offset contribution in the gate resolved
representation (Fig. 4.29b). Therefore, for the following detailed analysis, the spin
signal oscillations, which are extracted from the background and offset corrected
magnetic field sweeps, are further investigated.

Reproducibility and dependence on crystallographic orientation

In order to additionally confirm the gate dependent spin signal oscillations, an-
other set of samples is investigated. There, the same wafer which is described in
Chapter 3.2, is used. Also the same device geometry with an array of 1 µm wide
channels between injector and detector, as described above (Fig. 4.24), is utilized.
For a channel orientation along [110] similar oscillations are observable, which are
shown in Fig. 4.30a for injector-detector distances of d = 7 µm and d = 11 µm.
This oscillatory gate dependence of the spin signal can be compared to the pre-
viously presented experimental data (Fig. 4.28b), clearly showing similar signal
characteristics, especially with regard to the oscillation period and the decreas-
ing signal amplitude with increasing gate voltage. Compared to the previously
presented measurements, however, the signal oscillations for d = 11 µm are even
more pronounced with a full period being observable. This could be a result of
a difference in the strength of the capacitive coupling between the gate and the
2DEG channel in both sets of devices, but could also be related to a different ab-
solute value of the SOC strength. The latter is, besides other factors, determined
by the shape of the electron wave-function and the asymmetry of the quantum
well (Chapter 2.5), which could vary for different samples due to variations in the
sample processing, for instance.
For this set of devices, additionally a channel along the [11̄0] crystallographic di-
rection is investigated. As already qualitatively concluded in Chapter 4.2, the
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Figure 4.30. (a) Reproduction of the gated spin precession measurements dis-
cussed above. In particular the observed gate dependent oscillations can be com-
pared to Fig. 4.29b. The signals are directly extracted from the difference between
the 0◦ and 90◦ signal for an external magnetic field of Bext = 200 mT. (b) Depen-
dence of the oscillatory spin signal pattern on the crystallographic orientation of
the transport channel for d = 7 µm. For a channel along [110] spin signal oscilla-
tions are observable (red), while for a channel orientation along [11̄0] the extracted
signal hardly changes with Vg (green).

SOC strength for k⃗ along this direction is expected to be significantly smaller
compared to k⃗ ∥ [110]. Similar gate dependent non-local measurements with an
external magnetic field along the channel confirm that no oscillating spin signal
is observable for a channel oriented along [11̄0], as shown in Fig 4.30b. In partic-
ular, this indicates that the SO-field for spin transport along k⃗ ∥ [11̄0] does not
significantly depend on the gate voltage. The SO-field for k⃗ ∥ [11̄0] is given by:

Bk∥[11̄0] ∝ |α − (β1 − β3) + β3|, (4.43)

and can therefore be independent of Vg, if the gate dependence of β3 counteracts
the gate dependence of α. This can be the case, if α and β3 have opposite signs.
As β3 is expected to be positive for all gate voltages, this supports the assumption
that α is negative. An additional contribution for the absence of oscillations for a
channel orientation along [11̄0] could also be that the SO-field for spin transport
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along [11̄0] is significantly weaker compared to [110], such that no measurable
spin precession is induced. It has to be noted that the gate dependent oscillations
shown in Fig. 4.30 are extracted from the difference between the 90◦ and 0◦ spin
signal, as the 0-spin-signal for a channel orientation along [11̄0] cannot be deter-
mined without a substantial margin of error, due to inferior magnetic switching
characteristics of the SV signals in the investigated devices.

Evaluation of spin signal oscillations with ballistic model

In the following, the gate dependent spin signal oscillations are further investi-
gated based on the ballistic model of spin precession introduced by S. Datta and
B. Das [8], which allows a simplified analysis and a rough approximation of the
gate dependent contributions to SOC. It has to be kept in mind, however, that
spin transport in the investigated devices takes place in an intermediate transport
regime, which is dominated by diffusion, yet approaches the 1D limit due to the
spatial confinement perpendicular to channel orientation (Chapter 4.1). Subse-
quently, the spin signal oscillations are investigated in more detail and the purely
diffusive model is compared to the ballistic one.
In the spinFET proposal by S. Datta and B. Das [8], which is described in Chap-
ter 2.5, spins are injected parallel to the channel orientation, traveling ballistically
to the detecting contact. In the presence of SOC the injected spins precess on
their way to the detecting contact with the precession angle Θ:

Θ = 2m∗d

ℏ2 SOC(Vg). (4.44)

Applying a gate voltage allows tuning the SOC strength, in particular the Rashba
and cubic Dresselhaus contributions, which gives rise to a gate dependent spin
precession angle Θ(Vg). Thus, depending on the gate voltage, the angle at which
the spins arrive at the detector oscillates between the parallel and the antiparallel
configuration. In the ballistic, 1-dimensional limit, i.e. without a wave-vector
component perpendicular to the channel, this gate dependent oscillation can be
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described by a cosine function with a gate independent amplitude A [8, 23]:

Vdet = A cos
(

2m∗d

ℏ2 SOC(Vg) + ϕ

)
= A cos (Θ + ϕ) . (4.45)

The amplitude A corresponds to the signal difference between the parallel and the
antiparallel level of the 90° signal, while ϕ is an arbitrary phase shift, which, in the
evaluation of H. Koo et al. [23], is adjusted phenomenologically. This phase shift
can be related to the finite spatial extent of the injecting and detecting contacts,
a variation of the SOC strength underneath the contacts, or by considering an
additional Dresselhaus contribution, for instance [123]. In a very basic approxi-
mation, a gate dependence of the SOC strength can be assumed to be a linear
function of gate voltage, such that

SOC(Vg) = ∂SOC

∂Vg

Vg + SOC0. (4.46)

There, the gate independent contribution SOC0 basically gives rise to an addi-
tional phase shift of the cosine function. Therefore, the gate independent contri-
butions of SOC cannot be distinguished from an arbitrary phase shift ϕ. In this
linear approximation the change of SOC with gate voltage (∂SOC/∂Vg) can be
directly calculated from the period p of the spin signal oscillations:

∂SOC

∂Vg

= ℏ2

2dm∗
2π

p
. (4.47)

In Tab. III the extracted values of the oscillation period and the calculated slopes
of the linear gate dependence of SOC are summarized for all investigated distances.
As only half a period of the oscillations can be resolved in the gate sweep, these
extracted values can be considered only rough estimates, however.
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d p ω = 2π/p ∂SOC/∂Vg

(µm) (V) (1/V) (10−13 eV m/V)

7 4.14 1.52 1.32
11 3.06 2.05 1.14
15 2.42 2.60 1.06

Table III. Period p and frequency ω extraced from the gate dependent spin signal
oscillations shown in Fig. 4.28b, for different injector-detector distances d. Based
on p, or ω respectively, the gate dependent change of SOC (∂SOC/∂Vg) can be
calculated according to Eq. 4.47. Averageing over all regarded distances d yields
a value of ∂SOC/∂Vg = 1.17 × 10−13 eV m/V.

In Fig. 4.31 experimentally obtained spin signal oscillations are fitted with the
basic ballistic model (Eq. 4.45). The SOC strength is assumed to change linearly
as a function of Vg, according to Eq. 4.46. In particular, the gate dependent am-
plitude of the experimental data cannot be reproduced, which leads to deviations
from the expected cosine functionality especially for larger gate voltages. The
fitting parameters are summarized in the appendix (App. A.3).

Figure 4.31. Gate dependent
spin signal oscillations fitted with
the ballistic model, according to
Eq. 4.45. The fitting parameters
are summarized in the appendix
(App. A.3).

As there are no comparable gate induced spin signal oscillations reported in litera-
ture for QW structures with low In-contents of 9 %, the average gate tunability of
SOC (∂SOC/∂Vg = 1.17 × 10−13 eV m/V) can only be compared to the values ob-
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tained for high-In (In0.53Ga0.47As) and InAs quantum wells, in which ∂SOC/∂Vg

is found to be an order of magnitude larger ∼ 10−12 eV m/V [23, 76, 79]. However,
in these structures also the absolute SOC strength is in general larger, lying in the
10−12 eV m range [79–84], which is on a similar order of magnitude as the corre-
sponding gate dependent change ∂SOC/∂Vg. For low In-content heterostructures,
similar to the one under investigation, the total SOC strength is found to be in
the low 10−13 eV m range [77, 78], which is also on a similar order of magnitude
compared to the experimentally determined value of ∂SOC/∂Vg. It is important
to note, however, that the relative change of SOC with gate voltage also depends
on the capacitive coupling, thus in particular on the specific oxide layer thickness
of the gated structure itself, which prevents a direct comparison. Additionally, it
has to be remarked, that from the evaluation of the oscillation period it is only
possible to extract the change of SOC with gate voltage, while there is no direct
access to the absolute value of the SOC strength SOC0. In particular, the addi-
tional phase shift ϕ in the cosine function cannot be distinguished from SOC0.
Moreover, it is not possible to draw conclusions on the sign of ∂SOC/∂Vg at this
point.
Another estimation of ∂SOC/∂Vg in this linear approximation can be obtained
from the slope of the distance dependence of the precession frequency ω according
to Eq. 4.47:

ω = 2π

p
= 2m∗

ℏ2
∂SOC

∂Vg

d. (4.48)

Figure 4.32. Precession fre-
quency ω = 2π/p extracted
from the oscillating spin signal
(Fig. 4.28b) as a function of the
injector-detector distance d for
Bext = 200 mT (blue). The in-
crease of the precession frequency
with distance can be fitted linearly
(red) according to Eq. 4.48.
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Fig. 4.32 shows the precession frequency ω as a function of the injector-detector
distance d for an external magnetic field strength of Bext = 200 mT, which clearly
follows a linear trend. This additionally supports the assumption that the oscilla-
tory spin signal is due to a gate induced change of SOC. From the slope a value of
∂SOC/∂Vg ≈ 0.82 × 10−13 eV m/V can be estimated, which is smaller compared
to the values directly calculated from the oscillation period (Tab. III), yet is on
a similar order of magnitude, such that deviations may be due to an inaccurate
extraction of the oscillation period.
Furthermore, it is important to point out, that the values of ∂SOC/∂Vg contain
all gate dependent SOC contributions. In particular, the Rashba contribution
α is expected to be a function of gate voltage, but also the cubic Dresselhaus
parameter β3 is found to depend on Vg. The linear Dresselhaus parameter β1, on
the other hand, is independent of Vg. It is related to the expectation value of ⟨k2

z⟩,
and the bulk Dresselhaus parameter γ [26, 70, 71]:

β1 = −γ⟨k2
z⟩ ≈ 1.37 × 10−13 eV m. (4.49)

As discussed above, for γ a value of γ ≈ −7.5 eVÅ3 is implemented [77], while
⟨k2

z⟩ ≈ 1.83 × 1016 m−2, which can be calculated from self-consistently solving the
Schrödinger-Poisson equation. The cubic Dresselhaus parameter β3, on the other
hand, is determined by the charge carrier density ns [26, 100, 158]:

β3 = −γ
k2

4 = −γπns

2 . (4.50)

As ns is found to change with the applied gate voltage Vg in experiment (Chap-
ter. 4.3.2), β3 is therefore gate dependent. In Fig. 4.33 the calculated dependence
of β3 on the gate voltage Vg is shown. As β3 is proportional to ns according
to Eq. 4.50, its gate voltage dependence directly follows the gate dependence of
ns. In particular, β3 changes almost linearly with Vg up to about Vg ≈ 2.7 V,
while for larger gate voltages β3 shows hardly any gate dependence. This is as-
sumed to be due to the population of deep trap states at the interface between
the oxide and the SC, or within the oxide layer itself, which leads to a capacitive
screening of the gate. In the low gate voltage region below about Vg ≲ 2.7 V the
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Figure 4.33. Calculated gate de-
pendence of the linear and cubic
Dresselhaus parameters, β1 and
β3, for γ = −7.5 eVÅ3.

slope of the nearly linearly changing cubic Dresselhaus SOC contribution is about
∂β3/∂Vg ≈ 2.7 × 10−14 eV m/V. For larger gate voltages Vg ≳ 2.7 V, β3 is roughly
constant at a value of about β3 ≈ 1.15 × 10−13 eV m. The linear Dresselhaus
parameter β1 ≈ 1.37 ×10−13 eV m, on the other hand, is independent of Vg.
The total SOC strength for k⃗ ∥ [110], which is along the channel is this case, is
given by:

SOCk∥[110] = −α − β1 + 2β3, (4.51)

for x ∥ [11̄0], and y ∥ [110]. In the linear approximation, the gate dependent
change of the total SOC is then given by:

±∂SOC

∂Vg

= − ∂α

∂Vg

+ 2∂β3

∂Vg

. (4.52)

Rearranging allows estimating the gate tunability of the Rashba contribution:

∂α

∂Vg

= ∓∂SOC

∂Vg

+ 2 ∂β3

∂Vg

. (4.53)

However, as the sign of ∂SOC/∂Vg cannot be determined based on the analysis of
the oscillation period, it is also not possible to determine a unique value of ∂α/∂Vg.
Instead, both signs of ∂α/∂Vg are physically valid. Additionally, according to the
gate dependence of β3, two gate voltage regions have to be distinguished. For small
gate voltages below Vg ≤ 2.7 V, β3 changes approximately linearly with Vg with
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∂β3/∂Vg ≈ 2.7 × 10−14 eV m/V. In this region, ∂SOC/∂Vg contains contributions
of α and β3, such that ∂α/∂Vg differs from ∓∂SOC/∂Vg. The value for ∂α/∂Vg

in this low gate voltage can be determined from Eq. 4.53:

∂α

∂Vg

= ∓∂SOC

∂Vg

+ 2 ∂β3

∂Vg

=
 +1.71 × 10−13 eV m/V

−0.63 × 10−13 eV m/V,
(4.54)

where ∂SOC/∂Vg = ±1.17×10−13 eV m/V, which is calculated from the oscillation
period. For the value of ∂SOC/∂Vg = 0.82×10−13 eV m/V, which is obtained from
linearly fitting the distance dependence of the oscillation frequency (Fig. 4.32), the
obtained values of ∂α/∂Vg are slightly smaller:

∂α

∂Vg

= ∓∂SOC

∂Vg

+ 2 ∂β3

∂Vg

=
 +1.36 × 10−13 eV m/V

−0.28 × 10−13 eV m/V.
(4.55)

For Vg ≥ 2.7 V, on the other hand, ∂β3/∂Vg = 0, so that

∂α

∂Vg

= ∓∂SOC

∂Vg

. (4.56)

It has to be kept in mind that the derived values of ∂α/∂Vg have to be considered
as estimates, which only allow approximating the rough order of magnitude.

Gate dependence of spin signal in diffusive model

So far, the gate dependent spin signal oscillations were analyzed based on Eq. 4.45,
which is valid in the ballistic, 1-dimensional limit. As spin transport in the sam-
ples under investigation takes place in an intermediate regime (Chapter 4.1), the
gate dependence of the spin signal is now investigated based on the diffusive
spin transport model introduced in Chapter 2.6. As a numerical solving software
COMSOL is implemented. Setting up this model requires making assumptions
on the gate dependence of various input parameters, however. There, first of all,
charge carrier density ns and electron mobility µe are functions of Vg (Fig. 4.34),
which can both be determined experimentally from charge transport measure-
ments (Chapter 4.3.2). The gate dependence of ns and µe gives rise to a gate
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dependent diffusion constant D. Another contribution that changes with Vg is
the spin diffusion length λx = λ[11̄0] for injected spins oriented along the contact,
which can also be extracted experimentally from spin transport measurements
(Fig. 4.25). Further gate dependent contributions are spin injection efficiency
Pinj, and sheet resistance Rs, which additionally affect the gate dependence of the
SV signal height (Chapter 2.6). The gate dependence of these quantities is taken
into account in the model via a gate dependent flux f through the injecting con-
tact. This factor f can be determined from fitting the 0◦ signal, in which case the
magnetic field is directed along the contact. There, for given values of ns, µe, and
λx ≡ λ[11̄0], this signal level is independent of SOC strength, external magnetic
field, and spin relaxation anisotropy k, such that f can be uniquely determined
from the 0◦ signal. In Fig. 4.35 an exemplary fit of the 0◦ signal is shown, along
with the thus extracted gate dependent values of the resulting factor f for all in-
vestigated injector-detector distances. The actual simplified parametrization of all
these gate dependent input parameters is summarized in the appendix (App. A.2).
For the gate dependence of the total SOC strength, on the other hand, an assumed
gate voltage dependence is implemented, which is shown in Fig. 4.36a. There, the
total SOC is assumed to change linearly in the low gate voltage range (Vg < 3 V),
while for Vg > 4 V the SOC strength is expected to be independent of Vg, due to

Figure 4.34. Gate dependencies of the input parameters for the purely diffusive
model: charge carrier density ns (a), electron mobility µe (b), and spin diffusion
length λ[11̄0] for spins oriented along [11̄0] (c). The red lines indicate the approx-
imate parameterization, which is implemented in the model. Further details on
this parametrization can be found in the appendix (App. A.2).
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Figure 4.35. (a) 0◦ and 90◦ signal for an exemplary gate voltage of Vg = 3 V.
The 0◦ signal is fitted for fixed values of ns, µe, and λx ≡ λ[11̄0], according to
Fig. 4.34. As an only fitting parameter the scaling/flux factor f is used, which is
introduced in Chapter 2.6. (b) Gate dependence of the scaling/flux factor f , as
exemplarily determined in (a).

screening effects, which can be assigned to the population of deep trap states. In
between these two gate voltage regions, the slope of the SOC strength is assumed
to transition smoothly. The slope of the linear region is assumed to be similar to
the one derived from the ballistic spin precession model, in which case a value of
∂SOC/∂Vg ≈ 1 × 10−13 eV m/V could be estimated from the period of the gate
dependent spin signal oscillations. The intercept of the linearly approximated gate
functionality of the SOC strength is set arbitrarily (SOC0 = 1.5 × 10−13 eV m/V).
Note that, assuming the same gate dependence of the absolute value of SOC, the
simulation yields identical results for a positive and a negative sign of SOC.
Fig. 4.36b shows the gate resolved spin signal for similar injector-detector distances
d as investigated in experiment. The experimental counterpart is presented above
(Fig. 4.28b). For the chosen set of parameters and their assumed gate depen-
dencies, the simulated spin signals show gate dependent oscillations for all three
distances, which are similar to experiment, yet less pronounced. Additionally, the
oscillation pattern changes sign, indicating an antiparallel spin component at the
detector, which can only be due to SOC induced spin precession in the model.
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Figure 4.36. (a) Assumed gate voltage dependence of the total SOC strength.
For small gate voltages, the total SOC is assumed to change linearly with Vg with
a slope of ∂SOC/∂Vg ≈ 1 × 10−13 eV m/V, which is similar to the values previ-
ously extracted from the spin signal oscillation period. (b) Simulated gate sweeps
for a fixed external magnetic field (Bext = 0.2 T) and different injector-detector
distances d, similar to experiment (Fig. 4.28b). The spin signal oscillations can
only be conceptually reproduced with the purely diffusive model.

Figure 4.37. (a) Simulated gate dependent magnetic field sweeps (90◦ signal) for
an injector-detector distance of d = 7 µm (a), and d = 15 µm (b). Only for larger
distances d, the dip-like signal characteristic changes into a peak-like feature (b).
However, the experimental data (Fig. 4.28) cannot be properly reproduced with
the diffusive model.
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Also, the period of these oscillations decreases with increasing injector-detector
distance, which also agrees with the experimental findings and the expected behav-
ior for SOC related spin precession. Qualitatively, these oscillations conceptually
agree with the experimental findings. Regarding the magnetic field sweep, how-
ever, clearly shows the limitations of the diffusive model (Fig. 4.37). Especially for
small injector-detector distances (Fig. 4.37a), the reversal of the dip-feature with
gate voltage, which is observed in experiment (Fig. 4.28a), cannot be resolved.
Only for larger distances d a peak-like feature emerges, which is highlighted in
Fig. 4.37b. In summary, the qualitative validity of the diffusive model can be
substantiated on a rudimentary level, yet it is not possible to gain quantitative
insights, in particular due to the numerous assumptions, which have to be made
for the values and gate dependencies of the input parameters.

Gate dependence of spin signal in expanded ballistic model

Compared to the purely diffusive model, the gate induced spin signal oscillations
can be modeled more adequately with an extended ballistic model, which is con-
sidered by A. Zainuddin et al. [123]. There, the 1-dimensional spin precession
equation (Eq. 4.45) is generalized to the 2-dimensional case, whereby spin trans-
port is still assumed to be ballistic. In this model the SV signal height ∆Vx, i.e.
the difference between the parallel and the antiparallel signal level (VP −VAP ), for
spins oriented along the channel (90◦ signal) can be approximated by [123]:

∆Vx ≃ ∆Vy

2 + 3π∆Vy

2
1√
2πΘ

cos
(

Θ + π

4

)
, (4.57)

for the simplified case of point contacts. There, ∆Vy is the signal height of the
standard SV signal, in which case the spins are oriented along the contact (0◦

signal). The spin precession angle Θ for k ∥ [110] is given by:

Θ(Vg) = 2m∗d

ℏ2 (−α + 2β3 − β1) . (4.58)

One of the major differences of Eq. 4.57 compared to the 1-dimensional limit
(Eq. 4.45) is that the amplitude of the oscillation depends on the gate dependent
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precession angle Θ. The spin signal amplitude ∆Vy ≡ ∆Vnl,[11̄0] for spins oriented
perpendicular to the channel, i.e. along [11̄0], can be obtained experimentally
(Fig. 4.25c), which exhibits a clearly decreasing trend with increasing Vg. The
decreasing oscillation amplitude with increasing gate voltage, which is observed
in experiment, can therefore be related to the decreasing spin signal amplitude
and a gate dependent change of Θ. Note that an additional offset is added to
the oscillatory signal (Eq. 4.57), which is a function of ∆Vy and is therefore also
gate dependent. In order to replicate the experimentally observed oscillations,
the gate dependent values of ∆Vnl,[11̄0] are substituted to the expression for ∆Vx

(Eq. 4.57) and the Rashba contribution α is varied as a function of Vg. For the
linear Dresselhaus SOC term a value of β1 = 1.37 × 10−13 eV m/V is assumed, as
discussed above, while the cubic contribution β3 is derived from the gate depen-
dent charge carrier density (Fig. 4.33). Fitting additionally requires introducing a
scaling factor SC, and a signal offset OFF , in order to match the experimentally
obtained oscillations, such that the fitting function is given by:

∆V[11̄0] = ∆Vx · SC + OFF. (4.59)

The precession angle Θ is given by Eq. 4.58, and contains the SOC contributions
α(Vg), β1, and β3(Vg). In the simplest case, the Rashba contribution to SOC is
assumed to change linearly with Vg:

α = α0 + ∂α

∂Vg

Vg, (4.60)

where α is expected to be negative, based on the considerations presented above.
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Figure 4.38. (a) Gate dependent spin signal oscillations fitted with the expanded
ballistic model provided by A. Zainuddin et al. [123]. In particular, the decreasing
signal amplitude with increasing gate voltage is reproduced well, only for larger
gate voltages the model deviates from the experimental data. (b) Individual con-
tributions of the total SOC. The linear Dresselhaus parameter can be determined
from self-consistent Schrödinger-Poisson simulations (β1 = 1.37 × 10−13 eV m),
while the cubic Dresselhaus contribution is related to the gate dependent charge
carrier density ns (Fig. 4.33). The gate dependence of the Rashba parameter α
is assumed to change linearly with Vg (Eq. 4.60) and is obtained from fitting the
spin signal oscillations (a). There, the average over all three regarded distances is
shown. The individual values of α0 and ∂α/∂Vg are summarized in Tab. IV.

d α0 ∂α/∂Vg

(µm) (10−13 eV m) (10−13 eV m/V)

7 -3.78 -0.90
11 -5.34 -0.72
15 -6.01 -0.68

average -5.07 -0.77

Table IV. Values of α0 and ∂α/∂Vg (Eq. 4.60) obtained from fitting the
gate dependent spin signal oscilaltions for differnt injector-detector distances d
(Fig. 4.38a).
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4.3 Gate control of spin precession

In Fig. 4.38 the fitted signals for all investigated injector-detector distances are
shown, along with the gate dependencies of the individual SOC contributions.
The values of α0 and ∂α/∂Vg, which are obtained from the fit, are summarized in
Tab. IV, while the other fitting parameters, like scaling factor and signal offset,
can be found in the appendix (App. A.4). As the cosine function, which gives rise
to the oscillatory behavior, is identical to the 1-dimensional case (Eq. 4.45), a sim-
ilar value of ∂α/∂Vg = −0.77 × 10−13 eV m/V (averaged) is obtained from this fit.
However, the values of the gate independent contribution α0 significantly spread,
yet no clear functional connection is identifiable. As for each distance a sepa-
rate device is investigated, it could be possible that fabricational inhomogeneities
result in slightly varying gate independent SOC contributions, thus yielding an
additional phase shift. Additional contributions resulting in a phase shift could be
due to a finite spatial extent of the contacts, a variation of the SOC strength un-
derneath the contacts, or a varying strength of the Dresselhaus SOC [123], which
could also be slightly different for separate devices. Due to this spread of the
gate independent SOC contributions and the lacking possibility of distinguishing
these contributions from an additional phase shift, it is therefore not meaningful
to determine α0 from the fit. However, despite the rather simplified assumption
on the gate dependence of α, the experimental data can be described well with the
extended ballistic spin precession equation, as shown in Fig. 4.38a. In particular,
the decreasing oscillation amplitude with increasing gate voltage is reproduced
well. Only for larger gate voltages the fit deviates from the experimental values,
which could be due to a change of capacitive coupling (deep trap states). This
can either affect the gate response of α (∂α/∂Vg), or completely screen the gate
electrode, such that α becomes independent of Vg.

A significantly better fitting result can be achieved by dividing the gate voltage
range into three separate sections: A, B, and C (Fig. 4.39b). In each region, α

is assumed to change linearly with Vg, yet the slopes ∂α/∂Vg may differ in each
section. This allows a considerably improved replication of the experimental data,
as shown in Fig. 4.39a.
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Figure 4.39. (a) Fitted spin signal oscillations based on the expanded ballistic
model, showing an excellent agreement with the experimental data. (b) The gate
voltage region is divided into three regions (A, B, and C). In each range, the gate
dependence of the Rashba SOC can differ. There, the gate dependence of α is
obtained from the fit, and averaged over all injector-detector distances. The slopes
∂α/∂Vg in each region are summarized in Tab. V.

A B C

∂α/∂Vg -0.73 -1.16 -0.07
∂β3/∂Vg 0.27 0 0

∂SOC/∂Vg 1.27 1.16 0.07

Table V. Averaged values of the gate depedence of the SOC parameters for
each gate voltage region, in units of 10−13 eV m/V. There, the slopes of α are
obtained from the fit (averaged over all distances d), ∂β3/∂Vg is obtained from
the gate depdence of the charge carrier density (Fig. 4.33), and ∂SOC/∂Vg can
be determined based on Eq. 4.61.

The average slopes for each gate voltage region are summarized in Tab. V. All
fitting parameters can be found in the appendix (App. A.4). Note that the gate
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dependent change of the total SOC strength for a channel along [110] is given by:

∂SOC

∂Vg

= − ∂α

∂Vg

+ 2∂β3

∂Vg

, (4.61)

in the linear approximation. In the gate voltage region A the values of ∂α/∂Vg

are similar compared to the ones, which are extracted from the oscillation period
based on the 1-dimensional model (Eq. 4.45), while in region B, ∂α/∂Vg is larger.
For gate voltages larger than Vg ≳ 4 V (region C), the effect of the gate electrode
is completely screened, presumably due to trapped charges. Thus, neither the
total SOC, nor α changes as a function of Vg.
In order to justify the subdivision of the gate voltage range into three separate
regions, the total Rashba SOC contribution αtotal is assumed to contain two con-
tributions. One of which scales linearly with the charge carrier density ns (αns),
or with the ns related electric field respectively (E ∝ ns [75, 114]). The other
contribution is assumed to be due to the electric field of the gate electrode itself
(αel), and does neither have an influence on ns, nor is affected by a change of ns.
The total Rashba SOC contribution is then given by:

αtotal = αns + αel. (4.62)

The linear relation between αns and ns is supported by experimental works [71,
111–113, 115, 116]. The electric field contribution of αel, on the other hand, is
expected to depend linearly on the gate electric field. The presence of this ns in-
dependent contribution can be indirectly supported by reports, which show a gate
tunability of α for a constant charge carrier density [20, 23, 75]. However, it has to
be kept in mind that the differentiation between two Rashba SOC contributions
is purely phenomenological at this point, and requires further investigation. The
separation of the three gate voltage regions can be discussed by regarding the gate
dependence of αtotal in each gate voltage range. For low gate voltages up to about
Vg = 2.7 V, gate dependent charge transport measurements show that the charge
carrier density ns increases linearly with Vg. Thus, αns and αel are both expected
to change with the applied gate voltage. In the intermediate gate voltage range
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(2.7 V − 4 V) the electric field of the gate electrode is not completely screened,
yet ns does not change with Vg, as additional charge carriers populate deep trap
states at the interface between the oxide and the semiconductor, instead of the
2DEG channel. Thus, the charge carrier density related contributions αns does
not change with Vg. Despite ns being independent of Vg in this range, the gate is
still assumed to be capacitively coupled to the 2DEG, such that the contribution
αel of the Rashba SOC, which directly depends on the gate electric field, is ex-
pected to be the only gate dependent contribution of SOC in the intermediate gate
voltage region. For Vg ≳ 4 V, on the other hand, αtotal is nearly gate independent,
which can be presumed to be due to a complete capacitive screening of the gate
as a result of the population of deep trap states. Thus, the gate has an influence
neither on the charge carrier density, nor on SOC. In summary, in region A, the
gate dependent contributions of the Rahba SOC consist of αns and αel, while in
region B only αel is gate dependent. In region C, on the other hand, the SOC
does not depend on Vg. The total Rasbha SOC contribution is thus given by:

region A αA
total = αns(Vg) + αel(Vg)

region B αB
total = αns + αel(Vg)

region C αC
total = αns + αel ≈ constant.

(4.63)

There, αtotal is equal to the Rashba SOC αfit, which is obtained from fitting
the gate dependent spin signal oscillations (Fig. 4.39a). Additionally, αel(Vg) is
assumed to be equal in region A and region B.
This 3-slope approximation can be further analyzed by conducting self-consistent
Schrödinger-Poisson simulations, which allow calculating the ns dependent con-
tribution of the Rashba SOC αns. Further technical details can be found in the
appendix (App. A.5). From these simulations αns can be calculated as a function
of the charge carrier density ns. A gate dependent representation can be obtained
by matching ns to Vg, based on the experimentally determined gate dependence of
ns (Chapter 4.3.2). In Fig. 4.40a the calculated values of αns are shown as a func-
tion of Vg. The obtained values are negative, yet the absolute value is decreasing,
contrary to the total Rashba SOC αfit, which is obtained from fitting the gate
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Figure 4.40. (a) Charge carrier density dependent contribution of Rashba SOC
(αns), resulting from self-consistent Schrödinger-Poisson simulations. (b) From
fitting the spin signal oscillations (Fig. 4.39a), the total Rashba SOC strength
αtotal ≡ αfit is obtained (green), which can be phenomenologically divided into an
ns dependent contribution αns (blue) and an electric field related one αel (gray).
The charge carrier density only changes with Vg in region A, such that only in this
range both contributions of α have to be taken into account: αtotal = αel + αns.
There, αns is obtained from simulation (a), while αel is linearly extrapolated from
region B.

dependent oscillations (Fig. 4.39). Notably, αns only changes with Vg in region A,
due to the gate dependence of ns in this range. In gate voltage region B, αns is
gate independent and the only contribution to the gate dependence of the Rashba
SOC is αel. As this electric field contribution αel is independent of the charge car-
rier density ns, the value of αel in region A is assumed to be equal to that in region
B (Fig. 4.40). The total Rashba SOC in region A is thus given by the sum of αns,
which is obtained from the simulation, and αel, which is assumed to be equal to
the value of region B. In Fig. 4.40 the values of αtotal obtained for region A are
shown as red dots. There, the calculated value αtotal perfectly matches the total
Rashba SOC αfit, which is obtained from fitting the gate dependent spin signal
oscillations. This strongly suggests that the total Rashba SOC indeed contains
two contributions αns and αel.
Finally, the total SOC strength can be calculated, with particular focus on its

139



4 Experimental results

dependence on the crystallographic orientation. According to Eq. 2.39 in Chap-
ter 2.3, the total SOC strengths for channels along k⃗ ∥ [110] and k⃗ ∥ [11̄0] are
given by (x ∥ [11̄0], y ∥ [110]):

SOCk∥[110] = | − α + 2 β3 − β1|

SOCk∥[11̄0] = |α + 2 β3 − β1|.
(4.64)

The value of α is obtained from fitting the spin signal oscillations (Fig. 4.39),
while β1 = 1.37 × 10−13 eV m, and β3 ∝ ns follows the gate dependence of ns

(Chapter 4.3.2). The thus calculated total SOC strength for both channel orien-
tations is plotted in Fig. 4.41. Note that α < 0, and β1, β3 > 0. In the greater
part of the gate voltage range, i.e. for Vg ≳ 0.9 V, the SOC for spins traveling
along [110] is larger compared to the [11̄0] direction. In this gate voltage range
β1 < 2 β3, while α < 0 for all investigated Vg. Thus, according to Eq. 4.64,
SOCk∥[110] > SOCk∥[11̄0]. Generally, the relation between the SOC strengths does
not explain that no spin signal oscillations are observable for a channel orientation
along [11̄0], however. Explaining this requires taking a closer look at the change
of the SOC strengths with gate voltage, which, for the linearly approximated SOC
parameters, are given by:

∂SOCk∥[110]

∂Vg

= − ∂α

∂Vg

+ 2∂β3

∂Vg

∂SOCk∥[11̄0]

∂Vg

= ∂α

∂Vg

+ 2∂β3

∂Vg

.

(4.65)

As, according to the evaluation of the spin signal oscillations, ∂α/∂Vg < 0, and
∂β3/∂Vg ≥ 0 it can be concluded, that

∂SOCk∥[110]

∂Vg

≥
∂SOCk∥[11̄0]

∂Vg

. (4.66)

Thus, the change of SOC with gate voltage is larger for a channel orientation along
[110] compared to [11̄0]. Therefore, the change of the spin precession angle with
gate voltage for k⃗ ∥ [110] is more pronounced, which gives rise to the observed
gate dependent spin signal oscillations. For k⃗ ∥ [11̄0], on the other hand, the
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Figure 4.41. (a) Calculated total SOC strength for a channel orientation along
k⃗ ∥ [110] (red) and k⃗ ∥ [11̄0] (blue). (b) Experimentally obtained gate sweeps for
Bext = 0.2 T for two the different channel orientations shown in (a) (Fig. 4.30b).

change of SOC with Vg is significantly smaller, resulting in a smaller change of
the spin precession frequency. Hence, no spin signal oscillations are observable in
experiment (Fig. 4.41b). Especially in the low gate voltage range Vg ≲ 2.7 V, in
which the charge carrier density ns changes with Vg, SOCk∥[11̄0] is nearly gate in-
dependent. In this range, the gate dependence of β3, which is increasing for larger
Vg, counteracts the gate dependent change of α, which is decreasing with Vg, while
additionally α < 0. In the intermediate gate voltage range (2.7 V ≲ Vg ≲ 3.7 V),
ns, and hence also β3, are gate independent. Therefore, the only gate dependent
contribution of the total SOC is α, so that the change of SOC with Vg does not
depend on the crystallographic orientation (∂SOCk∥[110]/∂Vg = ∂SOCk∥[11̄0]/∂Vg).
In the experimental spin signal, the intermediate gate voltage range is not clearly
distinguishable, however, which might be due to fabricational variations between
the different devices. There, the crystallographic orientation dependence is inves-
tigated on a separate set of samples, such that minor fabricational variations could
result in different gate characteristics. In particular, the gate dependence of ns,
which defines the gate voltage regions considered above, may vary, so that the in-
termediate gate voltage range could possibly extend towards higher gate voltages.
Finally, it has to be emphasized that the gate dependent spin signal oscillations
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do not depend on the crystallographic orientation, if β3 is neglected. The observed
anisotropy of the spin signal oscillations is therefore due to the gate dependent
cubic Dresselhaus contribution. For the presented case, in which ∂α/∂Vg < 0 and
∂β3/∂Vg > 0, the gate dependence of SOC is enhanced for a channel orientation
along k⃗ ∥ [110], while for k⃗ ∥ [11̄0] the increase of β3 counteracts the decrease of
α, thus decreasing the gate dependence of the total SOC.

spinFET-like functionality

The oscillations of the previously presented gate dependent measurements are ex-
tracted from magnetic fields sweeps for different gate voltages. This approach
yields a detailed understanding of spin precession related phenomena in these
devices. For establishing a spinFET-like functionality, however, it is more advan-
tageous to apply a fixed external magnetic field, which aligns the magnetization of
the injecting and detecting contact along the channel orientation, and perform gate
sweeps. Such gate sweeps with the external magnetic field along the channel (90◦),
and parallel to the long axis of the injecting/detecting contact (0◦) are shown in
Fig. 4.42a. From the difference between the 90◦ and 0◦ signal gate dependent spin
signal oscillations can be extracted (Fig. 4.42b), which shows identical character-
istics as the one extracted from the magnetic field sweeps (Fig. 4.30). A possible
operation mode of a spinFET-like device can then be established by switching be-
tween the gate voltage at which the oscillation pattern shows a minimum, which
corresponds to an antiparallel configuration regarding detector magnetization and
orientation of the detected spin, and the gate voltage at which a maximum is
observable, i.e. the parallel configuration. In case of the measurement shown in
Fig. 4.42b, the device can switch between P and AP by changing the gate voltage
roughly between 0.9 V and 1.9 V. It is important to point out that the gate opera-
tion is possible without hysteretic effects in a small voltage range of roughly 2.5 V.
Larger changes of Vg lead to an alteration of the population of deep trap states,
which results in a shift of the threshold voltage, as discussed above (Chapter 4.3.2,
Fig. 4.23). Thus, for measurements in a larger gate voltage range, as shown in
Fig. 4.42, it is necessary to reset the population of these trap states by external
illumination after each gate sweep. As the degree of occupation of these states
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cannot be directly determined, different measurements can be slightly shifted as
to the absolute value of the gate voltage. Matching of the curves is possible by
aligning separate measurements with respect to the minimum of the signal trace
(Fig. 4.42a).

Figure 4.42. (a) Gate sweep for a fixed external magnetic field Bext = 0.15 T,
which sets the orientation of the spin contacts either parallel to the channel direc-
tion (90◦) or perpendicular thereto (0◦). As the threshold gate voltage is consider-
ably shifted after sweeping the gate in a large voltage range, both measurements
(0◦ and 90◦) are matched by aligning the minima of the curves. (b) Signal dif-
ference between 90◦ and 0◦ curves shown in (a), showing a gate dependent spin
precession pattern. At the minimum of the oscillation (Vg ≈ 0.9 V) the spins ar-
rive antiparallel at the position of the detector with respect to its magnetization,
while for the gate voltage at which the maximum of the oscillation is observable,
the spins are parallel with respect to the detector magnetization (Vg ≈ 1.9 V).

4.3.4 Conclusion

In this chapter the effect of a gate electric field on spin transport properties and
SOC related quantities was investigated in detail. The charge transport properties
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in dependence of the gate voltage Vg were discussed first, which in particular
yielded information on the gate dependence of the electron mobility µe, and the
charge carrier density ns. Both quantities are a function of Vg only up to a
certain gate voltage, which is attributed to the population of deep trap states at
the interface between the oxide and the SC structure, or within the oxide layer
itself. In the main part of this chapter the dependence of a gate electric field
on the spin transport properties was investigated. First, magnetic field sweeps
with Bext oriented perpendicular to the channel (0◦ signal) were regarded for a
channel orientation along [110]. Thus, the gate dependence of the spin diffusion
lengths λ[100] and λ[11̄0] for spins oriented along [100] and [11̄0] could be extracted.
The gate dependent change of the spin diffusion length, the injection efficiency
Pinj, and the channel resistance Rs gives rise to a gate dependence of the spin
signal height. If the external magnetic field is oriented parallel to the channel (90◦

signal), on the other hand, the injected spins are oriented perpendicular to the
SO-field, which gives rise to SOC induced spin precession. For a channel along
[110] a distinct dip-like feature in these magnetic field sweeps could be identified as
a signature of SOC, which was already discussed in Chapter 4.2. Gate dependent
measurements showed a change of the dip-like signal characteristic to a peak-
like feature, which implies a tunability of the SOC strength. From these gate
resolved 90◦ signals at a fixed magnetic field gate dependent spin signal oscillations
were extracted, which is one of the major results of this thesis. With the purely
diffusive model presented in Chapter 2.6, these signal oscillations could not be
described adequately, however. Instead, an extended ballistic model introduced
by A. Zainuddin et al. [123] allowed fitting the oscillations remarkably well, in
particular with regard to the decreasing oscillation amplitude with increasing Vg.
There, the Rashba SOC parameter α, which is the main fitting parameter, was
divided into a contribution which depends on the charge carrier density ns, and one
that is directly due to the gate electric field. This separation could be confirmed
phenomenologically, and was additionally supported by simulations, which allowed
deriving the ns dependent contribution of α. For a channel orientation along [11̄0],
on the other hand, no gate dependent spin signal oscillations could be observed,
which implied that the change of SOC with Vg is much smaller for k⃗ ∥ [11̄0]
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compared to a channel along [110]. In particular, it could be assumed that the
gate dependent change of the cubic Dresselhaus parameter β3, which follows from
the gate dependence of ns, counteracts the gate voltage dependence of the Rashba
contribution α for k⃗ ∥ [11̄0]. Thus, the gate induced change of the spin precession
frequency is smaller compared to the [110] channel orientation, which prevents the
observation of gate dependent spin signal oscillations.
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One of the major goals of spintronics remains the realization of semiconductor
devices, which allow the manipulation of the spin signal. In this context, the most
prominent, but as yet unrealized, device proposal is the spinFET, conceptually in-
troduced by S. Datta and B. Das [8]. Besides efficient electrical spin injection and
detection, it requires the SOC strength to be tunable by an external electric field,
which gives rise to a modulation of the SOC induced spin precession frequency.
Demonstrating the gate control of spin precession in electrical spin injection de-
vices, thus paving the way for the realization of a spinFET device, was one of the
main objectives of this thesis.

In the heterostructure system under investigation, efficient electrical spin injection
could be achieved through an Esaki-diode structure into an (In,Ga)As QW chan-
nel. In order to probe SOC related phenomena, it is advantageous to investigate
spin injection devices with a narrow transport channel, such that spin transport
is restricted mainly to one principle axis. In this case, the SO-field for k⃗ along the
direction of the channel can be considered to be the main source of spin precession,
which significantly facilitates its subsequent control. This required developing a
novel device geometry, which allowed realizing narrow transport channels with a
width down to wc = 400 nm, approaching the 1-dimensional spin transport regime.
For narrower transport channels, the Dyakonov-Perel spin relaxation mechanism
is expected to be strongly suppressed by introducing a lateral confinement. This
could be confirmed by non-local spin injection measurements for various channel
widths, which showed a significant increase of the spin diffusion length λs for nar-
rower transport channels. There, in the 2-dimensional limit λ2D ≈ 4 µm, while for
the narrowest channel (wc = 400 nm) the spin diffusion length was found to be
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considerably larger with λ400 nm ≈ 9.2 µm.
With this new device geometry, it was possible to identify SOC related character-
istics in non-local spin injection measurements. There, the focus was on transport
channels along the [110] and [11̄0] crystallographic orientation, as along these di-
rections the SO-field is perpendicular to the channel orientation. If the injected
spin has a component which is perpendicular to this SO-field, spin precession is
expected, whereby the orientation of the injected spin can be set by an external
magnetic field. For spins injected parallel to the channel orientation, a character-
istic signal feature was observable in non-local spin transport measurements for a
channel along [110], which could be related to SOC induced spin precession. This
was qualitatively confirmed by finite element simulations, based on an extended
spin diffusion model. The total SOC strength could be estimated to lie in the
low 10−13 eV m range. For a channel orientation along [11̄0], on the other hand,
no distinct SOC related features were observable, which suggested that the SOC
strength along this direction is significantly weaker compared to the [110] direc-
tion. This crystallographic orientation dependence of the SO-fields could also be
confirmed qualitatively based on the extended spin diffusion model.
Subsequently, the effect of an external electric field on the spin transport proper-
ties was investigated. From standard non-local spin valve (SV) measurements, in
which case the external magnetic field is perpendicular to the channel orientation,
the gate dependence of the spin diffusion length λs could be extracted. In the
DP spin relaxation regime, the spin diffusion length can be related to the SOC
parameters, such that the gate dependence of λs already implied a gate tunabil-
ity of the SOC strength. Non-local measurements for an external magnetic field
orientation parallel to the channel, on the other hand, allowed investigating spin
precession related phenomena. There, the SOC related feature in the non-local
spin transport measurements was observed to change by applying a gate volt-
age, consistent with the expected tunability of the SOC strength. From these
measurements it was possible to extract gate dependent spin signal oscillations,
which are characteristic for the expected spin signal modulation in a spinFET
device. Similar spin precession signatures could only be observed before in InAs
QW structures with a high SOC strength, in the limit of ballistic spin transport,
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i.e. for small injector-detector distances [20–25]. In the presented devices, on the
other hand, an In0.09Ga0.91As QW structure provided the conducting channel, in
which a relatively low SOC strength on the order of 10−13 eV m is expected. Ad-
ditionally, in these devices spin transport is not ballistic, instead it takes place in
an intermediate regime, which is still diffusive, yet approaches the quasi-1D limit.
Despite of the low SOC strength and the partially diffusive spin transport, gate
induced spin precession oscillations could be observed, which is indeed a remark-
able finding and has to be considered as one of the central results of this thesis.
Although spin transport takes place in an intermediate regime, it was not possible
to adequately model the presented gate induced spin signal oscillations with the
purely diffusive model, which is based on the extended spin diffusion equation.
Instead, the oscillations could be fitted remarkably well by an extended ballistic
model, which is provided by A. Zainuddin et al. [123], with the Rashba SOC con-
tribution α as the main fitting parameter. For a channel orientation along [11̄0],
on the other hand, no gate dependent spin signal oscillations could be observed,
which suggested that the gate dependent change of the total SOC is much smaller
compared to a channel along [110]. It could be concluded that the gate depen-
dence of the cubic Dresselhaus parameter β3 counteracts the change of α with Vg

for k⃗ ∥ [11̄0]. The change of the total SOC with gate voltage is therefore smaller
compared to a channel along [110], in which case cubic Dresselhaus and Rashba
contribution add up.

One of the main obstacles for the realization of spin precession devices, like the
spinFET proposal by S. Datta and B. Das [8], is the strict prerequisite for ballistic
spin transport. This requires the distance between injecting and detecting contact
to be smaller than the corresponding electron’s mean free path. In this config-
uration, it is necessary to work with materials with a large SOC, such that the
injected spin can be rotated by an angle larger than π on such a small distance.
Within this work, it could be demonstrated that SOC induced spin precession
can also be observed in diffusion dominated systems, which considerably relaxes
the strict prerequisite of ballistic spin transport. Thus, spin precession devices
with larger dimensions can be realized, but also spin precession in systems with
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lower SOC strengths can be investigated more intensively in the future, which
significantly expands the material choice.
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A Appendix

A.1 Signal correction

General spin signal correction

The spin signal presented in Chapter 4.2.2 is phenomenologically background and
offset corrected. In the following, this signal correction routine is explained in
detail.
The non-local spin injection measurements are conducted in a magnetic field range
up to Bext = 5 T. In this range, however, an additional magneto-resistive back-
ground feature occurs (Fig. A.1a), the origin of which is unclear, as a systematic
evaluation remains elusive. In Fig. A.1a non-local spin signals for two different
external magnetic field orientations (blue: 0◦, red: 90◦) are shown. Both are
significantly affected by a background signal. This background is not considered
relevant for the evaluation of the spin signal, so that a phenomenological back-
ground removal routine is implemented, which allows extracting the spin related
contribution of the signal (Fig. A.1b). In the following, the background removal
approach is shortly described. First, magnetic up- and down-sweep are averaged.
Subsequently, the result is averaged over opposite angles, which requires mirror-
ing the signal of one of the angles at B = 0 T, so that the average is taken over
the same external magnetic field direction. Removing the background itself is
achieved by phenomenologically fitting and subsequently subtracting a 4-th order
polynomial function from the averaged signal. There, only the range |B| > ±2 T
is considered to be dominated by the background signal, while at lower fields the
magnitude of the spin signal and SOC related phenomena are assumed to prevail.
Additional signal corrections concern the spin independent voltage offset. This
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Figure A.1. (a) Non-local spin signal for channel along [110]. The external mag-
netic field is either oriented along the contact (0◦, blue) or perpendicular thereto
(90◦, red). For the regarded large magnetic field range a distinct background sig-
nal is observable, which can be fitted by a polynomial function (green). (b) Signal
shown in (a) with background correction and shifted to 0-spin-signal (0-SG).

offset can be removed by determining the signal level at which no spin dependent
voltage drops at the detector, which is referred to as 0-spin-signal (0-SG). This
signal level can be determined from standard SV measurements (0◦), as described
in Chapter 3.4, and basically lies in the middle between the parallel and the an-
tiparallel level of the SV signal.
It has to be kept in mind, however, that the background and offset correction
is a phenomenological approach, which implies considerable restrictions concern-
ing the quantitative analysis. This may include artificially introduced changes
of the spin signal profile, for instance. Yet all relevant characteristics are clearly
distinguishable in the raw data, so that a qualitative discussion of the spin sig-
nal is still possible. A considerable source of error can arise from the inaccurate
determination of the 0-spin-signal (0-SG). There, depending on whether the mag-
netization switches from P to AP, or vice versa, slightly different levels of the
0-SG are obtained. Also, imperfect switching characteristics, especially concern-
ing the formation of the AP level, complicate an accurate evaluation. Moreover,
it is important to note that the parallel and antiparallel levels of the SV signal
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are expected to form along the magnetically easy axes of the ferromagnet, i.e.
along [100] or [010] (Fig. A.2). The thus determined 0-SG is therefore only valid
for spins oriented along these directions. For the offset correction, however, the
obtained 0-SG is assumed to be equal for all orientations, which is not necessarily
the case. The thus introduced uncertainty could potentially lead to an artificial
shift of the spin signals relative to each other. An additional remark concerns the

Figure A.2. Non-local
SV signal (0◦) for a channel
along [110]. For large mag-
netic fields the magnetiza-
tion of the contacts is par-
allel to Bext (arrows), while
upon reducing Bext the par-
allel configuration rotates
towards one of the easy axes
(blue), before switching to
the AP configuration.

signal features appearing in the low magnetic field range for |B| ≲ 100 mT, which
are especially relevant for channels oriented along [110] and [11̄0], in which case
the spin injection and detection contacts are oriented along a magnetically hard
axis of (Ga,Mn)As. These characteristics of the signal are related to the smooth
rotation of the contact magnetization towards one of the magnetically easy axes
at low magnetic fields, which is highlighted in Fig. A.2. There, for large magnetic
fields the magnetization of the contacts is forced to orient parallel to the external
magnetic field, i.e. both contacts are magnetized along [11̄0] (arrows in Fig. A.2).
Upon reducing the external magnetic field, the magnetization of the contacts is
still parallel, yet starts to rotate continuously towards one of the easy axes ([100]
or [010]), before switching to the antiparallel configuration. Notably, the AP con-
figuration is also established along one of the easy axes. For the discussion of the
presented measurements, it is important to note that the spin contacts are aligned
parallel to the external magnetic field for |B| ≳ 100 mT, while effects occurring
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at smaller magnetic field strengths are not considered relevant for the presented
investigations.

Spin signal correction for exemplary data

In the following, the spin signal correction is applied to an exemplary data set.
For descriptive purposes, the discussion is limited to the signals obtained for an
injector-detector distance of d = 7 µm, and a channel orientation along [110].
Additionally, only the external magnetic field directions along the channel (90◦)
and perpendicular to the channel orientation (0◦) are regarded. The sample is
physically rotated in the external magnetic field. The corresponding nomencla-
ture for each measurement direction is shown in Fig. A.3a. There, the angle is
defined between the positive external magnetic field orientation and the channel
direction. Note that for each sample orientation the magnetic field is swept from
positive to negative values, and vice versa. Thus, the positive magnetic field range
of the 0◦ signal is in principle equal to the negative magnetic field range of the
180◦ signal, for instance. In Fig. A.3b exemplary non-local spin signals are shown
for a magnetic field orientation along the channel (90◦, 270◦), and Bext parallel to
the contact orientation (0◦, 180◦). For each measurement up- and down-sweeps
of the magnetic field are conducted. There, the distinct magnetic field dependent
background is clearly observable, as well as the signal offset. In a first step, the
magnetic up- and down-sweep are averaged for each sample orientation. Subse-
quently, the measurements for opposite sample orientations are averaged, which
requires mirroring one orientation at B = 0 T. Thus, up- and down-sweep, as well
as opposite angles are combined to one signal. In Fig. A.4a the original curves are
shown before averaging, while in Fig. A.4b the corresponding average is presented.
Note that the antiparallel signal level in the 0◦ and 180◦ signal occurs at difference
magnetic field values, such that the AP signal level is not preserved by the averag-
ing process. The background signal is then fitted with a polynomial of 4th order
in the range of |Bext| ≥ 2 T, as shown in Fig. A.4b. This polynomial functional-
ity has no physical background, however, and is only chosen phenomenologically.
Yet, it is important to note that all features of the raw data are preserved by the
background removal routine. In particular the dip-like signal characteristic of the
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Figure A.3. (a) Nomenclature of the magnetic field direction (Bext > 0) relative
to the orientation of the channel. For sake of clarity only magnetic field orien-
tations along the channel (90◦, 270◦), and perpendicular thereto (0◦, 180◦) are
shown. (b) Raw data for the corresponding magnetic field orientations shown in
(a), for a channel orientation along [110] and d = 7 µm. For each measurement
up- and down-sweeps (blue, red) of the magnetic field are performed.

90◦ signal is also clearly distinguishable in the original data. This phenomenolog-
ical 4th order polynomial fit is subsequently subtracted from the averaged data.
The thus corrected data is shown in Fig. A.5a. The 0◦ and 90◦ signals are then
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Figure A.4. (a) Opposite angels of the data shown in Fig. A.3 combined in one
graph. For angles ≤ 180◦, the magnetic field axis is reversed, such that the mag-
netic field orientations are comparable. (b) Measurements shown in (a), averaged
over up- and down-sweep, as well as over opposite magnetic field orientations.
The background is then fitted by a 4th order polynomial (red).

additionally symmetrized with respect to Bext = 0 T (Fig. A.5b), which is valid
due to the symmetry of the effective magnetic field (B⃗eff = B⃗SO + B⃗ext) upon
reversing B⃗ext, as described in Chapter 4.2. Finally, the curves are shifted, such
that the 0-spin-signal (0-SG) corresponds to a non-local voltage of Vnl = 0 V.
There, the 0-SG is obtained from the SV signal, and basically lies in the middle
between the P and the AP signal level. Note that the switching between P and AP
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Figure A.5. (a) Offset corrected data. There the polynomial fit shown in Fig. A.4
is subtracted from the averaged data. (b) The 0◦ and 90◦ can additionally be
symmetrized with respect to Bext = 0 T. For these orientations this is valid, as
the effective magnetic field is symmetric with regard to a reversal of the external
magnetic field (Chapter 4.2).

takes place along one of the magnetically easy axes ([100] or [010]), such that the
corresponding 0-SG is strictly speaking only valid for spins oriented along these
directions. As there is no experimental access to the 0-SG for spins along the other
crystallographic directions, however, this 0-SG for [100]/[010] has to be used as
an approximation. In Fig. A.6 the background and offset corrected non-local spin
signals are shown.
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Figure A.6. Finally, the curves shown in Fig. A.5b are additionally shifted
relative to the 0-SG (offset correction).

A.2 Parameters for gate dependent diffusive model

Introducing the gate dependence to the diffusive model presented in Chapter 2.6
requires making assumptions on the gate dependence of various input parameters.
The gate dependence of charge carrier density ns, electron mobility µe, and spin
diffusion length λ[11̄0] can be determined experimentally. Additionally, the scaling
factor f in the model, which quantifies the flux through the injecting contact, can
be obtained from fitting the 0◦ signal (Chapter 4.3.3). All these gate dependent
input parameters are summarized in Fig. A.7. For implementation in the COM-
SOL model, however, these quantities have to be parameterized as a function of
Vg. In the following the approximate parametrizations are summarized:

• charge carrier density ns (unit: 1011 cm−2)
Vg = 0 V . . . 2.7 V ns = 2.29 Vg + 3.78
Vg = 2.7 V . . . 5 V ns = 9.97

• electron mobility µe (unit: 10−4 m2/V s)
Vg = 0 V . . . 2.63 V µe = 9162.43 + 27453.69 Vg − 5217.54 V 2

g

Vg = 2.63 V . . . 5 V µe = 45276.42

• spin diffusion length λ[11̄0] (unit: 10−6 m)
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Figure A.7. Gate dependencies of the input parameters for the purely diffusive
model: charge carrier density ns (a), electron mobility µe (b), spin diffusion length
λ[11̄0] for spins oriented along [11̄0] (c), and scaling/flux factor f (d). The red lines
indicate the approximate parameterization, which is implemented in the model.
For the SOC strength an assumed gate voltage dependence is implemented (e).

Vg = 0 V . . . 4.4 V λ[11̄0] = 14.5 − 3.17 Vg − 0.00256 V 2
g + 0.131 V 3

g

− 0.0110 V 4
g − 0.000355 V 5

g

Vg = 4.4 V . . . 5 V λ[11̄0] = 6.95

• scaling/flux factor f

Vg = 0 V . . . 1.5 V f = −0.03 + 0.35 Vg

Vg = 1.5 V . . . 2.7 V f = −0.50 + 0.60 Vg

Vg = 2.7 V . . . 5 V f = 1.27
For the SOC strength, on the other hand, an assumed gate voltage dependence is
used, which is parametrized as follows (Fig. A.7e):

• spin orbit coupling strength SOC (unit: 10−13 eV m)
Vg = 0 V . . . 3 V SOC = 1.5 + Vg

Vg = 3 V . . . 4 V SOC = −2.94 + 3.97 Vg − 0.50 V 2
g

Vg = 4 V . . . 5 V SOC = 5
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A.3 Fitting parameters obtained from simple
ballistic model

In the spinFET proposal introduced by S. Datta and B. Das [8], the gate dependent
spin signal oscillations are modeled by a simple cosine function:

Vdet = A cos
(2m∗L

ℏ2 SOC(Vg) + ϕ
)

+ offset. (A.1)

Assuming a linear dependence of the SOC strength on Vg, such that

SOC(Vg) = ∂SOC

∂Vg

Vg + SOC0, (A.2)

allows modeling the experimentally obtained spin signal oscillations presented in
Chapter 4.3.3. The parameters resulting from fitting these oscillations with this
simple ballistic spin transport model are summarized in Tab. I.

d offset A SOC0 ∂SOC/∂Vg

(µm) (µV) (µV)

7 1.60 3.80 -4.25 -1.32
11 0.65 1.55 -2.20 -1.14
15 0.33 0.60 -1.10 -1.06

Table I. Values of offset voltage, amplitude A, and Rashba SOC in the approxa-
tion of a linear gate dependence. The SOC realated quantities are given in units
of (10−13 eV m), or (10−13 eV m/V) respectively.

A.4 Fitting parameters obtained from extended
ballistic model

In Chapter 4.3.3 the gate dependent spin signal oscillations are fitted with an
extended ballistic model, which is described by A. Zainuddin et al. [123]. There,
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the spin signal oscillations can be described according to Eq. 4.57 (Chapter 4.3.3):

∆V ≃ ∆VSV

2 + 3π∆VSV

2
1√
2πΘ

cos
(

Θ + π

4

)
, (A.3)

where ∆VSV is the signal height of the standard SV signal, in which case the spins
are oriented along the contact, and Θ is the spin precession angle for k ∥ [110],
which is given by

Θ(Vg) = 2m∗d

ℏ2 (−α + 2β3 − β1) . (A.4)

For fitting, additionally a signal offset OFF and a scaling factor SC have to be
taken into account, such that

∆V = ∆Vx · SC + OFF. (A.5)

The Rashba SOC contribution is assumed to change linearly with Vg

α = α0 + ∂α

∂Vg

Vg. (A.6)

In the simplest case, α can be approximated to change linearly in the entire gate
voltage range (Vg = 0 V . . . 5 V). In Tab. II the corresponding fitting parameters
are summarized. In a more advanced fitting approach the gate voltage range is
divided into three region (A, B, and C), in which α is adjusted separately. The
values, which are obtained from this fit, are summarized in Tab. III.

d offset scale α0 ∂α/∂Vg

(µm) (µV)

7 -1.6 0.80 -3.78 -0.90
11 -0.8 0.70 -5.43 -0.72
15 -0.4 0.53 -6.01 -0.68

Table II. Values of offset voltage, scale, and Rashba SOC in the approxation of
a linear gate dependence of α. The slope of α is assumed to be equal in the entire
gate voltage range (Vg = 0 V . . . 5 V). The SOC realated quantities are given in
units of (10−13 eV m), or (10−13 eV m/V) respectively.
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d offset scale α0 ∂α/∂Vg

(µm) (µV) (region A) (region B) (region C)

7 -1.60 0.80 -3.78 -0.92 -1.09 -0.10
11 -0.82 0.70 -5.53 -0.66 -1.15 -0.10
15 -0.40 0.53 -6.16 -0.60 -1.15 0.05

Table III. Values obatined from fitting the spin signal oscillations, in case of
dividing the gate voltage range into three separate regions (A, B, and C). The
SOC realated quantities are given in units of (10−13 eV m), or (10−13 eV m/V)
respectively.

A.5 Schrödinger-Poisson simulations

From self-consistent Schrödinger-Poisson simulations, the band profiles of the in-
vestigated heterostructure (Chapter 3.2) can be obtained. The structure is shown
in Fig. A.8, whereby only the part of the spin injection device, in which spin
transport takes place, is relevant. Thus, the Esaki-diode structure is not taken
into account. In Fig. A.9 two exemplary simulations are shown. There, a gate
dependence is introduced by setting the conduction band energy at the surface of
the structure (CB pinning). This mimics the bending of the energy bands when
applying a gate voltage. Depending on this CB pinning energy, the charge carrier

Figure A.8. Schematic layer se-
quence of the heterostructure system,
in which spin transport between in-
jecting and detecting contact takes
place. This structure is the ba-
sis for the self-consistent Schrödinger-
Poisson simulations. The blue dots
mark the δ-doping layer.
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Figure A.9. Simulated energy bands of the heterostructure shown in Fig. A.8:
conduction band (gray), heavy/light hole valence band (red, Γ8), split-off valence
band (blue, Γ7). Additionally, the probability of the electron wave-function (green)
is shown. A gate voltage is indirectly simulated by setting the conduction band
energy at the surface of the structure (CB pinning). In (a) the CB is pinned at
0.9 eV, which corresponds to a gate voltage of about Vg ≈ 0.1 V. In (b) the CB is
pinned at 0.2 eV (Vg ≈ 2 V).

density ns, which can also be obtained from the simulations, changes. From the
experimentally determined gate dependence of ns (Chapter 4.3.2) it is thus pos-
sible to relate the CB pinning energies to gate voltage values. From these band
energy calculations a value of the Rashba SOC contribution can be obtained.
T. Schäpers et al. [71] present an equation, which, in a simplified case, is given
by:

α = ℏ2Ep

6m0
e⃗z ⟨Ψz|

 1
(E(A)

Γ7 )2
− 1

(E(A)
Γ8 )2

φ′(z)|Ψz⟩

+ ℏ2Ep

8m0
e⃗z

∑
n

(E(B)
Γ7 − E

(A)
Γ7

) 1(
E

(A)
Γ7

)2 + 1(
E

(B)
Γ7

)2


−
(
E

(B)
Γ8 − E

(A)
Γ8

) 1(
E

(A)
Γ8

)2 + 1(
E

(B)
Γ8

)2


 sn|Ψ(zn)|2.

(A.7)
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The first term in Eq. A.7 is related to the electric field φ′(z) within the het-
erostructure. There, Ψz is the electron wave-function, and E

(A)
Γ7 and E

(A)
Γ8 are the

VB edges within the QW. For the interaction parameter Ep a value of 26.26 eV for
In0.09Ga0.91As is taken, which results from linearly interpolating the value of GaAs
(Ep = 28.8 eV) and that of InAs (Ep = 21.5 eV) [187]. The second term in Eq. A.7

Figure A.10. Band structure shown in Fig. A.9a, zoomed in to the CB (a)
and the VB (b) in the vicinity of the QW. The parameters which are required to
calculate the Rashba SOC contribution according to Eq. A.7, are marked by the
dots. There, these quantities are labeled only for the right interface, while the
designation for the other interface is analogous.

takes into account interface contributions. There, the values of the VB edge at
the interface have to be extracted from the simulated band structure, which is
exemplarily visualized in Fig. A.10 for the interface, that is closer to the bottom
of the heterostructure. The parameter sn = −1 for the left interface, which is
closer to surface, and sn = +1 for the other interface. It has to be remarked that
contributions to the Rashba SOC, which are due to the electron wave-function
leaking into the barrier, are found to be negligible, due to the strong confinement
of the wave-function within the QW.

The thus calculated values of α consist of a contribution αE, which is due to the
electric field within the structure, and two contributions, which originate from

164



A.5 Schrödinger-Poisson simulations

Figure A.11. Individual
contributions of the Rashba
SOC, which are obtained from
the self-consistent Schrödinger-
Poisson simulations. There,
the total Rasbha SOC (green)
consists of a contribution αE

(black), which depends on the
electric field within the het-
erostructure, and the interface
contributions of the upper in-
terface αint,up (red), and the
lower one αint,low (blue).

the two interfaces of the QW (αint). In Fig. A.11 the individual contributions are
plotted as a function of gate voltage Vg. The total Rashba SOC is given by the
sum of the individual contributions:

αtotal = αE + αint,up + αint,low, (A.8)

where αint,up is the contribution of the interface, which is closer to the surface of the
structure, while αint,low refers to the other interface. Keep in mind however, that
these simulations do not directly model a gate electrode. Instead, the conduction
band energy at the surface of the structure is adjusted, which gives rise to a
bending of the energy bands, and a change of ns. The change of ns is then related
to a gate voltage by comparison to the measured gate dependence of ns. Thus,
in the discussion in Chapter 4.3.3 the value of α, which is obtained from these
simulations, is considered to be only the ns dependent contribution of the total
Rashba SOC.
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