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1Introduction

[Privacy is] the right to be let alone — Warren and Brandeis [395]
This statement of Warren and Brandeis from 1890 sounds antiquated in the
days of social networks, smart cities, or connected cars. In fact, rapidly evolving
technologies, including but not limited to the Internet, have led to a permanent
and ubiquitous exchange of information, data, and knowledge not only by
individuals but also by intelligent devices. Nevertheless, privacy is not an
outdated and forgotten concept; in fact, it is more relevant than ever.

1984George Orwell’s dystopian novel 1984 [287] paints a picture of a totalitarian
surveillance state in which the populace is subdued by propaganda and perfect
control. It is the goal of the government to completely repress the population’s
manner of life as well as their way of thinking, which is accomplished through
suitable propaganda and severe instruments of punishment. State-prescribed
doublethink, as characterized in the book, is the perception of reality that is
subjected to circumstantial and personally identifiable information-invading
inspection by the state. When it comes to the fundamental right to privacy,
Orwell’s fiction is the polar opposite of Warren and Brandeis’s assertion of that
right in a society where free expression is crucial. An essential tool for oppression
is the equalization of privacy regardless of the situation because persons thereby
live in fear and must comply fully with the principles set forth. As a result, this
is the most crucial protectable good in our democratic society because it ensures
that each individual may exercise his own autonomy.

Violating
privacy

The publications surrounding global surveillance disclosures beginning in 2013,
in which countries from all over the world participated in the comprehensive
and suspicionless collection of citizens’ private information, demonstrate the
unintentional invasion of privacy that has occurred in recent years. Because of
the incident, it has been demonstrated that fiction may become a reality and that
individuals can be widely watched without their knowledge or agreement.

Extrinsically
motivated
monitoring

As a counterbalance to this covert violation of privacy, though, overt systems
exist in which individuals appear to be participating willingly and in their own
best interests. In addition to its state monitoring measures (i.e. the Great Firewall),
China is using the so-called Social Credit System [50, 225] to inspire and enforce
desirable conduct among its populace [78], an effort that can be compared to
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1984’s doublethink and censorship. Officially, the system intends to promote
the trustworthiness and morals of residents and businesses by automatically
analyzing and grading their financial and social behavior [86]. However, there
are significant parallels to Orwell’s novel here, as users become transparent,
and those who resist facing apparent penalties. Due to the ramifications and
restrictions on public and private life, there is no longer any discussion about
voluntary participation in this program.

Ubiquitous
computing

against
privacy

Again, it is possible to claim that the system is in use due to governmental com-
pulsion. We may also find parallels to George Orwell once more. Unfortunately,
there is no easy way out of the privacy quagmire. However, loss of privacy does
not always have to be extrinsic (motivated). Weiser [397] describes a vision in
which the sharing of information constantly occurs, without barriers, delay, or the
need for considerable input from the user, using the term ubiquitous computing.
This vision appears to be present nowadays, and technological advancements
and increased connectivity enable it. Users have the ability to share their lives in
their entirety continuously, and the lines between the actual and virtual worlds,
between those who are physically there and those who are electronically linked,
and between forgetting and remembering are blurred. While the information in
the preceding instances had to be gathered by third-party services, the insights
into one’s personal life, including one’s worldview, are offered by the users them-
selves and may be exploited, according to Chan [69]. Individual privacy appears
to be a lost idea in this context; humans, as social beings, do not want “to be let
alone”, but rather to be ubiquitously in contact with others.
[W]henever we face privacy sensitive decisions, we hardly have all data nec-

essary for an informed choice. But even if we had, we would be likely unable
to process it. And even if we could process it, we may still end [sic] behaving
against our own better judgment. — Acquisti [2]

Overbur-
dened users

From the perspective of Acquisti, the attitude toward privacy appears to be dif-
ferent and is consistent with studies that have found that privacy is still essential
for individuals. However, it appears that the complexity of information systems
makes decision-making substantially more difficult. Because advancement is a
motivating force for development, it is necessary to find a way to handle data
in a balanced manner with the many players in these complex systems without
overburdening single participants. The dissertation examines the dichotomy be-
tween the use of comprehensive personal data and the preservation of privacy
to protect people and our democratic world as a whole.
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1.1Crowdsourcing, Crowdsensing and Mobility

Crowdsourc-
ing

Nowadays, crowdsourcing is a well-known concept in which a system owner-
defined task is outsourced to a large group of people called a crowd (typically an
online community [157]) in the form of an open call [51]. They are motivated by
intrinsic or extrinsic factors [55], the online community can work collaboratively
to complete the task, or individuals can carry it out alone. The term was coined by
Jeff Howe and Mark Robinson in the June 2006 issue of Wired magazine [180]
and was later formalized [179]. There are various advantages associated with
crowdsourcing. Optimized costs for the contractor and increased execution speed
can be assumed due to this disruptive concept. As a matter of fact, the size of a
crowd is dynamic, which can imply greater flexibility, scalability, and quality at
the same time [51, 55]. This is based on the fundamental idea that a collective
can provide better and more comprehensive knowledge (“wisdom of the crowd”)
compared to individuals or even experts and thus develop more sophisticated
solutions [361].

Crowdsens-
ing

Crowdsourcing as a concept was mainly seen as a web-based process but is
changing towards mobile devices [124]. It is essential that the term crowdsourc-
ing is clearly distinguished from crowdsensing, which can be defined as “a new
sensing paradigm that empowers ordinary citizens to contribute data sensed or
generated from their mobile devices, aggregates and fuses the data in the cloud
for crowd intelligence extraction and people-centric service delivery” [157]. In
contrast, crowdsourcing is about harnessing humans’ knowledge, understanding,
and intuitiveness when they are entrusted with the task. This is different from
crowdsensing, which is about gathering detailed and holistic data to share it
with a service for further processing. However, further processing may involve
intelligent systems but can also be combined with human-driven processes such
as crowdsourcing [157].

Convenience
of crowd-
sensing

With the rise and ubiquity of smartphones equipped with multiple sensors and
connectivity, crowdsensing becomes convenient as no additional devices are
needed to contribute data to online platforms [200]. Eventually, this is preferable
from a monetary perspective since dedicated sensors are an additional cost com-
ponent, require installation and maintenance, and are only applicable for one
previously defined use case [136, 241]. Especially in the mobile setting, crowd-
sensing is favorable because it works in a decentralized way, with mobile sensors
being the participants of the mobile network itself. Hence, every driver, cyclist,
pedestrian, or passenger can contribute valuable, independent, and individual
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information, contributing to the growth of the crowdsensing network. They form
a mobile, physical community [157]; hence the term mobile crowdsensing.

Participatory
sensing and

opportunistic
sensing

Participatory and opportunistic sensing are two forms found in the context of mo-
bile crowdsensing, although most mobile crowdsensing approaches use a hybrid
kind, including both types [157]. Participatory sensing is also called community
sensing and relies on the active participation of everyday users using their own
mobile devices to gather, analyze, and share the locally generated knowledge
with a remote platform. For example, participatory users can distribute infor-
mation on road accidents that they have recorded manually. To relieve the user
from actively contributing data, opportunistic sensing uses the built-in sensors
of mobile devices, such as smartphones, to collect data autonomously in the
background. As an example, road condition measuring is a task that can be auto-
mated. Opportunistic sensing may also increase the objectivity of the submitted
data as no user interpretation is required [420] and attract more participants due
to the lower effort required.

A note on
privacy

Crowdsourcing and crowdsensing are related but different, although approaches
that combine both principles are present. Let us present an example to discuss
the relevant opportunities and challenges of crowd-based platforms. Waze1 is
a GPS-based route planning service now owned by Google that takes into
account the current traffic situation and arbitrary events. The said events are
provided by the community in a crowdsensed and crowdsourced fashion. Users
can, for example, provide information on closed roads, while other participants
can confirm location-related events. Attached to the submitted events (or other
activities) are the long-term pseudonyms of a user who may also be visible when
the road network is traversed. The barrier to entry through a smartphone app is
low and such types of solutions scale well accordingly. Furthermore, when the
critical mass of the community size is reached, economies of scale can be relied
upon to draw a comprehensive and up-to-date picture of traffic events. From a
privacy perspective, Waze enables not only the service provider itself to derive
the movement patterns of single users based on location data but also third parties
by cross-referencing events to users via publicly available information [136].
We conclude that it is of particular interest to protect the privacy of users while
ensuring the integrity of the data to provide impeccable service quality eventually.
Exactly this dichotomy is the subject of this dissertation.

1 https://www.waze.com

https://www.waze.com
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1.2Privacy and the Information Disclosure Triangle

Modern applications of various social, governmental, or economic domains rely
on the basis that data is shared and exchanged between different entities accord-
ingly, with crowdsensing-based platforms being only one example. Depending
on the application, the data contains sensitive information. Therefore, the dis-
closure of this information poses a threat to privacy. Negative consequences for
the individual are conceivable [142], so actions must be well-considered and
weighed.

StructureIn this section, we will first define the term privacy before discussing the
constraint of the data sharing behavior. Although privacy and personal data
are highly valued, people behave contrary to their attitude and share more
data [284]. The causes are manifold and cannot be conclusively substantiated, yet
this section will offer rationales that might explain behavior. For this purpose, we
conducted a Structured Literature Review (SLR) to answer the question of what
the antecedents of information disclosure are, the results of which are presented
in this section [407].

1.2.1Privacy Definition

According to the General Data Protection Regulation (GDPR), users have a right
to privacy, i.e. they have the authority to decide who has access to process their
data and for what reason. The term privacy is used in many ways and subject
to a broad range of interpretations, some being vague, intangible, contradicting,
or complex [350]. However, a clear understanding of its meaning is critical to
making the appropriate decisions [142].

Definition of
Westin

In the context of the GDPR and, in particular, this work, the definition of Westin
[398] seems to be well-fitted. He defines privacy as “the claim of individuals,
groups or institutions to determine for themselves when, how, and to what extent
information about them is communicated to others”. Not only does he focus on
personal information, but he also describes elements of information processing.
Westin implicitly denotes that an individual can on his own, without justification,
decide what information is made available to the public and what is kept private.

Further
relevant
definitions

Laufer and Wolfe [226] define privacy by identifying three distinct dimensions,
namely the self-ego dimension, the environmental dimension, and the interper-
sonal dimension. The taxonomy-based approach of Solove [350] aims to make
the meaning of privacy more tangible by categorizing various forms of privacy
violation accordingly. The categories are Information Collection, Information
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Processing, Information Dissemination, and Invasion. Smith et al. [348] clas-
sifies all current definitions into value-based definitions (general privacy as a
right, privacy as a commodity) and cognate-based definitions (general privacy as
a state, general privacy as control) in a thorough review of all relevant definitions
to date.

Importance
of privacy

After having defined privacy, one needs to understand why privacy is important
in the first place. Solove [351] tried to answer this particular question of privacy’s
value by defining tangible and comprehensible arguments why to care. In this
opinion, privacy is fundamental for limit on power, reputation management,
maintaining appropriate social boundaries, trust, control over one’s life, freedom
of thought and speech, freedom of social-political activities, ability to change
and have second chances, protection of intimacy, bodies, and sexuality and not
having to explain or justify oneself.

Privacy
concerns

Any disclosure of information can impact each listed protected right and aspect.
The concern of (possibly) losing one’s privacy as a consequence of information
disclosure towards a specific external agent is defined as Privacy Concern [408].
It differs from previous perceptions that considered privacy concerns being a
general concern like an attitude [348]. However, according to Xu et al. [408], it
is a situation-specific privacy construct.

Willingness
to disclose

Another relevant but differently interpreted construct related to information dis-
closure and privacy is the so-called willingness to disclose. The wording is
diverse; willingness to share or willingness to provide is also found in liter-
ature [142, 212]. Eventually, willingness to disclose can be considered as an

“individual’s openness to the idea of providing specific personal information in
the context of ecommerce transactions” [311] i.e. willingness being a subject’s
attitude, intention, preference, or concern towards privacy-specific topics [284].
In contrast, willingness may sometimes be used actually to quantify a person’s
actual behavior [110].

1.2.2 Privacy Behavior

Privacy
paradox and
its evolution

Under the assumption that willingness to provide indicates the amount of in-
formation individuals are willing to share (behavioral intention), Norberg et al.
[284] indicates a conflict that the attitude is not directly transferable to the ac-
tual behavior of a person. This effect is called Privacy Paradox. In fact, it was
shown that there is a significant imbalance between the information provided
and intended. The privacy paradox is hard to grasp due to numerous constructs
(e.g. attitudes, concern, behavioral intention, and actual behavior) [284] and het-
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erogeneity [142] in the field of privacy. The privacy paradox can be considered
a construct itself with an input and an output variable. A broad range of input
variables is conceivable, with Norberg et al. [284] proposing behavior intention
or willingness to provide, while others [4, 110, 212] refer to i.a. intention, prefer-
ence, attitude, and concern. Finally, the input variable causes the output variable
but cannot fully explain or predict it. This is caused by the privacy paradox. The
actual behavior would be expected to be the result (as in the case of Norberg
et al.). However, the literature also proposes behavioral intention or willingness
to provide [110, 212]. The latter is common in the privacy calculus theory. In
Wurmer et al. [407], we, therefore, introduce the novel “Two-Step Privacy Para-
dox” where every transition yields a paradoxical gap that needs explanation.

Privacy
calculus

One prominent approach to explain the privacy paradox is a theory called Privacy
Calculus. The privacy calculus theory assumes that individuals do not make
decisions objectively but weigh a trade-off between benefits (potential gain
for disclosure) and costs/risks, i.e. the expected loss of privacy. It originates
from the social exchange theory, where social interaction is only performed
if the benefits outweigh the costs and risks [419], and was then adapted as a
calculus of behavior, where people evaluate the possible future implications of
their actions. However, this is difficult for an individual to achieve, as e.g. rules,
settings, and technologies can change unpredictably in the future [226]. Culnan
and Armstrong [88] concluded that procedural fairness reduces privacy concerns
in the context of consumer transactions. Consumers see procedural fairness in
how companies handle disclosed data. This implicates a consumer cost-benefit
analysis [89].

Beliefs of
individuals

The Theory of Planned Behavior (and its predecessor, the Theory of Reasoned
Action) states predictors of intention, namely attitude (beliefs about a behavior),
subjection norm (beliefs about others’ attitudes toward a behavior), and perceived
behavioral control (beliefs about one’s ability to perform a behavior) [5]. Attitude,
subjective norm, and perceived behavioral control are, in this case, functions
of the related underlying belief of an individual. However, multiple beliefs that
influence intention can be contrary “that together the beliefs comprise a set of
elements in a calculus or a decision process” [110]. Recent research suggests
that benefits may outweigh costs in influencing behavioral intention [415]. Since
beliefs can change, it may also be possible to influence a person’s actual behavior
accordingly.
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1.2.3 Data Economy

This work focuses on data sharing, which ultimately includes sensitive infor-
mation about individuals. As mentioned, the decision-making process of infor-
mation disclosure is complex and influenced by different dimensions, including
personal beliefs. It is viable and necessary to understand why people share data
and how to answer the privacy paradox, or at least try to find explanations in
the form of antecedents that may be coherent and multilayered [3]. For instance,
when users disclose their information, it appears as if they do not care about
privacy, but the process is more complex: users disclose large amounts of data
because they are required to do so. Otherwise, they are denied participation in
the process, which, in turn, is also impossible and unpleasant for users due to
social constraints [216].

Various
factors

influencing
data sharing

Multiple attempts are made to categorize answers to the privacy paradox, in-
cluding Acquisti et al. [3], Barth and Jong [35], Dinev et al. [111], Gerber et al.
[142], Kokolakis [212], and Solove [351]. In the following, we try to present a
common and integrative understanding considering the different directions and
streams presented by several researchers. We argue that information disclosure
may be explained by three different dimensions (of antecedents), which often
stood out in the context of the literature study. First, the already introduced Pri-
vacy Calculus (to balance benefits and costs); second, the cognitive perception
approach; and third context-based concepts. Together, they all compose a trian-
gle where each aspect impacts the disclosure process. Eventually, the dimensions
may influence each other, stressing a particularly complex decision process.

Benefits and Costs

The first dimension is benefits and costs going back to Dinev and Hart [110],
who applied the concept of information disclosure to e-commerce, describing
a phenomenon where specific benefits override concerns about the disclosure
process. Consequently, the decision process is a trade-off between benefits
(what do I get?) and costs (what do I lose?)2. Acquisti [2] relates costs to
cognitive perception indicating a reciprocal influence, further picked up by
Gerber et al. [142]. Based on recent findings [348], we selected four properties
(i.e. antecedents) for this dimension that are—according to our understanding—
considered when balancing benefits and costs.
2 Costs are not necessarily connected to a piece of specific information made available to a third
party but can be long-term, multidimensional consequences such as identity theft or social stigmas.



1.2. PRIVACY AND THE INFORMATION DISCLOSURE TRIANGLE 9

Monetary reward There is broad consensus in the literature that a monetary
reward influences the decision-making process where a direct compensation is
given to the disclosing object for his data. Furthermore, implicit compensation,
as found in loyalty programs, is a meaningful choice as a reward [301]. However,
it is not possible to derive a general threshold for the amount of monetary reward
that enables the disclosure of information in any case, as it depends on multiple
variables [3]. Although most research addresses the correlation to the monetary
reward, some argue that money explicitly implies a value in data resulting in a
negative impact on the information disclosure process [229, 400].
Personalization Based on the personal information disclosed and learned, the
process of personalization is to address an individual using specifically adapted
communications or experiences such as an online shopping experience with
interest-based recommendations. However, this antecedent is controversial, and
there is no joint agreement. Some argue that it has positive consequences on the
disclosure process (e.g. [188]), no impact at all (e.g. [202]), or even negative
influences (e.g. [49]). The last relationship is interesting as it is similar to the
negative consequences of offering a monetary reward with the user being made
aware of how data may be exploited.
Convenience Convenience describes an increased level of comfort (e.g. less
time or effort required) experienced by the user when interacting with an infor-
mation system and, as such, is primarily preferable [110, 188].
Context-specific Depending on the current context, specific benefits may arise.
However, the term context is different from the dimension called context, which
describes the setting in which the decision of the information disclosures takes
place. Sun et al. [359] differentiates between utilitarian and hedonic benefits,
such as social benefits. We expect that gamification is also related to this context-
specific antecedent. For example, gaining points for submitting information may
motivate participants to be active within crowdsourcing systems.

Cognitive Perception

In principle, the decision-making process is determined by a person’s funda-
mental privacy behavior, including the privacy calculus. In reality, as mentioned
above, there is a distinction between action and attitude, which eventually results
in the privacy paradox [2]. Biases and heuristics affect people’s decision-making
processes, whether consciously or unintentionally [110], which can result in a
change in perspective (cognitive perception). Selected antecedents will be intro-
duced below.
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Incomplete/Asymmetric Information and Bounded Rationality According
to the privacy calculus, each decision on information disclosure is rational and
is made based on an (individual) trade-off of benefits and costs, resulting in
optimal, self-determined behavior. However, an individual cannot make such
a rational decision because it requires complete knowledge of a transparent
data-consuming process. This is usually not the case, and there is an imbalance
between user and service provider regarding the process. Either the user has only
incomplete knowledge about the process, or the service provider has additional
information on how the data will be used [2, 6] This problem is intensified
by the unpredictability of future developments (either technical or event-wise)
so that the costs of a decision that could still arise (e.g. information theft)
would not be assessable. Even if a user had all information about the process,
he would not be able to make the best possible and thus the most rational
decision based on the information due to limited possibilities. This is described
as bounded rationality [344]. One of the reasons for this is that the concept of
benefits and costs is complex and challenging to grasp. Quantification for an
unambiguous comparison is unrealistic, and consequently, so is the perfectly
rational decision [2].

Hyperbolic Discounting and Immediate Gratification The time-inconsistent
valuation of benefits can be explained using hyperbolic discounting effects and
immediate gratification [2]. Hyperbolic discounting describes an effect in which
users prefer or consider short-term (albeit smaller) benefits or costs at the ex-
pense of benefits or costs that lie in a more distant future. Applied to privacy,
the information disclosure process can be influenced by granting a monetary
reward in the short term, for example, even if costs incurred in the future (such
as identity theft) would weigh more heavily. The drag of immediate gratification
leads to a decision favoring the short-term reward. The threat to privacy is
exacerbated by the difficulty of the tangibility of cumulative consequences that
compound over time [2].

Framing Effects and Endowment Effect According to literature, the way
an information disclosure process is presented (for example, the wording of a
prompt) has a significant influence on the behavior of users. This is described as
framing effect [29, 196]. Related to the framing effect is endowment effect [196].
The request for further information by a service provider to maintain membership
in a social network is an example of the endowment effect, as the fear of losing
an already acquired object (i.e. the membership) outweighs the desire to obtain
it first (i.e. to become a member). Therefore, this effect affects the information
disclosure process.
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Optimistic Bias Optimistic bias describes an effect in which people frequently
underestimate their chance of being the victim of a privacy infringement com-
pared to dangers that other individuals face [80, 142]. Hence, no rational decision
can be made when shifting objective information.
Nothing-To-Hide Another bias is skipping (or shortcutting) of an information-
disclosure process by arguing that one has nothing to hide (especially from the
government). According to Solove [350], the Nothing-To-Hide argument is a
fallacy. Privacy is not comparable to secrecy which attempts to conceal a piece
of information, but is about protecting personal interests and not about hiding a
crime. Additionally, people are unaware that their data may be aggregated, ex-
ploited, insufficiently protected, or passed on for secondary purposes, eventually
becoming something they would have intended to conceal in the first place [350].
Nudging, Dark Patterns, and Friction Deliberate manipulation or influence
of the decision-making process by the requester is a way to induce the user to
disclose data. Awareness of privacy and corresponding assertion of interests on
the part of users are manipulated by design of technology, and especially user
interfaces. Risks are minimized by design, and data exchange becomes natural.
In this way, businesses can increase information sharing through nudging [351].
Because this design process reflects only the interests of the service provider, it
is considered a dark pattern [388]. The information disclosure process is often
deliberately made as convenient and direct as possible to minimize friction. On
the contrary, friction for privacy-related topics is intentionally increased [351].

Context

Context is a third dimension that influences the decision process about informa-
tion disclosure, as context is a significant aspect of how an individual perceives
and values privacy [153, 281]. The difference in contexts between different dis-
closure processes may explain the gap between the basic attitude and actual
behavior in specific situations [253]. In privacy literature, the element of context
is often underrepresented and overlooked [3, 351]. The context is composed
of a person and a situation. Although each antecedent is explained in detail in
Wurmer et al. [407], this section only mentions selected elements important for
the further progression of this work.
Personal Antecedents Basically, personal and objective characteristics such
as age [4, 49, 191], gender [4, 49, 191, 430] and cultural background [214, 249,
311, 372] and education [311, 396] influence the information disclosure process.
In summary, young people are generally more willing to share information [191],
while no clear findings emerge for gender (e.g. [49] versus [4]). Education has a
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negative correlation with sharing, meaning higher educated people tend to share
less data [298]. Experience as another antecedent indicates that positive historical
experiences with a counterpart reinforce information disclosure [34, 311]. The
same holds for personality traits, in particular trust and concern, which both
impact the willingness to disclose data directly [34]. Additionally, Aivazpour
and Rao [4] found that impulsivity has a positive effect on disclosure. To assess
cultural differences, the five-dimensional framework of Hofstede [175] is applied
by Krasnova et al. [214]; however, we do not go into detail here and refer to
Wurmer et al. [407]. Lastly, people can be assigned to three different clusters
that define their general attitude toward privacy (personal disposition) [399, 408],
although there are studies to the contrary [211].
Situational Antecedents Situation of information disclosure is different for
each decision but may show a common ground w.r.t. the factors type of infor-
mation [228, 335, 387, 430], anonymization [40, 430], scope of use [191, 228],
control [207, 228], retention period [228, 312], fairness [243], and trust [49,
153, 207] as well as the type of firm / website [228, 312]. People tend to share
data that, at first glance, is not relevant to privacy. Bounded rationality as well
as the benefits offered [387] undermine this concept. Anonymization is a sig-
nificant driver of the willingness to share data with people willing to disclose
information when it is not identifiable [40]. There is consensus that the ability
to control or influence data processing is positively correlated with the intent to
disclose [207, 228]. This is related to fairness when users can understand why
certain information should be collected [243]. Trust towards the counterpart is
a significant driver for the decision-making within the information disclosure
process as it is omnipresent in every situation. While trust is a bidirectional
concept between two entities, it can be extended to groups or types of firms
and websites. Users show preferences for specific branches. For example, they
prefer to share data with entertainment websites in favor of banking sites [228,
312]; however, this could be associated with the kind of data requested by the
respective service [312].

Importance
for the

progression
of this work

This section provides essential information on privacy and the related informa-
tion disclosure process. We will collect the knowledge when developing Privacy
by Design-based architectures in Part II where situational antecedents and cog-
nitive perception are relevant. Also, when analyzing privacy threats related to
disclosure of sensor data in Part III, we reflect that benefits and costs are hard to
grasp in specific situations, as mentioned previously. Understanding the informa-
tion disclosure process and its complexity also drives the design of the Privacy
Enhancing Technology (PET) presented in Part IV.
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2015 2016 2017 2018 2019 2020 2021 2022

2016 Roth et al. [320]

2017 Roth et al. [316]

2018 Roth and Kesdogan [317]

2019 Roth et al. [321]

2020 Nitschke et al. [282] and Roth et al. [318, 319, 322, 323]

2021 Roth et al. [324–326]

2022 Nitschke et al. [283] and Wurmer et al. [407]

Figure 1.1Research published in relation with this disseration.

1.3About this Work

This work tackles the challenging topic of dual-use of sensor data. Sensor data
can be a reliable and comprehensive source of information but at the same time
pose a severe threat to the interests of a person. The purpose of this work is to
provide a comprehensive picture of what appears to be a dichotomy.
During the course of the research efforts, a total of 14 scientific articles have
been developed and published3, all of which are related to the topic of this
dissertation. The chronology of these publications is depicted in Figure 1.1.
They use the methodologies described in Section 1.3.2 as a scientific basis to
answer the research questions posed in Section 1.3.1. The approach presented
in Section 1.3.3 is followed and accompanied throughout this dissertation to
address the vast topic in an appropriately structured manner.

1.3.1Research Questions

Seemingly unlimited availability of data offers an indisputable potential for novel
use cases, especially in the mobile environment, as illustrated in Section 1.1. At
the same time, their relevance makes them critical to the privacy and intentions of
a user (c.f. Section 1.2) who, as an information dissemination entity, participates
greatly in an information system. This tension raises the following research
questions:
3 At the time of writing, Wurmer et al. [407] is currently under review
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1. How can the inertial sensor data of smartphones be collected and
evaluated as robustly as possible in cars?
High quality, high frequency, and accurate data are crucial for all
use cases relying on sensor data. Modern applications such as Usage-
Based Insurance forgo the use of dedicated hardware for economic
and adaptability reasons and employ the ubiquitous smartphone for
data acquisition. The research question will discuss to what extent
data can be collected efficiently and robustly in different vehicles
taking into account the heterogeneity of smartphone sensors and
environments. Further, an examplary implementation will be analyzed
in-depth, assessing its quality.

2. How can smartphone sensors be used as enablers for privacy-friendly
applications in traffic scenarios? What possibilities do they open up?
Multistakeholder environments require diversified consideration of in-
dividual interests and concerns. The research question aims at demon-
strating the compatibility of conflicting security objectives such as
availability, integrity, and confidentiality by means of concrete appli-
cations. In fact, it motivates a critical design process that identifies
Privacy by Design as a driving factor.

3. What privacy risks are induced or increased by the omnipresence of
smartphones in vehicles?
Exhaustive data gathering in the user domain results in a severe threat
to privacy, further stressed by the overwhelmed user. This research
question examines what information can be extracted from the data and
to what extent insights can be drawn from individuals. The question
is intended to make a significant contribution to eliciting critical
awareness in the collection, distribution, and analysis of sensor data
as part of various processes in an information system.

4. What methods can be used to protect the privacy of users, especially
in the Pay-How-You-Drive scenario?
Building on the findings of the previous two research questions, this
research question presents a method that protects a user’s interests and
implements them in a technical and verifiable manner. Special focus
is placed on the diversity of users and their interests. In the course
of answering this research question, both the functionality and the
limitations of external protection methods for existing applications are
considered.
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1.3.2Research Methodology

A methodology defines itself as a contextual framework to accomplish a given
task using a set of specific instruments [402] to eventually support or achieve the
generation of new knowledge applicable to the general public [375]. The Euro-
pean community of business informatics distinguishes two dominant approaches,
namely design science and behavioral science [402]:

▶ Design science as the first paradigm strives to gain knowledge by
creating and evaluating new and innovative solutions in the form of
models, methods, or systems that are beneficial for applied usage.

▶ As the second paradigm, behavioral science is an observant science
that tries to analyze the behavior and impact of existing information
systems on business to generate new knowledge.

Methodology
according to
Peffers et al.

Motivated by the research questions and the goal of shedding light on the
benefits and risks of sensor data, the design science methodology is preferable. In
particular, we rely on the Design Science Research Methodology Process Model
of Peffers et al. [292], outlined in Figure 1.2. The Design Science Research
Methodology Process Model is a problem-centered approach that presents for
each identified task an artifact that is successively expanded, scrutinized, and
revised. It is organized into six activities that do not necessarily need to be
completed in order. Depending on the level of existing knowledge throughout the
community, different research entry points may be chosen. The fact of different
depths of problem awareness is also present in the topic of dual-use of sensor
data, which makes this approach appropriate.

Design
science
research
methodology
process
model

We will now briefly introduce each activity of the Design Science Research
Methodology Process Model (c.f. Figure 1.2).
Identify the problem & motivate The first step is to identify the problem and
motivate the intended research to define the research boundaries. Depending
on the size of the problem, it may be meaningful to atomize the problem
so that an adequate solution can be provided that can grasp the complexity
comprehensively. Furthermore, it is important that such a solution is acceptable
and attracts awareness of the problem throughout the research community.
Within this work, the boundaries were defined by the research questions defined
in Section 1.3.1. Problem identification will be pursued by conducting literature
reviews found at the beginning of each part, explicitly addressing each topic.
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Figure 1.2 Design Science Research Methodology Process Model. The process model is composed
of six interconnected activities following the problem identification and solution. Not all
entry points are considered in this work. (based on Peffers et al. [292])

Define the objectives for a solution The second activity is a requirement
analysis of the solution to be developed based on the defined problem. It is
necessary to have a solid knowledge of state-of-the-art solutions to define a delta
based on it and to determine the result specifications accordingly, This is done
in the respective chapters based on studies (Chapter 9) and Structured Literature
Reviews including related work (see Chapters 4, 7, 8 and 10 to 13).
Design and development The design and development phase is the third
activity and aims to create artifacts according to the defined objective. In fact, this
phase includes not only the construction of the artifact (development) but also its
desired functionality and the architecture (design), with the research contribution
being unambiguously recognizable. Within this work, each part presents one or
multiple artifacts either in the shape of constructs (c.f. Chapter 9), models (c.f.
Chapter 14), methods, or instantiations (c.f. Chapters 4 and 8) [171].
Demonstration The fourth phase is intended to present the feasibility of
the artifacts to solve the problem stated in steps one and two. We conduct
experiments (c.f. Chapters 4, 8, 11, 12 and 14) and simulations (c.f. Chapter 7)
using the methods explained in the previous section. Each scientific environment
is presented accordingly to enable clarity and replicability.
Evaluation The evaluation’s purpose as the fifth step is to understand and show
the ability of the artifact to solve the problem. This activity entails comparing
the solution’s aims to the actual results obtained through the usage of the
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artifact. Qualifying suitability can be established, for example, by metrics and
key performance indicators, but it can also be done through empirical proof. If
needed, a loopback to previous steps, particularly to the third activity, can be
done. In this work, mainly quantifiable measures are used, which are obtained
with the help of the methods specified under the fourth activity. The metrics
are presented in detail at the beginning of the respective evaluations within the
chapters.
Communication Artifacts need to be presented in a consolidated and inte-
grated way if they provide a novel and, in fact, feasible solution to a given prob-
lem in the sixth activity. Therefore, most of the work presented in this dissertation
has been published (c.f. Figure 1.1), became open source (c.f. Chapter 4), and
made available to the scientific community to foster insight into the relevance of
the research, but also to encourage further activities based on open questions.

Research
methods

Due to the size and complexity of the problem that is the subject of this
dissertation, the process is broken down accordingly [292]. One or multiple sub-
artifacts emerge for each of the research questions and are related to each other
so that they can provide an answer to the initial dichotomy in their entirety. The
added value for the research community consists in the expansion of knowledge
and the practically-oriented demonstration of the compatibility of seemingly
contradictory requirements, primarily integrity and confidentiality, with privacy.
Due to this requirement, appropriate research methods are selectively chosen,
which allow a problem-oriented and pragmatic approach (e.g. formal-conceptual
design, prototyping, laboratory/field experiments, or grounded theory) [402].

1.3.3Structure of this Work

This dissertation aims to overview the possibilities and threats associated with
smartphone sensor data. The work is intended to be comprehensive, addressing
several facets of the subject holistically. As mentioned in Section 1.3.2, it is only
feasible to answer the research questions given in Section 1.3.1 by deconstructing
the complexity. This is achieved by separating the work into four parts, each of
which discusses a different aspect of the subject and answers a specific research
question, and is illustrated in Figure 1.3. Additionally, one can see the relations
and implications that each part has on the other sections of this dissertation.
We also feature short sidebars introducing related topics at appropriate points.
These should be beneficial for the understandability of the currently discussed
statements but are not intended to provide a thorough overview. We will now
briefly introduce each part.
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Figure 1.3 Overview of the topics which are the subject of the dissertation including their
relations.

Chapter 1 first introduces the subject area and defines the concept of privacy as
it is understood in the context of this dissertation.
Part I Fundamentals

The first part discusses the fundamentals to establish a common understanding
of the sensor-driven mobile environment. Chapter 2 introduces the fundamentals
of sensor data and connects them to the mobile environment. Additionally,
idiosyncrasies are discussed that must be taken into account when sensor data is
processed. Following that, we show in Chapter 4 an artifact that targets the first
Research Question. This chapter discusses a method for collecting sensor data
from a smartphone utilizing a range of factors. On the basis of these discoveries,
Chapter 5 offers a real-world data set that serves as the foundation for the
empirical evaluations in Chapters 8, 11, 12 and 14.
Part II Privacy by Design-enabled Use Cases

The next part discusses creating sensor-based applications that may be achieved
using sensor technologies accessible on a mobile phone. Thus, it relates to Re-
search Question #2. To provide a satisfactory response to the topic within the
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confines of the dissertation, the fundamentals of privacy-friendly processing
while retaining user interests are introduced and addressed (cf. Chapter 6). The
term Privacy by Design is introduced. A Privacy by Design application demon-
strating how to safeguard a user’s movement pathways despite the transmission
of descriptive data is motivated and detailed in Chapter 7. In Chapter 8, the in-
formative potential of sensor data is extensively explored in a mobile setting. It
is demonstrated how the balanced processing of sensor data may accommodate
divergent requests from many stakeholders.
Part III Privacy Threats

Part three focuses on the abusive potential of privacy in accepted and applied
business models. Therefore, this part focuses on Research Question #3. The
business model in focus is the one of Usage-Based Insurance with its two
manifestations Pay-As-You-Drive and Pay-How-You-Drive, all of which are
introduced in Chapter 9. The relevance to privacy is explicitly mentioned and
further stressed in an overview of side-channel attacks that specifically target
sensor data as provided by smartphones in a mostly unprotected manner (c.f.
Chapter 10). Based on the insight, two attack paths that focus on the UBI domain
are developed and presented. Both show how data can be misused, which must
be considered a threat to privacy. The first approach focuses on identifying
people from pseudonymized driving histories, while the second attack traces
the route driven without relying on location data. With the help of both attacks,
a comprehensive picture of a person can be drawn.
Part IV Protection of Privacy

The fourth and final part attempts to use the findings of Part II to reduce or
completely mitigate the threats of Part III (c.f. Research Question #4). To this
end, a Structured Literature Review is first performed in Chapter 13 to analyze
current building blocks suitable for this task. Building on the UBI environment
introduced in Part III, we show that supposedly conflicting applications and
interests can also be reconciled using the Privacy by Design paradigm and related
constructs.
Chapter 15 again summarizes the findings of this work and situates them within
the research questions from Section 1.3.1.
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2Sensor Data

IntroductionSensors are used to capture their environment’s physical, chemical, or material
properties or to detect changes within their observation. This information can
be qualitative or quantitative, the latter typically being measured quantities. The
properties are detected through physical, chemical, or biological effects and
transmitted in the form of electrical pulses. For example, sensors react to light,
heat, noise, pressure, magnetism, or movement. Active or passive sensors can be
found. Sensors of the former class generate an electrical signal to manipulate the
environment and measure the corresponding effect, whereas passive sensors are
actuated by the measured variable and do not require any auxiliary power. Typical
examples of the former are accelerometers that exploit the piezoelectric effect
or laser sensors for ambient measurements. Hygrometers or magnetometers, for
example, belong to the class of passive sensors.

Actuators as
a companion

The counterpart of a sensor is an actuator, both of which work together in the
sense of measure and react. The output information of a sensor can serve as
the input variable of an actuator, which is a corresponding control element
in a control loop. It translates the electrical input signal of the sensor into a
(mechanical) effect, for example, the opening of a valve.

Analog and
digital
sensors

There is a distinction between analog and digital sensors. Analog sensors con-
tinuously measure an effect, outputting any value over the measurement range,
eventually yielding an indefinite number of output states. Digital sensors, on the
other hand, emit only certain states and, according to their designation, transmit
the data digitally. A special kind of digital sensor is a binary sensor that transmits
only two states, indicating the presence or absence of a defined situation. The
conversion of the measured signal is done directly in the sensor into a digital
representation. This minimizes disadvantages such as the potential change of
the analog signal during transmission and increases the integrity of the measure-
ment (for example, by error compensation in the device), but possibly at the
expense of accuracy since only discrete states can be represented. The difference
in the output variable is illustrated in Figure 2.1. The analog sensor continuously
describes an effect as shown in Figure 2.1a, while the digital sensor discretely
describes it, with a possible loss of information, recognizable in Figure 2.1b.
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Figure 2.1 Example of the same event recorded continuously and discretely. The same event
yields different shapes depending on the processing of the signal.

Time
interval and

frequency

From the graph, it can be concluded that the discrete measurements of a digital
sensor occur at specific points in time. These time points are denoted by t in the
context of this work, where Δ describes the (absolute) time interval between
two measurements t1 and t2. The smaller the time interval, the more accurately
the underlying effect to be measured can be captured. When describing the
intended time interval Δ , we refer to the frequency of a sensor, which is defined
as f = 1

Δ .
In the following, the sensors relevant to this work are presented. Subsequently,
example use-cases are introduced that focus on location-based context. The
chapter concludes with a discussion of the quality of the sensors and opens the
topic of error causes and handling in connection with the processing of sensor
data.

2.1 Overview of Sensors and Sensor Data

Sensor data and their elaboration are the main subjects of this work. Therefore,
sensors are presented, in general, in the following. Due to the emphasis on
mobility, a comparison between vehicle sensors and sensors such as those found
in smartphones becomes apparent at this particular point. This section concludes
with an introduction to sensors that are widely used and vital to the further
progression of the dissertation.
Typical sensor application fields include, but are not limited to, health, industry,
entertainment, mobility, and Internet of Things. For instance, the industry em-
ploys sensors to reduce the downtime of their machines by collecting various
types of metrics and characteristics of machines to proactively plan the mainte-
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nance window accordingly in a dynamic and predictive manner. This process is
called predictive maintenance and is enabled by extensive sensor technology in
machines and the entire production chain.

2.1.1Sensors in General

Sensors have been found in conventional vehicles for quite some time. However,
sensors and their capabilities are likely to be known to the general public from
the smartphone domain. Although both domains are considerably different, for
example, in their requirements, the informative value of the sensors for certain
conditions in the context of mobility is comparable.
Vehicles

Increasing
spread of
sensors

Vehicles are equipped with a multitude of sensors, although the number of
sensors has increased dramatically in recent times. Within five years, the market
for sensors in vehicles is expected to grow by more than 60% in revenue [368].
This is due to the need for modern vehicles that have Advanced Driver Assistance
Systems (ADAS) onboard. These systems support the driver or take over tasks
from him. For example, cruise control helps maintain the distance from the
vehicle in front and performs braking and acceleration maneuvers independently.
A lane departure warning system can also help the driver avoid drifting out
of his lane. Thus, Advanced Driver Assistance Systems (ADAS) contribute to
increasing traffic safety.

Accessing
vehicle
sensors

Vehicle sensor data can be accessed by external systems using an On-Board
Diagnostic (OBD) adapter. OBD is a vehicle diagnostic method that monitors
the systems, especially the ones that affect exhaust emissions, in real-time while
the vehicle is in operation. However, it also allows access to other control
units and to query various sensor values as they are transmitted to the control
unit by the sensor. It is thus possible, for example, to access ABS sensors or
engine speed in real-time, but also data such as acceleration and rotation data.
Acceleration and rotation data are of particular interest in the context of this
work. Data can be taken with the OBD connector. Communication between
different Electronic Control Units (ECUs) in the vehicle is typically done via
a bus system called Controller Area Network (CAN). This is a message-based
system in the sense of the multi-master principle, i.e. it connects several ECUs
that can communicate at the same level. Higher-priority messages are favored in
the event of a message collision. It was first developed by Robert Bosch GmbH
in 1983 and has since established itself on the market. CAN is internationally
standardized in ISO 11898-1.
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Drawbacks
of vehicle

data

Although data accessed through the CAN bus is of high quality as it is directly
derived from a vehicle and thus allows to gain information about e.g. its move-
ment, two major drawbacks are making it uninteresting in the context of this
work. First, dedicated hardware, such as an OBD dongle, is needed to access
the data along with specialized software capable of understanding the CAN bus
standard. Second, physical access to a vehicle is required to install the hardware.
Together, both drawbacks prevent scalability, cost efficiency, and retrofitability.
Smartphones

Accessible
sensor data

interfaces

Smartphones (also mobile devices in general) are likewise equipped with sensor
capacities (c.f. Figure 2.2), but, in contrast, allow data access to onboard sen-
sors using well-documented Application Programming Interfaces (APIs). Any
modern smartphone is equipped with sensors to allow, for example, to flip the
display depending on the device’s orientation, measure if a person is moving,
or adapt the display brightness automatically. Application developers can easily
implement their logic by accessing sensors using a standardized interface.

Varying
quality

However, depending on the sensor and task, the data is of inferior quality
compared to the data directly accessible through the CAN bus [198]. Imagine
a smartphone placed in a vehicle. The vehicle’s velocity can be accessed in
sound quality using the wheel sensors’ data when directly tapping from the car’s
internals. However, when trying to derive the velocity using the smartphone,
one has to use the accelerometer subject to different disruptors (see Chapter 4).
Other literature confirms that sensors can still produce readings close to those of
a vehicle [131]. Additionally, the sensor quality varies between devices [219].

Limited
sensor

information

Furthermore, even though smartphones are equipped with sensors, there are
limited specifications measurable by smartphones in the context of vehicles
compared to direct access to sensors onboard a vehicle [151]. The example
mentioned also illustrates this fact. When using the smartphone, it is sometimes
necessary to derive or extrapolate data to make statements similar to those
that would be possible using OBD, eventually introducing another factor of
uncertainty.

Sidebar A Floating Car Data and Floating Phone Data

Data generated by a vehicle is commonly called Floating Car Data (FCD). The

1 https://geizhals.de/?cat=umtsover&xf=3229_2020; accessed September 9, 2021

https://geizhals.de/?cat=umtsover&xf=3229_2020
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Figure 2.2Share of sensors build-in a smartphone released in and after 2020 after a market
analysis. In total 1352 devices are listed. Shown are sensors with a significant mar-
ket share. Accelerometer and GPS are available in nine out of ten devices. (data by
Geizhals.de1)

principle of FCD is to collect real-time traffic data using vehicle sensors, locating
the vehicle via Globbal Positioning System (GPS), mobile phones, or using
Intelligent Transport System (ITS) infrastructure (see Section 7.2) over the road
network. Data submitted to a centralized processing entity can vary but typically
include speed, location, and direction.
Depending on the information collected and sent, the term Extended Floating Car
Data is also found in the literature. It is commonly used when data is generated
by ECUs and further processed in a vehicle. It allows one to craft messages that
include information about e.g. the condition of the road or traffic flow, as well
as situational traffic disruptions. However, the definitions alternate [53].
Transferring the concept of FCD to the area of mobile devices, particularly
smartphones, formed the term Floating Phone Data (FPD).
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2.1.2 Types of Sensors

We now briefly describe sensors commonly found in a smartphone w.r.t. this
work, mainly following the specifications of Android on sensors [98]. Three
different categories of sensors are available in current mobile devices:

1. Motion sensors measure acceleration and rotational forces in a three-
dimensional space.

2. Environmental parameters such as the air temperature are recorded by
environmental sensors.

3. The physical position of a device can be determined using position
sensors which also includes GPS or the magnetometer.

Distribution
of sensor

types

A market analysis illustrates what sensors are built into current devices. Fig-
ure 2.2 shows the results. Because this work focuses on location and mobility,
we especially emphasize a basic set of sensors for this work. This leaves out
sensors such as barometer, proximity, and brightness, although they have been
used in this academia [172, 341].

Coordinate
system

As will be seen, this work uses data from sensors of the three categories
mentioned above (see Chapter 5). Data is measured with an Inertial Measurement
Unit (IMU), integrating the gyroscope, magnetometer, and accelerometer into
a single device. Each sensor represents a motion sensor and measures a 3-
dimensional vector that represents changes at a given time. The coordinate
system considered for the vehicle is shown in Figure 2.3. The lateral (also
transverse or pitch) axis is called x, the longitudinal (or roll) axis is defined as y,
and z represents the normal (or yaw) axis. A smartphone also has a coordinate
system similar to the vehicles’. However, they do not necessarily need to be
aligned and can have any orientation to each other, but must remain stationary.
We focus on the challenge of aligning both independent coordinate systems, a
problem called smartphone-vehicle alignment, in Chapter 4. Due to the focus on
smartphones in this work and their respective coordinate orientation, it should
be noted that the coordinate system of a vehicle is purposely different from the
one defined in DIN 70000. Furthermore, the direction of the axis, i.e. the output
of negative or positive values, can vary between devices. However, we describe
the sensors using the right-hand convention as shown in Figure 2.2. This is also
the orientation found in most cases.

Gyroscope First, a gyroscope (readings denoted as gyr) is a motion sensor that measures
the rotation of the device around three axes in rad s−1 using the local coordinate
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Figure 2.3Overview of the coordinate system of vehicles and smartphones. To offer compa-
rable sensor readings across different device orientations, the coordinate system of a
smartphone should be aligned with the reference coordinate system of a vehicle. Rotation
vectors can be used to obtain the alignment within a process called smartphone-to-vehicle
alignment. (based on Project [302])

system. Thus, the gyroscope provides information on the angular velocity around
the said axes [385]. The measurement sign denotes the direction of the rotation,
with positive readings indicating a movement clockwise, while negative values
represent a movement counterclockwise. For example, if the mobile device
rotates to the left, readings from the gyroscope along the z-axis will yield positive
values, and rotation to the right will result in negative readings. Consequently,
this sensor is suitable for detecting changes in driving directions.

Magnetome-
ter

Next, a magnetometer (readings denoted as mag) is able to sense the magnetic
field in µT, which acts on the device on the three axes [386]. Since Earth’s
magnetic field is also organized in a three-dimensional space, one can use this
position sensor’s readings in x and y axis to determine a compass heading [187].
This allows one to draw conclusions about a vehicle’s heading, although the
knowledge is only microscopic. However, the magnetometer is subject to dis-
turbances caused by other magnetic fields or surrounding materials since its
vector always points to the strongest magnetic field. The literature came up with
approaches to correct readings in the latter case to improve the accuracy of the
detection of the magnetic field of Earth [187].

AccelormeterAn accelormeter (readings denoted as acc) is used to detect the current accelera-
tion in ms−2 as experienced by a mobile device. Furthermore, the motion sensor
measures the acceleration, i.e. the change in velocity of a device w.r.t. time along
the three axes x, y, z [384]. Measurements of the accelerometer also include
gravitational force. When cleared from this disturbance, the accelerometer gives
insight into a vehicle’s movement state by analyzing the y-axis: acceleration
yields positive values, while braking results in negative values. There are virtual
sensors available, e.g. in Android, that rely on the accelerometer, such as the
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gravity vector (output acceleration due to gravity on all three axes) or the linear
acceleration (tries to remove gravity from accelerometer readings).

Position Pars pro toto, GPS represents a position sensor, which allows the position
of a device to be determined unambiguously in space. This usually requires
a line of sight to a Global Navigation Satellite System (GNSS), whose satellites
continuously transmit their position and time. A GNSS receiver, such as a
smartphone, is able to determine its position and altitude based on at least
three satellite signals and their associated information. The position sensor
requires relatively much energy compared to Inertial Measurement Unit (IMU)
sensors [44, 414]. This limits the use in a mobile environment characterized by
energy efficiency.

Sensor repre-
sentation in

android

All said low-level sensors are available at least since Android 2.3 (API level 9).
Physical sensors are represented by base sensors available for uses that may apply
preprocessing steps such as temperature correction, scale calibration, or bias
compensation [302]. Thus, a sensor is a virtual representation of the underlying
hardware sensor. Multiple new sensors can be created using the data from these
above sensors in different ways, called virtual sensors in Android. Additional
sensors such as the gravity sensor, linear acceleration sensor, or rotation vector
sensor are subject to Chapter 4. They can be accessed using the Sensor Event
API on Android.

2.2 Location, Context Awareness and Motion Sensors

This section contains a definition of location in the context of computer science,
as this term may be understood differently. It contains results derived from
reviews of the literature of Teh et al. [367] and Wasserle [S16]. Particular
attention is paid to mobile use cases, eventually relying on sensor data from
smartphones with a clear focus on location.

Exemplary
use cases

Motion sensors or sensors, in general, can be applied to solve different problems,
as already mentioned. For example, sensors can be found in various environ-
ments, not only in vehicular environments but also in industrial processes to
monitor the state of machines, in smart cities to analyze and steer specific prop-
erties, or in health care to make the lives of individuals safer and more convenient.
Within the context of this work, motion sensors are of particular interest that
have been introduced in the previous section. The mentioned use cases may de-
pend on the location of an entity (including humans). However, location can be
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related to motion sensors that are used to sense the current environment, setting,
or context.

Definition of
location

Consequently, we need to define the term location itself as it has different
meanings depending on the context. It can be understood as a single point
uniquely identifying a position or place, but it is also used to describe a journey
i.e. as a list of successive positions. In this work, a single position is considered
a location with a list of locations called trajectory. The location can further be
divided into an absolute or a relative position as well as co-location. Absolute
location is the unambiguously defined position in space, as determined by e.g.
GPS. The relative location is the location w.r.t. another object. Finally, co-
location may not indicate an absolute location but means a location shared by
more than one entity.

Context
awareness

The location can either be defined using various methods, the GNSS being the
most prominent. A concept of deriving context from the current situation of
entities is called “context awareness”; hence, this concept eventually includes
the location [104]. Context-awareness can be considered a foundation for crowd-
sensing, as it enables a user device, such as a smartphone, to detect, interpret,
and react to changes in the environment. It is an essential building block for
Weiser’s vision of ubiquitous computing. According to Dey [104], the context
is no longer limited to location but considers a process with user involvement
(active or passive). Context-aware systems can adapt to a situation and provide
i.a. convenience to users by automatically sensing the current position, such as a
meeting room, and include this information in a decision-making process, such
as turning off any notifications not to disturb the user; hence triggering activ-
ities based on context. Also, a mobile device can detect if the current context
is driving a vehicle and can start related applications, such as navigation, thus
using a sensor to perceive a setting. In summary, Schmidt et al. [333] defines
multiple benefits of context-aware systems such as adapting interfaces, focusing
information presentation, relieving a user from interaction, or building smart en-
vironments. Consequently, mobile sensors, including motion sensors, are needed
to build ubiquitously context-aware applications. Context is an essential com-
panion to location, as the more contextual information is provided, the better the
user or the system experience [150].

LocationThis motivates the need for robust and pervasive detection of the location. As
the position sensor in mobile devices requires much more energy than other
sensors, other approaches are favorable for detecting the current position or
environment. Therefore, we want to emphasize the usage of smartphone sensors
for location, indoors or outdoors. At the same time, this can be helpful but
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Figure 2.4 Heatmap illustrating sensor combinations found in literature for the achieving
user localization in indoor and outdoor scenarios. The accelerometer, gyroscope, and
magnetometer are often combined and the dominant combination in terms of tracking.
(based on Grohmann [S5])

also dangerous, as Section 1.2 and Part III will show. As part of Grohmann
[S5], a Structured Literature Review (SLR) was conducted that identified 49
articles that used sensor data to determine the whereabouts of a person. Papers
that used GPS as a basis were excluded. The combination of accelerometer,
gyroscope and magnetometer was found to be dominant in different settings (c.f.
Figure 2.4). Thus, of 49 works, the accelerometer is combined 34 times with
the magnetometer and 36 times with the gyroscope. With nine out of sixteen
observations, this is the primary choice when three sensors are combined.

Dominating
approaches

Methodically, Pedestrian Dead Reckoning is the most common approach in the
literature. In this method, the relative position determination takes place, where
position changes can be iterated to a target based on an initial position. A position
change can be determined or estimated in various ways. For example, a person’s
steps can be counted in the context of Human Activity Recognition or, as done
in this work, based on curve trajectories and distance paths in the mobile street
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scenario (see Chapter 12). Path-loss models, in which the signal strength of a
radio connection is evaluated over time, are also used to determine the position.
Other methods include fingerprinting, camera-based localization, and ambient
noise.

2.3Quality of Sensor Data

Sensor-based applications commonly rely on accurate data. Although smart-
phones offer the ability to gather data at a low cost, their accuracy and correctness
are still expected to be feasible in specific applications.

Literature
review
assessing
gyroscope
accuracy

Kuhlmann et al. [219] systematically analyzed the accuracy of the sensor in the
example of spatial orientation, i.e. measurements of a gyroscope. The authors
used two leveled mounting devices to assess the sensor quality of 56 different
smartphones running iOS, Android, and Windows Phone 10. The phones were
tilted on the mounting device in specific orientations, while measurements were
recorded on the smartphone using a dedicated app or a browser-based app API.

Wide-
spreading
inaccuracies

Devices differ in accuracy, as the results illustrate. Some show mean deviations
close to 0◦ and slight variances, while other devices pose mean inaccuracies of
up to 2◦, on some occasions reaching over 6◦ compared to the objective tilt. The
deviations are higher for roll measurements than they are for pitch measurements.
The software implementation does have an impact on the results, but only a minor
one and can be neglected depending on the situation. Interestingly, even the same
device models were not consistent across tests, although the results for a device
are moderately consistent, which means that a deviation in pitch in one direction
shows a positive correlation with the deviation in pitch at other angles. Different
operating systems also had an influence.

Minimizing
fluctuations

The fluctuations in the output of the measured values by the sensors, therefore,
differ depending on the device and the Operating System (OS). Thus, sensor
data is subject to uncertainity [245]. Depending on the application, they can still
be used if the deviations are taken into account accordingly. Usually, deviations
are considered disturbance variables, and an attempt is made to minimize them.
Minimization can be done on the software side or by hardware calibration. The
latter is typically performed during production and stored in the device. It has
also been shown that calibration must be performed separately for each device
since it is device-specific. Zhang et al. [423] have shown that calibration can
serve as a unique identifier for devices since the underlying entropy is sufficiently
high (c.f. Chapter 10).
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2.3.1 Errors

Khaleghi et al. [206] and Teh et al. [367] describes known challenges that occur
in the field of data processing. We briefly summarize them while focusing on
the mobile device sensor context. The given errors significantly influence the
integrity of measurements and eventually lead to wrong conclusions.

Outliers are values that exceed a specific range of expected values accord-
ing to thresholds or specific models. They may also deviate a lot from
previous and subsequent sensor readings.

Missing data or incomplete data describe observations that are not avail-
able for further processing. This holds for entire measurements that are
absent or only specific dimensions that are not recorded (e.g. times-
tamp). There may be various sources for the origin, not limited to
unstable sensor devices, faulty persistence, or any other kind of data
manipulation.

Bias is also known as an offset and describes “a value that is shifted in
comparison with the normal behavior of a sensor’’ [305]. The reasons
are uncalibrated or low-quality sensors.

Drift are measured values that gradually move away from their true value
over time, either constant or variable. The source may be a defective
sensor.

Noise impacts the sensor and consequently its readings, which are not re-
lated to the measured object but have their course in e.g. environmental
influences such as gravity. Noise may vary over time and depend on
the environment.

Stuck-at-zero or Constant Value yield the same sensor readings over a
period of time; either it may be zero or any other constant value that
does not change no matter what influences act on the sensor.

Uncertainty is a state in which it may not be obvious if a sensor reading
is correct or wrong.

2.3.2 Detection and Correction Methods

In addition to the challenges of processing sensor data, Teh et al. [367] presents
different approaches to handle the limited quality of sensor data from mobile
devices. It is crucial to first detect errors in the stream of sensor readings before
adequately handling them. Teh et al. [367] list several methods for detection,
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Univariate Autoregressive ModelSupport Vector MachineStatistical Generative ModelRule Mining

Principal Component Analysis

Polynomial Predictive FilterParticle FilteringOntology/Knowledge Systems
Grey Prediction ModelFuzzy RulesEuclidean Distance

Ensemble Classifiers
DempsterShafer TheoryClusteringBayesian Network

Artificial Neural Network

Outliers

StuckAtZero
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Bias
ScalingMissing Data
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Figure 2.5Methods applied to detect or quantify sensor errors organized by their frequency
used. It is clear that Artifical Neural Networks along with Principal Component Analysis
and Ensemble Classifiers are the most common ones, especially to detect errors like drift,
outliers and noise (based on Teh et al. [367]).

quantification, and correcting sensor errors in their survey. Their statements are
based on 57 publications that have been examined.

Error
detection
and quantifi-
cation

Figure 2.5 depicts methods (right) for the detection and quantification of the
errors presented (left). It is apparent that Artificial Neural Network along with
Principal Component Analysis and Ensemble Classifiers are used for multiple
errors and are preferred throughout the literature. Outliers are the error category
that seems to be the most addressed. In general, approaches based on Machine
Learning (ML) are dominant in the context of detection, quantification, and
correction.

Error
correction

To be able to evaluate the sensor data despite detected and quantified errors, it
is necessary to correct or mitigate errors accordingly. Suggestions for this can
also be found in Teh et al. [367]. Although all the described errors influence
the resulting data processing steps, only a few papers addressed the steps of
trying to correct the data. Papers addressing to correct data seem only to target
missing data imputation, i.e. trying to estimate sensor measurement values for
either missing data or removing noise. The corresponding papers use well-known
methods such as Association Rule Mining, clustering, or k-Nearest Neighbor for
this purpose. Association Rule Mining is the most common one and describes
an approach where the most recent sensor values contribute to the sensor stream
with higher contribution and thus may hint information for missing data. This



36 2. SENSOR DATA
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Figure 2.6 Methods applied to simultaneously detect and correct errors in sensor data streams.
Identified approaches exhibit an overlap with methods for the detached detection of errors.
Some approaches require additional knowledge or predecessioly steps. The most common
error targeted are outliers. (based on Teh et al. [367])

claim may only apply to data without harsh changes in momentum. It may not
be feasible for approaches like Chapter 4.

Combina-
tions of

detection
and

correction

However, in contrast, some papers combined error detection and correction in
one step (c.f. Figure 2.6). The errors addressed were more extensive and covered
all known defects. The basic idea is to use a behavioral model in which atypical
measured values are marked as anomalies. They are replaced accordingly with
an estimated value corresponding to the model. Similar procedures are used as
in the case of detection, namely Artificial Neural Network (e.g. [182]), Bayesian
Network (e.g. [97]), and Grey Prediction Model (e.g. [77]). In the context of
mobile sensor data from an IMU, ML-based models may remove forces that
produce acceleration or movement of a vehicle since these values are sometimes
harsh changes in momentum. Furthermore, Teh et al. [367] identified Calibration-
based methods as a viable approach to correct multiple defects at once. Also,
since an environment evaluation has to be carried out at first [418] to gain
knowledge about the defects of the specific device, and we already know from
Kuhlmann et al. [219] that each device slightly differs in accuracy, such an
approach will not scale well. Next, Kalman filter-based approaches, as presented
by Feng et al. [128] are able to remove short-duration errors such as outliers,
although they must be combined with other approaches to target long-duration
errors such as drifts.
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RemarksThe articles present an approach to a specific research topic in the field of sensor
data, but not inevitably in a mobile context. The approaches applicable in this
environment must be checked. In principle, the movement of a vehicle alone
causes significant changes in the force conditions in very short time intervals. For
example, a short acceleration maneuver that involves a turn can fundamentally
deviate from previous sensor data, which can pose a challenge to model-based
methods.





3Privacy and Security Aspects of
Sensor Data

This chapter introduces the present security concept of sensors in mobile Operat-
ing Systems (OSs), namely Android and iOS. It also outlines threats concerning
privacy and security. In the example of the Joker/Bread attack, it is shown how
attackers circumvent current security mechanisms in mobile Operating Systems
and that there is further need for research and action.

Protected
and
unprotected
sensors

The security concepts of Android and iOS distinguish between protected and
unprotected data (including sensors) and activities. The category of protected
elements typically includes GPS, camera, microphone, SMS, and contacts. To
gain access, the app must request appropriate permissions, which must be
considered by the user. This does not apply to the second class, the unprotected
elements. These can be accessed, evaluated, or edited by an application at any
time in the process. Low-level or base sensors are generally assigned to this
category, including IMU. Hence, they are also called zero-permissions sensors1.

StructureThis chapter first introduces the Android permission system before discussing
its limitations and misconceptions. An example of how the permission system
may be bypassed is presented afterward.

3.1Permission Workflow

Current mobile Operating Systems implement a permission system to protect
access to sensitive data and sensors. We explain the permission system at
the example of Android [100]. Android is developed by the Open Handset
Alliance as open-source based on Linux. It is the most used mobile OS. A
comparable permission system is also present in iOS. Android uses a sandbox-
based approach to isolate Java-based applications within the system; hence, each
application has its own user ID. Ressources such as data storage or sensors are
1 Starting from Safari 13, Apple protects motion sensors with runtime permissions. Also, their
Core Motion framework implements security mechanisms for some motion events based on zero-
permissions sensors.
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not accessible (across processes) except explicitly requested and permitted. An
extensive analysis of Android’s permission system can be found in Almomani
and Khayer [13].

3.1.1 Permissions

There are different types of permissions present in Android, namely install-time
permissions, runtime permissions, and special permissions2. They differ in the
scope of restricted data given access to and the scope of restricted actions that
an application can perform [100].

Install-time
permissions

First, install-time permissions are given to an application once the user installs
it from e.g. an app store after first presenting them to a user. Basically, this
set of authorizations includes powers that change the state of a system only
to a small or no extent. Furthermore, access to protected data is limited. An
example that can be mentioned is querying whether the device is connected to a
network (ACCESS_NETWORK_STATE). Next, normal permissions show little risk
to privacy and system security but allow access to resources outside the sandbox.
RECEIVE_BOOT_COMPLETED, for example, allows an application to wait until
the system has finished booting.

Runtime
permissions

In contrast, runtime permissions are also called dangerous permissions due to
their ability to give access to sensitive and private data or allow performing
restricted actions. They are requested at runtime, with the user needing to
allow them explicitly. Of course, the request can be denied, or permissions can
be revoked at any time. Additionally, Android 11 (API level 30) introduced
one-time permissions as an advanced protection mechanism for particularly
dangerous permissions such as location, microphone, or camera. Examples of
one runtime permissions are READ_SMS or ACCESS_FINE_LOCATION being a
one-time permission.

Special
permissions

Special permissions are another dangerous and extensive set of permissions.
Common apps cannot request them. In fact, they are reserved for the system
itself or OEMs. For example, (READ_LOGS) allows access to system logs that
may contain sensitive data. Lastly, signature permissions reflect the set of
permissions that another application signed with the same certificate has already
requested, and thus they are implicitly given to the application during installation.
2 See https://developer.android.com/reference/android/Manifest.permission for a list of all permis-
sions available in Android at the time of writing

https://developer.android.com/reference/android/Manifest.permission
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1 <manifest ...>
2 <uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION"/>→

3 <application ...>
4 ...
5 </application>
6 </manifest>

Listing 3.1Example of the AndroidManifest.xml (truncated). Permissions are requested by
defining them using the uses-permission tag that includes a unique permission identi-
fier. In the example, the requesting application wants to access the precise location of the
device.

SummaryIn total, there are 167 different permissions present in Android 11 (API level
30), with 30 being dangerous and 47 normal ones [13]. In conclusion, the
Android permission system is a fine-grained permission system enabling end-
users to control actions and data available to the installed application, ultimately
allowing a user to control his privacy. The system then enforces protective
security mechanisms accordingly. However, the system is flawed, as we will
discuss in Section 3.2.

3.1.2Declaring

Static
permission
declaration

Android permissions are declared statically. They are bundled to a specific
application version. The declaration of permissions is done in the app manifest.
The manifest called AndroidManifest.xml contains information about an
application, such as the name, starting activity, or requested permissions.

ExampleListing 3.1 is an excerpt of the AndroidManifest.xml for some application.
The application requests access to the fine location, which allows it to pre-
cisely locate a user using Android location services. Eventually, requesting
ACCESS_FINE_LOCATION, gives an application access to the GPS sensor. Fur-
thermore, an application can also declare whether access to this specific hardware
component is essential or not [99]. If an application tries to access resources or
execute an activity that is not listed in AndroidManifest.xml, the application
ends up in failure.

Selection of
permissions

Sometimes permissions are not needed, for example, READ_EXTERNAL_STORAGE
which allows an app to access data outside of its sandbox. Mostly, it is sufficient
to store application-specific data within the sandbox. The developer’s responsi-
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Figure 3.1 Overview of permissions requesting workflow. The process is seperated into eight steps
and provides general information about how to request permissions from a user from a
developer perspective. [I3]

bility is to find a minimal set of permissions; apart from any drawbacks, this is
considered best practice [100].

3.1.3 Requesting

Once all permissions are declared, the next step is to request them from a user.
As explained, there is a difference between install-time permissions and runtime
permissions. Since the former is granted during installation implicitly (as shown
in Figure 3.2a), this section focuses on the latter.

Multi-step
workflow

Android implements the workflow shown in Figure 3.1. The request workflow
must ensure that the user understands why the application needs specific per-
missions e.g. by showing an explanation. Thus, the request dialog, according
to best practices, shell be shown once the application requires these for further
processing [101] (step 3 & step 5). As one can see, the permission request di-
alog is a system dialog that cannot be altered by an application (step 6). The
user can either allow or deny a request (c.f. Figure 3.2b). The app should re-
spond appropriately (steps 7-8), i.e. “gracefully degrade (...) so that the user
can continue using your app, possibly by disabling the feature that requires the
permission” [101]. This is a one-time process since already granted permissions
do not need to be re-requested.
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a) Install time permis-
sions. [I1].

b) Runtime prompt. [I4]. c) One Time Prompt. [I2].

Figure 3.2Overview of the three different kinds of permission request screens. The Operating
System selects the correct dialogue based on the information provided by a developer in
combination with the permission type.

One-time
permissions

This fact has changed with Android 11 (API level 30), which introduced one-
time permissions [274]. This permission aims to protect particularly sensitive
sensors, namely location (e.g. GPS), microphone, and camera. They are not
persistently given to an app and have to be re-granted. The app can request
access to the data only for a period of time and depending on the user’s choice
(see Figure 3.2c). If a user grants access to the sensor “while using the app”, the
sensor and related data can be used infinitely while the app is in the foreground,
but only a short time in the background (unless explicitly granted using the
Android system settings). A user can restrict access to the sensor even more
by granting the permission “only this time”. In this case step 4 in the request
workflow (c.f. Figure 3.1) always returns no. Finally, a user can, of course,
deny a one-time request similar to other runtime permissions. As a side node,
Android 12 (API level 31) will further allow a user to alter permissions within
that prompt, in particular location (“approximate location” by downgrading
ACCESS_FINE_LOCATION to ACCESS_COARSE_LOCATION).

Housekeep-
ing of
permissions

To further protect a user’s privacy, sensitive runtime permissions of unused apps
are auto-reset by the system starting from Android 11 (API level 30) periodically.
However, a user can disable this automatic behavior for a specific app. In addition,
Android separates between foreground and background processes and enforces
different policies depending on the current type. For example, background
processes are limited in accessing sensors.
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3.2 Discussion on Permissions

Android employs several security mechanisms to ease the burden on the user
and protect his interest. The protection of privacy in Android is based on two
pillars. First, permissions are predefined by the Open Handset Alliance and
resources are segregated accordingly (organizational-based privacy). Users can
make a personal decision using these permissions to determine to what extent
they implement their claim to privacy (user-based privacy).

3.2.1 Organizational-based Privacy

Constant
adaption of

security

In the beginning, there must be an understanding of the potentials and threats
that can emanate from sensors and other resources. Then an authorization
system must be established that has probate means to protect these elements
accordingly (i.e. capable of providing and enforcing security). Android has a
system as previously described [13]. However, the security system of Android
is in constant change. This can be trivially deduced from quantitative figures:
During its development, the number of available permissions has increased
from 73 (Android 1.x API level 1-2) to 167 (Android 11 API level 30). This
corresponds to more than a doubling. Nevertheless, there are currently only
two or three critical levels in terms of permissions, normal and dangerous (see
Section 3.1.1 and Almomani and Khayer [13]). However, the assessment of
which category a permission belongs to is made by the system design but has a
direct impact on the user.

Developer-
driven

explanation

Android, however, shifts the task of explaining permissions to a developer. In
2012, Felt et al. [127] already claimed that the permissions shown to users are
resource-centric. As seen in Figure 3.2b this is still the case in the current Android
version. Android describes in its best practices that a developer should show “an
educational user interface to the user” and that this interface should explain “why
the feature [..] needs a particular permission”3. It is not clear how this practice
is applied in the wild and if it is somehow validated. People also tend not to read
these descriptions thoroughly [215].

Managing
permissions

The management of permissions, though, is a crucial task. The Android system
provides sophisticated tools for it, such as the AndroidManifest.xml to define
permission sets, with users to actively manage their privacy via the request
dialogue or the ability to revoke permissions later. However, Kreuter et al. [215]
3 https://developer.android.com/training/permissions/requesting#explain; accessed September 30,
2021

https://developer.android.com/training/permissions/requesting#explain
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has shown that subjects tend not to revoke any consent afterward (which is true
for 85%of the users). In the past, this can have led to risks if the functionalities of
an application have changed, but the permissions were requested early. Therefore,
Android has introduced an automatic deletion of permissions with Android 11
(API level 30) if the application has not been used for a while.

Official
sources as
false friends

Furthermore, official repositories such as the Google Play Store suggest that
applications are secure. However, this is not the case and can be misleading to
a user [273] who eventually introduces false assumptions into the information
disclosure process (c.f. Section 1.2.3).

3.2.2User-based Privacy

On the user side, the given construct of the privacy paradox occurs, explained Convenience
in detail in Section 1.2.3. The desire to use an application may be great and
outweigh any concerns, i.e. the privacy calculus is relevant in this context. Recall
that people make decisions based on different antecedents. The three aspects of
the triangle are also applicable here and distort the picture accordingly. As we
learned, an application must request runtime permissions when a specific action
should be performed. Thus, it may ask the user to permit, for instance, access to
short message services to automatically receive and process an access code to
confirm an account. Although a user can manually copy and paste this code into
a specific application, it might be convenient to give the application that 
specific permission and allow it to perform the task [110, 188]. This is just one 
example of beneficial-oriented motivation for information disclosure; 
personalization may be another here [202].

Bounded
rationality

Another key term in this context is bounded rationality as defined in this work.
Individuals are therefore unable to derive the best decision in terms of infor-
mation disclosure and the decision of permission choices. The asymmetry of
information regarding individuals and developers (including sophisticated tech
companies such as Google and Facebook) makes the calculation of benefits ver-
sus costs unpredictable since the consequences (i.e. costs/risks) of the disclosure
are unknown, highly complex, and can shape later in the future [344]. Applica-
tions are subject to being over-permissioned, i.e. they request more permissions
than needed [221]. This circumstance is difficult to recognize for a common
user. In order to relieve the user of the decision when asking for permissions,
Android provides descriptive texts and reasons to be presented to the user as to
why a permission is needed. This approach is critical for several reasons. First,
an individual must independently understand the descriptive text. Second, the
description must be related to the consequences, positive or negative. Third, a
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user has to decide whether accepting a permission is justified. People tend to
struggle to make these complex inferences [127]. Eventually, a trade-off takes
place, which is based, however, on incomplete knowledge. People also tend to
underestimate their own protection of privacy [2].

Limited
understand-

ability

However, this assumes in the first place that descriptive texts give appropriate
indications of the authorizations and classify them. This is not necessarily the
case [13]. In addition, people do not tend to read those texts [273]. This is related
to framing effects that describe how a permission request is communicated to
a user to convince him to approve probably. This can also be encouraged by
targeted nudging or other anti-patterning, further distorting the picture. Nudging,
dark patterns, or friction are similar to the framing effect as we explained in
Section 1.2.3. For example, an application may request multiple permissions at
once at the first startup, which is considered a dark pattern and not recommended
by Android guidelines. However, it is common for applications to perform
like this to e.g. prevent any downgrade in the user experience. Accepting all
permissions at once might also be related to the well-known Nothing-To-Hide
mentality defined by Solove [350]. Also, this is related to not being able to
estimate the potential consequences of a specific information disclosure move
(i.e. bounded rationality). Lastly, the context of a person being asked to decide
on a permission request is also important. For example, Germans may be far
more reluctant to disclose information compared to Americans. Hence, culture
must be considered. Of course, this picture can be flipped. People might tend to
permit apps from reputable developers because they trust them [110].
In general, all the antecedents defined and explained in Section 1.2.3 can be
transferred to the field of permissions in Android.

3.2.3 Recapitulation

Coarse
permissions

as limitation

The Android permission system is a fundamental building block to ensure
privacy and security. Recalling our privacy definition, privacy should enable
a user to decide which information is disclosed how at any point freely. However,
this is not completely reflected in the current implementation. In this case, we
are not talking about technical issues where the target level defines the available
permissions and, thus, the provided security level [9] Instead, only a specific
predefined set of permissions exists that is relatively coarse, so deciding which
information is shared is also coarse. Next, a developer decides which function
requires the set of permissions and thus predefines routes a user can take. The
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freedom to choose how information is processed is often limited4. Finally, users
are considered to be able to decide what is best for them. Due to limited awareness
or knowledge in combination with the privacy calculus, more tools are needed.

ConclusionsWe conclude that a permission system itself must be accompanied by Privacy En-
hancing Technologies (PETs) and Transparency Enhancing Technologies (TETs)
to further support a user. Android picked up the idea of Transparency Enhancing
Technologies (TETs) in its next version 12 (API level 31) by introducing a pri-
vacy dashboard and a camera and microphone indicator, as well as basic Privacy
Enhancing Technology (PET) functionality for these two sensors. Within this
work, we focus on PETs and TETs in Chapter 13 and present our own PET in
Chapter 14.

Zero-
permission
sensors

Android’s permission system rarely considers zero-permission sensors. Conse-
quently, users cannot change any of these sensors’ behavior nor steer their usage,
forming multiple attacks around zero-permission sensors with various motiva-
tions, including classification, identification, tracking, and more. Part III will
dive deeper into this topic.

3.3Example: The Bread (Joker) Malware Family

As mentioned, the applications offered on the official store (namely the Google
Play Store) suggest a certain level of authenticity and trustworthiness [273]. The
following example is intended to show that dangers can nevertheless arise from
such applications that are distributed via official resources and also use defined
APIs. Consequently, they are also subject to the Android permission system.
However, as the Bread (or Joker) malware has shown, threats will nevertheless
arise and will require consideration also on the system side, i.e. Android.

From SMS
to WAP
fraud

The Bread (Joker) malware family was a large-scale billing fraud first detected in
2017. The malware initially carried out Short Message Service (SMS) fraud but
quickly adapted to changes in restrictions and switched to Wireless Application
Protocol billing fraud. Wireless Application Protocol is a technical standard and
protocol suite for accessing the information on a mobile wireless network. It
was common in the 2000s with mobile devices having subordinate capabilities
in contrast to recent devices fully able to access standard web services. Joker
applied many different cloaking and obfuscation techniques to circumvent system
4 For example, a user might want to request the closest restaurant to his location and therefore allows
the application to query his current position via GPS. The application is now able to derive the
information for any other purpose
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restrictions, including Google Protect, which scans apps in the Play Store for
malware.

Course of
the attack

The Bread (Joker) malware family originally performed SMS billing by sending
a SMS to a predefined number providing a prescribed keyword. The user’s
carrier then adds the charge for the “subscribed” service to the bill. In addition,
the malware was later able to perform toll billing. A user visits a website to
complete a payment process for some service. Then the payment is processed if
the user connects to the website via a mobile network, i.e. the carrier can identify
the user and add it to the bill. Alternatively, malware triggers a confirmation
SMS on the subscription service and processes it automatically to finish the
process, eventually resulting in billing from the network operator. Interestingly,
the malware was also able to automatically solve the captchas experienced in the
subscription process. Both attacks circumvent the need for entering any payment
information, such as credit card numbers. In particular, the workflow legitimizes
the device, so a carrier will start collecting subscription fees, although the user
never legitimized it.

Hide and
seek game

The Bread (Joker) infection is a two-step process. The diversion application
does not initially contain any malicious code other than a downloader. After
downloading a malicous application from official sources like the Google Play
Store, the infected application initializes itself and starts the fraud by dynamically
loading malicious code in the form of a DEX file (compiled Android application
code file) from a command and control server. The malware also receives
dynamic code and instructions over Hypertext Transfer Protocol and executes
them using JavaScript-to-Java callbacks. Apart from this technique, multiple
other obfuscation methods for strings, data, and API-calls as further layers of
protection against static analysis are in place. Guertin and Kotov [156] gives
more detail on how they were used. The malware family attacked only specific
countries and thus holds a list of specific mobile country codes with a control
server providing respective information to subscribe to premium services. If this
verification is sucessful, the previously described steps are commenced. The
victim must have a Subscriber Identity Module card present, most likely due to
its function.

Countermea-
sures by

google

As illustrated, Joker successfully bypassed many protective measures in place
without the user having any chance to interfere or at least notice any malicious
behavior. Consequently, Google adapted its Play Store workflow to provide
a safe environment to distribute applications. This is essential to be in line
with the subconscious expectation of users [273]. First, the apps were removed
from the store. Then the guidelines for two crucial permission groups (a set
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of permissions), namely call and SMS, were changed so that developers have
to declare their usage before submitting the application to the store [33]. In
addition, Google streamlined the workflow of receiving confirmation SMS in
some use cases by intercepting them on the system side and forwarding them to
an application. This removes the need for an application to request a READ_SMS
permission.





4Alignr

Modern smartphones are equipped with extensive sensor capabilities that can
be processed performantly within the device domain and thus efficiently support
new use cases economically. Furthermore, data from smartphone sensors are
inherently comparable in fault tolerance to dedicated measurement devices [131],
further lowering barriers to entry for new applications. This chapter presents a
framework that supports data acquisition specifically for the issues raised in
this work. It addresses the particular challenges and problems of Chapter 2 by
providing a holistic platform for collecting sensor data with Android devices.

Gps-based
estimation

To grasp the challenges and difficulties of speed estimation, some fundamentals
of velocity calculation will be discussed in the following. The velocity v of a
moving object can be determined based on the GNSS sensor such as GPS (the
terms speed and velocity are used synonymously in the context of this work, even
though velocity also considers the direction of the movement). It is obtained from
the distance between two subsequential GPS locations (loct−1, loct) and their
respective measurement time difference Δ :

vt =
loct − loct−1

Δ

The Haversine formula may be used to calculate the distance between two
locations, as Earth is an irregularly shaped ellipsoid. Modern mobile OSs such as
Android and iOS provide the measured speed comfortably. However, sustained
use of GPS is energy-intensive, which is not suitable for a mobile environment
with limited battery capacities [44]. Thus, alternatives to eventually reduce the
energy footprint are of interest (see also Section 12.2.2).
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Accelerometer-
derived

speed

Given an acceleration acci and a time interval Δ , the velocity of an object at
time ti can also be determined with

vti = vti−1 + acciΔ

with v0 = 0. While the time difference from the last known velocity vt−1 to the
current reading is exactly recorded with each recording, the acceleration has to
be handled with care.

Uncertain ac-
celerometer

readings

An accelerometer outputs the acceleration of an object along all three axes x, y, z,
including the omnipresent gravitational force of high-magnitude that falsifies the
velocity derivation of an object. Hence, the sensor outputs have to be isolated
from disturbances to get meaningful readings, eventually reflecting only the
movement of the said object. However, further disturbances such as the engine’s
vibrations, centrifugal forces, or even the quality of the sensor itself induce other
errors that will degrade the velocity estimation. They have to be filtered out
and handled with care to enable the proliferation of the sensor readings as error
propagation has to be taken into account: Every error will ultimately be present in
all successive readings as each velocity relies upon its predecessor. Consequently,
processing such as filtering or reshaping new measurements has to be conducted
adequately and carefully in order to be able to record as accurately as possible
the actual acceleration of the object under investigation.

alignr In this section, we present alignr, a holistic approach that considers the uncertain
environment of low-quality, error-prone sensor data, complex traffic settings, and
device-dependent biases. It addresses the mentioned difficulties based on proven
approaches from related work, ultimately integrating them in a retrofittable
Android module.

Contribution In the following, we present
▶ an introductory SLR that identifies related works and presents a tax-

onomy of building blocks for velocity inference and error handlings
built upon the findings,

▶ an analysis of sensor data and respective errors when working with
IMU produced measurements,

▶ an approach applying smartphone-to-vehicle alignment including a
Proof-of-Concept (PoC) architecture to derive the velocity of a vehicle
robustly, and

▶ a comprehensive evaluation of the performance and accuracy of the
presented method based on real-world tests.
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StructureFirst, a survey is conducted in Section 4.1 to derive an overview of methods for ve-
locity estimation based on sensor data. The insights are discussed in Section 4.2.
Based upon, Section 4.3 presents another proposal for the given task that takes
into account learnings from related work. Section 4.4 introduces a retrofittable
API in form of a PoC that specifies the technical implementation whose details
are illuminated in Section 4.5. A thorough evaluation and performance assess-
ment follows in Section 4.6. This chapter is concluded in Section 4.7.

4.1Structured Literature Review

A brief analysis of related work in the form of a literature review is intended to
provide an overview of existing methods for inferring the velocity based on IMU
sensor data. First, appropriate research questions are defined, followed by an
explanation of the methodology used. After that, an overview of the document
corpus is presented.

4.1.1Research Questions

The purpose of this review is to derive building patterns for a PoC application
that should i.a. serve as a data collection utility for further research conducted in
this work. The question of interest is an understanding and assessment of how
velocity can be collected based on IMU data. This yields two research questions:

Q1 What approaches and techniques exist to derive the velocity based on
IMU data? What sensors are of interest?

Q2 How are errors within the works handled w.r.t. the deflection and
correction methods known from Section 2.3.2?

4.1.2Search Process

The search process for the SLR is based on Kitchenham and Charters [209] which
requires fitting the research question, clear inclusion and exclusion criteria, and
a definition of the search space, as well as an evaluation with sorting of the
identified work.

Search stringWe selected ACM Digital Library, SpringerLink, IEEE Xplore, Elsevier Scopus,
and ScienceDirect as libraries to look for relevant research. This study focuses
on approaches that can be executed with the support of a smartphone, conse-
quently excluding works that are not feasible given this constraint. Therefore,
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the following search string1, based on the variable for the approach and one for
the recording device, was applied to all libraries.

[ SPEED | VELOCITY ]
& [ ESTIMATION | INFERENCE ]
& SMARTPHONE

Criteria A year range limitation was not specified, but the setting with smartphones or
mobile devices naturally created a youthful study topic. We allowed ourselves to
include work that looked relevant even if it had not been detected using the stated
approach (i.e. forward search and backward search) but deleted any duplicates.
To find relevant work, we created the following inclusion and exclusion criteria.
To address the research questions, all articles that met the requirements were
thoroughly evaluated, including a full-text read and discussion.

1. The proposal tries to infer the velocity based on sensor data not
required to be produced by smartphones.

2. A GNSS sensor is not the main source of information for further
processing.

3. The solution has to be explained in a comprehensible way to extract
the corresponding information.

4. The work proposes a new approach to the problem and is not of type
survey or overview.

Only works in English that are peer-reviewed and accessible to the authors were
considered. No quality assessment was performed as described by Kitchenham
and Charters [209] as only little work was identified. The literature was screened
until the date of the SLR (June 2021).

4.1.3 Relevant Findings

Thirteen publications were selected given the search term and criteria from an
initial corpus of 9884 findings using a semi-automated, multi-step process. We
excluded two publications in favor of their extended versions. The document
corpus, including the publisher and the field of research evaluated, is shown in
Table 4.1. From the number of results, one may conclude that the research field
is not very stimulated; however, there is a steady number of developments. Most
1 For an explanation of the notation, see Appendix B
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works were found at IEEE, followed by ACM and IET (via backward search);
Springer is seen in one case. The aggregated field shows that mobile computing
is leading, including publications focused on sensors. Due to the proximity to
mobility, works can also be found in the field of vehicular topics, such as IEEE
Intelligent Vehicles Symposium.

Table 4.1Overview of the 13 publications identified in the SLR. The works are assigned to
different disciplines.

Publication Year Publisher Field
Gu et al. [155] 2019 IEEE Mobile Computing
Bagheri et al. [30] 2018 IET Mobile Computing
Wang et al. [391] 2017 IEEE Vehicular
Kang and Banerjee [199] 2017 IEEE Vehicular
Yu et al. [417] 2016 IEEE Mobile Computing
Lindfors et al. [234] 2016 IEEE Vehicular
Ghose et al. [144] 2016 ACM Mobile Computing
Chowdhury et al. [82] 2016 Springer Mobile Computing
Leakkaw and Panichpapi-
boon [227]

2014 IEEE Mobile Computing

O’Kane and Ringwood
[285]

2013 IET Mobile Computing

Fazeen et al. [125] 2012 IEEE Vehicular
Wu [406] 2011 IEEE Systems Design
Chandrasekaran et al. [70] 2010 ACM Mobile Computing

4.2Analysis of Speed Inference Methods

Based on the document corpus, the research questions will be answered and
discussed below in this section.

4.2.1Overview of Methods (RQ1)

First, the portfolio of the methods will be considered, that is, which sensors are
used. Then we take a look at the timeline to understand the influence of the
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various works to identify appropriately resilient ones. Last, the availability of
the approach in the form of retrofittable code or an app is explored.

Table 4.2 Relationship of approaches for speed inference and the specific sensors used as a
data source. The accelermometer and gyroscope respectiveley are the most common
sensors.

Publication

A
ccelerom

eter

G
yroscope

M
agnetom

eter

G
N

SS

C
am

era

Bagheri et al. [30] ● ● ●

Chandrasekaran et al. [70]†
Chowdhury et al. [82] ● ●

Fazeen et al. [125] ●

Ghose et al. [144] ● ● ● ●

Gu et al. [155] ● ● ●

Kang and Banerjee [199] ● ● ●

Leakkaw and Panichpapiboon [227] ●

Lindfors et al. [234] ●

O’Kane and Ringwood [285] ● ●

Wang et al. [391] ● ●

Wu [406] ●

Yu et al. [417] ● ●

Sum 12 6 2 4 1
† Paper relies solely on the signal strength

Applied
sensors

The sensors employed are assigned to the respective articles in Table 4.2. All
methods have in common that they work based on the accelerometer and process
corresponding measured values. This is obvious because of the physical causality
of acceleration and velocity. The work of Chandrasekaran et al. [70] holds a
unique position as only the signal strength of a cellular network is used as a basis
for detection. Looking at the combinations, it is noticeable that the accelerometer
is often combined with the gyroscope, the second most common sensor. All the
newer works use this sensor, which could be due to their prevalence and presence
in smartphones. One work also uses the camera, and thus cannot be considered
a permissionless application, just like GNSS-based works (c.f. Section 3.1).
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2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2011 Wu [406] motivate the use of the accelerometer

for speed inference in replacement of GPS

2013 O’Kane and Ringwood [285] enable a fusion-based

approach of GPS and IMU to gain speed information

2016 Yu et al. [417] first combine the accelerometer and gyroscope

2016 Yu et al. [417] propose to use reference events such as

turns or road deflections to determine the speed

2016 Ghose et al. [144] use the magnetometer as

an additional sensor

2017 Wang et al. [391] apply Neural Network the accelerometer

and gyroscope based velocity estimation

Figure 4.1Timeline with noteworthy publications in the field of velocity estimation based on
IMU sensor data.

The latter class of works [82, 144, 285] focuses on improving the GPS signal
and simply fuses the sensor data accordingly2. Lindfors et al. [234] require
the sensors (accelerometer) to be attached to the chassis of a vehicle, inducing
additional expenditure.

TimelineBefore 2011 and the work of Wu [406], speed estimation approaches (e.g. [70])
were present that used the cellular network as a source of information. Specifi-
cally, they used the handover process to determine the area and a related road
segment where the handover occurred. Using this information and a second han-
dover location, the distance can be calculated, and eventually, a (rough) speed
estimate can be made [70]. With reference to Figure 4.1, 2016 was a dominant
year in the context of sensor-based velocity estimation. First, events were intro-
duced [417] and the gyroscope was also considered in newer approaches [417].
With the ongoing development of ML, Neural Network (NN)-based approaches
were seen in 2017 being projected on the problem of interest [391].

2 Similar approaches in the field of trajectory reconstruction are shown in Section 12.2.2.
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Availability The next property considered is the availability of the various proposals. Existing
implementations allow for the direct applicability of suggestions. Especially for
ML-based methods, a learning phase is omitted, which has a direct impact on the
goodness of the method. Looking at the corpus of documents, it can be seen that
for most of the papers (eleven out of 13) found, only a concept or PoC is presented.
Thus, such works lack an available implementation. Two articles mention the
availability as an application [30, 199]. In particular, no open-source projects or
similar are publicly available for embedding the speed estimation approach in
own work.

4.2.2 Deflections and Correction Methods (RQ2)

We now discuss the different deflections and error sources discussed within the
document corpus’ works. Consequently, a taxonomy is built on the document
corpus that integrates different approaches and streams for the problem.

Deflections Different types of errors and deflections that eventually impact the velocity
estimation were introduced in Section 2.3.2. The types of errors mentioned can
also be found in the literature. Table 4.3 considers the errors and presents the
implications for speed estimation.

Challenging
countermea-

sures

One can use the random walk model to understand these errors and their impact
on speed prediction [68]. Second-order random walk-shaped errors such as bias
are more challenging than first-order random walk errors, such as noise. This is
because a particular type of error propagation also holds for such errors itself:
each successive measurement is dependent on the previous state, yielding a
dependence on the measurements themselves. Let us discuss an example to
understand this issue: A vehicle drives at a specific, roughly estimated speed,
then passes through a curve. In this case, a third force comes into play that is
measured by the accelerometer, the centrifugal force, which can be considered
“bias” in the context of velocity estimation. One has to remove gravity (a constant
bias) and centrifugal force (a proportional bias) to get only the acceleration.
Gravity is independent of previous measurements, as it is an absolute force.
However, the centrifugal force must be calculated based on the vehicle’s current
speed. Contradictory, this is also only an estimate itself. In summary, each error
motivates the need for specific counter-operations to reduce them accordingly
to allow accurate velocity estimation ultimately.

Taxonomy of
building

blocks

The next step is to look at how speed estimation is composed in the individual
proposals. Based on commonalities, building blocks were extracted, which in
combination form a pipeline for speed estimation. The resulting taxonomy is
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Velocity Estimation Building Blocks

Pattern-based

Event

Standing

Turns

Road
Defects

Correlation

Calibration-
based

Rotation

Orientation

Standing

GPS-
Assisted

Global

Approxima-
tion-based

Envelope
Detection

Sampling

Regression

Filter-based

Bayesian
Filtering

Noise
reduction

Low/High-
Pass

Aggrega-
tion

AI-based

Neural
Networks
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Continuous Integration

Figure 4.2Taxonomy of building blocks that may be applied to the problem of velocity infer-
ence from sensor data. Five different classes are identified with multiple subordinate
approaches based on the information found in our document corpus. Event-based and
Filter-based approaches are majorly found in the literature. Some approaches are used to
reduce errors of sensor data to allow the integration of continuous readings.
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Table 4.3 Identified errors in literature. Error are caused by different defects. Each of them has a different effect on the speed estimation.

Error Description Reasons Effect on Speed C†

Bias An offset of the sensor readings
from different types of sensors that
can either be constant, proportional
to the measured value, or random.

low sensor quality,
missing calibration

An overlaying speed error
that grows with each
measurement depending
on the bias type.

Constant
Value

A sensor outputs the same value
over an extended period of time
independent of the environment

defective sensor,
unresponsive
measurement
interface

A constant speed for a
period of time

●

Drift A (deterministic, constant) error
that grows independently of the
measured values over the duration
of the measurement process.

defective sensor, low
sensor quality

Degradation of the speed
estimation accuracy over
time

●

Missing
Data

No sensor readings are gathered for
either a short or extended period of
time

defective sensor,
unresponsive
measurement
interface

A constant speed for a
period of time

●

Noise Random measurement values (i.e.
white noise) that follow a standard
distribution and overlay the actual
sensor influences.

low sensor quality,
temperature effect

Degradation of the speed
estimation accuracy with
each measurement value

continued on next page
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Outliers Harsh, probably short term changes
in the sensor readings to values
outside of a meaningful range

external impact,
sensor defect,
temperature effect

Induced offset of the speed
estimation

Uncer-
tainty

Unreliable sensor readings are
generated

complex
environment,
external impact

An unknown error of the
speed in size and shape
compared to the ground
truth

† denotes if the error is constant over a period of measurements
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shown in Figure 4.2. Five basic building blocks that are used for different
purposes could be identified.
Pattern-based Approaches First, pattern-based approaches [70, 125, 199,
227, 234, 417] have in common that they try to find patterns in the data
from which the velocity is known or from which the velocity can be uniquely
determined without depending on previous measurements. In this way, the
propagation of errors should be counteracted. Event-based patterns can be found
in the document corpus. Notable are the standing times, at which the speed can be
set to 0m s−1 [199, 227, 417]. All the measured acceleration values acting now
come from gravity, which is a perturbation. Yu et al. [417] suggests with curves
and road defects (i.e. potholes), two more events that can be used. Thresholds
are often defined to detect events; for instance, a standing phase begins when the
length of the acceleration vector roughly equals gravity. Event-based patterns
are discussed in more depth in Section 4.3. On the contrary, correlation-based
approaches do not attempt to derive the speed from measurements but use
prerecorded and velocity-labeled sequences for comparison [70]. It is assumed
that similar measurements yield similar speeds w.r.t. the known data.
Calibration-based The second identified building block is calibration-based
methods that target gravity or even the slope of the trajectory, which eventually
also alters the gravity impact of different sensor axes. This class can be divided
into methods that apply rotation and those that detect the orientation in an initial
or ongoing process. To measure the acceleration that reflects the acceleration
of vehicles, the axes of the smartphone and the vehicle must be aligned, which
is commonly known as a process called “smartphone-to-vehicle-alignment”.
Rotation [82, 144, 199] is performed mainly by moving the three-axis coordinate
system e.g. using the gyroscope or rotation matrices (e.g. quaternions). To level
the coordinate system, the orientation of the device is of interest. The most
straightforward way is to use the standing phase, where only gravity acts on
the accelerometer [199, 417] and, eventually, the share of the three axes allows
conclusions to be drawn about the position of the smartphone in the vehicle.
Next, GPS-assisted approaches [82, 144] are also found that use trajectory
information to assess the meaningfulness of estimated speeds. Finally, the global
approach [30, 144] uses the magnetometer to detect the device’s orientation
toward the magnetic north. Subsequently, calibration-based approaches are often
used in combination with ongoing rotation methods, as explained, although this
is not a general rule [30, 144].
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Approximation-based Since the task of estimating velocity is complex, there
are other methods that work on approximations. Here, three different approaches
are found, which are known from other disciplines like audio signal processing.
The basic idea is to build a model that reasonably classifies a course of measured
values in order to increase the quality. For example, in Envelope Detection [30],
maxima are used because they are assumed to approximate the true velocity.
Combining these maxima with splines produces the velocity profile that is used
as an estimate. Similarly, regression models, for example, attempt to form a
polynom [227, 285, 406] that corresponds to the velocity profile. Sampling uses
intermediate values for the task [144, 227].
Filter-based Filters are commonly seen in literature and are intended to detect
outliers (low- and high pass filter) or smooth out noisy sensor readings (aggre-
gation [30, 417] such as moving average). They are often found as intermediary
steps within an approach and are often present in combinations such as Kalman
filters combined with low- and high-pass filters. In addition, multiple low- and
high-pass filters are combined [30, 125, 144, 285]. Bayesian filtering as a cat-
egory is dominated by the Kalman filter found in many works [234, 285, 406].
Considering [219], filter-based approaches should be used carefully as differ-
ent devices may require specific parameter settings. It is striking that different
works rely on different smartphones within the evaluation such that filtering
approaches are not comparable. Furthermore, slight variants in the sensors read-
ings may have an extensive impact on further velocity estimations because the
error propagation problem is not be leveled using filters. That process might be
challenging. Bagheri et al. [30] uses noise reduction techniques known from au-
dio processing for filtering, namely Environmental Noise Cancellation, but this
method requires additional knowledge of the type of noise that is being removed
from the measurements.
AI-based Last, also Artificial Intelligence (AI) methods, in particular, Neural
Network (NN) are found. The works [155, 391] both rely on Long short-term
memory (LSTM) networks, as this method can memorize a previous state and is,
therefore, feasible to process time series-based data. For this purpose, previously
measured values of a few seconds can be provided to the systemlt [155]. The
use of LSTM allows the processing of raw sensor data, which are fed into a
first layer (input layer). In the training phase, the system learns the correlations
between sensor values and speed, although the dependence on the vehicle and
mobile device used to record the training and test data remains questionable.
Furthermore, a “mechanism of correcting the accumulated error is expected
to be built into the network” [155] which is a strong statement considering the
complexity of the task. In particular, both approaches have the same architecture
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with a double layer LSTM, and the same feature inputs (accelerometer and
gyroscope) as [391] is the predecessor of [155] (hence, to be precise, NNs are
only found a single time for velocity inference).

Conclusions
from the

taxonomy

The identified building blocks aim to increase the quality and accuracy of the
measured sensor values, each specifically fitting for a particular set of errors. This
is particularly true for elements of the calibration and filter class. The relationship
between errors and potential building blocks is shown in Table 4.4. Then, these
preprocessed sensor values are then i.a. integrated with the classical approach
using the known formula for velocity.

Table 4.4 Relationship between errors and the specific building blocks. The building blocks are
used to counter the identified errors, with overlaps in terms of methods.

Building Block
Pattern-based

>Event

Pattern-based
>Correlation

Calibration-based
>Rotation

Calibration-based
>Orientation

Approximation-based

Filter-based

AI-based
Err

or

Bias ● ● ● ● ● ● ●

Constant Value ● ●

Drift ● ●

Missing Data ● ●

Noise ● ● ● ●

Outliers ● ● ● ●

Uncertainty ● ●

Real-time
suitability

The methods can be further divided into real-time capable methods [30, 82, 125,
144, 155, 199, 285, 417] that can directly estimate a velocity during a recording
and those that calculate the speeds ex-post after completion of a trip [30, 70,
227, 234, 391, 406, 417]. The latter methods usually show more accurate results
since, for example, detected events in the sense of backtracking can also affect
previous measurements. This is also in line with statements about hybrid velocity
estimation approaches, which are capable in real-time as well as ex-post capable.
These perform better in the latter operating mode [30, 417].
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4.3A Retrofittable Take on Speed Inference

OrientationFirst, such a proposal should consider the arbitrary positions of a smartphone
within a vehicle, which is not the case in some works. Thus, smartphone-
to-vehicle alignment must be present and work robustly, as it is crucial for
further processing. To meet this requirement, methods from the calibration
building block are suitable. In particular, we will measure the orientation in
the stationary position via an accelerometer because there, as already described,
only gravitation is effective. Using standing phases, of course, implies that it can
be detected with high confidence. The gravitation is successively rotated with the
help of the gyroscope (rotation-based approach) so that the respective fractions
are distributed on the axes according to the momentary orientation to allow for
a slope-aware alignment [199]. Therefore, we also rely on approximation-based
methods as the rotation can only be sampled in a non-continuous manner.

Uncertain
sensor
quality

Next, noisy and faulty sensor data should be handled accordingly to overcome
the estimation degradations illustrated in Table 4.3. Especially outliers need to
be detected, and their impact on the velocity inference has to be reduced. The
quality of the sensors must also be taken into account accordingly so that drift,
for example, must be detected and compensated. In the best case, an algorithm
can independently detect constant error variables and evaluate them accordingly.
Therefore, filter methods from the respective building block will be implemented;
hence, they must be applied carefully, not falsifying the measurements.

Reference
points

The uncertainty of the whole process should be considered by detecting and eval-
uating events found in measurements similar to Yu et al. [417] that will function
as reference points where the fragility of the entire estimation is reduced. The
process of event detection can yield meaningful results, as shown in the litera-
ture, but may be resource-intensive, especially when performing sophisticated
pattern recognition. As a smartphone only poses a constrained environment with
limited computing performance, an approach must be specifically optimized for
such a context to enable the real-time processing of sensor data.

Retrofittabil-
ity

To enable real-time usage of the approach, it must be retrofittable in known
ways to ultimately represent a drop-in replacement for speed acquisition. There,
appropriate APIs need to be available that are similar to the ones known from
working with GPS-based data. Furthermore, the proposal must be accessible e.g.
as open-source.
In the following, we will present an analysis of the applied building blocks and
how they will be included in the proposal. Figure 4.3 posts that pattern-based
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Figure 4.3 Applied building blocks within the proposed approach. The taxonomy (c.f. Figure 4.2)
from the literature review is used to create a superset of methods to integrate into an
holistic approach.

elements will be found, as well as calibration-based ones, and eventually filter-
based methods.

4.3.1 Overview

Our proposal for velocity inference based on sensor data is called alignr. It
incorporates multiple building blocks of the taxonomy to address the initial
problems. The architecture and flow of the process are illustrated in Figure 4.4.

Flow alignr uses data from the accelerometer and gyroscope and acquires it using a
standardized APIs, i.e. the Android SensorManager. This data is then cleaned
from gravity, which is a significant disturbance. The data cleaning process is
accompanied by a continuous rotation of the coordinate system of the mobile
device that records the data. The objective is for both the smartphone and the car
to have the same orientation in a three-dimensional space so that the sensor data
recorded by the smartphone represents an approximation of the forces acting on
the vehicle. Successively, events known from the literature are extracted from
the data, and the speed is estimated either based on identified events or in a
continuous manner using the integration method introduced at the beginning of
this chapter. Multiple modules then process the derived speed to minimize the
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Figure 4.4Overview of the design of alignr. Data is gathered using in-built sensors and then
preprocessed to reduce noise and bias. Successively, events are extracted from the data,
and the speed is estimated either based on identified events or in a continuous integration
manner. In parallel, the die coordinate system is aligned with one of a vehicle. Error
minimization is performed to increase the velocity estimation accuracy. The approach
can be accessed using a SensorManager compatible API or directly integrated in an
Android application using LiveData support.

error. Here, sanity checks are performed to address the problems of uncertainty,
drift, and bias.

Employing
alignr

A fundamental requirement for alignr is the ease of use and the ability to embed
it in apps. For this purpose, the approach can be accessed via a SensorManager-
compatible API that extends the well-known Android interfaces to also capture
velocity similarly to other sensor resources. Additionally, the velocity estimation
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Figure 4.5 Example of a trajectory with a standing phase. During the standing phase, the fluctua-
tions measured by the accelerometer decrease on all three axis and stay within a certain
threshold for an extended period.

and associated parameters can be integrated directly into an Android application
that provides support for LiveData3.

4.3.2 Events

By including events in the velocity calculation, the quality of this estimation
can be increased. Events allow the calculation and conclusion of the velocity
without the problem of error propagation, which is known to introduce a large
uncertainty into the calculation. Likewise, the influence of disturbance variables
such as gravitation is reduced, and alternative computation methods than the
integration approach are resorted to. In the following, three known events from
the literature are considered, namely, detection of the standing phase, impact of
turn events, and evaluation of road defects [417].
Standing Phase

Due to various factors, such as bumps on the road, the movement of a vehicle
causes an increase in noise, which is detected by the accelerometer. However,
once a vehicle comes to a stop, the sensor noise drops dramatically and moves in
a narrow band around the rest position. This condition is shown in Figure 4.5 that
3 LiveData enables to continuously monitor (fast-)changing data structures and eventually updates
a user interface efficiently and effectively. It is aware of the current state of an application and the
recommended way to bind data types to components in the user interface; see https://developer.
android.com/topic/libraries/architecture/livedata.

https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
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illustrates the measurements of the y-axis of the accelerometer (accy). The color-
coded area symbolized the phase when the velocity decreased to 0. It is initiated
by negative readings, representing a braking maneuver, and delimited by a solid
positive deflection, the subsequent acceleration. This phase is of fundamental
importance in the approach because it is the only phase that allows for a reliable
and confident estimate of the speed.

DetectionThe reduction in noise that defines a standing phase can be seen on all axes.
Therefore, the accelerometer is continuously analyzed on all three axes by
calculating a short (e.g. 1 s) rolling standard deviation s̃td based on the length
of the accelerometer vector |acc|. If this value falls below a certain threshold
�S,� , then a standing phase is assumed. If �S,� is exceeded again, the velocity
integration continues. Even though gravity is included in this process, it is static
and, therefore, does not matter.

False
positives

It is crucial to balance between false positives and false negatives. A too-late
exit from the standing phase (false positives) leads to the fact that initially
strong acceleration, as shown in the figure, is not fully considered in the velocity
estimation and inevitably leads to a deviation that affects all future values. The
same applies to the false detection of a stationary phase in the middle of a regular
trip. Thus, the system is designed to avoid false positives but at the same time
accept false negatives. These have little effect on the speed estimation and lead
only to negligible deviations from the estimated to the actual speed, which is
zero. This is due to a short phase of velocity integration during false-negative
detection, during which, additionally, usually no significant forces act on the
accelerometer.

Turn Events

A turn can be detected using the gyroscope, as this sensors measures rotation
around all three axes. Hence, the z-axis (c.f. Figure 2.3) will yield information
about the rotation of the vehicle e.g. while turning. The relationship between a
turn and the respective measurements on gyrz is shown in Figure 4.6, where in
total four turns are present. Sharper turns yield higher peaks with more steering
involved, and the direction of the peak represents the direction of the turn.

Derivation of
velocity

This sensor is independent of the current speed of a vehicle and any acceleration
that impacts it. However, another force is introduced when turning, namely the
centripetal force, which is picked up by the accelerometer. This force can be
calculated using the gyroscope and the accelerometer to gain the tangential speed
of a vehicle, as shown by the relationship in Figure 4.7 [393, 417]. Let r be the
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Figure 4.6 Example of a trajectory with four turns. Turns can last for different lengths of time
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Figure 4.7 Relationship between the centripetal force, the tangitial speed and the speed of a
vehicle. (based on Wang et al. [393] and Yu et al. [417])
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radius of the turn, w the angular velocity, and accx the centripetal acceleration.
Then the vehicle velocity is defined per

v = wr =
accx
w

This expression assumes that the angular velocity w induced by the turn is equal
to the angular velocity of the vehicle, denoted as w′. Furthermore, the unknown
radius r of the turn can be substituted by r = accx∕w2.

Noteworthy
details

The speed derived by turns does not rely on previous speed estimations. Hence,
it can be used to eliminate potential deviations induced by the integration-
based approach. This is a sampling-based method, as the current velocity of the
turn can only be calculated once new measurements of the accelerometer and
gyroscope arrive. However, we empirically found that early turn measurement
values show speeds that are typically too high. The estimated velocities become
more accurate with the forthgoing progression of a turn, so later measurements
are weighted higher in the calculation. In addition, the accuracy of the previous
method depends on the turn speed, with slower speeds resulting in more accurate
predictions [417]. To derive the velocity based on this event, the sensor stream
is continuously observed for any occurring turns. Later, we also introduce some
optimization to only select feasible turns for calculation and thus reduce the
impact on the system.
Road Defects

Additionally, the proposal to use road defects from Yu et al. [417] is adapted
but extended to be feasible for real-time processing in the capability-limited
smartphone environment. In general, time series data may seem random, but
reoccurring patterns are present as time series, in our case, are generated by
sensor data that, apart from bias and noise, are influenced by the driving behavior
and eventually road conditions. When a vehicle passes a road defect, such as a
bridge joint, a repetitive pattern is created that becomes observable via the z-axis
of the accelerometer. Such a sample is depicted in Figure 4.8. It is formed when
the vehicle is exposed first to an impact on the front axle, followed by the rear
axle. Consequently, there are two peaks present that semantically belong together.
The time difference Δt of both peaks can be extracted from the measurement
data and allows the calculation of the velocity using v = d∕Δt, if the covered
distance is known. d, however, can be assumed to be static, as in this case it
equals the wheelbase of a vehicle. Noticeably, speed inference is only possible
up to specific values due to sensor and physical limits [417]. We also refer to
Section 5.4 and Chapter 8 for a more detailed analysis of the derivable patterns.
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Figure 4.8 Example of a trajectory with a road defects. Two successive peaks are detected that
are induced by the front followed by the rear axle passing the same road defect. A peak’s
highest point used for velocity estimation is only a single measurement.

Matching
peaks

Yu et al. [417] uses autocorrelation to match two related peaks, which requires
continuously calculating the similarity between two segments. Normalized auto-
correlation yields a number in the interval [0, 1], with nearly identical segments
closer to 1 and dissimilar segments closer to 0. That is, the current segment
where a peak was detected and previous (or lagged) segments in the time series
measurements up to a certain threshold �B,l posting a similar peak. This requires
calculating the correlation of the time series with a copy of itself as lags (i.e.
delays) of [±1,±2,… ,±�B,l]. The time distance between the two peaks is the
lag with sufficiently high similarity. Therefore, this delay is Δt ≤ �B,l.

Simplifica-
tion of the

detection

Notably, the calculation of the correlation up to ±�B,l must be faster in sum than
the acquisition frequency of sensors measurements for it to be applicable. A
property of road defects is exploited to overcome the computationally intensive
task of comparing similarities within a high-frequency time series data stream.
Autocorrelation can occur only if a peak is detected; only then does the need to
search for a second one arise to yield the pattern of interest. Therefore, a short s̃td
of accz is kept; if there is a rash that justifies a deeper analysis, autocorrelation
can be triggered.

4.3.3 Coordinate Alignment

To derive meaningful events as described previously, an aligned mobile device
is assumed with its axes being congruent with those of the vehicle. This task
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is known as smartphone-to-vehicle alignment and was already mentioned in
Chapter 2. Now we explain how to align the smartphone and vehicle based on
Wang et al. [393] who employ a rotation matrix to achieve alignment, referring
to calibration-based building blocks. It should be noted that this yields an initial
orientation of the vehicle and smartphone that is based on the accelerometer and
gyroscope. It does not take into account potential changes between the relative
orientations of both, although the position of the device may change slightly
over time, for example, caused by driving maneuvers. However, it is sufficient
to assume that the mobile device is not moved in addition while driving, as it
is forbidden in most countries to use the smartphone while driving. A static
position in the car, e.g. in the can holder or on the dashboard, is assumed, yet it
can be of arbitrary orientation. We refer to this statement throughout this work
multiple times. In the end, the coordinate alignment task has to be repeated from
time to time.

Rotation
matrix

First, a rotation matrix  is constructed [393]

 =
⎡

⎢

⎢

⎣

xi xj jk
yi yj yk
zi zj zk

⎤

⎥

⎥

⎦

where ⟨x, y, z⟩ represents the coordinate system of the vehicle with the unit
vectors ⟨i⃗, j⃗, k⃗⟩ (c.f. Figure 2.3). If the devices are perfectly aligned, the matrix
formed by the three vectors i⃗, j⃗, k⃗ will be an identity matrix (i.e. j⃗ = (0, 1, 0)T).
However, in reality, this is rarely the case, as the ⟨x, y, z⟩ axes of the smartphone
equalling the ones of the vehicle. Therefore, each vector has to be determined
to eventually use  to rotate sensors readings by the smartphone back into the
vehicle coordinate system.

Finding
unknown
parameters

A process that has proven its feasibility in finding the unit vectors is as follows.

k⃗ The accelerometer measures gravity gra once a vehicle is standing
still, which is assumed to be the z-component of a vehicle. Therefore,
k⃗ can be determined by evaluating the sensor readings during this pe-
riod, probably using averaged values. The vector as the output of the
current readings of the smartphone’s accelerometer is normalized and
smoothed using a low-pass filter to set it as k⃗. A fundamental assump-
tion is that the whole gravity also impacts solely the vehicle’s z-axis,
which is probably not the case due to sloppy roads or uneven surfaces.
To overcome this drawback, we introduce a reoccurring determination
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of k⃗ and dependent variables at each stop. We empirically noticed that
the vehicle’s orientation during a trip is even.

j⃗ Within the coordinate system, j equals the y-axis, thus the vehicle’s
acceleration. The linear acceleration virtual sensor (that is based on
the accelerometer but removes gravity and other noise4) is used to
detect the orientation by observing the proportion of the acceleration
solely from the vehicle impacting the smartphone. This only yields
meaningful results if and only if the force acting on the smartphone
is due to the vehicle accelerating or braking. Hence, we refer to the
gyroscope to only collect acceleration readings when true linear move-
ment is present, i.e. the gyroscope does not measure any significant
rotation. This rules out any centrifugal force biasing the readings. On-
going readings are collected and aggregated as soon as no rotation is
picked up to improve the accuracy of j⃗.

i⃗ In the system of equations based on three variables, the last unknown
component i⃗ can be calculated by the cross product of k⃗ and j⃗.

Continuous
rotation of

sensor
readings

The rotation system  is accurate after determination (approximation-based
approach). With further progression of a trajectory, it may become inaccurate due
to environmental impacts on the vehicle or smartphone. Therefore it is important
to readjust it whenever possible to effectively rotate sensor readings from the
smartphone into the vehicle coordinate system.

4.3.4 Rotation-based Gravity Removal

Even though gravity should only be present on the z-axis due to the rotation
of the coordinate system within the framework of smartphone-to-vehicle align-
ment, this assumption is unrealistic in reality. Therefore, it must be continuously
removed from any measured values. The goal is that the y-axis measures ac-
celeration or braking events while accx represents the centrifugal force, which
is necessary for the curve-based speed estimation. Gravity should be applied
exclusively to the z-axis.
Android-Provided Functionality

Android provides virtual sensors that address the problem. However, as it
becomes evident, these sensors are too coarse to be used for speed estimation.
4 We will later discuss this sensor and its inability to be used for velocity estimation because of
inaccurate measurements.
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Filter-based
approach

Android provides virtual sensors to split the acceleration (TYPE_ACCELEROMETER)
into linear acceleration (TYPE_LINEAR_ACCELERATION) and gravity (TYPE_
GRAVITY) [102]. A low-pass filter can be and is used to filter out harsh yet
short spikes in the acceleration readings that can be attributed to movement,
i.e. TYPE_LINEAR_ACCELERATION. The parts that are admitted by the filter are
then assigned to be the gravity portion of the current reading. However, the
assumption for that calculation will not hold in our case as the acceleration in
mobile environments may last for more than a few seconds which ultimately
convinces the low-pass filter to assign such parts of linear acceleration to the
gravity vector, eventually skewing it5. Using such a derived gravity to subtract
from the accelerometer will yield too small linear accelerations, making this
approach (even with an optimized alpha) not applicable.

Rotation-
based
approach

A second approach that is provided and adaptable for the given task relies on
a rotation vector (TYPE_ROTATION_VECTOR) that is a composed sensor [102].
The sensor fuses data from the accelerometer, gyroscope, and magnetometer
to provide a measurement of a rotation based on a reference coordinate system
where the z-axis always points to the sky and the y-axis to magnetic north (the x-
axis can be calculated from both). The output is a quaternion [220] representing
the rotation of the device along the axes referred to the reference coordinate
system. A quaternion q is defined as q = ⟨cos( �2 ), x ⋅ sin( �2 ), y ⋅ sin( �2 ), z ⋅
sin( �2 )⟩, where � is the rotation around a normed vector ⟨x, y, z⟩. For instance,
a rotation around the x-axis with angle � yields q = ⟨cos( �2 ), x ⋅ sin( �2 ), 0, 0⟩.In conjunction with a known gravity sample, as captured above, this sample
can be continuously rotated based on the rotation vector. For this purpose, it
is necessary to relate the new rotation to the rotation (i.e. the quaternion) at
the gravity sample’s recording time. The practical implementation suffers from
the problems that can be attributed to the individual sensors from which the
rotation sensor infers the quaternion and which are known from the literature
(c.f. Table 4.3). These are gyroscope drift, the inaccurate information of the
magnetometer6, and again the determination of the z-axis based on gravity. Like
the filter-based approach, the latter suffers from the limitations of the low-pass
filter and the associated inaccurate inference of the gravity.

5 Using a low-pass filter is fine for certain use-cases such as the detection if a smartphone is picked.
6 We refer to Section 12.6.2; especially in the interior of a vehicle, the magnetometer can only give
a rough indication of the direction of the sky, exact degrees are not reliable
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Gyroscope-Induced Approach

Another method is to rotate the initially collected gravity sample using the
gyroscope continuously. Here, the procedure differs from the rotation-based
approach in that it is a relative view of the problem. The gyroscope outputs a
rotation along an axis, which can only be interpreted adequately in the temporal
course and relies on previous calculations. In contrast, the quaternion of the
rotation sensor is an absolute consideration, namely the shift to the reference
coordinate system. Therefore, the approach based on the gyroscope is only an
approximation.

Quaternion-
based

continuous
rotation

The sample gra recorded during a standing phase is rotated while moving with
the help of the gyroscope, and a new gravity vector ĝra! = gra is formed,
which can then be subtracted from the total acceleration to obtain only the linear
acceleration of the smartphone and thus the vehicle. The gravity at time t is
given as pure quaternion qti = ⟨0, gyrx,ti , gyry,ti , gyrz,ti⟩. It corresponds to a
point at ⟨gyrx, gyry, gyrz⟩ as cos( �2 ) = 0 ⇒ sin( �2 ) = 1. This is to be rotated
by a unit quaternion that is generated from the current gyroscope measurement
qu,ti+1 = ⟨1,Δt ⋅ gyrx,ti+1 ,Δt ⋅ gyry,ti+1 ,Δt ⋅ gyrz,ti+1 where Δt is the time since
the last gravity rotation and the current measurement. The new gravity is then
defined per qti+1 = qu,ti+1 ⋅ qti ⋅ q

−1
u,ti+1

which is another pure quaternion,
i.e. another vector of the same length. Hence, the gravity as a force does not
change, yet it is rotated according to the gyroscope. The initial pure quaternion
is q0 = ⟨0, acc0,x, acc0,y, acc0,z⟩ with the gravity equalling the accelerometer
readings gathered in the standing phase (see above).

Euler angles Quaternions are used in favor of Euler angles to circumvent the gimbal lock
problem. The rotational path between two consecutive measurements cannot
be determined precisely as the gyroscope only outputs a sampled rotation with
limited frequency. However, with sufficiently small time increments (i.e. high
frequency) between successive measurements, the assumption of linear rotation
between them produces correct almost rotations. Due to the energy efficiency of
the gyroscope and the accelerometer, high sampling rates can be achieved.

4.4 Proof-of-Concept Application

We now introduce our PoC implementation for Android called alignr. It in-
tegrates the previous findings and building blocks into a holistic, retrofittable
module that can be added to applications that target velocity access using only
IMU-based sensor data.
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4.4.1Architecture

The architecture follows a stream-focused data processing approach based on a
central event bus whose events can be consumed by different modules. alignr
is provided as a compatible Android module with no additional permission
requirements. It is written in Kotlin and addresses the limited resources found in
the mobile environment. In particular, it reduces the number of computations by
applying sophisticated and predictive fine-grained filtering methods, eventually
using methods known from Complex Event Processing (CEP) (see Sidebar C).
The application uses dependency injection through Hilt7 to reduce boilerplate
code and to manage the lifecycle of an application using Android’s built-in
methods. Also, the proposal respects the separation of concerns by not requiring
any changes within an application’s business logic.

OverviewMultiple layers organize the alignr architecture with multiple patterns driving
the design process of the framework. Sensors (in the data layer) generate ini-
tial events that are picked up and processed by the corresponding modules. The
E V E N T B U S dispatches information on demand to listeners that perform com-
putation and eventually update the S TAT E M A C H I N E or produce events on
their own. Both are found within the middleware layer. Also, this reduces com-
plexity as neither a global process nor state view is required, and modules can be
altered without interfering with others, ultimately providing resiliency. Events
(c.f. Section 4.3.2) are extracted in the event layer, while supporting elements,
including gravity removal (c.f. Section 4.3.4) are identified in the finders layer.
This layer is also responsible for enabling smartphone-to-vehicle alignment (c.f.
Section 4.3.3) and eventually speed estimation in the integration layer. All data
is stored in a central repository within the persistence layer. Furthermore, an
interface layer provides access to the computed speed estimation or any of the
intermediate data, such as the smartphone-to-vehicle aligned accelerometer data.
A technical overview with dependencies and information flow is presented in
Figure 4.9.

Single source
of truth

The provided architecture relies on a S TAT E M A C H I N E as a Single Source of
Truth [290]. This is an approach adopted in software development to structure
data management, in which a single central component holds data autonomy. All
information such as sensor values or current events, as well as speed estimation,
refer exclusively to information held centrally in the S TAT E M A C H I N E . Only
at this location can authorized participants change data; local changes within
the respective modules are undesired and do not replicate in the system. This
7 https://developer.android.com/training/dependency-injection/hilt-android

https://developer.android.com/training/dependency-injection/hilt-android
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Figure 4.9 Technical overview of the implementation of the alignr. Multiple layers and compo-
nents are responsible for data collection, aggregation, fusion, preprocessing, and filtering
as well as estimation and providing access to data. The architecture follows an event bus
pattern with multiple listeners that selectively consume events produced by other compo-
nents. Each component has a dedicated task with reduced interdependencies to reduce
complexity and increase modularity.
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guarantees an integer processing, with each module (e.g. finder and event) based
on the same data work, and the necessity of replication of the data is void.
Changes in the S TAT E M A C H I N E can be redistributed to all listeners via the
E V E N T B U S .

Observer
pattern

The observer pattern is found in the framework enabling one-to-many depen-
dency between objects. However, all components are loosely coupled due to the
architecture used, and observers, i.e. components, who are interested in specific
status updates, are automatically notified of changes based on their own configu-
ration. In particular, there is no direct update of the state of the components via
other components; i.e. all the components are self-isolated. We employ Kotlin’s
MutableSharedFlows and MutableStateFlows for this pattern.

MVVM
pattern

The proposed architecture is designed to be used within the Model View View-
Model pattern. The pattern is used to separate the presentation (View) and the
processing of the data (Model). Data is, per definition, the speed estimation
and derived values such as distance traveled. alignr also provides support for a
ViewModel that is used to link a view and a model by offering underlying data
through LiveData8. This is an essential argument for using alignr within any
application, as the alignment of the smartphone to the vehicle is provided in an
easy and comprehensible fashion comparable to the built-in functionality (e.g.
SensorManager).

Repository
pattern

Additionally, the repository pattern is used to make the same data sources
accessible in different places in the architecture. A repository is used to separate
the calculation and estimation of the speed from any data sources. This reduces
duplicate code. alignr can be used with multiple data sources such as mobile
phone sensors or pre-recorded trajectories, but the same computation modules
can still be used. Therefore, a middleware adds convenience and utility methods
to the different data sources to provide the same functionality across different
configurations. The repository pattern is not to be confused with the Repository
shown in Figure 4.9 that is found within the persistence layer to store data models
persistently.

4.4.2API

alignr is intended to provide an easy and accessible API to allow software
developers to easily use the Android module combined with sophisticated speed
and distance estimation.
8 https://developer.android.com/topic/libraries/architecture/livedata

https://developer.android.com/topic/libraries/architecture/livedata
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1 val sensorManager = getSystemService(Context.SENSOR_SERVICE) as
SensorManager→

2 val accelerometerSensor: Sensor? =
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)→

3 val sensorListener = object: SensorEventListener {
4 override fun onAccuracyChanged(sensor: Sensor, accuracy: Int) { }
5 override fun onSensorChanged(event: SensorEvent) {
6 val dT: Long = event.timestamp
7 val axisX: Float = event.values.get(0)
8 val axisY: Float = event.values.get(1)
9 val axisZ: Float = event.values.get(2)

10 // further process values
11 }
12 sensorManager.registerListener(sensorListener, accelerometerSensor,

SensorManager.SENSOR_DELAY_FASTEST)→

Listing 4.1 Illustration of accessing sensor data. A SensorManager gives access to a Sensor that
provides SensorEvents with specific sensor readings.

Receiving
sensor

updates

Therefore, it is essential to understand how sensor data is accessed in the Android
environment. Listing 4.1 shows an exemplary code snippet to gather accelerome-
ter readings. Android keeps a SensorManager that provides access in a generic
way to multiple sensors. By implementing a SensorEventListener, the ap-
propriate business logic can be deposited to process sensor values. The generic
interface has a onSensorChanged method that is called with a SensorEvent
once a new measurement from the respective sensor arrives. A sensor event
is a container that provides access to either processed or raw values from the
sensor without the need for a developer to apply any conversation. Multiple
SensorEventListeners can be registered as listeners or unregistered at any
point to either receive sensor updates with a user-controlled frequency or stop
consuming events.

Challenges To be precise, Android provides frequency classes dependent on the hardware
and sensor employed. For example, SENSOR_DELAY_FASTEST requests updates
every time the (hardware) sensors yield a value. This highlights a major draw-
back: Different sensors have different output rates; hence, sensor fusion becomes
challenging. Furthermore, the frequency cannot be controlled in a fine-granular
way. To handle both problems, we propose a F I X E D F R E Q U E N C Y C O L L E C -
T O R (see Section 4.5.1) that can collect sensor data from multiple sensors with
a well-defined and accurate frequency.
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AlignrSensorManager

As the name implies, a so-called A L I G N R S E N S O R M A N A G E R provides
access to sensor data comparable to the Android legacy instance. However,
functionality is extended to make all added and derived data available to a
developer, including a dedicated speed estimation event. Due to the restricted
SensorEvent, a AlignrSensorEvent will be used as a replacement. This is
needed as alignr introduces new events with different shapes.

AlignrLiveData

Furthermore, alignr provides direct integration into the Android lifecycle by
providing LiveData. Hence, this data can be directly injected into an Android
ViewModel. As Android manages LiveData, optimization such as battery
management is handled by the OS itself. An example implementation is shown in
Listing 4.2. LiveData is available for almost all computations and events that are
seen by the E V E N T B U S or S TAT E M A C H I N E . As one can see, basic sensors
are also provided as LiveData such as the Sensor.TYPE_ACCELEROMETER.
The AlignrViewModel can be used by an Android Fragment to data-bind
it to a View that provides containers for the LiveData values (such as
AlignrFragmentBinding). Listing 4.3 shows an example.

4.4.3Flow Overview

The architecture reduces the complexity of data exchange by sticking to an
observer pattern. However, different components shown in the architecture pose
different requirements, updating states or crafting new events.

4.5Implementation Flow

Previously, a holistic overview of the alignr architecture has been given. This
section thoroughly explains the implementation of each layer, including their
components that perform dedicated operations, consume and generate events, or
update states. First, the objectives are defined, preconditions are addressed, and
then the implementation is discussed.
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1 @ExperimentalTime
2 @ExperimentalCoroutinesApi
3 @HiltViewModel
4 class AlignrViewModel @Inject constructor(
5 val alignr: Alignr
6 ) : ViewModel(), DefaultLifecycleObserver {
7
8 val accelerationVector = alignr.accelerationVector.asLiveData()
9 val gyroscopeVector = alignr.gyroscopeVector.asLiveData()

10 val accelerationNoGravity = alignr.accelerationNoGravity.asLiveData()
11
12 val movementState = alignr.movementState.asLiveData()
13 val curveState = alignr.curveState.asLiveData()
14 val speedState = alignr.speedState.asLiveData()
15
16 suspend fun start() {
17 alignr.start()
18 }
19 }

Listing 4.2 Examplary AlignrViewModel. The excerpt shows how to access the events and com-
putations of alignr including the speed estimation.

4.5.1 Data Layer

There are two components in the Data Layer that provide the necessary sensor
data for the framework. They are the interfaces to the Android API as has been
shown in the previous section.
AndroidSensorSource

The A N D R O I D S E N S O R S O U R C E component uses standard methods to ac-
cess and continuously collect data from smartphone sensors to make sensor
readings available for further processing within the alignr framework. Data
from the calibrated accelerometer (Sensor.TYPE_ACCELEROMETER) and gyro-
scope (Sensor.TYPE_GYROSCOPE) are collected. Furthermore, the composite
sensors Sensor.TYPE_GRAVITY and Sensor.TYPE_LINEAR_ACCELERATION
are used. These are virtual sensors provided by Android that fuse certain physi-
cal sensors and perform different preprocessing of the data. The data is gathered
at the highest possible frequency (SensorManager.SENSOR_DELAY_FASTEST),
which varies depending on the Android device and implementation. Based on the
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1 @ExperimentalTime
2 @AndroidEntryPoint
3 class AlignrFragment : Fragment(R.layout.alignr_fragment) {
4
5 private var binding: AlignrFragmentBinding by autoCleared()
6 private val alignrViewModel: AlignrViewModel by viewModels()
7
8 override fun onCreateView(
9 inflater: LayoutInflater, container: ViewGroup?,

10 savedInstanceState: Bundle?
11 ): View {
12 binding = AlignrFragmentBinding.inflate(inflater, container,

false)→

13 binding.lifecycleOwner = viewLifecycleOwner
14 binding.alignrViewModel = alignrViewModel
15 return binding.root
16 }
17
18 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
19 super.onViewCreated(view, savedInstanceState)
20 viewLifecycleOwner.lifecycleScope.launch {
21 alignrViewModel.start()
22 }
23 }
24 }

Listing 4.3Examplary AlignrFragment. The fragment initializes and provides data binding to
update values in a View.

sensor readings, a common and immutable data structure is generated that corre-
sponds to a 3-dimensional vector ⟨x, y, z⟩ that includes a timestamp t. For identi-
fication purposes, the sensor type � is also stored along. Therefore, we can define
a sensor reading as a measurement of the following shape x⃗ = ⟨�, t, x, y, z⟩. The
prepared sensor values are forwarded to the E V E N T B U S directly after receipt
and are accessible by all other components at this point in a read-only manner.
FixedFrequencyCollector

A related component called F I X E D F R E Q U E N C Y C O L L E C T O R is used to
aggregate sensor readings in a composite measurement with a fixed frequency
denoted as f . This addresses the fact that multiple sensors yield data with differ-
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ent delays; however, different calculations within the framework depend on an
integer flow of data. Thus, the F I X E D F R E Q U E N C Y C O L L E C T O R subscribes
to specific events on the event bus, namely all types from the A N D R O I D S E N -
S O R S O U R C E . It creates time-based bins in terms of time delays to resolve the
target frequency f . Intermediate events from the event bus are collected and av-
eraged by type. In particular, readings from a sensor x⃗t′ at time t′ are integrated
into a single measurement for time t by averaging values {x⃗t′ | t− f−1 ≤ t′ ≤ t}
grouped by type using mean. The output of this component is an event itself.
However, this event has a special type that provides the averages as a new x⃗
for each type � identified as AlignrSensor.TYPE_FIXED_FREQUENCY_MEAN.
Averaging sensor values also address random bias in the sensor readings as the
impact of this error is reduced. Consequently, this component performs sensor
fusion across time [130] but does not execute any data verification methods such
as sanity checking.

4.5.2 Middleware

Next, the middleware is a central layer of the architecture, as it implements the
observer pattern to ultimately link components. In addition, it provides the Single
Source of Truth.
StateMachine

First, a S TAT E M A C H I N E keeps track of the current state of alignr for multiple
properties, each having its set of values (such as a 3-dimensional vector or
enum value) and the corresponding timestamps. This is particularly important
for keeping track of events. For instance, the S TAT E M A C H I N E memorizes
the beginning of a standing phase and its ending. It is crucially important
that all components perform calculations in the same state; hence updating
states within the S TAT E M A C H I N E is a sensitive process limited to specific
components, while reading is not restricted. The S TAT E M A C H I N E use Kotlins
MutableSharedFlows and MutableStateFlows. MutableSharedFlows also
keep a history of state changes eventually needed for speed calculation. Next to
the current sensor readings (including derived values) and limited history, the
S TAT E M A C H I N E keeps track of the following information:

▶ A state defining a vehicle is currently moving or not (as reported by
the S TA N D I N G P H A S E F I N D E R)

▶ An assessment of whether the vehicle is currently in a curve (as
reported by the C U RV E E V E N T).
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▶ The current speed as determined by the framework taking into account
all factors (as derived by the S P E E D component).

▶ The time of the last detected and applied event (as determined by
B U M P E V E N T , C U RV E E V E N T , or S TA N D I N G E V E N T).

EventBus

A core component of the framework is the E V E N T B U S as it bridges multiple
loosely coupled components in a many-to-many relationship. Its purpose is
to provide access to all events generated through the framework globally. An
event is defined as any structured output of a component comprising a type
�, a timestamp t and a payload such as a 3-dimensional vector or a state
value as explained previously. This component is implemented as a Singleton
and dependency-injected via Hilt into each component in the same way as
the S TAT E M A C H I N E . The E V E N T B U S may be considered a First-in-First-
Out queue, where the oldest events are dropped if the queue is running full.
Furthermore, all events share the same queue to streamline the workflow as
components may be interested in multiple events at the same time. This way,
they only need to subscribe to one event channel, eventually reducing overhead.
This component is also built on top of Kotlin’s MutableSharedFlow similar to
the S TAT E M A C H I N E .
Mirror

The Mirror component listens on the E V E N T B U S to detect relevant informa-
tion. For selected cases, it may update the S TAT E M A C H I N E accordingly.

4.5.3Calcuation Layer - Events

The subclass of events of the calculation layer is intended to implement the event
detection introduced in Section 4.3.2. Consequently, it contains detectors for road
defects (simplified as bumps), curves, and standing. We define a confidence level
for each event in order to be able to make a statement about how reliable a speed
determination based on the event is. However, events do not yield a speed but
rather reference points to estimate it without relying on an integrative approach.
BumpEvent

The detection of bumps or road defects is a multistep process based on CEP (c.f.
Sidebar C) that takes into account the restricted computational capacity of the
mobile environment in contrast to the stringent requirements that continuous
autocorrelation places on the system.
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Finding
peaks based

on accz

First, relevant points of interest, i.e. peaks, must be identified in the continuous
stream of data from accz. To address bias and noise in the sensor data, we keep
a running standard deviation s̃td based on a sliding window of length !B and
overlap oB = 1

f . Once s̃td is above a threshold �B,� , this reading is considered
a potential bump that can be matched, as this observation is inevitable once
the vehicle passes a road defect. However, a peak p is defined as a sequence
of exceptional s̃td values, hence, a single outlier is immediately discarded.
Consequently, we store for a peak p: p = ⟨ts, tm, te, s̃td⟩ The timestamps define
the beginning of the peak (i.e. s̃td > �B,�), the time where s̃td shows the
highest readings (i.e. the “peak” of the peak), the end time (i.e. s̃td ≤ �B,�),
and ultimately the peak’s highest s̃td reading.

Fast
matching

peaks

Once two or more peaks have been captured in the data stream, they are checked
in an adjacent step to see if they match the pattern that would occur if a vehicle
were to pass over a road defect. We denote the set of peaks to be examined as
 = [p1, p2,…]. Based on this set, we form the Cartesian product  (yielding
a set and peak pairs of the form (pa, pb)) and filter the resulting peak pairs
accordingly so that the following holds: ∀x ∈  ×  ∶ xa ≠ xb ∧ xa,te < xb,tsOne would anticipate that the first deflection measured on the front axle would
also be evident in the measured data when the rear axle passes. However, it
cannot be assumed that two identical series of measurements will result since the
location of the smartphone and other circumstances tend to counteract this [393].
Therefore, the next stage is to check whether a peak pair is valid based on
straightforward and fast-calculable metrics. Indeed, this is the case if the distance
between two peaks and the respective peak maxima should be within a certain
window. Subsequently, the shape of the peak course can be determined. Here,
the times already identified can be used, where the transition from the peak of
the front axis to the peak of the rear axis occurs at the point where the minimum
value of s̃td′ in the period pi,ts to pj,ts is found for a pair of peak (pa, pb) (the
time point is called t

s̃td
′). Since the peaks should be courses of equal length

(assumption of constant velocity while passing a pair of peaks), symmetrically
arranged around the peak, the period of observation is pa,ts = pa,tm−(pb,ts− t

s̃td
′ )

and vice versa for the ending time of pb. Peaks are discarded from the set of peaks
 once they become obsolete.

Autocorrela-
tion for

speed
estimation

Next, autocorrelation is performed on meaningful pairs of peaks according to Yu
et al. [417]. This includes an in-depth comparison of the course of accz readings
of both peaks pa and pb from a pair. Consequently, this autocorrelation is done to
verify if pb is a shifted (delayed) version of pa. However, since the exact position
of the peaks is not known, it is indispensable to analyze the lagged version as
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initially explained. Let dur be a utility function to calculate the duration or length
of a time series such as a peak p, mean a method to calculate the mean of a series
of values, and std is the already known method to derive the standard deviation
of a series. In summary, we calculate

p(�B,l) =
1

dur(pb)
⋅
E
[

(

pb −mean(pb)
)

(

pb+�B,l −mean(pb+�B,l )
)]

std(pb) ⋅ std(pb+�B,l )

For convenience, calling a function as defined above on a peak equals executing
it on the accz series that are found in the time span of that peak. Recall that acczis derived from an accelerometer event that has a timestamp attached; hence the
selection is straightforward. We use a normalized version of p based on the
peak duration. p is symmetric for lags, i.e. p(�B,l) = p(−�B,l) holds [417].
Lags are evaluated up to a maximum of �B,l. The lag with the highest confidence
is then used to calculate the distance between both that represents the passings
of the front and rear axle of the vehicle. Together with knowledge about the
wheelbase of the car, the speed can be calculated. The yielded score p is
analyzed subsequently to guarantee that the peak pair is no false positive, as
this will ultimately corrupt any estimation. In fact, alignr keeps the state of
the last speed estimation with high confidence (such as a standing phase) and
allows the new speed guess to be in a certain margin; otherwise, it is discarded.
To further optimize the True Positive (TP) and reduce the False Negative (FN)
rate, we trained and derived a logistic regression model that takes into account
different metrics such as the peak duration, correlation, or uniqueness of the
sensor’s readings. The confidence of the prediction scales with the correlation of
the two peaks as it is within [−1, 1]. The whole bump event is encapsulated in a
composed event AlignrSensor.TYPE_COMPOSED_EVENT that is submitted to
the E V E N T B U S .
CurveEvent

A snapshot of the current speed may also be estimated using curves, as these are
not dependent on the integrative values of the accelerometer and thus are not
susceptible to global error propagation. Hence, the C U RV E E V E N T component
watches the gyroscope to trigger appropriate calculations.

Curve
detection

Basically, curves are detected using the gyroscope, with the z-axis being
of particular interest. In order to process curves, the smartphone-to-vehicle
alignment process must first be completed so that gyroscope events (Sensor.
TYPE_GYROSCOPE) can be rotated appropriately so that gyrz can be interpreted
in terms of the vehicle. Other axes are irrelevant and only pose random noise.
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A curve is present once the gyroscope readings (or, more precisely, a running
average to account for noise) exceed a threshold �C,gyr. It continues as long as
the running average is below a second threshold that increases with the length
of the curve to mimic the natural driving behavior.

Impact of
curve length

A curve is only considered a valid curve if its length is sufficiently long, say
�A,r readings above the threshold. Thus, the natural driving behavior is taken
into account. Even if, in principle, the calculation of the speed is possible
continuously on the basis of the centrifugal forces, this is only for clear curves
and provides useful results.
This method updates the curve state within the S TAT E M A C H I N E and also cre-
ates a composed event AlignrSensor.TYPE_COMPOSED_EVENT with a curve
payload.
StandingEvent

The detection of standing phases is performed based on a change of the ap-
propriate state stored in the S TAT E M A C H I N E . The confidence of this event
is absolute, i.e. 1, as the standing phase assessment is reliable but may be
delayed a few milliseconds; however, this is irrelevant for major speed de-
viations. This value is updated by another component, namely the S TA N D -
I N G P H A S E F I N D E R . While this component only analyzes the sensor stream
for changes that imply a change in the standing state, S TA N D I N G E V E N T
also memorizes the duration and time of change. A suitable composed event
AlignrSensor.TYPE_COMPOSED_EVENT with stance phase information is fed
according to the E V E N T B U S .

4.5.4 Calcuation Layer - Finders

The main purpose of finders is to identify specific patterns in the sensor data.
Compared to events, elements identified by finders are not composite events that
fuse different sensor data.
AccelerationFinder

The A C C E L E R AT I O N F I N D E R is responsible for providing a cleaned acceler-
ation sensor event that is based on the accelerometer readings as provided by the
accelerometer but cleaned from any gravity. The currently valid gravity vector
is provided by the S TAT E M A C H I N E In order to preserve the separation of
functionality, no rotation of the readings is performed within this component as
no information about the current orientation is known. Furthermore, to reduce
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noise, the A C C E L E R AT I O N F I N D E R keeps a long-running standard devia-
tion of standing acceleration vectors to reduce potential noise in the cleaned
acceleration vector. Eventually a corresponding event of type AlignrSensor.
TYPE_ACCELEROMETER_NO_GRAVITY is submitted to the E V E N T B U S .
ForwardVectorFinder

Apart from the z-axis that can be estimated based on gravity, the y-axis of the
car can be determined by observing the acceleration vector while no steering is
present. Recall that both axes are crucial for finding the smartphones orientation
within the car (see Section 4.3.3).

Derivation
process

Hence, the F O RWA R D V E C T O R F I N D E R observers the linear acceleration
vector9 (that provides a sufficient enough quality for this task while still being
infeasible for speed estimation as explained previously) and the gyroscope.
In order to find a straight acceleration, F O RWA R D V E C T O R F I N D E R keeps
rolling averages of both the linear acceleration vector and gyroscope vector.
Once recent readings of the former vector are exceeding a given threshold called
�C,l while the latter is below another threshold denoted as �C,gyr it is assumed
that the car is driving in a straight line without any centripetal forces being
present as no steering maneuver is performed. Eventually, all readings from the
linear acceleration (that is cleared from gravity by Android with the explained
drawbacks) roughly correspond to the vehicle’s y-axis. The distribution of the
vector can then be used to find the unit vector j⃗ (subsequently also called direction
vector). This process is continuously performed and updates the unit vector once
requirements are met.

Direction-
(un)aware-
ness

The direction vector is protected from flipping by sanitizing the linear accel-
eration readings, i.e. only minor updates to the unit vector are permitted. At
this point, it should be mentioned that the linear acceleration as it is derived
here cannot make any statement about the direction. In particular, it is unknown
whether the acceleration occurred when driving backward or forward. However,
fuzzy logic within the speed calculation will take this uncertainty into account.
The calculated and updated forward vector is presented to the E V E N T B U S as
AlignrSensor.TYPE_FORWARD_VECTOR.
GravityFinder

In order to gain information about k⃗, i.e. the unit vector that corresponds to
the vehicle’s z-axis, the G R AV I T Y F I N D E R analyzes the gyrz stream. As a
9 Sensor.TYPE_LINEAR_ACCELERATION
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precondition, this component requires a known “vehicle movement state” as it
needs to gain knowledge about gravity while standing.

Gravity
rotation

Each reading from the gyroscope is used to rotate a gravity vector that is derived
during a standing phase where only gravity is impacting the device. The actual
rotation is done as explained in Section 4.3.4 using quaternions generated based
on the gyroscope. The resulting pure quaternion can be considered as a new
gravity that was rotated according to the driving profile. Due to the brief time
intervals between the rotation steps performed by this approach, a little rounding
error may be introduced with each measurement due to the restricted decimal
places.

Rounding
error com-
pensation

As this rounding error accumulates, the features of quaternion multiplication
might begin to distort the length of the gravity vector. To address this problem,
the method also checks the length of the gravity vector and scales it appropriately
if a variation is discovered, ensuring that it always keeps a similar length as
gravity can be considered roughly constant within the boundaries of a trip.

Drift com-
pensation

The gyroscope, whose data is the basis of the rotation, is susceptible to a small but
constant drift, which accumulates over time and causes an erroneous calculation.
To counteract this error, the angle between a low-pass gravity vector (from the
standing periods) and the current, rotated gravity vector is first calculated (briefly
referred to as �). This is based on the assumption that the standing phase-based
vector is close to the ground truth vector direction and therefore reflects the
correct angle of the gravity vector. The current, rotated gravity vector is rotated
again by � using the Rodrigues-rotation formula [91]. Depending on the current
acceleration, this angle can be adjusted since a correlation between drift and
acceleration vector could be identified empirically.
The resulting rotation is submitted to the E V E N T B U S as a new sensor type
called AlignrSensor.TYPE_ROTATED_GRAVITY.

StandingPhaseFinder

The S TA N D I N G P H A S E F I N D E R collects Sensor.TYPE_ACCELEROMETER
readings to preserve a rolling standard deviation of this vector’s length to detect
periods with low magnitudes. However, it only selects readings within a 99.9%
confidence interval around the standard deviation readings to exclude readings
posing harsh changes in accelerometer readings, probably due to measurement
errors. Once the resulting standard deviation is below a threshold �S,� for
minimal period of time of �S,l, a standing phase event of type AlignrSensor.
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TYPE_MOVEMENT_STATE is crafted, submitted to the E V E N T B U S and the
S TAT E M A C H I N E is updated accordingly or vice versa.

4.5.5Integration Layer

Finally, the different information flows together in the integration layer to
estimate a speed.

VehicleCoordinateAlignment

As soon as the unit vectors j⃗ (as provided by the F O RWA R D V E C T O R F I N D E R)
and k⃗ are known, coordinate rotation can be performed, and ultimately,
smartphone-to-vehicle alignment is achieved. Hence, this component listens for
Sensor.TYPE_GRAVITY and AlignrSensor.TYPE_FORWARD_VECTOR events
to contionously update i⃗ = k⃗ × j⃗. After an initial calculation of i⃗, new mea-
surements (e.g. acceleration vectors) can be rotated, so they equal the vehicle’s
coordinate system as presented in Section 4.3.3. The rotation of any meaningful
sensor reading is offered as a synchronous utility method; thus, the E V E N T -
B U S is not involved. It should be noted that gravity is not removed prior to any
rotation.

Speed

The S P E E D component is a mediator to include all the information from the
framework and is the core component to derive a speed estimate. It collects
multiple events (i.e. AlignrSensor.TYPE_ACCELEROMETER_NO_GRAVITY
and AlignrSensor.TYPE_COMPOSED_EVENT) and observes all states, namely,
movement state and curve state. Four different submodules are implemented
in this component that may estimate the speed using multiple but different
information. The S P E E D module performs hybrid sensor fusion according
to the guesses  provided by each submodule. Each guess g contains a confi-
dence value that indicates how plausible the respective predictor believes its
velocity estimate to be. Confidence can vary between [0, 1]. Once a submodule
determines an estimate, it sends g = ⟨t, v, �g⟩ to an aggregator ( ←← g) that
applies multiple fusion algorithms to find the best guess of the current speed.
In particular, probabilistic methods are used as well as the Dempster-Shafer
decision theory [206].

Standing
phase

A trivial but stable velocity source is the standing phase, which can be detected
with high confidence. At the same time, this is the phase whose speed is precisely
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Figure 4.10 Relationship between the lateral acceleration (i.e. centrifugal forces) when passing
through a turn and the rotation around the z-axis. Values are recorded by the
gyroscope. The figure shows the supposed velocity v = accx

w
for one trip that matches the

ground truth speed at some point in a curve. It is evident that there is strong and noisy
fluctuation apart from curves.

defined so that �g = 1 can be assumed. Thus, this speed source overwrites other
sources, leading to an immediate setting of the speed to 0m s−1.

Integrative
approach

Given a current timestamp ti, the integrative approach is based solely on the
acceleration along the y-axis measured by the accelerometer acci and the time
difference from the previous measurement ti−1. The measurement values used of
type AlignrSensor.TYPE_ACCELEROMETER_NO_GRAVITY require a rotation
by V E H I C L E C O O R D I N AT E A L I G N M E N T ; otherwise, no exact mapping of
the vehicle acceleration can be made. Thus, a new velocity can be derived using
vti = vti−1+accΔ . alignr is a sampling-based approach; therefore, it is assumed
that acci is constant for Δ , which is approximately true for high frequencies.
�g is chosen carefully for gs but static as no reliable source can be found.

Bump
evaluation

Once a bump event is found, it is processed by the subcomponent that extracts
the speed along with the autocorrelation value. The autocorrelation value, which
indicates the similarity of two peaks, is used as confidence because more similar
peaks are more likely to be induced by the same road defect. Recall those bump
events are only triggered once B U M P E V E N T detects such an event, and hence
false positives are not to be handled by S P E E D .
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Curve
following

Curves are continuously evaluated once the respective state is present in the
S TAT E M A C H I N E .
Curve progression as an influencing factor. However, curves have to be
carefully handled, as, in theory, they should yield the correct velocity, but this
assumption does not hold for the whole phase due to overlapping noise and
bias. This becomes evident w.r.t. Figure 4.10 showing the relationship of lateral
acceleration and rotation around the z-axis as recorded by the gyroscope. Apart
from the curves that are highlighted accordingly, the result is random noise
and is not feasible for estimation. The fluctuation is significantly reduced when
entering a curve phase. Now, the calculation should yield the vehicle’s current
speed, although this is not the case, especially at the beginning, when results
are blurry. In fact, the speed estimation is correct at some point of the curve as
the GPS recorded speed (considered ground truth) crosses the result of accx

gyrz
It is

challenging to identify this corresponding intersection point in the progress of
the curve. As is trivial to see, a point can be found in the advanced course of the
curve, yet it is not constant.
Intermediate Speed Determination. It should be noted that the point to be
found is the one at which the fluctuation of the calculations is reduced to the
minimum, as this allows for a sufficiently accurate estimate based on the curve
event. Therefore, based on this finding, the first �C,d values of a turn are ignored
for evaluation. Then, for a window of length !C , the mean values ̄accx and ̄gyrz
are formed, and based on this, v = ̄accx

̄gyrz
. If the rolling standard deviation s̃td(v)

(window size !C ) is found under a 1m s−1, the estimate can be used.
Finalizing a curve guess g. For a final guess g, two parameters are still
undefined. First, the confidence, which is formed based on the curve length Δ C

and an exponential function (1 − exp
(

Δ C
−2.5

)

), which aims to favor later values
again and finally serve as a more accurate estimate compared to the integral
method. Second, the final velocity is to be found based on a low-pass filter
(� = 0.8) to incorporate a new estimate more as a look back at Figure 4.10
reveals that the fluctuations may indicate the intersection point.

Aggregation
of multiple
sources

Based on the obtained , the aggregator must select the guess g∗ ∈  that has
the highest plausibility and can serve as a basis for a velocity estimate at time
ti. It is possible that the set  has contradictory elements, and, in turn, these
conflicts must be resolved. For example, a standing phase may be detected, but
s are still provided by the integrative approach, although it is known that the
standing phase might be the truth.
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Filtering the messages of modules. g∗ is determined based on several selec-
tion criteria. However, first, this set has to be descendingly sorted: First, by �g ,
then by t. This drifts the process towards prioritizing more plausible guesses in
favor of recency. The resulting multilevel ordered sequence (called ∗) is then
to be evaluated by the following predicates to determine a valid guess.

1. Let ğ be the current speed guess approved in the previous iteration.
Select only those gj ∈ ∗ where sign(gj,v) ≠ sign(ğ). This is most
likely related to a measurement error, and since a sudden direction
change is reasonably unlikely, this guess has to be ruled out. A small
margin is allowed to account for sign changes at particularly slow
speeds as they occur after standing.

2. Remove all speed guesses from ∗ that occur after a standing phase
whose speed exceeds a threshold �v,j . Guesses above that threshold
are considered an unrealistic jump start.

3. Find the most recent speed guess ĝ = argmaxg∈∗ (gt) and then ensure
that ∀gj ∈ ∗ ∶ gj,t − ĝt < �v,t holds. This eliminates all guesses that
are too old and therefore do not reflect the current speed of the vehicle.
At the same time, this also prevents the S P E E D module from picking
a guess multiple times, producing unrealistic constant plateaus.

Selecting the best guess. Consequently, the first element of that list is the new
g∗ = ∗1 as it has a high confidence, while being reasonably recent after passing
all filters. However, if ∗ = ∅, no speed estimation can be made and the current
ğ is also valid at ti.
Sanity checking event-based guesses. A fair amount of uncertainty is inher-
ent in the use of events such as turns and bumps because, although velocity
estimates are not affected by error propagation, deviations from the ground truth
may nevertheless occur. So-called reference points are used to counteract this.
Reference points are points in time when an event was last selected as g∗. Let trefbe the last known and accepted reference point. A reference point can be used
to determine the approximate speed frame using a function denoted as rfw in
which a future speed guess may be located, provided it is based on a turn or bump.
Therefore, speed estimates that would lead to a strong, potentially unrealistic
divergence (i.e. false positive events) can be mitigated. The basis of this handling
is that the prior estimate is close to the ground truth. The longer the previous
reference point is away, the larger the confidence interval in which the value may
lie, since simultaneously, with more extended trip progression, the uncertainty
grows. The window is calculated using rfw = (gt − tref ) ∗ �vref where g is an
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example speed guess and �vref is a constant that determines the window growth.
It was empirically estimated to be 0.0005m s−1. tref is always set to the end
of a standing phase, should it be finished with the necessary information being
credibly provided by S TA N D I N G E V E N T .

Speed signDue to the blurred orientation of the device in the vehicle, no reliable statement
can be made about the direction of travel (c.f. Section 4.5.4). For this reason, a
sanity check is performed that continuously conducts a frequency analysis on
the estimated velocities. It is a valid assumption that the majority of velocities
in a trip are positive, which corresponds to a forward heading ride. If this is not
the case, the direction vector is flipped once. This leads to subsequent velocity
calculations assuming the correct direction of travel since no further flip can
occur due to the calculation of the forward vector.

4.5.6Persistence Layer

Repository

The persistence layer, with its repository component, is tasked with storing data
and information that is produced and processed during a run. The repository
has to meet special requirements in terms of processing speed since data is
generated with high frequency, and backpressure must be explicitly avoided.
Events of different types are persisted using the high-performance NoSQL
database objectbox10, which is specifically targeted in mobile and resource-
limited environments. Data is stored in batches to reduce system load since
synchronous persistence, i.e. storing an event as soon as it appears on the
E V E N T B U S , is impractical from a performance point of view. In the repository,
the data is organized by runs which serve as a container for speed guesses, event
occurrences, and event readings. Runs are unique and immutable data structures
that represent a single trip. Refer to Section 5.2 for a further explanation of trips.
A run can be exported into the corresponding JSON objects.

4.5.7Interface Layer

The Interface Layer provides access to all results of alignr. Refer to Section 4.4.2
for an explanation on how to access the data as alignr provides common support
for Android interfaces.
10 https://objectbox.io/

https://objectbox.io/
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4.6 Evaluation

In the following, an evaluation of alignr is presented, which was conducted
empirically.

Environment The evaluation was conducted under real conditions in daily traffic with a focus
on urban areas. Different smartphones, arbitrarily placed in different vehicles,
were used for the experiments. The reference value for speed is GPS, although
it should be noted that this is also subject to a certain degree of uncertainty
of approximately 3 kmh−1 [417]. Selected experiments were performed under
laboratory conditions, and this is appropriately noted here. Parameter values have
been estimated based on exhaustive optimization methods or empirical analysis.

Structure We first analyze the data preparation steps, including gravity removal and co-
ordinate alignment steps. Subsequently, we analyze the accuracy of the event
detection and the validity of the speed estimation. Afterward, the speed estima-
tion is discussed with the example of multiple trips and circumstances. Finally,
we present performance insights of the implementation w.r.t. the constrained
environment.

4.6.1 Gravity Removal

First, the efficiency of the gravity removal approach is illuminated as a precise
gravity vector is essential for further processing.
Accuracy

We conducted different experiments to assess the accuracy of the gyroscope-
based gravity rotation. This enables an in-depth understanding of gravity and its
behavior under different circumstances, with the gravity assumed to be constant.

Overview of
approaches

As mentioned in Section 4.3.4, Android provides a Sensor.TYPE_GRAVITY that
employs a low-pass filter to remove apparent accelerations from accelerometer
readings. However, the quality of this method is not precise, and therefore it is
infeasible to process sensor values in the context of alignr. The proposed solution
uses a high-sampling gyroscope vector that enables one to rotate a gravity sample
accurately recorded during a standing phase. Differences in terms of accuracy
and robustness are depicted in Figure 4.11. This experiment was executed as
follows. A device was placed flat on a plane surface and moved along the y-
axis, resulting in linear acceleration. As expected, the gravity should not change
and remain almost constant throughout the experiment without showing any
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Figure 4.11Example of the acceleration along the y-axis. It is obvious that the low-pass-filtering-
based approach of Android for the determination of the gravity provides time-delayed
values compared to the rotation of a stationary phase gravity. The more significant the
measured acceleration is, the more the value provided by Android changes.

fluctuations because no orientation change occurs. The measurement proves
that the low-pass filtered Android gravity (gray) roughly follows the curse
of the accelerometer readings (accy): Changes are more significant with high
fluctuations of accy, but they are not constant as one would expect over the
progression of the experiment. As a result, this result is in no way usable for speed
determination. This is different from the proposed gyroscope-based approach
that yields a gravity vector grarotated,y of almost zero along the y-axis because
the gyroscope does not collect rotation due to the design of the experiment.

Impact of
movement

To assess the quality of the gravity preprocessing, experiments were conducted
without any linear acceleration that may falsify the gravity vector. Figure 4.12a
shows the measurement record in which the devices were carefully moved with
multiple degrees of freedom. One can see that the rotated gravity matches the
raw accelerometer readings closely. Hence, the continuous integration of the gy-
roscope to rotate the gravity is usable in this case. However, a slight offset can be
observed when rapid and harsh movements affect the device (c.f. Figure 4.12b).
The impact is visible by the high fluctuations in the raw accelerometer readings
where the gravity sample does not align anymore, ultimately resulting in dis-
placed levels when entering a “standing phase” at the end of the experiment. As
in the former example, one would expect that gravity axes and raw accelerometer
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Figure 4.12 Example of the impact of rotation on gravity. A rotation without any acceleration of
the recording device indicates that the gravity is also rotated along the axes and matches
the reading of the accelerometer.

axes roughly match, but that is not the case. We can state that the gyroscope is
also susceptible to drift and consequently introduces error propagation into the
system under circumstances that may occur in real-world scenarios.

Drift Analysis

The previously identified drift has to be addressed to yield useful gravity samples.
Figure 4.13a illustrates a gyroscope drift with the gyroscope vector increasing
with time when periodic movement is applied to the device.

Error
propagation

of the
rotation

The drift results become apparent in the standing phases. It could be assumed
that all standing phases output the same level of acceleration values since only
gravity acts there. However, because of drift, a shift in gravity compared to
the acc values by a certain, non-constant, or recurring delta can be recognized.
Therefore, the rotation through the gyroscope is not exact. Consequently, this
bias is also found in measurement data outside of standing phases but cannot
be determined due to the complexity and degrees of freedom of the process. To
reduce this problem, gravity is continuously updated when entering a standing
phase, so that error propagation of the gyroscope rotation only has an influence
between these phases.
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b) Compensated readings. Gyroscope
drift compensation successfully prevents
the rotated gravity vector from unrealisti-
cally lengthening throughout the measure-
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Figure 4.13Example of drift acting on the gyroscope. The drift leads to error propagation of the
gravity rotation. No additional acceleration is added to the system during the measure-
ment.

Further opti-
mizations

Two additional optimizations were applied during gravity rotation, although a
trade-off between too aggressive alteration and original data retention must be
found. During rotation, rounding errors can unintentionally change the length
of the gravity vector, which is unrealistic for short time steps (recall that the
gyroscope is sampled with f = 200Hz). Therefore, we rescale the new rotated
gravity sample once the deviation becomes too notable to compensate for this
change. A second optimization technique is to reintroduce orthogonality between
all axes of the rotated gravity sample compared to the raw accelerometer reading
(we use a moving average accelerometer reading to account for noise), as there
is an angle drift. Although both readings should not align precisely, a rough
overlap may be expected. A suitably small multiplier for this angle adjustment
might ensure that, unlike the low-pass strategy, this correction does not end up
overcompensating and sacrificing crucial linear acceleration. Similarly, when the
car accelerates for an extended period, the raw acceleration measured deviates
from true gravity. The correction method described herein begins by eliminating
the angle difference between the two vectors, thereby bringing the gravity vector
closer to the real one, including linear acceleration. This is the purpose of the
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Figure 4.14 Illustration of the delay to provide coordinate alignment. The delay before the vectors
needed for the coordinate alignment are obtained varies depending on the type, yet both
can be determined at the beginning of a trip. While the gravity vector k⃗ seems to be
available immediately in all cases, the detection of the direction vector j⃗ takes longer
depending on the trip. This is due to the necessarity to find a forward acceleration without
steering movements.

Rodrigues-rotation formula mentioned above with a sufficiently small angle
correction of 0.05% for each measurement, eventually rotating the gyroscope
vector towards the reference vector. Although this removes small portions of the
linear acceleration, the overall gravity accuracy can be increased. Figure 4.13b
illustrates that gravity and accelerometer readings for one axis align, proofing
that drift is successfully eliminated.

4.6.2 Coordinate Alignment

For an applicable smartphone-to-vehicle alignment, the stable but early determi-
nation of the two vectors j⃗ and k⃗ is required. The latter is directly determinable in
standing phases, whereas the former requires specific driving maneuvers. Thus,
the delay in determining both vectors is of particular interest.

Gravity
vector

If k⃗ is unknown, the underlying gravity can be detected at each stance phase of the
vehicle. Since this is usually the initial state at the beginning of the recording of a
trip, this vector can be provided almost immediately. This state is also confirmed
by the measurements (c.f. Figure 4.14).

Direction
vector

In contrast, more complex preconditions must be met to determine the direction
vector j⃗ (c.f. Section 4.3.3). On average, this takes around 4000ms for j⃗ to
become available after starting the vehicle (c.f. Figure 4.14). Since both vectors
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Figure 4.15ECDF plot depicting the delta between the ground truth (i.e. GPS) and the alignr-
based speed values. The plot also shows the case if the inaccuracy of the GPS-based
speed is also considered. It is obvious that for latter case the more than 80% of all speed
values have no deviation at all proofing that IMU-based speed estimation is feasible.

are collected continuously, alignr was optimized to provide the coordinate
system as early as possible, although possibly less accurately.

4.6.3Accuracy of Speed Estimation

Next and most importantly, the speed estimation accuracy is presented, and the
impact of events is discussed. On this basis, the feasibility of the guessed speed
values for distance estimation is described.

Summary
insights

First, the general deviation of speed guesses w.r.t. the ground truth is of particular
interest. Figure 4.15 presents an ECDF plot that illustrates the distribution of the
deflection. Shown are differences from the exact speed of GPS. One can see that
it is below 1m s−1 for around 50% of all measurements, with around 1∕3 of all
estimates having no errors. 80% of all measurements still have a deviation of
approximately 2m s−1. This analysis assumes a correct GPS speed, which is not
realistic and is too strict an assumption. Therefore, we also plotted the ECDF plot
when the ground truth was assumed to be blurry. Thus, we added an error band
based on the findings of Yu et al. [417] that takes into account the uncertainty
of the estimates of the GPS (i.e. ±0.7m s−1). As a result, the precision of alignr
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can improve to a deviation of almost 0m s−1 when considering 50% of all values
once this new ground truth is used.

Table 4.5 Descriptive statistics of all trips used for the evaluation.

# ΔvQ25
[ms−1]†

ΔvQ75
[ms−1]‡

mean(Δv)
[ms−1]

max(Δv)
[ms−1]

∑

t [s]
∑

d [m]

1 0.0 1.4 0.59 3.83 408 2537
2 0.0 2.07 1.06 4.91 175 1305
3 -0.14 0.96 0.25 5.12 333 1305
4 -0.0 7.35 3.18 21.75 419 1637
5 -0.08 1.03 0.31 4.45 456 2390
6 0.0 1.88 0.9 5.23 272 1642
7 -0.08 1.2 0.48 4.67 335 1967
8 0.0 1.43 0.47 4.31 162 863
9 0.0 1.21 0.47 4.48 294 1467

-0.03 2.06 0.86 6.53 2854 15113
† Denotes the .25-quantile for the series ‡ Denotes the .75-quantile for the series

In-depth
results

Next, we analyzed all test tracks in detail. In total, these trips were 47min
long and covered around 15 km of mostly urban roads. The results are listed in
Table 4.5. The table shows the .25 and .75-quantiles for the speed delta between
both data sources calculated for every single measurement. In addition, the mean
error is shown as well as the maximum deviation. The average mean error is
as low as 0.86m s−1. alignr in some cases predicts lower speeds compared to
GPS as the .25-quantile shows. 75% of all values have a deviation up to 2m s−1,
which was already made clear by the ECDF plot. However, when looking at
individual trips, one can see that one trip is heavily biasing the results as trip #5
posts a deviation of over 7m s−1 for the .75-quantile. This is probably mainly
related to the coordinate rotation process that errored at some point, eventually
degrading all predictions until the next standing phase.

Example
trips

Figure 4.16 presents two example trips. Both trips illustrate that alignr is able to
estimate the velocity within or close to the range of the ground truth. Also, one
can see that events support the correction of a drifted inference process.
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b) Example B. The trip has an extended
standing phase and some events.
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Figure 4.16Comparison of the speed estimation of alignr and the ground truth speed of the GPS.
Included is the inaccuracy error band. Events are highlighted.
Benefits of Events

Events have proven themselves to considerably support speed estimation, as con-
firmed by our experiments and related work [417]. However, their support differs
depending on various characteristics. For instance, curves must be considerable,
i.e. their length and homogeneity must meet the requirements introduced in the
previous section.

Table 4.6Descriptive statistics illustrating the impact of events for speed estimation. The more
events are used, the better the prediction.

Feature ΔvQ25
[ms−1]†

ΔvQ75
[ms−1]‡

mean(Δv)
[ms−1]

max(Δv)
[ms−1]

Improve-
ment
[%]

+ integral -0.21 1.07 0.47 5.47 –
+ curves -0.12 1.0 0.42 4.45 -11.33
+ bumps -0.34 0.55 0.11 4.19 -74.77

† Denotes the .25-quantile for the series ‡ Denotes the .75-quantile for the series

Accuracy
increasement

Table 4.6 depicts the feasibility of estimating the speed of different trips. Events
were added consecutively to increase the number of reference points available
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for exploitation. The table again shows the .25- and .75-quantiles as well as the
mean and maximum speed delta between IMU and GPS speed. Taking a look
solely at the integral-based approach, which includes standing phases, reveals
that the mean error is about 0.47m s−1. As this alone does not sound significant,
the .75-quartile shows a deviation of 1.07m s−1 indicating that most estimations
are off. Adding curves as reference points does not significantly improve the
quality of the prediction. This may be related to the uncertainty when using the
curve speed, as it is challenging to select the correct point in the progression of
a turn. Furthermore, the prediction of speed within a curve is also susceptible to
various disturbance variables, such as the vehicle’s sway or the slipping of the
smartphone. Hence, improvement is limited. However, this is different for bumps
since an estimation on their basis depends exclusively on the correlation selection
of two related peaks, and no other dynamic or hard-to-achieve assumptions are
necessary. This is directly reflected in a sharp decrease in the average speed
difference, which drops about 75% to 0.11m s−1. In particular, the .75-quantile
is reduced to 0.55m s−1 ultimately delivering accurate speed predictions in most
cases. Therefore, the quality of the estimate is comparable to the entire evaluation
data set discussed in the previous section and shown in Figure 4.15.
Correlation Between Events and the Mean Error

We further analyzed whether there is a correlation between the mean error and the
number of events detected on a trip. Basically, this assumption can be confirmed,
although the strength of the correlation varies.

Standing
phase

If standing phases are considered, a positive correlation of 0.42 is found. Interest-
ingly, this means that more standing phases lead to a higher deviation between
GPS-based and IMU-based velocity. At this point, two reasons can be given.
First, the IMU can record finer movements, whereas Android’s GPS is reduced
for energy reasons in terms of frequency when there is no slight movement, and,
in addition, due to its resolution, small differences in speed are not apparent.
With frequent standing phases, there is still the condition that the speed changes
significantly, for example, due to strong acceleration and braking maneuvers.
Due to the limited sampling of the GPS signal, the quality of the ground truth
is also questionable, and the differences, even with smoothed GPS-based speed
values, between both sensor speeds become blurred as uncertainty in the data set
increases. At this point, it is worth mentioning again the significant discrepancy
in GPS speed under some conditions [417].

Curves and
bumps

The correlation is strongly negative for the other two events, with values of -
0.77 for turns and -0.65 for bumps. As more of these events are encountered,
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the velocity deviation from the ground truth decreases. The significance of
the tests may be limited due to the unequal number of turns (on average 16
per trip) and bumps (on average 51 per trip), but a sufficient impression is
obtained. The velocity determination is more accurate with bumps since a direct
calculation is possible independent of other measured values, such as previous
speed guesses. Additionally, unlike curves, no safety parameters have to be
observed, which means that fewer of these events are discarded. Finally, it can
be confirmed that more frequent events contribute considerably to the quality of
speed determination.

Distance Derivation

Throughout this work, the speed collected using the IMU will be used in different
cases and scenarios to derive the distance, for example, enabling privacy-invasive
attacks such as the one presented in Chapter 12.
In the following, we will compare the feasibility of both sensors, namely GPS and
IMU for this task. The first one uses the geodesic distance between two adjacent
location coordinates, while the latter one uses the integral of the speed. Both
results are compared with the ground truth, which is the shortest-path distance
as reported by OpenStreetMap (c.f. Sections 5.5 and 12.6.2).
Figure 4.17a illustrates the accuracy using an ECDF plot. It shows that both
distances employ an error, yet the GPS-based distance is more accurate compared
to the IMU-based one. However, we can state that even though the GPS distance
has a lower deflection, the derived distances are still sufficiently accurate in
both cases. This becomes apparent when the absolute deviation of the distance
deviation is analyzed. In Figure 4.17b the distance error compared to the ground
truth is categorizes in 50m bins. It shows that around 50% of all readings have
a deviation of up to 50m for IMU-based calculations while this value is around
95% for the other sensor. However, most importantly, distance errors above
100m are rarely observed. This may be a crucial threshold when thinking about
a road network with intersections and the task of relative localization based
solely on distances (c.f. Chapter 12). The exemplary task requires the accuracy
of a prediction below the distance of consecutive intersections.

4.6.4Performance Statistics

Finally, we respect the mobile yet highly constrained environment of alignr by
providing performance insights.



106 4. ALIGNR

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

deviation [%]

pr
op

or
tio

n
[%

]

a) Relative deviation. The ECDF plot with
the distance deviation shows that the devi-
ation is less than 50% for all speeds esti-
mated using alignr while it is 10% for the
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b) Absolute deviation. Distribution of the
distance error illustrating that more than
50% of all cases have a deviation less than
100m for segments of different lengths
compared.

Type
GPS alignr

Figure 4.17 Illustration of the distances derived from alignr and GPS. Readings are compared to
the ground truth extracted from OSM show an expected deviation.

Accuracy of
frequency

First, the accuracy of the F I X E D F R E Q U E N C Y C O L L E C T O R is of inter-
est. A stable flow of measurements is vital as most calculations rely on the
time delta. For instance, gyroscope-based gravity rotation is a core function-
ality of the framework, as many other operations rely on it. We claimed that
the rotation between two successive gyroscope readings might be approxi-
mated as a straight line while the time intervals are small enough. There-
fore, having too slow computations of any kind when creating AlignrSensor.
TYPE_FIXED_FREQUENCY_MEAN may lead to unexpected behavior. Our experi-
ments were carried out with a target frequency of f = 200Hz that results in an
intended period of 5ms between two successive measurements. It is shown that
the mean delay between two measurements is as accurate as 5.0018ms with a
standard deviation of 0.0042ms. The minimum was found to be 4.0000ms, and
the maximum observed delay was 5.0115ms. The F I X E D F R E Q U E N C Y C O L -
L E C T O R is implemented as a Kotlin flow using the native time-based sampling
method sample. As such, the accuracy is defined by the OS, but we ensured
that no additional overhead or heavy computations might interfere with the OS
scheduler.
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Figure 4.18Selected performance statistics for crucial operations of alignr. Shown are the duration
of the speed selection process and two metrics for the road defect analysis.

Run-time of
calculations

Next, we illustrate some of the essential computations that are worth mention-
ing in this context. It should be noted that some operations are based on the
successive collection of sensor data (e.g. curve evaluation); therefore, they are
not directly assessable. Figure 4.18 shows boxplots for three selected operations,
namely the speed guess decision-making process, the full run-time of the bump
evaluation, and the run-time of the autocorrelation in this context. The first is
relevant because the decision process occurs with a frequency that is equal to
the collection frequency (i.e. f = 200Hz). It is well beyond a critical threshold
and shows an almost immediate speed estimate. For the other two metrics, one
can state that the autocorrelation process is time-consuming as it is the major
contributor to the bump detection process.

4.7Conclusion, Error Sources, and Outlook

In this chapter, we considered the possibility of having the speed of a vehicle
estimated by a smartphone located in the vehicle. With alignr, we present a
PoC application that allows the assessment of the speed based on the IMU data
without the need for GPS with a viable accuracy in several settings.

4.7.1Overview of Literature

First, a SLR was performed to find existing methods that perform the velocity
estimation task. During the analysis, it was found that most of the works are based
on the accelerometer, followed by the gyroscope. However, it is not common for
approaches to be appropriately publicly available, let alone suitable for being
embedded in existing applications.

Deflections
and counter-
measures

Several failure reasons are found in the literature that coincide with the typical
sensor problems addressed in Section 2.3. The impact on velocity detection is
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significant, with a broad consensus among the works. The literature suggests a
wide variety of approaches that can be used to reduce the impact of the mentioned
errors. Among them are, in addition to the initial orientation of the device (recall
smartphone-to-vehicle alignment), the use of smoothed sensor values, and also
the use of other reference points as proposed by Yu et al. [417]. It is shown
that ex-post approaches that compute the velocity for each time point after the
completion of a trip are superior to real-time approaches in terms of accuracy.

Taxonomy Building on the results, a taxonomy is presented that divides the methods for the
final determination into five superordinate classes. Pattern-based approaches, in
which the addressed events (reference points) are to be found, are to be mentioned.
Furthermore, calibration-based approaches present tools to achieve smartphone-
to-vehicle alignment, for example. Approximation-based approaches are mainly
dominated by sampling methods due to the nature of sensor data acquisition.
Next, filter-based approaches include low-/high-pass filters or sophisticated
Bayesian filters. Last, AI-based methods are expected to learn the relation
between speed and sensor data on their own.

4.7.2 Our Approach

The developed taxonomy provides a useful overview of which methods are suit-
able for speed estimation. Consequently, we integrate the different approaches
into a holistic concept within the framework of alignr. In contrast to related
work, where most approaches are not retrofittable, alignr was designed to work
as an Android module that supports state-of-the-art data binding via known in-
terfaces. Moreover, the framework does not require extended learning or setup
phases, such as controlled movement of the device. It is designed for the mobile
environment, reducing its performance and energy footprint.

Smartphone-
to-vehicle
alignment

alignr first uses calibration methods to perform smartphone-to-vehicle align-
ment to allow for arbitrary positions within a vehicle. The process puts certain
requirements on the setting, although it was shown that these are met within the
first seconds of a trip.

Gravity
removal

Also, alignr assesses gravity as the most significant, roughly constant bias.
Through experiments, it has been shown that the Android-provided functionality
to separate linear acceleration and gravity from an accelerometer does not yield
sufficient accuracy. Thus, we propose a gyroscope-based method that constantly
rotates a gravity sample that is collected while standing. As the maintained grav-
ity vector depends on the previous one, error propagation may occur, especially
in vivid movement settings, but is optimized within the framework.
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EventsApart from integrating the speed from gravity-cleansed accelerometer read-
ings, the application also uses pattern-based approaches together with filter- and
approximation-based methods to find reference points, which are eventually used
to provide a speed estimate independent of previous measurements. Therefore,
the reference points are robust against error propagation. We define three refer-
ence points based on related work [417], namely standing phases, road defects,
and curves. These are summarized together with the integrated speed to provide
a reliable speed guess.

ResultsExtended experiments and data analysis reveal an accurate speed estimation
compared to a ground truth derived from GPS, although this sensor itself is
susceptible to inaccuracies. Real-world experiments prove alignr’s ability to
precisely predict the speed with an average deviation from ground truth as low
as 0.86m s−1 for our test data set. Furthermore, 50% of all values have no offset
at all. In contrast to the integration-based approach, adding events as a speed
source reveals that the speed error can be reduced around 75%. This relationship
is also confirmed by a strong correlation of−0.77 for curves and−0.65 for bumps.
Additionally, more events generally yield better results. More importantly, alignr
will be used within this work to e.g. enable self-localization based on distances.
Distance estimation (which in turn is based on velocity, but errors have a slightly
lower impact) has been proven to provide satisfactory accuracy, with half of all
readings within an interval of [−50m, 50m].

4.7.3Error Sources

We now briefly mention the identified errors that were encountered during the
development and optimization of alignr.

Immediate
standing
phase

Standing phases are identified based on various assumptions, which are defined
by parameters explained in the following. Depending on the smartphone used,
the mounting position in a vehicle, or the vehicle itself, the measured values differ
during standing phases. Hence, we observed that no static solution or parameter
set is feasible to detect standing phases across devices with the best accuracy.
Remarkably, the variance of the accelerometer readings can vary significantly
in the standing phase. An initial calibration may support accurate detection of
the standing phase.

CurvesApart from the exact progression step when selecting the current centripetal
force and the gyroscope reading during a curve to perform a speed guess,
they are therefore indisputably a source of error. They are complex driving
maneuvers in which a wide and fast-changing variety of forces and rotations
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act simultaneously on the system consisting of the vehicle and the smartphone.
During the development, it was found that gravity rotation is often particularly
error-prone at these points. One idea to compensate is to use backtracking to
correct the gravity vector once a reference point is found, although performing
backtracking is challenging in real-time scenarios. At this point, the present
reference point is a curve; thus, this velocity must be used accordingly to estimate
the present gravity starting from the acceleration vector. However, this approach
is only limited fruitful since it assumes that an exact velocity of the turn can be
extracted, which in principle must not be the case due to the described problems.

4.7.4 Outlook

For future work, it is possible to implement backtracking approaches for possible
error sources, but the real-time requirement still has to be considered. Although
alignr performs continuous calibration for multiple instances, such as standing
phases, gravity, and orientation, the calibration preset has to be optimized. In
particular, alignr should be extended to detect external sources of errors, such
as phone sliding e.g. due to improper fixation within a car. Such scenarios are
currently not handled at all and will only be corrected by the remaining error
correction methods that are, for instance, performed during standing phases. It
also makes sense to use AI-based methods to detect bumps. Currently, these are
confirmed using a static regression model.



5Data Sets

The approaches presented in the rest of the dissertation (see Chapters 8, 11, 12
and 14) often process Floating Phone Data. Hence data of different shapes is of
interest. A central data pool should enable empirical evaluation of the proposals
and provide potential comparability between the different scenarios.

StructureThis chapter is structured as follows. Requirements for a data set are introduced
in Section 5.1. The collection process and the applied notation throughout are
presented in Section 5.2. A presentation of the data follows in Section 5.3.
Next, “events” are introduced that describe specific situations in a data set (c.f.
Section 5.4). Finally, we introduce in Section 5.5 the OpenStreetMap which
serves as a map resource within this work.

5.1Requirements

A data set is a collection of data with the data coming from sensors that have
been introduced in Section 2.1. Since sensors can retrieve data of varying quality
and granularity, and each use case may pose several ambitious requirements, the
collection process must ensure to satisfy the objective of providing a holistic
data set. Thus, we define three requirements that are briefly described in the
following:

Real-world data The data set should be able to provide real insight into
everyday driving situations that are determined by external factors.
First, driving situations are defined by the geographic area and the
underlying road network. In particular, the data set should contain data
from urban and rural environments as well as different types of roads,
such as residential or highways. Furthermore, constantly alternating
traffic situations impact the data collection process, as traffic varies
depending on the time of day, weather, and day of the week, which
should be accounted for accordingly. At this point, overlaps of different
factors are desired.

Diversity In addition to external factors, internal factors must be consid-
ered, including each driver’s driving habits and reactions to various
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traffic situations, to generate a diverse data set. To obtain a diverse
representation of driving behavior, different participants with differ-
ent backgrounds (age, distance per year, driving experience) should
collect data without instructions. Data collection will be carried out
independently of the vehicle or device. Drivers shall drive in their own
vehicle or rental vehicles on the one hand. There should be at least
one data collection device in the vehicle, placed either arbitrarily or
controlled. This can be used to check various factors that influence
sensor data and, if necessary, evaluate them.

Use case agnostic The data will support the evaluation of various concepts
within the scope of this work. As this thesis relies on sensor data
and location-based information, the data set should contain as much
information as the sensors provide. In selected cases, the data set
may contain an over-representation of certain driving events if this
is necessary to investigate a situation. Generally, the results should
correspond to the frequencies found in the traffic system.

5.2 Collection

We now explain the process of collecting sensor data that will generate the
document corpus for this work. In addition, a fundamental notation is introduced
that is applied throughout the different chapters.

5.2.1 Process

Data collection was carried out using the PoC application (c.f. Chapter 4)
or ROADR (c.f. Chapter 8) application over a period of four years. More
than 15 people participated in the study using 16 different devices as listed
in Table 5.1. Therefore, the study ensures varying sensor accuracy [219] and
settings due to the wide range of mobile devices with different ages and price
ranges. Multiple work [319, 324, 326] and [S1, S2, S11, S12] contributed to
the data set. Further, different vehicles from multiple manufacturers and price
ranges are included. Participants either used their own car or shared it among
others. Driving experiences range from a few years to multiple decades, ensuring
a diverse pattern in driver behaviors.
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Table 5.1Overview of mobile devices  used to create the data set. The devices were running
different versions of Android. Also some devices are part of a device pool.

Device Operation System Pool
Google Pixel 4a Android 11
Oneplus 6 Android 10
Samsung Galaxy A3 Android 8 2
Samsung Galaxy A71 Android 10
Samsung Galaxy Note 10+ Android 11
Samsung Galaxy S6 Android 7 1
Samsung Galaxy S7 Android 8
Samsung Galaxy S8 Android 9
Samsung Galaxy S9 - 1 Android 9
Samsung Galaxy S9 - 2 Android 10
Samsung Galaxy S9 - 3 Android 10
Sony Xperia XZ Premium Android 8 1, 2
Sony Xperia XZ2 Android 8 2
Sony Xperia XZ2 Compact Android 10
Xiaomi Mi Mix 2 Android 9
Xiaomi Redmi Note 4 Android 6

Require-
ments
fulfillment

To create the data set, the proponents  were equipped with a smartphone sp that
runs an instance of one of the two applications. They were instructed to place
the device in their vehicle in a steady position to avoid sliding during the trip.
However, no additional requirements were made regarding the characteristics of
the route. This yields a wide range of trajectories that match the requirements
introduced in Section 5.1:

▶ The traveled routes cover realistic scenarios, such as traveling between
residential areas, from country roads to the city center, workplaces,
shopping stores, schools, and universities. However, it should be
noted that due to the nature of the reason for collecting the data,
some ingrained and specialized routes were also recorded, such as
roundabout passings or road work passing. They do not represent a
typical trip.

▶ Due to the number of participants, the data set is diverse in terms of
driving style and reactions to various traffic circumstances to allow
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further data analysis and allow generalization. Some journeys are
recordings of everyday lives, i.e. commuting, and reoccurring routes.

▶ Trips incorporate different times to account for different traffic condi-
tions throughout the day.

▶ Next, different areas were covered, including urban and rural areas as
well as a multitude of different types of roads, although urban areas
were primarily focused.

5.2.2 Notation

Sidebar B Series Notation

This work often uses a series of values due to the nature of sensor data. The
following symbols are used to denote specific types of data series in this work.

{a, b, c, d,…} is called a set of elements without any order, although the
elements are distinct and can only be part of that set at most once. It
has no specific size and can also be empty.

(

a1, a2,… , an
) is an ordered, fixed-size collection of n elements of the

same type called vector. Each element can be referred to by its
position (index) starting at 1. Note that we use subscripted indexes, e.g.
S = (x, y, z) and S1 referes to x. Furthermore, we use the notation [k]
to represent the set (a1, a2,… , ak) with k being the index 1, 2,… , k.
It cannot be empty.

[b1, b2,… , bm] denotes a sequence or a list that is an ordered collection
of elements of the same type of variable length (here m). A sequence
with m = 0 is called an empty sequence. An element is referred to by
its index, similarly to a vector.

⟨a1, b2,… , co⟩ is a tuple and describes a ordered list of elements of fixed
size o but of potentially different type (also called a o-tuple). Elements
of a tuple are addressed by their name; consider a tuple T = ⟨x, y, z⟩
with Tx referring to x.
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In the course of a journey, sensor data is continuously persisted by the application
on the smartphone in the form of measurements . A measurement m is a six-
tuple and is defined as follows:

m = ⟨t, ⃗acc, ⃗gyr, v, loc, ℎ⟩

with acc being the sensor readings from accelerometer, gyr denotes readings
from the gyroscope and v is the velocity in ms−1 as derived by the GPS.
Furthermore, location information (loc) may be available as well as the vehicles
current heading ℎ as derived by the magnetometer (mag). Both can be NULL, i.e.
no sensor value is available (e.g. there is no external GPS signal or the reading
is intentionally not recorded). Hence we define loc = {∅, loc} and ℎ = (∅, ℎ),
respectively. We further define a location as loc = (lat, lon) with the coordinate
system being WGS 84 (EPSG:4326)1.

Shape of a
measure-
ment

Each reading from acc and gyr is a three-dimensional vector (x, y, z)T ∈ ℝ3 as
defined in Section 2.1.2. Strictly speaking, it is therefore a tuple according to
definition (c.f. Sidebar B), but the term vector is more common in this context.
xi denotes the i-th dimension of some sensor reading x⃗. For instance, accxrepresents the current sensor value in x direction from the accelerometer.

Formation of
a time series

We call a sequence of data pointsm a time series. Consider = [m1,… , mu]to be a sequence with u measurements. Think of  as a matrix with rows repre-
senting the u element long sequence and columns representing a measurement’s
values:

 =

⎡

⎢

⎢

⎢

⎣

t1 ⃗acc1 ⃗gyr1 v1 loc1 ℎ1
t2 ⃗acc2 ⃗gyr2 v2 loc2 ℎ2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
tu ⃗accu ⃗gyru vu locu ℎu

⎤

⎥

⎥

⎥

⎦

We stick to the well-known list notation that || returns the number of elements
in a list, i.e. the number of rows u. In addition, if a sequence  can be considered
a function, the inverse of that function returns for any mi ∈  the position
0 < i ≤ u of that measurement in the sequence. As a utility, we call that inverse
function idx ∶ S → ℕ with S being any type of ordered structure.

Order of
measure-
ments

Since  are (time series) sequences, elements are ordered in time order, and
in particular, a sequence is totally ordered. Each m provides a t for that purpose.
1 https://epsg.io/4326

https://epsg.io/4326
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Hence, elements in  are indexed in monotone increasing order as 1,u;1 with
1,u;1 =

(

t1,… , ty
)T ∈ ℝy representing a vector of all discrete timestamps

(the first column) extracted from the measurements (see Chapter 2).
Measure-

ment slicing
i,u;j,v is called the slice of a matrix (similar to slicing in Python) and in this case
yields a (u− i) × (v− j) matrix with only values scalars falling into the selected
row and column range (i, u and j, v respectively). In our case,  has the shape
u×6 in every case and each row is a singlem that is in turn a tuple. Elements in
are addressed by the name, i.e. a name sequence names = [t, ⃗acc, ⃗gyr, v, loc, ℎ]
exists. We therefore define 1,u;j,v = (u,namesx ) to represent a u × 1 matrix
(or column vector) of column namesx, e.g. t (j = v = 1). Hence, it is the initial
example 1,u;1 that holds all timestamps (t1,… , ty

)T. We also write ∙,namesxif we slice column namesx over all rows u. Note that ∀zl ∈ (u,t) ∶ zl < zl+1holds.

5.2.3 Time-related Properties

In general, data points for a time series are taken at successive equally spaced
points in time, called sampling period, to project a continuous signal into discrete
measures (c.f. Chapter 2). This results in a sampling rate denoted as frequency
f that is the reciprocal of the sampling period. It is trivial to see that discrete
measurements with higher f will better describe continuous signals. On the
contrary, higher f are more challenging in terms of gathering, processing, and
persisting. In addition, the frequency is limited by the underlying sensor (see
Section 2.1.2). Our data set contains s with different frequencies, although the
frequency within each  was static to allow further data processing depending
on the intended task.

Frequencies
in the data

set

In fact, with a target frequency of 30Hz, the mean was 29.2Hz with a standard
deviation of 1.3Hz. Setting f = 25Hz, the mean was at 24.6Hz and standard
deviation decreased to 0.7Hz. There were also recordings with a frequency as
high as 200Hz which was precisely the mean and a standard deviation lower
than 0.1Hz. We refer to Chapter 4 for more background on how to achieve a
precise frequency.

5.2.4 Sensor Fusion

A measurement m according to the definition, inherits from one mobile device
but by integrating multiple sensors into one reading. Thus different shaped
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data is fused into one single representation. This process is called sensor data
fusion [161, 210].

Introduction
to sensor
fusion

Fusion can be performed to get more reliable and accurate information. Forbes
and Boudjemaa [130] define different dimensions on how to fuse sensor data.
First, sensor fusion as is can be used if multiple sensors measure the same dimen-
sion. This addresses errors such as outliers or stuck-at-zero. Next, sensor fusion
can be performed on multiple attributes to generate a more holistic description of
a phenomenon. Third, fusion across domains can be used to generate a broader
picture of a specific circumstance or attribute. For example, sensors at multiple
instances can collect average speeds by deriving a macroscopic impression. Last,
fusion across time can be used to generate more accurate sensor readings by e.g.
combining recent recordings with calibrated ones to address drift or noise.

Application
of sensor
fusion

Recalling our definition of m, we apply multiple attribute sensor fusion where we
integrate readings from the accelerometer acc, gyroscope gyr, and magnetome-
ter mag as well as the GPS. Hence, we collect data in a cooperative sensor fusion
scenario [118]. Also, we fuse across times to identify specific situations in the
sensor stream, such as standing phases. Such special occasions are introduced
in Section 5.4.

5.2.5Additional Remarks

s are assigned to a tuple of driver and mobile device ⟨p, sp⟩. Figure 5.1
presents the frequency of mobile devices  used in the collection process
to generate the data set.
An exemplary extract of the recorded measurements  that illustrates the shape
of the sensor data is shown in Listing 5.1.

5.3Presentation

In the following, we will present the collected data set. In total, 15 participants
record 155 trips using 16 mobile devices. The cumulative trajectory length
is 1662 km. Figure 5.2 shows that around 80% of all trips fall into the range
between 2 km and 6 km.

5.3.1Area

The data is collected primarily in Regensburg, Germany, including surrounding
areas. In some cases, data was also collected in the cities of Passau, Germany,
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Figure 5.1 Distribution of trips recorded with a specific device sp ∈  .

1 [
2 {
3 "timestamp": 12312,
4 "acc": { "x":0.0023942748,"y":-0.481249243,"z":9.7782182693 },
5 "gyro": { "x":0.025785232,"y":-0.0051599788,"z":0.0083505278 },
6 "speed":8.2583837509,
7 "location": { "lat":48.9884970456,"lng":12.2092330476 }
8 }, {
9 "timestamp": 12347,

10 "acc": { "x":0.0766167939,"y":-0.4740664065,"z":9.5028762817 },
11 "gyro": { "x":0.0074592759,"y":-0.0131659787,"z":0.0107939895 },
12 "speed":8.2583837509,
13 "location": { "lat":48.9884970456, "lng":12.2092330476 }
14 },
15 ...
16 ]

Listing 5.1 Examplary extract of recorded measurements  illustrating the shape of the sensor
data. Data is persisted as JSON or CSV respectively.
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Figure 5.2Binned distribution of the trajectory length. In total, 155 tracks were recorded. Most

recorded tracks have a length below 5 km with some spanning up to 34 km.

and Salzburg, Austria. Due to the purpose of the study, a focus was placed
on urban scenarios, which means that the share of urban routes predominates.
Furthermore, with a few exceptions, no freeway journeys are included, as these
turned out to be of little informative value after a scenario and application
analysis. This circumstance was exacerbated by the fact that at the time of data
collection, construction sites were taking place on the sections of Autobahn 3
around Regensburg. As it turned out, such data could not be used for the planned
applications within Part III.

Distribution
of
trajectories

Figure 5.3 illustrates the routes collected around Regensburg, Germany (high-
lighted area). The color of the roads defines the type of road, as this is stored in
the OpenStreetMap (OSM) data. One can see that Regensburg is surrounded by
two highways (A3 and A93, respectively) to the south and west (blue). The over-
lay shows how often an area has been traversed across all routes. The gridsize
corresponds to approx. 500m × 500m sections in longitudinal and latitudinal
directions. It can be seen that a large part of the Regensburg-originating routes
crosses the area near the University of Regensburg. More rural routes outside
the marked urban area are less frequently found in the data set on purpose. The
red hexagon has been traversed a total of 162 times.
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Figure 5.3 Heatmap of the covered within the data set. The map is rasterized into ≈ 500m ×
500m sections in longitudinal and latitudinal directions. There is a focus on urban areas,
namely the city of Regensburg (highlighted area). Colors of the street represent the type
of the connection.

5.3.2 Example routes

Figure 5.4 shows some selected representative routes. Highlighted in color
are the route traversed and the underlying road network. The figure shows an
urban trajectory (Figure 5.4a), a route that leads from the rural area to the city
(Figure 5.4a), and a trip that is entirely in rural areas (Figure 5.4a), as well as a
special recording without branches (Figure 5.4a).

5.4 Events

Hall and McMullen [161] define multisensor data fusion as “the technology
concerned with the combination of how to combine data from multiple (and
possible diverse) sensors in order to make inferences about a physical event,
activity, or situation”. An event can, as a result of this, be defined as the change
of the system’s state [168]. Sensors generate low-level events, i.e. sensor data.



5.4. EVENTS 121

a) Urban-focused route. The route runs
exclusively in the city. Routes of this type
often pass through traffic lights, which
cause a change in traffic flow and thus repre-
sent an external influence factor. Likewise,
lane changes take place on multi-lane roads.
Vehicles of different types, such as cars,
trucks, or buses, can be found and affect
a driver’s driving behavior.

b) Urban-to-rural transitional route. The
route starts in a rural area and leads to the
city. One can see a clear difference in speed
between the two sections of the routealso,
the number of curves increases.

c) Rural-focused route. The passing of
several small local sections with a reduc-
tion of speed to typical city-like speeds
(e.g. 50 kmh−1) as well as the subsequent
increase of speed to distant roads (e.g.
100 kmh−1) is gathered in this route.

d) Turnless route. A route with no turns
may be uncommon and may not yield many
events w.r.t. this work. Several places are
passed on a straight route here.

Figure 5.4Selection of exemplary routes. Some examples from the gathered data set show route-
specific properties such as the passed area or trajectory shape.



122 5. DATA SETS

Driving
behavior

dependencies

During a journey, the sensors continuously record data to conclude the vehicle’s
state or environment. Three different types of influence can be distinguished.
First, influences can be caused by the behavior of the vehicle driver. This includes,
for example, acceleration, which is reflected in accelerometer sensor readings,
and the change from one road to another, i.e. a turning maneuver seen in the
accelerometer and gyroscope readings. The latter is closely related to road
network. This also affects the sensor data since the vehicle must move accordingly
in the road network. The course of a road can also lead to changes in direction that
the gyroscope can record. Finally, there are other external factors that have an
impact on vehicle movement. These are not always clearly distinguishable from
the other two categories, but the primary difference is their origin, intrinsic or
extrinsic. Rush hour and associated lower speeds are considered extrinsic, as are
evasive maneuvers or poor visibility. It is necessary to classify this circumstance
accordingly. Chapter 11 considers this in more detail.

Sidebar C A primer on Complex Event Processing (CEP)

CEP is an approach to monitoring and analyzing processes or dynamic systems,
i.e. system that follows a specific logic. For this primer, we refer to Hedtstück
[168]. Based on this, additional processes or procedures can be set in motion.
The basis of a decision is formed by events that occur in the original process and
cause a sudden change in the state there. Events can be recognized à posteroi by
means of a timestamp and a representative type. Events, according to Hedtstück
[168], differ from activities, which elapse over some time and are bound by the
start and end events. In particular, unlike events, activities do not change the
system’s state.
A CEP system structure events at different abstraction levels, horizontally or
vertically. On a vertical basis, events are dependent on each other, meaning
that they can form more complex types of events in combination or when
aggregated. However, the partial events do not have to take place simultaneously.
The combination of multiple sources, e.g. multiple sensors such as the GPS and
IMU is called horizontal abstraction.
It is the task of CEP (or more precisely, a CEP engine) to detect events in a
continuous stream of data, with some events masking others. In order to process
the data stream, approaches such as windowing are applied. Common steps in a
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Figure 5.5Relationship between Complex Event Processing and events. Horizontal aggregation
focuses multiple sensor readings. Vertical aggregation then leads to longer patterns with
atomic events ea composed of successive measurement. Multiple ea may be aggregated
to more complex events c .

CEP pipeline are filtering, preprocessing (which includes adding external data),
pattern matching, and decision-making.

Complex
Event
Processing

A common technology for processing fused sensor data to detect significant
information is Complex Event Processing (CEP) (see Sidebar C). We apply
vertical and horizontal CEP to find the sensor patterns of interest. Within this
work, the following specific (complex) events and activities, respectively, are of
interest:
Acceleration as an event describes when the current moving state of a

vehicle changes as a result of increasing speed.
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Braking is the antonym of acceleration and indicates that the vehicle
decreases the speed of movement (event).

Steering is an event that indicates a change in the vehicle’s movement
direction.

Turning is the activity change of lane or direction (e.g. turning on a road
network).

Standing is the activity where the vehicle is not moving at all.
Driving is the antonym activity of standing.

The listed events are all complex events formed by atomic events that initiate the
mentioned activities [237]. Figure 5.5 clarifies the relationship.

5.4.1 Extraction

Now we describe how the CEP is performed based on the available measurements
.

Atomic
events

Atomic events are generated by sensors in the form of sensor data and are
denoted by ea. An atomic event is always constructed by two adjecements,
ordered measurements (ea) = (mi, mj) with both elements are part of a trip i(horizontal abstraction). We define two different types of atomic events, namely
increasing and decreasing. Let Ea a utility function that uses the difference
Δea = mj − mi to yield the atomic event type:

Ea(ea) =

⎧

⎪

⎨

⎪

⎩

Δea < 0 decreasing
Δea > 0 increasing
Δea = 0 NULL

ea is not a valid event if Ea outputs NULL. However, this is unlikely because
of the prevalent noise or bias of the respective sensors (i.e. accelerometer and
gyroscope). A i can contain an arbitrary number of events that are following
their underlying ms order. Running Ea continuously for i results in a sequence
a = [ea1,… , ea|i|−1].

Complex
events

Atomic events are aggregated to craft the complex events acceleration, braking,
or steering which in turn represent a sequence of measurements [m1,… , mn] =
i (vertical abstraction). Consequently, for their identification, a sequence of
events a is analyzed to find ongoing sequences of the same event type, i.e. find
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any eak = eak+1. Hence, we define another utility method Ec ∶ a ←→ c . This
method tries to greedily find a monotone2 subsequence ̃a ⊂ a that makes up
a single, complex ec . Complex events ecs are partial sequences of i, hence
∀ec i ∈ c ∶ ec i ⊂ i. Depending on the given complex event type, different
sensors are of interest. Acceleration and braking are obtained by analyzing
the accelerometer, while steering events are derived based on the gyroscope.
Complex events are then used to denote specific activities such as turning or
standing3.

ActivitiesAn activity is subsequence a ⊂  of measurements [mi,… , mj] = [ml]i+Kl=iwith K items, with ml ∈  having start event i and end event j = i +K . Such
sequences are found by i.a. analyzing complex events. Also, the sequence a has
to meet certain conditions depending on the activity type.

▶ Standing and driving activities are extractable using data from the
accelerometer. If no acceleration or braking event is present, one
can assume a static situation of the vehicle. Section 4.3 illustrates
an approach to detect the standing phases by analyzing the moving
standard deviation of the accelerometer s̃td(acc). Phases which do not
hold standing activity may in turn be considered driving activity.

▶ Turn activities are, in contrast, identified by waiting for steering events
and watching the gyroscope. Turns are steering events that extend over
a certain length and cause a certain change in angle. Given that the
sum of the gyroscope readings for a steering event exceeds a given
threshold, we consider that complex event to be a turning activity. A
detailed introduction follows in Chapters 8 and 12.

5.4.2Example

Heading and
bearing

Based on the available sensor data, the real-time orientation of a vehicle or
smartphone can be determined with the help of the gyroscope, enabling one
to infer the historical trajectory. Furthermore, the vehicle’s orientation and its
respective changes can be set in relation to a global coordinate system. When
using the magnetic north as a reference, one speaks of the vehicles heading.
Heading is related to bearing. Relative bearing describes the angle between the
2 Monotonic in the sense that successive events are of the same type.
3 Even more sophisticated information can be extracted by combining complex events, as this
work will present in Chapter 8. The chapter introduces situations such as passing a traffic light,
a roundabout, or roadworks and thus illustrates the potential of sensor data, framing this work.
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Figure 5.6 Exemplary route including multiple turns and curvy parts. It starts at the lower right
dot in urban area. Turns are marked with a blue cross, while the curvy parts of the road
are marked green.

own heading and a reference object (e.g. destination in a road network). On the
other hand, magnetic bearing is defined as the angle to magnetic north.

Turns,
curvature,

and straights

Figure 5.6 shows an example route. The highlighted elements 1 , 3 , 4 ,
6 , and 9 (marked with a cross) denote turns as defined before. Furthermore,

it can be seen that the trajectories between turns are also not a straight line but
follow a particular shape (c.f. elements 2 , 5 , 7 , and 8 ). In the context
of this work, the course of a trajectory is called slope, which can be qualitatively
described as rather curvy or relatively straight (refer to Section 12.5 for a detailed
analysis). The slope and curves can be recognized in the sensor data depicted
in Figure 5.7. The relative heading change of the vehicle is drawn in since no
reference to a reference coordinate system can be established via the gyroscope;
each progression starts at zero. However, a global view is mandatory to determine
the northward orientation of the vehicle. The summed measured values of the
gyroscope4 are usable to detect further lane changes and the curvature of a track
in addition to turns. Curves are characterized by a substantial change of direction,
which corresponds to the definition mentioned previously. Furthermore, the
direction of a turn can be recognized by evaluating the sign of the heading.
In the case of straight sections, no differences can be recognized concerning the
4 For reasons of simplicity, it is assumed that the smartphone is perfectly aligned with a vehicle, so
that all gyrz values are congruent with the change in the direction of the vehicle
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Figure 5.7Illustration of the heading changes of the traveled route. Heading changes occur due
to turns or road curvature. An exception is a lane change, that induces only a temporary
heading change. As no reference system is available, each heading progression starts at
zero.

heading so that it remains approximately constant. Curvature is an increasing
change of direction that lies below the intensity of a curve but nevertheless leads
successively to a deviation.

Setting
heading in
relation

In the example mentioned above, an initial reference value of the heading is
missing, which means that strictly speaking, one cannot refer to the heading.
In this context, one could call it local heading, i.e. the own targeting measured
from the start position. The value range of such a quantity is between [−∞◦,∞◦]
(if a vehicle would move infinitely in one direction, the cumulative changes of
direction would also add up infinitely). To infer the actual heading, i.e. one’s
orientation w.r.t. the magnetic north, a smartphone’s magnetometer can be used
to provide an initial state. With this, the heading could be correspondingly
expressed in [0◦, 360◦].

Magnetome-
ter accuracy

We performed experiments to assess the quality of the magnetometer, as high ac-
curate readings are essential to yield meaningful and reliable heading references.
Bias will be present; as we already discussed, the magnetometer is susceptible
to sources of interference (c.f. Section 2.1.2). However, the evaluation should
give insight into the significance of the error. The evaluation process was as
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Figure 5.8 Distribution of the heading change error across multiple measurements. Around
40% of all readings show an error around ±5◦.

follows. We compared the orientation as measured by the magnetometer with
the magnetic bearing produced by OSM (see Section 5.5) and calculated the
difference. In conclusion, as Figure 5.8 shows that there is a significant deviation
depending on the vehicle, the smartphone, the position in the vehicle, the test
area, or the orientation itself. Consequently, the magnetometer may only be used
to roughly assess the orientation in a qualitative state, such as north, east, south,
or west. We will cover this problem in Chapter 12. The results are in line with
the results of related work [276].

5.5 OpenStreetMap

In addition to the motion information collected by an IMU, the work also
evaluates and exploits location-based information (c.f. Chapters 7, 8 and 12).
For effective processing of this spatial information, an appropriate resource is
needed that provides detailed and accurate geo-information about road networks,
including meta-information. Furthermore, an essential requirement for a map
service is the ability to process available information efficiently.

Opensource
map data

Thus, another essential resource widely used in this work is OpenStreetMap
(OSM), which provides extensive and comprehensive geospatial information.
It includes next to a representation of the street network multiple additional
attributes such as, for instance, traffic lights, lane directions, or speed limits.
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1 <node id="4014860289" visible="true" version="1" changeset="37311670"
timestamp="2016-02-19T16:11:16Z" user="****" uid="****"
lat="49.0070014" lon="12.0867723">

→

→

2 <tag k="highway" v="traffic_signals"/>
3 <tag k="traffic_signals" v="signal"/>
4 </node>

Listing 5.2Exemplary structure of a node. A node that represents a traffic light to control traffic
flow on a highway.

OSM is an open-source project with voluntary contributors that globally manage
and edit map data. The data is provided by OSM in an open data format without
restrictions, eventually allowing customized geospatial information processing
within the scope of this work.

5.5.1Modeling

OSM data
structure

The data structure of OSM is built upon three basic elements, namely nodes,
ways, and relations with additional information encoded as tags alongside.
Nodes are used to define a geographic position, each defined by a pair of
longitude and latitude coordinates (c.f. Listing 5.2). Ways are ordered sequences
built from nodes that represent any given shape on the map by implying a
connection between adjacent nodes. A connection between two nodes composes
a way segment called a leg, which is the shortest line between those two nodes
(c.f. Listing 5.3). Ways do not necessarily have to represent a road but can also be
used to define any shape, such as buildings with shorter legs that model the real
world more closely. A way may or may not be bilateral with a tag that indicates
whether it is a one-way or two-way street in the context of a road network.
Furthermore, a relation is an ordered list that can comprise nodes, ways, and
relations, each of which can be assigned a role through a tag (c.f. Listing 5.4) The
OSM syntax provides relations to define the logical or geographic relationships
that exist between the listed components. Finally, tags are arbitrary key-value
pairs associated with nodes, ways, or relations, enriching the map data with
metadata5. Apart from basic characteristics such as the kind and the name of an
element, tags hold information about qualities such as traffic lights, speed limits,
or whether a way is a one-way street.
5 For a full list, refer to https://wiki.openstreetmap.org/w/index.php?title=Map_features&oldid=
2111805

https://wiki.openstreetmap.org/w/index.php?title=Map_features&oldid=2111805
https://wiki.openstreetmap.org/w/index.php?title=Map_features&oldid=2111805


130 5. DATA SETS

1 <way id="31104525" visible="true" version="22" changeset="113667776"
timestamp="2021-11-11T20:26:51Z" user="****" uid="****">→

2 <nd ref="662086518"/>
3 <nd ref="4241460564"/>
4 <nd ref="1372342252"/>
5 <tag k="cycleway" v="separate"/>
6 <tag k="highway" v="secondary"/>
7 <tag k="lanes" v="2"/>
8 <tag k="lit" v="yes"/>
9 <tag k="maxspeed" v="60"/>

10 <tag k="name" v="Friedenstrae"/>
11 <tag k="oneway" v="yes"/>
12 <tag k="ref" v="Rs 4"/>
13 <tag k="surface" v="asphalt"/>
14 </way>

Listing 5.3 Exemplary structure of a way. A way composed of three nodes (via <nd> references)
with additional tags that further refine the properties of that way. The illustrated way is a
highway with a separate cycle way and has two lanes in a single direction. Also, the tags
describe the ways name and speed limit.

1 <relation id="105785" visible="true" version="9" changeset="55696518"
timestamp="2018-01-23T21:16:10Z" user="****" uid="****">→

2 <member type="way" ref="27859983" role="from"/>
3 <member type="way" ref="33040473" role="to"/>
4 <member type="node" ref="759219903" role="via"/>
5 <tag k="except" v="psv"/>
6 <tag k="restriction" v="only_straight_on"/>
7 <tag k="type" v="restriction"/>
8 </relation>

Listing 5.4 Exemplary structure of a relation. A relation restricts the possible turning directions
at an intersection where one way transits into another.
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Figure 5.9Exemplary map excerpt showing that a network is uniquely defined by nodes and
edges. Nodes are represented as red dots, while ways are coded as blue lines.

Network
graph

In summary, OSM provides a graph-based map structure that can be formally
defined as a directed graph G = (V ,E) with V being the set of all nodes and
E covering all legs that are found in a map. G is a non-planar directed graph
with possible self-loops and parallel edges. Therefore, an edge (i.e. a leg) is a
pair of two vertices vu, vv that represents a one-way connection between both
vertices. However, the set E has to model all connections present in the street
network, eventually requiring that bidirectional (two-way) ways be modeled as
two reciprocal directed edges (with identical but reversed geometries). v can be
part of multiple edges, which promotes it to be an intersection once it is included
in at least three edges. An exemplary excerpt of a map is shown in Figure 5.9
illustrating nodes and edges as links between nodes. w.r.t. the figure, one can see
that two distinct node pairs define a leg and multiple legs represent a street as it
is known in general.

5.5.2Quality Discussion

Accurate modeling of the real-world street network is of particular importance
when working with geospatial information as it is done in Chapters 8 and 12.
Inaccurate representations of node coordinates can interfere with map-matching
approaches, either based on GPS or IMU data. Therefore, in the following, we
will draw attention to some problems that have arisen in the course of this work
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Figure 5.10 Example of incorrect modeling of the road width. Inaccurate modeling of the street
network results in a gap between the recorded data and the street network.

when working with OSM data. Each problem may require special, anticipatory
treatment, which will be discussed in the appropriate sections.

Simplified
representa-

tion

The OSM street network is a model of the real-world street network. As such,
it is a simplified representation of reality; however, the level of abstraction may
vary between different models [54]. However, the existing deviation from the
real road network is of particular interest in the context of this work, as map
matching the recorded trajectories may fail in certain cases if the street network
is inaccurate. Figure 5.10 gives an example of such a problem. The road course is
shown in the OSM map data (blue) along with a recorded trajectory that passes
this road segment (red). It is trivial to grasp that there is a significant difference
between the actual trip and the model. This deviation may be due to the lack of
a road width model and, consequently, the unrealistic assumption of 90◦ turns.
The except shows two immediate turns, both modeled with 90◦. Due to natural
driving behavior and the minor change in the road trajectory, the model and the
recorded trajectory pose a gap.

Difference
between real
and modeled

world

Another example of such cases is commonly found in lane merges, as shown in
Figure 5.11. A lane merge occurs if a road has dedicated lanes for each direction
and eventually joins at some point. The ongoing way is then modeled as a single
(bidirectional) road. Although G will still contain two e for each direction, they
are congruent. Again, the missing road width is challenging, especially in the
example presented, where a turn occurs at the exact point of the intersection
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Figure 5.11Example of simplified modeling of intersections. Inaccurate modeling of the street
network results in a gap between the recorded data and the street network.

(marked with a cross). There is probably a dedicated turn lane that is missing in
the simplified graph. We want to emphasize that such cases imply a significant
gap between the actual and the modeled magnetic bearings. The actual bearing
delta will be roughly 90◦, while the modeled is a sequence of around −30◦ and
120◦.

Impact of
driving
behavior

In addition to modeling, however, driving behavior also has an influence on the
quality of the map matching. In this case, again, cornering is problematic, which
in reality is usually smoother than represented by the rigid curve radii of the
model. The illustration in Figure 5.12 also highlights the problem of inaccurate
GPS measurements resulting in a shift between the model’s road coordinates
and the recorded ones.
In conclusion, a strict matching process is infeasible in the context of this work.
A fuzzy approach is favorable depending on the use case to increase the quality
and reliability of the produced data. We will highlight appropriate methods in
Chapters 8 and 12.
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Figure 5.12 Example of the deviation between model and real-world data. Inaccuracies may occur
in both, the recorded GPS data and the map material provided by OSM.



Part II

Privacy by Design-enabled
Use Cases





6Privacy by Design

Conventional information systems are composed of multiple integrated and
complex processes, each offering essential functionality. At specific points in a
process, activities rely on a user identity, which is the representation of a user
when he interacts with the system [315].

Identification
and authenti-
cation

A user identity may be required and used for different purposes, including, but
not limited to, confidentiality, integrity, accountability, and non-repudiation. An
exemplary process to access a restricted resource might require a user to identify
himself with a service provider (built into the system or offered by a third party)
who in turn authenticates a user by verifying the claimed identity (e.g. via a
password) and auditing such requests. The procedure is shown in Figure 6.1.
The authentication process may be ongoing and reoccurring, i.e. authentication
may be needed for additional resources or processes. Consequently, the well-
known security goals are used to ensure the correct operation of the system, not
only limited to security and safety.

Identity and
privileges

During the authentication process, the service provider assigns privileges to a
user based on his identity to ultimately authorize the user to perform specific
actions. Hence, both steps (identification and authentication) seem inseparable
in standard systems. If a user refrains from presenting his identity, he might
be excluded from a system, denied certain functionality, or limited to specific
processes. Altogether, conventional information systems are challenging to be
aligned with requirements for privacy [407] as they historically focus on system
integrity rather than client protection [66, 315].

Privileges
management
and
assignment

However, privileges may be given either on individual or group properties. Indi-
vidual privileges are commonly attached to properties that a user has. Therefore,
he must somehow prove this condition. In contrast, group properties are attached
to a group based on properties shared with the group (e.g. age above 18). Thus,
a user who claims the respective privileges must show that he is part of a group
(e.g. the possession of an identity card in certain countries). Depending on the
operation to be performed in an information system, it might be sufficient to use
a group-level granularity for an identity. However, the chosen approach directly
impacts the viability of the security goals, especially accountability and auditing.
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Figure 6.1 Basic architecture of an information system. The information system requires that
user identifies himself to the system before he can utilize the services. A user presents
his identity to an identity provider who assigns privileges to a user required for service
access. (based on Ronald and Borking [315])

Trusted
Third Partys

A well-known approach to establishing privacy is to rely on a Trusted Third
Party (TTP) that serves as a trusted intermediary between a service (which offers
the application and the processes) and the user itself. The user may identify
himself towards the TTP and receive a pseudo-identity generated by the Trusted
Third Party that he may present to the service, as depicted in Figure 6.2, to
obtain permissions based on the given pseudo-identity. It is evident that each
service receives a separate identity, eventually unable to match them to the same
user. Thus, the TTP may offer to convert identities to pseudo-identities but also
reveal the linkage between both in case of some misuse. Consequently, the TTP
serves both interests by limiting the dissemination of real identities to various
information systems while protecting the interests of a service provider, such
as accountability or traceability. However, a Trusted Third Party still requires
external trust from a user offered, probably through a black-box-based system.

Structure Part II hence focuses on challenges related to complex information systems that
need to balance users’ privacy interests due to the processing of severely personal
data with the aspiration of the quality of service provided by a service provider.
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Figure 6.2Extended architecture of an information system with a Trusted Third Party. The TTP
serves as an identity broker between a user and a service and provides pseudo-identities
(pseudonyms) that hold the required privileges to access a service. (based on Ronald and
Borking [315])

We first focus on the evolution of privacy-aware and privacy-friendly systems
in Section 6.1. In fact, we introduce the concept of Privacy by Design that we
compare to Privacy Enhancing Technologies (see also Chapter 13). In addition,
we will present selected works in Section 6.2. Each work balances the interests
of multiple stakeholders, including, but not limited to, privacy and integrity.

6.1Introduction

We previously outlined that information systems aim to preserve specific se-
curity goals that may be controversial depending on the stakeholder interest.
Hence, a design decision process must be carried out to find a trade-off between
conflicting requirements. For example, tracking of all user interactions in an
e-Commerce shop allows the individual recommendation of products depending
on the interests of a user considered for the possible realization of cross-selling. It
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Figure 6.3 Relationship of different groups of harmful activities to the privacy of a user. Threats
may arise at each of the four activities requiring specific countermeasures to be taken
into consideration. (based on Solove [349])

is reasonable to assume that this behavior is in the interest of the service provider.
However, a user might disagree with being thoroughly tracked during the online
shop experience.

6.1.1 PETs

Steps of
information

disclosure

A user’s primary interest may be self-management of data and a reduction of
his digital footprint to preserve his privacy. However, the previous example illus-
trates that privacy problems may occur in different information system processes
due to exhaustive information disclosure, either direct or indirect. Processes can
be categorized according to the taxonomy of Solove [349], that is, information
collection, information processing, information dissemination, and invasion. In-
formation collection is the process of collecting data from users, either directly
or in a hidden way, while information processing is the downstream analysis,
evaluation, and manipulation of data. Information dissemination describes how
information may leave a process found in the information system or the infor-
mation itself—not necessarily unintentional. Invasions “are direct interference
with the individual” [350], for example, limiting the number of products visible
in the said online shop. The interrelationship and interaction of the various steps
is illustrated in Figure 6.3.



6.1. INTRODUCTION 141

Self-realized
privacy

This circumstance describes the imperative why privacy should also be an
important goal in the design of information systems. Privacy can only be
established by allowing users to shape and manage their identities modeled in
a system. Crucial, therefore, are the features that allow users to steer aspects
according to Solove [351], such as Limit on Power, Reputation Management,
Maintaining Appropriate Social Boundaries, Trust, Control Over One’s Life,
Freedom of Thought and Speech, Freedom of Social Political Activities, Ability to
Change and Have Second Chances, Protection of Intimacy, Bodies, and Sexuality
and Not Having to Explain or Justify Oneself (c.f. Section 1.2.1).

Third-party
assistance

However, this management functionality is complex and challenging to provide
and may interfere with the business intention of a service provider. External
techniques are a way out of this dilemma. With the help of Privacy Enhancing
Technologies, a user can interact with a compatible system with his demands
being enforced without the cooperation of a service [129]. PETs allow one to
manage one’s identity, or more precisely, the identity perceived by a service.
For example, data minimization can be enforced through PETs as it may review
submitted information for being detrimental to privacy or control and suppress
information disclosure at all [377]. It is trivial to grasp that PETs interfere
significantly with the functionality of a service, eventually deteriorating the user
experience to the extent that no meaningful use is possible. Moreover, they are
often targeted for specific information systems. We focus on PETs in Chapter 13.

6.1.2Privacy Aware System Design

An evolutionary construct is called Privacy by Design which fundamentally dif-
fers from PETs as the latter works ex-post without being service agnostic. PETs
are privacy design patterns that solve problems with a non-privacy-aware system
design [160]. In contrast, Privacy by Design is a privacy design strategy [160,
174] defining that systems should be designed to provide all functionalities while
ensuring privacy and personal control over one’s information [66]. Therefore,
an information system designed with privacy as a first-level requirement is more
inclusive, as it provides the full range of functionality while ensuring privacy
and providing personal control over one’s information [66]. Privacy by Design
was invented by Cavoukian [66] composing general and holistic guidelines to
design the interaction of information systems, accountable business practices,
and infrastructure. It is also subject of the General Data Protection Regulation.

Seven
principles for
privacy by
design

The seven principles of a privacy-aware design approach are listed in the follow-
ing.
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1. A Privacy by Design-based architecture is designed with proactive
protective measures in mind so that the probability for privacy-invasive
events is negligible, eventually driving remedies for data breaches
obsolete.

2. Privacy has to be enabled for any user by default so that all users,
independent of background, setting, or interaction with the system,
are architecturally protected.

3. The architecture should consider privacy as a core functionality deeply
integrated into the information system without diminishing any expe-
rienced services.

4. The experience itself is of particular interest for a user; hence, a Privacy
by Design-based approach should provide full functionality while
preserving privacy unrestrictedly.

5. As an information system is composed of multiple processes and ser-
vices, Privacy by Design demands that the whole lifecycle is exten-
sively considered and thoroughly protected.

6. Such a system should demonstrably and comprehensibly prove inter-
operability independent of a stakeholder; this includes, without limi-
tation, the full protection of data.

7. User-centricity is essential so that the interests of a user providing the
data are equally considered with other design decisions i.a. driven by
the service provider

These principles may be considered abstract, high-level, and open to interpreta-
tion [377]. Their organizational and technical realization depends on the specific
information system and varies with the sensitivity of the data [66, 160]. However,
it is still worth mentioning that Privacy by Design requires the design process to
take into account all the privacy and derived requirements to ensure the named
principles. In fact, privacy should not be considered to be added to an existing
architecture [315]. We will present our interpretation in Section 6.2 and the rest
of Part II.

6.1.3 Data Minimization

The privacy taxonomy presented by Solove [349] illustrates four groups that
specifically threaten user privacy. Indisputable, minimizing the amount of (per-
sonal) data transmitted to a service provider also reduces the impact of a privacy
violation. Therefore, data minimization is a desirable path in the design of infor-
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mation systems. There are misunderstandings regarding the definition of data
minimization, though, as Gürses et al. [160] points out. In the classical sense,
it can be understood that only necessary data should be transmitted, eventually
resulting in sensitive data made available throughout the information system
(within hostile domains). Even though sensitive data will be available at some
point in the information system, it is favorable to be kept within the control of
a user [297] probably in encrypted or aggregated form [160]. We stick to the
second definition and argue that raw data should never leave the domain of a
user, as it enables multiple side-channel attacks, some of which are focused in
Part III of this work.

Data
minimization
strategies

As a consequence, the use of encryption or similar methods before transmitting
data to a service provider (we will leave the question of the transmission of the
identity aside at this point) is not intended to achieve Privacy by Design. Still, this
does not necessarily yield any minimization of data. In fact, data minimization
strategies are favorable when designing a Privacy by Design and by Default
system. However, a privacy-friendly system must not abandon the basic security
features of an information system that were motivated at the beginning of this
chapter. Gürses et al. [160] defines data minimization strategies as follows:

▶ Minimize Collection: whenever possible limit the capture and storage
of data in the system

▶ Minimize Disclosure: whenever possible constrain the flow of infor-
mation to parties other than the entity to whom the data relates

▶ Minimize Replication: whenever possible limit the amount of entities
where data is stored or processed

▶ Minimize Centralization: whenever possible avoid single point of
failure in the system

▶ Minimize Linkability: whenever possible limit the inferences that
can be made by linking data

▶ Minimize Retention: whenever possible minimize the retention of
data in the system

Significance
for research

Consequently, it is a matter of combining different strategies accordingly to
achieve Privacy by Design. In Section 6.2 we apply these strategies to specific
data-intensive problems with high abusive potential. Most of the strategies
may also be (implicitly) found in General Data Protection Regulation (GDPR))
Article 5 as data minimization is an essential concept within this regulation.
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6.1.4 Designing Privacy by Design

The design of an information system is composed of multiple steps, each of
which requires complex decisions concerning user privacy and system integrity.
Due to the holistic approach of Privacy by Design, the strategies can already be
considered initially and are driving elements of the development. To successfully
apply the strategies, a four-step interlocked stage model is proposed [160] that
is discussed in the following.

Separate the
domains

First, the relevant entities must be defined and assigned to a domain. Domains
are either user-controlled or service-controlled, with the latter including all data
processors and data controllers (refer to GDPR for a formal definition of both
roles; see also Section 9.2). The information system with multiple processes
can span both domains. Furthermore, the service provider (or the authorizing
instance) is typically found in the service domain.

Identify
required data

Most information systems create value based on data provided by a user. There-
fore, the second step is to define the data necessary to provide a service and
identify the scope of data required to be available in a service domain, eventu-
ally leaving the user domain. This task is explicitly challenging, although even
the GDPR restricts the amount of data to be collected to the data required to
fulfill a service. However, the boundaries are floating at this point, mainly due
to sophisticated ML applications that benefit from extensive data sets. Thus, ser-
vice providers tend to a “collect-all-data” approach or “select-before-collect”,
although these procedures require a rethinking. It is no longer applicable when
sticking to the Privacy by Design principles that demand purpose-driven data
collection.

Map
domains to
data based
on privacy

invasiveness

The identified scope and amounts of data required to provide a service are con-
sidered in the next step to define the distribution of data within an architecture.
We have learned that information systems are composed of multiple processes,
each providing functionality that, in combination, define a service. The initial
step identified the two domains, namely the service domain and the user domain,
while the second step highlights the data needed at specific points in the infor-
mation steps. At this point, a mapping has to be done that aligns the two insights
but does not forget the credo of data minimization. Only necessary data should
leave the domain of a user. This can also be a two-step approach where data
flows through both domains, although sensitive data may be processed in the
user domain and is then forwarded in a “not-so-privacy-invasive style” to the
service domain.
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Figure 6.4 Privacy design strategies are composed of methods that target the data itself and the process. There are multiple methods
to select from for each group. (based on Hoepman [174])
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Implement
privacy-
friendly

strategies

Finally, an architectural draft is composed that critically questions the quantity
of data and processing steps, although it does not include any of the privacy-
enforcement strategies explained previously. However, the architecture of the
information system can now be enriched with privacy design strategies intended
to reduce further the privacy threats listed by Solove [349]. Privacy design
strategies can be a comprehensive list of privacy design strategies is given by
Hoepman [174], which are separated into data-oriented and process-oriented
strategies and match the presented strategies. Data-oriented strategies address
privacy-friendly processing of the data itself and include methods to minimize
data, separate personal and consumption data1, abstract the level of detail or
hide specific aspects. Process-oriented strategies include organizational aspects
of an information system, such as the need to inform a user, provide him adequate
control, allow him to enforce his privacy interest, or demonstrate privacy-friendly
data processing. Figure 6.4 lists the appropriate methods for each group.

Contradict-
ing example

An example that does not follow the Privacy by Design principle is Pay-How-
You-Drive. It uses sensor data collected in the user domain to assess the driving
behavior of a person based on raw data that is sent to a centralized data processor
and eventually replicated to other entities. All data is inextricably linked to the
user who collected the data as he is billed accordingly. Raw data allows for
a variety of privacy violations. This topic is extensively discussed in Parts III
and IV of this work.

6.1.5 Inclusive Design

Apart from a privacy-friendly architecture, the presentation toward a user is also
of particular interest. We claim that a Privacy by Design-designed information
system should be open and inclusive to be in line with the design principles
defined by Cavoukian [66].

Dark
patterns

The information requester might also substantially impact the sender’s disclosure
behavior. It is essential to remember that information systems address users with
different backgrounds. By appropriately compounding the risks associated with
the information disclosure process of sharing data from the user domain, users
1 Consumption data includes all the information that is required to provide application functionality.
For instance, route planning software requires start and destination to calculate a route. In contrast,
personal data, such as the credit card number, may be used to accordingly bill for the service.
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are encouraged to dismiss any concerns automatically. Risks are minimized
by design so that companies can realize a “collect-all-data” mentality [167,
351]. In this context, we speak of dark patterns, in which the user’s decision-
making process to weigh the disclosure of data is influenced by the design
of the information system itself [29, 196]. The decision-making process per
se is already a violation of the Privacy by Design paradigms in that privacy
is no longer omnipresent by default in this case. In addition, non-transparent
communication deliberately tries to deceive the user. Friction aims at something
similar, a process in which the convenience of a user to protect his data is made
as burdensome as possible [260]. Moreover, privacy settings are often minimal,
while preferences for data dissemination are encouraging.

Avoid
decision
making

Such behavior conflicts with the Privacy by Design paradigm in multiple cases
and must be avoided. The information disclosure process is severely complex as
it is influenced by the benefits and costs, the context in which it takes place, and
the cognitive perception of an individual [407]. Consequently, an information
system based on Privacy by Design should be open and inclusive. In fact, it
should make any decision process concerning information disclosure obsolete
once a user decides to interact with an information system in the first place.

6.2Privacy-friendly Research

When composing an information system, the Privacy by Design paradigm is
an essential construct to consider. It is based on the privacy concerns that
we introduced in Section 1.2. However, the path followed is different since,
as described, systems constructed according to the paradigm do not require
the user to make any additional decisions other than the fundamental question
of participation. Thus, the systems presented may take into account the user
requirements accordingly and be designed according to best practice [407].

6.2.1Overview of Research

Multiple research was conducted in the field of Privacy by Design that explicitly
focuses on privacy-friendly and privacy-aware methods and approaches for
processing user-related information. This section briefly lists the relevant work,
also shown in Figure 6.5. In total, seven papers have been published as peer-
reviewed work, two of them being extended versions.



148 6. PRIVACY BY DESIGN

2017 2018 2019 2020 2021 2022

2017 Roth et al. [316]

2018 Roth and Kesdogan [317]

2020 Nitschke et al. [282]

2020 Roth et al. [323]

2020 Roth et al. [319]

2021 Roth et al. [326]

2021 Roth et al. [325]

2021 Roth et al. [327]

2022 Nitschke et al. [283]

Figure 6.5 Research published in the field of Privacy by Design. In total, nine publications either
present the Privacy by Design paradigm or implement it in different settings.

PARTS - Privacy-Aware Routing with Transportation Subgraphs [316]

Authors: Christian Roth, Lukas Hartmann, and Doğan Kesdoğan
Conference: Nordic Conference on Secure IT Systems (NordSec)
Publication Date: November 2017
Abstract: To ensure privacy for route planning applications and other location
based services (LBS), the service provider must be prevented from tracking a
user’s path during navigation on the application level. However, the navigation
functionality must be preserved. We introduce the algorithm PARTS to split route
requests into route parts which will be submitted to an LBS in an unlinkable way.
Equipped with the usage of dummy requests and time shifting, our approach can
achieve better privacy. We will show that our algorithm protects privacy in the
presence of a realistic adversary model while maintaining the service quality.

A Privacy Enhanced Crowdsourcing Architecture for Road Information
Mining Using Smartphones [317]

Authors: Christian Roth and Doğan Kesdoğan
Conference: International Conference on Service-Oriented Computing and
Applications (SOCA)
Publication Date: November 2018
Abstract: The digitization of our road and traffic systems enables evermore
advanced location based services to support us in our everyday tasks with promi-
nent examples being navigation applications like Google Maps or speed camera
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directories like TomTom Speed Cameras. The information collection that lies
at the base of these applications however is often either done behind closed
doors, or relies on the goodwill and time investment of voluntary community
members providing such information as best they can. In this paper we present
a new crowdsourcing architecture for voluntary road and traffic system data col-
lection, that on the one hand values and protects the privacy of the participating
community members and on the other hand significantly eases their manual
workload by detecting and inferring applicable information through the sensors
of their mobile phones using a self-created Android application. Our approach
shows reliable results for the road system properties we defined. We propose
an enhancement for the route navigation process by including the acquired road
information.
Harmonized Group Mix for ITS [282]

Authors: Mirja Nitschke, Christian Roth, Christian Hoyer, and Doğan Kesdoğan
Conference: International Conference on Information Systems Security and
Privacy (ICISSP)
Publication Date: February 2020
Abstract: Vehicle-to-Vehicle (V2V) communication is crucial for almost all
future applications in the context of smart traffic, such as autonomous driving.
However, while current standards like WAVE provide a technical platform
for communication and management, they lack aspects of privacy for their
participants. In this paper, we introduce a Harmonized Group Mix (HGM), an
architecture suited to exchange information in ITS, compatible with current
standards. HGM does not rely on expensive Road-Side-Units (RSUs) or complex
organizational relationships to introduce a trust anchor but is built on the concept
of peer-to-peer networks. Hence, our proposal does not require any changes
to current environments and is eventually easy to deploy in the real world.
Our proposed method provides k-anonymity using group signatures and splits
trust between multiple parties. At the same time, the integrity of the system
is preserved. We evaluate our approach using the simulation framework Veins.
Our experiments show that HGM is feasible from a performance and privacy
perspective in the given context.
iTLM: A Privacy Friendly Crowdsourcing Architecture for Intelligent
Traffic Light Management [323]

Authors: Christian Roth, Mirja Nitschke, Matthias Hörmann, and Doğan
Kesdoğan
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Conference: International Conference on Data Science, Technology and Appli-
cations (DATA)
Publication Date: July 2020
Abstract: Vehicle-to-everything (V2X) interconnects participants in vehicular
environments to exchange information. This enables a broad range of new oppor-
tunities. We propose a self learning traffic light system which uses crowdsoured
information from vehicles in a privacy friendly manner to optimize the overall
traffic flow. Our simulation, based on real world data, shows that the information
gain vastly decreases waiting time at traffic lights eventually reducing CO2 emis-
sions. A privacy analysis shows that our approach provides a significant level of
k-anonymity even in low traffic scenarios.
CrowdAbout: Using Vehicles as Sensors to Improve Map Data for
ITS [319]

Authors: Christian Roth, Ngoc Thanh-Dinh and Doğan Kesdoğan
Conference: International Conference on Social Networks Analysis, Manage-
ment and Security (SNAMS)
Publication Date: December 2020
Abstract: Crowdsourcing can be seen as an opportunity to provide important
information for Intelligent Transportation Systems to improve the service quality
of various applications in this domain. Autonomous or assisted vehicles need the
most accurate map data possible to adjust the respective assistants to it. In this
work, we present CrowdAbout, a system that uses the crowd as mobile sensors
to collect data from smartphone sensors during trips. The system recognizes
special traffic events like roundabouts with the help of machine learning. These
findings are used to automatically correct OpenStreetMap data and adapt them to
a changing road network. An evaluation of different machine learning algorithms
using self-collected realworld data of over 200 roundabouts shows that the
recognition of roundabouts including exit and radius is possible with high
accuracy.
ROADR: towards road network assessment using everyone-as-a-
sensor [326]

Authors: Christian Roth, Ngoc Thanh-Dinh, Markus Hornsteiner, Verena
Schröppel, Marc Rossberger, and Doğan Kesdoğan
Conference: International Conference on Distributed Sensing and Intelligent
Systems (ICDSIS)
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Publication Date: July 2021
Abstract: Complete and up-to-date map data plays a critical role in many
contemporary and future applications such as autonomous driving level 3+. In
terms of crowdsourcing, a data basis can be created that meets these stringent
requirements without dedicating additional resources. With ROADR, we present
a holistic platform to gather knowledge about a road network and its properties
to further enhance either semantic or syntactic information. The privacy-by-
design platform uses a smartphone application to collect crowdsourced data
and performs local machine learning. Only less sensitive data is forwarded to a
centralized platform that aggregates and processes information from the crowd to
provide value-added information found in a vehicle’s trajectory. Also, the paper
provides a thorough analysis of the respective Floating Phone Data indicating
two exemplary events, namely traffic light and traffic circles. Our evaluation
shows that the recognition is done in real-time but in a resource-efficient way.

iTLM-Q: A Constraint-Based Q-Learning Approach for Intelligent
Traffic Light Management [325]

Authors: Christian Roth, Lukas Stöger, Mirja Nitschke, Matthias Hörmann, and
Doğan Kesdoğan
Journal: Data Management Technologies and Applications (Communications
in Computer and Information Science)
Publication Date: July 2021
Abstract: Vehicle-to-everything (V2X) interconnects participants in vehicular
environments to exchange information. This enables a broad range of new
opportunities. For instance, crowdsourced information from vehicles can be used
as input for self-learning systems. In this paper, we propose iTLM-Q based on our
previous work iTLM to optimize traffic light management in a privacy-friendly
manner. We aim to reduce the overall waiting time and contribute to a smoother
traffic flow and travel experience. iTLM-Q uses Q-learning and is constraint-
based in such a way that no manual traffic light cycles need to be defined in
advance, hence, being able to always find an optimal solution. Our simulation-
based on real-world data shows that it can quickly adapt to changing traffic
situations and vastly decrease waiting time at traffic lights eventually reducing
CO2 emissions. A privacy analysis shows that our approach provides a significant
level of k-anonymity even in low traffic scenarios.
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STRIDE: Secure Traffic Reporting Infrastructure based on Distributed
Entities [327]

Authors: Christian Roth, Marc Rossberger, CHristoph Schreyer, and Doğan
Kesdoğan
Conference: International Workshop on Smart Cities Systems Engineering
(SCE)
Publication Date: December 2021
Abstract: Efficient and intelligent traffic networks rely on the constant exchange
of information between participants. For instance, navigation services benefit
directly from the availability of real-time traffic information to suggest the most
time-optimized and ecologically sustainable routes. This type of information is
now commonplace and is formed based on extensive, microscopic movement
profiles. This imposes direct constraints on the location privacy of users who
implicitly or explicitly share such information. In this paper, we present STRIDE
as a component of an ITS to gather real-time traffic information in a privacy-
friendly manner, ultimately protecting data sources (i.e., users) against data
misuse. Our architecture is designed around the concept of distributed trust,
preventing attackers from tracking vehicles across the network, even if they
succeed in compromising network components. We also achieve conformity to
ETSI standards and conclude that real-world implementation of our architecture
would be feasible. Thus, we evaluate STRIDE using SUMO and a real-world
data set to analyze STRIDE’s potential to provide accurate traffic information.
Furthermore, we show that STRIDE ensures k-anonymity even in sparse traffic
scenarios, eventually protecting location privacy of each vehicle.
Harmonic Group Mix: A Framework for Anonymous and Authenticated
Broadcast Messages in Vehicle-to-Vehicle Environments [283]

Authors: Mirja Nitschke, Christian Roth, Christian Hoyer, and Doğan Kesdoğan
Journal: Information Systems Security and Privacy (Communications in Com-
puter and Information Science)
Publication Date: January 2022
Abstract: Nowadays Vehicle-to-Vehicle communication (V2V) plays an increas-
ingly important role, not only in terms of safety, but also in other areas of In-
telligent Transport Systems (ITS). However, privacy is often underestimated in
this context. In this paper we describe an extended version of our Harmonized
Group Mix (HGM). HGM has the objective of enabling the privacy-friendly
data exchange between vehicles in an ITS without neglecting other requirements
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such as integrity. In contrast to other approaches a complex organizational struc-
ture is not required and HGM is thus easily applicable. Rather, the idea of a
Mix system is transferred to ITS communication, but the ITS-specific real-time
requirements can still be met. The simultaneous use of group signatures can
ensure a high degree of k-anonymity and prevent the tracking of participants.
A distributed knowledge approach provides trust but at the same times allows
revealing fraudsters. In addition to a detailed security analysis, this paper eval-
uates the approach using the simulation framework Veins and focuses on the
exact vehicle movements and the groups formation respectively changes over
time and their influence on each other.

6.2.2Aspects of Research

We now present the concepts behind the research done concerning Privacy by
Design. The topics are related to the processing of sensitive sensor data, but on
the other hand, they also place a strong emphasis on mobility as it occurs in
transport networks with different participants. This often results in a dichotomy
of various security goals depending on the respective stakeholder. Commonly,
privacy conflicts with integrity (or accountability and auditability), but as we
will show, such antagonisms may be solved using a distributed system design.

Structural
approach

Building on the findings of this chapter, the Privacy by Design concept is
achieved through a reasonable division of data processing in the corresponding
domains. Questioning the information flows and the data required to implement
the services is another crucial building block. The principle of data minimization
is ensured by incorporating data minimization strategies in accordance with
Gürses et al. [160]. An analysis of our work is presented in Table 6.1. The table
introduces the included stakeholders and the data that is processed through the
information system. A location is known from this work’s notation (i.e. loc)
while a trajectory is an ordered sequence of locations. The sensor data itself is
defined in Section 5.2. Moreover, an assessment of the ability to achieve the data
minimization strategies is given in the table. Eventually, various privacy design
strategies [174] are essential building blocks to achieve Privacy by Design and
Privacy by Default in combination with high service quality. The corresponding
details are presented in the following chapters Chapters 7 and 8 which present
two information systems in more detail.
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Table 6.1 Mapping of publications in the field of Privacy by Design and their applied privacy
design strategies. Depending the processed data and stakeholders, different minimization
strategies can be fully achieved (○), achieved to some extend (◒), or not ensured at all
(●).

Ref Stakeholder Data Co1 Di2 Re3 Ce4 Li5 Re6

[316] User, Service Location ● ● ○ ◒ ○ ●

[317] User, Identity
Provider, Service

Location,
Sensor
Data

● ○ ○ ◒ ○ ●

[319] User, Service Location,
Sensor
Data

● ○ ○ ○ ○ ●

[326] User, Identity
Provider, Service,
External

Location,
Sensor
Data

● ○ ○ ○ ○ ○

[325] User, Identity
Provider, Service

Trajectory ● ○ ○ ○ ○ ●

[327] User, Identity
Provider, Service

Trajectory ● ○ ○ ○ ○ ●

[283] User, Identity
Provider, Service

Generic
Data

● ◒ ○ ○ ◒ ●

1 Collection 2 Disclosure 3 Replication 4 Centralization 5 Linkability 6 Retention

Common
research
problem

structure

Research shares a common structure across different problem domains: Users
provide, generate, or possess data that an information system requires to provide
added value. In general, the more accurate the user data, the better the service
quality may be. The information system may also require authentication or
authorization depending on the given task; hence, identification is needed in the
first place. User-acquired information may be processed, aggregated, or analyzed
and persisted in a database or forwarded to external stakeholders. In summary,
relying on user data that originates from a user’s private and sensitive domain
poses a threat to privacy at multiple steps [349]. Hence, a user’s privacy has to be
protected while ensuring the integrity and reliability of the information system,
eventually being a dichotomy to be balanced.

Overview of
research

As illustrated in Table 6.1, data collection is not minimized in almost all works, as
data is collected within the user domain without restriction. Local computations
are performed in the user domain, which is expected to be trustworthy. However,
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disclosure, replication, and centralization are minimized. Being able to link
multiple interactions with single or multiple information systems enables an
adversary such as a curious information system provider to generate detailed user
profiles. Thus, this ability has to be mitigated. Retention is hard to achieve as the
submitted data of a user is disseminated to the information system, eventually
leaving his control. Admittedly, a thoughtful disclosure process may prevent any
threats related to retention at all.

Difference
between
collection
and
disclosure

It is vital to understand the difference between collection and disclosure. The
former does not compromise privacy, even if it is done to a large extent. The
data that can be collected in the user domain is generated there continuously.
According to Solove [350], as long as the data does not drain out of the trusted
domain, there is no harm because the information processing is local, and there
is no information dissemination at all. Therefore, a core concept of the Privacy
by Design research lies in the strict separation of domains and visibility that is
dominantly present in the presented works.

Building
blocks found
in the
research

Multiple approaches are meaningful depending on the intention.
Collection The collection process is extensive but can be partially limited by
using other sources of data that are already used to draw similar inferences [319,
326]. Limiting the usage of resources also limits the probability of a breach.
Dissemination The dissemination of data can be minimized by not sending
the data and performing data-intensive applications in the user domain and
only sending aggregated results from these computations [319, 326]. This is
a feasible approach to processing sensor data with high side-channel attack
potential (c.f. Chapter 10). In addition, the limitation of leaked data can also
be achieved by applying privacy-protective cryptographic protocols [160] such
as zero-knowledge proofs [327] or attribute-based credential systems [325].
Replication Furthermore, the replication of the data can be limited by applying
encryption on the data so that only a specific party can evaluate the data [283,
317, 325, 327]. According to the chosen encryption scheme, the service domain
cannot access the data unless a key is given (perhaps in terms of proving
innocence by a user) [283] or perform some calculations using e.g. homomorphic
encryption [317, 327].
Centralization Relying on a centralized infrastructure may allow a single
entity to map activities on users, ultimately violating privacy requirements.
Sophisticated credentials systems (c.f. Sidebar D) distribute identity verification,
authorization process, and fraud investigation between multiple and distinct
entities [325–327]. Such systems may also provide mechanisms to increase the
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traceability and transparency of operations between different entities. Increases
in centralization thus become visible to users. Centralization can only be limited
if a dedicated and unique service is required [316] which further stresses the
need to keep an eye on the other principles of data minimization.
Linkability Linkability can be limited by refraining from presenting a static
identity throughout the interaction with an information system. As originally
mentioned, permissions can also be granted to a user based on shared properties
in a group. Therefore, showing the affiliation to a group allows one to hide
an identity using group signatures [74] which is a meaningful approach [283].
Additionally, the threat of linkability can be reduced if an information system
cannot map the activities of a user to incoming requests. Mix networks [75] may
be used for this purpose [283].
Retention Last, the retention of the disseminated data is out of the control of
a user apart, but an information system’s design can ensure reduced persistence
duration. For example, submitted information can be aggregated on the remote
side with the summants being disposed afterwards [326].

Outlook In the rest of this part, we will present two selected works. Both aim to balance
the privacy and integrity of data closely associated with the user from whom
they originate. Moreover, the sensitivity and granularity of the data could enable
severe abusive potential, such as creating exhaustive movement profiles.
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The use of the road network is constantly increasing, which is affecting the
efficiency of the infrastructure and related applications. As a result, reliable
traffic management is critical for congestion control. At the moment, navigation
systems attempt to plan the ideal, personal, and microscopical route depending
on the underlying street network structure and utilization. As a result, they rely on
current information. However, such solutions are rarely sustainable, as the ideal
path is determined based on variables that are the same for all participants. Thus,
navigation instructions may contribute to the deterioration of the real efficiency
of a route. Using collaborative routing approaches such as NUNAV1 gracefully
distribute user-recommended routes, reducing congestion. However, they rely
on even more up-to-date traffic data than traditional systems. Information is
analyzed at a central service because it requires a global, macroscopic picture
of the traffic condition, allowing the determination of data with a high degree
of integrity. In addition, these technologies must be continuously available to
enable intelligent routing.

Conditional
permanent
monitoring

Therefore, permanent surveillance of all road users moving within vehicular
networks is desirable and is built into Intelligent Transport System infrastructures
by default. However, the privacy of participants suffers significantly in such a
system since the global service provider may track the paths of cars and infer
additional information from them. Confidentiality is out of the question, despite
the fact that it would benefit user acceptability. However, complete security
and privacy objectives must be considered for these vehicular networks and
particularly the unique use case of real-time traffic reporting. Additionally, the
participants’ identities should be kept confidential to safeguard user privacy.
1 https://www.nunav.net/
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STRIDE As a result, we introduce a novel secure ITS architecture called STRIDE (Secure
Traffic Reporting Infrastructure based on Distributed Entities) that outputs
correct traffic information while maintaining user privacy. It achieves this by
building on the standardized European Telecommunications Standards Institute
(ETSI) design, which enables implementation on current Vehicle-to-Anything
(V2X) networks. We make further adjustments to increase performance and
protect user identities from insiders.

Contribution This chapter shows how to balance the conflicting interests of integrity and data
quality to provide unrestricted functionality by following the Privacy by Design
principles presented in Chapter 6. In fact, we contribute with

▶ a thorough system analysis and overview of state-of-the-art ITS archi-
tectures,

▶ a theoretical concept to derive real-time traffic information in a privacy-
friendly manner which is easy to integrate with existing V2X stan-
dards,

▶ a microscopic simulation based on real-world data using SUMO, and
▶ a full evaluation of the system analyzing integrity and privacy require-

ments, including attacker consideration.

Structure The remainder of this chapter is structured as follows. First, we present related
work in Section 7.1. Subsequently, an overview of V2X architectures is given
in Section 7.2 including crucial security requirements and privacy aspects.
Section 7.3 presents the proposed architecture STRIDE to collect information
about the utilization of the street network in a privacy-friendly manner. In
Section 7.4, we explain how the simulation was conducted, which is the basis
for our evaluation in Section 7.5. The evaluation focuses on the performance
and privacy aspects of the architecture. Finally, this chapter is concluded in
Section 7.6.

7.1 Related Work

Integrity-
ensured ITS
applications

The growing volume of positional data allows various applications in traffic
monitoring systems. However, incorporating location-based services into ITSs
remain a difficulty for current research: the given services must be available
in real-time, resistant to manipulation, and protective of their users’ privacy.
The usage of pseudonyms maintained by a Public-Key Infrastruture (PKI) [52,
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295, 379, 401] has been a widely adopted way of incorporating privacy into the
design of ITSs. This system offers safe communication between participants and
tries to maintain anonymity by exchanging pseudonyms on a periodic basis to
prevent user tracking. However, this method has one disadvantage: the constant
exchange of new pseudonyms, certificates, and Certificate Revocation Lists
creates a communication overhead in the system, requiring users to consume
additional processing power and maintain a constant network connection, which
can be difficult for moving participants.

Privacy-
friendly key
exchange

To alleviate user burden during subsequent certificate requests, Brecht et al. [52]
and Whyte et al. [401] propose a butterfly key expansion-based technique to
create numerous key pairs simultaneously. By segregating certificate ownership
knowledge between two authorities, the system preserves user privacy while
maintaining responsibility. Verheul et al. [379] uses a similar technique called
Issue-First Active-Later (IFAL) to extract numerous secret keys from a single key
pair, allowing players to construct several temporary pseudonyms independently.
Activation codes are handed out periodically and are necessary for authentication
in this technique. By omitting the transmission of activation codes to misbehav-
ing automobiles, the use of Certificate Revocation Lists can be reduced even
further.

Lack of
privacy
features

While these tactics defend against simple tracking efforts, they are insufficient
to safeguard users’ privacy against more sophisticated assaults. For example,
attackers can utilize supplementary data about individuals in conjunction with
statistical analysis to forecast movement patterns and match them to pseudony-
mous GPS traces [217]. This attack vector is particularly severe within an ITS
since cars are required to submit their speed regularly and position data to a
processing unit, as Hoh et al. [176] demonstrate.

TTP-based
privacy
enforcement

Multiple designs have been suggested to adequately protect user privacy, in-
cluding [154, 177, 178]. Most of these systems are based on a central organiza-
tion assigned with the responsibility of cloaking user data in order to achieve
k-anonymity. Other systems seek to improve privacy by sending only partial tra-
jectories [76] or by introducing statistical noise to aggregated data to introduce
inaccuracies [119].

Our proposalBy leveraging decentralized geographically veiled traffic reporting and knowl-
edge separation between its components, the proposed STRIDE solution ensures
privacy by design, as any (compromised) unit cannot monitor users. Addition-
ally, it utilizes IFAL to increase efficiency and strengthen its defenses against
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Figure 7.1 A V2X network is composed of heterogeneous entities. It is composed of multiple
entities spanning a distributed network that includes various communication channels
(denoted as ←→) including out of band approaches (represented by ←→).

Sybil attacks. Furthermore, due to its conformity to the ETSI network design
guidelines, it is compatible with existing V2X networks.

7.2 Vehicle-to-Anything

Constantly
communicat-
ing vehicles

The automobile industry’s development has led to more intelligent cars contain-
ing more integrated sensors and driving assistants, enabling autonomous driving.
To further utilize these capabilities and increase traffic efficiency and safety on
roads, traffic participants partake in V2X communication. This includes vehicles
sending, for example, FCD to other vehicles (Vehicle-to-Vehicle) or the road
infrastructure (Vehicle-to-Infrastructure) comprised of Road-Side Units (RSUs).
Data includes vehicle’s velocity v, location loc, and current time slot t. The ve-
hicle authenticates towards the RSU by also sending its unique identity  or a
temporary pseudonym p depending on the employed architecture. As defined in
the directive 2010/40/EU of the European Union, this system is called an ITS
and can be used for traffic management, resulting in reduced travel times and
increased road safety.

ETSI en 302
663 ITS-g5

Figure 7.1 shows the structure of an ITS with participants and communication
channels as an example. Depending on the respective partner and the addressed
so-called subsystem, the communication channel is named accordingly, with
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V2X being used as a generic collective term. Information is relayed between par-
ticipants in a decentralized, peer-to-peer-based way using V2X communication
standards (e.g. ETSI EN 302 663 ITS-G5) denoted by ←→, although out-of-band
communication, shown as ←→, may also be present for interconnecting services.
The following summary is based on Alam et al. [8]

ITS
subsystems
and
Intelligent
Transport
System
Station

As illustrated in Figure 7.1 different entities may freely join, openly participate
and seamlessly communicate in a V2X network. They appear on par in the ITS.
An Intelligent Transport System Station (ITS-S) is a fundamental building block
that enables the execution and usage of different ITS applications. The four com-
municating parties (ITS-S) within the ITS are personal, vehicle, central, and
roadside entities (also called RSU). The entities represent individuals and pursue
their interests or undertake collaborative and dedicated tasks. Furthermore, an
ITS-S may be connected to local systems. For example, a vehicle ITS subsystem
may consist of an ITS-S capable of communicating with an ECU or additional
sensors. All entities are also found in Figure 7.1.

ITS-S
reference
architecture

The ITS-S reference architecture (c.f. ETSI EN 302 665) defines four different
functional components that may be present in an ITS subsystems. The underlying
concept is a layer-based system, similar to the International Organization for
Standardization/Open Systems Interconnection model, which is grouped based
on functionality. The architecture has management and security components in
addition to the access, network/transport facilities, and applications layers, which
are necessary for functionality (c.f. ETSI EN 302 665). First, the ITS station
host enables a personal device to access ITS applications. Next, a ITS station
gateway is able to convert protocols and enable accessing external, proprietary
networks. The ITS station router is needed to connect to other ITS-Ss, so it
interconnects different ITS protocol stacks, while the gateway connects different
Open Systems Interconnection protocol stacks. Last, the ITS station border
router is required if a router cannot be used due to different management and
security principles.

Messages
types

One of the main tasks of an ITS is to increase safety in a road system. For
this purpose, messages are continuously exchanged between the participants,
which are subject to strict requirements with regard to reliability, integrity,
and actuality. Two message types are defined for safety-related information,
on the one hand, time-based Cooperative Awareness Messages (c.f. ETSI
EN 302 637-2), on the other hand, event-based Decentralized Environmental
Notification Message (c.f. ETSI EN 302 637-3). Messages are broadcasted
and are subject to certain latency requirements (maximum approx. 100ms).
Their coverage is limited to a certain geographic region (300m to 20 km). The
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size of the payload is capped at 1 kB. There are different types of messages
and requirements for efficiency and comfort applications. Their exchange does
not take place on the primary control channel (where i.a. safety messages are
exchanged) but on service channels that are visited alternatively. This is sufficient
for STRIDE, since the messages should be up-to-date, but they are not time-
critical. Figure 7.1 presents safety messages of both types. An ambulance Ambulancecan
use a Decentralized Environmental Notification Message to request priority,
while a RSU Broadcast-Towercan periodically transmit a warning message, for example, to
draw attention to an accident. Furthermore, service messages are distributed,
such as traffic light information, where a vehicle Car-Sidemay query the current light
phase from a traffic light system Traffic-Light .

7.2.1 Requirements Towards V2X Architectures

Vehicular networks rely on the correct transmission and processing of accurate
and reliable data in real-time, as manipulation of data by a malicious actor or
corruption through network errors could have severe consequences. The dynamic
and open nature of V2X architectures stresses security even further, so to allow
the secure and safe operation of an ITS, they must meet multiple sometimes
contradicting objectives identified in ETSI TR 102 893:
Confidentiality of relayed information is crucial since unauthorized ac-

cess could lead to the leakage of potentially personally identifiable
information. Thus, it has to be ensured that only authorized recipients
can obtain information. This extends to communications, management
information, identities, and other data sent by or stored in vehicles, as
well as RSUs. Furthermore, the location and identity of the ITS par-
ticipants should remain hidden from attackers attempting to discover
this information by analyzing the ITS’s V2X communications. Even
the analysis of communication flows should not yield any information
about the routes taken by users.

Data Integrity is another goal of information security and is of utmost
importance in V2X systems, as data manipulation could result in the
failure of autonomously driving cars. Thus, communication between
ITS-Ss and any information stored within a vehicle or RSU should be
guarded against unauthorized and potentially malicious modification
or deletion.

Availability of ITS services within the system should not be interrupted
by attackers, so there is no delay or disruption when delivering mes-
sages to participants under strict time constraints. This is specifically
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important for i.a. Cooperative Awareness Messages because they are
critical to safety.

Accountability has to be guaranteed for changes to the system, as well
as messages sent by ITS participants. In this way, if an unauthorized
modification of the system has been performed or a vehicle has sent
manipulated data, the ITS can identify malicious nodes and revoke
their capabilities. In addition to misbehavior detection, ensuring ac-
countability is critical (e.g. law enforcement) to handling reports sent
to law enforcement authorities or insurance companies.

Authenticity is a further integral security objective for V2X networks.
All ITS participants must have their own unique identity and role,
which also defines their permissions. Impersonating a different identity
or acting as an authenticated ITS-S towards other users should be
impossible.

Relevant
security
goals

All fundamental security goals, namely confidentiality, integrity, and availability,
as well as authenticity and accountability to limit communications to trustworthy
partners and deal with misbehaving ITS-Ss are consistently considered in V2X
security architectures. Further security goals proposed by V2X researchers in-
clude non-repudiation [14, 205], consistency, plausibility, and adaptability [269].

7.2.2Security and Privacy Building Blocks

Resilience
against
outsiders

Message integrity and confidentiality are achieved by utilizing end-to-end en-
cryption. Because all authorities and users in an ETSI ITS have a certificate
and the corresponding private keys, everyone can establish secure communica-
tions. Thus, we assume that outside attackers cannot manipulate the system and
describe different inside attackers in the following course.

Contradict-
ing security
goals

To protect the privacy of participants in an ITS, its users should be protected from
various attacks, in which an attacker might aim to acquire knowledge of their
identity, current location, or starting point and destination. Typically, identity
protection can be achieved through anonymity. However, according to the ETSI,
anonymity alone is insufficient to protect the privacy of ITS participants, as
stressed in ETSI TS 102 941. Furthermore, it is not suitable for use in an ITS, as
it conflicts with the requirement of accountability.

Pseudonymity
in favor of
anonymity

Therefore, the preferred approach for providing privacy is pseudonymity as a
relieved version of anonymity. A sending ITS-S should never present a unique
identity when communicating with other ITS-Ss but instead use a temporary
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pseudonymous identifier. This allows participants to use the services provided
by the ITS while keeping their identities hidden, thus preventing attackers from
matching their identities with communications in the network. It has to be
ensured that pseudonyms are changed frequently and securely to prevent the
linkage of one participant’s multiple pseudonyms over time. However, it must
still be possible for authorities to resolve pseudonymity to identify a misbehaving
ITS-S to achieve accountability.

7.2.3 V2X Infrastructure Standards

ETSI ts 102
941

We now give a brief overview of the ETSI infrastructure standard, focusing on
its trust and privacy management specifications in ITSs as defined in ETSI TS
102 941. Figure 7.2 presents the system architecture with its different entities
and relationships, where each entity has access to different data according to
its tasks to ensure security and privacy. Since the ETSI’s Security Certificate
Management System architecture is standardized, it is a foundation for our
approach (c.f. ETSI TS 102 940).

ETSI ts 102
940

ETSI TS 102 940 is organized as a PKI whose (single or multiple) Root CA
acts as a root of trust and therefore legitimizes the Enrolment Authority (EA)
and Authorization Authority (AA) to provide cryptographic material to ITS-Ss.
The EA is responsible for controlling the lifecycle of the participating ITS-S. It
issues enrollment credentials and can also revoke them in case of misbehavior.
The participants then use these enrollment credentials to request pseudonymous
authorization certificates from the AA, granting them access to specific ITS
services. This separation of knowledge between the EA and AA allows user
privacy protection as ITS-Ss only share their unique identifier with the EA,
which does not know their short-term certificates actually used for ITS services.

7.2.4 Malicious Behavior in V2X

When developing an ITS architecture, fulfilling the security objectives mentioned
requires resistance to several attacks, which can be performed by both outsiders
as well as participants of the network.

Classification
of V2X
attacks

Ghosal and Conti [143] identified various attacks against V2X-based architec-
tures, which are presented in Figure 7.3 in structured form. Consequently, attacks
can be categorized based on the attack’s subject with different security objec-
tives threatened that were introduced in Section 7.2.1. First, behavioral attacks
target to act on participants found in a V2X environment either for self-beneficial
reasons or to execute malicious behavior. Next, attacks targeting hardware and
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Figure 7.2Components of the ETSI ITS Security Certificate Management System architecture
as per ETSI TS 102 941 and the STRIDE extensions. STRIDE uses the existing key
management system and includes its functionality as a service with formally defined
bounds.
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software are intended to modify or restrain the ITS-Ss. Infrastructure-targeted
attacks include dangerous methods that eventually pose threats to the functioning
of V2X technologies. The privacy of participants in particular vehicles may be
violated in the context of V2X. Finally, the integrity of submitted packets in a
vehicular network is also of interest and thus targeted by attacks aiming to alter
or modify them.

Projection of
attacks on

STRIDE

The following is a more comprehensive breakdown of the attacks mentioned,
which are of particular concern in the context of STRIDE. Consequently, they
must be taken into account in the design process.

▶ An Intelligent Transport System application may be subject to attacks
found in V2X architectures. Attacks aiming at the network’s avail-
ability include (distributed) Denial-of-Service attacks, which can be
achieved by, for example, using flooding or jamming attack. Alterna-
tively, attackers can manipulate packet routing in local network parts
by performing black hole or gray hole attacks. The impact of these
attacks can be increased if multiple attackers combine their resources
or if a single attacker can create multiple identities by employing a
Sybil attack.

▶ Another attack target is the privacy of network participants. As men-
tioned in Section 7.2.2, an attacker could attempt to determine their
identities, vehicles, and routes. For this purpose, he would employ
an identity revealing attack or location tracking. Based on these find-
ings, the corresponding attacker model for this chapter is defined in
Section 7.3.5.

▶ Many of the communication packets inside a V2X network are sent
through its static infrastructure. If an attacker were to take control
of parts of the infrastructure, he would gain continuous access to
many messages, including authentification and FCD. Accessing these
packets and the ability to read, manipulate, or block them would allow
him to execute the previous attacks more effectively. An attacker might
utilize session hijacking, masquerading, spoofing, or even tampering
with the network hardware to compromise its infrastructure.

How different attackers can execute concrete attacks will be shown in Sec-
tion 7.3.5. The impact of these attacks, depending on different network con-
figuration parameters and traffic conditions, will be evaluated in Section 7.5.
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7.3 STRIDE Architecture

We now present the STRIDE architecture in detail by explaining how the estab-
lished requirements are implemented.

7.3.1 Requirements

STRIDE is a Privacy by Design application. Therefore, the architecture must be
accessible to the full extent by the participants, while no exceptions regarding
privacy are necessary.

Distributed
privacy

All information known to a single infrastructure entity should not be sufficient
to breach user anonymity

The first requirement that we formalize is that participants’ privacy should remain
protected by k-anonymity. As long as the different infrastructure organizations
and components do not collaborate, deanonymizing and tracking individual users
should be impossible. This concept can also be applied to outside attackers,
possibly breaching single infrastructure entities.

Data
integrity

Data integrity within the system should be ensured by minimizing the impact of
attacks.

Furthermore, STRIDE should be resistant to users manipulating or spoofing in-
formation. This malicious behavior may be employed to sabotage the network
or gain a personal advantage, such as decreasing waiting times at smart traf-
fic lights. In particular, the architecture needs to withstand Sybil attacks and
incorrect reporting of traffic information.

Accurate
information

The quality of data collection should provide a sufficient level of accuracy for
traffic reporting.

The quality of the data collected and aggregated for processing needs to be
considered, as anonymity comes with a trade-off in data accuracy. Therefore,
sufficient data quality constitutes the third design goal. The usage of the collected
information should be optimized to achieve a traffic prediction accuracy similar
to that of current systems.
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The achievability of these requirements is the subject of Section 7.3.5 which dis-
cusses possible attacks on the framework by each participant while introducing
the adversary model.

7.3.2Privacy and the Integration of IFAL

STRIDE preserves the privacy of participants from outsiders by employing
end-to-end encryption. Hence, our focus on privacy protection is on internal
attackers. Privacy in V2X networks can be achieved by employing a secure
pseudonym scheme, which would require the cooperation of multiple entities to
unveil participants’ identities and prevent the linkage of different pseudonyms
through traffic pattern analysis.

Pseudonymity
as
implemented
in ETSI ts
102 940

ETSI has published an ITS PKI model for V2X systems (c.f. Section 7.2.3).
However, this approach lacks certain features, such as providing certificate
batches, which could significantly reduce communication overhead. Instead, the
certificate rolling is limited to specific situations, eventually resulting in extended
usage and validity of a single temporary identity.

Issue-First
Active-Later

The IFAL [379] protocol solves this problem by issuing certificate batches
that can only be used for authentication when combined with an activation
code for the current time slot. Furthermore, the IFAL pseudonym scheme is
compliant with the ETSI infrastructure and uses its EA to periodically distribute
the activation codes needed for participation. In this way, misbehaving vehicles
can be denied access to the network’s services by excluding them from future
activation code transmissions, further reducing network overhead. The IFAL
protocol also features Sybil resistance by design, as the need for activation codes,
when combined with a short rollover period, leads to a maximum number of two
valid certificates per participant at any point in time. As this eliminates the need
for a dedicated Sybil attack detection protocol, network overhead is reduced
even further. The IFAL protocol can be configured by adjusting the validity
period �t,val of each temporary pseudonym and the duration of the overlap �t,obetween two consecutive pseudonyms (used to eliminate the need for perfectly
synchronized clocks).

7.3.3Components

The STRIDE architecture is composed of six components to accurately measure
traffic while achieving Privacy by Design, shown in Figure 7.2.
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Setup
procedure

According to the IFAL protocol, the EA registers new users and their vehicles
and provides them enrollment credentials and a long-term certificate used to
authenticate future requests for network services. It is also responsible for
the generation of IFAL activation codes required to communicate with the
RSUs. Participants use the enrollment credentials to request a set of temporary
certificates  = [z0, ..., zn] and their corresponding pseudonyms  = [p0, ..., pn]from the AA that distributes the activation codes generated by the EA.

Concealed
submission
of velocity

information

The RSUs form the physical infrastructure required to measure traffic flow. A
vehicle reports its FCD to the nearest RSU once per time slot ti2 by submitting:

▶ The vehicle’s current pseudonym pi
▶ The vehicle’s current lane l
▶ The current time slot ti
▶ The vehicle’s current velocity v rounded to the nearest multiple of 5

The message is signed with the vehicle’s private key belonging to its currently
active certificate zi to prove its pseudonymous identity pi. To preserve the privacy
of the participants, the velocity to be sent is encrypted with the public key
of the Traffic Server (TS) denoted as c. This also ensures the acceptability of
participants and reduces the risk of dishonest evaluation of traffic information by
an RSU such as, for example, speeding prosecution. We utilize the probabilistic
homomorphic encryption scheme number one by Paillier and Pointcheval [289]
which works as follows:

▶ Generate a standard RSA modulus n as n = p ∗ q, where p and q are
distinct prime integers

▶ Choose g ∈ ℤ∗
n2

so that n divides the order of g modulo n2

▶ The public key is c = (n, g)
▶ The private key is d = lcm((p − 1), (g − 1))
▶ To encrypt a velocity v, generate a random r ∈ ℤ∗

n and calculate
EncA(c, v) = gv ∗ rn mod n2.

The TS can decrypt all reported velocities vj per lane l per time slot ti using its
private key d without knowing the reported velocities, as ∏j

(

EncA
(

c, vj
))

=

EncA
(

c,
(

∑

j
(

vj
)

))

holds.
2 Within this chapter, a timestamp t represents a discrete, minute-based time slot. Time slots are fixed
intervals based on a global clock provided by the ITS.
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Validity
proof of
submitted
velocities

Due to the concealed submission of the actual velocity, a single malicious vehicle
could report a bogus velocity, significantly skewing the average velocity. Hence,
STRIDE employs a zero-knowledge proof, adapted from Baudron et al. [38], in
which vehicles prove that their encrypted velocity lies within a set of possible
velocities:

▶ From the set of allowed velocities {v1, ..., vk}, a vehicle chooses
the velocity vi closest to its actual velocity and encrypts it to
c = gvi ∗ rnmodn2.

▶ It then chooses a random p ∈ ℤ∗
n and randomly selects k −

1 values ej ∈ ℤn and vj ∈ ℤ∗
n(j ≠ i) and computes uj =

{

pn mod n2, for j = i
vnj ∗ (gmj∕c)ej mod n2, for j ≠ i

}

, j ∈ {1, ..., k} and sends
all values uj to the RSU.

▶ The RSU chooses a random challenge e ∈ [0, A[ and sends it to the
vehicle (A is any positive integer such that 1∕At is negligible for t
iterations of the protocol).

▶ The vehicle computes ei = e −
∑

j≠i ej mod n and vi = p ∗ rei ∗ gei∕n mod n
and sends {vj , ej}j∈{1,...,k} to the RSU.

▶ The RSU tests if e = ∑

j ej mod n and if vnj = uj ∗ (c∕gmj )ej mod n2 ∀j ∈
{1, ..., k}

If a vehicle reports a different, not allowed, velocity, the RSU can report the
pseudonym to the AA for misbehavior. Furthermore, all RSUs are interconnected
to ensure that each vehicle only reports its FCD to one RSU per time slot, which
can be traced by a pseudonym duplicate check by a global RSU provider.

Reducing
channel load

The zero-knowledge proof used is resource intensive w.r.t. channel load, although
this is a limited and constrained resource in an ITS. The load can be reduced
by decreasing the number of rounds t since it is improbable that an attacker can
report a wrong velocity multiple times, and proving his velocity wrong once is
enough to permanently exclude him.

Deriving
global
velocity
information

At the end of each time slot, each RSU forwards the following information to
the TS for every lane l:

▶ The lane l
▶ The current time slot ti
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▶ The number of vehicles reporting their velocity for lane l
▶ The aggregated velocity calculated as ∏j

(

EncA
(

c, vj
))

The TS can then decrypt the aggregated velocities with its private key d and
use it and the number of vehicles to calculate the mean velocity per lane l. This
information can then be used to provide traffic information and, e.g. control
smart traffic lights.

7.3.4 Separation of information between entities

STRIDE manages to achieve Privacy by Design by separating information about
participants between its different entities. We name the respective information
subsequently.

Information
known by EA

and AA

The EA knows the real identity of each participant  and a corresponding internal
ID shared with the AA for communication purposes. Besides the internal ID,
the AA is aware of each vehicle’s pseudonyms  .

Information
known by

RSU

The RSUs know which pseudonym pi is at which lane l in each time slot ti, but
they do not know their velocities. To prevent the RSUs from tracking vehicles
over time, they change their pseudonym after each validity period of length �t,val.

Information
known by TS

The TS receives the aggregated velocity and vehicle count per lane, preventing
the tracking of single vehicles while still allowing accurate traffic measurement.

Reference to
k-anonymity

This model would still allow tracking of individual vehicles in low traffic
situations, so vehicles search for other vehicles in the range dsend and only send
their FCD if at least k − 1 other vehicles are present, thus achieving k-anonymity.

7.3.5 Possible attacks on STRIDE

Since all communications employ standard transport layer encryption and enti-
ties have to authenticate themselves, outside attackers can not manipulate mes-
sages or impersonate participants. Thus, different inside attackers will be re-
viewed. First, we assume that the Root CA is not compromised. Otherwise, an
attacker could impersonate any network authority.

Attacks
executable
by the EA

and AA

If an attacker took control of the EA, he could create unlimited identities,
spreading fake FCD. Both EA and AA can also (selectively) stop the forwarding
of activation codes necessary to report traffic information and access network
services, thus blocking participants’ access. We assume that both authorities are
honest but curious, i.e., act only as passive attackers.
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Threats
posed by the
TS

If the TS acted as a passive attacker, it could try to track single vehicles over time.
However, it only receives aggregated velocities of multiple vehicles without any
identifiers. As vehicles also only send data when an anonymity group is present,
tracking vehicles should not be possible effectively.

Vehicle-
based
attacks

Vehicles in the network can also act as active attackers. By reporting wrong
velocities inside the range of allowed values, they manipulate the TS’s calculated
mean velocity and thus may fake certain traffic conditions, such as congestion.
The impact of this attack is evaluated in Section 7.5.2. A vehicle may also
send multiple messages with the current pseudonym (in different RSU areas).
However, since we assume that all RSUs are managed by a single provider, these
distributed components can exchange information. Thus, we introduce a Sybil
lookup range &t. It denotes a set of time slots in which messages from the same
pseudonym are discarded by RSUs to prevent Sybil attacks.

RSUs as a
global
attacker

Last, we consider the RSUs as an attacker. Since they independently calculate
the aggregated velocities sent to the TS, they could report completely wrong
values.
Passive attacks Road-Side Units can act as passive attackers and try to track
individuals over time. To achieve this, RSUs can analyze all messages sent by
vehicles during, e.g., one-day ex-post. Since every vehicle will only send once
per time slot ti, the analyzed time frame can be split into discrete time slots.
For every observed pseudonym p, there are two possibilities: If pseudonyms are
valid longer than one time slot (�t,val > Δ ), a pseudonym may have been seen
before and the occurrences can be linked. If the pseudonym is seen for the first
time in the observed time frame, there are two possibilities. A new vehicle may
have just started its journey or entered the ITS-controlled area. Alternatively, it
may be a vehicle seen before that has changed its pseudonym and is now using
the new pseudonym for the first time. To successfully track vehicles, the RSU
has to solve the matching problem between old and new pseudonyms between
all consecutive time slots ti and ti+1.

Definition of
the adversary
model

To analyze the tracking capabilities of RSUs executing this attack, we developed
an algorithm that executes such a linking attack. For this purpose, we assume a
global passive attacker who has access to all RSUs and analyzes a given time
frame ex-post. In this scenario, we use a global timer so that the attacker knows
when vehicles change pseudonyms. The attack does not attempt to track a specific
vehicle over time but, similar to the birthday paradox, searches for random links
between old and new pseudonyms. The structure of the algorithm is explained
below.
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1. The chosen time frame gets separated into discrete time slots t0 to tnof length Δ .
2. All recorded pseudonyms are assigned to their corresponding time

slots.
3. Starting at time slot t1, all possible combinations between previous

pseudonyms (ti−1) and new pseudonyms (ti) are formed as a cross
product.

4. These combinations can be filtered, as new pseudonyms must have
the age zero, i.e., seen for the first time, to be considered possible
successors to the previous ones.

5. The lanes reported by participants in their FCD can be utilized to
reduce the number of possible links further. Herefore, the attacker
determines the distance between the two reported lanes and decides if
that distance can be traveled in one time slot.

6. After this filtering process, the attacker is left with a set of possible suc-
cessors for every previous pseudonym and has to choose a successor
at random.

Active attacks For this work, we assume that RSUs only act as passive at-
tackers. Nevertheless, the RSU provider can be dishonest, attacking not only
individuals but also the service itself. We briefly give an outlook on countermea-
sures in Section 7.6.

7.4 Simulation

A simulation will be used to evaluate and test the system’s suitability. This will be
done with the help of Sumo, a microscopic simulation environment that allows
the trajectories of individual vehicles to be collected and evaluated. A system
like the proposed STRIDE framework is highly dependent on the behavior of
road users, such as the distribution of vehicles on different roads. Using the
InTAS [236] data set, a realistic road network can be simulated, whose vehicle
frequencies and speeds, as well as driven routes and traffic light circuits, are
collected empirically. InTAS describes Ingolstadt in Germany, a city with a high
industrial share and shift traffic over 24 hours. Figure 7.4 shows the road network
of the given city. The data set also includes different types of vehicles, such as
cars and buses.
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Figure 7.4Vehicles move along predefined, realistic paths in the InTAS road network, which
reflects a medium-sized city with industry and old town. Sections of the road network
are served by corresponding RSUs, which receive and forward messages from the
participants in the catchment area according to the V2X protocol.
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Table 7.1 Overview of default parameters that are used for the simulation.

Parameter Values
Sending range dsend 100m, 200m, …, 800m
Sending probability �send 0.1, 0.5, 1.0
Anonymity set size k 2, 3, …, 10
IFAL validity �t,val 6min
IFAL overlap �t,o 1min

Attacker proportion � 0.0, 0.01, 0.1, 0.2, …, 1.0
Attacker modus � zero, rnd(0.2), rnd(0.5)
Sybil lookup time frame &t 1min

Parameter
settings

We collected FCD for the entire simulation3, i.e. 24 hours, resulting in 179554
vehicles seen and 2195599 FCD entries considering that we only acquired
them every 60 seconds. RSU identifiers were added pragmatically. Parameters
(and combinations) were changed a posteriori without changing the output
to ensure comparability between different parameter settings. (–device.fcd.
period 60 and –device.fcd.probability 1.0). This data set is used for
further evaluation so that multiple parameter configurations of STRIDE are based
on the same source data (i.e. routes of vehicles and spawn frequencies) for
comparison purposes. Table 7.1 presents an overview of the parameters that
were alternated. �send denotes that a vehicle will send with the given probability
within a timestamp. The attack mode � defines the behavior of an attacker:
zero represents an attacker who always sends a velocity of 0m s−1 independent
of his situation while the rnd(▴) calculates a submitted speed v′ as follows:
v′ = v ∗ ±(1 + ▴) for with v being the correct velocity.

Output data As Listing 7.1 denotes each vehicle has a unique id that it keeps for the whole
simulation along with information about its position loc (as a tuple of latitude
and longitude) and the momentary velocity v in a specific lane l. A lane uniquely
describes a road segment on the Ingolstadt map. Within OSM, it is modeled as a
way (segment) along with a tag that indicates the number of lanes if applicable.
Therefore, it should be noted that a road segment can consist of multiple lanes,
e.g. one for each turning direction. Pseudonyms were added according to STRIDE
specification during evaluation and are not provided by the InTAS data set.
3 https://sumo.dlr.de/docs/Simulation/Output/FCDOutput.html

https://sumo.dlr.de/docs/Simulation/Output/FCDOutput.html
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1 <fcd-export>
2 <timestep time="180.00">
3 <vehicle id="carIn101117:1" x="11.442566" y="48.729458"

angle="333.797665" type="default_001" speed="0.000000"
pos="4.898999" lane="-41494424#2_0" slope="0.000000"/>

→

→

4 <!-- more vehicles -->
5 </timestep>
6 <!-- more timesteps -->
7 </fcd-export>

Listing 7.1Example output of FCD data.

Evaluation
of FPD

Thus, we used the following workflow for our evaluation. First, we ran the
simulation and then converted the XML data to a dask4 data frame while adding
a RSU identifier to each event crafted by a vehicle. We then adopted different
parameter settings and ran the postprocessing. We also combined different
settings to elaborate even further, for example, k was combined with dsend . The
results are shown in the next section. We introduced multiple attack modes to
gain information about the reliability of STRIDE.

Placement of
RSUs

STRIDE assumes a specific infrastructure with RSUs distributed throughout
the city. We randomly distributed RSUs and created Voronoi regions with each
managed by a single RSU. Each vehicle in such a region will send messages
only to the RSU responsible for the area. Communication between vehicles and
RSUs is done using V2X protocols that are not subject to evaluation. Figure 7.4
illustrates each RSU with its associated zone.

7.5Evaluation

Within this section, we will evaluate STRIDE based on the simulated data
presented in Section 7.4. First, the accuracy of the network utilization reports
based on the submitted and encrypted velocity data of the participants is analyzed.
The robustness of the system against dishonest vehicles, i.e. the accuracy of traffic
reports, is discussed subsequently. Finally, we focus on the privacy aspects of
the system, mainly the ability of the global RSU provider to track single vehicles
based on the information exchanged according to our attacker model.
4 https://dask.org/

https://dask.org/


178 7. STRIDE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

500

1000

1500

2000

2500

3000

time [h]

ve
hi

cl
es

[#
]

Range
100m 200m 300m 400m
500m 600m 700m 800m

Figure 7.5 Average activity of vehicles per hour throughout the simulation. The results are as
seen on a macroscopic perspective (line) and derived by RSUs (bars) for different sending
ranges (color) (k = 5, �send = 1).

7.5.1 Accuracy of the Network Utilization Reports

To obtain an accurate picture of the current street network and its utilization,
integer data acquisition is of particular interest.

Relationship
of number of

participants
and sending

ranges

As a first descriptive and quantitative metric, Figure 7.5 presents the count of
active vehicles throughout the simulation period of 24 h (continuous line). It
is consistent with a realistic daily schedule where commuter traffic emerges at
6 am. Throughout the day, this remains at roughly a consistent level and decreases
toward the end of the day, with a peak at t = 17 h. That peak is related to the end
of a business day. The bars define vehicles transmitting information according
to the STRIDE protocol. As a vehicle’s sending range dsend increases, more
messages are received by the RSUs. Also, the number of messages correlates
with the number of vehicles that can form a group and also fulfill the condition
of k-anonymity.

Impact of
anonymity
set size k

Apart from the sending range, the chosen value of the privacy level, i.e. the
anonymity set size k, is of interest, as it will significantly inflict the sending ability
of a vehicle. Recall that a vehicle will only send a message if it reaches at least
k other participants. Thus, larger values of k may increase the level of privacy
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Figure 7.6Vehicles able to send during the simulation for different levels of k. Higher levels
pose stricter constraints on the system, hence limiting the number of successful sending
attempts (�send = 1).

that we will evaluate in the next section. A constant value of dsend = 300m was
selected, while k was altered according to Table 7.1. The results are depicted in
Figure 7.6. With higher values of k, fewer vehicles can reach other participants
based on the communication protocol but cannot meet all the requirements to
send a message successfully while still ensuring privacy. For example, when
comparing k = 3 and k = 10, the smaller size requirement of the anonymity
set allows on average 50% of all vehicles to send a message with probability of
50%. Being a strict requirement, k = 10 drastically reduces the probability to
send message to around 15%.

Proportion
of privacy
impact

This result is reasonable in consideration of Figure 7.7 as it shows that at prime
time (t = 7 h), on average 11 cars can find each other (solid line) and can
satisfy all conditions on k-anonymity which is set to k = 5 in this case. With
longer sending ranges dsend , the probability of successfully forming a velocity
group increases, ultimately allowing more vehicles to submit information. The
dashed line illustrates the proportion of successful sending attempts compared to
those that failed. Higher values are desirable as it means that fewer participants
are refrained from submitting information due to privacy requirements. Large
numbers of traffic reports allow for the generation of a more accurate picture
of current speed. On average for a dsend = 300m 70% of all initiated velocity
reports are delived to a RSU.
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Figure 7.7 Reachability of vehicles of the course of the simulation for different dsend . The number
of reachable vehicles linearly influences the rate of successful transmission attempts, even
if the availability of other participants is only one condition for privacy (�send = 1, k = 5).
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Figure 7.8 Comparison of speed derived by macroscopic view of all active vehicles and based on
the TS’s aggregated view from traffic reports by vehicles. In summary, the deflection
is negligible but varies with the number of included traffic reports (k = 5).
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Accuracy of
traffic
reports

However, the number of traffic reports also depends on the number of messages
sent, as it inflicts the TS. As we have discussed the privacy requirement is
a significant driver of sent reports and the probability of sending the current
velocity at a time step �send is of interest. Sending with each timestamp may
improve the accuracy of the data but also stresses the V2X network, with
more messages being exchanged on limited bandwidth. Therefore, we evaluated
different �send , that is, every round, every second round, or every tenth round.
The last setting is also related to privacy since every pseudonym is used only once
for a report. The macroscopically gathered velocity (velocity obtained directly
from the simulation, i.e., ground truth) is compared to the velocity inferred
by a TS in Figure 7.8. As can be observed, the speed deviates slightly from
the ground truth across all sending ranges. The box plots show that the most
accurate picture of the street network utilization can be drawn for �send = 1.
Interestingly, the whiskers of the box plots increase with larger sending ranges.
The reason may be that the sample for �send = 0.5 or �send = 0.1 does not
correspond to the true picture. For larger dsend , more vehicles can be chosen,
and the sample accordingly yields an even more skewed picture. For small dsend ,
the transmission may fail directly because privacy requirements are not satisfied.
This limited range of only ±0.4m s−1 is a result of the high density of cars in
such a system. As long as sufficient groups can be created, the transmission
range should have no or a negligible effect on the speed consideration. Finally,
the speed may be estimated with a high degree of confidence. Thus, STRIDE
meets the critical accuracy criteria.

7.5.2Estimation Robustness Against Dishonest Vehicles

Falsification
of velocity
data

Vehicles have limited possibilities to manipulate the system, which is shown in
Figure 7.9 for alternating percentages of attackers. The graph depicts various
manipulation paths. On the one hand, cars transmit an erroneous speed that
varies by 20% (red) or 50% (blue) (intended or random due to a system error,
for example). In the third situation, the cars send zero values (green). Due to the
zero-knowledge proof, the attack’s speed range is constrained. As can be seen, the
speed deviation in the first two situations may be ignored since speeds diverging
upward or downward equalize, whereby they cancel each other out. The third
scenario shows that a coordinated attack would certainly provide more significant
outcomes. A departure of 1m s−1 from the ground truth may be observed for an
assault cluster, including 20% of all vehicles in the simulation. This number
increases linearly and reaches a maximum value with 100% attackers. The
discrepancy of "only" roughly 3.5m s−1 is due to the fact that the average speed
in an urban environment is much less than 14m s−1 (around 50 kmh−1).
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Figure 7.9 Divergence of speed for different � and amounts of attacking vehicles. The average
deflection is acceptable within the given scenario (dsend = 300m, �send = 1, k = 5).

7.5.3 Location Privacy-preservation Against Dishonest RSUs

Pseudonym
rollover

example

According to the attacker model defined, the RSU operator attempts to link the
pseudonyms to monitor distinct individuals. The trace of a single vehicle with the
pseudonym employed represented as a unique shape is illustrated in Figure 7.10.
IFAL validity (�t,val) is set to 6min with an overlap of �t,o = 1min. Hence, the
first pseudonym change will occur at t = 7min. The attacker now wants to link
either pseudonyms p and p or p and p because that enables him to track the route
of the given vehicle.

Linkability of
successive

pseudonyms

The attacker’s ability to perform the linking process is depicted in Table 7.2 for
different sending ranges and lower bounds for the anonymity set size. Increased
k values should reduce the likelihood of proper linking. The same holds for
higher transmission ranges that should increase the number of vehicles eligible
for the process. Both hypotheses have been proven. Except for sending ranges
of 100m or k ≤ 5, it is invariably possible to concatenate two pseudonyms with
a probability of less than 10% if the attacker has created a group in which the
actual vehicle is placed. These values are determined throughout the simulation
and hence, for low traffic densities.

Selectability
of correct

vehicle

The previous analysis was based on the fact that an attacker is capable of selecting
the correct candidate from a set of candidates if the true candidate is within it.
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Figure 7.10Trajectory of a single vehicle illustrating the pseudonym change every �t,val. In
addition to the pseudonym change, the vehicle passes different RSU areas, although,
pseudonym changes are time-based instead of location-based.
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Table 7.2 The ability of an attacker to successfully link pseudonyms based on timing and
location is dependent on the enforced k or the sender range of vehicles. The risk for
a participant is rather low for meaningful settings with a high enough range even for low
levels of k (shown in percent).

sending range [m]
100 200 300 400 500 600 700 800

k
[#

]

2 4 4 4 4 4 4 4 4
3 7 6 6 7 7 7 7 7
4 7 7 7 7 7 7 6 6
5 9 7 7 7 7 7 7 7
6 25 0 0 0 0 0 0 0
7 100 0 0 0 0 0 0 0
8 100 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0

Table 7.3 Probability of an attacker to successfully identify a random vehicle in two subsequent
timestamps if a pseudonym change occurred. The risk for a user is negligible for most
cases (shown in percent).

sending range [m]
100 200 300 400 500 600 700 800

k
[#

]

2 6 5 4 4 4 4 4 4
3 4 4 5 5 5 5 5 5
4 7 3 3 3 3 3 3 3
5 12 4 4 4 4 4 4 4
6 2 0 0 0 0 0 0 0
7 3 0 0 0 0 0 0 0
8 8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
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However, the attacker is seldom able to even find a set with the true candidate
being part of it. It became clear that with a greater sk, the attacker would be
unable to even choose the proper car as a prospective candidate after changing the
pseudonym due to the sheer number of vehicles and groups. This is achievable
in less than 5% of situations where k ≤ 5. Bear in mind that the total number
of cars in the simulation is less than 200. In none of the instances analyzed
did the attacker create a bogus link, i.e. he never falsely suspects a participant.
Furthermore, we evaluated another time step t = 936min) with approximately 10
times the number of vehicles. However, we may infer that an attacker’s capacity to
correlate two consecutive pseudonyms without targeting a single vehicle remains
implausible. With increasing traffic volume, accuracy drops to fractions of a
percent.
In-depth Analysis of Pseudonym Changes

The state of the simulation is depicted for four different timestamps in Figure 7.11.
All the vehicles and the RSU areas are shown. The shape represents the usage of
a pseudonym, while the color illustrates whether a vehicle was previously seen
by a RSU.

Observed
simulation
states

A pseudonym can either be new (in the case a vehicle enters the street network),
changed (if a certificate change is permitted and performed), or reused (if the
vehicle sends a traffic report again with the same pseudonym). A vehicle can be
new to a RSU (if it sees a traffic report for the first time from a pseudonym) or
known (if the same pseudonym sent at least two traffic reports).

Historical
and location-
based
attacker
knowledge

At each time step (c.f. Figures 7.11a to 7.11d), pseudonyms of the three states are
present. Due to the design of STRIDE and the chosen parameters, in particular
�t,val = 6min in combination with �send = 1.0, most pseudonyms are reused
from the previous timestamp. Only vehicles that transition between RSU areas
are those that first contact a specific RSU. New and changed pseudonyms occur
at each step, making it hard for an attacker to decide if the vehicle is initially
reporting information or has just changed its pseudonym. For example, vehicle
h12269c1:1 was reusing its pseudonym in t = 10min but changing it in
t = 11min. Moreover, it stayed in the same RSU area and sent two successive
velocity reports. Due to the activity in that area, new vehicles enter the area in
t = 11min. Two have also changed their pseudonym simultaneously in the same
area as the vehicle in focus did, making it hard for an attacker to differentiate
between them, even if location-based interference may be used. The vehicle
disappears in t = 12min. In t = 13min, a new car appears in a group of other
vehicles (carIn39134:1). Also, at the same time, at the last visible spot of the
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Figure 7.11 Vehicles moving within the street network with specific vehicles highlighted. Shapes
represent the different types of the pseudonym with all types present at every time step
implying an ongoing pseudonym overroll. The communication history with an RSU is
indicated by the color (k = 5, dsend = 300m).
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vehicle h12269c1:1, a car appears initially. However, both cars are not the same,
but participants with different s, which might not be evident for an attacker if
he tries to use historical knowledge.

7.6Conclusion

In this chapter, we presented STRIDE that enables privacy-friendly submission
of real-time velocity reports to a centralized instance that is eventually used to
assess the current utilization of the network. According to the Privacy by Design
paradigm, all functionality is included in the protocol itself.

Architectural
summary

STRIDE is based on a common V2X infrastructure to quickly enable adoption
and uses an existing and standardized pseudonym scheme called IFAL to balance
integrity and privacy. Therefore, participants include vehicles that provide speed
information and are interested in having their location trajectory protected, RSUs
relaying data, and a TS providing the traffic data service. Vehicles are solely
responsible for their privacy by allowing them to change their pseudonym more
frequently or to refrain from sending traffic reports. Privacy is implemented in
the system by relying on k-anonymity. This results in a different interpretation of
Privacy by Design since vehicles may not be able to provide FCD if the privacy
requirements (i.a. greater than k vehicles reachable) are not met. Hence, a vehicle
may not participate. Since this protective measure is ultimately mingled into the
system design (instead of an external PET), we still consider STRIDE to be a
Privacy by Design architecture. The proposed architecture uses RSUs already
present in V2X environments to collect and forward encrypted information from
vehicles to a TS that uses homomorphic encryption to find the average speed of
the roads in a specific street network.

EvaluationOur evaluation shows that STRIDE can protect against a global attacker, in
particular an RSU provider who knows of the activity of all participants in a street
network. There is a negligible chance that he will use the sparse information
available to link two successive pseudonyms to track a vehicle in the end.
We provided an in-depth analysis of pseudonym rollovers to understand the
efficiency of this privacy building block. STRIDE archives to mitigate such
passive attacks with up to 100% probability. The evaluation is based on real-
world traffic data to simulate realistic driving paths and speeds. Using the
proposed architecture, a Traffic Server can derive accurate traffic reports with
almost zero divergences between the actual macroscopic speed for lanes and the
one derived via privately submitted vehicle data.
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Limitations The current implementation does not allow vehicles to transmit data once a
sufficient set of cooperating partners is unavailable. Generating dummy messages
is also not an adequate workaround due to Sybil resilience; at any point, each
vehicle is only allowed to be active with one pseudonym (except for the transition
phase �t,o). At the same time, no messages can be generated by RSU since its
intention, in terms of the attacker model, is to track individuals, and consequently,
it is not trustworthy to be a supporting entity for privacy. At the same time, these
low-traffic situations represent a new attack vector since an attacker can exclude
inactive zones or vehicles originating from inactive zones from his candidate sets;
after all, he could not know their pseudonym. In the context of the simulation,
such situations rarely or never occurred and were irrelevant depending on the
observation area. However, due to this limitation, STRIDE is somewhat less
suitable for rural areas, whereby it should be noted that there the speed estimation
should correspond to the guideline speed due to lack of traffic.

Outlook For future work, it is meaningful to further stress-test the resilience of STRIDE
by introducing a dishonest attacker, namely the global RSU provider: RSUs de-
liberately manipulate their stated velocities in this case. One way to mitigate
these attacks is to require RSUs to keep signed FCD messages received from ve-
hicles, which could be tested using variable controls relying on blockchain-based
approaches. Additionally, vehicles may broadcast their FCD to enable monitor-
ing of the RSUs’ forwarding behavior. Furthermore, it might be meaningful to
analyze different pseudonym switching schemes in addition to the time-based
method proposed by the IFAL protocol, such as switching at the RSU area bor-
ders, similar to the concept of mix zones [42].
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Chapter 7 focuses on a V2X system with interconnected entities, including
vehicles or traffic lights. In such a scenario, the information can be used to
warn other participants or optimize traffic flow. For example, a traffic light can
count the number of approaching vehicles and derive the best light pattern sent
to vehicles [323, 325]. The vehicles can then change speed to get to a green light.
In addition, participants gain information on road conditions (e.g. if it is slippery
due to rain). Every participant contributes to the Intelligent Transport System
and collects data to share with others for the greater good. Therefore, entities
can be considered mobile sensors. Consequently, we use the term Everyone-as-
a-Sensor (EaaS) which is a combination of crowdsourcing and opportunistic
sensing (c.f. Section 1.1).

Crowdsens-
ing and
crowdsourc-
ing

Although ITSs are not widely implemented, modern vehicles are yet to rely on
recent, accurate and comprehensive information. ADAS need the structure and
conditions of the road to safely adjust related properties such as speed, distance
to the vehicle in front, or turning speed. Today, however, information is collected
differently. For example, in OpenStreetMap (see Section 5.5) volunteers collect
data and update the map material accordingly. To relinquish from that paradigm
that information is explicitly collected rather than implicitly compared to an
ITS scenario approaching a more direct adaptation of ubiquitous computing, we
propose a system to approach the paradigm of Everyone-as-a-Sensor and thus
massively increase the crowd of volunteers.

ROADRThis system is called ROADR. It is a web-based platform and an Android appli-
cation that can be easily retrofitted. With the help of this system, the structure
of a road network can be automatically captured, and semantic information can
be collected using an opportunistic sensing approach. For example, when new
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traffic elements are detected, they can be automatically added to the OSM map.
Since an individual’s movement data is particularly sensitive, smartphone sensor
data analysis is performed in the user’s domain by optimizing machine learning
models for mobile devices and applying them there. W.r.t. the Privacy by De-
sign paradigm introduced in the previous chapter only aggregated information
without reference to individuals will leave a device.

Contribution This chapter depicts a holistic view of the crowdsensing and crowdsourcing
scenario in a mobile environment using the Everyone-as-a-Sensor concept. In
fact, we present

▶ an Privacy by Design-based architecture to collect and process mobile,
privacy-sensitive sensor data,

▶ an Android demonstrator that collects, processes, and evaluates sensor
data using efficient Machine Learning and sophisticated sensor fusion.

▶ a thorough and in-depth discussion of sensors derivable from sensor
data, including a description of biases and environmental constraints
and impacts, and

▶ a real-world evaluation of the ROADR platform including event detec-
tion accuracy and crowdsourcing benefit analysis.

Structure We first present related work in Section 8.1, before conceptually and technically
introducing the holistic, privacy-aware ROADR platform in Section 8.2 [317,
326]. It also analyzes meaningful sensor data w.r.t. the map and road network
scenario. All required information is collected solely by a smartphone app that
is also thoroughly presented in Section 8.3 [326]. Then, we show in Section 8.4
that FPD data allows deriving information about traffic circles [319], traffic
lights [S13], and road works [S3]. Approaches to detect said events are discussed
in Section 8.5 that are implemented in the mobile companion and remote
platform. We evaluate our platform using the known real-world data set in
Section 8.6. Section 8.7 concludes this chapter.

8.1 Related Work

Location-
aware sensor

processing

The wide adoption and presence of sensors in smartphones motivated research to
use the gathered data to obtain syntactic and semantic information about a road
network. The given research field is well focused on academia and industry, and
research is conducted on a wide range of applications. In most cases, information
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from an IMU in combination with GPS is used first to leverage the sensor data
and then map it to a location. ROADR also tries to generate added value for
the existing map material and, ultimately, users. Consequently, smartphones
lower the barrier to having data collected by a crowd of people by omitting
the requirement for specialized hardware. Therefore, they help to reduce the
imbalance of users and contributors that is prevalent in OSM, for example.

Types of
data
processing
platforms

Applications or underlying platforms can be differentiated based on the approach
to data processing. For example, one group of the proposals found processes the
data exclusively on the device and transmits aggregated results to a typically
cloud-based platform. In contrast, the second group uses mobile devices among
users purely for data collection (e.g. [17, 158, 169, 256]). Raw data transmitted
is subsequently processed online. Some works also apply truth-discovery algo-
rithms [158] to further enhance the quality and accuracy of error-prone sensor
data from mobile devices. Data is also combined with external services [158].
Hybrid methods include both approaches [139].

Common
evaluation
types

Often found are works that attempt to detect road quality [158, 347] or related
features such as potholes [425] or speed bumps [139]. This is often done
using the accelerometer by looking at one standard deviation (e.g. [347]). The
demographic influence in collecting the test data should not be neglected in
such work. Comparability or transfer of approaches is often not trivial (compare
developed road systems with emerging countries). Furthermore, work can be
found that focuses on the detection of road elements [17, 319]. Aly et al. [17]
addresses passers-by in addition to vehicles to detect a variety of elements (i.a.
tunnels, crosswalks, bridges). Traffic circle detection using local ML models
is the focus of Roth et al. [319], whose proposal operates on sensor data from
the accelerometer and gyroscope. Of further interest is the detection of traffic
lights, where typically image recognition-based methods using the camera are
applied [235].

Crowdsourc-
ing of sensor
data

However, some proposals exclusively provide a platform-agnostic application
suitable for processing sensor data in a crowdsourcing manner [63, 112], some
with a focus on privacy [317]. Other works aim to increase the usefulness of
maps by adding points of interest [329] or making changes using elements of
gamification through simple tools1.

Our
approach

In contrast to other work, ROADR is developed using the Privacy by Design
paradigm and considers user privacy throughout. We deliberately do not forward
raw sensor data because it is susceptible to side-channel attacks to identify [423]
1 e.g. https://maproulette.org/

https://maproulette.org/
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or track (see Chapter 12) subjects. Many works do not protect the user against
such attacks (e.g. [17, 158, 169, 256, 347]). Moreover, we do not limit ourselves
to a single objective; instead, the ROADR platform offers a holistic approach
to data collection and automatic integration into maps such as OSM. Finally,
the ROADR mobile companion tries to minimize the impact on the user by
minimizing battery usage, effortless workflow, and transparency.

8.2 ROADR Platform

Overview
and

requirements

The ROADR platform considers vehicles as mobile sensors that move along
predefined paths (streets) in a network. The data basis of the network is OSM,
introduced in Section 5.5. As shown in Chapters 2 and 4, the FCD that are
the subject of this study can also be collected from a smartphone (FPD) of
similar quality, given certain factors. A crucial factor is that the ROADR app
(see Section 8.3) records the data accordingly. Measurements , as defined, are
recorded continously. Furthermore, it is assumed that the mobile device is not
moved only to a minimal extent while driving. In this case, sensor data enables
inferences about a vehicle’s passed trajectory (c.f. Chapter 4 and Section 5.4) in
the meaning of crowdsensing (c.f. Section 1.1). Data is gathered and analyzed
using Machine Learning by the local ROADR application without the need for
a remote connection. Subsequently, if the app detects some elements of interest
(events), they are forwarded to a gathering instance to provide additional value
to the community.

8.2.1 Goals and Requirements

These inferences should be aggregated, interpreted, and optimized accordingly
by the ROADR platform. The intention is to return the syntactic and semantic
information of the road network in terms of global knowledge. Therefore, the
platform aims to automatically clean up errors and inaccuracies in existing
map material and store additional information such as the average waiting time
at a traffic light in the form of meta-information in OpenStreetMap. Specific
requirements are placed on the crowdsensing platform:

Limited Accuracy The platform should optimize the map data, which
requires a reliable data source with a low false-positive rate. However,
the mobile sensor data itself is error-prone as its accuracy can vary
from device to device, as we have illustrated. Furthermore, it might
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be affected by external factors such as driving behavior. In our crowd-
sourcing application, a threshold mechanism will be implemented in
which the crowd ultimately verifies the claims of individual partici-
pants and appropriately manages error-prone sensor data.

Privacy Trajectories may enable keen insights into a user’s everyday life.
Users should reveal as little personal data as possible while using
crowdsensing apps. As a result, a necessary condition is that the data
cannot be connected to a particular topic.

Ease of use To achieve market penetration, the entry barrier must be kept
to a minimum. Systems that need a lengthy setup or the installation
of additional hardware are ruled out. It is critical for the platform’s
success that consumers may engage through their smartphones in a
used-to way. Therefore, a smartphone application lends itself to.

8.2.2Architecture

The ROADR platform is built on two pillars and includes four stakeholders. It
addresses the requirements named in Chapter 6. The architecture is depicted in
Figure 8.1.

Distributed
processing

First, vehicles are mobile sensors that sense events by analyzing the sensor data
stream. The user side contains a data layer that queries the sensors to forward
it to a detection engine that interprets i.a. CEP and ML to identify events ac-
cordingly. In addition, this domain includes a management layer for credential
and model administration. The second pillar is the remote Centralized Data Pro-
cessor (CDP). It is responsible for processing the events of the mobile sensors
accordingly. The CDP consists of four layers that perform different tasks. Indi-
vidual events are aggregated by the aggregation layer under certain conditions
(similar location and event type). Subsequently, semantic and syntactic informa-
tion is processed in the learning layer on the basis of the events. For example, the
average waiting time of a traffic light can be calculated hereafter the direction
of travel and the waiting time have been extracted from an event. The service
layer can pass on the findings accordingly and is designed dynamically. A third
stakeholder is an issuer, who provides pseudonyms to vehicles to enable them to
submit events. Additional stakeholders are external services, for example, OSM.

Privacy-
aware data
processing

The detection engine ensures privacy by processing privacy-critical sensor data
(c.f. [317]) on the user’s device. Thus, only intentional information, known in the
context of this work as events, is sent. At the same time, this results in a scalable
and robust platform, as the centralized infrastructure is lifted from the heavy tasks
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Figure 8.1 The ROADR platform is built on two pillars and four stakeholders. First, vehicles are
the mobile sensors to sense events by analyzing the sensor data stream using Complex
Event Processing (CEP). If an event is found, it is forwarded to the Centralized Data
Processor (CDP) that processes it accordingly (e.g. persisting and aggregating it). A third
stakeholder is an issuer, who provides pseudonyms to vehicles to enable them to submit
events. Additional stakeholders are external services, for example, OSM.

of data processing and analyzing. It is left with only sanity checks, aggregation
processes, and persistence operations. Due to the application’s smartphone-based
nature, a rapid adaption rate and a large amount of data may be expected. To
further support adoption, gamification can be included on the platform [317]:
For each confirmed event, a user can collect points that underlie his support
of the community. However, some limitations must be addressed, the most
significant of which is battery usage. Additionally, all machine learning models
are designed for accuracy since missing an event is less critical than incorrect
information discovered over time by the community. Models included in the
mobile application can be updated through a feedback channel provided by the
CDP.

Challenges One challenge in designing such applications is the balance between integrity
and privacy. The privacy requirements of the users must be taken into account.
For example, it should not be possible to trace users’ trajectories. This is
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possible if submissions of individual persons can be linked, which is prevented
by ensuring that only aggregated data leaves a user’s device. Additionally, no
identifiers or personal characteristics can be found. Integrity stands in contrast to
this requirement. Thus, the data must be correct to provide added value. To
protect against fraud, such as Sybil attacks (see Section 7.2.4), ABC4Trust
(c.f. Sidebar D) is used. ABC4Trust is implemented in the management layer of
the platform, which is present in both of its components. The PoC abstracts this
component.

Sidebar DComponents of ABC4Trust

Rannenberg et al. [307] is a privacy-enhanced attribute-based credential (privacy-
ABC) system that was funded by the European Union. It enables the development
of trustworthy applications that integrate seemingly incompatible objectives such
as reliability, integrity, and privacy. A typical design abstracts away the particular
implementation of the ABC system, allowing developers to create sophisticated
but secure applications.
ABC4Trust specifies five distinct roles, which are as follows: User, Verifier, Is-
suer, Inspector and Revocator. Additionally, it defines credentials as contain-
ers for attributes specified by either the user or the issuer, confirmed (blindly)
by an issuer (e.g., a network provider using the device’s SIM card), and held by
the user. Possessing and knowing a signed credential enables access to a remote
system secured by a Verifier, in this instance, the centralized data processor. As
a result, the credential enables the submission of new events. Furthermore, a
pseudonym is a user’s (temporary) identity that enables (limited) linkability, if
necessary, which is critical for an integer platform. Both components may be
associated with a user-only secret, providing another degree of validity.
In ROADR, we utilize this functionality to protect against assaults such as flood-
ing by segmenting the map into parts where each vehicle ultimately generates
the same pseudonym each time it reports an event discovered in this sector.
ABC4Trust is implemented in the management layer of both platform compo-
nents.
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8.2.3 Aggregation of Events

Contradict-
ing

information

In the context of a crowdsourcing solution, events must be recognized and re-
ported by a large number of participants. In order to generate knowledge from
this, the information must be aggregated accordingly. Therefore, several chal-
lenges arise in the location-based topic. First, the inaccurate location information
must be taken into account, as vehicles can move very fast. Consequently, it can
be assumed that two vehicles, which can describe the same situation, do not
provide identical location information. Also, the time dependency has to be con-
sidered, i.e. some events may be temporary. As an example, road works occur
and are finished; hence, the platform has to handle such scenarios. This is par-
ticularly challenging, as road works are only detected in the present case but are
undetected if they do not exist anymore. Consequently, no events are submitted
for road work. Therefore, this platform needs to verify if a road work has been
confirmed from time to time.

8.3 Mobile Companion

In this section, the accompanying Android application from ROADR is presented.
It performs two basic tasks. First, the application collects data and preprocesses
it. Second, the prepared data is used for the detection of various traffic events,
which will be introduced in the next Section 8.4. When any of the events are
detected, they are shown transparently on a map. This underlines the claim to
trust being a core building principle of ROADR. Also, the user interface shows an
assessment of the current road quality. The user interface is shown in Figure 8.2

Modular
data

processing

The data processing architecture of ROADR is depicted in Figure 8.3. Due to its
modular design, the application can be expanded accordingly and enables the
processing of one data stream for the detection of several events at the same time.
We now explain each step of the CEP-based architecture in more detail.

8.3.1 Collection and Preprocessing

Data is collected from the built-in sensors on an Android device using the official
API. We then perform multiple attribute sensor fusion as well as time-based
fusion (c.f. Sidebar C).

Data fusion We use ReactiveX2 to observe sensor events asynchronously without blocking
other operations continuously. The applied technique is also called observer-
2 http://reactivex.io/

http://reactivex.io/
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Figure 8.2User-Interface of the ROADR application. The user interface displays multiple detected
event types including their location. There are some basic controls to start and stop the
detection.

pattern. In particular, the raw values of the accelerometer, the gyroscope, and
the GPS are continuously sampled. The sampling rate, i.e. frequency f varies
between the sensors, as explained in Section 5.2. Readings from a sensor xt′at time t′ are integrated into a single measurement m for time t by averaging
values {xt′ | t − f−1 ≤ t′ ≤ t}. Thus, errors such as outliers or noise can be
reduced accordingly (c.f. Section 2.3) to allow processing of the data. Since the
GPS in Android is rather restricted to f = 1 the last loc is used. As previously
explained, this yields an inaccuracy in the location submitted with detected
events, although our platform is capable of aligning such events to a correct
location using crowdsensing techniques.
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Figure 8.3 Multi-level workflow within ROADR. The CEP process is based on the fused data as
shown in Figure 5.5. A detection module performs windowing using module-specific
parameters and pattern analysis to find sophisticated events.

Publication
of new mea-

surements

Once a new measurement is generated every f−1 seconds, it is published
in the respective detection modules that perform further processing to detect
events. Each measurement is forwarded to all subscribed detection modules
simultaneously to perform the computation in parallel.

8.3.2 Windowing

Generation
of windows

Windowing models are employed to process the continuous stream of measure-
ments to assess for events. LetW(̃, a, !) denote a function to generate a Sliding
Window ̃′ of fixed length ! starting at the marker a on a continuous and grow-
ing data stream of measurements ̃. Sliding windows are usually applied to
reduce the risk of missing patterns in time series [270]. ̃ is the sequence of
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measurements received via subscription, while ̃′ ⊂ ̃, hence W is a sur-
jective. Windows are then used to calculate specific explanation features such
as statistical attributes (e.g. using min, max, mean, std). All elements in a slid-
ing window are of equal importance in contrast to other approaches such as the
Damped Window Model [244].

Different
window
selection
strategies

̃′ only holds measurements whose marker a lies in the interval [a − ! +
1, a]. Other measurements are discarded. The elements of the window are
therefore defined by an arbitrarily placed marker, which may be of a specific
type b. Therefore, W may use an additional mapping function MW to map ms
to that specific type b to validate if it is part of that specific interval. Different
approaches can be used to define MW and thus modify the construction of a
sliding window.  are time series-based trajectories that are location-aware.
Hence we define two mapping function, one to map measurements to a timestamp
MWt ∶  ←→ ∙,t and one to derive distances from a sequence of measurements
MWd ∶  ←→ .3 For instance, if tlast is the current timestamp of the last
measurement, all older objects other than ! are removed.

Overlapping
windows

In addition, ROADR uses overlapping windows. Overlapping windows are fur-
ther defined by an additional overlap parameter called o. The parameter describes
the amount needed to move the marker a forward along the sequence . In the
easiest case (o = 0) there is no overlap for two successive windows, hence:
W(̃, a, !) ∩W(̃, a+!,!) = ∅. This is not desirable in some cases because
e.g. a traffic circle pattern could be separated in unfortunate positions and may
be hard to detect. Overlapping windows reduces the risk of missing a pattern
by setting the marker of the subsequent window to a′ = a + ! ∗ (1 − o)). For
example, if o is 0.2, both windows overlap 20%.

8.3.3Detection

Atomically
tasked
modules

A detection module is a modular and self-contained package for recognizing a
specific event. Its input is the continuous data stream and windows, respectively,
while the output is potentially found events that are also published similarly
compared to measurements. There are no additional dependencies between any
module or other parts of the application. Each detection module can define
its own parameters, including window size and overlap, to fully capture the
corresponding patterns in one window. ROADR in its current state has four
modules to detect traffic circles, traffic lights, road works, and assess road quality.
3  = [Dist(mi, mi+1) | i ∈ (0,… , || − 1)] with Dist returning the geographical distance of two
measurements mloc,i and mloc,i+1.



200 8. ROADR

As the stream of measurements is constant, detection modules are built in an
efficient way: Each module performs sanity and precondition checks to fast-fail
if the probability for an event is too low. We will describe the methods applied
when explaining a specific detection module in Section 8.5.

8.4 Overview of Events

As we have already shown in Section 5.4, a sequence of measurements  can
give insight into the course of a journey in order to make general statements
about the driver or the environment. For example, the presence of many curves
implies a curvy road, which is potentially less common in cities but more
common in rural areas. Generally, predictions based on sensor data should be
precise and accurate, but this is often not possible due to many disturbance
variables. Nevertheless, there are salient structures in sensor data that are worth
considering, as they allow insights into the structure of a road network.

Selected
elements

In this section, four events are presented in detail, which may be processed by the
ROADR platform to correct the map material and thus increase the actuality and
accuracy, but also to complete the map material. They are particularly crucial for
ADAS or similar systems. For instance, the presence of a traffic circle directly
impacts the travel speed, which a cruise control may set.

8.4.1 Traffic Circles

Definition A traffic circle is a type of intersection where traffic flows in a circle around an
island in one direction. Unlike an intersection, traffic is usually prioritized so that
vehicles in the traffic circle have priority. To ensure consistency in nomenclature,
the conventional structure of a traffic circle as defined by the German Automobile
Club is used [370]. It is shown in Figure 8.4. The first exit is about 90◦, the second
exit is approximately 180◦, and the third and typically final exit of a traffic circle
is approximately 270◦. Simply speaking, it is assumed that an exit may deviate
up to 45◦. However, remember that traffic circles may have varying numbers and
exit placements.

Rough
pattern

definition

We empirically determined that the traffic circles show a unique pattern on the
gyroscope and accelerometer. Especially on the gyroscope’s z-axis (gyrz), the
accelerometer along the x-axis (accx), and the velocity v. Figure 8.5 illustrates
the course of the sensor readings of entering, passing through the traffic circle,
and then leaving it at the second exit. The speed decreases before entering a
traffic circle, remains constant once within, and increases again once exiting.
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Figure 8.4Exemplary traffic circle with four exits. (based on Tober et al. [370])
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Figure 8.5Pattern for traffic circle exit at 180◦ (2nd).

While the trajectory of gyrz takes the shape of a “W”, the accx is opposite
and resembles an “M”. Since accx reflects centrifugal forces, which are mainly
directed in the opposite direction compared to steering maneuvers, both sensors
describe the same issue; hence, both can be used to confirm an event (i.e. sensor
fusion). These patterns result from three phases of a trip through a traffic circle:
entering, circumnavigating, and leaving. Sensor measurements are normalized
to fall in [0, 1].

Detection of
different
exists

Differentiating between different exits is performed by observing the phase
“passing” within the traffic circle, which is lengthened when exiting by a different
exit. A later exit from a traffic circle results in a prolonged interval within the
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Figure 8.6 Patterns for traffic circle exits at 90◦ (1st) and 270◦ (3rd).

structure. One can see from Figure 8.6b, which shows passing and exiting the
third exit, that the plateau is longer compared to the second exit as shown in
Figure 8.5.

In-depth
analysis

The 90◦ exit pattern is not that unique compared to later exits: The turn to the
left only lasts for a short period because the direction change is minimal in a
traffic circle. Within gyrz, a local maximum is apparent at 3 s in Figure 8.6a, but
the apex does not deflect significantly higher than the other exits (c.f. Figures 8.5
and 8.6b). Compared to the other exits, leaving the traffic circle at the first exit at
90◦ does not require a substantial countersteer maneuver. It is even possible
to depart a roundabout via this exit as if it were a normal right turn. This
circumstance is shown in Figure 8.7. Shown is a plain right turn in Figure 8.7b.
It is depictable that the gyrz course decreases until it reaches zero and then
returns to its initial value when finished turning. Also, accx shows a reduction
in speed when beginning the turn with a resetting to the initial value afterward.
The course is somewhat similar to a traffic circle pattern at the first exit (see
Figure 8.6a), except for the absence of the peak in the gyrz course due to a
missing countersteer. Both cases can be differentiated. Next, Figure 8.7b also
shows the passing of a traffic circle, but the pattern is more similar to a right turn
and does not have a plateau. Consequently, driving style has a direct impact on
the ability to detect patterns. As ROADR is a crowdsensing application, one can
conclude that common traffic circle patterns are present in the data set. Hence,
the objective is to detect distinct and unique patterns such as Figure 8.6a prior
to Figure 8.7b.
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Figure 8.7Patterns for a right turn and a traffic circle passing without countersteer resulting
in a pattern similar to a right turn.

8.4.2Traffic Lights

DefinitionTraffic lights are light signs (according to §37 Road Traffic Regulations
(Straßenverkehrs-Ordnung)) to control traffic flow at intersections and bot-
tlenecks by alternating the clearance of incompatible traffic flows. Four light
stages are defined, namely green as the release phase, yellow as the intermediate
phase preceding the blocking phase, which is represented using a red light, and
yellow-red as the precursor of the release phase. The phases are linked with a
light schedule that corresponds to the opposite equivalent traffic light. The total
circulation time is the sum of all four phases and depends on various parameters
such as the speed limit or the distance. RiLSA [310] classifies circulation time
into three categories based on duration with an expected circulation time of 90 s.
Furthermore, RiLSA [310] also defines safety variables in traffic light circuits
where no participants are allowed to drive.

Waiting time
as the
unique
pattern

The waiting time, i.e. red phase, is readable from FPD since the detection is based
on the movement of the vehicle and the mobile device, respectively. Other phases
are hard to detect since they may have no impact on the vehicle, particularly the
release phase. Hence, we focus on the blocking time, which is a significant
attribute in distinguishing the traffic light from other elements. We found that
the expected blocking time at a traffic light is significantly higher and more
reliable than stop signs [317]. In addition, traffic lights are often stationary at
intersections that allow one to change directions. The FPD includes information
on the direction of the turn after a traffic light to differentiate the light phase
between different lanes.
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Figure 8.8 A traffic light passing has three different phases. These phases are approaching where
on reduces the speed, idling while waiting for green light, and leaving.

Analysis of
traffic light

patterns

Figure 8.8 illustrates the sensor pattern for a traffic light. The vehicle approaches
the traffic light and decelerates within a 10 s interval, which is also reflected in
accy that is lower than in the following idle phase. The speed shows a short
plateau before standing still because one is approaching the stoppling line or the
preceding car. The car comes to a complete stop while in the idling period.
Although sensor readings for the accelerometer and gyroscope show minor
variations, the vehicle is standing (c.f. Section 4.3.2). This noise is related
to sensors and the vehicle’s minor shacking (e.g. because of the engine). The
leaving phase is dominated by acceleration maneuvers. The speed increases until
it reaches a level comparable to that at the beginning of the approaching phase.
This is because the speed limit is commonly similar before and after intersections.
Multiple local maxima are present in the readings of the accy course during this
phase which is related to the traffic situation, such as crossing pedestrians when
turning. gyrz explicitly indicates this turn. The velocity reduces before going up
again; hence one cannot assume a reverse pattern to the approaching phase but
a different one without linearity.

8.4.3 Road Work

Definition Certain types of road work are identifiable depending on their impairment of
traffic. Of interest are road works where vehicles potentially have to change lanes,
traffic jams can occur due to lane narrowing or similar. The German guidelines



8.4. OVERVIEW OF EVENTS 205

a) Type 1 & 2. Only a slight impact or even
no impact on lane flows occurs.

b) Type 3. The number of lanes is kept
constant, however, a detour is necessary.

c) Type 4. The number of lanes is reduced
requiring changes in traffic flow.

d) Type 5. A full closure does not allow
any further traffic flow.

Overview of different types of road works. Five different categories of road works have   Figure 8.9 
been identified, with only two kinds having a direct impact on a vehicle’s trajectory and
are therefore of interest. (based on Franz [S3] and Rsa [309])

for road works [309] serve as an orientation on the types that exist, based on 
which we conclude five categories of road works [S3]. These are presented in 
Figure 8.9. Only road works of types 3 and 4 (c.f. Figures 8.9b and 8.9c) directly
impact a vehicle’s trajectory and are therefore of interest within the ROADR
platform. In addition, one can distinguish between road works in urban or rural
areas. Highways post a different scenario, although their traffic flow pattern is
similar to the one depicted in Figure 8.9b, except that they may have significantly
long obstacles.

Impact on
movement
behavior

If a vehicle is driving in a lane where a road work is imminent, it must bypass the
obstacle by changing lanes. This maneuver indicates entering of a road work and
can be seen in Figures 8.10a and 8.10b in the readings of the gyrz. This pattern
shows a lane change together with a slow and ongoing reduction in speed as
picked up by the accy. While passing the road work site, the vehicle maintains
a consistent and lowered driving speed following the temporary and reduced
speed restrictions seen at accy readings from 8 s to 20 s (c.f. Figure 8.10a)
and from 22 s to 32 s (c.f. Figure 8.10b), respecitvely. When leaving the road
work, the speed increases significantly as accy at 21 s in the first scenario.
Also, in Figure 8.10b, the inversed gyrz pattern compared to the entering phase
shows a lane change back to the original lane before accelerating back to the
incoming speed. However, a vehicle can remain in another lane as illustrated in
Figure 8.9c where a vehicle chooses to remain in the upper lane as the recording
of Figure 8.10a shows. Hence, the reversed gyrz pattern is not to be expected as
a strong requirement.
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Figure 8.10 Overview of the phases of a road work passing. A road work has three different phases,
namely approaching where on reduces the speed, passing the obstacle, and leaving.

Dependence
on the type

of road

One has to note that lane changes, as well as speed limits, may vary depending on
the area. For example, lane changes on a highway may be much more extended
than sharp ones in cities. Furthermore, a speed limit reduction from 130 kmh−1
to 60 kmh−1 in a road work is easier to identify and more unique than what we
find in cities. Cities may only post a speed limit reduction from 50 kmh−1 to
30 kmh−1, with the latter speed not uncommon during rush hours.

8.4.4 Road Quality

Structured
Literature

Review

The assessment of road quality can also be done with the help of sensor data. This
also includes the detection of speed bumps and potholes. However, compared to
the three events presented, traffic circle, traffic light, and road work, road quality
is not defined by objective attributes but is subjective to drivers and passengers.
Road quality, speed bumps, and potholes are of interest to academia for various
reasons, including safety, durability, and maintainability. A SLR was conducted
to survey the current status quo, the results of which will be presented here [S15].
Road quality papers sometimes include aspects of pothole detection and similar.

Threshold-
based and
ML-based

approaches

The methods to assess road quality can be classified into threshold-based and
ML-based approaches. In total, 47 articles have been identified that match our
criteria. The identified works are listed in Table 8.1 including their respective
categorization and publication year. Although there are still new works dealing
with threshold-based approaches, recent works mainly use ML-based methods
to assess road quality. Interestingly, papers applying machine learning to the task
also differentiate what results in lower road quality by including defects such



8.4. OVERVIEW OF EVENTS 207

as potholes and speed bumps. Articles that do not extract some categorization
(including simple good or bad bins) are not considered road quality papers. Most
publications assume a fixed position of the recording device (i.e. smartphone) or
mention such aspects. We are not focusing on the impact of vehicle and related
problems (e.g. smartphone-to-vehicle alignment) here because that topic was
already dealt with in Part I of this work. It should be noted that thresholds do not
necessarily need to be static but can also be contextually adaptive [28]. Xue et al.
[411] focuses on the practicability of road quality assessment because estimation
is not only subjective to a driver, but the measurements captured by a smartphone
in a vehicle depend on the dynamic properties of the vehicle itself.

Table 8.1Overview of the 48 publications identified in the SLR. Works are adressing specific
aspects of the quality assessmenent with some only focusing of detecting road defects.

Publication Year Type1 RQ2 PH3 SB4

Staniek [357] 2021 T ●

Kyriakou et al. [224] 2021 M ●

Carlos et al. [64] 2021 M ● ●

Xue et al. [411] 2020 T ●

Tiwari et al. [369] 2020 M ●

Seid et al. [336] 2020 M ● ● ●

Kotha et al. [213] 2020 T ●

Dimaunahan et al. [108] 2020 T ●

Basavaraju et al. [37] 2020 M ● ●

Badurowicz et al. [28] 2020 T ●

El-Kady et al. [195] 2019 M ●

Ali et al. [10] 2019 M ●

Chuang et al. [84] 2019 T ●

Dey et al. [105] 2019 M ● ● ●

Zhao et al. [425] 2019 M ●

Kumara Thilakarathna et al. [222] 2019 T ●

Wang et al. [392] 2019 M ●

Carlos et al. [65] 2018 M ● ●

Wang et al. [390] 2018 M ● ●

Souza et al. [354] 2018 M ●

Sillberg et al. [342] 2018 T ●

Li and Goldberg [230] 2018 T ● ●

Kataoka et al. [203] 2018 T ●

continued on next page
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Cabral et al. [59] 2018 M ● ● ●

Ameddah et al. [18] 2018 M ●

Singh et al. [346] 2017 M ● ●

Silva et al. [343] 2017 M ● ●

Harikrishnan and Gopi [166] 2017 T ● ●

Alqudah and Sababha [15] 2017 M ●

Allouch et al. [12] 2017 M ●

Lima et al. [233] 2016 T ●

Kalim et al. [197] 2016 M ● ●

Gawad et al. [139] 2016 M ● ●

Amirgaliyev et al. [19] 2016 T ●

Sharma et al. [337] 2015 T ● ●

Yi et al. [416] 2015 T ● ●

Vittorio et al. [382] 2014 T ●

Douangphachanh and Oneyama
[115]

2014 T ●

Douangphachanh and Oneyama
[114]

2014 M ●

Astarita et al. [25] 2014 T ●

Douangphachanh and Oneyama
[113]

2013 T ●

Syed et al. [364] 2012 T ●

Fazeen et al. [125] 2012 P ● ● ●

Astarita et al. [24] 2012 T ●

Aksamit and Szmechta [7] 2011 T ●

Mednis et al. [261] 2011 T ●

Mohan et al. [268] 2008 T ● ●

Eriksson et al. [122] 2008 M ● ●

Sum 28 24 18
1 M (Machine Learning) / T (Threshold) 2 Road Quality 3 Pothole 4 Speedbump/Hump

GPS as the
dominant

sensor

Most commonly, the combination of accelerometer and GPS is used to address
the road quality [7, 18, 19, 24, 28, 113, 139, 195, 197, 222, 230, 233, 261, 336,
337, 342, 346, 354, 357, 369, 382, 392, 416, 425] with the GPS used to derive
the velocity in most cases (apart from pinpoining the derived information to a
location). Next, approaches include the gyroscope along with the accelerometer
and GPS [10, 12, 37, 114, 203, 390]. A single approach used a combination of
the accelerometer and the camera of the smartphone [213] which is questionable
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from a privacy point of view but also from a practical perspective. Combining
more sensors tends to improve the respective performance of a given approach,
although this effect is not related to the threshold- or ML-based approaches.

Dependency
on the
velocity

There is no consensus, though, that different speeds have an impact on the
accuracy of the detection (Zhao et al. [425] in contrast to Yi et al. [416]).
Although sensor data changes with different speeds [19, 108, 425].

Special notesVarious special orientations can be found in some works. For example, Zhao et al.
[425] tries not only to detect potholes but also to measure them geometrically.
Furthermore, road quality is also not always measured but e.g. attempts to
distinguish between paved and unpaved roads [59]. Motivation for the work often
correlates with the location in which the relevant studies have been conducted.
India leads the way with six works [166, 203, 268, 337, 364, 369]. European
countries are leading, except Italy [24, 25, 382], Finland [342], Cyprus [224],
Poland [7, 28, 357], and Portugal [343] not being found. Comparability between
works is infeasible because algorithms, especially threshold-based ones, are
tailored toward the respective data set.

8.5Detection of Events

After introducing the mobile companion as a platform component to locally
detect events in a privacy-friendly manner, we now explain how the detection
modules for events, namely, traffic circles, traffic lights, and road work, are
implemented.

Development
of descriptive
features for
events

We derive descriptive features as multi-dimensional properties of the time series.
A feature is an individual measurable property of an observed process [71]. The
properties of raw data are transformed into a more straightforward representation
by extracting and converting information [123]. However, the constrained mobile
environment is challenging. Common approaches to using hundreds of features,
with many of them being irrelevant or redundant, are not feasible. Hence,
unnecessary variables are to be eliminated to improve the performance of the
ML model [71]. Feature engineering is the task of extracting and selecting
features accordingly. It has three objectives: improving prediction performance,
providing fast predictions, and producing cost-effective predictors [117]. Due
to CPU and battery constraints, the mobile environment explicitly demands
a streamlined workflow with fewer but significant features. At the same time,
accurate prediction is unquestionably decisive. Thus, we perform a combination
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Figure 8.11 Relationship between parameters of the window functions and the respective traffic 
circle exit. Clusters are formed based on the exit taken, indicating a correlation between
time and exit. There are no significant overlaps considering the clusters indicating that 
the sensor data can be used to identify the exit.

of automatic and manual feature engineering and selection to derive a minimal 
set of features addressing the said constraints and requirements.

8.5.1 Traffic Circle

Sliding
window-

based
detection

The detection of traffic circles is based on sliding windows and depends on the
exit taken, as confusion with curves is possible with earlier exits, as described.
First, the corresponding windowing method was defined based on the test data.
A robust windowing method is desirable. This means that clusters must form
according to the exit of the traffic circle, so detection is possible. Desirably, there
should be little or no overlap between the clusters to minimize confusion in exit
prediction. Distance-based and time-based windowsMWd and MWt, respectively,
are available for the time series data. Experiments have shown that both methods
are equally suitable and provide recurring results as depicted in Figure 8.11.
Furthermore, we need to define a threshold for when a window is classified as
containing a traffic circle since it is unlikely that a whole window from start to
beginning reflects a traffic circle. We call this parameter �TL.

Overlapping
window

parameter
definition

Therefore, we use time-based windows by creating windows with the sliding
window function W in combination with MWt. We set ! = 20 s to include
the longest traffic circle passing found in our data set. Furthermore, we use an
overlap of o = 0.6 and threshold �TC = 0.2 which means that 20% of a window
need to contain a traffic circle pattern. We optimized all hyperparameters using
a sklearn-grid-search using a Random Forest classifier in the ML pipeline
that combines different parameters to sets and then evaluates their performance
accordingly. For more information, refer to our work specifically on traffic
circles [319].
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Learning the
NN-model

The final model will be executed on users’ mobile phones to preserve privacy.
However, the training and evaluation of the respective ML model are done
on the platform-side in the CDP domain. For each window, the features were
extracted using TSHFRESH [83]. This framework helps to easily derive a variety
of features for time series to use in ML tasks. We then trained a sequential NN
with the 150 most promising features that were selected programmatically using
an initial sklearn [291] pipeline with the Random Forest classifier to analyze
the data (c.f. [319]). More minor feature sets result in shorter runtimes and are
therefore desirable for mobile environments to fulfill our given requirements.
We ported the necessary features to Kotlin to use them in the ROADR mobile
application.

Deploying
the model

Eventually, the trained TensorFlow model is converted to a TensorFlow-lite
model that can be run on Android devices with hardware acceleration. This
guarantees energy efficiency, fast detection runtimes, and, as a native API, high
compatibility across devices. To further optimize resources, we apply prefiltering
to the incoming data stream using CEP: only patterns that show a right turn are
considered to be processed by the NN. This check is swift and can be performed
only by analyzing some statistical features for gyrz for a window. Therefore, a
window can be efficiently discarded if it does not contain a traffic circle. The
final model uses 100 extracted features from the raw data within a window and
determines the traffic circles.

8.5.2Traffic Light

Selection of
the approach

Traffic light detection is built similarly to the traffic circle detection module.
Also, the approach is similar. The statistical distribution of traffic light events
is analyzed to decide which type of windowing function is a feasible choice.
The challenge is to find a window function and corresponding parameters that
cover the range of traffic lights as much as possible. Only then is detection with
appropriate quality possible.

Derivation of
relevant
parameters

Figure 8.12a shows the waiting time if the time-based function MWt is to be
used. It shows a range of up to 215 s. On the contrary, Figure 8.12b represents
the distance-based view (using MWd). Again, values between 26m and 957m
are obtained. If the window size ! is too large, closely spaced traffic lights will
not be detected. However, if ! is chosen too small, a traffic light pattern cannot
be fully detected. If the window is too small, the same traffic light may appear
in several windows. Especially in cities, both versions of the window function
depend on external conditions, such as road traffic or speed limits. Therefore,
we evaluated multiple window sizes for MWt as well as MWd . In conclusion,
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Figure 8.12 Relationship between parameters of the window functions and the respective traffic
light event lengths. The distribution shows that both functions are suitable for the
detection of traffic lights with slight advantages to the time-based variant

the distance-based version (MWd) performed superior to the time-based one.
! = 300m seems to be the best option within the data set. This seems logical,
as this value is close to the median of the data (c.f. Figure 8.12a).

Discussion
on features

In addition, we define the threshold for elements in a window that must rep-
resent a traffic light pattern to be 60% (�TL = 0.6). The overlap o is emperi-
cally set to 0.4. tsfresh was employed to calculate descriptive features for each
window, which are subsequently refined during feature selection. Two different
approaches were trained. One model tried to decide in one step whether it was a
traffic light and, if so, in what direction a vehicle was moving in. However, this
model was inferior to a two-step approach in which a ML model first decides if a
window contains a traffic light before determining the driving direction. Feature
engineering yields during the selection process a set of 10 features that are solely
based on the y-axis of the accelerometer (accy) and the gyroscope’s z-axis (gyrz).
GPS based measurements are entirely unneeded. An essential feature above all
others is the idle time at the traffic light. gyrz then helps to differentiate turn
types based on the minimum and maximum derivations of that sensor after an
idle time. Reducing the number of features to only 10 reduced the prediction
runtime, not only during training and validation but during feature calculation in
general by 60%. This will impact the detection within the ROADR application
during the real-time detection of events.

Optimiza-
tions

A traffic light requires standing phases to be detectable. Hence, a fast check
for standing phases was implemented to reduce the number of ML prediction
activations.
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8.5.3Road Work

Rule-based
approach

Road works are determined by analyzing specific turn patterns and comparing
speed alterations with reference data from OSM. This detection module does
not apply ML techniques but works using a state machine. First, a lane change
must occur, which is detected using the gyroscope’s z-axis (gyrz). Recall that a
lane change is a mirrored pattern with similar peaks in the positive and negative
directions (c.f. Figure 8.10). Therefore, it can be differentiated from turns. A
lane change can be sharp or smooth in terms of peak size and period. Intensity
also helps in the selection of lane changes in relation to road works.

Impact of
velocity on
patterns

A lane change must occur in combination with a speed reduction. Then, the usual
speed limit, queried from OSM’s Overpass API, helps to estimate the likelihood
of a road work entrance. Speed limits may be cached on the local device to reduce
network footprint and handle no-network reception situations. A constant and
lower speed than the reference speed for a given threshold indicates road work. If
that speed increases later, road work is assumed. A subsequent lane change may
improve the road work estimation, as a lane change is a unique road work pattern.
The length of the phase with reduced speed depends on the overall speed limit.
For example, highways have a higher speed limit, and road works are allowed to
cover more distance.

Distance-
based
windows

A distance-based windowing method MWd was chosen for the road work de-
tection module. Due to persistent traffic flow, standing times do not provide
information about the road work site. Furthermore, the window length was em-
pirically set to ! = 600m with an overlap o = 0.6 to include a lane change as
well as a constant and reduced velocity phase.

8.5.4Road Quality

Vibration-
induced
assessment

The task of the road quality module is to assess the smoothness of the road.
As can be seen from the analysis of related work, the comparability of the
various approaches is possible only to a limited extent. This is mainly due
to the application area for which the method was developed. Approaches that
draw a diverse picture in India, for example, are not applicable in Germany
due to generally good road conditions. Therefore, the following threshold-based
approach serves only as a Proof-of-Concept and can be further refined or replaced
in the future. The approach is based on the idea that recorded vibrations allow
conclusions about the smoothness of the street [28]. The detection of potholes
and speed bumps is implicit. The idea of ROADR is to improve navigation [317]
by proposing an additional route, as shown by Souza et al. [354].
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Self-learned
thresholds

Vehicles monitor their resting position to establish a sensor baseline where only
vehicle vibrations are present without environmental impacts. Ultimately, there is
a change in the sensor data from the smartphone that must be taken into account.
Without context, it is impractical to use absolute numbers or deviations. To avoid
this constraint, we use the moving standard deviation calculated by std for the
gyroscope. Note that only gyrx and gyrz are evaluated.

Overview of
parameters

Three parameters are important in assessing road quality. First, the standard
deviation constructed from the readings in the standing phases indicates the rest
position, denoted as a tuple �r = (x, y)T. Second, the maximum of observed
standard deviations for the x and y axes, denoted as �m = (x, y)T. These
two values deviations may change over time to reflect new observations and
successively trend towards a global maximum. They indicate the range of the
sensor to create an upper bound, while the standard deviation for standing phases
represents the lower bound. The third parameter is the sensor standard deviation
in-between this range that represents the road quality.

Calculation
of the actual
smoothness

Let ̃′ be a sequence of all measurements of a window. We define a helper
method v(ma, mb) that returns the absolute velocity for the transition from mato mb. First, all measurements during standing and moving phases are collected
and transformed into a list of gyroscope measurements:

̃′
moving ←

[

̃′′
i,gyr

|

|

|

i ∈ ℤ ∧ 0 ≤ i < |̃′
| ∧ v(mi, mi+1) ≠ 0

]

̃′
standing ← ̃′ ⧵ ̃′

moving

If ̃′
standing ≠ ∅, the baseline �r can be updated. We use the median med to

avoid outliers. A threshold �rs defines the range of values to be considered. Gs,xand Gs,y, respectively, are initialized with ∅.

Gs,x ← Gs,x ∪
[

gx
|

|

|

g ∈ ̃′
standing

]

Gs,y ← Gs,y ∪
[

gy
|

|

|

g ∈ ̃′
standing

]

�′rs ← min
(

�rs, ⌊
|

|

|

̃′
standing

|

|

|

∕2⌋
)

�r ←

(

std
(

{gj ∈ Gs,x
|

|

|

i=idx
(

med
(

Gs,x
))

∧ j∈
[

i−�′rs,i−�′rs+1,…,i+�′rs
]}
)

std
(

{gj ∈ Gs,y
|

|

|

i=idx
(

med
(

Gs,y
))

∧ j∈
[

i−�′rs,i−�′rs+1,…,i+�′rs
]}
)

)
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The current measurements can be cleansed using the baseline to only reflect the
deflection during movement related to the road surface.

Gx ←
[

gx
|

|

|

g ∈ ̃′
moving

]

, Gy ←
[

gy
|

|

|

g ∈ ̃′
moving

]

�′ ←

(

std
(

Gx
)

std
(

Gy
)

)

− �r

Based on the cleansed standard deviation �′, we can calculate the current road
quality, denoted as ▴. It represents the quality assessed on a scale from {0,… , 1}
with 0 indicating a defective road surface. Similarly, the maximum observed
standard deviation from the gyroscope �m can also be updated.

�m ← {

(

max
(

�′x, �m,x
)

max
(

�′y, �m,y
)

)

�′x < �m ∧ �′y < �m

�m else

�m ←

(

max
(

�′x, �m,x
)

max
(

�′y, �m,y
)

)

▴ ← 1 −
|

|

�′|
|

|

|

�m||

�m is an arbitrary threshold to filter for outliers, eventually degrading the de-
tection, set to 0.6. Consequently, one can further refine the determined road
condition by including the current speed. �m may be initialized with (0, 0)T.

8.5.5Refactoring ML Models to TensorFlow Models

Note on
development
and
deployment

Conception, improvement, and development of the respective models were
carried out using scikit-learn [291], however, to implement them in the Android-
based ROADR application, these scikit-learn models must be ported to some
compatible artifact. For the final classification and prediction in the mobile
environment, we chose to build a NN with TensorFlow [252]. Incidentally, we
can take advantage of hardware acceleration and implement the models natively
by porting all scikit-learn models to TensorFlow-lite models. TensorFlow-lite
models are trained on centralized infrastructure, i.e. ROADR’s CDP and then
efficiently distributed to clients without the need for retraining. Such models can
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Hidden layerInput layer Output layer

Figure 8.13 Example of a Neural Network with one hidden layer.

be executed on the mobile device using the official Android APIs. In each case,
the traffic circle and traffic light models are a feedforward neural network with
only one hidden layer, as shown in Figure 8.13.

Converted
feature

engineering

However, features as input for the models are derived using TSHFRESH [83] and
self-engineered ones. They were ported from Python to Kotlin to be executable
on Android natively. Only the required features are converted and unit tested to
assert their performance and accuracy.

8.6 Evaluation

Setting The mobile companion and the respective detection modules are evaluated using
arbitrarily chosen routes from the data set (see Chapter 5). Some routes may occur
multiple times within the data set to account for differences in traffic patterns. We
deliberately chose routes from the data set that were recorded using the ROADR
application with a f = 25Hz. Ultimately, our models were built and evaluated
on 81 road works, 366 traffic lights, and 210 traffic circles collected in 1662 kms
or 282 hs. An excerpt from Regensburg, Germany is shown in Figure 8.14

8.6.1 Preprocessing

Monitored
determina-

tion of
ground truth

To retain the ground truth of the events that occur during test drives, time
frames were tagged with the type and time of the occurrence of the relevant
event. This procedure was either semi-automated by extracting the necessary
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Eventtype
Road work Traffic light Traffic circle

Figure 8.14Excerpt of traffic events at the time of evaluation for the respective area of Regens-
burg, Germany. In total 81 road works, 366 traffic lights, and 210 traffic circles are
present in the data set. The total length of driven distance is 1662 kms covering different
areas and traffic scenarios.

information from OSM (in the case of traffic signals or traffic circles) or was
performed manually (in the case of road works). Humans have manually verified
all labels. Events that occurred during the evaluation are excerptly shown in
Figure 8.14. The time frames of related events have been designated so that
each time frame captures the entire pattern of the corresponding events. The
graphical representation of a single test drive was created using GPS data. The
periods for the emerging traffic circles are chosen to begin immediately before
entering the circle and finish soon after leaving. A few meters of straight-on
driving were included to understand how a vehicle’s orientation changes due
to a traffic circle. Therefore, for each traffic circle passed during a test drive,
the start time, the end time, and the chosen exit are recorded. Additionally, we
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Figure 8.15 Pattern for a traffic circle that is divided into five sliding windows with a windows
size ! of 20 s and an overlap o of 60%.

regarded traffic signals as such if they had a standing phase of at least 5 seconds.
We captured the complete braking maneuver and acceleration behavior within
the labeling process that occurs after or before a typical travel speed. Again, the
event’s period was recorded by each traffic light passed.

Avoidance of
overfitting in

ML models

Traffic circles and traffic lights are determined using Machine Learning. To min-
imize the probability of overfitting, we selected appropriate model adaptations
and different parameters based on their performance on a training data set. k-fold
cross-validation was performed to assess the performance of the various model
parameters on the training data set. Finally, a second test data set was used to
determine the generalization error of the correct associated model.

Note on
sliding

windows and
ground truth

A critical aspect of the evaluation is modeling a real-time event detection situ-
ation. To replicate ROADR’s capabilities, sliding windows are produced auto-
matically for each test run using the window settings for the relevant detection
module. An issue is the objective evaluation of the results. When sliding win-
dows are constructed, an event may occur in several windows simultaneously. A
traffic circle pattern is presented in several successive windows in Figure 8.15. In
this example, two windows ̃′

1 and ̃′
2 entirely catch the event pattern, while

nearby windows ̃′
0 and ̃′

3 gather only a portion of the event pattern. The
model may be able to detect ̃′

1 and ̃′
2 and consequently may successfully

identify the traffic circle event while failing to detect neighboring windows. Thus,
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the ground truth is identified, but the model’s quality measure is erroneously de-
graded due to the model’s failure to recognize incomplete windows or duplicates.
As a result, appropriate measures are applied in each case of event detection to
quantify and assess the ground truth.

8.6.2Accuracy

The following section presents and discusses the accuracy of the presented
detection algorithms. For traffic circles and traffic lights, the performance of the
final ML model is illustrated as implemented in the ROADR mobile companion
application. The results of the intermediate models are omitted.
Traffic Circles

Table 8.2Performance of detecting a traffic circle including the correct exit. Shown are the
results for the training and test set. Precision and Recall are rounded.

Training Data Test Data
TP FP FN Pr1 Re2 TP FP FN Pr1 Re2

No Event 1534 35 1 97.8 99.9 749 9 3 98.8 99.6
90◦ 16 0 29 100.0 35.6 5 1 5 83.3 50.0
180◦ 59 1 2 98.3 96.7 16 1 2 94.1 88.9
270◦ 55 1 5 98.2 91.7 24 2 3 92.3 88.9

1 Precision [%] 2 Recall [%]

Multi-class
problem

The classification of traffic circles is a four-class problem. Therefore, the algo-
rithm must distinguish between no traffic circles and potential exits in the case of
a traffic circle. As mentioned in the previous section, the algorithm evaluates slid-
ing windows, and hence, successive windows may be detected as a traffic circle.
However, we can safely assume that multiple neighboring windows consistently
denote the same traffic circle considering the cautiously selected window length.

Discussion of
results

The results of the detection are shown in Table 8.2. It shows that the detection
for the second and third exits is fairly reliable, taking into account that only two
FPs are present. FNs are not critical, as the crowdsourcing environment allows
the creation of conservative models in terms of recognition, but at the same time,
high quality of the platform can be expected. We discuss that specific argument
in Section 8.6.3. From this point of view, also the detection of the first 90◦ exits
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is also described as good since no FPs occurs. Although the recall appears low
at 35.56%, this effect was expected after analyzing driving patterns. Right turns
are not trivially distinguishable from the first exit due to the dependence on the
driving behavior. However, the high precision of 100% proves the suitability of
the model for the task. As shown, other driving maneuvers are hardly mixed with
the unique traffic light pattern. This also includes right turns. For the test set,
similar trends in performance are observed, indicating that the created model is
generalizable and does not overfit.
Traffic Lights

Table 8.3 Performance of detecting traffic lights. Shown are the results for the training and test
set. Precision and Recall are rounded.

Training Data Test Data
TP FP FN Pr1 Re2 TP FP FN Pr1 Re2

No Event 1580 111 7 93.4 99.6 350 33 6 91.4 98.3
Traffic Light 135 7 111 95.1 54.9 51 6 33 89.5 60.7

1 Precision [%] 2 Recall [%]

Discussion of
results

The challenge of detecting traffic lights is the variable period of still standing due
to red lights or congestion. Therefore, such an event can be distributed across
multiple windows, considering that RiLSA [310] defines up to 90 s for a traffic
light phase. Through sliding windows, partial windows may result, in which the
acceleration or deceleration phase is omitted. Additionally, these partial windows
emphasize the standing-phase feature throughout the learning process, rendering
it susceptible to misclassification as other types of traffic occurrences. Other
incidents, such as pedestrians crossing the street, vehicles coming in, issues with
abandonment, or stop-and-go traffic, also contribute to waiting times. Therefore,
to avoid confusion, only windows that comprehend the complete pattern of a
traffic light event are labeled accordingly, and such windows are used for training.

Unbalanced
data set

Subsequently, windows (partially) presenting a phase of acceleration and de-
celeration are analyzed in front of a traffic light. The detection performance is
shown in Table 8.3. It is obvious that the data set is not evenly balanced, i.e.
the number of traffic lights in contrast to the inverse class is low. However, that
reflects a realistic scenario. The recall is mediocre for the training set, whereas
precision shows strong values. This means that the detection algorithm often
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overlooks traffic lights, but there is almost no confusion with other events. This
is desirable in the crowdsourcing context. The test data set performs similarly.
A slightly lower recall is a trade-off that can be considered since ROADR has
many users reporting traffic events, resulting in a detailed general representation
of reality.

Road Work

The road work detection algorithm was evaluated based on different types of
roads. The measurements of the related event differ significantly depending on
the shape of the road work. As explained, algorithms try to detect road works that
induce an initial lane change with an optional lane change back to the originating
lane. Hence, two patterns are of interest to this evaluation.

Discussion of
results

In general, 72 of 81 road works were detected successfully, resulting in a
precision of 87.80% and a recall of 88.89%. The remaining nine road works
could not be correctly categorized due to the failure to detect the initial phase
of the road work in seven of these nine cases. The remaining approaches to
road work do not include lane changes or accelerations towards the end of the
road work. An acceleration phase that is missed may occur as a result of other
traffic incidents, such as a red light after a road repair. Additionally, some roads
may be devoid of lane changes, particularly rural roads and highways. Due to
the greater variance in driving behavior, such as lane and speed changes, the
identification algorithm is best suited for city streets, despite interfering traffic
conditions: The algorithm shows an F1 score of 92.90% in city traffic, but only
79.25% on highways.

Problematic
patterns

Another ten patterns were detected as a road, even though they were other traffic
events. The problem with the pattern was driving onto a highway whose traffic
flowed only slowly. By pulling into a gap between vehicles, there is a clear lane
change similar to a road work site. Similarly, false detections occurred only on
roads with more than one lane. Optimizing the algorithm only to detect road
works with a conclusive lane change improves detection by increasing precision.
This ultimately removes eight out of ten wrongly detected road works but at the
same time reduces the recall by around 5%.

Road Quality

Discussion of
results

A supervised approach was used to assess road quality. The application was
adapted accordingly by specifying the weights of the gyroscope axes to analyze
road quality accurately. Several drivers used a qualitative scale to grade the road
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Figure 8.16 Road quality calculcated by the ROADR application for all trajectories in the data
set. Overlapping segments are averaged in terms of road quality.

surface. The weights were modified iteratively so that the z-axis of the gyroscope
was regarded unnecessary, whereas the x-axis is crucial, as it accurately depicts
the vehicle’s movement, particularly in the presence of potholes. Figure 8.16
illustrates how road quality assessment may look with lighter colors that indicate
a smoother experience, while dark colors reflect defective roads.

Limited
added value

However, measuring road quality in developed countries such as Germany, where
the road network is mature, adds little value, as the roads were rated mainly as
good or very good, with some outliers. In the context of the ROADR platform, this
module can be replaced by a recognition of the road surface (e.g. cobblestone or
concrete), allowing for the inclusion of this capability, which has been available
in a limited fashion in OSM.
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8.6.3Aggregation

The ROADR platform is based on crowdsensed data. As already shown in this
work, this data is subject to varying sensor quality in terms of accuracy and
reliability. The detection performance of the ROADR application has to be taken
into account, too, when one wants to use data from a crowd. Despite all causes
of error, the ROADR platform can provide a holistic, informative, and accurate
picture of the real world.

Balanced
detection in
favor of
precision

Figure 8.17 illustrates a traffic circle passing from four different drivers, vehicles,
and smartphones, each of them using the ROADR mobile companion to gather
sensor data. Each trajectory, including a map view of the structure, is shown in
Figure 8.18. Recall that the ROADR ML models have been optimized for high
precision instead of recall. Although sensor signals indicate a meaningful pattern
of a traffic circle, the ML model fails to recognize the traffic circle in Figure 8.17d.
However, the other three trajectories have been successfully analyzed in real-time
with a detected traffic circle (c.f. Figures 8.17a to 8.17c). Taking a closer look
at the driven path, one can see that all passes are of higher dimension, i.e. the
drivers do not take the first exit. In fact, the missed pattern (blue) is a 270◦ exit,
which tends to be detected very consistently. The sensor data shows a plateau
that is neither flat nor constant but has a minor defection at around 6 s to 8 s
together with a velocity that decreases slightly after leaving the traffic circle
before increasing sharply.

Everyone-as-
a-Sensor

This example indicates significant variances across multiple crowd participants.
Using Everyone-as-a-Sensor, it is still possible to gather meaningful information
without the solid requirement for detecting every event by each user. Addition-
ally, the considerable variation within the presented patterns demonstrates the
importance of adaptive approaches to deal with the varied accuracy of the sen-
sors and driving tendencies. As a result, we used ML models trained on data
collected from various drivers to detect potential violations that may be superior
to threshold-based methods.

Recurrent
recognition
to cope with
uncertainty

In addition, crowdsourcing also allows locating blurred events, such as road
works whose location varies depending on driving style and accuracy of the
GPS. Therefore, they are challenging to detect. However, after multiple passes
of the same road work from different vehicles, a clear pattern becomes visible,
as Figure 8.19 illustrates. The dashed line is the derived road work since it starts
and ends with apparent lane changes.
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a) Traffic circle pattern for the 180◦ exit.
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b) Traffic circle pattern for the 270◦ exit.
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c) Traffic circle pattern for the 270◦ exit.
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d) Undetected traffic circle pattern.

Sensor
accx gyrz v

Figure 8.17 Different interpretations of the same traffic circle. The four different recordings of
the same traffic circle by different drivers, smartphones, and vehicles show similar yet
different patterns. Exits are of second or third dimension, although, only 75% of all
patterns have been recognized by the ML model.

Figure 8.18 Trajectories of four different recording for the same traffic circle. Different exits were
taken by multiple drivers. The blue path has been undetected by the ML model.
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Figure 8.19Five different passing of a single road work. It is illustrated that two lane changes allow
to position a road work (dashed line).

8.6.4Battery Consumption

A low-energy footprint is essential for user acceptance when circulating a mobile
application. The ROADR application employs multiple energy-efficient methods,
such as using hardware acceleration and reducing the number of computations.
It was tested using three devices representing different classes of device ages.

▶ Google Pixel 4a (less than half a year old) with an estimated battery
capacity of 3050mAh

▶ Xiaomi Mi Mix 2 (about 2-3 years old) with an estimated battery
capacity of 3000mAh

▶ Samsung Galaxy S7 (about 4-5 years old) with an estimated battery
capacity of 1800mAh

Exemplary
analysis

The energy consumption while the application collects, analyzes, and eventually
submits sensor data and events is shown in Figure 8.20. The ordinal axis indicates
the percentage drop in battery life, while the abscissa axis indicates the duration
of the application’s execution in minutes. After a 41-minute trip, the Samsung
Galaxy S7’s charge level declined by 7%. The Xiaomi Mi Mix 2S’s state of
charge reaches this point after 87 minutes, whereas the Google Pixel 4a reaches
this point after 73 minutes. We ascribe the Galaxy S7’s considerably faster
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Figure 8.20 Overview of battery impact of ROADR on different devices. Shown is the time needed
for 1% of battery depletion while ROADR is active (Estimated battery capacity: Xiaomi
Mi Mix 2S 3000mAh, Samsung Galaxy S7 1800mAh, Google Pixel 4a 3050mAh)

discharge to two primary aspects. It features a slower CPU, which means that
calculations take longer and require more energy. Furthermore, it is an older
device that has been used in daily life and, as a result, has accumulated a large
number of charging cycles, drastically reducing battery health [331]. This fact
is further demonstrated by the AccuBattery application4, which calculates the
maximum capacity of the battery, which was previously 3000mAh, to be only
1800mAh.

GPS as the
main energy

consumer

Altogether, the results demonstrate that the battery consumption of the proposed
ROADR application is acceptable from a user perspective and hence feasible for
everyday usage. Notably, the energy consumption can be significantly reduced
by waiving GPS. Currently, GPS is gathered with a frequency of 1Hz (the fastest
interval available in Android) to either label data or preserve location information
in case of a detected event. However, ROADR can be extended by requesting
GPS on-demand for event detection to eliminate the need to query the location
continuously.

4 https://play.google.com/store/apps/details?id=com.digibites.accubattery

https://play.google.com/store/apps/details?id=com.digibites.accubattery
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8.7Conclusion and Outlook

With ROADR, we have presented an architecture that takes advantage of the po-
tential of sensor data in road traffic. At the same time, the interests of the various
stakeholders are protected by only transmitting aggregated, locally evaluated
information when necessary, following the Privacy by Design paradigm.

EventsA detailed examination of specific traffic events and structures reinforces the po-
tential of crowdsensing. The chapter presents a retrofittable Android application
that collects and analyzes sensor data in real-time. With the help of Floating
Phone Data, traffic circles can be detected unambiguously and with high quality
recurrently across different settings in some instances. A local Tensorflow-based
Neural Network processes the data and, using a centrally learned model, can
detect traffic circles in real-time and determine the exit. Using a second model,
it is possible to identify traffic lights based on speed trajectories and idle times.
An optimized rule-based matching algorithm uses steering and speed patterns
to identify road works that significantly influence traffic events.

PlatformIn the sense of crowdsourcing, all this information is received and aggregated
by the central, privacy-friendly ROADR platform. Respecting autonomy, users
decide how to forward information. According to the data minimization approach
(c.f. Section 6.1), the data received is deleted after evaluation. Furthermore,
the crowdsourcing approach allows for a robust and balanced design of AI
models and algorithms. This reduces the probability of incorrectly detected
structures and ensures sufficient quality of map quality using a thresholding
approach. ROADR allows crowdsensed information to be redistributed for the
benefit of the public without introducing privacy risks. Also, the ML models
can be extended and optimized based on the information received. Approaches
of gamification [317] may increase the participation of users.

OutlookROADR is capable of accurately estimating road quality. However, this assess-
ment has been shown to be subjective and largely monotonic during the evalua-
tion. This is due to the high quality of the German road network, which, compared
to the related work presented, does not have any significant damage that must be
imminently alerted. Here, a determination of the road surface instead of a subjec-
tive quality assessment is more appropriate and can be the subject of future work.
Further improvements lie in the use of the GPS as an energy-inefficient sensor.
An on-demand-based approach, similar to that addressed by Verma et al. [380],
is conceivable and would eliminate the need for accessing the GPS for evaluation
as all features are independent of the location. Not accessing the GPS may also
increase the perceived privacy of users. ROADR requires GPS only for semantic
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enrichment of location information for detected events, but not continuously for
recognition. Thus, if an event is detected, the location is required; however, this
can be requested once the event is detected, and any discrepancies in location and
event detection can be determined using interpolation. Chapters 4 and 12 show
that the sensor information is sufficient for such an approach: Steering move-
ments allow for detection of the trajectory, and the accelerometer can determine
the speed.



Part III

Privacy Threats





9Usage-Based Insurance:
Pay-As-You-Drive and
Pay-How-You-Drive

New insurance models in the vehicular environment promise usage-dependent
rates that compensate clients for cautious or restrained driving. Usage-Based
Insurances (UBIs) are in line with times and are now offered in many countries,
including Germany, where data protection is of particular interest. Despite the
lack of transparency of the models, they are enjoying increasing popularity; by
2020, 20% of all vehicle insurance policies in Germany alone are expected to
be of this type [378].

Risk-based
insurance

Figure 9.1 illustrates the reasons for traffic accidents in Germany from 2010
to 2020. One can see that speeding, the distance to other traffic participants,
and turning are majorly responsible for accidents. Thus, an insurance company
might have an interest in taking these factors into account when calculating the
premium to enhance pricing accuracy and perform correct risk classification,
eliminating the need for cross-subsidies. By including variable factors in the
premium calculation, it might be possible to educate or incentivize people to
drive more responsibly and, in countermove, offer reduced premiums. In fact,
individuals are more willing to disclose information when they can prevent
financial losses than when offered additional money [1, 111]. There are multiple
benefits of Usage-Based Insurance (UBI) not only for the insurance company and
the users, according to Husnjak et al. [184]. Firstly, there are social benefits like
reduced accident frequency or less pollution and traffic congestion, as drivers
are motivated to drive more foresighted (i.e. using an appropriate distance to the
car in front and brake less (severe)). In addition, the reduced chance of accidents
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Figure 9.1 Distribution of reasons for accidents in Germany between 2010 and 2020. Most of the
accidents occur when turning or for disregarding the right of way and distances. Speeding
violations are on the rise as a cause of accidents. (data from Bundesamt [57])

and the enhanced efficiency of claims processing are beneficial for the economy.
Lastly, the environment also benefits from drivers being more attentive due to
reduced fuel consumption and, therefore, CO2 output (owing to fewer braking
and accelerating) or less road congestion. All benefits can be mapped to the
reasons for accidents, as seen in Figure 9.1.

Data-driven
premiums

UBI can be considered a collective term for different types of insurance models
that are based on telematics. Historically, the lump-sum payment model required
customers to pay for their premium based on shared properties, such as their
age, experience, and anticipated yearly mileage. One can argue that the risk of
having an accident increases with the annual mileage, while, on the contrary,
the experience increases. Nevertheless, there are obvious drawbacks in the
lump-sum model that motivated more sophisticated approaches, each differing
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Figure 9.2Overview of variants of UBI. They can be categorized in the amount of telematics used
and the behavior of a driver included in the assessment. (based on Husnjak et al. [184])

in the amount of telematics used and focusing on the behavior considered
(c.f. Figure 9.2). In the following, we briefly describe the different types in
chronological order based on Tselentis et al. [374]:

Pay-At-The-Pump (PATP) is an early version of mileage-based insur-
ance. The idea behind this approach is based on the fact that the driven
distance and the fuel consumption are somehow correlated. Here, a sur-
charge was considered to be paid while refueling the car. However, due
to the different fuel efficiency between vehicles, the fundamental cor-
relation claim is biased, and the Pay-At-The-Pump insurance scheme
is not fair and has little benefit over standard lump-sum approaches.

Pay-As-You-Drive (PAYD) is a first approach to using telematics to
calculate the premium by relying on e.g. GPS information to gain
information about mileages, driven road types, and times. Thus, it
relies on the user’s behavior, such as his travel time. Pay-As-You-
Drive (PAYD) is closely related and is sometimes used interchangeably
with Pay-Per-Mileage (PPM). However, the difference lies in the data
gathering method. While PAYD uses telematics, Pay-Per-Mileage is
self-report-based insurance, where the premium is calculated based
on the reported mileage of the driver [184].

Pay-How-You-Drive (PHYD) is a behavior-based approach to calculate
the premium by enhancing PAYD to also use information from sensors
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(either built into the vehicle or using additional devices) to derive
information relevant for the calculation of the premium. Recalling
the reasons for traffic accidents (see Figure 9.1), using sensor-based
information allows e.g. to get information on sharp braking maneuvers
or risky acceleration.

In addition, having telematics onboard offers a multitude of use cases such as
tracking stolen vehicles via GPS, automatically making an emergency call in
case of an accident, or reconstructing an accident.

Contribution While Husnjak et al. [184] analyzed UBI rates in 2015 worldwide, we focus
on companies offering recent UBI premiums in Germany and derive a standard
model for such insurance schemes. In particular, we provide

▶ an overview of current premiums offered in Germany that have PAYD
and Pay-How-You-Drive (PHYD) features,

▶ an understanding of the UBI process and processed data with a derived
meta-model, and

▶ a discussion on potential privacy threats originated from these models.

Structure Section 9.1 presents insurance companies that offer UBI premiums. Next, a meta-
model is presented in Section 9.2 that explains the process of UBI. Subsequently,
an in-depth analysis of the premiums is provided (see Section 9.3). This chapter
concludes in Section 9.4 with an open question on privacy issues in this new
field of insurance models.

9.1 Overview of UBI rates in Germany

Companies A field study was first carried out to obtain an impression of modern insurance
models of the UBI form. The focus was on insurance companies in Germany,
where data protection is historically strong. Concretely examined were tariffs of
twelve companies, namely Aachen Münchner, Allianz, AXA, Cosmos Direkt,
Friday, Generali, HDI, HUK-Coburg, Signal Iduna (sijox), Sparkassen Direktver-
sicherung, VHV, and Württembergische. The list includes the largest insurance
companies in Germany. With Friday, however, a young competitor (founded in
2017) was also considered, who, unlike other candidates, is mainly assigned to
the motor vehicle insurance industry.
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Figure 9.3Derived meta-model of UBI after analyzing twelve premiums. Trajectories assigned
to a vehicle are generated by either the policyholder himself or by additional drivers. They
are processed by an external data processor that assess them within a blackbox process.
The insurance company receives a behavior report that is eventually used to calculate the
premium for that vehicle.

Aspects
considered

The insurances were analyzed with regard to various attributes such as general
conditions (e.g. admitted participants), the information collected and the col-
lection process, the information processing process, and other special features.
Further aspects such as costs or discounts for customers as a diversification fea-
ture for the category of UBI compared to classic vehicle insurance were also
considered.

9.2Meta-model of UBI schemes

Privacy has been identified as an essential criterion for insurance companies
concerning customer communication. Consequently, the insurance process was
adapted to these requirements. After the analysis of the twelve candidates, a meta-
model could be identified, which is presented in Figure 9.3. The derived meta-
model tends to be similar to approaches known from the literature (e.g. [184]).
However, we can specify who processes and collects what information, which
is crucial for privacy and, ultimately, user perception.

StakeholdersThe General Data Protection Regulation defines three parties, all of which are
reflected in the process.
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▶ The policyholder is the person who has insured a vehicle with an
insurer and, therefore, has entered into the contract with it. He pays
the monthly installment for a vehicle. The vehicle can be driven by
several additional drivers (up to 10, according to the study). In terms
of GDPR, the vehicle domain is considered as the data subject.

▶ Furthermore, a data controller is present that defines the purpose and
methods of processing personal data. As an insurance company, it
describes to a user how the data is processed as part of the UBI product
and how the monthly premium is calculated on it.

▶ Thirdly, there is a data processor, which handles data processing
on behalf of the data controller. This is usually a third party. The
data processor has the technical methods and knowledge, and it can
describe the data collection process in terms of GDPR together with
a data controller. This is called a joint controller. A data processor is
likely involved in the collector design.

Procedure Within the process, a data subject generates the data while driving and submits
the appropriate sensor data via a dedicated collector such as a smartphone
application. Dedicated dongles are also conceivable (but they were mostly used
them in the past, e.g. Sparkasse). They are connected directly to the vehicle’s
diagnostic interface, and sometimes have a companion mobile phone app (mixed
form), but in some cases also have their interfaces. Within the black box domain,
holding both the data controller and data processor, the user data is evaluated
to eventually calculate the premium for a vehicle. Together with a customer
ID, which identifies the vehicle, not the user, the data is transmitted to an
external service provider, whereby several insurance companies generally use
the same service provider. This service provider evaluates the data using non-
communicated methods and extracts driving events, communicating them to
the insurer. It is evident that the data processor determines the structure of the
evaluation of the results since insurance companies that use the same processor
transmit similar or identical information to the customers; hence, the black box
may be considered a joint controller. Therefore, insurance companies are likely
to outsource UBI technology. It has to be noted that, at least in Germany, the
scoring criteria and the assessment process are a business secret and do not
require publication1.

Premium
calculation

Feedback on the trip is given to the driver quantitatively in the form of points
(typically 0 to 100) or qualitatively using e.g. medals (gold, silver, bronze
1 German Federal Supreme Court (Bundesgerichtshof, BGH), 2014, VI ZR 156/13



9.2. META-MODEL OF UBI SCHEMES 237

Day 1

Day 2

Day 3

. . .

Daily rating Monthly rating

Driver A B C
Trajectory
Category Aggressive Neutral Passive

Figure 9.4Overview of PHYD process to derive a monthly premium. Data is collected for every
trajectory made by different drivers to calculate the monthly discount for a single vehicle.
The aggregated ratings are independent of the driver as they are assigned to the insured
vehicle.

(Allianz)). Hence, trips of a day are aggregated independent of drivers to derive
a vehicle’s daily driving class. Figure 9.4 illustrates the process of obtaining the
monthly rating. Each shape indicates the driving style, i.e. aggressive, neutral,
and passive, while the colors represent drivers. Let us say that on day one, there
were three trips. Drivers A (orange) and B (blue) completed the trips with A
being aggressive and B beginning a mixed form of aggressive and neutral. Using
a trivial approach of averaging the three trips’ styles, the daily trip rating is
aggressive. On a monthly scale, two aggressive days and one passive day yield
an aggressive month. According to the meta-model, it is irrelevant which driver
contributes to the monthly rating, although one can see that drivers e.g. driver C
contributes significantly to aggressive trips. In some cases, minimum conditions
are set for dynamic pricing, e.g. minimum distance per time unit (Generali)
or some trips per time unit (AXA). An exception to this model is the VHV
premium, where the evaluation is claimed to take place exclusively in a small
hardware box, and only aggregated information is forwarded. However, unlike
most other tariffs, additional costs arise per month for the VHV solution. Only
Württembergische and CosmosDirekt consider negative consequences compared
to a non-UBI premium, which conflicts with user perception [2].
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9.3 Overview of premiums

Table 9.1 gives an overview of the premiums analyzed in the study, including
the data processor, the collection method, and the features used to calculate the
premium. We will now discuss each of them.

Table 9.1 Overview of the premiums analyzed in the survey offered by German insurance com-
panies. Most approaches collect several items of information, mostly using a dedicated
app. This information is then used to derives features in the context of PAYD and PHYD.

Premium Proces-
sor

Data Features

PAYD PHYD
App

Hardware
TimeofDay
RoadType

DurationorDistance
MobilePhoneUsage

Acceleration
Braking

Cornering
Velocity

Raw

Aachen MyDrive ● ● ● ● ● ●

Allianz
BonusDrive

IMS Inc ● ● ● ● ● ● ● ●

AXA Drive MyDrive ● ● ● ● ●

CosmosDirect
BetterDrive

MyDrive ● ● ● ● ●

Friday Friday ●† ●

Generali MyDrive ● ● ● ● ● ●

HDI
DiamondDrive

(un-
known)

● ● ● ◒ ◒ ◒ ●

HUK-Coburg
Mein Auto

HDD
GmbH

● ● ● ● ● ●

Signal Iduna
sijox AppDrive

Akquinet ● ● ● ● ● ● ● ●‡

Sparkassen
Direktver-
sicherung

Telefon-
ica

● ● ● ● ●

continued on next page
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Figure 9.5Telematic dongle offered by insurance company HUK-COBURG. The dongle is
installed on the front panel and communicates with a smartphone application. [I5].

VHV
Telematik-
Garant

Akquinet ●∗ ● ● ● ● ●

Württembergis-
che

Vodafone
Automa-
tive

● ● ● ● ◒ ◒ ◒ ●‡ ●

∗ Applies local data processing † Submission of data via website ‡ Evaluated to detect speed
violations

9.3.1Data Acquisition

Data needed for UBI-based premiums can be gathered in multiple ways. In the
past, it was common to use a dedicated device to be installed in the vehicle,
which typically uses a car diagnostic port called OBD to collect the relevant
data. Although this approach still exists, it is more common to use application-
based approaches or dongles that sometimes require technical experience to be
installed. While the application-based approach uses smartphone sensors such
as the IMU or the GPS to collect data, standalone dongles have built-in sensors
(i.e. not relying on OBD data). Dongles may be rented, bought, or given free to
a customer. All in all, application-based premiums are mainly found in the wild.
For instance, HUK-Coburg uses a combination of dongle and application. The
dongle (Figure 9.5) has to be installed on the front panel and collects data using
built-in sensors. The application is used to forward those data to the insurance
company. Some dongles can send data on their own, thanks to a built-in cellular
modem.
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UBI risk indicators

Pay-As-You-Drive

Total distance driven

Road network type

Risky hours driving

Trip frequency

Vehicle type

Weather conditions

Pay-How-You-Drive

Speed (over speed limit)

Harsh braking

Harsh acceleration

Harsh cornering

Seatbelt use

Mobile phone use

Figure 9.6 Overview of risk indicators in UBI insurance schemes. The two specifications PAYD
and PHYD describe different aspects of a trip and a driver (based on Tselentis et al. [374])

9.3.2 Features

Tselentis et al. [374] presented different risk indicators as previously found in
the literature, which are shown in Figure 9.6. Our study confirms that most of
them are present and relevant in real-world insurance schemes offered by the
twelve selected insurance companies in Germany. The analysis has shown that
insurance companies usually use a mixed form of PAYD and PHYD in their UBI
premiums (c.f. Figure 9.7a and Table 9.1).

PAYD PAYD-based premiums take into account the time of the trip to probably derive
risky hours. The type of road is also commonly used since severe accidents in
urban scenarios are more likely compared to rural areas according to IIHS data2.
In addition, insurance companies also gather the distance covered or the duration
of a trip in some cases. Vehicle type and weather conditions are not collected
using an onboard device since they can be determined by an insurance company
using customer data or external services.
2 https://www.iihs.org/topics/fatality-statistics/detail/urban-rural-comparison

https://www.iihs.org/topics/fatality-statistics/detail/urban-rural-comparison
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PHYDIn contrast, PHYD features are dominated by braking and acceleration events
related to behavior and velocity (partly relative to the permitted speed) or as a
general rule (CosmosDirekt: Speeds above 160 kmh−1 are generally considered
risky). In some cases, the speed is also set in relation to the permitted speed
limit, so speed violations are also included in the evaluation. Seat belt usage was
not collected; however, it is required by law to be buckled in Germany. Lastly,
mobile phone usage is only used, although it is easily collectible using IMU data
from a smartphone.

Recent devel-
opments

Our findings indicate a development in contrast to Husnjak et al. [184] where
mostly GPS-based metrics were used. Thus, recent developments include more
sophisticated features to assess the driving style that was already mentioned
in theory by literature [374]. However, driving behavior is used in lieu of
travel behavior, such as vehicle maintenance conditions, which is in line with
the literature [374]. A reason for this could be that vehicles in Germany are
monitored by the Technischer Überwachungs Verein regularly; therefore, they
have a basic safety and fitness to participate in road traffic.

9.3.3Processing

Data
evaluation
abroad

During the analysis, six data processors could be identified. Figure 9.7b shows
that they are not always located in Germany, even for German insurance com-
panies. Consequently, data from German customers flow abroad. This aspect
should be openly communicated to support transparency for and trust of each
driver of a car. Data protectionists have therefore proposed that the collection of
data in the vehicle should be indicated by a sticker, which the insurance company
refused in the specific case [378]. However, which data is exchanged between
data processor and insurer is not apparent and can be considered a black box.
Interestingly, some companies are more specific in terms of the collected data
and their processing (e.g. expired Sparkasse product), while others, such as VHV,
even describe that they collected raw sensor data without specifying the derived
maneuvers. In some cases, it is not evident what data are extracted.

9.4The Formulated Privacy Problem

Example of
communicat-
ing trust

The insurance companies commonly apply pseudonymization techniques to
convey a sense of security. Pseudonymization is an essential component to
establish trust [207] in the UBI concept. It is evident that privacy is based
exclusively on outsourcing data processing to an external service provider,
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a) Distribution of the applied methods
in UBI products. It is common to combine
features from PAYD such as time with more
sophisticated and driver-related elements
from PHYD like braking and accelerating.

Germany45% Canada9%

England36%Unknown9%

b) Distribution of the data processor lo-
cation. The processor performs the clas-
sification task on behalf of the insurance
company. Only half of the insurance com-
panies rely on Germany as the location for
performing the actual processing of the raw
sensor data.

Figure 9.7 Distribution of the applied methods of the UBI products and the origin of the data
processor. The data processor classifies the data subject’s driving style based on the raw
data.

?

Figure 9.8 Process of the privacy invasion of UBI products. The upcoming privacy threat lies in
the ability of an insurer or data processor to re-identify the originator of a trajectory. If
that is possible, data misuse become a serious threat for drivers and users of UBI products.

who – not comprehensible to the customer – only passes on aggregated data
to the insurer using a pseudonym (i.e. customer ID); the insurance companies
also communicate this. For example, Allianz advertises the separation of "your
personal data from your driving data" and that "the external service provider
of Allianz that processes the driving data [...] does not have any personal data
from Allianz and therefore does not know who the driver or the policyholder is"
3. However, sometimes risky events are presented to the user by the insurance
company, making it necessary to have specific data. The literature has shown
that a related privacy policy does not help to increase understanding of the data
handling process.
3 Quote translated
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Imminent
threat
through
evaluation

In the interest of data economy and expediency, only data that actively allows
pricing within the framework of a UBI premium should be collected by the
insurer. It should be viewed critically by the client in the sense of privacy if
further information can be read out of the data allowing to increase knowledge.
Furthermore, it may also decrease the fairness experienced by users and limit
their acceptance [243]. Consequently, the question arises whether an insurer
is in a position, based on the data collected, to conclude who has made the
respective trip per day, ultimately resulting in a misuse of data (c.f. Figure 9.8).
Similar questions have been answered in the insurance context w.r.t. human
activities [194].

Misunder-
standing of
focus

Since UBI premiums only cover one vehicle, not the individual, a statement about
the driver is not necessary. However, this information can be used, for example,
to find out whether the vehicle is (illicitly) shared. This seems particularly
interesting in car rental scenario, where additional drivers are a chargeable option.
The misuse of the data seems to be lucrative. For example, when knowing the
driver, an insurance company can derive daily routines and points of interest.

Discussion in
accordance
to GDPR

Let us discuss (GDPR) Article 5, highlighting the critical parts of the business
model. We assume at this point that it is clarified that the data is personal
data (i.e. personally identifiable information), so that (GDPR) Article 5 applies.
Some discussion of this may be conducted later. This is not meant to be a legal
evaluation, but the author only wants to support the critical discussion of the
topic. Clear answers are not intended to be given here, but discrepancies should
be noted.
GDPR Article 5 (1 (a)) [Personal data shall be:] processed lawfully, fairly and
in a transparent manner in relation to the data subject (’lawfulness, fairness and
transparency’);
Apart from lawful processing in the sense of being compliant with the law,
the latter two requirements are of fundamental interest in the context of this
work. Fairness implies that the evaluation of the data is done according to the
expectations of the individuals. As an example in UBI, this could refer to the
fact that, on the one hand, a driver is aware that his trip is recorded and evaluated
for UBI to enable pricing. On the other hand, a driver can anticipate that if he
drives objectively prudently, a higher bonus is expected and eventually granted.
This does not mean that a trip can be negatively evaluated if a risky driving style
is present. The GDPR also talks about transparency so that participants and the
data processing process should be clearly defined. The study shows that the first
point is met, but doubts are warranted about the second. GDPR Article 12 (1)
requires that the information be presented in "concise, transparent, intelligible



244 9. Usage-Based Insurance: Pay-As-You-Drive AND Pay-How-You-Drive

and easily accessible form, using clear and plain language". However, the
different backgrounds, attitudes, and expectations of the subjects that are crucial
to the information disclosure process are not taken into account (c.f. Section 1.2),
nor is a level of detail or the like defined.
GDPR Article 5 (1 (b)) [Personal data shall be:] collected for specified,
explicit and legitimate purposes and not further processed in a manner that
is incompatible with those purposes; further processing for archiving purposes
in the public interest, scientific or historical research purposes or statistical
purposes shall, in accordance with Article 89(1), not be considered to be
incompatible with the initial purposes (’purpose limitation’);
A provider for UBI collects the data for the purpose of evaluating a ride, which
should usually be known to the parties involved in the process. However, it should
be noted that technically there is no way for the driver to enforce this accordingly.
This aspect becomes interesting from the point of view of the evolving ML
models. The unknown future uses are often not assessable [226], which also
has an impact on the corresponding limitation. Again, technical certainties are
desirable for a user. Even though a data processor has to explain the purpose
to its users, he is biased. If the purpose of the data collection (i.e. the business
model) is described too narrowly and precisely, this will ultimately condition a
division of funds for change of purpose under GDPR Article 6 (4) in the case
of minor changes. [39]. Such circumstances may be considered when analyzing
the explanation of a data processor.
GDPR Article 5 (1 (c)) [Personal data shall be:] adequate, relevant and limited
to what is necessary in relation to the purposes for which they are processed
(’data minimization’);
The principle of data minimization (c.f. Section 6.1) also applies so that only
data that is indispensably necessary for the evaluation should be collected. If
raw data is transferred, as was seen within the study, this is to be regarded
as questionable from this point of view. However, due to the covert process
protected by trade secrets, it is unclear what data is necessary. To anticipate the
findings of Section 11.4.2, it shows that identification (which is, therefore, the
more challenging compared to classification) is quite possible with less data than
the data collected by vendors. Consequently, the amount of data may be at the
providers’ discretion.
GDPR Article 5 (1 (d)) [Personal data shall be:] accurate and, where necessary,
kept up to date; every reasonable step must be taken to ensure that personal data
that are inaccurate, having regard to the purposes for which they are processed,
are erased or rectified without delay (’accuracy’);
As a rule, data should be up-to-date to create an evaluation that corresponds to a
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user’s current driving profile. This aspect is in the interest of both parties. This
may also be relevant for the infrastructure, including the gathering device, such
as the insurer’s application on the user device.
GDPR Article 5 (1 (e)) [Personal data shall be:] kept in a form which permits
identification of data subjects for no longer than is necessary for the purposes
for which the personal data are processed; personal data may be stored for
longer periods insofar as the personal data will be processed solely for archiving
purposes in the public interest, scientific or historical research purposes or
statistical purposes in accordance with Article 89(1) subject to implementation
of the appropriate technical and organizational measures required by this
Regulation in order to safeguard the rights and freedoms of the data subject
(’storage limitation’);
From a user’s point of view, it should be sufficient to store the data for the
assessment duration. Afterward, for example, it may be meaningful to collect
only aggregated values, as shown in the example of this work. The technical
and organizational options for deleting the data should also have a (technical)
verification function so that the user can check this.
GDPR Article 5 (1 (f)) [Personal data shall be:] processed in a manner that
ensures appropriate security of the personal data, including protection against
unauthorized or unlawful processing and against accidental loss, destruction or
damage, using appropriate technical or organizational measures (’integrity and
confidentiality’).
We can argue that a data processor has an interest in integer data as it is the
foundation of his business model. Keeping the data confidential is an interest
of the data processor for various reasons, including fines or loss of reputation.
Hence, we may assume that both stakeholder interests are in line considering
the sole data.

Privacy
investigation

Now that we have found a potential privacy threat based on this new use of
highly individual and user-focused sensor data, we will further investigate its
extent. Therefore, this part is dedicated to side-channel attacks solely using zero-
permission sensor data from a smartphone in a mobile environment. In addition
to a comprehensive overview of different types of side-channel attacks, we also
present two newly designed attacks that stress and demonstrate the sensitivity of
the data in less constrained environments, such as the UBI scenario.





10Attacks on Sensor Data

There is no doubt that sensors in smartphones enable a wide range of applications
that can improve comfort, efficiency, or security, among others. For example,
it makes perfect sense to align the screen of a smartphone with the help of
accelerometer data or to make restaurant recommendations based on the location
collected via GNSS. If the sensors or their data are used within the scope of the
application, this can be termed a purpose-specific evaluation. If, in contrast, the
data is misused and not evaluated for the purpose assumed by the user, this can
pose a severe risk. In addition, unintended information leaks can also occur if
an attacker uses information unrelated to a use case, e.g. the execution time of a
specific operation [356].

Side-channel
attack
definition

The unintended usage of data is referred to as a side-channel attack. Here an at-
tacker may use information gained from the system in a somehow non-intrusive
way (e.g. via official APIs). An attacker then exploits the information to recover
some leakage of secrets. In general, two types of side-channel attacks can be
differentiated based on the origin of the data that is exploited for the attack. Data
can be used unintendedly, or an attack can be carried out based on data published
on purpose. Figure 10.1 illustrates the two classes with “unintended information
leaks” being considered the traditional type of side-channel attacks [356]. How-
ever, this work focuses on the second type, namely “information published on
purpose”, as this class may be viewed as the consequence of ubiquitous com-
puting and modern data-driven business models such as UBI. Therefore, this
chapter presents a survey on side-channel attacks with a focus on smartphone
sensor data.

Bonded and
continuous
attacks

Side-channel attacks are favorable because they are not based on weaknesses
in an implementation (e.g. cryptographic algorithm) where no leakage might
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Figure 10.1 Overview of side-channel attacks in the sensor-based setting. Two types of attacks
can be differentiates based on the origin of the data that is exploited for the attack. Data
can either be used in an unintended fashion or an attack can be carried out based on data
published on purpose (based on Spreitzer et al. [356]).

exist but are often inexpensive or feasible with simple equipment. However,
they often require technical knowledge of the internal operations of the system.
One distinguishes between bounded side-channel attacks, where the amount of
leakage is bounded, and continuous side-channel attacks that allow the amount
of leakage to increase continuously [303]. Consequently, side-channel attacks
often result in an information leak.

Contribution This chapter supports the understanding of side-channel attacks based on sensor
data generated by smartphones. We contribute with

▶ an overview of existing side-channel attacks in the given context and
answers what specific goals are pursued,

▶ a proposal of a multiclass model to differentiate attacks based on the
information extracted,

▶ a depth understanding of the structure of the respective attacks, and
▶ a discussion on protective measures according to the attack class.

Structure We first present the survey methodology, including research questions and a
presentation of the document corpus in Section 10.1. Section 10.2 discusses
related works also presenting to categorize side-channels attacks. Finally, in
the next Section 10.3, we present a methodology to categorize sensor-based
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attacks w.r.t. sensors used and information derived. Based on the methodology,
an outlook of protective measures against the identified attack classes concludes
this chapter with Section 10.4.

10.1Structured Literature Review

We now present the methodology of our SLR that includes the research questions,
search terms, and an overview of our document corpus.

10.1.1Research Questions

The subject of the SLR is to outline “the shape of side-channel attacks for
smartphones in the literature”. This includes an overview of what attacks exist
in the first place. Furthermore, it will be clarified based on which characteristics
the attacks can be distinguished in each case. Hence, the SLR should elaborate
on what the ultimate goal of each attack is. Based on the derived characteristics,
enablers of the respective attacks will be categorized in a newly developed
methodology.
Thus, we define the following Research Questions (RQs) to answer the question.

Q1 What side-channel attacks targeting smartphones are present in the
current literature, and what do they target?

Q2 What distinguishing characteristics exist in the separate attacks, and
what are specific peculiarities?

10.1.2Search Process

The search process for the SLR is based on Kitchenham and Charters [209].
The search focuses on ACM Digital Library, IEEE Xplore, ScienceDirect, and
SpringerLink as a resource for publications. To grasp the relevant work, the
following search string1 was used as a basis:

SIDE CHANNEL
& ( SENSOR BASED | SENSOR* | SENSOR DATA )
& SMARTPHONE*

1 For an explanation of the notation, see Appendix B
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& ( ATTACK* | LEAKAGE | EXPLOIT )
& ~( SMARTWATCH* | WEARABLE* | IOT )

Smartwatches or other Internet of Things devices were deliberately excluded
from the search radius, as it is expected that attacks differ due to the underlying
characteristics (e.g. processing power, battery power, . . . and are not comparable.
Furthermore, side-channel attacks should target recent OS with implemented
permission systems. Hence, we include work from 2015 (the release of Android
6) to 2020. Furthermore, next to this forward search, a backward search was also
employed to identify relevant work in the given research field. These yields work
that is either often cited or particularly noticeable. It does not need to match the
constraints for the forward search. Duplicates are eliminated.
The following inclusion and exclusion criteria are defined to assess the relevance
of the articles. Infeasible work was then removed from the search corpus, while
all other papers were analyzed in-depth with a full-text read.
1. First, attacks had to target the smartphone environment within a com-

mon setting specifically.
2. Then, only work was included that presents a novel approach for a

side-channel attack.
3. This excludes all work that presents an overview of attacks (i.e. survey

papers).
4. The attack had to use sensors from a smartphone device, which ulti-

mately excludes all publications that use external setups such as exter-
nal microphones.

5. Also, we eliminated work whose research methods were unclear or
lacked scientific accuracy.

In addition, only peer-reviewed work in English was considered that was avail-
able to the authors. The peer-review process is assumed to provide only high-
quality content with comprehensible attacks, although the quality was again
assessed during SLR.

10.1.3 Relevant Findings

In total, 61 publications match the search criteria given. They are listed in Ta-
ble 10.1. Additionally, the table categorizes attacks according to attack properties.
Interestingly, except for eight attacks, most of the attacks are passive and do not
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require any interaction with a user. This is even more severe than active attacks
since the success rate can be increased in this way. The attack vector describes
the way the attack is performed in the user domain. In general, the smartphone
context allows two different directions. On the one hand, the attack can be exe-
cuted using a dedicated application or hidden in a diversion application (as seen
in Section 3.3). On the other hand, a web-based approach can be followed that
does require a victim to open a bogus website. Most of the relevant works present
attacks that are realized using a smartphone application, although some support
both vectors.

Table 10.1Overview of the 61 publications identified in the SLR. Attacks are active or passive of
a combination of both classes. Most attacks are Application-based.

Publication Year Passive Attack Attack Vector1

Griswold-Steiner et al. [152] 2021 ● ●

Zheng and Hu [426] 2020 ● ●

Schmitt and Voigt-Antons [334] 2020 ● ▴
Javed et al. [192] 2020 ● ●

Cheng et al. [79] 2020 ●

Ba et al. [27] 2020 ● ●

Zhang et al. [423] 2019 ● ▴
Perez et al. [293] 2019 ● ●

Matyunin et al. [257] 2019 ▴
Matyunin et al. [259] 2019 ● ▴
Hodges and Buckley [173] 2019 ● ●

Genkin et al. [141] 2019 ● ●

Aliyu and Rahulamathavan [11] 2019 ● ●

Zhou et al. [428] 2018 ●

Wang et al. [394] 2018 ● ●

Tang et al. [366] 2018 ● ▴
Song et al. [353] 2018 ● ▴
Ning et al. [280] 2018 ● ▴
Murali and Appaiah [272] 2018 ● ●

Matyunin et al. [258] 2018 ○

Li et al. [231] 2018 ● ●

Das et al. [95] 2018 ● ○

Block and Noubir [47] 2018 ● ●

continued on next page



252 10. ATTACKS ON SENSOR DATA

Berend et al. [41] 2018 ● ▴
Anand and Saxena [21] 2018 ● ●

Song et al. [352] 2017 ● ○

Narain et al. [277] 2017 ● ●

Hua et al. [181] 2017 ● ●

Davarci et al. [96] 2017 ● ●

Chakraborty et al. [67] 2017 ● ●

Anand and Saxena [20] 2017 ● ●

Narain et al. [276] 2016 ● ●

Mehrnezhad et al. [262] 2016 ● ○

Kim et al. [208] 2016 ● ●

Gupta et al. [159] 2016 ● ●

Das et al. [94] 2016 ● ○

Bartolini et al. [36] 2016 ●

Shen et al. [339] 2015 ● ●

Shen et al. [338] 2015 ● ●

Ping et al. [299] 2015 ● ●

Ho et al. [172] 2015 ● ●

Biedermann et al. [45] 2015 ● ●

Anand et al. [22] 2015 ● ▴

Zhou et al. [429] 2014 ●

Tobias Fiebig et al. [371] 2014 ● ●

Spreitzer [355] 2014 ● ●

Narain et al. [275] 2014 ● ●

Yan Michalevsky et al. [412] 2014 ● ▴
Genkin et al. [140] 2014 ●

Dey et al. [106] 2014 ● ●

Das et al. [93] 2014 ●

Simon and Anderson [345] 2013 ● ●

Xu et al. [409] 2012 ● ●

Owusu et al. [288] 2012 ● ●

Miluzzo et al. [265] 2012 ● ▴
Han et al. [163] 2012 ● ●

Cai and Chen [60] 2012 ● ▴
Aviv et al. [26] 2012 ● ●

Roman Schlegel et al. [313] 2011 ● ●

continued on next page
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Marquardt et al. [251] 2011 ● ●

Liang Cai and Hao Chen [232] 2011 ● ●

1 ○ Web-based, ● Application-Based, ▴ Both

Based on the literature, a structure was implemented that allows comparing
different kinds of attacks and generating additional features such as feasibility
or scalability [209].

10.2Related Methodologies

Classification models are developed for an intended purpose and are usually
related to a specific issue. However, they have in common that they are intended
to provide a quick, tangible, and structured overview of a topic [186]. The
objective of the SLRs is to find correlations between sensors and attacks and to
outline which pathways serve as enablers for information outflows.

Three-level
model by
Spreitzer
et al.

The model of Spreitzer et al. [356] with a three-level classification is not suitable
because it differentiates between active and passive attacks as the highest level of
subdivision. Attacks are divided in the next step into physical and logical attacks.
Here a distinction is made regarding whether the attack reaches its target by
exploiting the corresponding hardware or software systems. In the third hierarchy
level, attacks are divided into three categories based on attack proximity (near,
surrounding, far). Attacks with different targets and attack paths are subsequently
found as artifacts in these categories. This includes those, as mentioned earlier,
sensor-based side-channel attacks. They are not different attack types but can
be found in the different attack types. The three levels may not be suitable
for classifying sensor-based side-channel attacks on smartphones due to the
information derived from the SLR. This is in part due to the fact that almost
exclusively passive attacks (53 to 8 active) are found. The model according to
Spreitzer et al. also includes attacks that are not based on sensor data, such as, for
example, the attacks mentioned at the beginning that exploit system properties
such as the performance times of an operation or the energy consumption of
a calculation. Furthermore, with one exception (“Electromagnetic Analysis
Attacks”), all sensor-based attacks are lumped into the category of passive attacks
with remote attackers. This lumping makes it impossible to achieve the intended
overview. Nevertheless, a grouping of different attacks with a similar goal is
adapted in the categorization model to be developed. No delineation is made
based on the proximity of an attacker since sensor-based side-channel attacks do
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not fundamentally require the proximity of the attacker; after all, they operate
application- or web-based (c.f. Table 10.1).

Hypertext
Transfer
Markup

(HTML)5-
focused

models by
Diamantaris

et al.,
Marcantoni

et al.

Another taxonomy focuses on mobile sensors in the context of HTML5 WebAPI
and respective attacks [107, 246]. The authors take a different approach by
introducing a classification of up to three levels, with the first level being
attack classes, namely, “physical activity inference”, “acoustic attacks”, “digital
activity inference”, and “user tracking”. As they claim, they purposely do not
include any information about the sensors involved since multiple combinations
of sensors can be used in the same attack category. They underline their statement
by presenting recent attacks exploiting different types of sensors. Our document
corpus suggests similarity, yet the sensors and attacks must be broken down
to understand the structure of the attacks. Only then can particularly critical
contexts be identified and appropriate countermeasures subsequently designed.
Especially in the context of smartphones, the line between purposeful sensor use
and unintentional information leakage must be examined in detail. A taxonomy
should support downstream handling and protection accordingly, for example,
through a PET.

Multi-level
model by

Hussain
et al.

Another taxonomy limits the subject area of keylogger attacks to one [185].
Furthermore, a division is made into smartphone-based and computer-based
attacks on the first level. In the first category, sensor-based attacks can also
be found with the same portfolio of sensors that we have also identified (see
Section 10.3.1). The taxonomy distinguishes between IMUs, multimedia, and
environmental sensors.

Meta-study
by Igure and

Williams

Igure and Williams [186] do not present a taxonomy but review a multitude of
taxonomies for attacks and vulnerabilities in computer systems. Consequently,
they aim to present common characteristics and requirements for the creation of a
taxonomy, which is the motivation of our approach. Seven guidelines are defined,
which will be briefly presented here. The guidelines focus on vulnerabilities and
should support successive security evaluations. They can be broadly considered
as a framework, even though attacks are not the main subject. First, a taxonomy
has to be application- or system-specific to keep the subject tangible. Next, a
hierarchical or layered approach is recommended with increasing granularity.
Thus, we can start with the security properties like the known protection goals.
Here, it can be seen that the identified attacks based on side channels are
exclusively aimed at privacy/confidentiality. Thus, this distinction is obsolete.
Furthermore, attack methods that become more precise with increasing hierarchy
levels can be listed. It should be emphasized that classes must not be mutually
exclusive, i.e. overlapping of the individual paths is conceivable.
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Figure 10.2Treemap of side-channel attacks identified in the SLR. Each color represents an attack
class that targets different items.

10.3Side-Channel Attacks in Literature

Initially, two research questions were asked that will be answered in this section.
We will take a closer look at what side-channel attacks do exist in the literature
and what they are targeting. Then, the second question considers what the attacks
have in common and how they differ. Successively, a cluster analysis is presented
to help understand attacks according to the characteristics presented.

10.3.1Overview of Attacks (RQ1)

In total, five different kinds of side-channel attacks can be identified from the
literature that specifically use a smartphone. These are fingerprinting, keylogging,
location inference, user knowledge, and covert channel. Three of the five classes
contain different attack targets, which allow a more granular analysis. It is
striking that keylogging attacks are the most common with 51% of all attacks.
This is followed by user knowledge (with )20%), location inference (13%), and
fingerprinting (11%). The creation of covert channels is less frequent with 5%
compared to the other ones. Figure 10.2 illustrates the distribution of the side-
channel attacks categorized by target and attack class.
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Table 10.2 Assignment of the individual publications to the respective attack class.The dominant
class of attacks is keylogging with most works addressing this topic..

Attack Class Publications

Covert Channel 257† , 258† , 20†,∗ , 36‡
Fingerprinting 106† , 429∗ , 94† , 423† , 93∗ , 95† , 293†
Keylogging 60† , 371∗ , 140∗ , 26† , 334† , 355‡ , 345∗ , 173† ,

275†,∗ , 265† , 313∗ , 251† , 409† , 208†,∗ , 299† , 41† ,
232† , 262† , 79∗ , 428†,∗ , 352† , 339† , 366† , 394∗ ,
288† , 22∗ , 272†,∗ , 338† , 159∗ , 192† , 353†

Location Inference 172‡ , 181† , 163† , 276† , 231† , 426† , 47† , 277†
User Knowledge 11† , 96† , 141∗ , 412† , 21† , 45† , 152† , 67‡ , 259† ,

280† , 27†
∗ Uses multimedia: camera, microphone
† Uses IMU: accelerometer, gyroscope, magnetometer
‡ Uses environmental: barometer, ambient light, temperature

We now briefly introduce each attack class. Each paper is assigned to a dedicated
attack class. An overview can be taken from Table 10.2.

Fingerprint-
ing

First, fingerprinting attacks aim to generate a unique identifier to, for example,
track a single device over time or link different actions by a single user. This
makes the need for system-side unique device identifiers obsolete, especially
since strict permissions usually protect them. Sensor-based fingerprinting attacks
are based on the specific characteristics of a device and its composition. This
includes mobile devices that distinguish themselves not only from installed
hardware but also from usage-based distinctions [293]. Even devices from the
same series are subject to these slight variants, which do not affect the proper
functionality. Zhang et al. [423] exploit the calibration of IMU sensors that are
performed by the manufacturer or by software to generate a unique id with an
entropy high enough to uniquely identify every device. Their attack works on
Android and iOS. Using motion sensors from IMU seems to be feasible and was
often seen in literature [94, 95]. Other approaches also exploit imperfections in
the manufacturing process that affect e.g. the audio output [93, 429] or sensor
accuracy [106]. Another approach uses the physical properties of electronic
components, depending on the type, age, or even the generated magnetic fields,
all of them that have enough entropy for fingerprinting via magnetometer [293].
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KeyloggingNext, keylogging attacks represents with around 50% the majority of all sensor-
based attack publications and is, therefore, the most represented class of attacks.
Such attacks use either the smartphone’s keyboard or intercept keystrokes from
external keyboards to obtain sensitive data from a user. On the one hand, this
data can be general text input such as messages, which can be the basis for
further attacks (i.a. spearphishing). On the other hand, attacks specifically target
credentials such as PINs or passwords. Most attacks target PINs that include the
device PIN or the graphical pattern [428] that protects the device (a common
method in Android) [22, 26, 41, 60, 265, 288, 338, 345, 352, 353, 355, 366,
394]. Other approaches are focused on recognizing and extracting specific
data, such as credit card numbers [313]. Additional work extends this kind of
side-channel attack to even extract full text [299]. They do so by first roughly
mapping accelerometer and gyroscope data to tap events and then refining the
derived characters using language models to generate a meaningful text. In
general, mainly ML-based classification and clustering approaches are used,
which usually process the raw data transferred into feature vectors. However,
even though most models do not need client-side training by the victim, labeled
data is often needed for training purposes. Most attacks use an accelerometer
or gyroscope to access the data entered via the keyboard. Wang et al. [394],
however, use the front camera to track a victim’s eye movement while entering a
PIN and thus calculate the likelihood for specific passwords. Keylogging attacks
are also implemented as a client-server application. In this case, data is collected
on the client side e.g. through a website that has access to motion sensors and is
continuously forwarded to a server that performs the actual analysis (e.g. [262]).
Some attacks use a full QWERTY keyboard [275] while others are limited
to specific environments like pin patterns [428]. Three works in the field of
keylogging attacks do not target the smartphone itself but use its sensors to
derive information from another device in close vicinity. Two of these three
works try to find the keystroke performed on another keyboard [251, 272], while
one approach uses the microphone to gather high-pitched noise emitted during
cryptographic decryption to extract an RSA secret key. Such an attack is also
called “acoustic cryptanalysis” [140].

Location
inference

The third class of attacks aims to derive location profiles of a victim and is called
location inference. We identified two distinct goals of attackers. First, attacks try
to reconstruct a victim’s trajectory. Attacks record sensor data to derive events.
This includes events that have been defined in Section 5.4 in the context of the
work. Curves [163], or their angles [231] are derived and compared with map
data to determine the route in exhaustive- or heuristic-based algorithms. More
sophisticated attacks include more sensors to also derive the direction using the
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magnetometer to enable tracking in larger areas [276, 277]. The accelerometer
is used in most attacks [163, 231, 276, 277] with the exception of Ho et al. [172],
whose attack is based on the barometer and compares pressure time series data
with topographic elevation data and road maps for a given region. The attack
surface, i.e. the area that can contain the trajectory, varies between attacks; for
example, Ho et al. [172] uses areas of 90 km2, while Li et al. [231] uses up to
900 km2, although the success rate decreases significantly for such high areas.
In Chapter 12, we present an improved attack for location inference that achieves
an identification rate of almost 9 out of 10 routes for areas as large as 4500 km2.
The other 38% of location inference attacks try to pinpoint a user to a given
area, which can be the position within a building [426] or a metro line in one
case [181]. The attack of Zheng and Hu [426] derives specific characteristics
such as walking stairs or taking elevators to determine the position. This requires
extensive knowledge about the target building. The same holds for the second
attack, where a metro sensor pattern has to be learned previously. Some attacks
to pinpoint users require additional hardware, although the application only
uses permissionless sensors [47]. Altogether, location inference attacks underly
specific constraints like the knowledge of the rough area of a victim’s position
or even prepared environments to be successful.

User
knowledge

User knowledge as a class of attacks has different objectives. One is to obtain
information about a user’s media usage. These attacks make up the majority
of user knowledge attacks with 50%. For example, information about websites
visited via magnetic fields emitted by the CPU [259] or the apps used [259,
280] should be inferred. Both attacks rely on learned fingerprints and operate in
closed-set environments. Furthermore, not only are objects on the smartphone
of interest but smartphones are also used to derive knowledge from devices
in the environment [45, 67, 141]. Attackers also want to eavesdrop on spoken
words reconstructing audio from sensor data collected by an accelerometer
or gyroscope. The goal can be to identify a specific characteristics of a user,
such as his ethnicity [11] or his age [96]. Furthermore, simple words or even
conversation reconstruction approaches [21, 27, 152, 412] were found in 33%
of user knowledge attacks. Interestingly, Griswold-Steiner et al. [152] measures
facial movements to allow conclusions about the words spoken, as well as about
the person speaking.

Covert
channel

Last and less present in our document corpus are covert channel attacks that
target to enable data exchange between entities that are not intended to commu-
nicate due to security policies or similar. The communication is hidden and may
not be detected by security mechanisms because it does not use typical communi-
cation methods of the systems. Bartolini et al. [36] present an attack that uses the



10.3. SIDE-CHANNEL ATTACKS IN LITERATURE 259

[27,106,288,163,96,192,20,280,95,353,276,338,
272,426,366,339,60,428,26,334,173,423,152,251,
21,409,265,208,299,277,41,232,262,94,11,257,
181,352]

[192,280,95,412,353,276,272,426,60,428,334,173,
423,275,152,21,409,265,208,299,277,41,232,262,
94,11,352]

[429,22,20,159,93,272,
428,345,140,275,79,313,
141,208]

[192,280,293,45,276,338,
231,259,426,47,339,277,
258]

[394,345,
371] [67,355]

[172] [36]

Accelerometer

Gyroscope

Microphone

Magnetometer

Camera
Ambient Light

BarometerTemperature

Figure 10.3Distribution of sensor for a specific attack. The most used sensor is the accelerometer
followed by the gyroscope. Rarely seen are sensors such as barometer, temperature and
ambient light. Also, permission-protected sensors are found in literature presenting side-
channel attacks.

temperature sensor to allow communication between two cores in a multi-core
environment with one CPU having privileged access to communicate. It is called
a sink and receives information (with a low data rate) from a communication-
restricted core. Another approach uses the ability of the accelerometer to detect
vibration [20], for example, of low-frequency sounds emitted by the speaker of
a device to bypass information from private browsing sessions [257]. A similar
approach also attempts to deduce information from private browsing sessions by
exploiting disturbances in the magnetic field induced by specific CPU loads [258].
Only 5% of the identified attacks fall into this category, two of them explicitly
targeting private browsing sessions.

10.3.2Structure of Attacks (RQ2)

We now answer the second research question and elaborate on the structure of
sensor-based side-channel attacks. We focus on the attack vector, type of attack,
attack frequency, and sensors involved.

Attack
vector

After the previous question supported the identification of side-channel attacks
in the literature, the next step is to ask how these attacks are carried out. Of
interest here is which attack vector is used with the attack vector being defined
as the specific path that is exploited to execute one of the five attack classes. The
attack vector is a multistep process in some cases. The first superordinate path
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that has emerged is the distribution, as introduced in Table 10.1. On the one
hand, attacks can be carried out via an installed application; on the other hand,
websites also represent a path. Attacks carried out through websites only have to
be called by the user. The necessary step of a setup in the form of an installation is
omitted and thus represents a lower hurdle. In addition, applications can continue
to run in the background to collect sensor data further, while websites rely on
the browser. In addition, APIs to access sensor information via HTML5 were
drafted in 2011 [383] with broad compatibility for these new interfaces needing
to evolve, while the Android Software Development Kit allows accessing this
information from Android 1.5. In the second step, some attacks require user
interaction. Interaction can consist of the user having to interact with the attack
(or the application). For example, ML models must be trained [355, 409] or
certain procedures must be performed [47]. In other cases, certain preconditions
are necessary, such as placing the device on a table so that ambient angles can
be recorded accordingly [21].

Active and
passive

Interaction is not to be confused with active or passive attacker models. Most of
the attacks are passive. According to the well-known definition of side-channel
attacks, they collect information that does not correspond to the actual function
intended by the manufacturer. Most attacks interpret correlations between sensor
data and user behavior. For example, a passive nature keylogging attack is
presented by Gupta et al. [159]. The authors use signal processing techniques
to derive a set of likely tapped characters from sound recorded by the built-in
microphones. They ultimately try to derive probable words and sentences from
these tap sequences. In contrast, an active keylogging attack picks up that idea
but emits acoustical signals while a user is typing. The sound is altered by a
user’s fingers, and the reverberation is gathered using the built-in microphone.
The reverberation then allows deriving potential pin entries [79].

Relationship Taking a look at the cluster map shown in Figure 10.4, a more detailed analysis
can be performed regarding the execution of the attack in terms of the attack
vector and the sensors exploited. A cluster map combines a heat map with a
dendrogram that allows us to identify specific similarities. The cluster map is
normalized on a row-level to understand the probability of employing sensors
at a specific kind of attack vector. The dendrogram shows that application-
based attacks indented on the level of interaction are close in terms of sensors
applied. Interestingly, this also holds for web-based attacks that do not require
interaction. Web-based attacks that require interaction tend to differ in their
structure [258, 262]. It becomes evident from a sensor perspective that the
accelerometer is the preferred sensor across all attack vectors. The high of a
dendrogram bracket indicates how fast clusters denoted by a bracket are joined,
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Figure 10.4Cluster map illustrating the used sensors by a specific attack vector. Values are
normalized for each vector.

i.e. how close they are to each other. The barometer, temperature, ambient light
sensor, and camera are promptly clustered since their bracket is also identical.
The accelerometer and gyroscope are different from the set of other sensors,
which may state that attacks are using only one or both of them. At the same
time, an accelerometer, a gyroscope, and a magnetometer are commonly used,
while other environmental sensors (barometer, temperature, and ambient light)
are uncommon in either application-based or web-based attacks. It is also worth
looking at which sensors are used for which attack in particular. The relationships
are illustrated in Figure 10.5 in the form of a Sankey diagram. Shown are the
sensors on the left, the five attack classes in the middle, and the top level of the
attack vector on the right.

Attack
frequency

One can clearly see from Figure 10.5 that keylogging attacks make up the bulk.
One can speculate that this side-channel has been known for some time and is
therefore common. Such an attack based on IMU has already been presented
2012 by Cai and Chen [60]. Furthermore, the interest in sensitive data that
is vulnerable to keylogging attacks can serve as motivation. Most keylogging
attacks use an accelerometer, a gyroscope, and a microphone as sensors, though
it should be noted that no attack that uses a microphone is web-based. Only
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Figure 10.5 Sankey diagram illustrating the relation between sensors, attack classes, and attack
vector. It is evident that keylogging attacks are the most common attack class. A majority
of attacks is performed via a dedicated application.

two attacks that use a combination of an accelerometer and a gyroscope are
web-based [262, 352]. User knowledge attacks and location inference attacks are
found in 18 and 14 publications, respectively. Both attacks are based solely on
the application. This is probably because user-knowledge and location-inference
attacks need to collect data over a period of time. For example, location inference
attacks use the magnetometer to detect corners while driving and then try to
reconstruct a trajectory [231]. This data has to be collected continuously, and
hence, web-based approaches might not be feasible. Fingerprinting attacks are
found in 10 publications and use an accelerometer, gyroscope, microphone,
or magnetometer, although an accelerometer and a gyroscope are the most
common. Attacks of this class are evenly distributed between application-based
and web-based approaches, with some approaches also being able to work in
both environments [423]. This may be related to the fact that short periods of
data are sufficient to create a unique fingerprint [423]. Covert channel attacks
are relatively rare, with only three observations. All of them are instead starting
in 2016 [36]. Two of them are application-based.

Sensor Appealing are sensors of the class of motion sensors (i.a. collected using an IMU)
because they do not require the victim to allow their usage (e.g. [394]; c.f. Sec-
tion 3.1). This is also true for environmental sensors (ambient light, barometer,
temperature). As a consequence, accelerometers, gyroscopes, and magnetome-
ters are often used. Striking is the microphone, which is permission-protected but
commonly used for keylogging attacks since it can detect keystrokes on internal



10.3. SIDE-CHANNEL ATTACKS IN LITERATURE 263

0
2 0

0.5
10

1

2

imu
environmental

m
ul

tim
ed

ia

Attack class and vector
keylogging covert channel fingerprinting
location inference user knowledge both-based
app-based web-based

Figure 10.6Clusters formed by the number of involved sensors. Each shape represents a publica-
tion with colors illustrating the respective attack class. It is evident that most attacks are
based on the IMU. Attacks using environmental sensors are rare.

or external keyboards. Environmental sensors are rarely used in only 7% of all
attacks. This may be due to the fact that these sensors allow little reference to a
subject. The camera is used exclusively for keylogging [345, 371, 394]. However,
we find that sensor fusion is used in 30 of the 61 attacks presented.

10.3.3Clusters

Figure 10.6 illustrate clusters of attacks. Each color represents an attack class and
symbols the attack vector, i.e. if an attack is executed at an application level or
on the web level. Understanding clusters and involved sensors may also help to
derive protective measures. The next section focuses on methods to circumvent
specific attacks. Specific clusters are visible when approaching the figure from
an attack-class perspective.

Attack
classes

First, we can see that the keylogging attacks are distributed between sensors.
Most attacks are based on IMU sensors independent of their type or target.
In particular, only keylogging attacks and one covert channel attack combine
IMU sensors with multimedia sensors, but no attack uses a combination of
environmental and other sensor classes. Location inference attacks tend to
use more sensors from the IMU which is especially true for more recent and
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sophisticated attacks with up to three [277, 426]. 67% of all attacks specifically
use motion sensors (IMU).

Attack
vector

The dimension of the attack vector is different. It can be seen that most web-based
attacks are based on IMU sensors, almost not using sensors of the environmental
or multimedia dimension. This might be related to how the accessibility level of
HTML5 APIs. There is no standardized API that allows access to environmental
sensors (barometer, temperature). This excludes the ambient light sensors that
are only used in two user knowledge attacks that are also application-based on
the other site.

10.4 Outlook on Protective Measures

The structure of side-channel attacks allows us to conclude some countermea-
sures that may prevent an attack entirely or at least decrease its performance.
However, multiple methods have to be combined to provide an adequate protec-
tion level depending on the attack’s composition.

Inappropriate
permissions

We already discussed specific permission-related constructs in Section 3.2. First
of all, some attacks can be prevented in current systems with permissions. This
is true for attacks that employ environmental and multimedia sensors. Both
sensor classes are already protected with specific permissions that ultimately
protect against side-channel attacks such as Simon and Anderson [345] that
perform eye tracking while a user is typing. For example, there is no need to
permit a keyboard to access the camera. It is also achievable for users to employ
their methods to protect against side-channel attacks, specifically for multimedia
sensors. For instance, a subject can cover a device’s camera or microphone,
ultimately reducing a privacy violation risk. This can act as a second safeguard
even in cases where an application has authorized access to the camera or
microphones but should not use them at some point2. Similar approaches may
also be used in combination with the ambient light sensor.

Respecting
process state

Also, separating sensor access in the foreground and background tasks may
increase the level of user protection since most applications, especially location
inference attacks, continuously collect sensor data in the background [231]. This
may not work for attacks that require small amounts of data that can be collected
in a short period of time [423], e.g. within the time-out interval of Android
switching an app from foreground to background.
2 A communication app can use the microphone and camera when a user is on a call but shall not
use it otherwise.



10.4. OUTLOOK ON PROTECTIVE MEASURES 265

Falsification
of data

However, side-channel attacks may be hidden in decoy applications [231], mak-
ing it difficult for a user to comprehend the possible misuse of data. Furthermore,
it may not be applicable to separate a function from an attack. This is the case
for privacy-relevant models, such as the model presented UBI. Methods for al-
tering data may be applied to balance the need for privacy and the requirements
of integrity and plausibility. In principle, classical methods can be applied at
this point, as they are known, for example, from database security. On the one
hand, this includes the generalization of data (e.g. using rounding [423] or lower
sampling rates [288]) or the insertion of noise [95]. However, this is critical w.r.t.
the application used. As shown in Chapter 2, use cases are defined by the quality
of sensor data and assume a certain quality, which is artificially lowered for pro-
tection. Furthermore, we show in the course of the work (see Chapter 14) that
sophisticated ML models are robust to changing data, especially in multivariate
time series scenarios. Nonetheless, falsifying data may work in fingerprinting
attacks since unique patterns (such as the gain matrix in Zhang et al. [423]) may
be destroyed.

Interception
of
conspicuous
algorithms

Protection against covert-channel attacks is difficult to achieve since some attacks
are executed on a second device controlled by an adversary. Therefore, using
permissions or similar concepts on the target device is not feasible. In the
case of Anand and Saxena [20], the device loudspeakers play a low-frequency
sound. Playing audio is considered the loudspeakers’ main task and may occur
in multiple scenarios (watching a video, listening to music, playing a game).
Recall that side-channel attacks use methods in a way that is not intended by
system design. Hence low-frequency sounds may be considered an anomaly
since the emitted frequency may be inaudible. It conflicts with the intention of
a loudspeaker to transport an audio signal to a user and may not decrease any
convenience if such sounds are filtered by a security engine such as OS itself.
However, detecting anomalies is difficult to achieve and challenging to balance,
as users might be sensitive to misdetections and functionality limitations.

Context-
based sensor
deactivation

Especially keylogging attacks employ multiple sensors to generate accurate
predictions to extract keystroke data from sensor readings. Sensor fusion is then
performed on an array of data. Previous approaches may not work due to the
sensors and proposals involved. Therefore, the literature proposes to disable
access to the sensors at all while users type [41]. This can be considered a rather
strict approach that may impact the user experience. Some keylogging attacks
work using heuristics or pre-learned ML models that predict a keystroke from
sensor readings. When the layout of the keyboard is dynamically changed with
each activation [355], the ground truth and assumptions of these models and
heuristics no longer represent the situation. Hence, accuracy will likely decrease.
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However, users may not accept such a radical protective method as the habit of
typing will suffer.

Summary In summary, there are challenges in addressing side-channel attacks. As the
abundance of the literature shows, existing methods for protecting sensor data
are not sufficient. Thus, a clear threat to security, but especially to users’ privacy,
can be attributed to sensors. Only a combination of protective measures and
improved user awareness can support a safer environment. In Chapter 13, we
give an outlook on current frameworks to protect against side-channel attacks
but also address privacy issues in data sharing. They help users manage their
data and individual privacy needs. In Chapter 14, we present a technology that
can increase the privacy level of sensor-based applications for the user while
ensuring the integrity of the data that is required for the meaningful evaluation
in business models.



11Driver Identification

Use cases for
identification

Having seen that multiple side-channel attacks are possible in the area of sensor
data, this chapter explores and presents a meaningful proposal to identify drivers
solely from unprotected sensor data (c.f. Chapter 3). Despite using leaked
information to tell a driver, they are meaningful use cases. Furthermore, using
the information from an IMU is cost-effective and easy to implement since no
additional hardware is needed within a vehicle. Examples of added value by
identifying a driver include, but are not limited to:

▶ By identifying a driver, it is possible to exclude a specific person
from a set of legitimate drivers and, therefore, detect car theft. This
information can then be used to inform the car owner or insurances [58,
189, 250, 254].

▶ Detecting the driver of a car allows to set user-specific settings in a
comfortable way, such as favorite radio station, personalized tempera-
ture settings, or recommend location-based services (e.g. restaurants)
explicitly tailed to the driver’s preferences [121, 162].

▶ In the context of electric mobility, identification of the driver can
help provide better estimates of the remaining range or predict energy
consumption with greater precision [247].

▶ Bus or taxi companies can use the information of a driver to detect
misuse; for example, if a person without the required training is using
a specific vehicle, he ordinally is not allowed to use [58].

The listed examples are primarily beneficial and might be appreciated by an
individual. However, there are specific use cases where one party has a disad-
vantage or at least a limited interest in being identifiable. The running example
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of PHYD might be relevant. Car insurance companies or other stakeholders can
differentiate between multiple drivers and thus enforce their contracts or poli-
cies for i.a. a specific number of drivers. They may have the ability to request a
penalty charge, terminate a contract, or be only notified about the incident [58,
121, 189, 365]. In the event of an accident, it is possible to identify the driver at
that particular event and therefore collect evidence [121]. Furthermore, it may
be realistic to analyze whether the driver was under the influence of alcohol or
drugs if his driving styles differ from his standard behavior. The given use cases
separate themselves from the more trivial approach of driver classification (see
Sidebar E).
Since driver identification can be beneficial or disadvantageous, our presented
approach can be considered an attack if data is collected in a nonobvious, non-
communicated way but can also be used for the given examples by intention.

Sidebar E Driver Classification vs Driver Identification

Classifying a driver is the task of assigning a driver to a specific, arbitrary
category. The most common approach is to classify an individual’s driving
behavior and distinguish between aggressive, neutral, and passive drivers. The
output of a classification process is always a (most of the time exclusive) category.
This information may be relevant for e.g. insurances. Synonyms for classification
are categorization, association, or recognition. Classification is not focused in
this SLR, however, Marina Martinez et al. [248] surveyed on this specific topic.
On the other hand, identification attempts to recognize and name a specific driver
from a set of drivers. This task is much more demanding than classification
because, especially for larger groups, the derivations in the input data between
multiple drivers may be pretty small. Therefore, papers either use a closed-set or
an open-set approach. Closed-set can be considered to be easier since the number
of drivers is and their driving style is known in advance (e.g. [58]). However,
open-set approaches use unknown drivers not included in a potential training
set by keeping all requirements of closed-set approaches. Open-set approaches
may be needed for e.g. theft detection [254]. Most of the publications found use
closed-sets.
It should be noted that the terms classification and identification are often used
in a fuzzy way, and thus it is not possible to use the term only. In particular, it
is important to analyze the context of the terms. We concluded that the isolated
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term “driver” in combination with “classification” is in the field of identifica-
tion [421] while “driving style” together with “classification” is associated with
a classification problem [358].

ContributionThis chapter presents the first leg of our attack tuple with an identification ap-
proach particularly tailored to the scenario of PHYD using only zero-permission
sensor data comparable to a data processor. To the best of our knowledge, this is
the first approach using k-Nearest-Neighbour (kNN) with Dynamic Time Warp-
ing (DTW). We contribute with

▶ an in-depth survey on current approaches to driver identification with
a focus on feasibility in the field of UBI,

▶ a newly designed side-channel attack for driver identification that is
different from previous approaches as it relies on a distance-based
algorithm,

▶ a full evaluation of the approach to understanding the performance
and potential limitations, and

▶ an outlook on how the privacy question of UBI is more severe in the
real-word based on assessments of an extended identification attack.

It should be noted here that in Chapter 14 of this work, we also present counter-
measures for protection against attacks of the user knowledge class, specifically
in the challenging context of UBI.

StructureIn this chapter, we first perform an extensive SLR to get an overview of the
approaches for driver identification in Sections 11.1 and 11.2 as it is performed
in the literature. Then we reflect on whether the current approaches are feasible
in the given context of PHYD. Eventually, we present our approach based on
ML to perform driver identification in Section 11.3. A through evaluation using
data sets presented in Chapter 5 is performed in Section 11.4. Section 11.5 then
projects the identification approach on a more realistic scenario and discusses
its feasibility, before concluding the chapter in Section 11.6.

11.1Structured Literature Review

In the following, the research questions are introduced as well as an overview of
the document corpus that is identified within the search process.
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11.1.1 Research Questions

The primary question that should be addressed in this study is as follow: “What
is the state-of-the-art in driver identification?”. Because of the complexity of
this question and its many aspects, one needs to answer, we formulate three
subordinate questions: we first try to find motivations for driver identification,
afterward and because of its empirical nature, we address this topic in the first
two questions, then analyze their methodology, and later look into the results in
a fourth question:
Q1 Considering the data-driven topic, what are the inputs for driver

identification, and which acquisition methods researchers employ?
Q2 Is there a typical or standard workflow for identifying the driver? Are

there substantial differences in the approaches?
Q3 What methods do researchers use for the actual identification process?

How do they perform?
We selected these research questions because we want to analyze the entire driver
identification process performed in the literature. This section includes work by
Gihl [S4] who performed a SLR on the identification of drivers.

11.1.2 Search Process

We started our literature review by analyzing the following databases: IEEE
Xplore, SpringerLink, and ACM Digital Library (forward-search). Furthermore,
we searched outside of those databases, in particular, for references to relevant
articles (backward-search). Additionally, Google Scholar was also used to iden-
tify work that is potentially appropriate for our research questions. However,
a significant overlap of these results with the already scanned resources oc-
curred. To capture relevant work, we used different combinations of keywords,
namely1:

( DRIVER & ( IDENTIFICATION | RECOGNITION | AUTHENTICATION
) )
& ( SENSOR | SMARTPHONE )

Explicitly, we skipped the related term "classification" because it is outside the
context of this survey. However, the placement of this word is often confused
with "identification" (c.f. Sidebar E).
1 For an explanation of the notation, see Appendix B
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The search process was a manual search of the said terms. We did not limit
ourselves to specific conference proceedings or journal articles, but we included
everything matching the search terms in the first collection. However, to grasp
only recent developments in driver identification, we limited the search to include
only work since 2013 with one exception. The exception from 2007 was included
since it was cited extensively in the recent work we identified. Therefore, we
included it because of its apparent importance.
The feasibility of each potential article was then analyzed by reviewing the title
and abstract. Unsuitable work not directly related to the field of identification
was then removed, and all other articles were prepared for an in-depth analysis
where the full text was scanned. Therefore, we scanned the remaining data set
for our inclusion criteria.

1. Firstly, the paper targets topic identification, not classification or asso-
ciation. These terms were often used in a fuzzy way.

2. Secondly, the identification of the driver while driving a vehicle is
focused, though some workers tried to tell the difference between the
driver and co-driver.

3. Also, we eliminated work whose research methods were unclear or not
detailed enough fully grasp the identification process.

4. Lastly, we culled all work that does not use sensor data closely related
to vehicular environments. In particular, we did not include papers that
used vital sensor data e.g. from a potential driver.

The inclusion criteria were then applied to the articles found and discussed
between two researchers to arrive at a decision. This was especially the case
where the terminology of identification and classification was somehow unclear
because the inclusion criterion was not always trivial to implement. In addition,
only peer-reviewed publications in English were considered.

11.1.3Relevant findings

From the initially 50 articles found, we were able to identify 20 relevant publica-
tions (including one poster) which discuss or are closely related to the topic of
driver identification using device agnostic sensor data. We were able to reduce
the number of papers from 50 to 22 after scanning the titles and abstracts of the
articles. Afterward, two papers were removed after having read the complete
text, resulting in the final 20 papers Table 11.1 is presenting. Interestingly, we
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were unable to derive any increasing or decreasing interest in the community
with an unequal publishing rate throughout the years during 2013-2018, the peak
being in 2016 with eight publications, followed by 2018 with six papers. One
work [267] has been included even though it was not published in a peer-review
format as it poses a meaningful proposal that, according to the author, fits the
scope of this review.

Table 11.1 Overview of the 20 publications identified in the SLR. The works are assigned to
different disciplines.

Publication Year Publisher Field
Tahmasbi et al. [365] 2018 ACM Network
Marchegiani and Posner
[247]

2018 IEEE Vehicular
Jeong et al. [193] 2018 IEEE Vehicular
Jafarnejad et al. [190] 2018 IEEE Vehicular
Gahr et al. [135] 2018 IEEE Vehicular
Bernardi et al. [43] 2018 IEEE Machine Learning
Virojboonkiate et al. [381] 2017 IEEE Network
Jafarnejad et al. [189] 2017 IEEE Vehicular
Fung et al. [133] 2017 IEEE Health
Zhang et al. [421] 2016 ACM HMI
Yang et al. [413] 2016 IEEE Network
Martinez et al. [254] 2016 IEEE Vehicular
Markwood and Liu [250] 2016 ACM Computer Science
Kwak et al. [223] 2016 IEEE Computer Science
Hallac et al. [162] 2016 IEEE Vehicular
Enev et al. [121] 2016 De

Gruyter
Computer Science

Burton et al. [58] 2016 IEEE Network
van Ly et al. [376] 2013 IEEE Vehicular
Quek and Ng [304] 2013 – Machine Learning
Miyajima et al. [267] 2007 IEEE Computer Science

Looking at the result, it became evident that the most relevant publisher for this
kind of topic seems to be IEEE, with the IEEE Conference on Intelligent Trans-
portation Systems being the most present platform for such work. Furthermore,
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most of the remaining work was published in the context of conferences/journals
focusing on vehicular environments, only some of them from other fields such
as Machine Learning, computer security (including privacy). Health, Human-
Machine Interaction and networking-related formats were seen sporadically.

11.2Analysis of Driver Identification Methods

In the next section, an in-depth analysis of driver identification methods is
performed that is based on the identified document corpus.

11.2.1Data Acquisition (RQ1)

The identification of a driver using his driving style is a data-driven approach.
Consequently, we now analyze the context in which the data are gathered and
what specific attributes or sensors are used.
Experimental setup

Different
collection en-
vironments

Sensor data is recorded in real-world scenarios or isolated simulator results are
used. Figure 11.1a illustrates the different scenarios and data sources. Almost
nine out of ten publications use data gathered in real-world scenarios. However,
there is no relation to the publication year; also, newer publications [58, 413]
rely on the usage of simulation results without disclosing the respective software
in any case. Some articles also use data of both types, for example Miyajima et al.
[267], although their approach was not generalizable since the simulator did not
have data on pedal pressure, while real-world data did not provide information
about the distance to the previous car. This shows that almost all approaches are
tailored towards the scenario. Some articles used publicly available data sets such
as UYANIK [189, 190, 254] and others [133, 267, 304] but most of the authors
decided to collect their own undisclosed data. This is, in particular, true for the
source of the data. Data derived directly from a vehicle, e.g. through OBD [135,
223], is found in 71% of all real-world articles. External devices (10%) are, for
instance, Raspberry Pis with accelerometers [381]. Three publications [250, 365,
421] also use smartphone data (recorded through self-developed applications);
however, they are subject to explained error sources (c.f. Chapter 2). In particular,
orientation in the vehicle is important, but most authors were not specific about
this fact, apart from “placed in the central console” [421] or “almost all data
was collected with the device sitting in the passenger seat, which in modern
cars has a very small incline when looking forward, so the y-acceleration trace
would commonly be reduced by a scalar constant so that the average would be
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Real-World88%

Simulation12%10%
19%

71%

Data source
external smartphone
vehicle

a) Overview of sources used in driver
identification publications. Real-World
is the most common data source, with
data gathered directly from a vehicle.
Smartphone-based approaches are rare.

Predefined56%

Random35% Unspecified9%

Track type
closed highway
other residential
rural urban

b) Distribution of test environments and
track types for real-world data sets. The
majority of works collect data on prede-
fined tracks. Considering the track type,
urban scenarios and closed test tracks are
about the same regardless of the environ-
ment.

Figure 11.1 Quantitative metrics of the data sets that are used within the document corpus.

close to zero” [250]. All works assumed a fixed position (across test subjects).
Some articles combined vehicle data with external data [133] or smartphone
data [421].

Trajectory
shapes

Analyzing the data sources in more detail yields the result that half of the
publications use predefined routes to collect the data next to random trajectories.
Figure 11.1b depicts the distribution. Notably, simulations are always using
predefined test tracks where the authors prescribe a route to be followed by the
proponents. This type was also found in real-world data sets. Predefined test
tracks included drives on public roads [190, 223, 247] or maneuvers in a parking
lot [121, 223]. Hallac et al. [162] is based on random experiments in which
participants drove a day independently with a test vehicle while daily drives are
used in Zhang et al. [421]: They recorded routine tracks from three couples in
their cars for four days. Additionally, each category, predefined or random, can
be broken down into different types of roads. Urban roads are the most common,
as they usually produce more events to be analyzed than, for instance, highways.
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Figure 11.2Overview of sensor data used in different publications.

Number of
vehicles

W.r.t. the entropy of cars, both approaches are used in literature. People used
multiple cars [43, 421] or a single test vehicle [121, 190, 247], although this
does not indicate that the data set presents only a single vehicle (e.g. people used
their car throughout the test [133]).

Sensor data

Sources of
sensor data

Depending on the data source used, different sensor readings are available, which
directly impacts the identification process. Figure 11.2 shows an overview of
all sensors extracted from the list of publications. It should be noted that only
sensors eventually used for the identification process are listed in the figure, but
some papers could be more clear regarding the data used (some papers listed
multiple sensors whose usage in the identification process was inconclusive).
Furthermore, some works derived additional information from sensors [190,
247, 421]. We also generalized some sensors due to very few occurrences [43,
121, 223]. Fung et al. [133] and Quek and Ng [304] derived the speed from GPS
data, which can lead to some unstated inaccuracies. Markwood and Liu [250] in
addition to GPS used an accelerometer.

Three sensor
classes

Sensors are organized into three classes, as Figure 11.2 shows. First, macroscopic
sensors are less common but include work that uses, for example, a vehicle
distance [254] to other traffic participants. We call that category macroscopic
since it requires a second party to be conclusive. In addition to that class,
operation-type sensors include data that is related to the interaction with input
devices of a vehicle, i.e. steering wheel, turn indicators, or pedals. Steering
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wheel operations yield promising results [121, 162, 193]. The last sensor class
represents data on the vehicle state. This includes sensor data collected by
the IMU. The magnetometer, however, is only found in one publication [365],
probably due to reasons explained in Section 2.3 such as susceptibility to
disturbances. The accelerator and the gyroscope are found almost equally, but
the axes used are different. For example, a gyroscope was often used to detect
and measure turns using gyrz while an accelerometer was used to measure
lateral (accx) or longitudinal (accy) forces. This underlines the feasibility of
the accelerometer and gyroscope for driver identification [121, 133, 162]. The
vehicle state also includes data from the vehicle itself, namely, the characteristics
of the engine (e.g. RPM or torque), the fuel consumption, or the emissions. This
data is only found in works that use the vehicle itself as a data source and extract
them via OBD. As discussed previously, this data tends to have the highest
frequency and quality.

11.2.2 Workflow (RQ2)

We know answer RQ2) that asks if there is a shared workflow between works
and if there are substantial differences.

Meta-model The identification of drivers follows a meta-model that was constructed after
analyzing the document corpus. It is shown in Figure 11.3. We conclude that
driver identification is a supervised task in closed-set environments. Closed-
set environments are constructed by identification tasks in which each event is
linked to a unique driver whose driving style is known during the learning phase.
This is different from open-set recognition, where one needs to differentiate
between an actual driver and a much larger class of unknown entities that have
not been included in the learning process. Sensor data is gathered using methods
explained previously, including applying multiple-attribute sensor fusion over
time. Across-domain fusion is not found in any of the analyzed publications.

Preprocess-
ing

Several data cleansing steps are applied throughout the literature in a preprocess-
ing step to handle different levels of data quality. They match the approaches
already identified in Section 4.2.2.

▶ Either too short or too long records are discarded [133, 189, 190].
▶ Damaged records are disposed of, or too noisy readings were removed

from the records [189, 190, 250]. Noise is reduced using different tech-
niques, such as wavelet denoising [121, 162], median filtering [413]
or low-pass filtering [190, 365].
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Figure 11.3Meta model of driver identification process. The literature considers the task of driver
identification a supervised learning problem. Approaches differ in how the feature vector
is constructured (either based on events or windowing). (based on Markwood and Liu
[250])

▶ A sanity check is performed to remove records with too much missing
data or incorrect data [43, 304, 381].

▶ Redundant sensor data is deleted (there is no information about con-
flicting data) [223, 254].

▶ Data set size is reduced by aggregating multiple values [162].

The application of multiple cleansing methods implies that there has to be domain
knowledge about the data source. The literature is sometimes unclear as to
what indicates the need for a preparation method and does not mention any
recommendation or support for decisions.
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Figure 11.4 Overview of events used for driver identification. Each shape corresponds to a work in
the document corpus. The identified elements include the events defined in Section 5.4.
In addition, ten publications process a constant data stream and do not extract events.
Four papers identify other event types.

Extraction Next, the continuous multivariate time series sensor data is converted to windows,
as explained in Section 8.3.2. In addition to overlapping windows [121, 135, 189,
190, 223], there are also hanning windows [421] as well as static windows [43,
193] found in the literature. We found that only works that collect the continuous
data stream perform windowing strategies. Event extraction also takes place.
Events are similar to the definition in this work. This means they describe
specific patterns in the time series data that can be matched to a specific driving
activity. Figure 11.4 shows the distribution of events that were identified within
the SLR. Each shape represents a specific work. Some use multiple events at
the same time. In particular, acceleration, braking, and cornering are mostly
found in works that do not rely on continuous data streams. Those works rather
extract features from windows. The features will be explained consecutively.
Furthermore, four works use unique events that are summarized as others.
These include hand movement [413], velocity [304], pedal operation [267],
and coasting [250]. The majority relies on acceleration and braking as events,
sometimes in combination [133, 247, 250, 267, 304, 376, 381]. Jeong et al. [193]
combined events and continuous data stream for driver identification.

11.2.3 Identification methods (RQ3)

The identification of drivers based on preprocessed data is subject to this section.
Identification methods can be distinguished between features and approaches.
Features are measurable properties that an appropriate approach can process.
Consequently, the approach can perform the actual task of matching a set of
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features to a driver. The matrix in Table 11.2 matches different classes of features
with multiple classes of approaches.

Table 11.2Matrix illustrating the different approaches found in literature including features
used for identification. It is evident that most works that apply machine learning use
processed features while others use raw values.

Algorithm
Event Other Raw Spec-

tral
Statisti-
cal

Unspec-
ified

Fe
at

ur
e

EL1 – [365] – [189] [189] –
ML2 [135,

376]
– [193,

223,
247]

[121,
421,
135,
162,
189,
247,
190,
254,
304]

[121,
421,
135,
162,
189,
376,
58, 223,
254]

–

MM3 – – [413,
247,
267]

[190,
247,
267]

– –

NN4 – – [43,
193,
223]

[254] [223,
254]

[381]

O5 [133] [133] [250] [162] [162,
133]

–

1 Ensemble Learning 2 Machine learning 3 Mixture Models 4 Neural Network
5 Other

FeaturesApart from feeding raw data, i.e. the preprocessed or incoming data stream, into
an approach, most works reshape sensor data. Those features can be categorized
into statistical, spectral, or event-based features. Most works use statistical fea-
tures, including median, average, maximum, minimum, quartiles, standard devi-
ation, autocorrelation, kurtosis, skewness, and duration [135]. Spectral features
are frequency domain metrics and are often found in voice or sound processing.
For instance, Zhang et al. [421] uses the power spectrum and cepstrum, including
their entropy and standard deviation. Furthermore, event-based features are re-
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lated to events and describe meta-data of them, e.g. the duration of an event [133].
In addition, there are extraordinary (other) features such as the curvature of the
path [133]. Virojboonkiate et al. [381] missed mentioning any features. We also
found that some papers constructed a multitude of features for windows of up
to 6,400 features for each window [421]. Combinations of features are common
w.r.t. Table 11.2.

Classification
methods

Driver identification is a supervised task. However, different approaches to Arti-
ficial Intelligence are found in the literature. Most of the work apply an approach
based on classical ML methods. These include Support Vector Machine [58, 121,
135, 162, 189, 193, 247, 304, 376, 421], Random Forest Classifer [58, 121, 135,
162, 189, 223] and kNN [58, 121, 135, 223] and Naïve Bayes [121, 135]. These
are mainly combined with spectral or statistical features. It is noticeable that
works use several methods simultaneously and compare their goodness against
each other. For the identification task, Random Forest or Support Vector Machine
seem to be the most suitable, depending on the work. Furthermore, ensemble
learning approaches can be found that combine different learning algorithms to
improve the results (c.f. [319]). These include AdaBoost [189] or Gradient Boost-
ing [189, 365] (c.f. Section 8.5). Among the mixture models, we find work that
employs the Gaussian Mixture Model [190, 267, 413]. This probabilistic model
assumes that all data points are generated from a mixture of a finite number
of Gaussian distributions with unknown parameters. Not all machine learning
algorithms are able to classify other than two binary classes. Therefore, differ-
ent strategies are used, such as one-vs-one [121, 190] or one-vs-all/one-vs-rest.
This allows the usage of a wider field of classification methods. State-of-the-art
cross-validation is used most of the time and yields better and more reliable re-
sults [223, 247, 376]. Another group of approaches employed for identification
are NNs. In contrast to other approaches, raw data is the most frequently chosen
class of features for this approach. For example, Multilayer Perceptrons [43],
Convolutional Neural Networks (NNs) [193] or Extreme Learning Machines
[254] can be found. Other approaches are seen only in specific works. For ex-
ample, Markwood and Liu [250] uses a Kolmogorov-Smirnov statistical test. In
particular, implicit assumptions such as the Optimal Velocity model are also
included in identification approaches. This model is one of many traffic flow
models [32] where the position to subsequent cars and therefore the distance
between these cars imply the driven speed.

Results Even though most works use identification accuracy as a metric to assess the
quality of their identification algorithm, comparability between works is only
possible to a limited extent. One main reason for this is the heterogeneous data
sets as shown in Section 11.2.1. The identification approaches are hardcoded to
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a scenario due to the features applied. Markwood and Liu [250], for example,
places the identification in the context of vehicle theft. An example illustrates the
non-comparability of the approaches. Jafarnejad et al. [189] and Jeong et al. [193]
use a Support Vector Machine to perform the identification task. However, the
first work achieves an accuracy of 90% for a group of five drivers, while the other
work only achieves 35% for four drivers. Arguably, this may be related to features,
data sources, or the type of tracks. Data sources are often not public. Therefore,
no comparisons are made between approaches. Additionally, only a guess can be
made which sensor data has the biggest influence on a driver’s driving behavior
and thus allows its identification. It can be stated that acceleration is listed as
influential in some works [121, 133, 162]. In the end, no recommendation can be
made. Sensors or features are often not examined individually. We also analyze
the number of drivers used in the identification process. Interestingly, the number
of drivers (called a classification group) tried to be identified differs from the
absolute number of the driver in the data set: Most papers use fewer drivers
in the identification process than the absolute number of drivers. For example,
Jafarnejad et al. [190] considered classification groups of five, 15, and 35, while
the data set contained 67 drivers. They randomly select the respective number
of drivers and redo the evaluation ten times. Hallac et al. [162] selected twelve
corners (i.e. the road element as identification was performed using this specific
shape) for driver sizes from two to five from the set of 64 persons. However, they
filter their data set to only select drivers that drove the same corners and only use
the drivers with the most corner events. Zhang et al. [421] only listed the quality
of their prediction per vehicle, i.e. drivers shared cars, ultimately resulting in
smaller test sets and therefore potentially increasing the identification result.

11.3Time Series-based Approach for Driver Identification

Section 9.4 introduced the privacy problem in the context of UBI. The reasons for
the threat are various and are already discussed in Sections 1.2 and 9.4. We may
assume that the current premiums and their respective processes are designed
in line with the GDPR; however, as this chapter will illustrate, the regulations
are still not sufficiently implemented. Let us take data minimization and purpose
limitation as an example. The former may be present when only sensor data or
limited events are submitted to a data processor. Then, side-channel attacks, such
as the presented identification attack based on purposely published information,
will undermine the requirement of purpose limitation. Both properties should be
present in a system by design as we introduced in Chapter 6. We have shown that
privacy and functionality can be realized in the same way in Chapters 7 and 8.
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Adversary An adversary in this scenario is interested in identifying a driver a posteriori.
A driver collects data in the PHYD context using a smartphone application or
any other device equipped with a IMU. This allows an adversary to derive any
needed information. Therefore, he can access  as defined in this work (e.g.
after uploading data as required by a potential PHYD premium). His ultimate
goal is to assign a trajectory to a known person p from the set of  . For instance,
he wants to guess the driver of a journey out of the pool of people sharing a
car. On average, a vehicle is shared among five people; therefore, we selected
five people from this work’s data set and kept them constant throughout the
experiments.

Approach
overview

In the following, the presented approach for identifying drivers will be placed
in the scenario. The findings of the literature study serve as a framework. A
conscious decision is made to use smartphones as a data source, as they are
dominant in the UBI context, as shown in Section 9.3. This choice sorts out
many sensor data that, in principle, is feasible, processable, and accurate in the
context of driving identification, such as pedal operations [121, 193] or vehicle-
specific data [43]. We apply event-based detection by using two complex events,
namely acceleration and braking. These are also applied mainly in the literature,
with features illustrated below. We chose to use raw sensor data that is processed
in a time series manner using the DTW algorithm (see Sidebar F for a brief
introduction). The data is then feed to a k-Nearest-Neighbour algorithm to predict
the a concrete driver from the pool of drivers. To the best of our knowledge,
this is the first approach to identifying drivers using a combination of Dynamic
Time Warping (DTW) and k-Nearest-Neighbour (kNN). We will evaluate the
applicability of the task using real-world experiments and data. An extensive
evaluation will also analyze the impact of events on accuracy.

Sidebar F A brief explanation of Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm to compare two time series of
arbitrary length to assess their similarity ultimately. We refer to Müller [271]
for this overview. It is used for its application to speech recognition to identify
patterns even when one person may speak at a different pace than another person.
However, it is also well-suited for data mining as it can handle deformations, for
instance, probably due to different accelerations in sensor data recordings 
as they are found within this work. Still, it is possible to identify an underlying
pattern that may be present in both sequences (e.g. a reference sequence such as
a learned pattern and an actual recording).
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Figure 11.5Example of the alignment of two sequences X and Y. The alignment points are
represented as arrows. [271]

The match between two length sequences (N,M) is performed under three
restrictions to find an alignment that minimizes a cost measure. This alignment
of two time series is considered a warping path (c.f. Figure 11.5). First, the
starting and ending elements of the warping path are the start- and endpoints
of the two sequences, respectively, so that both sequences are aligned. Second,
the monotonicity of the sequences must hold as time series are chronologically
ordered per definition in this work. Third, a step size condition must hold; that
is, the distance between elements in both sequences that are warped along is
limited so that no repetition (i.e. an element from a sequence is mapped multiple
times) or skipping of elements occurs.
DTW’s runtime (N,M) which is due to the fact that the optimal warping path
between both sequences has to be found. Multiple variants of DTW have been
proposed that tackle the challenge of optimizing the runtime or the warping
path.

11.3.1Features

Events from Section 5.4 should serve as input data for our algorithm because
they are easily collectible via a smartphone application. Furthermore, they are
widely used in the PHYD scenario (c.f. Table 9.1) and thus are likely to have
enough entropy to be unique or quasi-unique for a driver. However, this claim is
subject to further investigation in this chapter.

Complex
event
detection

In general, we use  or more precisely c found within a trajectory. Let C
be a classification function that assigns each ec ∈ c a class depending on
its harshness: C ∶ ec → [0, 1, 2]. We employ a threshold-based approach to
function as C based on the sparse findings in Chapter 9. Due to the closed-
source information policy on how insurance companies classify a trajectory, we
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Figure 11.6 Exemplary acceleration events for a driver in the data set. Events are organized by
their harshness, either aggressive, neutral, or passive which yields differences, although,
events of different intensity do not overlap.

shaped C based on the available information. For example, we found that the
discontinued Sparkasse premium mentioned specific numbers as thresholds. For
ease of use, the corresponding classes output by C are given descriptive names,
namely “passive”, “neutral”, and “aggressive”.

Distinguisha-
bility of

classes for a
driver

All events for a single driver are shown in Figure 11.6. It is striking that the
different classes of events are distinguishable from each other. Even the span
of each class does not overlap with other classes. The range of the classes, i.e.
the 95% confidence intervals, show that the events’ courses do not increase
significantly throughout the normalized sample. This tells us that there is a robust
acceleration behavior pattern and that user acceleration events are similar. This
robust and recurring behavior is a prerequisite for the events to be suitable for
identification. Furthermore, on average, the depicted driver tends to drive more
aggressively since the mean of the event classification is between aggressive and
neutral.
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Figure 11.7Illustration of an event across sensors. An event describes a time frame where multiple
sensor readings are recorded; hence, an event can be evaluated using any of those readings.

Multidimen-
sional sensor
events

In the context of this work in Section 5.4, events have been defined as time series
that describe changes in a particular situation w.r.t. the state of a vehicle One or
more sensors in combination can define the situational change. A braking event
can be described by the change in speed but also by the negative values of accy.
Figure 11.7 shows an example event and the corresponding measured values of
the different sensors, where the well-known time-based sensor fusion is applied
accordingly. The figure presents the delta of normalized values. Normalization
will be explained hereafter in Section 11.3.2. At this point, it is an open question
as to what extent the sensors in their entirety support identification, i.e. how well
they are suited to record driver-specific characteristics. This question will be
discussed as part of the evaluation in Section 11.4.2. We do not transform these
readings apart from normalizing and resampling them; thus, we consider them
raw features.

Entropy of
driving
events

An essential aspect for the differentiation of drivers and the final identification
based on events is the events’ uniqueness. The better the events of the individual
drivers differ, the more suitable these artifacts should be for the task. An overview
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c) Acceleration & Neutral.
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d) Braking & Neutral.
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Figure 11.8 Comparison of maneuvers from different drivers and intensities. Drivers show
differences in their respective driving event that eventually can be used to differentiate
them. However, the difference depends on the sensor dimension used.
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of the mean values of the two event classes, together with all drivers, is presented
in Figure 11.8. The selected sensor is the lateral force accx. Regardless of
event and class, differences between individual trajectories can be identified.
The differences can eventually be used to assign an event to a person in the
driver group. The expressiveness of a single sensor is limited. Therefore, the
construction of a higher-dimensional feature vector is recommended.

Sidebar GBarycenter to average time series

The driver identification attack in this work works based on DTW as the distance
metric. There is a need to average different time series within this approach,
which is challenging due to the shapes of each measurement. The keyword here is
bias, as found in multiple sensor streams (c.f. Table 4.3). With DTW barycenter
averaging a technique is described that minimizes the sum of squared DTW
from the average sequence to the set of sequences [296] to eventually yield
a somewhat average of the input time series. To achieve this, DTW barycenter
averaging takes into account the Euclidean distances between the current average
coordinate and the associated coordinates of the sequences, iteratively refining
the current barycenter.

Figure 11.9Example of the DTW barycenter average of multiple time series. It is computed
iteratively by refining the current barycenter with updated values from each sequence.
[296]
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Figure 11.10 Exemplary trip with identified events. A trip is preprocessed using CEP to find events
w.r.t. the given definition which are then subject to being used for identification. Areas
of interest, i.e. events, are highlighted accordingly.

Figure 11.9 shows four updates to the DTW barycenter average and illustrates
how the barycenter changes with each included additional sequence.

11.3.2 Identification

Identification is based on supervised Machine Learning. The task is to assign an
event ec ∈ c to p ∈ p. c are extracted using Ec defined in Section 5.4 using
CEP techniques. Each trajectory i yields a number of n events [ec1,… , ecn]that can be used to solve the challenge. Figure 11.10 illustrates an example
trajectory from a user. In total, it contains three acceleration events and three
braking events, thus |c| = 6. They are highlighted accordingly.

k-Nearest-
Neighbour

classification

We employ k-Nearest-Neighbour classification [16]. kNN classifies an unknown
object (i.e. an event) by analyzing the neighbors of that object and then selecting
the most common class (i.e. a driver) among k nearest neighbors. The neighbors
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ambiguous events

k = 7

outlier

distance (dtw)

Figure 11.11Overview of the kNN architecture. The kNN classifier uses DTW to measure the dis-
tance to each other, labeled event learned during the training phase. It then selects k classes
to vote for the unknown object. Each object represents an event and each color/shape
combination stands for a class. Sometimes events between classes are overlapping or
out-of-bounds and therefore outliers degrading accuracy.

are selected from a set of objects for which the class is known in advance, as is
the case in supervised ML environments. This classification process is similar
to voting for the correct class based on the underlying assumption that similar
objects are of the same class. This claim may hold based on the findings of the
previous section.

DTW-based
distance

kNN classification uses a customizable distance metric to identify neighborhood
objects. In a simple case, this can be e.g. the size of an object. In the present
scenario, however, the object to be classified is a multivariate time series in the
form of an event. The class is the respective person who drove and generated
the event. In the most naive case, all distances between the searched and known
objects are computed, which is computationally intensive for large data sets. In
the present case, Dynamic Time Warping is used as a distance metric, allowing
to measure the similarity of two different time series, which in turn can serve as
an input variable for the kNN algorithm. Sidebar F introduces DTW.

Example for
determining
the driver

Figure 11.11 shows a schematic example of how the identification process is
conducted. Each color/shape combination represents a driver out of the five
drivers in the current pool, and each object represents an event whose class
is known except for the square that is the event subject to being assigned to a
class. There are five drivers in the data set that form four clusters. Two drivers
seem to have a similar driving style, and therefore, some of their events are
ambiguous, eventually resulting in non-discrete clusters. Furthermore, a data set
may contain outliers, e.g. events that are not representative of a driver. They can
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occur at any time due to multiple effects. For example, an emergency stop may
produce an unusual sharp braking pattern for a person. The drivers represented
by the stars and the triangles tend to be unique compared to pluses and circles.
The classifier calculates in a brute-force process the DTW distance to each of the
known objects and then selects k objects where the distance is minimal. Then
the class occurrences are counted, and the decision is made. In the example
k = 7, four diameters, one circle (the outlier), and two triangles are closest to
the unknown object, resulting in the classifier assuming that the unknown box
must be of class diameter (and eventually the respective driver). It is evident that
larger numbers of k make decisions more robust to noise within training data
because the outlier does not inflict the decision. Furthermore, it is recommended
that k is an odd number to prevent ties in the voting process.

Incorporat-
ing the

distance
metric

There are two options for incorporating the distance into the decision, defined
by !. First, each object in the neighborhood of an unknown element is equally
weighted. This is called uniform distance. Second, one can use the distance itself
to weight the neighboring object. In this case, all objects in the neighborhood are
weighted by the inverse of their distance, i.e. closer objects have more influence
in the voting process. We will evaluate which weighting function is preferable.

Normalization

Data originates from different smartphones and sensors that are subject to
fluctuations and different value ranges (see Section 2.3). The shape of the data
is in conflict with the applied ML algorithm since kNN profits from normalized
data. Therefore, normalization is performed to address the problem of different
value ranges. This enables comparability between multiple recordings (from
various drivers, smartphones, trajectories, and vehicles) and finally makes it
possible to use the classification function C.

Normalizing
events

Figure 11.12 shows a comparison of the same events in a non-normalized way
(c.f. Figure 11.12a) as they are recorded by a recording device (e.g. smartphone)
and a normalized version (c.f. Figure 11.12b). Normalization is done by applying
the maximum values seen for each user and each sensor (dimension) comprising
different configurations, e.g. composed of the smartphone and the car. Experi-
ments have shown that even though the user may have mainly passive events,
some of them are still aggressive. Hence, the boundaries are likely to contain
the full spectrum of values recordable for a user.
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a) Unnormalized (raw) version of events.
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b) Normalized version of events.

Figure 11.12Overview of one acceleration event from each driver. Sensor readings vary in range
since they are recorded with different devices. Normalization can enable comparability.
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a) Normalized version of events.
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b) Resampled version of events.

Figure 11.13Overview of one acceleration event from each driver. Sensors readings are normalized
according to maxima seen by each driver. Resampling yields time series of the same
length. Resampling however does not change the course of the data.

Uneven
event lengths

As Figure 11.13a illustrates, the recorded events of different but also of the same
drivers are most likely of various lengths. This limits the comparability, even if
DTW can, in principle, handle such effects. Crucial for detection is the shape and
the corresponding similarity of two events. For example, it is of interest whether
a driver brakes homogeneously or draws a more divergent picture during such
an event. A braking event with a delta of several 10 kmh−1 over a long period
is comparable to an event that has a smaller delta but is also shorter.

Resampling
to enable
comparabil-
ity

Resampling can be used to bring the events to equal length without changing
the shape of the data series. It is producing a new discrete time series based
on the underlying signal of the continuous time series [286]. This is explicitly
shown in Figure 11.13b. If some events were exceptionally short and had a high

Resample
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delta, the drop in values is put into perspective when the data series is resampled.
According to DTW there is no change in the measurement points because all
time series have the same length and value w.r.t. the sensor values.

Note on the
implementa-

tion

We employ the TimeSeriesResampler2 of tslearn, a Python library for Machine
Learning time series data. Resampling is the change in the sampling rate of the
incoming data. Let us say that the incoming data is collected with f = 25Hz in
our case. We now interpolate the underlying signal using a specific number
of points from the continuously incoming data called � and connect them
accordingly. The relationship between the sampling rate and the underlying
phenomenon is illustrated in Chapter 2. The result is a trade-off between the
complexity of the resampling task and the accuracy with which the original
signal is mapped. It must be ensured that � is large enough not to lose the shape
of the initial data, ultimately ensuring identification success.

11.3.3 Scoring

The uniqueness of an event is incorporated into a score that represents the
confidence and probability that the classifier assigns a series of unknown events
to a person in the pool  . We assume that a driver does not change during a
trip without stopping. Hence, all n events must be generated by the same p:
[ec1,… , ecn] ←→ p.

Table 11.3 Overview of a trip evaluation to eventuelly predict a driver. The trip contains five
events of the same type with five potential drivers. The predicition is based on a driver’s
likelihood to be the correct driver

Driver Event Pred Pred
(norm)1 2 3 4 5

A 0.00 0.00 0.00 0.07 0.07 -0.87 -1.00
B 0.53 0.13 0.60 0.27 0.13 0.67 1.00
C 0.27 0.13 0.13 0.40 0.20 0.13 0.30
D 0.07 0.40 0.07 0.07 0.33 -0.07 0.04
E 0.13 0.33 0.20 0.20 0.27 0.13 0.30

2 https://tslearn.readthedocs.io/en/stable/gen_modules/preprocessing/tslearn.preprocessing.
TimeSeriesResampler.html

https://tslearn.readthedocs.io/en/stable/gen_modules/preprocessing/tslearn.preprocessing.TimeSeriesResampler.html
https://tslearn.readthedocs.io/en/stable/gen_modules/preprocessing/tslearn.preprocessing.TimeSeriesResampler.html
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Example on
determina-
tion

Table 11.3 presents, using an example with n = 5 events, the scoring process.
First, the algorithm assigns each event ec1,… , ecn individually to the drivers
with a certain probability. The higher the value between 0 and 1, the more certain
the algorithm is. In the example, the probability that driver B created ec1 is
57%. In contrast, ec2 is assumed to have been driven by driver D. ec5 is more
challenging to interpret because the probabilities are close here.

Identification
of the
optimum of
the
prediction

A simple frequency analysis would under-measure the probability in the predic-
tion and discard valuable information. Both driver B and driver D would have
two votes in the present case. Therefore, a score is calculated per driver for all
events of the trip. The calculation is done as follows. On average, the probability
that a driver produced an event equals 1

||

. The deviation from this value, positive
as well as negative, thus qualifies the statement of the classifier. For example,
values of 0.25 with an average probability of 0.2 are not very meaningful because
they are close to the guessing probability. Such estimates should be considered
less in decision-making than, for example, ec1 and ec3, since here, driver B was
chosen with a high probability. The summed normalized probability results in a
total score denoted “Pred”. The range is subsequently normalized to a uniform
range of values between [−1, 1] (“Pred (norm)”). The decision is based on this
value. In this case, driver B is the predicted driver, corresponding to reality.

11.3.4Decision

Putting
events into
perspective

The decision is made on the events found in a trajectory. However, we intro-
duced different types of events. Depending on e.g. the trajectory, external cir-
cumstances, and vehicles, some events are less informative than others. We also
found that two drivers may produce similar events, although their general driving
styles differ. For example, in stop-and-go scenarios, braking events from multiple
drivers may look similar due to external circumstances. In principle, unique trips
or events should be preferred since they allow for a correct statement. Therefore,
for each trip, a confidence is calculated, which corresponds to the standard distri-
bution of the prediction (c.f. Table 11.3 Pred column). For example, this results
in � = 0.56. The higher this unbound value, the more unique the trip.

Maximum-
based
selection and
average-
based
selection

We call this maximimum-based selection in contrast to average-based selection.
The average-based selection model would choose the driver who was predicted
the most across event types, even though some events are less meaningful
because of mentioned reasons. It eventually results in a worse prediction.
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11.4 Evaluation

We now present an evaluation of our algorithm according to our experimental
setup. First, an analysis of sensor significance to construct the feature vector is
presented. Next, the actual identification rate is discussed based on alternating
driver configurations. Finally, the learning rate, i.e. the number of events required
to draw meaningful conclusions, is discussed.

11.4.1 Preamble

We extracted all the events of each driver and created a pool of events of the
same type (i.e. acceleration and braking). Then, that pool was shuffled. From
that pool, we selected 80% training data and 20% test data. Furthermore, the
training data was split again using an 80-20 split to provide a validation data
set. We applied k-fold cross-validation with kfold = 4 to prevent overfitting
when learning at all experiments. Consequently, the algorithm’s accuracy was
assessed using test data that only included events that it had never seen before.
They were either given to the identification algorithm separately or in the form
of an artificial track. Artificial tracks are generated by concatenating a given
number of randomly selected events from a specific driver.

Table 11.4 Overview of hyperparameter options and selected values for the identification
approach.

Parameter Value
k [3, 5, 10, 15, 25, 50]
! [uniform, ’distance’]
� [dtw, ’softdtw’]
� [10, 25, 50, 100, 150, 200, 250, 500]

Hyperparam-
eter

optimization

The presented approach for the identification of drivers based on events is
based on ML. The approach uses DTW as a metric for the kNN algorithm.
We optimized respective hyperparameter w.r.t. accuracy. Table 11.4 shows all
parameters that were optimized using a scikit-learn grid search. Furthermore,
the 65-15-20 split with k-fold cross-validation was used. We found that larger
values of k are preferable; however, runtime increases. Hence, a trade-off was
made. The same holds for the resampling rate � set to 250, which also provided
a good balance between accuracy and runtime.
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Figure 11.14Overview of the achievable accuracy for assigning an event to a driver. Using one-
dimensional feature vectors only containing readings from one sensors for a data set of
five driver yield results above the guessing rate, although, no sensors is favorable for
standalone use.

Repeated
execution of
experiments

The experiments for each analysis were performed at least three times with a
set of unique random seeds to guarantee different slices of data subsets. This
should result in a more generalizable output and reduce the dependence on event
selection.

11.4.2Relevance of Features

Successively
reduced
feature
vector

As mentioned in Section 11.3.1, an event is a collection of sensor values for the
time interval of that event. The data of the multivariate time series includes the
accelerometer acc, gyroscope gyr and the derived speed v. This data ultimately
results in a feature vector of ℝ7. The feature vectors should be small in dimension
and not include unnecessary information to ensure effectiveness. Therefore,
we analyze the accuracy achievable with a specific sensor by creating a one-
dimensional feature vector of ℝ1 for the DTW-kNN-based approach.
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Balanced
feature

relevance

Figure 11.14 shows the accuracy that can be achieved when assigning an event
to a driver from the driver pool. The data set includes all five drivers. The values
are then averaged scores from each test and validation data set. It is trivial to
record that no sensor is favorable for standalone use, but also, no sensor performs
significantly poorly in terms of accuracy. Consequently, all sensors should be
used for further processing. Furthermore, any combination of one-dimensional
feature vectors yields a result above the guess rate, apart from the fact that some
sensor types are less meaningful for a specific maneuver than others. It should
be noted that the significant sensor types for acceleration and braking differ,
although one maneuver is the opposite of the other.

11.4.3 Impact of Driver Set Size

Uniqueness
of drivers

The identification algorithm uses previously learned events of drivers to assign
unknown events to the known set of drivers (closed-set). The presented approach
can use two different strategies to use events for the assignment task, but the
select-best approach is used for the evaluation in this scenario. The literature has
shown that the task of identifying drivers becomes harder the more drivers are
in the group (e.g. [190]). This hypothesis also holds in our case. As Figure 11.15
illustrates that more events on a trajectory support the identification process,
so the accuracy of up to 96.4% is achieved for 14 events for a data set size
of five drivers. The high accuracy can also be maintained for other data set
sizes. However, the difference is that the identification rate quickly increases.
Interestingly, the accuracy varies for data sets of two drivers and reaches lower
levels. Analyzing this fact results in dependence on the formation of driver
combinations. The approach uses DTW as a distance metric that measures
the distance between two events. Lower distances imply that some two events
are similar. Simplified, they could therefore originate from the same person.
Therefore, it is reasonable that identification accuracy decreases with more
drivers in the data set because the likelihood of similar driving behaviors among
drivers in the set increases. The kNN-based approach may select the wrong
individual from its knowledge pool.

Acceleration
in favor of

braking

Breaking down the identification to an event level from the trajectory perspective
allows understanding of the significance of event types. The current implemen-
tation uses acceleration and braking events. Figure 11.16 presents the boxplots
categorized into set sizes and event types. First, the identification accuracy for
the driver pool decreases with more participants. Apparently, acceleration events
are better suited for identification as such events yield higher rates while keeping
at the same time smaller ranges. For example, the lower whiskers of braking
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Figure 11.15Overview of the number of correctly identified trips as a function of test size and
number of events. Larger test sets require more events to be present in a trajectory to
yield high identification rates.

events are, with 45% for two drivers, significantly lower and wider than accel-
eration events. This trend holds for larger set sizes. In conclusion, acceleration
events are favorable for identification because they are more reliable and robust
for the task. In particular, all rates are above the chance, even for outliers.

Unequal
driver
accuracy

From a driver-focused perspective, one can see in Figure 11.17, that the confi-
dence of correctly identifying a trip decreases as expected with larger set sizes.
This does not necessarily reflect a decrease in identification accuracy on a trip
level. The experiments were carried out on trips with 15 events. Multiple trips
per driver were tested, whose confidence is represented by error bars with 50%
confidence interval. Depending on the events found in a trip, the trip identifica-
tion confidence varies larger for smaller data sets. There are differences between
drivers in how they can be identified and how unique their driving maneuvers
(events) are. Driver E is consistently conspicuous and thus easy to identify. On
the other hand, driver A does not appear to depict a significant driving pattern.
It also becomes more challenging to identify driver B with larger data sets. This
driver seems to be relatively unique in his driving behavior. This driver seems
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Figure 11.16 Accuracy for detecting a single event depends on the set size. Set sizes that include
more drivers degrade detection performance. Acceleration events a easier to assign to the
correct driver in comparison to braking events.

to be relatively recurrent in his driving behavior but not unique. The varying
confidence of drivers is also reflected when taking a closer look at the confusion.
The confusion matrix in Table 11.5 presents the assignments for each driver,
each having made twelve trips with 15 events of each kind. Trips of drivers A, C,
D, and E were correctly classified in each case, even though the algorithm could
not assign each event correctly. However, the maximum-based approach works
well in the given scenario, compensating for minor uncertainties. The results
align with those discussed above that yield driver B as a driver without a unique
driving pattern.

Summary Together, the identification approach based on DTW and kNN seems feasible
for the task of identifying driver events. It presents high accurate identification
rates above the guessing rate, even on an event-focused level. Furthermore, our
proposed approach can successfully identify a driver with longer trajectories
containing more events, likely for urban trips. Recall that a trip contains 58
acceleration events and 57 braking events on average for the data set, with a
minimum of four and one, respectively.
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Figure 11.17Accuracy for correctly identifying a the driver of a trip. Acceleration events are easier
to assign to the correct driver compared to braking events. The 50% confidence interval
shows larger fluctuations in confidence for smaller set sizes.

Table 11.5Confusion matrix for driver identification after twelve trips each. Each trip has 15
acceleration and 15 braking events of different harshness. Trips are normalized based on
the true label (rows, i.e. twelve trips).

Predicted

A B C D E

A
ct

ua
l

A 100 0 0 0 0
B 0 50 8 0 42
C 0 0 100 0 0
D 0 0 0 100 0
E 0 0 0 0 100

rates in percent
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Figure 11.18 The confidence of a identification guess increases with longer trajectories providing
more events eventually analyzed. Acceleration events tend to provide more information
usable for identification. Longer trajectories yield high identification rates.

11.4.4 Event significance

Detection is
subject to

multiple
factors

The amount of information yielded by an event may differ depending on the
event’s progress itself. External factors such as traffic also influence the driver’s
driving behavior. For example, in stop-and-go traffic scenarios, braking events of
multiple drivers can be similar to a specific degree. This makes it harder for our
approach to differentiate the drivers since the distances between (or similarity
of) events that work as an indicator are lower (or higher).

Correlation
between

number of
events and
confidence

However, the PHYD scenario allows us to conclude the identity of a driver
based on a recorded trajectory. Therefore, we analyze the impact of the number
of events, such as the recording, on the confidence in the identification. The
confidence is higher if the algorithm is more sure of guessing the correct driver.
For this experiment, we simulated ten different trips for the full data set of the
five drivers. The results are aggregated using a mean with the interval range
included in Figure 11.18. The figure plots the confidence against the number of
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events. It is evident that a higher number of events in a trajectory results in a
more confident decision. Values above one allow good decisions. The figure also
shows that there is a difference between the event types. Acceleration events are
superior to braking events, i.e. they tend to represent a driver’s driving behavior
more fittingly. This seems logical since braking events are often induced by
external factors such as the next vehicle that changes its speed. This is different
for acceleration events. One can see that acceleration crosses the confidence if
seven acceleration events are found within a trip. On the other hand, braking
requires at least ten events for the same confidence level.

Select-best
strategy

The presented identification approach uses a select-best strategy that considers
the previous finding. It prefers events with higher confidence. For example, if a
trajectory contains two brake events and two acceleration events, one of them
has higher confidence in each case. In this case, it is not meant to balance all
four events but only to use the most significant ones. The difference between the
select-all and select-best approach is also shown in Figure 11.18. The dotted line
is the select-all approach, which yields a lower proportion of correctly identified
drivers. The select-best method outputs identification accuracies of 100% for a
low of only five events of each type found in the trajectory.

11.4.5Learning rate

Previous experiments were conducted using the whole data set split into the
proportions mentioned. To assess the learning rate of the algorithm, the training
and validation sets were reduced iteratively in steps of 10%. The test data set
was not adjusted. Events are randomly selected; hence, the number of events per
driver in the data set is not guaranteed. In the worst case, no events from a driver
might be in the reduced data set. However, we reran the experiments three times
with different seeds to reduce random effects.

Resistance-
led
development

The learning rate shows an interesting pattern, and it is expected to increase with
more data available for training. This is common in other ML tasks. However,
the path here is different but still has a linearly increasing shape, as Figure 11.19
shows. This indicates that the algorithm is learning more the more events of a
driver are seen.

Full set with
all drivers

For the full data set example shown in Figure 11.19a, the accuracy for both
events starts at 20% accuracy, which at the same time equals a guess (more
precisely, this only holds if each driver is equally represented in the data set, but
for the sake of simplicity, we stay with this facilitation). At 30% of available
training data, the identification accuracy based on acceleration and braking
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a) Results for data set containing all five
drivers A,B,C,D,E.
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b) Results for data set containing all
a randomly chosen subset of drivers
B,D,E.
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Figure 11.19 Overview of the learning rate of the algorithm with different amounts of training
data available. The accuracy increases the more data is used to train the kNN model.

events significantly increases until it reaches the global peak around 70%.
While the rate of identification of braking events increases monotonically, the
acceleration curve has a peak at 60% and then decreases around 5%. There may
be two assumptions as to why this happens. On the one hand, the algorithm might
experience significantly different events from those seen before. Consequently,
the model is also adjusted to fit the new data; however, the vagueness increases.
On the other hand, this effect may be related to the construction of the data
subsets and the intended over- or underrepresentation of a driver in the data
pool.

Validation vs.
test set

The accuracy within the test set is lower than those for the validation set. This
may imply that the model is underfitting. Concludingly, more events by a person
are needed to label events accordingly. However, in a trajectory-based view with
more events (c.f. Figure 11.15), a high accuracy of single event identification is
not needed. This stresses the feasibility of side-channel attacks on sensor data
and educated guessing with domain knowledge. At the same time, the presented
approach is also proof of the imminent privacy threat (see Chapter 10). If the
size of the data set is 100%, the acceleration and braking validation score shows
the same accuracies as seen in Figure 11.16 for a data set size of five drivers.
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Learning rate
for different
set sizes

The task of driver identification is simpler for smaller sets of drivers, as discussed
earlier. This claim holds for the example shown in Figure 11.19b. For a small
slice of the data set, it seems that newly observed event shapes are introduced.
The algorithm struggles to detect them but ultimately increases its accuracy in
the given task.

11.5Realistic Environment

The presented attack shows that an insurer in the UBI insurance environment can
trace which person drove a route based on the transmitted data. Thus, the outlined
threat scenario for the user’s privacy can be confirmed. The purposefulness of
the data cannot be ensured, and, ultimately, the data submitted is too broad.

Obsolete
assumptions

The previous attack is based on two crucial assumptions that are reasonable in
the given context.

▶ First, the number of drivers per vehicle must be known so that an in-
surer can create a data pool  accordingly. Consequently, an identifier
(e.g. p) must be defined for each unique driver. Identifiers must not
be shared between different drivers and are used exclusively by that
driver (static driver set).

▶ Additionally, the data evaluator must have information about which
driver was driving at any given time. He is then able to match the
driving distance to a driver from the data pool:  ←→  . Drivers are
not allowed to switch during a measurement  (labeled trajectory
set).

Therefore, based on assignment (, p), the labeled data set required in super-
vised learning is created, on the basis of which the kNN-DTW algorithm can
be trained. As in Section 11.4, the algorithm is then able to assign a trip 
to a person p from the driver pool  with high probability, without the need
to transmit an identifier. Unprocessed sensor data or the subset containing all
events c ∈  is sufficient.

Reflection on
the PHYD
scenario

The proposal represents a side-channel attack in the context of sensor data and
can be categorized as a fingerprinting attack. The goal is to detect and possibly
track a user regardless of short- or long-term identifiers (c.f. Section 10.3).
However, the assumptions made may be overstated for the PHYD scenario. For
example, it can be questioned whether the second assumption that a route is
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already known in advance to an attacker may hold. The ML problem thus shifts
from a supervised learning problem to an unsupervised learning problem, where
the target class is not known a priori. This is considered a clustering task instead
of a classification task. Nevertheless, the threat to privacy still exists if an attacker
can correctly build clusters of drivers without specifically naming them. We
also challenge the static driver set assumption by introducing a new driver to
the pool where no or only a few trajectories are known. This yields a severe
underrepresentation of the respective driver.

11.5.1 Moving to a Clustering Problem

Replaced
classifier

We now loosen assumption two. The pipeline is adapted accordingly for the
following test series. All steps of the preprocessing up to normalization and
resampling remain the same. Only the ML algorithm is replaced. Instead of a
supervised learner KNeighborsTimeSeriesClassifier an unsupervised clustering
algorithm called TimeSeriesKMeans3 is used to identify drivers with the distance
metric kept the same (i.e. DTW). We reran the experiments with the altered
environment. They present a silhouette coefficient of −0.02 over all clusters as
shown in Figure 11.20b. The silhouette score allows interpreting the performance
of a clustering approach by giving insight into how an object is assigned to its
cluster compared to being separated from other clusters [328]. The values can
range between [−1, 1]. Perfectly assigned and separated clusters have a value of
1, while confusing and overlapping clusters with neighbors yield a score of −1.

Limitation of
the driver

Given that, the scores around zero imply that the clusters overlap. The events
between drivers are likely similar, yet they are usable for identification. Com-
pared to a two-driver scenario as illustrated in Figure 11.20a, confusion and
non-separability between clusters increases significantly. An insurer might not
make a clear decision on this basis, but it still allows them to narrow down the
options in terms of possible drivers because it may be unlikely that events always
overlap with the same cluster combinations. It should also be noted that this score
refers to an independent consideration of individual events. In Section 11.4.3
it has already been shown that the maximum-based selection process provides
significantly better results in the present scenario and eventually allows the cor-
rect identification in most cases. It stresses the fact that domain knowledge is
essential.
3 https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.
TimeSeriesKMeans.html

https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html


11.5. REALISTIC ENVIRONMENT 305

−0.4−0.2 0 0.2 0.4 0.6 0.8 1

0

1

0.09

silhouette score

cl
us

te
r[

#]

a) Silhouettes for a two cluster scenario
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b) Silhouettes for all five drivers with five
clusters.

Figure 11.20Silhouettes scores for a different number of clusters. The number of clusters equals
the number of drivers in the data set. The silhouettes coefficient is roughly zero for most
scenarios indicating no clear separation between drivers.

11.5.2Introducing New Driver

Within the evaluation, the impact of the data set size, i.e. ||, was analyzed.
The more drivers there are, the more complex the identification task becomes.
However, the impact of the number of events was not subject to analysis. Thus,
we introduce a new driver p′ ←→  that is underrepresented in terms of the
number of events. Fewer events may not give a comprehensive impression of a
person’s driving style, which is crucial for identification based on DTW.

Simulating
unknown
drivers

The chosen KNeighborsTimeSeriesClassifier provided by tsfresh does not sup-
port open-set scenarios. Introducing unknown drivers to a data set results in
shifting the closed-set problem to an open-set environment. In order to assess
the implications in quality, we added a dummy event for the unknown driver
to the data set that cannot be used for learning due to its shape. Our approach
cannot detect the new driver but confuses other drivers. In particular, confusion
does not occur with the exact driver for each of the ten different trips that we
created for the unknown driver. The identification results are not surprising when
an unknown driver is present in the data set, and this is somewhat similar to one
driver being underrepresented to the most extent. Therefore, the algorithm can-
not derive a typical driving behavior for that driver. Furthermore, an unknown
driver also degrades the accuracy of all drivers. Another driver was not correctly
identified on two out of ten trips, which was no challenge for the clean data set
that excluded the new driver.
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11.5.3 Non-uniqueness of Drivers

Now we analyze how discarding both assumptions affects the identification. For
example, it is assumed that two users use the same smartphone, which is used
to transmit data to the PHYD insurer. Whether this is a breach of contract on
the part of the drivers is not to be judged here. A trip tuple can then look like
(, pi ∨ pj) with i ≠ j.

Shuffling
trajectories
and drivers

The following approach was chosen to measure the impact of sharing the data
management devices or the respective data submission channels.
1. Select a subset of drivers M ⊂ 
2. For each driver pl ∈ M , select a fraction frac = 0.5 trajectories

l,i,l,i+1,… from his pool of trips, i.e. 50%.
3. Change label of such trips (, px) so that the previous driver associa-

tion is altered (, px′ ) where x ≠ x′ (x, x′ ∈ M )
This yields trajectories in which either one driver may use his device or accesses
another one to submit data in the UBI context. In contrast to a sound data pool
used for training, accuracy decreases to 41.7% (from 51.5%) for acceleration
events and to 38.3% (from 43.5%) for braking events, respectively.

11.6 Conclusion

In this chapter, we have underlined the threat posed by the transmission of raw
data but also aggregated information in the form of events in the PHYD business
model. Several user claims about privacy can be violated.

11.6.1 Overview of Literature

Non-
overlapping

environ-
ments

First, a SLR was used to find methods that allow the identification of a driver
based on sensor data. Most approaches have been shown to use vehicle data col-
lected through well-known interfaces such as OBD. These approaches conflict
with the PHYD scenario. Here, most of the vendors use smartphone-based appli-
cations and IMU data. There are also apparent differences in the features used.
Although the analysis of the UBI premiums showed that acceleration and brak-
ing behavior, as well as steering actions, play a role in the pricing process, more
specific features can also be found in the approaches from the literature. Many
rely on vehicle data such as pedal operations or engine characteristics. These
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do not lend themselves to serving as features for an identification attack based
on smartphones. Here, the limitations that are described in Chapter 2 become
apparent in terms of the variety of data that can be collected. With acceleration
and braking, known events can be found again. These were consequently used
for our approach.

No
consensus on
identification
approaches

No standard approach or recommendation appears after analyzing the literature.
Due to the heterogeneous data sets, no comparison of the performance of the
approaches from the literature is possible. The type of data set also differs. Only
a few works use real-world data with random trips. However, random trips are
the default case in the PHYD scenario. Thus, an identification attack must be
able to deal with them. Furthermore, recorded trajectories cannot be assumed
to follow specific patterns (e.g. a corner driven by each person in the data set).
A robust identification approach has to be designed to take that into account.
All works see the task of identification as a supervised learning problem, which
becomes more difficult as the size of the driver pool increases.

11.6.2Our Approach

Event-
focused
approach

Based on the insights from the literature, we decided to apply distance-based
learning to the problem of the identification of drivers. To the best of our knowl-
edge, we are the first ones to use DTW in combination with kNN classification.
Our approach is based on events extracted from the literature and introduced
in Section 5.4, namely acceleration and braking. The assumption is that similar
events, i.e. events with a small distance, are from the same driver. The attack
only uses data collected in the PHYD environment and can be further transferred
to use zero-permission sensors solely.

Process of
the approach

Our proposed pipeline respects the heterogeneous origin of trajectories and in-
dividual driving behavior. It uses CEP to extract relevant data from the whole
trajectory. It is assumed that one driver generates one trajectory without switch-
ing. Then it applies normalization to each event. Normalization boundaries are
driver-specific and are guessed by using a min-max greedy search on all events.
The events are then resampled to a specific length. Normalization and resam-
pling ensure that the shape and progression of events are not altered and that the
underlying assumption still holds.

Result
summary

We found that data from the accelerometer and the gyroscope along all three
axes are equally important, and velocity is also included in the feature vector.
Experiments show that the accuracy of assigning an event to a driver is aver-
age. However, domain knowledge allows drawing further conclusions from the
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classifier’s prediction: Each trip usually contains multiple events assigned to
a driver. This can support the decision within a scoring and selection process
called maximum-based selection. Using maximum-based selection, we found
that a trajectory with five events is sufficient to correctly assign each trip to a
driver within a driver pool of five in more than nine out of ten runs. The number
of events needed is decreasing with smaller driver groups. That finding corre-
sponds with what we found in the SLR.

11.6.3 Privacy Implications

As introduced previously in Section 1.2, Solove [351] considers privacy essential
for protecting multiple rights of a user. As we will see, the identification approach
in the context of PHYD violates some of these rights. Some of them are discussed
now. Of course, some rights are excluded or less important due to the context.

Limit on
power

First, privacy should enable limit on power that is degraded by sending raw
sensor data. A counterpart may also use the data for other purposes, as shown.
This aspect is closely related to the purpose limitation required by the GDPR.
Purpose limitation is no longer given as soon as a data processor can also extract
other information from the data than is necessary for the actual business model.
In the case of UBI, this is the price of a vehicle based on how it is driven.
The driving behavior to which the driver contributes in total is, by definition,
irrelevant. In Section 9.2, this aspect was addressed in a comprehensive way. At
this point, it can be argued that providers already practice data minimization by
working exclusively on aggregated data, i.e., events. However, the aggregation
does not necessarily occur in the user’s domain but by a third party, which
delivers aggregated information to the insurer. This approach is insufficient.
In Chapter 14 a procedure is presented that can achieve data minimization by
evaluating the data locally, and accordingly, only the business model can be
performed based on the data. Identification is then no longer possible.

Trust Solove [351] also argues that trust is an important right of the consumer. Trust
can only be established if a user feels adequately secure and autonomous. He
must assume that his data will be used exclusively per the other party’s reasoning.
Due to bounded rationality, it is also necessary for the user to ensure that the
disclosed information is handled securely. He is not in a position to check the
insurer’s behavior and must trust that this will be done by other bodies (including
the insurer) themselves. His privacy should not be vulnerable if he follows the
specified processes. Unfortunately, this is still the case.
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Reputation
management

The rights of reputation management or control over one’s life must also be
viewed critically. If the pricing process is broken down from the vehicle to the
individual driver, this enables effective tracking of routes and extraction of points
of interest from people. It is thus possible to project locations onto individuals’
daily routines and create detailed movement profiles that are used as domain
knowledge in further steps. In terms of reputation management, an individual
should be allowed to move anonymously without revealing specific locations
such as hospitals or workplaces [132]. An individual’s reputation may suffer
depending on where they are. In order to pinpoint a user’s location, additional
location-inference attacks based on zero-permission can be employed. We will
present such an attack in the next chapter.
This list is just an excerpt of how the misappropriation of data violates a user’s
privacy. Of course, dangers can also be applied to a broader context outside of
the UBI scenario. In terms of a side-channel attack, the permissionless sensors
of IMU can also be wholly intercepted without the user’s knowledge.





12Reconstructing Trajectories
Based on Sensor Data

After the previous chapter presented a fingerprinting attack to identify a driver
based on sensor data, this chapter looks at another class of side-channel attacks,
namely location inference. It is the second part of our attack tuple. This type
of attack attempts to use sensor data to determine a target point or a person’s
entire travel distance and is intended to demonstrate the threats to location-based
privacy.

Reoccuring
challenges

With this attack, we recall the problem of the information disclosure process
based on cognitive perception as we introduced it in Section 1.2.3. Moreover, the
attack is settled in the UBI environment and addresses i.a. the topic of Nothing-
to-Hide [350] to stress the fact that aggregated data can provide a comprehensive
insight into a person’s daily life, ultimately proofing that this bias is a false friend.
Also, hyperbolic discounting is addressed as the short-term benefit of UBI may
be a monetary reward, but long-term knowing the daily schedule allows one to
derive information such as sickness (when visiting a hospital).

ContributionEven though multiple methods for trajectory inference exist, with each having
individual restrictions, we propose an evolutionary approach that explicitly
addresses the said drawbacks. Therefore, we contribute with

▶ a survey on methods for trajectory reconstruction to understand the
respective circumstances,

▶ a powerful yet efficient attack to derive a trajectory for large areas
based on zero-permission sensor data, an
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▶ a comprehensive evaluation of the performance of our proposal, in-
cluding a comparison against state-of-the-art related work based on
multiple real-world data sets.

The evaluation in this chapter is i.a. based on data sets R1 and R2.
Structure We first perform a survey on recent approaches for trajectory inference in Sec-

tion 12.1 and present the results in Section 12.2. Based on the knowledge gener-
ated, Section 12.3 introduces an evolutionary method for the reconstruction of
the route, including the fundamentals needed to understand the given scenario.
Then, a presentation of the building blocks required to perform the task is ex-
plained in Section 12.4. An in-depth design explanation of the attack follows (see
Section 12.5). Based on real-world data, a thorough evaluation in Section 12.6
assesses the performance of our trajectory reconstruction approach. We conclude
this chapter in Section 12.7.

12.1 Structured Literature Review

To identify related work, we performed a SLR whose methodology we present
in this section. Based on the research questions, the search process is defined.
The relevant results are then listed and quantitatively described.

12.1.1 Research Question

The literature review aims to provide an overview of route tracking methods.
The condition is that these are applicable as a side-channel attack based on
smartphones. Therefore, the main research question is “What is the state-of-the-
art of route reconstruction approaches enabled by smartphones?”. The question
is divided into the following questions to investigate the respective components.

Q1 What are preconditions for reconstructing a route assumed or signifi-
cantly required? What sensors will be used?

Q2 What different methods and approaches are used for trajectory infer-
ence? Are there existing standard procedures, if any?

The research question will be answered subsequently in the next section by
analyzing the respective literature. This section includes work by Heiland [S7]
that performed a SLR on trajectory inference.
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12.1.2Search Process

The search process for the SLR is based on Kitchenham and Charters [209].
Search termWe selected ACM Digital Library, SpringerLink, IEEE Xplore, and ScienceDi-

rect as libraries to look for relevant research. This study focuses on approaches
that can be executed with the support of a smartphone, consequently excluding
works that are not feasible given this constraint. Therefore, the following search
string1, based on the variable for the approach and one for the recording device,
was applied to all libraries.

( MAP MATCHING | [ ( ROUTE | PATH | TRACK ) ] )
& [ ( TRACKING | ESTIMATION ) ]
& [ ( SMARTPHONE | MOBILE DEVICE)]

The search term “mobile device” may also include devices such as smartwatches;
however, we removed such work in a later process. We found that these works
are not compatible with the given scenario of PHYD due to the different shapes
of data that are acquired. For example, a smartwatch may be equipped with an
accelerometer, thus collecting similar data to a smartphone, yet the validity is
not comparable. No year constraints were presented, although the environment
with smartphones or mobile devices naturally yielded a young research field.
We allowed ourselves to include work that seemed relevant even though it had
not been identified using the given procedure (i.e. forward search and backward
search). As previously, duplicates are eliminated.

Inclusion
criteria

In particular, we developed the following inclusion and exclusion criteria to
identify relevant work. Articles that met the requirements were analyzed in-depth
with a full-text read to answer the research questions.

1. The approach tries to identify a whole trajectory or a driven route from
start to end, and i.a. does not only select specific locations.

2. Also, the approach has to use zero-permission sensors from smart-
phones and does not rely solely or mainly on GNSS-based sensors.
Also, WiFi or Bluetooth is not used. The attack may use additional
data such as traffic data or weather data.

3. The data was produced while driving a vehicle, and the approach
takes the given environment into account. If an approach scales to

1 For an explanation of the notation, see Appendix B
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also work for other means of transport, it is included as long as the
first requirement holds.

4. Works were excluded that required additional tracking equipment
besides a smartphone or mobile device.

Only works in English that are peer-reviewed were considered. It has to be
available to the authors for further processing. No quality assessment was
performed, and no works were excluded. The survey was carried out until July
2020; therefore, the literature is included until this date.

12.1.3 Relevant Findings

Table 12.1 Overview of the 15 publications identified in the SLR. The works are assigned to
different disciplines.

Publication Year Publisher Field
Pesé et al. [294] 2020 De

Gruyter
Security and Privacy

Dimri et al. [109] 2020 ACM Network
Waltereit et al. [389] 2019 ACM Security and Privacy
Plangi et al. [300] 2018 IEEE Mobile Computing
Li et al. [231] 2018 IEEE Vehicular
Zhou et al. [427] 2017 IEEE Systems Design
Won et al. [403] 2017 IEEE Mobile Computing
Verma et al. [380] 2017 ACM GIS
Narain et al. [276] 2016 IEEE Security and Privacy
Ho et al. [172] 2015 ACM Systems Design
Bhattacharya et al. [44] 2015 IEEE Mobile Computing
Nawaz and Mascolo [279] 2014 ACM Systems Design
Nawarathne et al. [278] 2014 IEEE Systems Design
Gao et al. [137] 2014 ACM Mobile Computing
Han et al. [163] 2012 IEEE Network

Fifteen publications were selected given the search term and criteria from an
initial corpus of 1,067 findings. We excluded two publications in favor of their
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extended version. Table 12.1 lists all the selected items, including the publisher
and the related field of the conference or the journal. Either ACM or IEEE
published all identified work with one exception (De Gruyter); we did not select
any works from SpringerLink or ScienceDirect for the final corpus because some
exclusion criteria matched. The field (or category) is aggregated, e.g. “network”
also includes subdisciplines such as “sensor networks”, or “mobile computing”
includes sensors-related publication formats such as the IEEE Sensors journal.
What is striking is the low representation of formats that directly address privacy
and security, considering route tracking an attack. Other works present the ability
to use IMU sensor to infer a trajectory or use the sensor array to optimize specific
parameters such as energy consumption. From a time-range perspective, we can
state that the research fields seem relatively new, with the first approaches from
2012 with a steady but low number of publications per year.

12.2Analysis of Trajectory Inference Methods

This section will answer the introduced research questions on the basis of
insights gathered from the document corpus. We present identified preconditions
and sensors used in the different approaches that are briefly illustrated in the
following.

12.2.1Preconditions and Sensors (RQ1)

Table 12.2Relationship of approaches for trajectory reconstruction and the specific sensors
used as a data source. The accelerometer is the most commonly used sensor followed
by the magnetometer.

Publication

A
ccelerom

eter

G
yroscope

M
agnetom

eter

Barom
eter

G
N

SS

Speed

Bhattacharya et al. [44] ● ● ●

Dimri et al. [109] ● ●

Gao et al. [137] ●

Han et al. [163] ●

continued on next page
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Ho et al. [172] ●

Li et al. [231] ●

Narain et al. [276] ● ● ●

Nawarathne et al. [278] ● ● ●

Nawaz and Mascolo [279] ● ●

Pesé et al. [294]
Plangi et al. [300] ● ● ●

Verma et al. [380] ● ● ●

Waltereit et al. [389] ● ●

Won et al. [403] ● ●

Zhou et al. [427] ●

Sensors We identified that most of the works are based exclusively on data from smart-
phones. At some point, the works state that the data can also be gathered using
other devices, such as the vehicle’s CAN-bus (e.g. [389, 427]). Two works [44,
137] do not state the origin of the data, although, according to the sensors and data
used, it may be feasible for smartphones to acquire the data (see Table 12.2). An-
other source for data is Original Equipment Manufacturer (OEM)-provided, open
data-sharing platforms provided by OEMs where an OEM collects data from
vehicles to provide added-value susceptible for malicious applications [294].
In terms of sensors used in the different approaches, the accelerometer is the
most common, followed by the gyroscope and magnetometer. To be precise, the
GNSS (including GPS) is found with high frequency. Works that employ that
kind of sensor focus on optimizing, for example, the accuracy of a trajectory by
interpolating the position or distance between successive GPS measurements
(recall that the frequency is limited to 1Hz in Android). Won et al. [403] uses
GPS for specific situations to improve the feasibility of the approach, in contrast
to previous works [404] which were totally neglected.

Precondi-
tions and

requirements

Most algorithms that have been studied require certain preconditions for their
execution. To place a route based on sensor data recorded within a traffic
network, most approaches require map material that contains the ground truth.
Alternatively, some approaches do not attempt to detect an unknown route
but assume a closed-set scenario in which all routes to be taken have already
been learned according to various properties. Verma et al. [380], for example,
requires the knowledge of so-called point-of-concerns such as speed bumps,
which is collected via crowdsourcing using a mobile companion (app). Map
data includes spatial information on links between geographical locations in
the two-dimensional space (i.e. longitude and latitude). Elevation data adds
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Pesé et al. [294]
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Li et al. [231]
Ho et al. [172]

Han et al. [163]
Won et al. [403]

Figure 12.1Requirements and preconditions needed by the analyzed approaches. The most
common requirement is the availability of map data followed prerecorded data, although,
there is no overlap between both groups.

information about the altitude profile of the route sections, i.e. the altitude. Such
data is used in some works, particularly those relying on the barometer since
such sensor readings can be mapped to altitude. An overview is presented in
Figure 12.1. Finding a route in large road systems is challenging. Therefore,
especially early works are based on knowledge of the starting point (e.g. [137]).
This is a legitimate assumption in the context of PHYD since an insurer can
assume, for example, external knowledge such as a driver’s place of residence.
As all candidates that do not start at the known starting point can be discarded,
the set of potential route candidates can be significantly reduced, especially in
complex road networks.

Area sizeAlmost all algorithms are limited in area size for route inference. In general,
larger search spaces induce more complex street networks, eventually yielding
many candidates for a sensor trace. Thus, it is assumed that an adversary has
rough knowledge about the area in which the sensor data has been recorded. A
restriction of the search space can, for instance, be made based on the IP address
from which the sensor data originates. The size to which the search space must
be restricted for efficient reconstruction of the route depends on the approach
and varies greatly but is considered, along with accuracy and runtime, to be a
significant evaluation criterion for the goodness of the approach. For example,
Li et al. [231] only achieve useful results for 22 km2, while Waltereit et al. [389]
find routes for search areas 1200 km2. Our approach significantly minimizes this
limitation and allows efficient route discovery in areas of up to 4500 km2.



318 12. RECONSTRUCTING TRAJECTORIES BASED ON SENSOR DATA

12.2.2 Summary of Approaches (RQ2)

Trajectory inference per se is not always considered an attack, as one can con-
clude from the research fields presented previously. First, we look at the respec-
tive goals that the approaches pursue. Then, a standard structure is extracted,
and, in the following, we look again in detail at which features support route
estimation.
Goals

The works in the document corpus can be assigned to three classes depending on
the pursuit of the goal. First, works may try to optimize trajectory collection by
reducing the energy footprint or increasing accuracy. The other two classes both
try to infer complete trajectories by mapping the sensor pattern mostly from the
IMU on a map. However, one class has specific constraints that have to be met,
such as knowing the start position of a route. The last class does not have such
restrictions and contains an approach to mapping an unknown route on a street
network.

Optimize
trajectory

quality

Some work attempts to address the problem of excessive energy consumption of
the GPS sensor by no longer recording continuous traces but only activating the
energy-hungry sensor for short periods of a few seconds in special situations [44,
278], e.g. in excessive heading changes. However, more extended periods of
abstaining the GPS increase the uncertainty of the current location, and hence
such approaches may be used in combination with dead reckoning [278]. Con-
sequently, such approaches try to find a trade-off between energy efficiency and
location accuracy. In addition, the limited frequency of the GPS and ultimately
uncertainties regarding intermediate positions between location queries are ad-
dressed [278, 300]. Plangi et al. [300] addresses situations where the GPS signal
fails, but also the state of the GPS drift that may occur, for example, in high-
building environments. The authors fuse accelerometer and gyroscope readings
to determine the probable position between measurements using map matching.

Inference
(part) routes

with
constraints

In contrast to the first class, the reconstruction of routes is the subject of this
class, although some conditions are present. First, some works require knowledge
of the origin of a route, i.e. a starting position to then derive potential route
candidates [137, 427]. Based on this information, speed data that may originate
from the accelerometer is used to generate a path consisting of turns and distances.
For example, Zhou et al. [427] builds a speed model that incorporates the idea
that driven speed depends on various factors such as real-time traffic, speed
limits, or curve speed. Route candidates are therefore represented as different
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speed models originating at the known starting point compared to the sensor data.
Second, a closed-set environment may be assumed where all possible routes are
prerecorded, including descriptive features [279, 380]. Nawaz and Mascolo [279]
uses prerecorded angular velocities of routes as a feature that is compared with
sensor data, namely gyrz, using a proposed DTW extension called open-ended
warping. Additionally, Verma et al. [380] focuses on the derivation of full-length
bus lines using crowdsourcing by analyzing the sensor data stream for specific
patterns similar to the ones proposed in Chapter 8 that have been recorded along
with their geographical location in advance. Another stream in research tries to
infer routes using the barometer [109, 403]. A user may collect pressure data
in advance to generate a personal database [403] or it is obtained from publicly
available resources [109]. Together, approaches are limited to prelearned data
sets.

Inference full
route

Finally, the reconstruction of a complete route from sensor data without any
constraints is also present in the literature. We found approaches that use the
full route to derive the starting position [163] or ultimately place a trajectory
on a map w.r.t. the explained limitations [172, 231, 276, 389]. All types of
sensor data can be found in the attacks found, with IMU data used in four out of
five cases. Analogously to the attacks described above, based on the barometer,
the measured pressure values can be converted into elevation models with the
help of external databases or weather stations. Thus, a topological elevation
profile can be created, which is mapped onto reference map data, as long as the
errors in the measurements and models are correspondingly more minor than the
entropy of the elevation models themselves. Using accelerometer data, Han et al.
[163] pinpoint a smartphone within a radius of 200m. The approach is based
on the construction of a rough trajectory using the available acceleration data
for map matching. Estimated trajectories are created via a probabilistic process
akin to dead-reckoning that translates acceleration measurements to vehicle
displacements. A device-specific, lengthy training process is required to develop
the employed probabilistic model, eventually being a drawback due to limited
scalability and generalization. Ultimately, some approaches do not need extended
training phases as well. Such works use specific events present in the sensor
stream (similar to Section 5.4) combined with domain knowledge to narrow the
set of candidates within a reference map [231, 276, 389]. Li et al. [231] uses
turn and respective angles detected by the magnetometer to query for matching
turns in a prepared database constructed from OSM. The sequences of turns
can be expanded to full routes based on a connection in the reference data, with
unlikely candidates eliminated based on additional knowledge (e.g. no stop times
on highways). In contrast, Narain et al. [276] derives a sequence of turns, similar
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Candidate selection method

compare select-reduce

select-reduce-score

filter

Figure 12.2 Overview of different approaches found in literature to select the final set of route
candidates.

to [231], and straights, but uses a combination of accelerometer, gyroscope, and
magnetometer within their approach. Furthermore, they incorporate trajectory
properties such as turn angles, road curvatures, vehicle heading, and travel times
to rank route candidates according to their similarity to the extracted sensor path.
[389] extends both previous ideas [231, 276] by relying on turns and distances
between successive turns. Distances are then used to eliminate unmeaningful
turn pairs based on connections in the reference map data.
Structure

We found four independent structures underlying the approaches presented. Sen-
sor data record an approximation of reality that deviates from measurement
inaccuracies. Therefore, the identified works try to find a corresponding coun-
terpart in their model w.r.t. such deviations. Different approaches can be used to
select a route from a model that corresponds to the one recorded in reality. They
are shown in Figure 12.2 and are explained in the following.

compare The first class is based on the idea of comparing the trajectory of
the sensor data and potential candidates using certain quantity metrics,
with DTW being used almost exclusively (for an explanation on DTW,
see Sidebar F). The one where a distance or error is minimal is consid-
ered the best fitting route candidate. We found a correlation between
this class and the sensors. In particular, works that use continuous data
from the barometer or are based on interpreting the speed are of this
class [172, 279, 403, 427]

select-reduce Sensor data is converted to objects and properties that
are searchable within a database [231]. Thus, specific geographical
elements are selected that represent specific cornerstones that are likely
part of the route taken. The selection process may generate a large set
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of elements whose size will be reduced in a successive steps using
an approach-dependent predicate to fulfill requirements of efficiency
and meaningfulness. For example, Li et al. [231] selects turns from a
map using magnetometer-derived turn angles, connects them based on
links found on that map, and then reduces the improbable stop times
of the crafted routes in road segments. In this case, a list of equally
probable candidates for the recorded sensor trajectory is provided.

select-reduce-score This class is an extension of the previous class that
considers that sensor patterns may fit several elements in map data,
although an adversary may be interested in the best fit. Hence, route
candidates have to be ranked or scored to yield the most probable
trajectory after finishing the select-reduce step. Multiple elements
have been proposed, starting from the turn angle similar to the road
curvature [276] and distance [389] and others [172]. ; for example, the
distance between successive elements can be constrained and must be
met [389]

filter By employing standard filtering techniques such as Kalman, low
pass, or moving average, this class is mainly found in the first category
of approaches, that is, the optimization of trajectory extraction using
GPS [300].

Features

Specific elements are extracted from sensor data to find a route in a street network
by searching for these common features. Different works propose multiple
features attached to or represent a specific element in a map graph. Now we
briefly list them.

▶ Turns are specific structures in a road network that allow a direction
change of a specific angle. Some works only rely on the evoked heading
change and use a sequence of direction changes to find on a map [389].
Others [231, 276, 279] use the entropy of a turn (i.e. its turn angle of
[0◦, 360◦]) to narrow down potential turn candidates. [300] only use
turns to correct heading; hence, do not perform any selection based
on this. Waltereit et al. [389] also considers the false positive or false
negative detection of turn in their approach.

▶ A road’s heading and curvature can be extracted from the map data
using geographically annotated nodes as we have shown in Section 5.5.
These properties are compared to the gyroscope readings [276]. The
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heading is used to reduce the number of turn candidates, while curva-
ture is used during scoring to select the most feasible route candidate.

▶ Next, distances are used in combination with fixpoints such as turns
to reduce or score route candidates [278, 389]. This feature is difficult
to acquire for the reasons illustrated in Section 2.3 and Chapter 8.

▶ While the curvature is a trajectory in the flat plane, elevation considers
the altitude profile of a taken path and the map data, respectively [172].
Depending on the resource, the rasterization, i.e. artificial areas having
the same height, is relatively sparse.

▶ In addition, the travel time is similar to distance but more robust
to derive and is used to remove specific road segments that are not
suitable as part of a candidate route [276]; Zhou et al. [427] uses it to
calculate the average speed based on current traffic conditions.

▶ Last, additional descriptive features are found in various approaches.
Examples are road works, speed bumps [380], and traffic lights [276] as
well as speed limits [231]. Such features are similar to those proposed
in Sections 5.4, 5.5 and 8.4.

It should be mentioned that depending on the property used, a certain quality of
the sensor data is required, and its deflections have to be handled accordingly.
For example, distance can be accurately determined using GPS, but accuracy
suffers as soon as a derivation is made based on the accelerometer.

12.3 Evolution of Trajectory Inference

In the literature, various approaches have been presented that are suitable for
inferring the route driven using sensor data. As we have learned, methods are
distinguishable based on if they require knowledge about the starting point of
a route or approaches or if they only need to know the approximate region as
a precondition. Such attacks also depend on the region’s size in which a route
is searched since more extended regions usually indicate more complex road
networks. The sum of theoretical routes to take within the road network increases
accordingly. Two aspects are related to this. The more routes that can be found as
possible candidates, the harder it becomes to determine the correct route within
the set of candidates. Furthermore, the runtime is also of interest, with shorter
ones desirable to maintain feasible detection performance.
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Our
approach

We now present our approach to trajectory inference that combines the ability
to search for a route in a wide-ranging geographic area with fast runtimes. Our
approach uses sensor data gathered by smartphones and is limited to data from
zero-permission sensors to stress the threat to user privacy. Hence, we consider
it an attack that can be embedded in the context of UBI. The inference attack
is based on the idea that a trajectory is a sequence of turning directions and
distances similar to Waltereit et al. [389]. Consequently, Funke and Storandt
[134] state that the problem of map matching can be reduced to retrieving the so-
called path shapes in a street network. The path shape is defined as a relative view
of the trajectory of a vehicle of the following form (d1, �1, d2,… , dn−1, �n, dn)where �i is a turn with a specific turning angle. di−1 and di are the distances
driven before and after the turn. Such a trajectory may produce a unique pattern
that can be found in a street network like OSM.

Uniqueness
of a
trajectory

The uniqueness of a pattern depends on several aspects. Although the number
n of elements in a path shape may be relevant, individual elements are also
essential. The type of curve can be used as a curve is defined by its angle of turn,
denoted as �. Since vehicles follow a road network, the measured turn angle
is dictated by the road network and, therefore, may be found in the map data.
Its entropy may vary depending on the road network, though [48], hence we
also include as many additional features (see Section 12.2.2) as possible. The
orientation of the driving path can limit the search space, which can also reduce
the number of potential routes [231]. Furthermore, distances between curves
can be used to constrain sequences of curves [389]. A detached consideration
of distances is not useful. However, the sections traveled allow insight into the
curvature of a route, indicating if a road tilts more to the left or right, as proposed
by Narain et al. [276]. This information may yield a high entropy, which can be
used to reduce the search space further. Finally, the route search can incorporate
additional knowledge found in sensor data. This includes stopping times at traffic
lights or traffic circles (c.f. Chapter 8) that are also present in OSM.

Data sourceInformation on distances and turns can be derived from the accelerometer acc
and the gyroscope gyr as presented in Chapter 4. Furthermore, the turn angle �
and the curvature can be determined using consecutive readings of gyrz.

12.3.1Threat Model

AdversaryTwo parties are present in the given scenario: The driver and the adversary. The
adversary’s objective is to determine the driver’s trajectory without relying on
standard location services such as GPS, WiFi, or mobile cells, since access
to these data is usually restricted (c.f. Section 3.1) but uses sensor data from



324 12. RECONSTRUCTING TRAJECTORIES BASED ON SENSOR DATA

zero-permission sensors. Therefore, he relies on data from the accelerometer,
gyroscope, and magnetometer that are present in most modern smartphones. In
the case of UBI he may use the transmitted sensor data from clients, although this
side-channel attack is not limited to this context. The needed data can be gathered
using any honest-but-curious app that may be available from the app store in
a disguised shape, as it is common for such attempts (see Chapter 10). Data
collection can be triggered by movement based on the accelerometer [231, 276]
to reduce the impact on performance or narrow the data stream. It is sufficient for
an adversary to gain access to the sensor data to process it a posteriori. Hence,
we assume that the smartphone is present during trips to collect the respective
data and then submit them to a colluding server.

External area
knowledge

Another assumption is that the attacker needs to know the approximate area,
such as the city or region, of the victim in order to make the route search
appropriately efficient. For example, it is possible to make an approximate
estimate of the region by performing a geo-lookup of the device’s IP address
during data submission. Since our attack is intended to be efficient for large
areas, such an estimate should be sufficient. No further information a priori
about the victim is necessary. In particular, any route within the geographical
region and the respective street network is equally likely to be taken. For example,
the attacker does not incorporate heuristics about road usage into his guess.

Fixed
smartphone

position

Last, since the attack is based on sensor data from a smartphone, it is required
that the device is in a fixed position (e.g. pocket, cup holder, charging tray)
while recording data to only measure changes in sensor readings due to driving.
This requirement is similar to any use case that processes sensor data from
smartphones in a mobile environment (e.g. Chapter 8). However, this is a
meaningful and sustainable assumption since laws in most countries prohibit
using smartphones while driving (even when stopped e.g. at traffic lights) for
safety reasons.

12.3.2 Challenges

Similar to the previous attack on driver identification (see Chapter 11), trajectory
inference attacks are simultaneously subject to several challenges to be applicable
in a real-world scenario.

Sensor
accuracy

We discussed the varying accuracy of sensor data from device to device and
manufacturer in Section 2.3. In particular, noise and errors within the sensor
data stream have to be dealt with to accurately depict a path shape of a trajectory.
External factors such as the environment may also implicate the sensor accuracy.
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For example, the magnetometer is susceptible to magnetic distortion induced
in a vehicle e.g. through the speaker [187]. Additionally, the road quality or
the vehicle itself may produce additional noise caught by the accelerometer or
gyroscope.

Driver
behavior

As depicted in this part of the work, different drivers have different driving styles.
Individual behavior and traffic conditions inflict the sensor data gathered within
the attack, eventually resulting in different sensor readings even for the same
road segment. As the approach is based on path shapes, turns are of particular
interest. However, detecting these is difficult, especially on wide and curvy roads.
The distinction between a slight turn or a curvy road is closely related to driving
behavior but is vital in route recognition. We have seen similar challenges within
the detection of traffic circles in Chapter 8. The detection problem is further
complicated by additional noise that is introduced into the FPD by changing
lanes or overtaking other vehicles, braking, and accelerating [276].

Map data
quality

Recent map data with an accurate street network to successfully project path
shapes on this reference material is crucial for detection. This includes the
completeness of the map data to extract the required information for the attack,
such as turn angles. Since our data source, OSM, is based on crowdsourcing,
the quality, informativeness, and up-to-dateness strongly depend on volunteers.
Although there are specific guidelines on how particular network elements must
be modeled, the quality of map data for a specific region differs. Especially
wide or multi-lane roads have to be treated separately because their modeling
often differs from reality, as we have shown in Section 5.5. Two challenges
are amplified here, but, as already mentioned, especially such roads allow for a
broad bandwidth of driving behaviors and, ultimately, sensor patterns. In OSM,
for example, multi-lane roads are represented as single lanes unless they have
structural separation. We also stress this in Section 5.5. As a result of this
deviation, sensor data cannot be mapped to the road network, making route
recognition difficult.

12.4Building Blocks

In this section, we first introduce the sensor data that is the fundamentals of the
attack. It is comparable to the data used in the context of UBI, which means
that the attack can be applied to this area. Next, the attack is formally prepared
by outlining an appropriate model that efficiently and effectively supports route
search. Then, the process is outlined of how the data from a data source (OSM)
is appropriately prepared.
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12.4.1 Sensor Data

The foundation of the attack is provided by the unprotected sensor data of IMU,
which generates a series of multivariante time series data . We adopt the
notation of measurements ml ∈  here, which was introduced in Section 5.2.

ml = ⟨t, ⃗acc, ⃗gyr, v, loc, ℎ⟩

The attack is based on path shapes that require turns and distances to be ex-
tractable from a measurement. Turns may be detected using the gyroscope as
explained in Section 5.4. Recall that due to the limitations and error-proneness
of the magnetometer, a heading ℎ cannot be used consistently for the detection
of curves. Due to this inaccuracy, it is only used for the approximate determi-
nation of vehicle orientation but not for the detection of curves. In addition, we
calculate the distance di covered by between two measurements mi and mi−1based on v using di = (vi+vi−1)∕2 ⋅ (ti − ti−1) and add that to each measurement
ml. Consequently, v may be estimated based on methods initially mentioned in
Chapter 4. Experiments have also shown that the distance derived using solely
IMU data is from varying accuracy. This fact will be incorporated into the attack
adequately. Each measurement is subject to data cleansing, such as removing
outliers (e.g. peaks in velocity that result in unrealistic distances between mea-
surements). Since the attack is a zero-permission sensor attack, access to GPS
data is not required. In a realistic scenario, we assume ∅ for any loc, although
we collect the location for measurements in order to capture the ground truth for
evaluation purposes. We also apply smartphone-to-vehicle alignment techniques
that are described in Chapter 4 to allow arbitrary positions within the vehicle.

Recapitula-
tion of

elements
from roadr

The attack will also take into account special patterns in the sensor data that
have high information content because of their rarity. These can significantly
reduce the search space depending on the environment and increase the detection
quality. In particular, elements identified in Chapter 8 are used. The elements in
question are traffic circles and traffic lights. Both of them are also included in
the map material of OSM and therefore fulfill the important requirement of data
availability. The algorithms presented in the corresponding chapter are applied.
Traffic circles are detected by the unique M/W pattern, whereas the speed profile
and idle phase support the detection of traffic lights.

12.4.2 Model

In the following, we present the model that allows the effective search of
candidates for the driven route.
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�

Figure 12.3Example path  with n = 4 path events pi.

Constructing Paths

We now formally define a path based on the idea of path shapes [134] but extend
it to also take into account the covered distance. The path  represents the
relative movement of a vehicle based on recorded sensor data measurements 
as a sequence of turns (or traffic circles) with distances, the so-called path events
p. Let P be a function that generates them based on measurements: P ∶  ←→  ,
then a  is an ordered sequence of n path events (p1,… , pn). Each path event piis a vector defined as

pi = ⟨�, tpre, tpost, dpre, dpost, ℎpre, ℎpost⟩

with � being the angle of the turn starting at tpre with incoming heading ℎpre and
ending at tpost with outgoing heading ℎpost. dpre and dpost denote the distance to
the previous and following turn, respectively. Figure 12.3 illustrates the idea of
a path  with n = 4 path events pi.
Street Network

Similar to previous works [276, 389] the search for  is executed within a di-
rected graph that represents our street network based on G = (V ,E) (c.f. Sec-
tion 5.5). We construct a street network  = ( ,,A,B,L,C) that holds the
required information to efficiently lookup a given path  .  is the set of unidi-
rectional road segments s1,… , sm with a well-defined, single start and endpoint.
A road segment is deterministically traversed from start to end.  is the set of
all connections c1,… , cn. A road connection ci enables the transition between
two road segments (su, sv) by defining a connection, i.e. s ∼ v ∈ V . The con-
nection is likely due to a shared geographical point. It is represented as a tuple
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ci = (su, sv) with su, sv ∈  . A road connection can be considered an intersec-
tion, i.e. c ∼ e ∈ E.
A road segment is a vector in the 2-dimensional space and thus a specific
direction. For example, a path runs from north to south. This orientation can
change at connections either left, right, straight, or reverse (in terms of a u-turn)
but not within a segment. Let A be a function to calculate the angle between
two segments meeting at a connection ci. That angle allows to refine the type of
the connection further and not only binned orientation changes. We consider a
connection a turn, if a threshold is exceeded, i.e. |A(ci)| > 30◦ holds. Thus, set
the of all turns is defined as ̂ = {c | |A(c)| > 30◦, c ∈ }. Consequently, that
implicates everything not being a turn being a straight connection, resulting in
the disjoint set ̃̂c =  ⧵ ̂.
We are now looseing the strict separation of turns and straights by introducing so-
called slight turns. These take into account the inaccuracies in driving behavior
already mentioned. First, we define a straight connection cj as a connections
where |A(cj)| ≥ 30◦ ∧ |A(cj)| ≤ �S holds. �S is called slight-turn threshold.
This marks a transitory zone from straight to turn and hence is constrained to
be �S ≥ 30◦ (e.g. �S = 60◦). A slight turns yields a turn as well as a straight
connection, i.e. ̃̂c ←← cl, ̂ ←← cl. Hence, ̃̂c and ̂ are not disjoint anymore. This
enables handling overlapping situations explained in Section 12.3.2. In particular,
handling specific connections in hybrid way takes into account different driving
styles and prevents missing undetected turns eventually degrading trajectory
inference. A’s output is aligned with the compass direction with negative values
indicating a movement to the left.
B is crucial for the attack as it is used to reduce the search space. It defines
the orientation of a road segment in relation to the north after leaving the
road connection that connects it to other road segments (i.e. bearing). We
will emphasize the benefits when explaining the attack in Section 12.5. Two
additional utility functions, L and C, are used to calculate the length of segment
si and its curvature, respectively.

12.4.3 Network Construction

We formally defined the street network  in the previous section that is to be
constructed based on OSM data (c.f. Section 5.5). Recall that the OSM street
network is based on nodes and ways, i.e. G = (V ,E). However, a way is a
semantically and syntactically connected sequence of nodes that are used to
describe the shape of that specific way. A way is composed of way segments that
represents the shortest straight connection between two nodes. They are used to
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Figure 12.4Section of the processed road network. Shown are the extracted road segments () and
road connections () based on data from OSM.

describe the shape of a way. This segment is an element of V . The direction of a
way is also of interest since G is a directed graph. Consequently, we create two
way segments for any way other than single-direction ways (e.g. one-way streets).
Metadata such as the street type and the speed limit are extracted from OSM
and stored along. Intersections within the OSM street network are identified by
looking for edges E that connect more than two vertices V . They are relevant
for deriving the set  .

Detection of Links between Intersections

Differences
from OSM

First, it is essential to know that only intersections allow one to take different
routes within a street network. In particular, a way in OSM can skip an intersec-
tion. Therefore, a way is not semantically considered a link between intersections.

Projecting
way
segments to
road
segments

Moreover, we consider every e ∈ E, i.e. way segment, as a potential connection
between two intersections. For efficiency reasons, however, the way segments
are to be combined which do not represent information about the structure of
the graph other than connections between two nodes. This procedure will allow
a fast search for the link between two arbitrary intersections. The composition
of way segments is the basis for the road segments, which will be created after
preparation in the next phase. The difference becomes clear with the help of
Figure 12.4; each colored line represents a road segment. One can see that these
often span multiple nodes that are represented as circles but are still shape-aware
by respecting way segments.
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Implementa-
tion details

On this basis, we generate a list of all connections between two intersection pairs.
This is achieved by starting at an intersection and aggregating successive way
segments until another intersection is reached. The traversal is performed by
using the endpoint of a way segment as the start of the next segment. Eventually,
a link starts at an intersection and ends at one. Dead-ends are taken into account
by handling them accordingly since a second intersection will not exist. To
calculate a road segment’s curvature later, we still store each way segment, in
particular nodes, between two intersections. The process is completed when each
intersection identified previously has been processed. Traffic circles are excluded
at this point.
Extraction of Road Segments

Definition A road segment is defined as the direction-aware link between two connections
or intersections. They were identified in the previous step. A road segment is
composed of way segments (i.e. legs) that are merged to allow efficient traversal
within our attack. It may bend excessively between both ends, as shown in
Figure 12.4 where the colors indicate a whole road segment.

Finding road
segments

Let a function Ã exist to calculate the angle between three points2 and L̃ to
calculate the geodeasic distance between two points [201]. A road segment
is an ordered sequence of n OSM nodes with geographical information: si =
(vi,1,… , vi,n) based on the way segments on which it is constructed by. Then
there should be no combination of the nodes ■ =

(

vm, vm+1, vm+2
) with

L̃(vj , vj+1) > 15m ∧ vj ∈ si where Ã(■) > 30%. Otherwise, that segment
is considered to contain a turn, which is likely to happen in real-world data sets.

Refinement
of road

segments

The circumstance that a road segment contains a turn violates the model. There-
fore, it must be eliminated by splitting that road segment at the point where Ã
has its maximum. We consider additional requirements during split that the turn
is ensured to not split within a turn composed of multiple nodes in OSM. A split
replaces the existing si with two new road segments. This process is repeated
until each road segment satisfies the no-turn constraint. This can be seen in Fig-
ure 12.4 where a road segment is not necessarily limited by two intersections,
i.e. e that connect more than two vs.

Properties of
road

segments

Our model  allows to calculate the length and curvature of any given s ∈ 
using the two functions L and C. L calculates the length of a road segment by
aggregating the lengths of all the way segments. C is determining the curvature
2 For two-dimensional points A,B,C, Ã = arccos(AB

2+BC2−AC2

2×AB×BC ) may be such a function
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a) Ongoing turn. The ongoing turn (col-
ored) spans multiple nodes resulting in a
miscalculation of the turn angle. The cross
marks the actual turn according to defini-
tion.

b) Multileg turn. A turn may proceed over
multiple segments in reality. Each color
represents a segment that is separated by a
connection (i.e. turn) marked with a cross.

Figure 12.5Different challenges present in G. The challenges have to be considered when modeling
a street network  to match it against driven paths  .

by aggregating the angles for each adjacent node triplet. In addition, B allows
to calculcate the orientation or bearing when entering a road segment w.r.t. the
model.

Connection of Road Segments

Once all the road segments  have been identified, they must be connected
accordingly so that  contains all possible paths that a vehicle can take. Thus,
we now form the set  that not only holds all intersections (as defined by OSM)
but also turns.

Orientation
changes
during
traversal

The angle of a connection ci = (su, sv) can be determined by selecting one
point in the incoming segment su and one in the outgoing segment sv as well as
the connection itself. Subsequently, the angle can be calculated by Ã for these
three points. Based on the angle, the direction of the turning maneuver of the
intersection can also be found as described (left, right, straight). However, this
simplistic approach is widely used in the literature [231, 276, 389], but is limited
in its feasibility in matching real driving patterns in a street network model. As the
set of connections  is essential to match a  , its completeness and correctness
are crucially important. Now we explain the main derivations in detail.
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Ongoing
turns

OSM uses way segments containing multiple nodes to describe the shape of the
underlying street. The simplistic approach ignores the fact that, commonly, more
than three nodes may comprise a turn. This case is depicted in Figure 12.5a
where only the highlighted points are considered to be the turn. A calculation
based on the two closest nodes will not yield the correct angle. To also consider
the challenge of differentiating slight turns and curvy roads, we extend the search
space by including composite road connections that may represent undetected
turns depending on the driving behavior. Therefore, we greedily aggregate
neighboring nodes on the start and target segment, respectively, until the distance
between two neighboring nodes is above 10m, the slope changes, or the angle
surpasses 10◦.

Composite
turns

In a complex road network, intersections can occur in greater numbers and in
confined spaces, especially in urban areas. The model created so far considers
connections in isolation. Assume that the segment connections c1 = (su, sv) and
c2 = (sv, sw) are movements to the right with A(c1) ≥ 15◦ and A(c2) ≥ 15◦,
respectively. Furthermore, the segment sv is a short segment with L(sv) < 30m.
Depending on the steering maneuver, the two immidiate connections c1 and c2may be identified as a single (slight) turn. Figure 12.5b illustrates this issue. Each
color and shape is a valid road segment according to the definition. However, the
middle segment may not be separated by dedicated turns in a realistic scenario.
To account for such cases, we include an extra connection c3 = (su, sw) that is
the composite of c1 and c2 in terms of shape, length, and angle. However, the
definition of turn still is applicable; thus, c3 is only a valid turn if its angle is
above the threshold of 30◦. This yields a larger  but allows for a more thorough
evaluation of possibly detected bends on curvy roads.

Unique
shaped turns

In addition to previous work, we also include traffic circles in the attack as they
have a unique pattern (explained in Chapter 8), significantly reducing the search
space once such a pattern is present in  . Traffic circles are identified based
on a tag in OSM. A traffic circle is handled as a standard intersection, and a
connection is also marked as a traffic circle in our street network . Having both
information enables the search in  even if the sensor pattern (for a traffic circle)
is not recognized correctly. We explain in detail the reasons for missing that
pattern in Section 8.6.

12.5 Inferring Trajectories From Sensor Data

Starting
point

We have constructed the street network  = ( ,,A,B,L,C) that provides
information on i.a. connections. At each passed connection ci ∈ , the route of
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a vehicle may change due to a steering event. We collect steering events in the
form of turn events pi ∈  that are obtained from .

Overview of
the approach

To match a given trajectory  in , we derive potential route candidates ∗. A
route candidate r∗i ∈ ∗ is considered a sequence of n turns r∗i = [ĉ1,… , ĉn]present in . Consequently, for each turn event pi, we identify similar turns
within the set of all turns ̂. This yields a set of turn candidates ̂∗

i ⊂ ̂. Then
all consecutive turn candidate sets ̂∗

i and ̂∗
i+1 are intelligently connected w.r.t.

the given  to form route candidates ∗. Ultimately, a r∗j ∈ ∗ must be chosen
that is considered the best match for a given path  .

StructureWe thoroughly explain each step in the following section. First, we explain how
to retrieve turn candidates ̂∗. Then the candidates are exploded to full route
candidates ∗. Lastly, multiple scores are incorporated to rank r∗j ∈ ∗ to
derive a decision on the best candidate for the matching route for  .

12.5.1Retrieving Turn Candidates

Extensive
candidate
set size

The set of turn candidates ̂∗
i for each pi ∈  is constructed by selecting turns

from ̂ that have a specific similarity to the path event. The set of turn candidates
should contain as few elements as possible to allow efficient processing and
manageable size of ∗ but must contain the ground truth, i.e. the actual turn.
Therefore, an efficient filtering approach is needed.

Path eventsRecall that a path event is defined as pi = ⟨�, tpre, tpost, dpre, dpost, ℎpre, ℎpost⟩.To be a reasonable turn candidate, any connection ĉj = (su, sv) must satisfy
three constraints given to be included in ̂∗

i ←← ĉj for pi, that is, the magnitude
of the turn angle �, the incoming and outgoing orientation w.r.t. the heading ℎ,
and the distance d to related turns.

Similarity of
turn angle

The turn direction must be respected when selecting a turn from the set of all the
turns. Furthermore, the angle of the turn A(ĉj) must be similar to pi,� . However,
it cannot be assumed that the measured angle corresponds to the reference angle
in OSM. Therefore, the following condition is applied to meet the similarity:
|pi,�−A(ĉj)| ≤ �A. �A allows to match turns even when angle by OSM is different
from the sensor data. This is required due to two aspects. Either measurements
of the gyroscope may have inaccuracies even though it has been proven to be
reliable [276], or the angle derived from OSM and real-world trajectories are
divergent. Since it is crucial to not miss the correct turn, it is recommended to
choose a rather relaxed value for �A
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Equality in
orientation

Per definition, a turn ĉj allows a heading change w.r.t. the geographical orien-
tation. Based on Narain et al. [276], the orientation after a turn event pi,ℎpostwill be used to constrain the selection of meaningful turn candidates. Hence, the
rough orientation after passing a turn must match the outgoing’s segment direc-
tion B(sv) of a turn: | pi,� − B(sv) | ≤ �M . Apparently, magnetometer readings
have to be normalized within the compass range of [0◦, 360◦] to be comparable
with a segment’s orientation since the IMU’s output is unbound. We also use
�M as an error threshold for the magnetometer. As explained in Section 2.3 the
magnetometer is susceptible to disturbances that are incorporated into the attack.

Limitation of
length

 contains all meaningful turns as single path events p1,… , pn. Therefore,
the distance between each turn pi and pi+1 cannot contain any additional turn.
Road segments are designed with this constraint in mind so that the length of
a road segment (as of L) is the distance between its bounding intersections.
Hence, additional filtering can be applied while selecting reasonable candidates.
This is why we compare the distance to the preceding and subsequent turns
(intersections) similar to Waltereit et al. [389]. Let us use the following predicate
that must be satisfied for each turn candidate ĉj to be included in ̂∗

i as a valid
candidate for pi: L(su) ≤ (1+�S ) ⋅pi,dpre + �s ∧L(sv) ≤ (1+�S ) ⋅pi,dpost + �s. �S
represents an error threshold for the estimation of rough distances that occurs due
to the nature of IMU data. This is due to the fact that we derive distances from a
combination of acc and gyr, and therefore the distance between two turns might
be inaccurate in some terms (see Chapter 4). The purely relative consideration
exacerbates the problem of exact turn detection, in particular, the exact turn
point, especially in the case of immediate turn sequences. Unlike Waltereit et al.
[389], an absolute error term �s is also introduced to handle such cases.

Outcome This step yields a set of turn candidates ̂∗
i for each element pi ∈  . Traffic

circles are also included in each respective set of candidates but eventually
significantly reduce this set in size due to the given to-be-met constraints.

12.5.2 Exploding Candidate Routes

Multiple
candidate

sets

Once the respective candidate sets ̂∗
1,… , ̂∗

n for a path with n path events have
been created, the existing route candidates w.r.t.  are about to be constructed.
It is assumed that two successive candidate sets are surjective, although, due to
the isolated identification of turns in the previous step, that might not be the case
yet.

Processing
surjective

sets

The surjective property is subject to this processing step. The combination of
two successive candidate sets ̂∗

i and ̂∗
i+1 is assumed to be non-injective. We
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are about to find the intersection ̂∗
i,i+1 = ̂∗

i ∩ ̂∗
i+1 between both sets. The

intersecting elements are defined in such a way that there is at least one link
from each ĉa ∈ ̂∗

i to any ĉb ∈ ̂∗
i+1. A link is considered a directed sequence of

l segments between two turns denoted as s∗ = [s1,… , sl]. If such a link exists,
the pair of turns (ĉa, ĉb) intersects and is included in the set of results ̂∗

i,i+1.
Connection
of candidates
via straights

G and ultimately  is a fully connected graph; therefore, a sequence could exist
between any given combination of two turns. However, in order to include a
turn combination (ĉa, ĉb) and its sequence of segments s∗a,b as a potential part
of a route candidate r∗, the covered distance L(s∗) (that is ∑

s∈s∗ s) must be
within the interval

[

(1 − �S ) ⋅ pi,dpost − �s, (1 + �S ) ⋅ pi,dpost + �s
]

. Furthermore,
the segment sequence between two turns has to be linked by straights; hence
∀s ∈ s∗ ∃c ∈ ̃̂c ∶ c = (si, si+1) must hold. Turns as connectors are excluded
because they should have been present in the sensor data. That said, the relevance
of slight turns is shown.

Tree-based
linking
process

Previous work has introduced a pairwise matching approach to the problem of
finding intersections between n sets that reduce the runtime to log2(n) [231, 389].
A tree structure allows parallel processing of candidate pairs: When processing
each combination of the n-ary Cartesian product ̂∗

1 ×⋯ × ̂∗
n, the problem is

reduced to processing two-set Cartesian products ̂∗
i × ̂∗

i+1,… , ̂∗
n−1 × ̂∗

n in
parallel. In the next step, intersecting combinations such as (̂∗

i ∩ ̂∗
i+1)× (̂∗

i+2∩
̂∗
i+3) are analyzed w.r.t. the shown constraints.

Optimization
of the
explosion
process

Finding s∗, i.e. the sequence of segments that connects two turns is an expensive
operation of quadratic processing time since the traversal of  is elaborate.
Therefore, attempting to perform this process with as few elements of Cartesian
products as possible is desirable. We apply the following optimizations:

▶ Waltereit et al. [389] proposes that all turns ĉ′ ∈ ̂ are identified
preemptively whose distance and approximately correspond to the
distance pi,dpost and thus are reachable from ̂∗

i . Originating from each
turn candidate in ̂∗

i , we start traversing the street network and collect
each visited c′ in a set ∗′

i+1 on that path. Traversal stops if the length
of the aggregated road segments exceeds the approximate distance
to the next turn pi,dpost . The second candidate set can be reduced to
turns that are in the original set and in the visited set, ̂∗

i+1 ∩ ∗′
i+1 (the

intersection of sets in this case is used in its original understanding,
i.e. a set of common elements of sets).
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▶ Knowledge about a path further reduces potential candidates that
would need mapping in a later iteration. Given a sequence of road
segments s∗ between two turn candidates, we discard any tuple that
contains duplicates, i.e. the same road segment is traversed more than
once, as this can happen especially on long trajectories.

▶ Next, we can incorporate the recorded heading change yi = pi+1,dpre −
pi,dpost and the expected heading change y′i =

∑

s∈s∗i
B(s) where s∗irepresents the segment sequence from a connection i to a connection

i + 1. The filter rule to exclude a turn pair from ̂∗
i,i+1 based on the

heading prospection is now defined as | yi − y′i | > �H .

Outcome The process is repeated until all turn pair candidate sets ̂∗
1,… , ̂∗

n have been
processed and merged accordingly in the iterative approach. The final set is
defined as the set of route candidates ∗ = ̂∗

1,…,n that contains fully connected
routes.

12.5.3 Ranking of Candidate Routes

Viewing and
comparing

route
properties

The decision to select the most likely route candidate r∗i ∈ ∗ is supported by
five similarity metrics. Normalized metrics, which are i.a. based on the selection
criteria introduced previously, consider different aspects of the route. The more
semantically similar a candidate r∗i is to the actual route r, the lower a penalty
score �∑ based on each metric � and the corresponding weight �, similar to
Narain et al. [276]. The penalty score incorporates information from  and
compares it to  obtained from . The rating is performed for each candidate
in the set ∗.

�∑ = �A�A + �D�D + �H�H + �C�C + �TL�TL

Turn angle
similarity

According to previous work [231, 276], we calculate the similarity of the turn
angle �A between the recorded path p1,… , pn and a route candidate ĉ1,… , ĉn.
Eventually, the average difference of a sequence with n turns is calculated by

�A = 1
n

n
∑

l=1
|

(

pl,� − A(ĉl)
)

|

Turn
distance

similarity

Our model assumes no turn within a road segment sequence that connects two
turns. Similar to previous works [137, 138, 389, 427], we calculate the deviation
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of the distance between two successive turns as we measure it in  and  . The
distance between two turns in  is given by a path section’s pi,dpost property. This
is compared to L(s∗i,i+1), i.e. the distance between turn i and i + 1. This results
in the following equation:

�D = 1
n − 1

n−1
∑

l=1
|

(

pl,dpost − L(s∗l,l+1)
)

|

Heading
change
similarity

We constructed a score �H to compare the similarity of the heading change
between two turns. Hence, we present the turn pair matching algorithm by using
yi and y′i introduced in the previous section. This metric is a generalized view of
the heading change without incorporating information about how the change is
developing but allows for differentiation between straighter from curvier roads.
For example, a highway change may be lower than rural roads. Hence, we define

�H = 1
n − 1

n−1
∑

l=1
|

(

yl − y′l
)

| = 1
n − 1

n−1
∑

l=1
|

(

pl+1,dpre − pl,dpost
)

−
∑

s∈s∗l

(B(s)) |

Segment
sequence
curvature
similarity

The exact curvature between two turns is considered to be of high relevance
within the selection process, as other work has already stated [276]. The curvature
can be considered as a sequence of immediate heading changes. Therefore, this
metric reflects the heading change similarity metric as more nuanced. In the
previous metric, the heading change was determined by two points, one after
turn ĉi and one before turn ĉi+1. The idea of the segment sequence curvature
similarity metric is to increase the number of observation points by determining
the heading after each partial segment si,j ∈ s∗i,i+1 between those two turns ĉi
and ĉi+1 using B and the distance traveled accordingly. Based on the distance
traveled, two (mo), mp) ∈  corresponding to the measurement at the beginning
as well as at the end of a road segment si,j can be determined. All measurements
i,j = [mq ∈  | mo,t ≤ mq,t ≤ mp,t] corresponding to the measured values
falling in this interval. In the context of the measured values, a change of direction
and finally, the heading can be determined based on i,j , which is denoted by
B(i,j) for the sake of simplicity. Finally we can construct the metric �C as:

�C = 1
z

n−1
∑

i=1

li
∑

j=1
| B(si,j) − (B(i,j) − pi,ℎpost ) |
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Figure 12.6 Illustration of difference between atomic heading changes and the ongoing curvature.
Both information is used for the calculation of the heading change similarity metric and
the segment sequence curvature similarity. The curvature is composed of single heading
changes and describes the course of a road more closely.

where z is the total number of segments and li the number of segments between
two turns ĉi and ĉi+1 , i.e. li = |s∗i,i+1|.
This approach allows scenarios such as the following to be considered accord-
ingly. Given that two turns ca, cb are linked by s∗a,b = [s1, s2, s3). Now, if
B(s1) = −B(s2) holds, the heading change similarity metric would depend sub-
stantially on s3 and the curvy progression of s∗a,b is lost. Figure 12.6 shows the
relationship graphically again. The course of the line corresponds to the route
as in . Each line corresponds to a measurement m. Road segments s1, s2, s3 are
confined by turns in between that are used in this approximation point.
However, this metric is sensitive to temporary events such as overtaking or spe-
cific driving behaviors as explained in Section 12.3.2. It also depends on the
accuracy of the distance, which sometimes degrades (c.f. Chapter 4). Neverthe-
less, the metric has proven to provide valuable insight into the overlap of a route
candidate with a path.

Traffic light
placement

similarity

Further support for decision making lies in consideration of traffic light positions
along a route candidate r∗ Idle times in the sensor data can be caused by a traffic
light (c.f. Section 8.4). The goal of the metric is to describe how many of these
idle times match traffic light positions in the map data. Note that the stationary
phase does not necessarily have to occur precisely at the traffic light position
(e.g. because several cars are waiting). This is taken into account by defining an
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area around a traffic light as a detection zone. Hence, we define

�TL = 1 −
p
q

where q is the number of detected traffic lights and p the number of matching
traffic lights. If no traffic lights are detected, set �TL = 0.
Furthermore, traffic lights allow the meaningful exclusion of candidates on
semantic terms. The construction of  also included information about speed
limits. An educated guess can be made based on both indicators: We assume that
it is improbable to observe a long idle phase (due to a traffic light or not) on a
road segment with a speed limit of 100 kmh−1 or a specific type. Consequently,
we may exclude such road candidates similar to Li et al. [231].

12.6Evaluation

StructureWe now evaluate the proposed attack. First, we describe the setting and present
the default parameters. Subsequently, the quality of the sensor data is examined,
showing how the thresholds are defined based on the findings. The success rate of
the attack is comprehensively investigated based on three areas and a comparison
with related work, namely Narain et al. [276] Waltereit et al. [389] is shown. The
filters and scoring mechanisms used in the attack are then considered to conclude
their goodness. Furthermore, the influence of other parameters on the success
rate is considered. Last, an analysis of the runtimes follows accordingly in order
to be able to make a statement about the required efficiency.

Rough
match

To assess the ability of the approach to infer a correct route, we define a set of
k elements that includes the top-k elements of a candidate list ∗ ordered by
the score defined in Section 12.5.3. Observing a list of candidates enables us
to measure an attacker’s competence in reducing the search space to a specific
level. The given position of the correct within the k elements is subsequently
denoted as rank. Furthermore, we differentiate between an exact match and a
rough match. An exact match is defined as the exact match of the driven route
with the candidate route, while a rough match loosens this constraint only by
requiring the candidate route to overlap at least 80% with the actual route. Even
a rough match allows an attacker to derive movement patterns of a victim, such
as frequent locations, and still is a severe privacy threat, in particular, when
collecting data over a lasting period.
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12.6.1 Setting

The attack was evaluated using the real-world data pool introduced in Section 5.2.
We limited the data sets to routes from the city of Regensburg, Germany, and
its surroundings. Therefore, the data set contains realistic routes that also take
into account the diversity within the sensor readings to respect the challenges
explained in Section 12.3.2. If needed, smartphone-to-vehicle alignment was
performed using the approach depicted in Chapter 4 to allow recurring data
orientation that is needed for the attack to work. This is particularly true for
readings from the accelerometer, as the next section will show.

Table 12.3 Overview of default parameters that are used for the attack.

Parameter Value
Scoring weights �A = 0.5, �D = 1.2,

�H = 0.5, �C = 1.0,
�TL = 0.2

Distance error rate �S = 0.35
Road width threshold �s = 50m
Magnetometer filtering threshold �M = 90◦
Gyroscope filtering thresholds �A = 80◦, �H = 80◦
Slight turn threshold �S = 60◦

Parameters Several parameters are introduced to handle i.a. the difference between the
reference data from OSM and the sensor data recorded. Also, parameters are used
for scoring to select the best-fitting road candidate. The default parameters are
shown in Table 12.3. Section 12.6.2 will explain the determination of threshold
values. Also, we analyze the impact of altered parameter values in Section 12.6.4.

Benchmark
with related

works

Narain et al. [276] provided real-world data sets for trajectories in the city
of Boston and Waltham, USA. This data is used within the benchmark in
Section 12.6.3 that compares the ability to infer trajectories between our approach
and related work Narain et al. [276] and Waltereit et al. [389]. The data contained
69 trips in Boston and 63 trips in Waltham and were collected by four different
drivers3. The provided data did not include all necessary sensor readings to derive
the speed and, ultimately, distances based on sensor data. Hence we estimated
the required properties using GPS traces.
3 The routes provided were filtered accordingly by the authors: Some trajectories containing sensitive
information have been removed, so there may be discrepancies between the evaluations of Narain
et al. [276] and our replicated experiments.
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d) Distance error (absolute). Distribution
of the distance error and respecting thresh-
old �s illustrating that more than 50% of all
cases have a deviation less than 100m for
segments of different lengths.
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Figure 12.7Overview of the determination of different thresholds. The attack and respective
thresholds are driven by sensor data (FPD) that differ in quality and accuracy. In particular,
distance, turns and headings are of interest.

12.6.2Sensor Accuracy

Accuracy to
define
thresholds

We recap the sensor accuracy that is relevant for the proposed attack to give
an understanding of the limitations. As a side-channel attack, data acquisition
is limited to zero-permission sensor data generated by the IMU. The fact that
this data fluctuates qualitatively has already been discussed in the context of
this work (see Section 2.3). Thus, corresponding thresholds were introduced,
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which nevertheless allowed the execution of the attack. The thresholds will be
quantitatively classified based on empirical data in this section.

Gyroscope Particular patterns in the sensor data allow the detection of traffic circles and
curves. The procedure was described in Section 5.4 and Section 8.5. Essential for
the detection of the given events is the gyroscope. In Figure 12.7a the deviation
of the turn angle between the measured sensor data and the data stored in  is
depicted. This value is important to correctly select the corresponding candidates
in  for ps. Figure 12.7b indicates the strength of the heading change error,
which ultimately enables the curvature calculation. The attack uses curvature to
verify whether a selected road candidate is viable for a given path. The basis
for evaluating the turn angle errors and heading change errors are the test routes
and the corresponding curves and traffic circles that have been detected correctly.
Even for 95% of all values the error is smaller than 30◦; hence, the thresholds
are chosen to include the whole dispersion including outliers, i.e. �H = 80◦ and
�H = 80◦.

Accelerome-
ter

Distances are also recorded as part of the side-channel attack using the IMU,
in particular the accelerometer. Deriving distances based on acceleration values
is an error-prone process, especially in the case of arbitrary positions of the
smartphone in the vehicle (see Chapter 4 for a detailed analysis of this topic).
Distances, in turn, are an exclusion criterion when connecting pairs of curves
and serve as the basis for calculating the curvature. To account for the inevitable
deviation between the reference data (based on ) and the measured data, we
induced a relative distance threshold �S and an absolute distance threshold
�s. Figure 12.7c gives an impression of the degree of degradation of distance
accuracy of the distances derived from IMU and GPS compared to the reference
road segments found in . We can state that even though the GPS distance has
a lower deflection, the derived distances are still sufficiently accurate, as most
of them are below our chosen threshold �S = 0.35. In particular, 90% of all
road segments are up to 35% shorter or longer compared to reality. The absolute
numbers, as shown in Figure 12.7d, show that the major part of the deviations
for derived distances via the accelerometer are in a window of up to ±50m.
As expected, the GPS does better. The value of 50m represents our absolute
threshold �s.

Magnetome-
ter

The magnetometer is used to filter turns before finding pairs of turns in a
successive step. It is used as a rough baseline to understand the direction of
a vehicle when passing a turn. Hence, we chose a rather large value of �M = 90◦.
This is in line with values from the literature [276]. It is based fundamentally on
the fact that, as already discussed, the magnetic field inside a vehicle is subject to
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Figure 12.8Overview of three different area sizes used for the evaluation. The geographical areas
of different sizes are used to construct . The size impacts the complexity for trajectory
inference.

disturbances, resulting in more significant deviations in the measurements. This
was empirically verified by placing a smartphone at rest in various positions in
the vehicle.

12.6.3Success Rate

Search
spaces
different in
size

The attack will be evaluated using the Regensburg test region in the following.
Thus, the correct detection rate of a driven route is of interest. At the beginning
of this chapter and in accordance with the literature [134, 231], we motivated that
the quality of recognition depends on the size of the region under investigation.
This seems reasonable w.r.t. the number of potential routes and is also tested in
this section. For this reason, we define three geographical areas Q1, Q2, and Q3
to investigate the recognition quality as a function of the region’s size. All routes
can be found in each search space to ensure comparability. The boundaries are
shown in Figure 12.8 and are defined as follows.
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b) Results for finding a rough match.
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Figure 12.9 Success rate for the trajectory inference attack across all test areas Q1-3.

Q1 An area (≈ 400 km2) covering the city of Regensburg and its surround-
ings to include all test routes.

Q2 An area (≈ 2000 km2) covering the entire district of Regensburg
including rural surroundings.

Q3 An area (≈ 4500 km2) including Regensburg and Ingolstadt, a similar
sized city.

First
impression

Figure 12.9 shows the success rate w.r.t. the three different geographical areas
Q1, Q2, and Q3. Overall, we can see that the detection performance is similar
for all three regions. From this point of view, the attack can be considered well-
scaling as the recognition quality does not drop compared to other works [231].
In particular, the success rate of a perfect match w.r.t. the best-ranked route is
67.14% for Q1, 66.43% for Q2, and 71.43% for Q3. However, while Q1 and
Q2 have an almost identical success of 90.00% (and 89.29% respectively) when
the five best-ranked routes are examined, Q3 decreases, as expected, to 87.14%.
It is noticeable that the success rate improves slightly for the largest region Q3,
although more route candidates are formed. However, the correct routes can be
determined more effectively from the sensor data due to better normalization
combined with the established similarity scores. Eventually, the correct route
achieves a higher score compared to other routes.

Impact of
the search
space size

It can be stated that between the consideration of the urban area of Regensburg
(Q1) and the inclusion of more rural areas (Q2), a negligible difference in the
recognition performance arises. One reason may be that other traffic structures
are used in rural areas, which differ from the routes driven (recall that those
routes are gathered in Q1). For Q3, peculiarly short routes or routes with only
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ing the exact match as the top 5 candidate.
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Figure 12.10ECDF plot illustrating the percentage of exact matches within different amounts of
candidates in dependence of the number of turns. The area size has a negligible effect
on the accuracy.

three turns were more challenging to find, resulting in a slightly lower success
rate. The results for rough matching are similar to Q1 and Q2 but post slightly
higher success rates than the exact matching case. In contrast, the detection rate
drops slightly for Q3.

Dependency
on the
number of
turns

The proposed algorithm exploits turns to place path events p on a map in an
initial step. The said turns, therefore, form the basis for detecting a path  . In
Figure 12.10, it can be seen that the correct recognition of the driven routes
increases as the number of turns increases. This is also consistent with related
work [231, 276], but the approach requires only a small number of such events
for meaningful recognition. Figure 12.10a shows the relative number of exact
matches where an attacker can trace the correct route uniquely. This is already
possible with three turns to 70% and increases rapidly. Note that the median
of turns within our data set is six turns. In Figure 12.10b a similar picture is
drawn, where the correct route can be found within the top 5 candidates. For
both cases, the influence of the area size is hardly decisive, which can most
likely be attributed to the definition of the similarity metrics. In summary, the
quality of recognition depends to a large extent on the turns, where the number
of candidates, i.e. the uniqueness of a path event p and the turns to choose from
̂ are relevant.
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Figure 12.11 Polar plots depicting the heading distribution of the different areas. Each bin repre-
sents 10◦. The areas are completely geographic oriented. 

Therefore, in the following, we consider the heterogeneity of the road network
based on Boeing [48]. The assumption is that road networks with turns in any
cardinal directions (i.e. bearing), and angles (properties that serve as selection
criteria) support high inference accuracy. We calculate the heading (or bear-
ing) distribution of the underlying areas. They are shown as polar plots in Fig-
ures 12.11a to 12.11c where each bin represents 10◦. It can be noted that although
the north-south axis and the east-west axis outline the maximum, the road net-
work is mainly balanced. Including a second city in the data set did not change
the fundamental structure of the road network as reflected by Figure 12.11c. This
is different, for example, from grid-based cities such as New York City [48].
Since the street network is evenly balanced, a route may also be in any geograph-
ical direction, thus having a decent amount of entropy that may be used during
turn selection, eventually reducing a set of candidates ̂∗

i .
Comparison to Related Work

Notes on im-
plementation

As introduced in Section 12.2, there are different approaches to the inference of
the trajectory. We compare our attack with the approaches of Narain et al. [276]
and Waltereit et al. [389] using both real-world data sets provided by the former
work. This allows us to simultaneously evaluate our attack on a different road
network to analyze any potential sensitivity related to different structures, e.g.
turn frequencies. Looking at Figure 12.12, it can be seen that unlike Regensburg
(c.f. Figure 12.12a), there is no north-south and east-west alignment, but the road
layouts are slightly tilted (c.f. Figures 12.12b and 12.12c). At the same time, the
network is sufficiently balanced so that sufficient preselection should be able to
take place based on the turns. The data provided are trajectories in the cities of
Waltham, and Boston, USA, collected by Narain et al. [276].

Impact of Turns
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Figure 12.12Polor plots depicting the heading (or bearing) distribution of the different areas used
in evaluation. Each bin represents 10◦.

Adjustments
to related
work

We reran all experiments using data provided by Narain et al. [276], however,
some recordings were excluded by the authors from the provided data set due to
privacy-related issues, which eventually resulting in slight differences compared
to the original work. Sensor data was converted accordingly to be feasible within
our attack. Furthermore, we had to reimplement the attack of Waltereit et al. [389]
to assess performance in the given data set. We set the allowed number of false
positives and false negatives for their attack to zero, as we found that the attack
performed much worse with the increased number of candidates caused by these
tolerances when working with actual sensor data. Furthermore, the tolerance
for distance error �S was increased from 0.15 to 0.3, which is consistent with
the accuracy score of our equivalent parameter, based on sensor data. In fact,
this should yield a more effective attack since more unreliable sensor data is
considered. We also examine the success rate for trajectory inference in Boston
and Waltham, since Waltereit et al. [389] did not include actual sensor data but
synthetic data in the evaluation.

Results
proving
superiority

The success rate of exact matches for both cities using the three attack approaches
is depicted in Figure 12.13. Our proposed attack achieves a success rate of
50.72% in Boston and 70.96% in Waltham, considering that an exact match
is to be found, i.e. the actual route must be the top1 candidate. Both attacks
from Narain et al. [276] and Waltereit et al. [389] are inferior with 15.94% and
17.39%, respectively, in Boston, as well as 44.61% and 67.21%, respectively, in
Waltham. The success rate for our attack slightly increases to 66.67% in Boston
and 83.87% when extending the restriction to a top 5 candidate match. Similar
behavior can be observed for the other two approaches as well, but they perform
consistently worse. Recall that the orientations of the street network of both
cities are similar to those of Regensburg. As expected, the results for Waltham
are comparable to those obtained in Regensburg. In contrast, the recognition
quality in Boston drops sharply, resulting in only two-thirds of all routes being
in the top 5 (Regensburg nine out of ten routes). According to Narain et al.
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a) Success rate for Boston data set.
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b) Success rate for Waltham data set.

Attack
proposal Narain et al. [276] Waltereit et al. [389]

Figure 12.13 Comparison of success rate for an exact match with related works. Related works
include the attacks of Narain et al. [276] and Waltereit et al. [389] and are benchmarked
against the proposal. Data sets are provided by Narain et al. [276].

[276], there are various explanations for the poorer performance, such as heavy 
traffic compared to Waltham. We also observed traffic in our data set eventually 
degrading the recorded sensor data expressiveness, but Regensburg is relatively 
small compared to Boston. This is also underlined because unrecognized routes
were not candidates in the top 10 for various reasons, which also holds for Boston
and Waltham.

Reasons for
accuracy

degradation

Additionally, Narain et al. [276] acquired data before 2016, implying a poorer
quality of smartphone sensors for data collection than the data gathered in our
data set. We noticed that substantially more routes could not be discovered within
the graph for Boston than for Regensburg, despite having more than twice the
number of routes accessible for Regensburg. This may prove inferior sensor
quality since the entropy of the road network is similar to Regensburg w.r.t.
Figure 12.12a and Figure 12.12c. Hence, similar results were expected but are
not reflected mainly in Boston.

12.6.4 Impact of Filtering, Ranking, and Parameters

Different methods are applied to reduce the number of turns in the turn candidate
sets ̂∗ to improve efficiency. Furthermore, route candidates r∗ ∈ ∗ are ranked
based on their similarity to  . Lastly, different thresholds are introduced to
handle inaccuracies in sensor data but also OSM data. We now look at each of
them in detail in the example of Q1.
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a) Results for finding an exact match.
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b) Results for finding a rough match.

Filter method
best basic all
magnetometer heading change traffic light

Figure 12.14Success rate for the trajectory inference attack across all test areas Q1-3.

Filtering

Filtering is used to enable efficient computation and a manageable number of
candidates. Filtering was selectively enabled to assess the performance of each
filter. The results of the success rate are shown in Figure 12.14. “Best” represents
the final approach, including filtering and ranking as previously evaluated. “Ba-
sic” represents a baseline similar to the initial proposal of Waltereit et al. [389].
“All” is a combination of all filters but without further optimizations. Three fil-
tering approaches are present: traffic lights, expected heading change induced
by road curvature, and orientations after turns based on the magnetometer.

Impact on
success rate

In both cases, the search for the exact match and the search for a rough match,
the filtering based on the magnetometer and the heading change is suitable. Both
increase the success rate by about 10% - 15%, whereas the distance between
both filters increases with the extension of the considered range (top 1 to top
10 candidate sets). The improvement is less evident for filtering road segments
based on recognized traffic light patterns and the corresponding exclusion of
unrealistic occurrences. This filter also improves the recognition compared
to the basic method but is correspondingly expensive in terms of runtime.
The combination of all filters is slightly above the course of the respective
single filters of magnetometer and heading change and 17% above the basic
method. Consequently, both do not increase the detection rate in total but only
proportionally.

Impact on
runtime

Filtering is used not only to increase the success rate but also to significantly
decrease the attack runtime, with the magnetometer filter reducing the runtime
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a) Results for finding an exact match.
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b) Results for finding a rough match.
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Figure 12.15 Success rate for the trajectory inference attack across all test areas Q1-3.

about 65% and the heading change filter reducing it to around 38%. However,
including the traffic light filter slightly increases the runtime. In particular, using
all three filters results in a reduction in runtime by about 71% since the number of
turn-pair candidates and hence the size of the Cartesian product is considerably
smaller.
Ranking

Depending on the street network , there can be a large number of candidate
routes. For example, when trying to infer routes in the largest search space, Q3,
a route had 185146 different candidate routes selected based on the filtering
methods. However, because of the sophisticated ranking, the correct route could
be found as an exact match in the top 1 set. Setting the weights � to zero, except
for the metric of interest, allows analyzing the impact of each metric on the
success rate4.

Scoring to
support

candidate
selection

The consideration of the impact of a metric on the ranking of a candidate and ul-
timately supporting decision-making can be seen in Figure 12.15. Subsequently,
the distance-based metric is shown to be very well suited to map a candidate to
the route appropriately well, although it should be noted that this also requires
a correct distance calculation in the sensor data. Furthermore, the inclusion of
the curvature metric shows similarly promising results, so the newly proposed
metric is a valuable extension for problem-solving compared to existing metrics
such as the turn angle or heading change. The least detrimental effect on the
4 The traffic light metric was computed only for routes that did contain the given and detected element.
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b) Impact of different slight turn angles
thresholds �S on the success rate.

Figure 12.16Impact of different settings for thresholds applied during database creation when
identifieing turns.

ranking is determined by traffic light similarity due to comparing detected traffic
lights with potential traffic light positions. However, this metric cannot distin-
guish between similar routes that pass all traffic lights and, for example, only
differ in the part of the route where no traffic light is present. This assumption is
underlined by the fact that the metric performs better in percentage terms in the
comparison when searching for a rough match.

Thresholds

For the sake of completeness, we also want to discuss specific thresholds that
were incorporated into the attack to handle unknown environments with changing
traffic circumstances and low-quality sensor data. Therefore, we analyze the
impact of the turn angle threshold �A and the slight turn angle threshold �S . The
distance threshold �S was determined on the basis of the sensor accuracy in
Section 12.6.2.

Turn angle
threshold �A

The turn angle threshold �A defines the point at which e ∈ E are considered a
turn and thus are included as an element in ̂. The set is searched during the attack
using path events pi to identify potential candidates. Consequently, with more
elements considered as turns, more elements are available to choose from for this
selection process. The probability of picking up the right turn increases, but at
the same time, the set of candidates also increases with lower �A. Figure 12.16a
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provides information about what effect the parameter has on the detection rate. A
conservative value of 80% was assumed for the attack since the risk of missing
a turn is minimized due to the modeling of the slight turns. However, �A = 60%
has a decent success rate. Lower thresholds decrease the success rate even more
since more turns are present in ̂, although they do not reflect the corresponding
driving maneuver in the real-world sensor data.

Slight turn
angle

threshold �S

The second parameter called �S takes into account the challenging task of
differentiating a turn from a curvy road. Hence, such events are considered either
a turn or a straight. Eventually, missing a slight turn does not result in a route
not being able to be matched, but the creation of multiple route candidates based
on either a turn or a straight. Based on the results depicted in Figure 12.16b, we
can state that a threshold of 30◦ and 40◦ is too low to grasp slight turns. Using
higher threshold values enables the algorithm to handle inaccurate sensor data
adequately and still achieve high success rates at the expense of the runtime.
Filtering, however, was able to reduce the number of routes even for large values
of �S .

12.6.5 Feasibility

Python and the Pandas library were used to implement the presented attack. All
tests were run as unconstrained Kubernetes workloads on an Ubuntu 20.04.1
host with an Intel Xeon CPU E5-2680 v3 (24 threads and 12 cores) running
at 2.5 GHz and 64 GB of RAM. Sensor data are pre-processed in 2.47 s on
average, with a standard deviation of 0.67 s. The time required to find a route
depends on the size of the area, the number of turns, the uniqueness of the route,
and the distance. The average time required to find a route within the smallest
area Q1 is 1.02min, with a standard deviation of 0.48min. The average time
required to find a route within region Q2 is 2.71min, with a standard deviation
of 1.26min. Attacking the largest area, Q3, takes an average of 11.60min, with
a standard deviation of 9.97min. Although this is not a formal test, the results
show that the attack is possible even against opponents with modest resources.
Significantly tighter filter thresholds can minimize runtime in exchange for lower
attack success.

12.7 Conclusions

Trajectory inference is another class of attack that is present in the UBI context
due to the transmission of sensitive sensor data. Based on the literature and our
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own attack, we have shown that there may be a misconception on the part of the
users between the nature of the transmitted data and its meaningfulness.

12.7.1Overview of Literature

SummaryA literature review of work on route inference in the context of smartphones has
shown that few but various approaches exist for the given task of reconstructing
or even interpolating a trajectory. Such methods allow users to be tracked based
on sensor data, including zero-permission sensor data, and thus significantly
violate their privacy. In particular, most approaches do not define themselves as
an attack but rather as an approach to reduce or replace the usage of traditional
orientation methods such as GPS. The publication format supports this argument
because most of the work did not appear in privacy-related formats.

ConstraintsWe found that most works require a rough estimation of the area of a user to
be feasible and efficient apart from the ones that require learning data in the
first place. Such attacks are not applicable in the context of PHYD. It can be
concluded that the more sensors used, the larger the area that can be analyzed,
although not all work was specific concerning this topic and did not provide
a thorough evaluation. One can argue that the combination of multiple attacks
may even reduce the constraint of known areas; for instance, combining pressure-
based approaches with sophisticated route estimation methods using IMU data
may result in more severe adversary models.

12.7.2Our Approach

Based on the literature findings, we present a highly scalable attack designed,
at the same time, to be robust against errors in the sensor data. It integrates
and extends features of different approaches into a holistic concept; especially
curves, heading, and distances, as well as curvature, are included in the algorithm
along with newly proposed features such as traffic circles. Using the proposed
algorithm, an attacker can find a route to get to an area without knowing the
start and end positions. Unlike some related work, it is specifically tailored to
the scenario of zero-permission sensor data and provides insight into the privacy
threat. In addition to the topic presented in Chapter 11, a detailed motion map
of a user can be collected in combination with a trajectory attack.

EvaluationThe approach is based on detecting directional changes in the sensor data,
taking into account discrepancies and uncertainties in the sensor data and the
reference map material accordingly. Specifically, the uncertainty of turns in
sensor data and their modeling in OSM is adequately addressed by the concept
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of slight turns. The diversity of the driving distances and the final goodness
of the evaluation are ensured by various own and external data sets. For an
area of 4500 km2 the presented method manages to detect a route in 72.86%
of all cases, whereas the detection quality depends on the available features.
For example, the number of curves and the uniqueness (i.e. curvature) of road
segments as connections between curves are crucial. If the attacker pursues the
goal of limiting the candidate routes and considers the five most likely routes,
the probability increases to 88.57%. Compared to related work, the recognition
score for external data sets is up to a factor of 2.5 higher than the competitor
results, showing good scalability and independence from smartphone and driving
behavior.

Sources of
error

Analyzing the routes that were not found by the proposed algorithm yields two
reasons, either related to uncertainty in event detection or low-modeled map data.
Both cases result in a discrepancy in mapping one to the other or vice versa.
Uncertainty in Event Detection Sensor data is converted to a path  that
contains path events p that are eventually mapped to elements in the street
network. Hence, it is assumed that p are present in the map data, although there
may be occasions where that is not the case. For example, we found that turns—
even though only slight turns—are implicated through external factors such as
road works that may require a temporary detour yielding a false-positive turn
in the sensor data. Furthermore, particularly broad and curvy roads are hard
to detect because of a specific balancing of respective threshold parameters to
achieve an overall high success rate that could not account for the varying number
of detected turns on such roads across drivers. Even though specific features,
namely traffic circles, are of high information due to their comparatively low
number of occurrences in street networks and hence essential during candidate
reduction, they may be false friends. We found that in a single instance, a driver
processed a sequence of right and immediate left turns similar to a traffic circle
pattern (see Section 8.5), eventually eliminating the correct candidate from the
set of candidates. This stresses the fact that balancing different driving behaviors
is challenging.
Inaccurate Map Data Features in sensor data can also not be found in the map
material if they erroneously do not exist or are not modeled accordingly. The
former is caused by missing tags on elements (e.g. missing the tag representing
a traffic circle). The latter is a combination of driving behavior and oversimplifi-
cation of street structures which can often be attributed to the lack of road width
modeling or the inability to represent natural driving patterns. Therefore, we
stress that high-quality map material is required that adequately models the real
world.
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LimitationsWe now want to address some limitations of the attack. First, the attack requires
velocities based on the accelerometer. Hence, the requirements and constraints
explained in Chapter 4 are applicable. In the given scenario, a smartphone is
considered to gather the sensor data required to record the trajectories. However,
the evaluation assumes that each  yields a single trip. An adversary likely
collects a continuous stream of zero-permission sensor data. Hence, detecting
the start and end position of a trip is essential to perform trajectory inference
ex post. The applicated street network  contains information available in OSM
limited to public roads, eventually excluding gated infrastructures such as private
roads as they are found on private properties. Furthermore, we excluded parking
spaces, as they are generally quite similar and do not provide much information.
However, especially such structures yield turns that will be picked up by the
attack but will eventually not match in . Such situations have to be detected
and removed during a preprocessing step, for example, by using low speed and
frequent turns as indicators. Lastly, a candidate and eventually the best guess is
a sequence of road segments and road connections (turns) delimiting the route.
The attack cannot find the exact starting or ending position if it does not coincide
with a turn because previous sensor readings and movements are ignored at the
time of the creation of  . Still, this yields enough knowledge for an adversary
to track a user to his points of interest. Creating relative movements similar to
[163] with the road connection as a starting or endpoint, respectively, can be
used to derive or estimate more precise locations, such as parking positions on
the road or parking lot positions.

OutlookThe attack significantly extends existing approaches to trajectory inference by
supporting, analyzing, and evaluating various features. In addition to curves,
street curvature, heading changes, and features of the two-dimensional space
are included. An augmentation around altitude similar to [172] is comparable
to curvature but could support the selection of route candidates. As described
in the limitations, detecting curves is difficult due to various factors, such as
driving behavior or route characteristics. The approach should be extended in
the sense that it can account for incorrectly detected curves accordingly, such
as in [389]. This would make the recognition more robust. Furthermore, it is
of interest to what extent grid-like structures, such as Manhattan in New York,
affect the recognition. In the exemplary area, the similarity of the curves and the
length of the route segments are very high, which could cause our approach’s
two essential selection and evaluation criteria to lose efficiency.
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12.7.3 Privacy Implications

The fundamental right to privacy of users is also severely limited by loca-
tion inference attacks and thus contradicts the rights of users established by
Solove [351]. Accurate identification of trajectories based on sensor data has
far-reaching implications for users. The attacker model in the context of PHYD
is greatly enhanced by the side-channel attack (we here ignore the fact that the
offending GNSS data is a privacy concern and yet is transmitted).

Limit on
power

We cannot speak of limit on power when transmitting raw sensor data. A data
processor not only gets the possibility to evaluate the driving profile of a user
but also to infer his whereabouts. Such capabilities were basically only available
to Location-based Service (LBS) providers, as users there typically transmitted
location data. Similarly, this can apply to mobile network providers, as these
could also create extensive movement profiles based on technical necessities.
Now, this possibility is transferred to another service provider, who does not
need to track exact locations. Even more severe is that our attack only uses
zero-permission sensors that can be gathered without user knowledge in the
background within any other decoy application. Consequently, every applica-
tion developer is upgraded to a LBS provider and gains capabilities that were
previously only available to highly scrutinized services (for example, cellular
providers). In the context of PAYD, it is sufficient to know the approximate
location to be able to make a rating based on city/non-city, for example.

Appropriate
social

boundaries

With precise movement profiles [132], an adversary can gain deep insights into
a person’s life. Appropriate social boundaries can no longer be guaranteed.
For example, if a provider can see that a person regularly travels to a hospital,
inferences can be drawn that go far beyond the boundaries of a UBI. It is a
profound violation of personal liberty. In addition, a person can be discriminated
against based on his visited places, eventually reflecting his preferences. As UBI
implicitly includes the location within PAYD, it is unknown how this information
may be included in the premium calculation.

Reputation
management

Whereabouts per se are critical in terms of personal reputation management, as
they allow insight into the daily routine without a person actively communicating
it. In terms of reputation management, an individual should be allowed to
move anonymously without revealing specific locations such as hospitals or
workplaces. With the concatenation of external data sources, unique movement
patterns can be established based on travel distances, times, and in combination
with the previous driver identification attack (c.f. Chapter 11).
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Countermea-
sures

This brief discussion is intended to show that effective side-channel attacks
enable extensive privacy violations. These can only be prevented by modifying
the data appropriately before it leaves the user domain so that the attacks, as
mentioned earlier, can no longer be used in a meaningful way. This also applies
outside the UBI scenario. At least attack countermeasures can be applied. In
the context of a PET such as kubi (c.f. Chapter 14), the sensor data can be
inverted, for example, so that the attack should no longer be possible since
the corresponding inferred curves no longer correspond to the real driving
route. However, the quality of local services can still be guaranteed with local
knowledge of the data manipulation process.





Part IV

Protection of Privacy





13Overview of Privacy Enhancing
Technologies in Sensor-Focused
Environments

Driver identification and trajectory reconstruction, as illustrated, pose a severe
threat to privacy and ultimately undermine the individual’s right to informational
self-determination. To protect this fundamental right, the GDPR establishes six
principles for data processing, already introduced in Sections 1.2 and 9.4. The
information disclosure process is a complex balancing of a user’s interests con-
sisting of pragmatic and subjective decisions [407]. Two elements of GDPR are
of particular interest in this context, namely data minimization and transparency.
Consequently, a user wants to disclose only the minimum amount of information
needed for a particular task while being optimally informed about how data is
or has been used. Technology should assist the user in this process and provide
convenience [255].

Protecting
user interests

“[T]he legal privacy principle of data minimization by minimizing or avoiding
the collection and use of personal data of users or data subjects” [129] can
be enforced with the help of a PET. PETs go back to John Borking [315]
and address the anonymity of a user, the unobservability of his acting, and
the unlinkability of successive events, with all of them being confidentiality
aspects [126]. With TETs, a second concept exists that addresses “informed
consent and transparancy” [129]. The focus is different compared to PETs, yet
both of them aim to increase a user’s privacy. TETs can further be separated
into ex-ante and ex-post transparency, with the former addressing the indented
data processing and the latter addressing the actual data processing [129]. This
can be projected on the information disclosure process of a user that also
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differs in the intended and actual behavior (i.e. the privacy paradox) and shows
how such tools can help a user make an informed decision. Although overlaps
between both privacy-enhancing technologies are present, in particular, in terms
of transparency1, a distinction between both concepts is common (c.f. [170]).

Privacy by
design and

PETs

A third construct closely related to PETs is Privacy by Design, yet they differ
fundamentally. PETs are mainly used ex-post to protect user-preserved data
and are considered agnostic to a specific service or product. Depending on the
protection techniques used in aPET, the functionality of the actual application is
limited in properties, not limited to quality, functionality, or availability. Thus,
it can be concluded that there is inevitably a trade-off between the protection
of personal interests and the merits of functionality or application. Privacy
by Design addresses this false dichotomy and defines that systems should be
designed to provide all functionalities while ensuring privacy and providing
personal control over one’s information [66]. Accordingly, such solutions are
also of interest because they provide immediate and sustainable benefits to users.
For a closer look at Privacy by Design, refer to Section 6.1.

Contribution This chapter is intended to provide an overview of current approaches to enable
privacy for use cases processing sensor data from smartphones w.r.t. this work.
Therefore, a SLR is executed to provide

▶ an overview of current PETs and their respective architecture in the
mobile ecosystem and

▶ a technical analysis of PETs in terms of the protective measures
applied.

Structure Section 13.1 starts by introducing the research questions and the document
corpus. Next, Section 13.2 analyzes and discusses the identified approaches
and gives a structured overview. The chapter is concluded in Section 13.3.

13.1 Structured Literature Review

We now introduce our research questions that are subject to be answered within
this survey. Then we describe the search process and finish with a high-level
presentation of the relevant finding.
1 As we will see in this chapter, PETs often offer a monitoring functionality along with other active
privacy-preserving methods. Monitoring, however, is considered to provide transparency which, by
definition, is the purpose of an ex-post TET.
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13.1.1Research Questions

The subject of the SLR is to understand “the design of mobile-first Privacy
Enhancing Technologies for sensor data?”. This includes understanding the
design of PETs in the mobile scenario when enabling the support for sensor
data processing. Furthermore, the applied techniques are of interest because, as
we have already learned, simple perturbation or suppression techniques are not
feasible in particular in the UBI context [322]. Therefore, we ask the following
RQs to gain insight into the given topic.
Q1 What are design principles when it comes to PETs for sensor data in

smartphone scenarios? How is the user involved in this process?
Q2 What building blocks enable privacy w.r.t. the sensor data produced

in the given context? How adaptable are the methods used?
13.1.2Search Process

The search process for the SLR is based on Kitchenham and Charters [209].
The search focuses on ACM Digital Library, IEEE Xplore, ScienceDirect, and
SpringerLink as a resource for publications. We iteratively developed a search
term2 that is feasible to identify the relevant work needed to answer our questions.

( TET | PET | PRIVACY ENHANCING | PRIVACY PRESERVING )
& ( SMARTPHONE | ANDROID | IOS)
& SENSOR

We deliberately decided to include TETs as a search term in order not to miss
any essential works. Works that do not adequately present and address PETs
were subsequently excluded i.a. based on the inclusion and exclusion criteria.
The criteria are as follows:

1. First, the work is presenting and explaining in sufficient technical depth
a PET, ultimately excluding survey papers.

2. Next, the scenario of sensor data generated by mobile devices limited
to smartphones is focused on.

3. The proposal is based on existing structures of sensors and their appli-
cation in existing mobile OSs; instead, data is generated analogous to
the description of this work (see Section 5.2).

2 For an explanation of the notation, see Appendix B
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4. Works with a too-narrow focus on eHealth and Smart Cities are not
considered.

In addition, only peer-reviewed work in English was considered that was avail-
able to the authors. It is assumed that the peer review process provides only
high-quality content with comprehensible attacks, although the quality was again
assessed during the SLR. As in the previous SLRs presented in this work, we
also perform a backward search in addition to the forward search. For instance,
we include work that may be of high relevance based on citations.

13.1.3 Relevant Findings

Table 13.1 Overview of the 33 publications identified in the SLR. The works are assigned to
different disciplines.

Publication Year Pub-
lisher

Field

Zhang et al. [422] 2020 Elsevier Security and Privacy
Han et al. [165] 2020 IEEE Security and Privacy
Wu et al. [405] 2019 IEEE Network
Miao et al. [264] 2019 ACM Systems Design
Luo et al. [238] 2019 IEEE Network
Shen et al. [340] 2018 Elsevier Network
Romero-Tris and Megías
[314]

2018 ACM Knowledge Discovery
Mirzamohammadi and
Sani [266]

2018 IEEE Mobile Computing
Malekzadeh et al. [242] 2018 ACM Security and Privacy
Jourdan et al. [194] 2018 ACM Mobile Computing
Han et al. [164] 2018 Elsevier Mobile Computing
Lyu et al. [240] 2017 ACM Knowledge Discovery
Krupp et al. [218] 2017 IEEE Mobile Computing
Huning et al. [183] 2017 ACM Mobile Computing
Bai et al. [31] 2017 Springer Security and Privacy
Saleheen et al. [330] 2016 ACM Mobile Computing
Mense et al. [263] 2016 ACM Mobile Computing

continued on next page
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Luo et al. [239] 2016 ACM Mobile Computing
Zhao et al. [424] 2015 IEEE Mobile Computing
Xu and Zhu [410] 2015 ACM Security and Privacy
Dang and Chang [92] 2015 ACM Security and Privacy
Supriyo Chakraborty et
al. [360]

2014 USENIX Security and Privacy
Rasthofer et al. [308] 2014 IEEE Security and Privacy
Cappos et al. [62] 2014 IEEE Mobile Computing
Biswas and Vidyasankar
[46]

2014 Springer Computer Science

Chakraborty et al. [68] 2013 ACM Mobile Computing
Raghavan et al. [306] 2012 ACM Mobile Computing
Götz et al. [147] 2012 ACM Systems Design
Ghosh et al. [145] 2012 IEEE Security and Privacy
Dua et al. [116] 2012 Springer Security and Privacy
Canlar et al. [61] 2012 Springer Security and Privacy
Cristofaro and Soriente
[87]

2011 ACM Security and Privacy
Choi et al. [81] 2011 Springer Security and Privacy

After performing a tool-assisted selection process, 33 works were identified as
relevant w.r.t. the applied inclusion and exclusion criteria. All results are listed in
Table 13.1. Most publications were found based on the forward search, and three
were included in the backward process. One can see an almost even distribution
year-wise, with a peak of literature coming up in 2018. The origin is dominated
by events and journals from the field of security and privacy (39%) as well as
mobile computing (36%). Mobile computing here also includes sensor-focused
events. Furthermore, half of the literature was published by ACM, followed
by IEEE and Springer. Subsequently, we extracted relevant attributes from the
literature to answer the RQs in the next section.

13.2Results

We now take a look at the design principles and the building blocks to answer
the questions posed.
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[183,422,405,87,92,238,46,240,116,340,264,314,242,61,194]

[239,68,62,308,360,147,330,164,263,306,145,424,410,165,31,81,218,266]

Privacy-By-Design

Standalone

Figure 13.1 Proposals in the literature can be roughly divided according to the implementation
approach. On the one hand, there are solutions that function independently, and on the
other hand, solutions in which Privacy by Design was considered during the development
of the use case. In the corpus of documents, the former class slightly predominates.

13.2.1 Design Principles (RQ1)

In order to answer the first question about the design principles, the various
works are first examined w.r.t. the form of integration. It is noticeable that the
works can be differentiated based on their implementation. Either they deal with
on-top solutions for the protection of the user’s privacy for third-party systems
or that the application or the system itself was already designed under privacy-
friendly conditions. In the latter case, we are dealing with privacy-by-design
approaches. This approach was also followed in Part II in the context of this
work.

Types of
solutions

Looking at Figure 13.1, an almost balanced picture is presented. Eighteen papers
are dedicated systems that comply with the definition of a PET, and 15 papers
are architectures that follow the Privacy by Design approach. Especially crowd-
sensing applications are designed according to Privacy by Design guidelines.
Most of the time, they discuss the question of to what extent the interests of
the various participants can be taken into account. For example, systems can
be found that design evaluations based on sensor data from users with appro-
priate security and integrity [183, 264, 422]. More generally, for example, Luo
et al. [238] interpret the problem and presents a system that can modify sen-
sor data accordingly based on differential privacy and works independently of
a specific application. Consequently, it can be considered a building block for
other applications. Representatives of the PET class are deployed solutions that
work independently of applications and often provide monitoring aspects [31,
62, 165, 218, 266]. Furthermore, there exist nevertheless PETs designed for a
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Client30%

External
39%

Other 11%

TTP
20%

Implementation
privacy-by-design standalone

Figure 13.2Overview of different requirements that the different approaches pose. Most of the
works rely on an external infrastructure to provide privacy to users. Less common are
proposals that are running within the user domain. Also some publications introduce a
TTP that ensures a specific level of privacy.

specific group of applications and so, for example, applicable only for LBSs
scenarios [164].

ArchitectureThis leads to the next inquiry. We also analyze the underlying structure of the
privacy concept and how privacy is brought into a domain. For this purpose,
Figure 13.2 compares the previously considered implementation type with the
requirements that must be met for the protection solution to be realized. Three
general artifacts can be distinguished. 39% of the identified work uses an external
infrastructure to process user data. PET solutions are rarely seen in this category.
Mense et al. [263] present a PET that uses an external server to provide privacy
as the information is routed through this external infrastructure that can then
perform further protective measures. Similarly, the approach of Choi et al. [81]
stores data in a dedicated database that is then accessed through a broker that
eventually enforces a user-defined policy. Hence, both solutions replace direct
access to a resource to access it via a proxy. In systems developed from the
outset with privacy in mind, data is often processed remotely only data that is
appropriately non-critical [46, 61, 87, 92, 183, 238, 240, 264, 314, 340, 405, 422].
Exclusively PETs are found in the category of client-side solutions [31, 81, 145,
147, 165, 218, 263, 266, 306, 308, 360, 410, 424]. Such retrofitted applications
usually work as interceptors. They check and control the flow of information
between the mobile OS and sensors towards an app. Bai et al. [31], for example,
replaces API calls to sensors and returns data to an application in a privacy-
friendly manner. In addition, a third class is found to be TTP-based solutions,
which are exclusive to Privacy by Design concepts [61, 87, 183, 242, 264, 314,
405, 422]. There is overlap here with the external server class, for example, when
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Privacy-By-Design

Standalone

Interactive
[68,62,308,360,147,330,164,263,306,87,238,145,424,314,410,165,31,81,218,266]

Non-Interactive
[239,183,422,405,92,46,240,116,340,264,242,61,194]

Figure 13.3 Overview of the interactiveness of methods found in the literature. Methods are either
require the user to interact with the protection algorithm or are working in a transparent
way without the need for further adjustments or decisions.

data is stored remotely, as in the case of Choi et al. [81], but made available to
other participants in anonymized form through an TTP. Malekzadeh et al. [242]
is exclusive to this class since a pre-trained model must be made available locally
accordingly as part of the proposal. The distributor is interpreted as TTP in this
consideration. Other, as a catchall class, includes work [68, 116, 164, 194, 239]
that does not fit into the other three classes due to e.g. shifted focus. For example,
Dua et al. [116] is a proposal of a proof protocol to convince a user that data can
be shared. It is a building block for a privacy-friendly solution but not a viable
design in its own right.

Architecture
and TTP

There are some critics of relying on a TTP. TTPs conflict with the fundamental
requirements of PETs such as “no trust into the network operator” and “no trust
into one centralized station” [126]. Consequently, a strong PET or even a Privacy
by Design architecture ultimately avoids the need for a trust anchor by design.
That such a design is possible is shown, for example, by DC networks [73] (for
communication) or blind signatures [72] (for privacy-preserving transactions).

Interactive-
ness

Figure 13.3 shows a strong correlation between the type of implementation and
the level of interactivity. This is prevalent as Privacy by Design architectures
are built with privacy, trust, and integrity in mind. Non-interactive approaches
are preferable w.r.t. bounded rationality, as they often relieve the user of making
complex decisions that are difficult to assess. Some PETs, although listed as
interactive, are driven primarily by a policy that can be adjusted (and, therefore,
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are interactive). However, the user itself is not necessarily required to create or
maintain such a policy.

AdversaryTo fit into the mobile context of this work with UBI as a running example,
we focus on two stakeholders, namely the data processor and an application
provider. We deliberately exclude the user from the stakeholders analyzed within
this chapter because we argue that privacy and, therefore, the application of
a PET is in his interest. A data processor is a data-consuming entity in this
context, i.e. he uses the information provided by users to e.g. analyze, process,
aggregate, or distribute it accordingly depending on the use case. However, the
application provider is the entity that develops and provides the application to a
user but does not receive it. For example, an email client may be developed by
Google, but emails are sent to another party. A PET should protect in the best
case against both parties. However, this is not the case. We found that 76% of
the identified works protect against an application provider and 61% against a
data processor. When this is broken down to the implementation, it shows that
30% of the Privacy by Design platforms protect against the application provider,
i.e. the one providing the platform. With 42%, protection is provided against the
data processor. For PETs, the application provider is 2.5 times more common
than the data processor with 45%. This may be due to the alignment of PETs,
which often runs locally on a smartphone and generically observe the sensor data
consumption of third-party applications. In 45% of all cases, both stakeholders
are considered.

13.2.2Building Blocks (RQ2)

We now have learned how PETs are designed from a system architecture per-
spective. Next, the data alteration process is focused on, as it is an essential
component of a privacy-enhancing method. Due to the context of sensor data
and with business models like UBI in mind, we will also take a detailed look at
each protective measure.

Types of
protected
data

In the next step, sensor data is assigned to corresponding classes that correspond
to a rough use case and can be applied to the side-channel attack classification in
Chapter 10. Figure 13.4 shows the distribution according to the implementation.
On the one hand, these are location-specific data such as the position of a user,
vehicle, or device (stationary or moving). On the other hand, environmental
sensor data includes temperature, brightness, and others. Furthermore, other
sensor data is rarely addressed in the document corpus, such as the audio (i.e.
microphone) [340]. In addition, a generic class was included. Such approaches
are not specifically tailored to protect against a predefined set of data but can work
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Environmental5%

Generic70%

Location20%

Other5%

a) Entities addressed by standalone
PETs.

Environmental12%
Generic24%

Location41%

Other24%

b) Entities addressed by Privacy by De-
sign architectures.

Figure 13.4 Distribution of the addressed entities that are to be protected by the privacy-
enhancing technology.

in a use case-agnostic way. It is obvious from Figure 13.4a that PETs agnostic in
terms of data type; hence, they can be used for a multitude of use cases. This is
a clear advantage, as there is no need for application-specific solutions to enable
privacy. However, these types of solutions buy this flexibility, among other things,
through a higher configuration effort, for example, in the form of policies that
define appropriate data uses and privacy issues. In contrast, Figure 13.4b again
states that most privacy-friendly applications are created for specific tasks, such
as the evaluation of crowdsensed data focusing on participant’s locations [61,
92, 242, 264, 314, 405, 422]. However, solutions can also be found that provide
only a framework for privacy-friendly data collection [87, 183, 238].

Table 13.2 Matrix illustrating the combinations of the data retention and the applied privacy-
preserving method across the document corpus.

Raw Data Retention
Local Remote Policy

Bu
ild

in
g

Bl
oc

k Cryptography 62∗, 405†, 116†,
314†

422†, 263∗, 87†,
46†, 116†, 61†

62∗

Monitoring 308∗, 145∗, 424∗,
165∗

145∗, 81∗, 266∗ 308∗, 145∗, 424∗,
81∗, 266∗

Obfuscation 239∗, 183†, 308∗,
405†, 360∗, 330∗,
164∗, 306∗, 92†,
238†, 240†, 116†,
314†, 242†, 410∗,
31∗, 218∗

239∗, 422†, 164∗,
306∗, 116†, 61†,
81∗, 218∗

308∗, 306∗, 410∗,
81∗, 218∗

continued on next page
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Suppression 308∗, 360∗, 147∗,
306∗, 145∗, 424∗,
410∗, 31∗, 218∗

263∗, 306∗, 145∗,
81∗, 218∗

308∗, 306∗, 145∗,
424∗, 410∗, 81∗,
218∗

∗ Standalone PET † Privacy by Design Architecture

Protective
measures

In total, we identified four different building blocks to reduce the privacy risk
associated with sensor data (c.f. Table 13.2). First, cryptographic operations
can be applied to the data to limit the addressees. This building block includes
symmetric [62, 116, 263, 405] and asymmetric operations [61, 87, 116, 263,
314, 405]. Homomorphic encryption [46, 264] or hash functions [62, 87, 263]
are also used in the work. It is noticeable that the majority of research based on
cryptography comes from the field of Privacy by Design. This is not surprising
since architectures developed from scratch allow the inclusion of the security
factor right from the start. It is significantly harder to use encryption in an existing
multiparty application when the other party needs the data in raw form (as is the
case with UBI, for example). Next, monitoring techniques are common in PETs
and provide audit, log or notification functionality (these are also found in TETs).
For example, a user is notified when an application accesses specific sensors
through a notification led [266]. Subsequently, this access can be approved or
denied, for example. This leads to the next class, suppression, which can be
seen as a companion to the monitoring class. In such systems, users usually can
allow or deny access to specific sensor readings (i.e. filtering). As shown in the
matrix, they can be supported by a policy that takes care of tasks according
to predefined rules. As an action to control access, obfuscation methods are
available in addition to completely prohibiting the processing of sensor data.
Here to mention are suggestions like the perturbation and generalization of data
and mocking (partial or full insertion of synthetic data).

Data
retention

Data retention describes the location of sensor data. Table 13.2 presents three
different classes as columns. The decisive factor for the classification is the
location of the raw data; if the data has been anonymized, the work is not shown
in the respective column. Data can be stored and kept local on a user’s device
in contrast to data being submitted to a remote instance and kept there. Work
in the policy column has a special status since the location of the stored data
can be controlled flexibly. If necessary, it cannot be ruled out that raw data
leaves the local device if the purpose of use makes this necessary; hence, such
works are included in the remote column (e.g. [424]). Within Luo et al. [238],
raw data is stored locally, but obfuscated data is forwarded to a server, which
is an example of good practice. Comparable [31, 360, 410] are policy-driven
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systems in which the level of data leakage to a remote party is handled in a
controlled manner. For instance, either perturbed sensor data is sent, although
synthetic data may be used as a replacement if a constraint from a policy may not
hold even for the anonymized data. This is preferred, as raw data is always kept
locally within a user’s trusted domain. However, there are some examples where
data confidentiality and, eventually, privacy cannot be guaranteed. As shown in
Table 13.2, approaches that are configurable using a policy sometimes allow data
leakage to occur if the policy does not prevent data from being submitted [218,
240] They are briefly discussed in the following.

▶ Wu et al. [405] submits anonymized data which might not be sufficient
w.r.t. side-channel attacks that we have seen before (e.g. our driver
identification approach; Chapter 11 or trajectory reconstruction; Chap-
ter 12).

▶ Next, Dua et al. [116] and Luo et al. [239] store raw data on a service
proxy that, according to their design, may be a TTP. However, this is
still considered a data leakage as raw information is leaving a user’s
device. This is a behavior that is found multiple times [164, 263].

▶ Then, the approach of Biswas and Vidyasankar [46] removes identifies
from the data, which is also equivalent to a data leak as the raw data
has left the device and is thus vulnerable to side-channel attacks.

▶ Miao et al. [264] and Shen et al. [340] store encrypted but non-
anonymized data in the cloud that induces similar threats as in the
previous example.

13.3 Conclusion

SLR
outcomes

This chapter generated an overview of state-of-the-art procedures to privacy-
enhance the sensor data processing of user data. During the investigation, a
considerable difference was found between the PETs and Privacy by Design
architectures. This can be seen in the interactivity, where the latter mostly
functions transparently, and also in the building blocks used for the protection
concept. If cryptographic building blocks are dominant in Privacy by Design
architectures, PETs usually aim to inform the user and change the quality
of existing data or prevent access. Preventing access, however, contradicts
Cavoukian [66] view that applications should still provide all functionalities even
when privacy is considered. We have also seen that some proposals, in terms
of their architecture, require a TTP, which is considered the central protection
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authority. This may as well receive raw data, which should be critically viewed
w.r.t. privacy (c.f. [126]). Better suited are solutions where raw data is kept
locally, and only privacy-friendly (i.e. aggregated) data leaves a user’s personal
domain.

Desired
properties of
a PET

The findings are intended to serve as the basis for our PET’s own proposal that
specifically addresses the needs of UBI and, particularly, PHYD. The following
proposal thus fits into those PETs that have been designed especially for one
application area (e.g. location-based data) but still be agnostic to the business
case as long as it is built on the processing of sensor data. Subsequent inclusion
of protections excludes some identified building blocks for privacy. For example,
encryption blocks cannot be used because the opposite party would not be able to
process such data. The use of signatures as another form of cryptographic build-
ing block is possible since they extend some system properties but do not change
existing ones. Proposals to generate synthetic data [360, 410] are not applicable
within the framework of UBI since insurance companies would distort and thus
reject the price of the driving style. Adaptability through a policy is desirable so
that different stakeholders find themselves represented in the system accordingly.
This should increase acceptance and flexibility. Furthermore, for the sake of
comprehensibility, adoption, and effectiveness, a non-interactive PET should be
provided that does not overburden the user (see bounded privacy; c.f. Acquisti
[2] and Laufer and Wolfe [226]) and significantly shifts the responsibility for his
privacy back to him. Instead, it should be supportive and should not cause any
additional workload. The use of a data broker (i.e. TTP) to manage and control
privacy without technical traceability should be avoided. If a TTP is necessary,
it should not have the capability to process data accordingly without the user’s
consent.





14kUBI: Aligning Privacy and
Integrity in Sensor-Based
Business Models

In the context of UBI, the driving behavior of people is used as the basis for
pricing. Sensor data recorded during vehicle movement serves as the underlying
foundation. This includes, for example, acceleration and braking characteristics
or external factors such as driving time. We already learned about the correspond-
ing business model and processes in Chapter 9 with a dedicated smartphone app
that collects sensor data of trips that an insurer analyzes to derive a rating for
each trip eventually used for pricing. Furthermore, in Chapters 11 and 12, it was
shown that the sensor data used, which is often transmitted in the form of raw
data, does not meet the privacy requirements of the individual. The data is often
submitted in a non-transparent manner via the insurer’s app (see Section 9.3)
without control or intervention by the user.

RecapAppropriate technical measures should be available to empower and educate
users. The use of PETs and TETs lends itself to this. Due to the restrictive
limitations and the necessary acceptance of users, but also of insurers, attention
should be paid to the context of UBI (especially PHYD). Users are entitled to
privacy, insurers to integrity. A similar issue was considered in the work of Part II,
but as privacy-by-design there. In the previous Chapter 13, it was demonstrated
that by including the privacy claim in the initial development, other technical
options could be used.

kUBIThis chapter introduces kUBI, a PET and TET, which meets the contradicting
requirements of privacy and integrity. It facilitates anonymization of the user
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data in such a way that an evaluation in the sense of PHYD is still possible.
At the same time, the proposal prevents user fraud (to gain a cost advantage)
by requiring the integrity and knowledge of the raw data to be proven upon
request by the insurer. Although we use the example of UBI throughout this
chapter, kUBI is agnostic to the use case. Hence, it can be adopted and applied
to different contexts of sensor data processing.

Contribution A holistic framework is presented that allows the preservation of privacy in the
UBI context by applying the concept of k-anonymity to this domain. To the
best of our knowledge, we are the first to adopt this concept in the field of UBI.
Therefore, kUBI is short for k-anonymous Usage-Based Insurance. In fact, we

▶ present our comprehensive framework kUBI that takes into account
the conflicting demands of the various stakeholders,

▶ discuss how to embed kUBI in existing UBI workflows,
▶ present a draft for implementing the approach in the Android architec-

ture to enable privacy-preserving sensor data processing, and
▶ evaluate the framework thoroughly using the example of PHYD with

real-world data and the attack from Chapter 11 to prove that kUBI is
able to increase privacy and integrity.

Structure First, in Section 14.1 we present work that also focuses on increasing privacy.
Subsequently, we present kUBI in Section 14.2 as an overview and address
boundary conditions. A detailed discussion and description of all components
follow in Section 14.3, before evaluating the suitability of kUBI based on
attacks from Chapters 11 and 12 (see Section 14.4). We conclude this work
in Section 14.5.

14.1 Related Work

Existing
approaches

PETs were focused on in the Structured Literature Review presented in Chap-
ter 13. We found that most PETs were integrated into the data processing itself,
for example, as a client-side component or performed alteration of the data lo-
cally. Such approaches are infeasible since there is no guarantee that the specific
patterns evaluated within the PHYD model are intact. Furthermore, encrypting
the data locally and sending aggregated results requires knowledge of remote
data processing, i.e. how an insurance company evaluates events to calculate
the premium eventually. Therefore, we propose a generalization-based approach
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that adapts the idea of time series segmentation [204] that the insurer drives. In
addition, it integrates the idea of a one-way function similar to hashing with its
given properties to protect raw sensor data.

Moving trustAlso, around 20% of the analyzed PETs require the application of a Trusted
Third Party that receives the data to remove any identifying information before
forwarding it to the service. As we have already discussed in Chapter 6, TTPs
only shift the trust problem. Moreover, removing identifying information while
keeping the raw data is infeasible in the given model since the insurance com-
pany needs to assign a rating to a vehicle (or, in general, a contract). Hence,
pseudonymity is not a meaningful solution.

Unsatisfac-
tory
solutions for
UBI

There is little work that concentrates on the topic of UBI, although these types
of insurance models are gaining popularity. Troncoso et al. [373] has already
provided a model for PAYD that is privacy-enhanced. PAYD is yet significantly
different from PHYD, as it is often the location that is problematic [149]. Thus,
the necessity for privacy-enabled PHYD models persists, given the prevalence
of PHYD-enabled rates in the UBI business model.

Lessons
learned

Hence, we can only use selected building blocks or general ideas obtained by
the SLR, but we have to accept that there is no suitable solution. Furthermore,
most PETs rely on a user to make meaningful decisions about forwarding or
keeping data, not taking into account aspects such as bounded rationality (c.f.
Section 1.2.3). Policy-driven systems may be preferable to provide meaningful
data quality. Policy-driven systems must support multiple stakeholders [56] to be
applicable in the given context, and the policy must be verifiable for transparency
reasons.

14.2Framework

The framework is designed to support the contradicting requirements of different
stakeholder compositions; still, the proposal is device and application-agnostic to
support various use cases and settings in the sensor-driven scenario. It is framed
to be easily retrofittable to existing business models, making them privacy-
friendly without altering the process itself. There is no focus on either one of
the two parties, insurer and policyholder, as both should be equal participants in
the business process.
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14.2.1 Stakeholders

In the UBI scenario, three participants have been introduced: the insurer, the
policyholder, and additional drivers, even if the last two can be combined. It is
self-evident that all sides have divergent priorities regarding the business model
and its everyday use.

Insurer The insurer is primarily concerned with accurate and correct data to draw
appropriate conclusions. In particular, he assumes that the submitted sensor
data is with integrity and collected using his infrastructure, i.e. his application.
Further distinctions can be made between two aspects of integrity. First, an
insurer is concerned with accurate data (data integrity) in order to determine
the proper categorization of drivers for a trip. The data has to contain the whole
trip, should not be prerecorded, nor should any preselection of data patterns be
performed. Second, system integrity is critical to ensure that the workflow is
consistent with the business model. However, system integrity is a hard-to-grasp
concept since the data processing pipeline to eventually derive a trip rating for
the submitted data is confidential. Hence, it might be unacceptable for an insurer
to receive data via third-party applications, especially not in an altered shape.

Policyholder The policyholder wants to protect his privacy so that only the business model
can be applied, but data misuse cannot occur (based on attacks such as presented
in Chapter 10). PHYD’s business concept collects data such as GPS coordinates
or sensor data from the accelerometer or gyroscope while the user is driving
to provide different insights into the user’s driving style. One could argue that
these data are crucial for privacy purposes. According to Pfitzmann et al. [297],
privacy is conveyed, among other things, through users’ ability to determine
which data is shared and to what extent. This is not the case for the majority of
PHYD models, as the data is obtained according to the insurer’s specifications,
sometimes being raw and unbound data (see Section 9.3). However, a user is
eligible for a discount only if he sends data. In addition to privacy, users also
care about the integrity of the sensor data submitted, as it is the basis for the
premium calculation.

Additional
drivers

Additional drivers have similar interests as the policyholder. They require privacy
from the insurer and, on the other hand, also within the group. Thus, no other
driver (including the policyholder) should be able to make statements about an
individual’s driving behavior. This corresponds to the requirements and wishes
established by Solove [350]. Each person should be responsible for his behavior
without being discriminated against by others based on their driving behavior.
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To establish trust in the system, specific relationships between stakeholders must
be considered [377] which will be discussed later.

14.2.2Strategies

Various strategies can reconcile the participants’ different views and expecta-
tions within the framework of existing business models, ultimately increasing
privacy. The challenge is to choose a strategy that does not overestimate the
respective interests of one party to the detriment of the others. Furthermore,
the solution should not unnecessarily complicate the process or the framework
conditions, such as infrastructure. In concrete terms, the four strategies are con-
ceivable, namely processor-based, user-based, trustee-based, and balanced. Now
we explain every strategy.
Processor-based The data is collected according to the sole definition of a

data processor (typically the insurer) by users using a dedicated device
or a smartphone aplication. Data is then transmitted to the processor
for centralized evaluation. The user cannot control, nor is there any
technical proof that the data is only used for a specific use case,
resulting in a less trustworthy model. Additionally, it is not mandatory
to communicate which data is transmitted or how the evaluation is
performed. Therefore, this model is a classic example of covert trust,
where an insurer wants to protect its interests from the legitimate
user of the device. Trust is high from a processor’s perspective as
he controls the whole data pipeline with his infrastructure. This is the
classic model found in the context of UBI.

User-based All information and data are processed and analyzed within
the user’s local device. This strategy, according to Pfitzmann et al.
[297], is an example of personal agent trust. Since a user’s own domain
is the most trusted in the scenario, this way is preferable in terms of
privacy so that only aggregated and earmarked information leaves
this domain. It is preferable for transparency but optional that the
user explicitly approves the information submitted for transparency.
Integrity is more difficult to verify when user-processed information
is received on the processor side.

Trustee-based Although trust is transferred from the processor to a trustee
(i.e. a TTP), this represents a marginal improvement for the user over
the processor-based method [126]. Confidence in a model is not raised,
but another participant is introduced who gains access to sensitive user
data. The business model and respective pipelines are not altered.
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Balanced Data processing is carried out in a hybrid way, involving both
the user and the processor so that both interests are equally taken into
account. The processor establishes the required data quality by using
a policy that a user must respect to participate in the process. The
customer anonymizes the data following the policy and submits only
aggregated findings. Additionally, a user can ensure that his or her own
private goals are met while maintaining anonymity, as he can abort
the submission process. Thus, while the process can regulate integrity,
the user is entirely responsible for the privacy produced in its trusted
domain.

Within the outlook of this dissertation in Section 15.3, we introduce the split
trust continuum [363]. This construct explicitly targets the situation where trust
between stakeholders is missing or limited. Such a situation may also be present
in the current case; hence, the split trust continuum may be a viable solution to
tackle this fundamental problem of who should verify the the system’s general
properties such as a policy.

14.2.3 kUBI

We can now integrate the previous considerations into our holistic privacy-
enhancing framework kUBI. As mentioned above, PHYD is used as a running
example in this chapter. However, kUBI was created so that it can also be
transferred to other scenarios and used there. The condition is that data collection
and analysis can be separated accordingly, as is the case here (smartphone for
collection, central infrastructure for analyzing).

Preliminary
considera-

tions

Based on stakeholder analysis, we define that a holistic solution to enable privacy-
preserving sensor data processing within business models requires a combination
of PET and TET. A PET is required to enable privacy in the first place and
empower individuals to anonymize data and to selectivity decide which data
leaves their private domain. However, a user may not understand what data is
submitted and how it is evaluated without knowledge of the data and education
on the processing. Thus, the aspects of a TET are included in kUBI, and a user
will be able to see the events that the insurer will process. We chose a balanced
strategy since it incorporates all stakeholders’ interests equally. Arguably, it is
meaningful from the insurer’s perspective to make such a compromise, as the
willingness to share data increases and privacy concerns decrease with active
user participation in the process [88]. However, the information is published
through a data processor-defined environment without requiring an external
TTP, as proposed by others [194].
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Isolation of
knowledge

In order to preserve the interests of the different stakeholders, the process is
divided into exclusive domains according to Pfitzmann et al. [297]. The main
idea is to balance the risk of, for example, fraud and the amount of trust
that must be placed on other parties [160]. The proposal has two primary
areas representing the two stakeholders: the user and the processor. One is
the local trusted zone located on the user’s side, in the form of his personal
mobile device (User Domain). We assume that this is his smartphone. The
other zone represents the infrastructure of the data processor, i.e. the insurance
company (Business Domain). The respective parties do not trust the counterpart’s
processes in the corresponding other zones. However, two exceptions reintroduce
overlapping trust (multiagent trust [297]) into the system. First, the Hostile
Domain (which may be a Trusted Execution Environment (TEE)) allows trusted
and integrity-preserving execution of foreign code components in an isolated
hostile environment in a predefined way so that internal operations are hidden
from the user, eventually being unable to be tampered with. An TEE, in general,
has well-defined input and output variables and is limited to no communication
capabilities. The second zone with higher-level properties is the OS Domain
which is a protected area of the Operating System that provides functions to
application developers via the defined APIs. Looking at the Android sensor
stack, the OS domain functionality necessary for kUBI can be located in the
Hardware Abstraction Layer (HAL) [23] with the HAL being an interface
between the hardware sensor and the Android framework (see Sidebar H). Hence,
the OS domain is considered the lowest level of the kUBI proposal and enables
application developers’ initial access to the sensor data.

Sidebar HAndroid Stack

We present the sensor stack using Android as shown in Figure 14.1 based
on Android Open Source Project [23]. Developed applications communicate
with Android OS using the Software Development Kit, which provides a high-
level overview of the sensors. The Framework layer establishes a connection
between numerous apps and the HAL. It introduces multiplexing, which enables
concurrent access to a sensor by various applications. Within this layer, virtual
sensors are also constructed.



382 14. KUBI: ALIGNING PRIVACY AND INTEGRITY

Hardware
Manufacturers

Google &
AOSP Developers

Se
ns

or
s

Se
ns

or
sH

ub

D
riv

er
s

HAL

Fr
am

ew
or

k

SD
K

Application

Application

Application

Application

se
ns

or
s.

cp
p

se
ns

or
s.

h

Figure 14.1 Layers of the Android Sensor Stack. (based on Android Open Source Project [23])

The HAL is the interface between Android and the implementation of a particular
sensor by a hardware vendor. It adheres to a well-defined user interface (sensors.
h). Lower levels are wholly owned by hardware makers and may be closed source.
Android is unable to modify the behavior of any sensor unless it is described in
sensors.h.
The stack is arranged bottom-up for security concerns, which means that higher
levels cannot communicate data to lower instances (Figure 14.1 is flipped due to
space constraints). Multiple applications that access data from the same sensor
operate independently. It is straightforward to register sensor readings.
To begin, an Android-wide SensorManager provides access to the
SensorService, which can be used to access a variety of sensors. Then, to
handle sensor updates, a SensorEventListener may be utilized. The code
snippet shown in Listing 4.1 queries the accelerometer and keeps track of newly
obtained SensorEvents.

K-anonymity It is challenging to provide privacy within the domain of PHYD as information
on the intensiveness of events or events at all should not be missed or altered, as
this will prevent the assessment of a trip from calculating the premium. However,
as we have learned in Section 9.4, it is sufficient for a data processor to assess
events c to specific categories ec 1,… , ec n, for example, aggressive, neutral,
and passive, using an unknown function C ∶ c ←→ Γec with Γec being all
event categories (c.f. Chapter 11). kUBI explicitly protects a user’s privacy by
reducing the level of detail provided to the sufficient degree that a processor must
receive. Our proposal eliminates the slight differences between drivers within
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Figure 14.2Framework for gathering and processing sensor data from users in a corporate
domain in a privacy-enhanced way for existing business models. The framework
posts different domains that are used to either generate trust, enable privacy or provide
integrity.

the same event category by providing k-anonymity within such semantic groups
using the idea of time series segmentation [204]. Still, the event extraction and
expressiveness of an event will be present, as kUBI will be orchestrated using a
processor’s provided policy Ψ and replaces a driver’s events with corresponding
reference events provided (i.e. segmented time series). Reference events, denoted
as ̆Γec , are provided by the processor in the form of Ψ. They may be derived
from the barycenter calculation of historically collected events (see Sidebar G)
or any other “magic” responsible to the processor. This prevents unnecessary
identification by the processor, for example, with the presented identification
attack (see Chapter 11). kUBI collects a complete sequence of events cfrom a trajectory  by applying CEP. Eventually, Ψ contains the necessary
parameters for processing the time series data, for instance, window length or
window overlap. All events c are then surrogated in a way with appropriate
drop-in replacements from ̆Γec so that no subsequent conclusions can be drawn
about a driver. It is not practical to do the entire trip assessment in the user
domain and then transmit the information to an insurer since supplementary or
historical knowledge is required and computational resources are limited.
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Architectural
overview

The proposed framework kUBI is composed of different components separated
into four different domains, as illustrated in Figure 14.2. The user domain (i.e.
mobile phone) includes the hostile domain and the OS domain with well-defined
flows among each other and to the external business domain (i.e. insurer).

High-level
process flow

A hardware sensor S E N S O R , such as the gyroscope, continuously generates
sensor readings x⃗1, x⃗2,… at specific times t1, t2,…. They are sent directly
to E M B E D D E D S I G N E R , which eventually wraps and signs multiple sensor
readings discretely in a data block b without leaving the OS domain. Hence,
data blocks cannot be changed afterward due to a cryptographically-secure
signature � using OS-provided key material. The data block-signature pairs
are persisted in a P R I VAT E S T O R A G E , which is a starting point for further
processing. Consider a data block representing a trip ′ that is a subset of
all data blocks . ′ is the trip about to be submitted to the processor and,
therefore, forwarded to two modules, the A N O N Y M I Z E R , and P O L I C Y-
E N F O R C E R . The A N O N Y M I Z E R is responsible for replacing or altering
events c ∈ ′ w.r.t. the provided policy Ψ to ultimately raise privacy for users
by transforming the sensitive trip ′ into an anonmyised version ̂′. Since kUBI
is not aware how to extract c due to confidential reasons illustrated previously1,
the user requires the utility of the processor to provide an event extractor, namely
the E V E N T E X T R A C T O R . It is embedded in the hostile environment and,
according to his internal and secret definitions, is initialized by the insurer.
However, the replacement or alterations of events can be performed without
additional knowledge. The anonymized trip ̂′ is sent to the F O RWA R D E R that
uses the P O L I C Y E N F O R C E R (also in the Hostile Domain) to verify acceptable
and feasible anonymization by the A N O N Y M I Z E R . The P O L I C Y E N F O R C E R
confirms an integer process by issuing a signature � that is submitted by the
F O RWA R D E R along with ̂′ to the DATA P R O C E S S O R with the consent of
the user (thus providing autonomy to the user [297]). The data processor verifies
the respective signature of an incoming trip to legitimate it coming from an
integer system. It is processed in a black box and stored in the DATA S T O R A G E .
A feedback channel (V E R I F I E R) allows the processor in a limited process to
request unmodified data blocks from a user, if necessary, to verify the integrity
of the process and the transmitted data.

1 An insurer does not need and probably will not publish his underlying event extraction method Ec ;
c.f. Chapter 9
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14.2.4Policies

We chose a balanced strategy for kUBI that combines privacy enhancement
within the trusted domain of a user and integrity validation by relying on the
definitions and infrastructure of an insurer.

Core
functionality

The core of the balanced strategy is the policy that defines and constrains the
level of anonymization applied to enforce privacy. Therefore, it is important
that the policy is feasible in terms of still allowing integer evaluation of PHYD,
being sound so that data alteration methods are realistic, and being acceptable to
provide a sufficient level of privacy. The policy is fundamental for the autonomy
of users to gain back empowerment from the insurance company [407].
The verification of the policy and the entire process requires a thorough review.
Three levels of verification are conceivable: verification by the provider itself,
an intermediary, or the user himself. These are discussed below.
Individual Users can perform the policy review themselves. They do not

depend on any other entity for this and enjoy full authority in their
decision-making. The protection techniques applied in the system are
defined and verified by the user so that the user himself can adjust
the level of privacy. Users are free to decide whether the policy meets
their privacy needs and make an informed decision, provided they
understand the situation accordingly. This represents the ideal solution
but is challenging to implement due to the complexity of the process
and the required understanding [226].

Intermediary An independent third party can review the policy on behalf
of the users. In contrast to the individual review process, part of the au-
thority of the users is relinquished in favor of increasing convenience
and reducing complexity (limited authority). The transparent review
process takes over the review tasks by experts and professionals who
understand the subject matter and can thus perform an in-depth anal-
ysis. They represent users’ interests (such as privacy and anonymity)
and can, for example, provide recommendations and advice to users.
Due to the proxy principle, intermediaries represent many users and
can seek vigorous discussion with processors should privacy disagree-
ments arise or the policy allows inappropriate data processing. Exam-
ples of intermediaries are data protection commissioners of federal
states or consumer centers (Verbraucherzentrale)2.

2 https://www.bmjv.de/DE/Verbraucherportal/Verbraucherinformation/VZBV_VZ/vzbvundVZ_
node.html

https://www.bmjv.de/DE/Verbraucherportal/Verbraucherinformation/VZBV_VZ/vzbvundVZ_node.html
https://www.bmjv.de/DE/Verbraucherportal/Verbraucherinformation/VZBV_VZ/vzbvundVZ_node.html
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Processor The processor publishes the policy according to its conditions
and philosophy. It can be assumed that the policy is drafted according
to the legal framework (e.g. GDPR), but its own interests are given
priority, such as thorough data knowledge. Although the process has
complete knowledge of the data processing procedure, the correctness
of the policy is confirmed solely by the creator, which implies no
authority towards the provider by the customer.

Each level of verification has the corresponding advantages, be it complete self-
management of the users (Individual), the streamlined process of verification
by experts (Intermediary), or complete knowledge of the processing steps of
the sensor data (Processor). kUBI supports all three levels in its design, as the
policy is an external artifact provided to the A N O N Y M I Z E R . The syntactic
correctness of the policy is essential primarily for the functionality of kUBI.
Verifying the semantics is possible according to the three levels presented and
is optional. The processor level can be considered the default if the verification
is omitted.

14.3 Components

We now explain every component in-depth 3. The explanation will follow the
process flow of the framework. We start with the OS domain, then explain the
core kUBI building blocks with the user domain, including the hostile domain,
and finish with the black-box-like business domain.
kUBI is a policy-driven system that can be configured in a compressible way by
a data processor via Ψ. This policy is subject to review as it is fundamental to the
acceptance and feasibility of a privacy-enhanced business model. A P O L I C Y-
L E G I T I M AT O R symbolizes the review process. We have already discussed
different characteristics for this component in Section 14.2.4; hence, we neglect
further remarks.

14.3.1 OS Domain

The OS is only under the control of the device manufacturer or the OS vendor.
We assume that no alterations can be made to this environment except by the
vendor itself.
3 Although this section is based on Roth et al. [318] with several extensions; the notation has been
adapted to fit the notation in this work, which is used throughout this work. Consequently, there
might be differences compared to Roth et al. [318].
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Sensor

Based on the information provided in Chapter 2, we assume that a PHYD
application requests data from the sensors of interest, such as the accelerometer
or gyroscope using the official APIs. A generic S E N S O R continuously outputs a
stream of measurements x⃗1, x⃗2,… with the shape varying from sensor to sensor.
According to our definition of time series data, this stream of Sensor Events
is chronologically ordered by a respective timestamp t for each reading. For
example, the a SensorEvent of the accelerometer is a three-dimensional vector
along with a timestamp: x⃗ = (x⃗x, x⃗y, x⃗z, x⃗t)T ∈ ℝ4. Notably, the data shape is
not altered by kUBI to enable backward compatibility with existing applications.
Furthermore, existing APIs will be used for interaction by privacy-enhanced
sensor applications.
EmbeddedSigner

As we use the same interfaces as offered by Android for processing sensor data,
an application can register at the E M B E D D E D S I G N E R (or in terms of Android:
Signed Sensor Event API) for corresponding updates of Signed Sensor Events
extended with appropriate integrity-protecting fields in contrast to Sensor Events
(see Chapter 2). The extension of the Sensor Event API to generate should be
provided by the OS vendor itself as a drop-in replacement for broad and easy
adoption. The Android Sensor Stack architecture enables the separation of data
acquisition utilizing the physical sensor and data processing in the application;
hence, compatibility of the proposal is ensured.

Data blocksSince cryptographically signing is an expensive operation, it is minimized by
concatenating multiple Sensor Events based on a time frame !, for instance,
1 s. It is important that this does not reduce the frequency of sensor readings
to 1Hz as a SignedSensorEvent serves as a container for holding a sequence
of SensorEvents, allowing access to all successive sensor readings. They are
defined as a data block bm with n elements:

bm =
⟨

[

x⃗1,… , x⃗n
]

, �OS
bm

, GUID | xl,t ∈
[

ts, ts + !
] for l = 1, 2,… , i

⟩

ts denotes the beginning of b. Data blocks are discrete and do not overlap, i.e. the
m + 1-th data block has x⃗n+1 as its first sensor reading. Attached is a signature
�bOS

m
=

(

HOS
(

x⃗1‖… ‖x⃗i
))dOS that provides integrity and authenticity. HOS

stands for a secure and publicly known hash function that is used to hash the
concatenation of all subsequent SensorEvents included in the timestamp, while
dOS is the E M B E D D E D S I G N E R’s private key used to sign the signature.
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Furthermore, we add a Globally Unique Identifier (GUID) to each data block
which ensures that a data block can be identified uniquely and without ambiguity
in a set of data blocks, although this id is not related to the payload.

Hierarchical
trust

The E M B E D D E D S I G N E R is located in the isolated OS domain, eventually
being protected from user interference. Android already provides secure key
management via the Keystore API, which is embedded in a TEE isolated from
the userland application and is used to produce and verify signatures. Therefore,
the OS vendor can serve as a root trust anchor trusted by all participants of the
process (multiagent trust), essential for building a PKI. It can deposit a device-
dependent key, for example, dOS securely in the device’s Keystore for operations
over the Keystore API. The trustworthiness of the key is appropriately confirmed
by it. Ultimately, data signed with the device key is to be trusted because the
corresponding root CA, i.e. Google, is assumed to be trustworthy (i.e. being a
hierarchical trust system). The public certificate for the device may be widely
published, for example, to enable a data processor to validate signatures.

14.3.2 User Domain

The user domain runs userland applications on behalf of the user without any
guarantees regarding security and integrity towards a third party. A user may
tamper with applications and data under his control and interact with the system
in a manner primarily intended by him. kUBI uses components in this domain
to enforce a user’s interests in the business model.

PrivateStorage

The persistent storage in the user domain called P R I VAT E S T O R A G E holds all
data blocks  recorded by a device. Apart from , the set ΣOS of all signatures
�b1,…,bOS

||
is stored alongside to be able to prove authenticity and integrity of all

blocks. The storage also organizes trips that are defined similarly to Chapter 11: A
trip is a semantically coherent sequence of measurements without interruption,
such as those occurring during a journey from A to B. Hence a trip ′ is a
semantically sliced subset of , defined as the concatenation of multiple data
blocks bi,… , bj with the respective signature set ΣOS

′ =
[

�bi‖… ‖�bj
]

. ′s
are processed and classified ex-post by an insurer, i.e. after the trip has been
completed. This component is also relevant for the legitimation of the transmitted
data. With its help, a user can prove that he knows the corresponding genuine
data blocks for the anonymized data blocks.
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Figure 14.3⃗ are organized in  and contain patterns representing c . All elements are inter-
changable and are time series based.

EventExtractor

Hidden event
extraction

According to the PHYD model, an insurer classifies a trip based on certain events
that occur during the journey. The assumption is that these allow a conclusion
about the driving behavior. This hypothesis was confirmed by the attack featured
in Chapter 11. Thus, the events are the baseline for the anonymization, implying
that the events are appropriately known, or it is at least known how to derive them
based on a trip. Consequently using a set of events  ′

c in a trip ′, an anonymized
version of the trip ̂′ can be generated according to communicated policy Ψ.
However, the process of extracting events is unknown. We assume that only an
insurer is aware of a confidential method Ec . kUBI takes this into account by
embedding Ec in the form of the E V E N T E X T R A C T O R in the system’s hostile
domain. The E V E N T E X T R A C T O R works as-a-service that adheres to black-
box principles in order to protect the insurer’s business case (undercover-agent
trust), i.e. there is no need to explain or publish. This ensures confidentiality,
a critical component identified within the stakeholder analysis. As a result, the
E V E N T E X T R A C T O R uses a proprietary procedure to extract events from the
data block stream. However, the user retains control over input and output, which
contributes to increased trust. He is solely interested in the projection of data
blocks to events to get all events  ′

c in a trip ′: bi,… , bj ←→ ecm,… , ecn with
∀b ∈ ′. The E V E N T E X T R A C T O R yields a list of events based on all data
blocks with start and end times.

Transforma-
tion between
elements

Events are ultimately linked to data blocks that, in turn, are composed of sensor
readings via the E M B E D D E D S I G N E R’s concatenation algorithm. Since sensor
readings are time series data streams, all successive elements built on top of
them can be addressed by the same time information. The link between the
three elements is illustrated in Figure 14.3. Sensor readings do not necessarily



390 14. KUBI: ALIGNING PRIVACY AND INTEGRITY

0 100 200
0.0
0.2
0.4
0.6
0.8
1.0

sample length [#]

no
rm

(a
cc

y)
[m

s−
2 ] Passive

0 100 200
sample length [#]

Neutral

0 100 200
sample length [#]

Aggressive

Figure 14.4 Reference events ̆c i1 with i = 1,… , � = 3 are representative for a category. We
assume that reference events are the weighted average of already collected events c1,2,…for a category. Shown are events of type braking for a single x⃗ (� is set to 250) which are
deployed by an insurer and then used locally at the user.

form an event, e.g. if a driver is only going straight without accelerating or
braking. Hence the projection of events and data blocks is non-surjective and
also non-injective as a single event may be composed of multiple data blocks, but
not every data block is included in an event. However, the link between sensor
readings and data blocks is a non-injective surjective function, as every sensor
reading is contained in a data block, although one data block contains multiple
sensor readings. Let us define two utility functions Ox⃗(ec) and Ob(ec) to count
the number of sensor values x⃗1, x⃗2,… or the number of data blocks b1, b2,…(with equal length in terms of time), respectively, that compose an event ec . It is
likely that ∃eca, ecb ∈ c ∶ Ox⃗(eca) ≠ Ox⃗(ecb) holds. Elements can be converted
from one type to another, as illustrated.

Anonymizer

We initially motivated the privacy issue of PHYD by showing that an insurer can
gain additional knowledge based on the extracted events  ′

c . A proof is presented
in the form of the identification attack in Chapter 11, particularly stressing the
importance of anonymity. However, precisely these entities are used to classify a
trip. Thus, the integrity of events is of crucial importance. Furthermore, sending
raw data to foreign domains is prohibitive for the reasons mentioned earlier,
and the A N O N Y M I Z E R is responsible for balancing the mentioned interests.
kUBI balances both stakeholder interests by replacing identified  ′

c in a privacy-
friendly, but comprehensible way with so-called reference events using a one-way
function with similar properties as a hash function ′ ←→ ̂′.
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Reference
events ̆c

A reference event is a representative of an event type of a class that can be defined
using the policy Ψ that is first introduced in the context of PHYD. The reference
events are to be constructed by the data processor, the i.e. insurer, based on his
understanding of how a class of an event may look like. As they are static and
independent from the current circumstances, such as the activity of other drivers,
the A N O N Y M I Z E R , therefore, does not need an interactive interchange with the
data processor to, for instance, gain any global noise [183]. They are syntactically
identical to events already introduced in this work but are a generalized view
of the problem; hence, a generalization-based approach is pursued to enhance
privacy. We may assume that reference events are constructed based on real
events by overlaying them, which is a typical attempt to generalize a problem in
speech recognition, e.g. using barycenter computation (see Sidebar G). However,
kUBI is independent of the construction of the reference events ̆c since these
are similar-shaped time series data excerpts as introduced previously (e.g. x⃗,
or in particular  in terms of PHYD). A reference event may have the same
dimension as an event extracted from the measurements. In particular, ̆c is a
�×� matrix where � is the number of classes that an insurer uses to categorize
a trip and � is the number of reference events that can be selected to replace an
event class. We recall that in the given scenario, � = 3 classes exist and that in the
simplest case only one event per class is selectable (� = 1). Figure 14.4 illustrates
an example of how reference events can be constructed from previous, globally
recorded events of a category in the processor’s domain using the weighted
average. Another approach might be to define an arbitrary polynomial function
that yields representative sensor values.

Event
exchange
process

The component in the user domain processes every ec ∈  ′
c to select a suitable

reference event ec ∈ ̆c using a distance-based approach, precisely DTW
as the elements are shaped similarly (c.f. Sidebar F). The use of a distance-
based metric eliminates the need for further domain knowledge within the
A N O N Y M I Z E R , ultimately reducing the problem of selecting the correct ec ∈
̆c to a minimization problem. In particular, the component does not need any
information on � or how to calculate them. The events of a trip are first resampled
using R to the same length as is the case for ̆c (i.e. �). After selecting the best-
fitting reference event ̆c ij, the inversion of R−1 must be found, so that ̆c ij can
be interpolated in the sensor data stream by creating adequate data blocks and
respective sensor values. The result of the A N O N Y M I Z E R is a set ̂′ which
contains the trip, but all events have been replaced (and thus anonymized to
provide k-anonymity) with corresponding reference events. However, since the
event (and its corresponding data blocks and sensor values, respectively) has to
be adjusted to fit into the data stream, we call it b̂. Note that the characteristics of
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a trip, its event class distribution, and order have not been altered at all, allowing
the data processor to draw the same conclusions.

Other Ψ
approaches

Although we introduced reference events as a new generalization-based approach
to tackle the complex problem of anonymizing time series sensor data in a
somewhat constrained environment, other descriptions within the policy Ψ
are conceivable. For example, known approaches to privacy-enhanced sensor
data are suppression, randomness, alteration, or insertion. In Roth et al. [322],
we analyze the respective methods, especially for the case of PHYD, but in
the end none of them produces a sufficient level of privacy considering the
required constraints. For instance, suppression is not feasible since the time series
data within our identification attack (see Chapter 11) is resampled, eventually
interpolating these missing values. Alteration or insertion of additional sensor
readings tends to be unacceptable, as it may change the class of an event.
This highlights the potential of the attack based on distance-based sensor data
processing using error-robust methods. However, for other attacks without
strict constraints, such as the reconstruction of the presented trajectory (see
Chapter 12), a more straightforward policy Ψ may be sufficient.

Forwarder

Trust in the approach is i.a. based on the separation of knowledge and power.
Consequently, the data is not automatically forwarded by an insurer application,
but it leaves the user domain only through a channel defined and controlled by
the user (personal-agent trust [297]). If a user decides to submit data to a data
processor, he will need a valid signature �B(�OS

′ , ̂′) to demonstrate that the
user followed the agreed anonymization process between the data processor and
him according to Ψ. Therefore, a user forwards the anonymized trip ̂′ to the
P O L I C Y E N F O R C E R to have the correctness of the A N O N Y M I Z E R process
confirmed.

PolicyEnforcer

The data processor cannot only define in a policy Ψ which reference events
are available but also determine to what extent the sensor values may deviate
between the original and the resulting trip4. The trip’s data quality is ensured
4 The A N O N Y M I Z E R uses a distance-based approach for the selection of reference events. In
exceptional cases where the actual event is between two classes or is close to the boundaries, it may be
replaced by a non-class reference event. This process cannot be recognized by the A N O N Y M I Z E R ,
because there is no insight into the business model. Therefore, it makes sense to consider this by
allowing for a certain number of false positives.
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by defining a policy regardless of the anonymization of the sensor data. The
P O L I C Y E N F O R C E R plays a distinctive role in the system, as it preserves the
integrity of the data and accepts the anonymization approach on both sides. First,
it verifies that the anonymized trip ̂′ was created on behalf of the real trip
data ′. Recall that each x⃗ ⊂ ′ has a timestamp that cannot be altered due to
the signature ΣOS

′ . Therefore, this combination is used to prove the integrity
of a data processor and is shown to him via a signature from its P O L I C Y-
E N F O R C E R . Let the P O L I C Y E N F O R C E R component provide functionality
for crafting a valid signature if Ψ holds: �P =

(

ΣOS
′ ,HP

(

̂′
))dP where HP is a

secure hash function that is authenticated using a signature created with the data
processor’s private key dP securely stored in the P O L I C Y E N F O R C E R . The
signature is required to perform further integrity checks within the framework
essential for trust on the data processor side, as seen in V E R I F I E R . P O L I C Y-
E N F O R C E R is implemented in the hostile domain within the user domain for
trust reasons. A user has no control over or is able to analyze the blackbox’s
activity. However, he does have control over the input and output settings, which
is an important criterion for user acceptance. The box cannot communicate with
the data processor through a side-channel due to the properties of the hostile
environment (i.e. TEE). The output is auditable and cannot include concealed
data.

ExampleSince the P O L I C Y E N F O R C E R is flexible in terms of the applied policy, we
give an example of possible verification criteria hidden in Ψ. An anonymization
may be correct if

▶ the number of events in ̂′ (loosely) equals ′,
▶ input ′ from the P R I VAT E S T O R A G E can be used to verify if the

distribution of event types in the anonymized trip ̂′ equals ′, and
▶ each b ∈ ′ has a valid signature �OS

b , i.e. no recorded trip is used
to deceive the PHYD system (replay attack); data blocks contain x⃗s
which in turn have a timestamp x⃗t signed in �OS

b .

For privacy reasons and to clearly separate the domains, the P O L I C Y-
E N F O R C E R does not have access to the A N O N Y M I Z E R , hence is unable
to anonymize a given event in ′ to prevent any kind of oracle. Within this
framework, the design of the policy is therefore deliberately limited.
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14.3.3 Business Domain

The business domain is the counterpart of the user domain and is solely under
the control of the data processor. It has to be assumed that all information leaving
the user domain via a defined channel such as the F O RWA R D E R is disclosed.
This domain is responsible for processing the data, evaluating the trips, and
pricing the premium. As mentioned previously, evaluation methods, including
additional knowledge, are hidden from outsiders. Therefore, we consider this to
be a black-box-based process.

DataProcessor and DataStorage

Upon receiving submitted and anoynmized data blocks ̂′ along with a cor-
responding signature �P

(

ΣOS
′ ,HP

(

̂′
))

, the data processor first checks the
validity and correctness of the signature �P . Recall that �P has been crafted ac-
cording to the definition of the data processor within the P O L I C Y E N F O R C E R
placed in the hostile domain.

Acceptance
test

A valid signature, therefore, confirms two properties. First, it allows the data
processor to verify that the data originates from an instance that is under its
control and thus legitimate. This is enabled by the fact that the secret key
dP used for signing is tightly embedded in the P O L I C Y E N F O R C E R and is
protected from access by the TEE accordingly. Furthermore, it can verify that
the transmitted data blocks ̂′ have not been subsequently manipulated and that
they match the trip to be examined. To accomplish this, the DATA P R O C E S S O R
can compare the self-signed hash HP

(

̂′
)

with the received data blocks. Thus,
a user is forced to submit the data blocks that the P O L I C Y E N F O R C E R has
checked. Otherwise, a fraudulent submission may be detected. Thus, replay
attacks as a representative example are successfully mitigated. Subsequently,
both ̂′ and �P are persistently stored and evaluated according to the specific
methods of the data processor.

Verifier

To further ensure the integrity of the process and to handle the case of suspicion
of fraud by a user, the data processor has an additional option at his disposal.
Recall that the A N O N Y M I Z E R performed a one-way anonymization operation
′ ←→ ̂′ that is hard to reverse, as this introduces a specific amount of
generalization into the data. To exclude fraud, the V E R I F I E R can require a
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knowledge proof from the user, in which the user has to prove that he is the
originator of the data.

Knowledge
of blocks

Therefore, the V E R I F I E R selects an agreed quantity5 of random elements from
the received trip ̂′ (denoted as proof set P ⊂ ̂′) and requests raw data blocks
from the prover, i.e. the user. Consequently, a trip is only considered valid if
∀b̂i ∈ P ∶ ∃bi

[

PS ←← bi ∧ bi,GUID = b̂i,GUID

]

holds, i.e. a user can submit
the raw data block for any given anonymized data block as he can find it in
his P R I VAT E S T O R A G E (denoted as PS) and GUIDs match. The GUID is
immutable and does not change independently of the anonymization process.

Integrity of
blocks

Furthermore, the V E R I F I E R must confirm that the provided event was not
altered in terms of sensor readings or timestamps, as the GUID is not linked to
the payload of a data block. ΣOS

′ holds all signatures �OS
b1,…,∣′∣

of the data blocks
as processed by the E M B E D D E D S I G N E R . Therefore, the V E R I F I E R can
calculate the hash using HOS of the raw data blocks submitted that he requested
with P . He can then verify whether the signature derived from such a block is
part of ΣOS

′ . The proof is completed once the user can submit all requested data
blocks and if each is part of the trip, which is verifiable thanks to the signatures.

Proof failureIf any of the operations performed by the V E R I F I E R fail, the user is not actively
supporting or able to deliver the requested blocks, ultimately the proof will fail.
However, the user can also cancel the proof at any time if he finds discrepancies
(e.g. the data processor requests more blocks than agreed upon), which ultimately
supports his authority to participate in the process.

14.3.4Discussion on Design Principles

kUBI is designed to balance integrity and privacy. These aspects are integrated at
several points in the framework. We now discuss elements that support integrity
and trust, as they are the dominant stakeholder interests. Both objectives are
essential for sensor-based business models.
Integrity

The pattern design implements three different proofs needed for a privacy-
balanced business model. A user is also interested in integrity because he only
5 The quantity is a critical component that requires careful discussion as it is a security parame-
ter to balance integrity and anonymity. Too many selectable blocks allow the data processor to
deanonymize the trip to that degree, thus degrading user privacy. The quantity can be defined in
advance by Ψ and cannot be changed afterward.
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gets a discount once an insurer accepts submitted and anonymized data. As a
consequence, fraudulent behavior is not beneficial.
P1 Data has not been tampered with A trustworthy E M B E D D E D -

S I G N E R unit processes each sensor value as soon as it is generated
on a lower level of the Android Software Stack. Each x⃗ is then hashed
and signed by this entity, using its device-dependent private key dOS .
A user altering some values of a x⃗ cannot create a valid signature,
eventually being detectable by the V E R I F I E R .

P2 Data has not been modified outside the boundaries A data pro-
cessor rejects data submitted by a user unless a valid signature
�P

(

ΣOS
′ ,HP

(

̂′
))

is shown. This, in turn, is generated by the
P O L I C Y E N F O R C E R according to the conditions of the data proces-
sor that are transparently communicated via a policy Ψ.

P3 User has produced the data A user must prove knowledge of raw data
blocks for any anonymized data block on request by a V E R I F I E R .
Although a user may use data generated by another device, this is
prevented by the device-dependent key of the E M B E D D E D S I G N E R
that is used to sign a data block bi (i.e. �OS

bi
). This is only true if there

is a data processor that should be aware of a link between the mobile
device of a user and the respective data.

Trust

Our pattern provides trust in four significant positions. Trust is not only relevant
for the user since his data are processed, but also for a data processor, as he uses
the disclosed information for premium calculation.
T1 Box only outputs user verifiable signature There is no hidden infor-

mation in the P O L I C Y E N F O R C E R’s output since it is easily com-
prehensible by a user using �P to verify the given signature, created
using a known hash function HP and user-controlled input data.

T2 Box is in a secure enclave and cannot be tampered with A TEE guar-
antees that sensitive processes are carried out in the protected environ-
ment. A user cannot create a signature for the P O L I C Y E N F O R C E R
because he does not have the required cryptographic material, i.e. the
secret key �P that is effectively protected by a TEE.

T3 User controls which data to forward The paradigm of personal-agent
trust was chosen in favor of undercover-agent trust. Each piece of
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information is processed in the local domain of the user. A user solely
controls every data transmission, relying on a forwarding engine.

T4 User can choose freely from policy defined values A user can select
any ̆c ij to replace a event from a trip ′. The data processor accepts
a value as long as the P O L I C Y E N F O R C E R verifies the integrity. It
is comprehensible for a user if policy Ψ does not hold.

14.4Evaluation

We now present an evaluation of kUBI that incorporates the specific example
of UBI. First, we define two utility methods based on the environment: an
identification and a classification method. Then, we take a detailed look at how
anonymized data is crafted and assess the level of privacy provided. The section
is concluded with an analysis of the achieved integrity.

14.4.1Environment

The context in which the evaluation takes place determines two external methods.
Events of a driver are assumed to be classified accordingly using an unknown
method C. Furthermore, there exists a method that, according to the definition
of Section 9.4, attempts to identify a driver and thus violates the privacy of
a subject. We define that method to be the attack presented Chapter 11 that
exploits two types of events (acceleration and braking). Furthermore, we assume
that a specific policy Ψ that provides ̆c of shape 3 × 3, i.e. three reference
events � are present for three different event classes �, which will be used by
the A N O N Y M I Z E R . To further remove deterministic patterns and enhance
privacy, kUBI is allowed to choose from multiple reference events whose DTW
distance is within a threshold of 10% from the original event ec to generate its
anonymized representation êc .

Classification
method

It is challenging to define a classification method C that is equal to an insurer’s
approach, as this sensitive data is not disclosed. Hence, we assume a simplistic
but feasible approach to such a method based on related work such as Marina
Martinez et al. [248]. A classification method in our context is a function that
takes an event and assigns it to three distinct classes based on its harshness, as we
illustrated previously. Harshness is defined by the velocity difference relative to
the event’s duration. The assignment to a class is then based on the harshness and
defined static class boundaries. The classification method is used in the context of
P O L I C Y E N F O R C E R and to construct ̆c . Consequently, the number of classes
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output by the classification method equals the number of different classes of
reference events ̆c (� = 3).

Privacy-
violating
method

The goal of kUBI is to privacy-enhance existing business models and, therefore,
protect a user’s privacy within potentially dangerous information disclosures.
To assess the ability of the framework to improve privacy, we deploy the
identification method presented in Chapter 11 as it is specifically adapted to
the context. It is based on kNN with DTW as its distance metric and outputs
confidence, which tells how likely the trip is from a user. The final decision
is made based on a maximum guess. A decrease in detection confidence is
considered productive and supportive for the suitability of kUBI to the problem.
All the illustrated assumptions hold: First, the attacker receives a stream of
measurements that represent a trip ′, although they have been replaced with
anonymized versions ̂′. Recall that a data block is a container for multiple
measurements , hence the data format allows event extraction as presented
in Section 11.3. Then, the identification, as well as the classification, is based
on events  ′

c making them significant. Also, the set of drivers  is a closed-set
known in advance, and the identification approach has been trained accordingly.
Lastly, a trip ′ always is derived from a single driver so that there are no
unrealistic driver changes during a trip.

14.4.2 Anonymized Trip

The anonymization is based on replacing events with reference events. It is
crucial to maintain a steady integer and sound trajectory. Reference events are
normalized in [0, 1], so they require rescaling when used as a replacement since
every event presents another range of values.

Example Figure 14.5 shows an excerpt from a trip of a driver. Illustrated are three braking
events (ec0, ec1, ec3) and one acceleration event (ec2). The colors indicate an
anonymized event created from a reference event or the event as the user’s mobile
device recorded it. The course of the sensor readings (shown is the velocity) is
very similar, yet identification hints for a driver are removed. If the data processor
offers fewer reference events as part of its policy, such as only one reference event
per class, the deviation of the two curves increases for events. This is because
the algorithm has fewer options to minimize the DTW distance.

14.4.3 Privacy Enhancement

The question of to what extent kUBI can increase the privacy of individual drivers
by anonymizing trips is now discussed. Essential for providing anonymity is to
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Figure 14.5Excerpt of a trip from a driver. It shows both, the raw version ′ as it is recorded by the
user’s device and the anonymized version ̂′ after processing through kUBI. The course
of the sensor readings (shown is the velocity) is very similar, yet identification hints for a
driver are removed.

decrease the successful identification rate of the attack algorithm. Note that a
successful identification occurs if a trip can be assigned to the correct driver,
which happens when most of the events found in a trip represent a driver.

Identification
confidence

As we reran experiments from Section 11.4, results are comparable. In particular,
confidence should be investigated initially. Although previous identification
attempts showed high confidence in individual events and allowed conclusions
to be made about drivers, this picture becomes less clear. Table 14.1 shows
an example of the evaluation of the maximum-based approach for a trip with
five events. All known drivers are available as candidates. It is striking that
the confidence (or probability) across events shows identical rates for different
drivers. This is because reference events are generalized events, and thus the
kNN algorithm uses, as part of the voting process, i.e. the distribution of k
shares to the most similar events (the minimum DTW distance), a different data
basis. Typically speaking, the unknown object (gray square in Figure 11.11) is
no longer close to the actual driver cluster but is arbitrarily placed in the space
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between the clusters of drivers. An approximation to a cluster only occurs if a
driver has over proportionally many events of the class of the corresponding
reference event. In contrast, Section 11.4 marks drivers or events with the same
confidence whose clusters are similar. This is what kUBI tries to achieve since
all drivers of the same type should form a cluster in the sense of k-anonymity.

Table 14.1 Overview of a trip evaluation to eventuelly predict a driver based on anonymized
events as presented. The trip contains five events of the same type with five potential
drivers. The predicition is based on a driver’s likelihood to be the correct driver.

Driver Event Pred Pred
(norm)1 2 3 4 5

A 0.07 0.00 0.13 0.13 0.00 -0.67 -1.00
B 0.13 0.00 0.13 0.13 0.07 -0.53 -0.83
C 0.20 0.33 0.27 0.27 0.27 0.33 0.30
D 0.53 0.47 0.27 0.27 0.33 0.87 1.00
E 0.07 0.20 0.20 0.20 0.33 -0.00 -0.13

Analysis of
drivers

For example, the correct driver for the given example (c.f. Section 11.4) is C.
However, the algorithm predicts D, mainly due to events one and two. These
are overweighted, as their confidence compared to other drivers is significantly
higher for driver D. While this strategy works well in the non-anonymized cases,
it produces wrong results in the kUBI case. Other events, especially three to
five, are very similar considering the confidence between drivers C and D and
also between driver E. Interestingly, high confidence can be observed for missed
driver predictions, higher than for correct ones. The non-normalized prediction
(“pred”) shows uncertainty as to whether C or D is the correct driver–even E
can still be considered. Exclusively, A and B do not play a role in the decision
process and can be excluded from the probable drivers.

Success rate Based on previous insights, the success rate of the anonymization approach
kUBI is to be discussed. Summarizing results are shown in Figure 14.6 that
can be compared to the ones in Section 11.4.3 (|| = 5). The figure shows
the success rate for two cases based on the number of events found in a trip.
First, the percentage of success identified trips where the algorithm was able to
find the originating driver, and second, the same situation but for anonymized
trips. It is imminent that the identification task becomes more manageable with
more events as the success rate strongly increases above 90% in the first case.
The performance has already been discussed in Section 11.4. The relationship
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Figure 14.6Plot of the correlation between the number of events and the correctly recognized
drivers. The privacy-enhancing effect of kUBI becomes visible. As the number of events
in a trip increases, the detection rates for the unanonymized trips increase, whereas the
trips modified by kUBI do not allow identification.

between more events and the success rate is inversed in the second case with
only around 20% of the drivers correctly identified. This equals guessing for
the five-driver scenario; hence, no learning of patterns can be applied to the
problem.

Confusion of
drivers

Table 14.2 helps to understand the origin of why precisely 20% were achieved.
Apart from the correct identification in the case of unmodified trips (see Ta-
ble 14.2a), in the other case all trips are attributed to one person (see Table 14.2b).
This is surprising at first glance, as one would expect a random distribution with
similar frequencies of predictions across all drivers. An assumption is that the
cause is to be found, among other things, in the learning process (which takes
place on unchanged events). The frequency of the events does not seem to be
sufficiently satisfying as a reason since driver E shows the most events in the
data set. Also, driver C possibly covers a broad spectrum in his driving behavior
that reflects all three classes, and thus the reference events in the multidimen-
sional space have a smaller distance to his (potentially extended) cluster. Hence,
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Table 14.2 Confusion matrix for driver identification after twelve trips each. Each trip has 15
acceleration and 15 braking events of different harshness. Trips are normalized based on
the true label (rows, i.e. twelve trips).

a) Identification based on raw trips ′

(As-is).

Predicted

A B C D E

A
ct

ua
l

A 100 0 0 0 0
B 0 50 8 0 42
C 0 0 100 0 0
D 0 0 0 100 0
E 0 0 0 0 100

rates in percent

b) Identification based on trips pro-
cessed by kUBI ̂′ (Anonymized).

Predicted

A B C D E

A
ct

ua
l

A 0 50 0 50 0
B 0 0 100 0 0
C 0 0 100 0 0
D 0 0 92 8 0
E 0 0 100 0 0

rates in percent

with more events, the algorithm (w.r.t. the maximum-based approach) predicts
driver C with meaningful confidence, except for trips from driver A that are
confused with B and D. In conclusion, anonymization helps to provide privacy
as no reasonable inferences are found.

14.4.4 Integrity Examination

As kUBI selects the best suitable reference event as a drop-in replacement
to generate k-anonymity using a minimization approach, a mixture between
classes regarding classification can occur. This is related to the missing domain
knowledge of the framework, as it is approach-agnostic and based solely on the
policy to ensure appropriate anonymization while keeping integrity intact. This
happens when the driven events are close to the class boundaries, as shown in
Figure 14.7. For example, reference events 2 , and 3 are similar according
to the calculation of DTW and are within the threshold window but have not
been selected in favor of 1 . Other events, in particular, 5 , and 7 , are
discarded, as one can see that the course does not match the raw event. It is a
trade-off to accept when an insurer wants to keep his event selection algorithm
confidential.
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Figure 14.7Example of the challenge to correctly select a reference event. The reference event
selected by the A N O N Y M I Z E R is violating the class consistency of event replacements
that is demanded by the data processor. This happens when driven events are close to
class borders. It is a trade-off to take when an insurer wants to keep his event selection
algorithm confidential.

Policy-
Enforcer

However, such mismatches must be detected before reaching the data pro-
cessor itself, as kUBI proposes a P O L I C Y E N F O R C E R component that can
verify integrity on the user side based on the data processor’s behalf. The
A N O N Y M I Z E R computes the minimum distance between an event traveled
ec ∈  ′

c and the various reference events ̆c provided. Then, based on a thresh-
old, a set of potential candidates ec ∈ ̆c is formed, and a random element is
drawn. The resulting trip ̂′ is checked by the P O L I C Y E N F O R C E R . In case of
rejection, the random seed of the A N O N Y M I Z E R can be changed so that other
candidates are randomly picked from the respective candidate set for each event
in a new iteration.

DrawbacksThe assessment shows that the deviation of the class distribution is acceptable
and requires little additional work in favor of privacy. It can be observed that
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critical errors, namely the deviation by two classes (aggressive becomes passive
or vice versa), rarely occur. However, an exclusively minimal-based selection
approach requires further optimization. kUBI can be suitably adapted by the
policy so that the general scheme of the framework remains valid.

14.5 Conclusion

We now conclude our work on kUBI. First, we discuss the UBI context as a major
driver for the design of the framework. The framework’s ability to enable privacy
is shown next, including a proposal for a reference implementation. A discussion
of privacy implications follows that specifically addresses the drawbacks of
kUBI. These drawbacks are i.a. given by design due to conflicting interests of
stakeholders. Generally speaking, we want to motivate discussion and exchange
between the different players.

14.5.1 The UBI Context

In Section 9.4, we asked whether user privacy is compromised by attacks such
as those in Chapter 11 and Chapter 12. This question could already be answered
in the affirmative, yet this type of UBI insurance shows increasing prevalence
(c.f. Section 9.3). Users prefer the benefits, such as discounts on premiums or
more convenience of fully automated transmission of driving data through an
application.

Challenges In this respect, preventing the business model is not in line with the times, so al-
ternative solutions must be found. Due to the particular focus on sensor data and
the covert processing without knowledge of the evaluation methods, protecting
user data is challenging. Certain framework conditions must be adhered to so as
not to reduce the significance of the data to absurdity. Existing anonymization
methods for modifying data to increase privacy, such as generalization, are not
suitable [322]. Either they are ineffective because the time series are complex
data structures that follow specific patterns, and changes can be leveled accord-
ingly with suitable methods and domain knowledge. Alternatively, changes to
the data are only possible within a minimal scope since the meaningfulness must
not be altered under any circumstances. In the case of PHYD, a premium is
calculated based on minor differences in driving behavior. For example, shifting
the data (adding or subtracting values) can cause a price reduction or increase.
A situation that is by no means acceptable, as our stakeholder analysis shows.
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Cooperation
is key

It turns out that PHYD poses much more critical requirements for a PET than
PAYD does since there the known methods for anonymizing locations like mix
zones, k-anonymity, or similar can be used. A solution can only be achieved
through the cooperation of the different stakeholders. In addition, this is to be
regarded as productive since mutual support increases confidence in the whole
process. Eventually, a solution must be transparent and verifiable by external
instances to be sound.

14.5.2kUBI as a Balance

To address the challenge of processing sensitive sensor data, we present kUBI,
a hybrid proposal that balances stakeholder interests accordingly. The frame-
work splits data processing between the respective trust zones (User Domain
and Business Domain). Data is collected in the user domain and anonymized
before leaving the user domain. To maintain the integrity of the data and allow
meaningful analysis, a data processor can define appropriate conditions through
a policy. Control of the policy is possible for everyone so that transparency and
trust are created and strengthened. kUBI embeds itself into the design of exist-
ing mobile OSs such as Android and is therefore retrofittable. No changes to
the architecture are required, but existing components, such as a TEE (Hostile
Domain), are used. kUBI does not require domain knowledge and, therefore, is
not tied to a specific model.

ResultsUsing the PHYD business model, the proposal was evaluated based on real
data and the identification attack that was introduced in a previous chapter. It
succeeds in establishing anonymity based on multidimensional reference events
that are provided as a black box. Thus, in the experiments with authentic trips,
it was shown that with unmodified raw data, it is possible to identify four out
of five drivers in 100% and one out of five drivers in 50%. With anonymized
data, users’ privacy increases significantly so that in the end, no identification
is possible anymore. Consequently, it is possible to remove the corresponding
identifying features, but at the same time to further enable the classification of
driving events. kUBI establishes k-anonymity in the context of the driver pool.
However, it should be noted that the lack of domain knowledge simultaneously
imposes a limitation on the data quality. The approach based on DTW-distances
to select reference events does not always lead to optimal results. In the future, it
would be conceivable to extend this module accordingly and to use more complex
selection methods, for example, an ML-supported approach [242]. Since kUBI
works ex-post, the run time is accordingly not of great importance, so such a
proposal could be implemented.
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Adaptability A fundamental requirement for developing the framework has been that it can
be easily implemented in existing models. This should ensure swift acceptance
by stakeholders. However, no unnecessary hurdles should block or complicate
the development of disruptive and agile business models based on sensor data.
The following Listing 14.1 is a sample implementation of the API for interact-
ing with sensors as defined by kUBI based on the reference implementation in
Android (see Listing 4.1). As a result of the interchangeability of the compo-
nents with static interfaces, rapid adaptation to current applications is ensured.
As can be seen, all API calls are identical to those found in the Android refer-
ence implementation. This is an approach previously seen in similar proposals
(e.g. [306]). However, each SignedSensorEvent also contains a data block ID
that is the GUID. Once a data block is completed, for example, after one second,
onDatablockComplete is called. After obtaining the GUID, a developer may
use it to map all sensor values to it. Additionally, he obtains the data block’s signa-
ture �OS

bm
(which is the result of HOS ). Applications that do not require integrity

protection features may omit the optional data to make the interface work in
the used fashion. Separating onSensorChanged and onDatablockComplete
enables real-time processing to continue when a new sensor value arrives, as
signature generation is a bulk operation on multiple values that cannot be per-
formed in real-time (i.e. it is not meaningful to compute signatures for single
values in real-time).

14.5.3 Privacy Implications

The framework is also based on certain assumptions, which have already been
discussed in this chapter. These assumptions are necessary because there is
a high degree of uncertainty regarding the data evaluation process. Technical
specifications or reference implementation for appropriate methods and building
blocks do not exist and thus cannot be applied to the context.

User under-
standing

There is inherently a difference in the expectations of the two stakeholders,
namely the policyholder and the data processor, which is further reinforced by
the reasons discussed in Section 1.2. Participation in a UBI process is an infor-
mation disclosure process in which the data processor receives customer data,
and the customer benefits from it, such as receiving a discount. One speaks of a
second exchange[90] in contrast to a first exchange, in which a good is obtained
by monetary means [146]. It can now be argued that this is precisely the point
of exploitation initiated by a data processor, precisely that users place mone-
tary aspects [40] above their concerns [415]. Furthermore, additional aspects,
addressed in Section 1.2, such as convenience [255], optimistic bias [80] or cer-
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1 val signedSensorManager = getSystemService(Context.SIGNED_SENSOR_SERVICE)
as SignedSensorManager→

2 val accelerometerSensor: Sensor? =
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)→

3 val signedSensorListener = object: SignedSensorEventListener {
4 override fun onAccuracyChanged(sensor: Sensor, accuracy: Int) {
5 }
6 override fun onSensorChanged(event: SignedSensorEvent) {
7 val dT: Long = event.timestamp
8 val axisX: Float = event.values.get(0)
9 val axisY: Float = event.values.get(1)

10 val axisZ: Float = event.values.get(2)
11 val datablockId: UUID = event.datablockId
12 // use sensor values
13 }
14 override fun onDatablockComplete(id: UUID, signature: ByteArray) {
15 }
16 }
17 signedSensorManager.registerListener(signedSensorListener,

accelerometerSensor, SensorManager.SENSOR_DELAY_FASTEST)→

Listing 14.1Snippet of the application of the privacy-enhanced SensorManager. A
SignedSensorManager gives access to a Sensor that provides SignedSensorEvents
with specific sensor readings and also a data block in accordance to kUBI.

tain framing effects [29] like emphasizing advantages [407] are also relevant
in this context. In particular, it is necessary to emphasize the circumstance of
incomplete and asymmetric information [2] that is further presented in a non-
intuitive and overwhelming way [216]. The UBI model is an abstract and highly
complex business model. Additionally, users may be unaware of how data can
be misappropriated.

Business con-
fidentiality
and
transparency

It is questionable to what extent a secret event extraction method Ec is acceptable
in the sense of GDPR, as the latter requires in GDPR Article 12 (1) that the busi-
ness model and data processing be explained transparently and comprehensibly.
However, the level of detail of this explanation is not defined. Technical post-
implementation is not possible, at least based on the information we collected
in the study (c.f. Section 9.3). Furthermore, to what extent users understand a
technical explanation and how this influences their decision must be questioned
and discussed. W.r.t. Acquisti [2], for example, it can be assumed to what extent
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the information is understood, on the one hand, the scope is interpreted correctly,
and how this would ultimately influence the decision, on the other hand. For in-
surers (or data processors), the challenge is to balance the obligations of GDPR
Article 12 (1) with the need to maintain business confidentiality.

Summary In summary, these emerging and complex business models have far more im-
plications than simply transmitting sensor data. At this point, it should also be
made clear that users often have no choice because the business models require
black-and-white thinking. Users are forced by consent to provide personal data
to a provider as part of the business relationship; otherwise, participation is
not possible [216], and consequently, a user will be absolutely excluded from
the benefits even though he may only disagree with parts of the business terms.
Therefore, kUBI can be used (at least temporarily) as a solution to deal with the
current status quo and allow the user to act as an equal participant in the UBI
process as much as possible in terms of a PET.

14.6 Outlook: Do We Need a TET Extension?

Giving a user
control

kUBI focuses on the desired properties of a PET that we introduced in the previ-
ous chapter. In fact, it gives back control to a user, enabling him to participate
in the UBI business model as an equal player. kUBI allows to alter submitted
data within his local and trusted domain before consenting to submit the data.
Therefore, the proposal follows established frameworks on how to design privacy-
friendly systems. We do not want to discuss the situation of a user declining to
submit data (that is, in contradiction with Cavoukian [66] that a user is then
excluded from a service), but we want to elaborate on the problem. A user who
gives or does not give consent is based on the information disclosure decision
process that was thoroughly discussed in Section 1.2 including the objectives
that drive the decision (see Section 1.2.3). We have learned that this process is
extensively complex, making it almost impossible (owing to bounded rationality)
for the user to protect himself [350]. Consequently, the question arises whether
a PET that involves user interaction is a meaningful and sustainable approach.

Education as
a way out

According to our understanding, education may be a solution to this dilemma
because it can place a user on an equal footing with a data processor and thus
correct the information mismatch mentioned by Acquisti [2]. However, such an
approach also relies on the sincerity of the other stakeholders. The information
advantage is mostly on a service-provider side; hence, he must provide infor-
mation used to educate a user and make him aware of the consequences. We
deliberately ignore the aspects already mentioned in Section 1.2.3 and focus on
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what education can look like. Egan [120] gives the following statement on provid-
ing information: “the more notifications you show to someone, the less likely that
person is to apprehend or absorb any one particular notice and make informed
choices about their data” This brings back the dilemma of bounded rationality
and the individual information disclosure decision process probably driven by
benefits. Consequently, providing more information to a user, in general, may
not be a feasible approach.

Comparabil-
ity and
autonomy

The information disclosure process is related to autonomy since people can only
make sincere decisions if they can choose between multiple offerings that allow
them to switch the service provider for discrepancies. In Wurmer et al. [407],
we present three distinct levels of autonomy.

▶ First, microscopic autonomy within an exchange requires sincerity
from a service provider so that a user within the framework of a
second exchange6 can make a free decision that corresponds to his
intentions and understanding of the added value. Manipulation of users
can be carried out by hiding specific facts about the process [362]. As
we have seen within the UBI survey in Section 9.3, a detailed and
comprehensible description of the data evaluation does not take place.

▶ Second, mesoscopic autonomy can also imply that a user can choose
between different services, as all offer similar competitive benefits.
This is the case in the UBI context, where the benefit is typical of
financial nature. However, the free choice of provider is also based on
knowledge and comparability of the required data and the processing
steps, so a detached consideration of the benefits is not expedient
without extensive knowledge of the privacy costs.

▶ Third, autonomy can be transported to a macro level by fundamentally
questioning the concept of second exchange and no longer having
to trade personal data for benefits. This would eliminate the threats
that have been addressed in this work. Especially with regard to
Chapter 10, even seemingly “useless” data can be misused, and in
this context, possibly without prior knowledge of the data collection
service provider.

Transparency
is not
intrinsic

The concept of autonomy does not appear to be achievable through the service
providers’ intrinsic arguments. On the contrary, the macroscopic autonomy
6 According to Culnan and Milberg [90], first exchange can be described as a transaction in which
a user receives corresponding services (i.e. benefits) in exchange for money. The authors further
define a second exchange as the exchange of data for benefits.
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shows a countermovement due to the technical possibilities. The example of
Usage-Based Insurance underlines this state of affairs. A way out may lie in
Transparency Enhancing Technologies, which should enable “informed consent
and transparancy” [129] and thus directly support the requirements addressed by
Solove [351] and in Section 1.2.1. In particular, an ex-ante TET (see Chapter 13)
is required to support the information disclosure process, as it may be feasible
to address the complex balance of benefits and costs by clarifying the hidden
risks associated with shared personal data [362]. However, it is questionable
on what data basis a TET can make a recommendation since here, too, there is
the problem of information asymmetry due to, for example, business secrets or
inadequate communication.

Ability to
provide a

recommenda-
tion

Instead, an informative tool would have to originate from the service provider,
as only he has complete and comprehensive knowledge about the process. For
example, when sharing an image on a social network, instead of a cryptic
visibility definition, the set of all people who can see that image could be
displayed. However, TETs are usually offered externally and have predefined
recommendations adapted to specific situations (e.g. company, process, data
subject, website) that are predefined by experts using e.g. scientific methods.
However, these may be outdated, inadequate, incomplete, or inappropriate, which
makes the appropriateness of a TET absurd and, in the worst case, has the
opposite effect. A choice based on a TET might also have the opposite effect
since a suggestion is also a source of bias in the decision-making process and
must be taken into account. The technical conditions may change in the future,
but a TET is based on the present conditions, according to Laufer and Wolfe
[226]. Once data has been transmitted in digital form, it is typically impossible
to withdraw it. Thus, if a different evaluation is conducted in the future or a new
attack is identified (which is quite possible in the case of Chapter 10), the TET
has retrospectively produced an incorrect suggestion on which the user relied. In
the future, the credibility of a TET will be lost. Users’ faith in TETs in general
may also be harmed.

Example Let us go back to the social network example with a presentation of the group
or the sharing category. A TET may indicate, as explained previously, that the
group is rather large and that it may contain collaborators. Depending on the
context, this may be problematic or not. Concerning our example, this means
that an estimate of the privacy-criticality of the group of people is given. It is
questionable on what basis this is done: the group size, for example, would be
inappropriate. Imagine that a picture was taken at a company party. Hence, it is
not critical if it is shared with collaborators — or is it? Consequently, the decision
process is still complex, yet only the data subject can come to a conclusion.
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Awareness
for
autonomy

We propose another direction of TET research to present a holistic and more
adequate solution. A TET should fundamentally address how people are attuned
in the sense of information disclosure and target questions about behavior to start
a thinking process. As we have seen, people shorten this process, for example,
due to the phenomenon of Nothing to Hide [350] or hyperbolic discounting [2].
Thus, awareness is not created by “prechewed” recommendations, but the user is
encouraged to generate a personal recommendation himself. A recommendation
can only be obtained subjectively. We have seen that information disclosure
works with personal biases and is subjective; what sense can be attributed to
a TET based on the opinions of others. Westin [399] proposes three different
types of people based on their privacy behavior, namely privacy fundamentalists,
privacy unconcerned, and privacy pragmatists. A TET can use the knowledge of
the privacy behavior of an individual and behave like a personal assistant, giving
a general notification tailored explicitly to the everyday behavior of the user but
not to the website or services being interacted with. Thus, awareness can be
raised without the need for precisely predefined rules that may become outdated
over time. For example, a TET can try to shift groups, e.g. privacy unconcerned
users may become privacy fundamentalists if they are aware of the current
situation and understand the privacy relation of the data. However, the final
decision is still personal but probably more thoughtful and aware. Consequently,
autonomy comes from the user itself without the need for the collaboration of
service providers. However, a dialogue between multiple stakeholders on an
equal footing can only be beneficial, and Privacy by Design is therefore not
obsolete but more relevant than ever.





15Recap with Discussion and
Outlook

Remember-
ing
ubiquitous
computing

The research project was motivated by the increasing adaptation of Weiser’s
vision of ubiquitous computing. Although it has not yet manifested itself fully, it
reveals the need for an objective view of the issues involved. Mainly perceived
as conducive to new types of information systems, there is an inherent threat
associated with the increasing merging of the physical and virtual worlds. The
complexity and sophistication of information systems are increasing significantly
due to technologies such as Artificial Intelligence. However, the awareness
and knowledge of people using these systems do not increase at the same rate,
creating an imbalance that can lead to users being overburdened and exploited.

Guiding
question

Suitable methods can be used to increase awareness on the one hand, but on
the other hand, the protection of users must be implemented in the systems
themselves. Therefore, the central result of this research work should address
both aspects. By increasing awareness of the relevance of seemingly harmless
detached information such as sensor data for privacy, users should be made
more sensitive. In the best case, the sensitization should not be limited to the
users but also to the development of information systems themselves. Even if the
paradigm of Security by Design has already been established in the development
of information systems to protect the interests of providers, the concept of Privacy
by Design must also be firmly established.

StructureWe present a summary of the work within this chapter, beginning by pointing
out explicit answers to the Research Questions in Section 15.1. Next, we give
a thorough condensation in Section 15.2. Finally, the dissertation is concluded
with an outlook in Section 15.2.

15.1Research Questions

The dissertation is divided into four parts, each motivated by the research
questions outlined in Section 1.3.1. The following is a critical summary of the
findings and answers to these questions.
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1. How can the inertial sensor data of smartphones be collected and
evaluated as robustly as possible in cars?
The research question of how sensor data based on IMU can be
collected as qualitatively as possible using a smartphone cannot be
answered to the last extent due to the range of identified internal
and external influences that operate in the set scenario of a moving
vehicle. Based on a literature review, Section 4.2 analyzed common
subject approaches and created a taxonomy that describes sources of
error and their effects and projects appropriate countermeasures. As a
result, architecture could be developed and implemented in Section 4.3
that integrates and significantly extends existing approaches and is
available as a retrofittable solution. The practical evaluation with the
alternating parameters vehicle, smartphone, and track shows that the
sensor data have sufficient quality for further processing, and based
on IMU data, information like distance or speed can be interpolated.
A side-channel attack developed (c.f. Chapter 12) exploiting this data
underlines the feasibility of the proposal. However, it should be noted
that it remains a challenge to generate data of consistent quality.

2. How can smartphone sensors be used as enablers for privacy-friendly
applications in traffic scenarios? What possibilities do they open up?
The potential of user-related data in the mobile environment has been
the focus of academia and industry, as crowdsourcing and crowdsens-
ing increase the overall quality and distribution of services [55]. How-
ever, privacy-friendly processing is of particular interest, with multiple
approaches identified within this work in Chapter 6 with Privacy by
Design being the recommended approach. Based on the findings and
generally identified constraints, two system proposals are presented
that already exist in the scientific literature but lack crucial protection
of users’ sensitive data. In Section 6.2 and in particular in Chapters 7
and 8, approaches are presented that prove the ability to combine mu-
tual requirements, namely integrity and privacy.

3. What privacy risks are induced or increased by the omnipresence of
smartphones in vehicles?
To answer this research question, a Structured Literature Review was
conducted in Chapter 10 that identifies five attack classes and high-
lights that the permission system in Android, presented in Section 3.1,
is not sufficient to adequately and fully protect users. Furthermore,
the side-channel attacks presented reveal that mainly zero-permission
sensors are abused, which are also used in value-added services such
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as Usage-Based Insurance (c.f. Chapter 9). Based on the findings, two
classes of attacks are presented in Chapters 11 and 12, which are specif-
ically intended to highlight the threats to privacy and the lack of pur-
pose limitation of existing value-added services such as UBI that oper-
ate exclusively on data from zero-permission smartphone sensors. The
presented approaches use the data available in this environment as a
constraint. It is shown that the attacks undermine the user requirements
and needs established in Section 1.2.

4. What methods can be used to protect the privacy of users, especially
in the Pay-How-You-Drive scenario?
Motivated by permission systems present in modern mobile OSs (c.f.
Section 3.1), it could be shown on the basis of SLR in Chapter 10 that
they cannot provide comprehensive protection for technical, but also
for organizational and personnel reasons. In particular, for existing
business models such as UBI with information disclosure based on
a disclosure process and the weighting of advantages and disadvan-
tages (c.f. Section 1.2.3), additional technical protection measures are
necessary that are not overburdening the user. Based on a comprehen-
sive literature study, it was first possible to define the concept of Pri-
vacy Enhancing Technologies in Chapter 13 and to identify technical-
organizational building blocks and establish connections with data
requiring protection. Based on the requirements and problems of Chap-
ter 9, in conjunction with the findings of PETs, a separate PET was de-
veloped that is specifically tailored to the complex and tightly specified
business model UBI with its forms PAYD and PHYD. The suitabil-
ity to protect personal data is shown by a comprehensive real-world
evaluation based on the attack from Chapter 11. The proposal high-
lights the compatibility of users’ privacy claims with service providers’
quality requirements, and finally, together with the Privacy by Design-
based proposals (c.f. Chapters 7 and 8 and Section 6.2), answers the
dissertation’s leading theme.

15.2Summary of Results

The dissertation holistically addresses the complex issue of reconciling privacy
with data quality (e.g. accuracy, comprehensibility, relevance, availability). Next
to the guiding research questions with the answers presented in Section 15.1, a
comprehensive summary is presented that discusses each topic presented in this
work.
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Chapter 1 In Chapter 1, the topic is motivated, and the research proposal is illustrated
with the presentation of the RQs and the methodology. The motivation is based
on the fact that with ubiquitous computing and disruptive approaches such
as crowdsourcing and crowdsensing, the complexity of information systems
is imminent, which is hard to grasp from a privacy perspective. In addition,
a comprehensive definition of privacy is given, and the complex process of
information disclosure is introduced, which serves as the basis for privacy-
relevant design decisions throughout this dissertation.

Chapter 2 Chapter 2 introduces the basics of sensor data and addresses the similarity of
smartphone sensors and sensors as they are installed in vehicles. Furthermore,
sensors found in a smartphone are introduced in the example of Android. On
this basis, the terms FPD and FCD that make use of the so-called Inertial
Measurement Unit are discussed. In preparation for processing the data, sources
of errors are identified that affect the quality of the measured sensor values.
Appropriate approaches to detect and correct measurement errors are presented
based on the literature. It is found that applied methods have to be specifically
adapted to the process that handles the data.

Chapter 3 Next, Chapter 3 introduces the Android permission system that aims to protect
sensor data. The basic types of sensors are presented in terms of their level of
protection, and the processes for requesting data from the user is discussed.
Finally, the cat-and-mouse game between OS developers and adversaries is
discussed to motivate the problems and depict holes in the permission system.

Chapter 4 An essential point in the use of IMU is the omission of additional sensors
such as the GPS for reasons of efficiency. In Chapter 4, a method is presented
based on an SLR to collect extensive FPD. The limited accuracy of existing
smartphone sensors and the heterogeneity of the environment are taken into
account. A five-dimensional taxonomy is presented that integrates methods and
approaches to generate meaningful sensor data. With alignr, a freely available
and retrofittable Android module is presented that implements the findings and
can provide proven data quality.

Chapter 5 With the help of the previously developed application, a data set is created for
empirical investigations within the scope of this work. The presentation is done in
Chapter 5. Based on the collected data, first events (brakes, accelerations, turns)
are addressed, representing particular patterns in the sensor data and giving
insight into the environment in which the data was collected. Additionally, a
notation is introduced to support further understanding of the work.
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Chapter 6Chapter 6 specifies the information system and includes a critical assessment
of the various claims of stakeholders. The concept of privacy-conscious data
processing in an information system is presented on multiple levels. The evolu-
tionary construct of Privacy by Design is introduced, as are the accompanying
building blocks, methodologies, and processes for achieving data reduction. As
a result, the output of the research project (and its respective artifacts) is contex-
tualized and underlines that achieving a privacy-friendly architecture does not
mean sacrificing other qualitative objectives.

Chapter 7In Chapter 7 a research project is presented that addresses the tension between
integrity and confidentiality. The project is located in the context of crowdsensing
and crowdsourcing, in which vehicles transmit speed information to a central
entity that can derive a utilization of the road network based on the information.
Our architecture follows the Privacy by Design claims and distributes knowledge
among several entities of different interests. A simulation shows that dichotomy
does not have to lead to a reduction in the quality and accuracy of data and that
users can enjoy a high degree of privacy at the same time.

Chapter 8The potential of sensor data acquired from a smartphone is discussed in Chapter 8
with a focus on crowdsensing and crowdsourcing methods. We present how to
detect complex traffic patterns such as traffic circles, traffic lights, and road works.
In addition, semantic information can be provided about the road surface. The
chapter intends to value the separation of processes within a complex, multi-
instance information system by providing a system architecture incorporating
the Privacy by Design paradigm. Due to the intelligent separation, the purpose
limitation of raw data can be realized, ultimately resulting in more privacy-
friendly system designs while still benefiting from ubiquitous computing.

Chapter 9Chapter 9 introduces the model of Usage-Based Insurance and related types,
processes, and designs. The specifications are shown to be fundamentally based
on the processing of extensive sensor data collected by smartphones and trans-
mitted for analysis. The approaches of Privacy by Design are not evident, and the
evaluation is a nontransparent black-box process without technical protection
measures regarding the aspects of data minimization and purpose limitation as
defined by GDPR. Consequently, the question of the protection of the privacy
of the users when participating in such a model is raised.

Chapter 10Side-channel attacks are an omnipresent risk in the mobile environment and
especially with sensor data, as shown by a conducted SLR in Chapter 10. The
literature study allows us to divide attacks into five classes and to identify the
dominant attack vectors in the form of sensors. These can be put in relation
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to Android’s permission system from Section 3.1 and show that attacks based
on zero-permission sensors are widespread. In conclusion, it can be noted that
mitigation of the attacks is challenging and hardly relevant in the scientific
literature so far; Android’s permission system itself does not provide adequate
protection.

Chapter 11 An identified threat to privacy in the previous chapter is fingerprinting users
based on sensor data. In Chapter 11, an ML-based identification approach is
presented that settles in the UBI environment, i.e. is restricted to sensor data
from the accelerometer and gyroscope. A conducted SLR presents different
methods and processes to perform identification; however, none of them is
feasible for the given setting due to various properties. Based on the data set
introduced in Chapter 5, an empirical evaluation was performed that provides
reliable identification rates for large sets of drivers with limited available data,
further highlighting the threat to privacy even for irregular drivers.

Chapter 12 The SLR performed in Chapter 10 presents another primary attack class, namely
location inference. In Chapter 12, we present a location inference attack that
again is settled and constrained to the specifications of UBI. A SLR yields
multiple location-inference attacks; however, they are limited in the required
knowledge, area size, run time, or sensor data. Consequently, the presented attack
addresses the said drawbacks and extends the research in this area. The attack
shows that even without access to GNSS, an adversary (or service provider)
is capable of tracking driven routes for large areas, allowing him to generate
comprehensive movement profiles. The data set presented in Chapter 5 is used
again for real-world evaluation.

Chapter 13 Within Chapter 13, methods, concepts, and techniques to protect a user’s privacy
in existing information systems and use-cases are introduced. We formally
define the terms PETs and TETs and delimit them from each other. A SLR
gives answers on current PETs including their architecture and building blocks,
although approaches are primarily user-focused, i.e. a user needs to assess the
sensitivity of data in transit. W.r.t. Section 1.2 no satisfactory solution capable
of protecting users can be identified even in the complex UBI use case.

Chapter 14 Motivated by the lack of adequate protection mechanisms in the UBI setting, a
framework is presented in Chapter 14 that integrates the knowledge of Chapters 3,
10 and 13 and Section 1.2. We present a new anonymization model for sensor
data, as existing methods are not feasible [322]. An evaluation based on the
real world data set (c.f. Chapter 5) incorporates the attack from Chapter 10 but
also considers the UBI constraints from Chapter 9. The privacy among a set
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of drivers can be ensured while still allowing a meaningful assessment of the
PHYD features.

15.3Discussion and Outlook

We conclude this work with a recap of the still existing gaps and an outlook of
future research directions based on these gaps.

Technology
protects
technology,
not humans

Even though each part and chapter discusses a single topic in an isolated fashion,
they, in summary, answer the guiding question of this work: How to design
privacy-friendly information systems addressing humans while taking benefit
of the new technologies within the ubiquitous computing paradigm? However,
this question cannot be answered within this research project’s limited scope
and resources. The question should rather be phrased “can dual use of sensor
data be prohibited or prevented the way it works today”. W.r.t. the knowledge
we gained during this project, the answer will probably be that this ambitious
goal may not be reached the way it works today. Technology can be designed
to protect technology from technology, but technology at the moment is not
designed to protect users from technology. We have seen that sophisticated
Privacy by Design architectures and powerful PETs exist, capable of protecting
sensitive user data from most threats and entities, sometimes even including the
service provider itself. It is still assumed that the user is mature and can make
beneficial and personal decisions, although it was shown that such a process
is almost impossible due to various factors. Although this is the basis of most
PETs and business models in which users participate, technology cannot relieve
a user from deciding to disclose information – it can only support him with
convenience, education, and even protection [332]. Furthermore, even in some
situations, technology is still unable to protect itself from technology (i.e. when
subjected to side-channel attacks), further stressing the fact that a user must be
aware of the sensitivity of his data and the consequences of disclosure.

PETs require
trust

Put aside that most PETs are tailored for specific use cases or environments, PETs
are considered personal assistants to a user, running in a trusted environment for
the user’s benefit. Therefore, their output has a high impact on the information
disclosure process. Related to this topic is Privacy by Design, as it can also
increase the trustworthiness of an information system similarly depending on
the entities involved. The challenge is to gain the trust of users, regardless of
how. Trust may be defined as the “principal having belief and confidence in
the goodwill of the agent’s intent and behavior, and thus being willing to risk
exposure to vulnerability or take the leap of faith” [148]. This step is essential in
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a user-service relationship and may be a steady and long-lasting process. Once
trust has been established with a provider, it can be assumed that users will also
have confidence in the services it offers or, in contrast, hesitate or avert to use it
if they distrust the provider.

Split trust
continuum

Trust and distrust seem to be directly related, but the so-called split trust
continuum breaks with this convention [363]. The construct describes a situation
where trust and distrust are distinct aspects. Therefore, a lack of trust in a service
provider does not necessarily imply a presence of distrust. Both can be lacking at
the same time. It is crucial to understand that a user may not distrust an entity but
still does not put significant amounts of trust in it. This paradoxical condition
can be the basis for developing trustworthy information systems to achieve a
situation that corresponds to the definition of trust mentioned earlier. Users
may distrust a service provider because he wants to earn money with the users’
data, the so-called second exchange repeatedly outlined in this work. Recall that
a user’s personal assistant is located in his trusted domain which may be his
smartphone that collects all data (refer to the data minimization strategies in
Section 6.1.2). Therefore, a user may have reliance on the predictability of the
smartphone OS and the respective hardware (i.e. lack of distrust). At the same
time, he ignores whether, for instance, Google is trustworthy or not (i.e. lack of
trust). Consequently, if the personal assistant is placed in a domain that is not
subject to distrust but at the same time does not require any trust, it can function
as a proxy between the service provider and the user itself (somehow related to
the Trusted Third Party (c.f. Chapter 6) but without the need for trust).

Split trust
example

We know such systems from COVID-19 notification apps that warn users if they
were exposed to COVID-19 cases. The OS provides functionality in the form
of the Exposure Notifications API [103] and a national companion app
provided e.g. by the German government. The sensitive task of tracking locations
and contacts is performed by the OS itself without the need to transmit any
trajectories. Hence, the information is kept confidential within the not-distrusted,
not-trusted local domain of a user. The smartphone can decide to inform a user
of COVID-19 exposures based on the information it receives from a central
entity. The entity itself never needs to know which contacts were met. Thus, the
German Corona Warn-App is an example of a Privacy by Design (see [85] for
complete documentation).

Further
research

This presented approach makes personal processing of sensor data possible in a
privacy-friendly manner. Sensitive raw data can still be secured by aggregating
and delivering results in a meaningful manner. For example, Android includes
a sensor called Sensor.TYPE_STEP_DETECTOR that is triggered whenever a
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user takes a step. Data aggregation eliminates the need to derive data from the
raw accelerometer and inhibits evaluation in the sense of a side-channel assault.
No local attacks or data outflows are possible because protection is available
immediately in the local domain. In the future, it is possible to improve this
technique and provide general fundamental functions directly from the device or
from the OS itself. Concerning the realm of PHYD, for example, evaluations of
driving characteristics could occur in the device and be regulated by parameters
supplied by insurance companies. Corona’s warning app operates similarly. The
set of parameters for weighing positive and negative situations is provided by
a central entity in the form of standardized files and is evaluated locally by
the app. This work should catalyze further research on methods other than
centralized review in closed systems to mitigate the risk of a data leak (intentional
or unintentional).

1984Of course, these technical approaches do not negate the importance of user
education as a core principle. However, the development of TETs should focus
on user education as a whole in favor of providing specific recommendations
for specific steps on a particular website or system. In fact, TETs should try to
stimulate the user’s decision-making process, liberating him from his entrenched
way of thinking. Only a reflective, inclusive, and educated society operating at
eye level is capable of averting conditions akin to those described in Orwell’s
1984.





Appendix





AList of Functions

In the context of this work, some (auxiliary) functions are defined. The following
is a list of all functions classified by their area.

Statistics
O . . . . . Count the occurences of an object in a series of values
idx . . . . Get the position of an element in an ordered structure such

as a sequence (i.e. the index)
max . . . Get the maximum value of a digit-based series of values
mean . . . Get the mean of a digit-based series of values
med . . . Get the median of a digit-based series of values
min . . . . Get the minimum value of a digit-based series of values
sign . . . . Get the sign of a number (plus or minus)
std . . . . Calculate the standard deviation of a list

Measurements
Ea . . . . Find atomic events in a time-series
Ec . . . . Find complex events in a time-series
R . . . . . Resample a time-series to a specific frequency or length
conv . . . Convert sensor readings between specifics formats (e.g.

data block to measurements)
dur . . . . Calculate the total duration of a time-series (e.g. sequences

of measurements)
norm . . . Normalize a value between a defined range (default [0, 1])

Cryptographic
DecA . . . Asymmetrically descrypt a paylod using a d

EncA . . . Asymmetrically encrypt a paylod using a c

Enc . . . . Symmetrically encrypt a payload using a key
H . . . . . Generate a unique hash value for supported structure
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SigC . . . Create a signature for a given paylod using d

SigV . . . Verify a signature for a given paylod using c
GIS
A . . . . . Calculate the angle between two supported structures (e.g.

location pairs)
B . . . . . Get the heading direction for a supporting structure (e.g.

OSM ways)
C . . . . . Get the curvature of a supported structure (e.g. OSM ways)
Dist . . . . Calculate the distance of two measurements based on the

respective loc
L . . . . . Get the total length of a supported structure (e.g. OSM

ways)
P . . . . . Create a path shape from a sequence of measurements
v . . . . . Calculate the velocity for two measurements

Time-Series
C . . . . . Assign an event to a non-overlapping category
MW . . . . Convert a measurement to a specific type to be used by W

W . . . . Generate sliding windows of length !

rfw . . . . Calculate the reference window



BStructured Literature Review

Within the scope of this work, several SLR were performed. Their methods have
been presented and explained in detail at the relevant place.

A word on
search string
notation

Literature was usually extracted from literature databases. For this purpose,
appropriate search strings were designed and applied accordingly, taking into
account database-dependent syntax. For the presentation of the syntax, the
following notation (represented in extended Backus-Naur form) is used in the
context of this work.

<char> ::= 'A' | 'B' | '...' | 'Z'' ;
<num> ::= '0' | '1' | '...' | '9' ;
<term> ::= ( <char> | <num> ) ,

{ ( <char> | <num> | ' ' ) } ,
[ '*' ] ;

<or> ::= '|' ;
<and> ::= '&' ;
<concat> ::= <or> | <and> ;
<invert> ::= '~' ;

<query> ::= [ <invert> ] ,
'(' ,

<term> ,
{ <concat> , ( <term> | <query> ) } ,

')' ;

The notation allows the concatenation of several expressions, which are linked
by AND or OR. A ~negates an expression and serves to exclude the terms.
Combinations of words can be combined arbitrarily, where a * corresponds to the
classic wildcard parameter for any string at this point (e.g. attack* will match
attack, attacking, attacker, and so on). It will be interpreted depending
on the database where the search is performed.
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