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Local to global phenomena are omnipresent in mathematics, and since the appearance of
the work of Grothendieck and his school it has been settled that the best way to treat such
problems formally is via the theory of sheaves. It has been noticed already many years ago
that sheaves are natural coefficients for cohomology theories defined on geometric objects of
any kind, which means that they show their full power when set within a homotopical context.
Therefore, one is somehow forced to move to the world of higher categories to work efficiently
on the subject. This thesis essentially revolves around the theory of sheaves with values in
∞-categories, with a particular attention to its manifestations in topology and differential
geometry.

The initial sparkle that paved the way for the making of the present work was the intuition
that Lurie’s version of Verdier duality, expressed as an equivalence between sheaves and
cosheaves, would have to be the starting point in the setup of the whole theory. The term
Verdier duality is also often used in more classical literature to refer to an equivalence between
some derived categories of constructible sheaves and their opposite: we will conclude this
thesis by providing a generalization of this result. For these two reasons, we felt obliged to
pay tribute to Jean-Louis Verdier in the choice of the title of this work.

Verdier duality will make its initial appearence in the first chapter, which is devoted
to the construction of the six functor formalism for sheaves on locally compact Hausdorff
spaces. We will use it to transport the pushforward and pullback of cosheaves to sheaves,
thus providing an abstract description of the well-known pushforward with proper support
and exceptional pullback. Alongside with this interaction between sheaves and cosheaves,
we will consider Lurie’s tensor product of cocomplete ∞-categories as a second fundamental
tool to build our six operations. This will allow us to work with a surprisingly vast class of
stable coefficients, and to formulate Künneth and projection formulas in a both unusual and
convenient way.

In the second chapter, Verdier duality will be used to produce an actual duality on
certain∞-categories of constructible sheaves. More precisely, we will consider stratified spaces
equipped with conically smooth atlases, an extension of smooth atlases to the setting of
singular spaces introduced by Ayala, Francis and Tanaka. The theory of conically smooth
structures provides a procedure that allows to functorially resolve singularities to smooth
manifolds with corners. We will make use of this procedure to perform some computations
of exit path ∞-categories needed to obtain the aforementioned duality theorem. The reader
who is not familiar with conically smooth spaces might wonder how our results interplay with
more classical approaches to smoothly stratified spaces. To resolve this reasonable doubt, we
also provide a proof of a conjecture of Ayala, Francis and Tanaka written in collaboration
with Guglielmo Nocera, which asserts that any Whitney stratified space admits a conically
smooth structure.
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Chapter 1

Six functor formalism

1.1 Introduction

Tell all the truth but tell it slant –
Success in Circuit lies
Too bright for our infirm Delight
The Truth’s superb surprise
As Lightning to the Children eased
With explanation kind
The Truth must dazzle gradually
Or every man be blind –

Emily Dickinson

One of the most complete and general reference dealing with the six functor formalism for
sheaves on topological spaces is Masaki Kashiwara and Pierre Schapira’s seminal book Sheaves
on Manifolds [KS90]. However, for technical reasons related to the construction of derived
functors, the authors there restrict themselves to bounded derived categories of sheaves of
R-modules, where R is assumed to have finite global dimension. From a modern perspective,
considering ∞-categorical enhancements of derived categories, this can be regarded as the
full subcategory of hypercomplete sheaves with values in D(R) spanned by bounded objects.

For many applications though, one would like to be able to consider non-hypercomplete
sheaves with values in unbounded derived categories of any ring. On the other hand, more
recent papers such as [RS18], [JT17], [Jin19] and [Jin20], justify the need of even further
generalizations to sheaves of modules over ring spectra, in order to apply the power of six
functors to generalized cohomology theories. The work of Voevodsky on stable motivic homo-
topy theory has provided an analog of such constructions in the world of algebraic geometry
(see [CD19] for a textbook source on the subject), whereas topologists have succeded only
partially in this direction by introducing parametrized spectra (see [MS06]), which correspond
to locally constant sheaves of spectra. In this thesis we exploit the power of the now estab-
lished theory of ∞-categories (as developed for example in [Lur09] or [Cis19]) to extend the
six functor formalism on locally compact Hausdorff spaces to a much broader setting.

Let f : X → Y be a continuous map between locally compact Hausdorff topological
spaces and C is any stable bicomplete (i.e. complete and cocomplete) ∞-category. For any
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such map, we construct adjunctions

Shv(Y ;C) Shv(X;C)

f∗
C

fC∗

a

Shv(X;C) Shv(Y ;C).

fC!

f !
C

a

To do this, we make use of Lurie’s Verdier duality equivalence ([Lur17, Theorem 5.5.5.1])

DC : Shv(X;C) CoShv(X;C)'

where the target is the ∞-category of C-valued cosheaves on X, i.e. Shv(X;Cop)op. The
adjunctions above are then defined to satisfy natural equivalences

DCf
C
! ' (fC

op

∗ )opDC DCf
!
C ' (f∗Cop)opDC.

Notice that, since we do not require C to be presentable, the existence of f∗C is not at all
obvious (see the discussion in Remark 1.2.34), and so we will have to work a bit harder
than one might expect. Nevertheless, even though the presentability assumption will be
enough for applications, we would like to point out that our efforts to make the results in
this chapter as general as possible are not vain, and actually lead to many advantages. First
of all, with our definition of fC! , it is basically immediate to verify that the lower shrieks are
functorial with respect to compositions of continuous maps (see Lemma 1.6.2). Moreover,
by working with a class of coefficients closed under the operation of passing to the opposite
category, we do not break the symmetry which comes from Verdier duality, meaning that
whenever we prove some result involving the functors fC∗ and f∗C that is true for all C stable
and bicomplete, we immediately obtain a dual theorem involving the functors fC! and f !

C, and
viceversa. Another way to put it is that our formalism applies with no distinctions to sheaves
or cosheaves: this will be used in the second chapter in which we will prove a duality theorem
for constructible sheaves on a conically smooth stratified space, as we will need to extend
some results about constructible sheaves, such as homotopy invariance (see [Hai20]) or the
exodromy equivalence (see [PT22]), to constructible cosheaves. It is also worth noticing that,
even if one would restrict to presentable coeffients, it would nevertheless be desirable to have
formulas such as fSp

! ⊗ C ' fC! , and to get this one would still need to verify everything we
prove in Section 5.

We try to outline the key ingredients that allow us to work with non-presentable co-
efficients. As we explained above, the main difficulty lies in showing the existence of the
pullback functor f∗C . The main tool we employ to carry out this purpose is Lurie’s tensor
product of cocomplete ∞-categories as defined in [Lur17, 4.8.1]: in particular, a property of
this tensor product that we will use over and over is that it preserves adjunctions between
cocontinuous functors (see Remark 1.2.2). We show in Lemma 1.2.12 that it restricts to a
monoidal structure on Cocontst∞ (i.e the ∞-category of stable cocomplete ∞-categories with
cocontinuous funtors between them) and use it to formulate the following theorem.

Theorem 1.1.1 (Corollary 1.5.16). Let C be a stable bicomplete ∞-category. Then there is
an equivalence

Shv(X; Sp)⊗ C ' Shv(X;C)

where ⊗ on the left-hand side denotes the tensor product of stable cocomplete ∞-categories.

Theorem 1.1.1 will play a crucial role in what follows, because it will allow us to reduce
a lot of arguments involving cocontinous functors to the case of sheaves of spectra. To prove
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Theorem 1.1.1, we start by observing in Theorem 1.5.15 that the model of K-sheaves (see
[Lur09, Theorem 7.3.4.9]) implies that Shv(X; Sp) is a strongly dualizable object in Cocontst∞,
where Sp denotes the ∞-category of spectra (see also [Lur16, Proposition 21.1.7.1]). Hence,
for C any stable and cocomplete ∞-category, we get an equivalence

CoShv(X; Sp)⊗ C ' CoShv(X;C).

Combined with Verdier duality gives Theorem 1.1.1.
Having Theorem 1.1.1 at hand, the question of constructing f∗C can be reduced to the

case of sheaves of spectra, where we can directly use the existence of sheafification by the
presentability of Sp. More precicely, we first observe that any map f can be factored as the
composition of a closed immersion, an open immersion and a proper map (see factorization
(1.5.1)), and then prove the existence of a left adjoint to fC∗ in these separate cases. When
f is an open immersion this is done easily in Lemma 1.5.19, and the only non-trivial part
constists in the following theorem.

Theorem 1.1.2 (Lemma 1.5.14, Proposition 1.5.18). Let f : X → Y be a proper map
between locally compact Hausdorff topological spaces. Then the pushforward

fC∗ : Shv(X;C)→ Shv(Y ;C)

preserves colimits. Furthermore, there is a commutative square

Shv(X; Sp)⊗ C Shv(X;C)

Shv(Y ; Sp)⊗ C Shv(Y ;C).

'

fSp
∗ ⊗C fC∗

'

The proof of Theorem 1.1.2 essentially consists of providing a convenient description of fC∗
through the model of K-sheaves, which is easily seen to preserve colimits and to be compatible
with Verdier duality. We then achieve our final goal observing that, since fSp

∗ ⊗ C admits a
left adjoint of the form f∗Sp ⊗ C, the same is true for fC∗ . In particular by taking f to be the
projection X → ∗, we see that the global section functor

Shv(X;C)→ C

admits a left adjoint. As a consequence, using the results in [Cis19, 6.7], we show in Theo-
rem 1.5.21 that the inclusion of Shv(X;C) in C-valued presheaves on X admits a left adjoint.

The discussion above involves only the four functors fC∗ , f∗C , fC! and f !
C, but what about

the other two? Our first observation is that, a priori, there is no need to require our category
of coefficients to have a monoidal structure to make sense of things like projection formulas
or Künneth formulas. To be more precise, one can show that there is a functor

Shv(X;C)× Shv(Y ;D) Shv(X × Y ; Sp)⊗ (C⊗D)

(F,G) F �G

which preserves colimits in both variables and induces an equivalence

Shv(X;C)⊗ Shv(Y ;D) ' Shv(X × Y ; Sp)⊗ (C⊗D).

Taking X = Y and composing with ∆∗Sp ⊗ (C ⊗D), where ∆ : X ↪→ X ×X is the diagonal
embedding, we get a variablewise colimit preserving functor denoted as

Shv(X;C)× Shv(Y ;D) Shv(X; Sp)⊗ (C⊗D)

(F,G) F ⊗G
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(see Construction 1.2.25 and Remark 1.5.22 for more details). For this kind of tensor product
of sheaves, we prove the following formulas.

Theorem 1.1.3 (Corollary 1.2.31, Proposition 1.6.12, Proposition 1.6.11). Let C and D be
stable and bicomplete ∞-categories. Then we have the following functorial identifications

f∗C⊗D(F ⊗G) ' f∗CF ⊗ f∗DG
fC⊗D! (F ⊗ f∗DG) ' fC! F ⊗G

(f × g)C⊗D! (F �G) ' fC! F � gD! G.

In particular, when C admits a monoidal structure whose tensor preserves colimits in both
variables, one obtains a cocontinuous functor

Shv(X; Sp)⊗ (C⊗ C)→ Shv(X;C)

whose composition with (1.2.27) induces a monoidal structure on Shv(X;C): this way we can
deduce all the analogous formulas in the monoidal setting. If C is also closed, we deduce their
dual versions involving the internal homomorphism functor (see Remark 1.2.29).

We describe one last advantage of our general rendition of the six functor formalism. In
Definition 1.3.12 we define locally contractible geometric morphisms (see also [AC21, Defini-
tion 3.2.1]). Later, in Definition 1.3.21, we specify a vast class of continuous maps between
topological spaces called shape submersions which induce a locally contractible geometric
morphism (see Corollary 1.3.26). Topological submersions are examples of such morphisms,
but our definition is much more general in the sense that it does not force the fibers to be
topological manifolds. Another illustrating example to keep in mind is that of the unique map
X → ∗, when X is any CW-complex. An easy implementation of our machinery generalizes
[KS90, Proposition 3.3.2] and [Ver65, Section 5] beyond the case of submersive maps.

Theorem 1.1.4 (Proposition 1.6.16). Let f : X → Y be a map which induces a locally
contractible geometric morphism, and let C be a stable and bicomplete ∞-category. Then f !

C

admits a right adjoint and we have a formula

f !
CF ⊗ f∗DG ' f !

C⊗D(F ⊗G).

Then, inspired by parallel results in motivic homotopy theory, we conclude the chapter
by formulating and proving a relative version of Atiyah duality.

Theorem 1.1.5 (Corollary 1.7.14). Let f : X → Y be a proper submersion between smooth
manifolds. Denote by SX ∈ Shv(X; Sp) the constant sheaf at the sphere spectrum, and by
Th(−Tf) the sheaf the Thom spectrum of the virtual vector bundle −Tf . Then f](SX) is
strongly dualizable with dual Th(−Tf).

1.1.1 Linear overview

We now give a linear overview of the contents of the chapter.
In section 2 we recall the definition of Lurie’s tensor product of cocomplete ∞-categories

and prove some of its basic properties. In particular, we will interpret the results in [Cis19,
6.7] in terms of this tensor product in Theorem 1.2.10, show that it preserves the property
of being stable in Lemma 1.2.12, and show that compactly generated stable ∞-category is
a strongly dualizable object in the symmetric monoidal ∞-category Cocontst∞ in Proposi-
tion 1.2.14. Afterwards we recall the definition of sheaves and cosheaves with values in a
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general ∞-category and explain how Lurie’s tensor product can be used to conveniently de-
scribe Shv(X;C) at least when C is presentable. Most of the results in this section are not
original, but we still felt the necessity to spend some time writing them up to make our
discussion as self contained and reader friendly as possible.

In section 3 we define for any geometric morphism Y → X the relative shape ΠX
∞(Y) as

a pro-object of X and describe explicitly in Proposition 1.3.3 how this construction can be
enhanced to a functor

ΠX
∞ : Top/X → Pro(X)

and, even more, to a lax natural transformation between functors Topop → Cat∞ (see Re-
mark 1.3.7): these coherent structures with which we equip the shape will be used to prove
easily that the shape is homotopy invariant in Corollary 1.3.4 and later in Proposition 1.7.7
to show that the Thom spectrum gives a natural transformation of sheaves of commutative
monoids in spaces. Later we define locally contractible geometric morphisms and give a
characterization in Proposition 1.3.11 which mimics the one in [Joh02, C3.3] for the locally
connected case. We also show that, when f is a geometric morphism induced by a continuous
map of topological spaces, the property of being locally contractible is checked more easily.
Then we define shape submersions and prove in Lemma 1.3.25 a base change formula which
will imply that they induce locally contractible geometric morphisms (see Corollary 1.3.26).

In section 4 we follow the approach of [Kha19] to obtain the localization sequences associ-
ated to a decomposition of a topological space into an open subset and its closed complement.
Also the results here are not so new but, after section 5, they will imply that there is a rec-
ollement of Shv(X;C) associated to any open-closed decomposition of X whenever C is stable
and bicomplete, while this was previously known only for C presentable.

Section 5 is devoted to Verdier duality, and how it can be used to show that the pushfor-
ward fC∗ admits a left adjoint for any C stable and bicomplete in the way we have sketched
at the beginning of the introduction.

In section 6 we develop the six functor formalism: as usual, we prove base change (Propo-
sition 1.6.9), projection (Proposition 1.6.12) and Künneth (Proposition 1.6.11) formulas for
fC! , and discuss the properties of f !

C when f is a shape submersion in Proposition 1.6.16.
At last, in section 7 we show how the six functor formalism can be used to express a

relative version of Atiyah duality for any proper submersion between smooth manifolds.

1.2 Sheaves and tensor products

The goal of this section will be twofold: first we are going to introduce Lurie’s tensor product
of cocomplete ∞-categories as defined in [Lur17], and secondly we will recall the definition
of sheaves and cosheaves with values in general ∞-categories. The reason why we want to
spend some time discussing this matter, aside from it being interesting on its own, is that
in the following sections this tensor product will prove to be an extremely convenient tool
to describe some categories of sheaves and functors between them: through it we will be
able to produce a vast class of essential geometric morphisms, we will extend easily some
results regarding sheaves of spaces to sheaves with values in any presentable∞-category, and
later prove the existence of a sheafification functor when the ∞-category of coefficients is
stable and bicomplete with no presentability assumption, and construct the full six-functor
formalism in this setting. Most of the results in this section are not at all original and can
be found for example in [Cis19], in [Lur17], or are already well known.
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1.2.1 Tensor product of cocomplete ∞-categories

For the whole section we will fix two universes V, U such that V is U-small, and de-
note by Cocont∞ the ∞-category of U-small ∞-categories admitting V-small colimits, with
V-cocontinuous functors between them. For short, we will call an object of Cocont∞ a co-
complete ∞-category and, for any two cocomplete ∞-categories C and D we will denote by
Fun!(C,D) the ∞-category of functors preserving V-small colimits.

Let C and D be cocomplete. Recall that, by [Lur09, 5.3.6], there exists a cocomplete
∞-category, denoted by C⊗D, and a functor

� : C×D→ C⊗D,

which preserves colimits in both variables and such that precomposing with � gives an
equivalence

(1.2.1) Fun!×!(C×D,E) ' Fun!(C⊗D,E)

functorial on C, D and E cocomplete, where Fun!×! indicates the ∞-category of bifunctors
preserving V-small colimits in each variable. More precicely, [Lur17, Corollary 4.8.1.4] shows
that this operation provides Cocont∞ with the structure of a symmetric monoidal∞-category,
and the inclusion of Cocont∞ in Cat∞ is lax monoidal, where the latter if equipped with the
cartesian monoidal structure. Since we obviously have a functorial equivalence

Fun!×!(C×D,E) ' Fun!(C,Fun!(D,E)),

this monoidal structure is closed.

Remark 1.2.2. As usual, one may regard Cocont∞ as a (∞, 2)-category. It follows by (1.2.1)
that, for any cocomplete ∞-category C, tensoring with C actually gives rise to a 2-functor.
An important consequence of this observation is that tensoring with C preserves adjunctions
of cocontinuous functors, since any adjunction is characterized by the classical triangular
identities (see for example [Cis19, Theorem 6.1.23, (v)]).

We will now present a list of results about the tensor product of cocomplete∞-categories
that will turn out to be very useful later.

Let A be a small∞-category, C cocomplete. For any two objects a ∈ A and c ∈ C, denote
by a� c = a!c the left Kan extension of c along a (here we are considering a and c as functors
Aop ← ∆0 → C). Thus we get a functor

A× C Fun(Aop,C)

(a, c) a� c

yA/C

which preserves colimits on the C variable that we will call the relative Yoneda embedding.
By definition, we have a functorial equivalence

Hom(a� c, F ) ' Hom(c, F (a))

for any F ∈ Fun(Aop,C).

Remark 1.2.3. Recall that in a closed symmetric monoidal ∞-category, an object x is
strongly dualizable if and only if the canonical map

(1.2.4) y ⊗Hom(x, 1)→ Hom(x, y)
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obtained as adjoint to

y ⊗Hom(x, 1)⊗ x y ⊗ 1 y'

is an equivalence. In the case of Cocont∞, one sees easily that the map (1.2.4) can be described
as induced by

D× Fun!(C, S) ' Fun!(S,D)× Fun!(C, S)→ Fun!(C,D)

where the last functor is given by composition.

Remark 1.2.5. By the naturality on x of the map (1.2.4), we see that the full subcategory
spanned by strongly dualizable objects is closed under retracts.

Remark 1.2.6. Consider the variablewise cocontinuous functor

(1.2.7) Fun(Aop, S)× C→ Fun(Aop,C)

obtained as the extension by colimits of the relative Yoneda embedding, and denote by F � c
the image of a pair (F, c) ∈ Fun(Aop, S)× C. This induces a cocontinous functor

(1.2.8) Fun(Aop, S)⊗ C→ Fun(Aop,C).

By definition one has identifications

Hom(F � c,G) ' Hom(F,HomC(c,G(−)))

functorially on F ∈ Fun(Aop, S), G ∈ Fun(Aop,C) and c ∈ C, where the hom-space on the
right-hand side is taken on the ∞-category of presheaves of U-small spaces.

A very convenient way to model the functor (1.2.7) is as follows. Let y : ∆0 ↪→ S be
the Yoneda embedding. Copmbining the fact that y is fully faithful and [Cis19, Proposition
6.4.12], we have

y!c ◦ a!y ' a!(y!c ◦ y) ' a!c

and hence we get a commutative triangle

Fun(Aop, S)× C Fun(Aop,C)

Fun(Aop, S)× Fun!(S,C)

�

id×y! ◦

where the vertical arrow is an equivalence and the diagonal one is given by composition. In
particular, one deduces that the functor (1.2.8) can be seen as an instance of (1.2.4).

For any cocomplete ∞-category D, precomposition with yA/C induces a functor

Fun(Fun(Aop,C),D)→ Fun(A× C,D) ' Fun(C,Fun(A,D))

and since colimits are computed pointwise in functor categories, it restricts to

(1.2.9) Fun!(Fun(Aop,C),D)→ Fun!(C,Fun(A,D)).

Theorem 1.2.10. The functor (1.2.9) is an equivalence. In particular, Fun(Aop, S) is strongly
dualizable in the monoidal ∞-category Cocont∞ with dual Fun(A, S), and thus the functor
(1.2.8) is an equivalence.

10



Proof. A complete proof of the first statement can be found in [Cis19, 6.7]. The main
ingredient of the proof is that, by [Cis19, Lemma 6.7.7], any F ∈ Fun(Aop,C) can be written
canonically as

F = lim−−→
c→ F (a)

a� c

where the colimit is indexed by the Grothendieck construction of the functor (a, c) 7→
HomC(c, F (a)). Furthermore, even though this indexing category is not small a priori, [Cis19,
Lemma 6.7.5] proves that it is finally small. From this one may deduce easily the theorem,
in a similar spirit to how one proves that Fun(Aop, S) is the free cocompletion under small
colimits of A.

To prove the last statement, we just observe that we have canonical equivalences

Fun!(Fun(Aop,C),D) ' Fun!(C,Fun(A,D))

' Fun!(C,Fun!(Fun(Aop, S),D))

' Fun!(Fun(Aop, S)⊗ C,D)

whose composition is given by precomposing with (1.2.8), and so we may conclude by Re-
mark 1.2.6.

Corollary 1.2.11. Let u : A→ B be a functor between small∞-categories, and let C be any
cocomplete ∞-category. Then we have equivalences u! ⊗ C ' u! and u∗ ⊗ C ' u∗ . Here by
an abuse of notation we write u! (u∗) to indicate both left Kan extension (restriction) along
u for functors with values in S and in C.

Proof. By Remark 1.2.2 and Theorem 1.2.10, we have an adjunction u! ⊗ C a u∗ ⊗ C of
cocontinuous functors between C-valued presheaves. By uniqueness of adjoints, it suffices to
show that u∗ ⊗ C ' u∗. But this is clear because by Remark 1.2.6 we have a commutative
square

Fun(Bop, S)× C Fun(Aop, S)× C

Fun(Bop,C) Fun(Bop,C).

u∗×id

� �

u∗

Denote by Contpt∞ (Contst∞) the full subcategory of Cocont∞ spanned by pointed (stable)
cocomplete ∞-categories.

Lemma 1.2.12. Let C be any pointed (respectively stable) cocomplete ∞-category, and
let D be cocomplete. Then C ⊗ D is pointed (respectively stable). In particular, Contpt∞
(respectively Contst∞) inherits an obvious monoidal structure from Cocont∞ and the inclusion
in Cocont∞ admits a left adjoint given by tensoring with S∗ (respectively Sp).

Proof. First of all, notice that ∆0 ⊗D ' ∆0. Since C is pointed, the zero object ∆0 → C is
simultaneously a right and a left adjoint of the unique functor C → ∆0, and thus one may
tensor these two adjunctions with D and obtain by Corollary 1.2.11 that C⊗D is pointed.

Assume now that C is stable. Since C⊗D is pointed, one sees easily that the suspension
functor for C ⊗ D is obtained by applying − ⊗ D to the suspension of C, and so it is in
particular an equivalence.

To prove that last part of the statement, it suffices to show that, for any pointed (stable)
and cocomplete ∞-category C, the evaluation at S0 (respectively S) induces an equivalence
Fun!(S∗,C) ' C (respectively Fun!(Sp,C) ' C), but this follows easily by noticing that S∗ '
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Ind(Sfin∗ ) (respectively Sp ' Ind(Spfin)) and that evaluation at S0 (respectively S) induces
an equivalence between finitely cocontinuous functors from S∗ (respectively Spfin) to C and
C.

Remark 1.2.13. Let A be any small category and C any object of Cocontst∞. By the previous
lemma, the functor (1.2.7) factors as

Fun(Aop, S)× C Fun(Aop,C)

Fun(Aop, Sp)× C

�

Σ∞+ ×C
�st

inducing an equivalence
Fun(Aop,C) ' Fun(Aop, Sp)⊗ C.

Moreover, Remark 1.2.6 implies that one has identifications

Hom(F �st c,G) ' Hom(F,HomC(c,G(−)))

functorially on F ∈ Fun(Aop, Sp), G ∈ Fun(Aop,C) and c ∈ C, where HomC(c,−) denotes the
canonical enrichment of C in U-small spectra, and we have a commutative triangle

Fun(Aop, Sp)× C Fun(Aop,C)

Fun(Aop, Sp)× Fun!(Sp,C)

�st

id×y! ◦

Proposition 1.2.14. Let C be a compactly generated stable∞-category. Then C is a strongly
dualizable object of Cocontst∞.

Proof. Since C is stable and compactly generated, it follows that there exists a small stable
∞-category A with finite colimits such that C ' Funex(Aop, Sp). Thus, since Fun!(C, Sp) '
Funex(A, Sp), to prove the proposition we have to show that, for any D stable and cocomplete,
the canonical functor

Funex(Aop, Sp)⊗D→ Funex(Aop,D)

is an equivalence. We first prove that the inclusion i : Funex(Aop,D) ↪→ Fun(Aop,D) admits
a left adjoint L.

For any a ∈ A, denote by yst(a) the spectrally enriched representable functor associated
to a, obtained as usual through the equivalence

(1.2.15) Funex(Aop, Sp) ' Funlex(Aop, S).

We define L as the unique (up to a contractible space of choices) cocontinuous functor ex-
tending

A×D Funex(Aop,D)

(a, x) yst(a)�st x.

Indeed, yst(a) �st x is exact as it can be modelled by the composition of two finite colimit
preserving functors. When D = Sp, by (1.2.15) and the Yoneda lemma, one sees that L is
left adjoint to i.

12



Let D be any stable cocomplete ∞-category. To see that L is the desired left adjoint, we
observe that for any F ∈ Funex(Aop,D), x ∈ D, we have functorial identifications

Hom(yst(a)�st x, F ) ' Hom(yst(a),HomD(x, F (−)))

' Hom(y(a),HomD(x, F (−)))

' Hom(a� x, F )

where the hom-space on the right-hand side is taken on the ∞-category of presheaves of
U-small spectra on A, and the second equivalence follows by the fact that F , and hence
HomD(x, F (−)), is exact.

Now notice that i : Funex(Aop, Sp) ↪→ Fun(Aop, Sp) preserves colimits, and so, by tensor-
ing with D, one obtains an adjunction between cocontinuous functors

Fun(Aop,D) Funex(Aop, Sp)⊗D

L⊗D

i⊗D
a

where i⊗D is fully faithful. Since Funex(Aop, Sp)⊗D and Funex(Aop,D) can be respectively
identified with the essential images of (Li) ⊗ D and Li, to conclude the proof it suffices to
show that the two functors are naturally equivalent, but this is true because they coincide
on objects of the type a� x.

Recall that an∞-category C is called V-presentable (for short, when there is no possibility
of confusion we will only write presentable) if there exists a V-small ∞-category A such that
C is a left Bousfield localization of Fun(Aop, S) by a V-small set of morphism in Fun(Aop, S).
If we furthermore assume that the localization functor Fun(Aop, S)→ C is left exact, we will
say that C is an∞-topos. It follows easily by this definition that any presentable∞-category
is complete and cocomplete. Presentable categories are equivalently defined as follows. Recall
that, for C any ∞-category and S a class of morphisms in C, we define an object X ∈ C to
be S-local if, for every morphim f : A→ B in S, the induced morphism

HomC(B,X)→ HomC(A,X)

is invertible. Then we say that an ∞-category C is V-presentable is there exists a V-small
class S of morphisms in Fun(Aop, S) such that C is equivalent to the full subcategory of
Fun(Aop, S) spanned by S-local objects.

We denote by PrL the full subcategory of Cocont∞ spanned by presentable ∞-categories
and PrR = Prop

L . Notice that, by the adjoint functor theorem (see for example [Cis19,
Proposition 7.11.8]), the morphisms in PrL are functors which admit a right adjoint and,
consequently, morphisms in PrR are functors which admit a left adjoint. We also denote by
Top the non full subcategory of PrR whose objects are ∞-topoi and morphisms are functors
which admit a left exact left adjoint (such functors are called geometric morphisms).

Proposition 1.2.16. Let C and D be two presentable ∞-categories. Then C ⊗ D is pre-
sentable and there a canonical equivalence C⊗D ' RFun(Cop,D). In particular, PrL inherits
a symmetric monoidal structure.

Proof. Let A and B be two small ∞-categories, S and S′ two small sets of morphisms of
Fun(Aop, S) and Fun(Bop, S) respectively such that C and D are equivalent the full subcate-
gories of S and S′-local objects. By Theorem 1.2.10 we have

Fun(Aop, S)⊗ Fun(Bop, S) ' Fun(Aop,Fun(Bop, S))

' Fun((A×B)op, S).
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It then follows from the proof of [Lur17, Proposition 4.8.1.15] that C ⊗D can be identified
with the full subcategory of Fun((A×B)op, S) spanned by S⊗S′-local objects, where S⊗S′
is the image of S × S′ through the canonical functor

Fun(Aop, S)× Fun(Bop, S)→ Fun((A×B)op, S).

The proof of the last assertion follows by [Lur17, Lemma 4.8.1.16] and [Lur17, Proposition
4.8.1.17].

Remark 1.2.17. Let C be a presentable ∞-category. One can deduce easily for Proposi-
tion 1.2.16 identifications C⊗ S∗ ' C∗ and C⊗ Sp ' Sp(C), where C∗ denotes the ∞-category
of pointed objects of C, and Sp(C) denotes the ∞-category of spectrum objects of C, i.e. the
limit of the tower

. . . C∗ C∗
Ω Ω

where Ω is the usual loop functor. Both these constructions come with canonical functors
C∗ → C and Ω∞ : Sp(C) → C, and since C is presentable one can show that these admit left
adjoints (−)+ : C→ C∗ and Σ∞+ : C→ Sp(C). By construction, we have a factorization

C C∗ Sp(C).
(−)+ Σ∞

In particular we see that, if C is presentable and pointed (stable), by tensoring (−)+ : S→ S∗
(Σ∞+ : S → Sp) with C we obtain an equivalence C ⊗ S∗ ' C (C ⊗ Sp ' Sp(C)). Thus, if C,
D and E are presentable ∞-categories where D is pointed and E is stable, we get functorial
identifications

Fun!(C⊗ S∗,D) ' Fun!(C,Fun!(S∗,D)) ' Fun!(C,D)

Fun!(C⊗ Sp,E) ' Fun!(C,Fun!(Sp,E)) ' Fun!(C,E)

induced respectively by precomposing with (−)+ and Σ∞+ . Furthermore, we see that (−)+ :
S → S∗ and Σ∞+ : S → Sp make S∗ and Sp into idempotent cocomplete ∞-categories with
respect to Lurie’s tensor product: by [Lur17, Proposition 4.8.2.9] this implies that there are
canonical variablewise cocontinuous symmetric monoidal structures on S∗ and Sp with unit
objects given by S0 := (∗)+ and S := Σ∞+(∗), and one can show that these coincide with the
usual smash products of pointed spaces and spectra. In particular, we see that the functors

S S∗ Sp
(−)+ Σ∞

are all monoidal, where S is equipped with the cartesian monoidal structure.

1.2.2 Sheaves and cosheaves

We now pass to recalling the definition of sheaves with values in an ∞-category. Let X be
a small ∞-category equipped with a Grothendieck topology. Recall that there is a small ∞-
category Cov(X), as defined in [Lur09, Notation 6.2.2.8], which can be described informally
as having for objects pairs (x,R), where x ∈ X and R ↪→ y(x) is a sieve covering x, and
morphisms between (x,R) and (y,R′) are just maps f : x→ y in X such that the restriction
of y(f) to R factors through R′. There is an obvious projection ρ : Cov(X)→ X which has
a section s : X → Cov(X) defined on objects by sending x to (x, y(x)).

Definition 1.2.18. Let C be a complete ∞-category. With the same notations as above, we
say that a functor F ∈ Fun(Xop,C) is a sheaf if the unit morphism

ρ∗F → s∗s
∗ρ∗F ' s∗F
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is an equivalence. Dually, for a cocomplete∞-category C, we say that a functor F ∈ Fun(X,C)
is a cosheaf if the counit morphism

s!F ' s!s
∗ρ∗F → ρ∗F

is an equivalence. We denote by Shv(X;C) (CoShv(X;C)) the full subcategory of Fun(Xop,C)
(Fun(X,C)) spanned by (co)sheaves. When C is the ∞-category of spaces S, we will simply
write Shv(X).

Remark 1.2.19. More concretely, one can describe a sheaf as a functor F such that for any
covering sieve R ↪→ y(x) the canonical morphism

F (x)→ lim←−−
y(x′)→R

F (x′)

is an equivalence. Notice also that we clearly have an equivalence CoShv(X;C) ' Shv(X;Cop)op.

Remark 1.2.20. It is well known that, for any∞-site X, the category Shv(X) is an∞-topos.
Unlike the case of 1-topoi, it’s still unclear whether any ∞-topos is equivalent to Shv(X) for
some ∞-site X (see [Rez19]).

We now give another description of categories of sheaves and cosheaves.

Lemma 1.2.21. Let X be an∞-site, C be any cocomplete∞-category. Then the restrictiong

along the functor X Fun(Xop, S) Shv(X)
y L defines an equivalence

CoShv(X;C) ' Fun!(Shv(X),C),

where y is the Yoneda embedding and L is the sheafification functor. Equivalently, a functor
X → C is a cosheaf if and only if its extension by colimits Fun(Xop, S)→ C factors through
L. Dually, for any complete ∞-category C, we have an equivalence

Shv(X;C) ' Fun∗(Shv(X)op,C).

Proof. Since L commutes with colimits, by the universal property of localizations composition
with L embeds Fun!(Shv(X),C) in Fun!(Fun(Xop, S),C) as the full subcategory of functors
sending covering sieves R ↪→ y(x) to equivalences in C. On the other hand, a functor F :
X → C is a cosheaf precisely if there is an equivalence

lim−−→
y(x′)→R

F (x′) ' F (x)

for any sieve R on x ∈ X, thus precisely if its extension by colimits Fun(Xop, S)→ C lies in
Fun!(Shv(X),C).

We provide a couple of examples of cosheaves.

Example 1.2.22. (i) Let f : X → Y be a continuous map between topological spaces.
Recall that this induces a geometric morphism f : Shv(X) → Shv(Y ), which amounts
to an adjunction f∗ a f∗, where f∗ : Shv(X) → Shv(Y ) is defined by Γ(U ; f∗F ) =
Γ(f−1(U);F ) for any U ⊆ Y . By Lemma 1.2.21, one may characterize f∗ : Shv(Y ) →
Shv(X) as the essentially unique Shv(X)-valued cosheaf on Y with the property that
f∗(y(U)) = y(f−1(U)).
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(ii) Let Top be the 1-category of topological spaces, and Kan ↪→ sSet be the full subcategory
of all simplicial sets consisting of Kan complexes. Recall that there is a functor Top→
Kan defined by assigning to each topological space X its singular complex, i.e. the
simplicial set defined by n 7→ HomTop(∆n, X), where ∆n is the standard n-simplex.
Recall also that, by [Cis19, Theorem 7.8.9], there is a functor sSet→ S which identifies
S as a localization of sSet at the class of weak homotopy equivalences. We define
Sing : Top → S as the composition of the two functors defined above. It is proven in
[Lur17, A.3] that, for any topological space X, the restriction of Sing to U(X) is indeed
a cosheaf: this may be regarded as a non-truncated version of the classical Seifert-Van
Kampen theorem. Furthermore, one can also show that Sing is a hypercomplete cosheaf
(see [Lur17, Lemma A.3.10]): this means that, as cocontinuous functor Shv(X) → S,
Sing factors through the hypercompletion of Shv(X).

Corollary 1.2.23. Let X be an∞-site, C be any presentable∞-category. Then the inclusion
CoShv(X;C) ↪→ Fun(X,C) admits a right adjoint.

Proof. By [Lur09, Proposition 5.5.3.8] and the previous lemma, the∞-category CoShv(X;C)
is presentable. Thus, since CoShv(X;C) ↪→ Fun(X,C) obviously preserves colimits, we may
conclude by the adjoint functor theorem.

Corollary 1.2.24. Let X be an ∞-site, C be any presentable ∞-category. Then we have an
equivalence Shv(X)⊗ C ' Shv(X;C).

Proof. It follows by the adjoint functor theorem that Fun∗(Shv(X)op,C) ' RFun(Shv(X)op,C).
Thus, by the previous lemma and by Proposition 1.2.16, we get the conclusion.

Construction 1.2.25. Let X and Y be two topological spaces. The functor

U(X)× U(Y ) Shv(X × Y )

(U, V ) y(U × V )

extends by colimits to a functor

Fun(U(X)op, S)× Fun(U(Y )op, S)→ Shv(X × Y ).

Since it clearly sends covering sieves to equivalences in both variables, we obtain a functor

Shv(X)× Shv(Y ) Shv(X × Y )

(F,G) F �G.

More generally, by Corollary 1.2.24, tensoring with two presentable ∞-categories C and D

gives

(1.2.26) Shv(X;C)× Shv(Y ;D)→ Shv(X × Y ;C⊗D)

for which the image of a pair (F,G) in the domain will still be denoted as F � G. Let
∆ : X → X ×X be the diagonal. By post composing with ∆∗ we get a functor denoted by

(1.2.27)
Shv(X;C)× Shv(X;D) Shv(X;C⊗D)

(F,G) F ⊗G := ∆∗(F �G).
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Suppose now that C is equipped with a monoidal structure ⊗C such that the functor ⊗C :
C × C → C preserves colimits in each variable. Then we have a cocontinuous functor
Shv(X;C⊗ C)→ Shv(X;C) and by composing with (1.2.27) we obtain an induced monoidal
structure on Shv(X;C), which will still be denoted by ⊗C. It is straightforward to check that
the functor

(1.2.28) ⊗C : Shv(X;C)× Shv(X;C)→ Shv(X;C)

can be described as
(F,G) 7→ LC(U 7→ Γ(U ;F )⊗C Γ(U ;G))

where LC is the sheafification for C-valued presheaves. In particular, we have that any F ∈
Shv(X;C) induces a colimit preserving functor

−⊗C F : Shv(X;C)→ Shv(X;C).

Since Shv(X;C) is presentable, this has a right adjoint denoted by

HomX(F,−) : Shv(X;C)→ Shv(X;C).

This functor supplies Shv(X;C) with a self-enrichment and for this reason will be called
internal Hom sheaf functor.

Remark 1.2.29. Let X and Y be two topological spaces, C, D and E be presentable ∞-
categories, and let α : Shv(X)→ Shv(Y ) and Φ : C⊗D→ E be cocontinuous functors. Notice
that the functoriality in each variable of the tensor product of cocomplete∞-categories gives
a commutative diagram

Shv(X ×X;C⊗D) Shv(X;C⊗D) Shv(X;C⊗D)

Shv(X;C⊗D) Shv(X;E) Shv(Y ;E).

∆∗

∆∗

α⊗(C⊗D)

Shv(Y )⊗Φ

Shv(X)⊗Φ α⊗E

In particular, the diagram above shows that whenever we prove a formula involving the
functor (1.2.27) and operations on sheaves coming from some continuous map, then we may
deduce immediately a corresponding formula for the functor (1.2.28).

We may now formulate the following proposition, which could be interpreted as a sort of
Künneth formula (we will actually see later in Proposition 1.6.11 how one can deduce the
Künneth formula from this).

Proposition 1.2.30. Let X and Y be topological spaces, C and D two presentable ∞-
categories, and assume that one of the two is locally compact. Then the functor (1.2.26)
induces an equivalence

Shv(X;C)⊗ Shv(Y ;D) ' Shv(X × Y ;C⊗D).

Moreover, let f : X → X ′ and g : Y → Y ′ be two continuous maps and assume that at least
one among X ′ and Y ′ is locally compact. Then we have an equivalence

(f × g)∗C⊗D(F �G) ' f∗CF � g∗DG

which is functorial on F ∈ Shv(X ′;C) and G ∈ Shv(Y ′;D).
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Proof. By [Lur09, Proposition 7.3.3.9], for any topological space X and any ∞-topos Y,
Shv(X;Y) is a product of Shv(X) and Y in the ∞-category Top. Thus, by the previous
corollary combined with [Lur09, Proposition 7.3.1.11], if Y is a locally compact topological
space, we have an equivalence

Shv(X)⊗ Shv(Y ) ' Shv(X × Y ).

For the second part of the statement, we first observe that by Corollary 1.2.24 and Propo-
sition 1.2.16 it suffices to prove the case when C = D = S, which amounts to providing a
commutative square

Shv(X ′)× Shv(Y ′) Shv(X ′ × Y ′)

Shv(X)× Shv(Y ) Shv(X × Y ).

f∗×g∗ (f×g)∗

Since both the top right and the down left composition commute with colimits in both
variables, one then gets this by Lemma 1.2.21, Example 1.2.22 (i) and by observing that

(f × g)−1(U × V ) = f−1(U)× g−1(V )

for any U and V open subsets of X ′ and Y ′ respectively.

Corollary 1.2.31 (Monoidality). Let f : X → Y be a morphism of locally compact topolog-
ical spaces, C and D two presentable ∞-categories. Then we have a canonical identification

f∗(F ⊗G) ' f∗F ⊗ f∗G

and in particular, when C = D is monoidal, by transposition

f∗HomX(f∗H,K) ' HomY (H, f∗K).

Proof. The commutativity of the diagram

Shv(Y ;C)× Shv(Y ;D) Shv(X;C)× Shv(X;D)

Shv(Y ;C⊗D) Shv(X;C⊗D)

(f∗,f∗)

⊗ ⊗

f∗

follows from the commutativity of

X Y

X ×X Y × Y

f

∆ ∆

(f,f)

that is trivially verified. The last part follows directly from the previous lemma.

Consider now the ∞-category Shv(X;C), where X is any ∞-site and C is complete and
cocomplete. It is natural to ask oneselves whether at this level of generality one is still able
to obtain a result like Corollary 1.2.24, at least when the inclusion Shv(X;C) ↪→ Fun(Xop,C)
admits a left adjoint. In the rest of the section we will briefly outline the reason why the
answer to this question doesn’t seem to be affirmative. We start with a general proposition
concerning left Bousfield localizations and categories of local objects.
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Proposition 1.2.32. Let C be an ∞-category and S a class of morphism in C. Denote
by CS the full subcategory of C spanned by S-local objects, and assume that the inclusion
i : CS ↪→ C admits a left adjoint L. Thus, composition with L gives a fully faithful functor

(1.2.33) LFun(CS ,D) ↪→ LFun(C,D)

whose essential image is given by left adjoints C→ D sending all morphisms in S to equiva-
lences.

Proof. Let W be the class of morphisms in C which are sent by L to equivalences and denote
by A and A′ the full subcategories of LFun(C,D) spanned respectively by left adjoints C→ D

sending all morphisms in W to equivalences and left adjoints C→ D sending all morphisms
in S to equivalences. By [Cis19, Proposition 7.1.18], we already know that (1.2.33) is fully
faithful and that its essential image is given by A. It follows immediately by the definition
of a local object that L sends all morphisms in S to equivalences, thus we just need to show
that A′ is contained in A.

Consider a functor F : C → D in A′ with right adjoint G : D → C. By definition of A′,
we have that for every morphisms in f ∈ S and every d ∈ D

HomC(c,G(d)) HomC(c′, G(d))

HomD(F (c), d) HomD(F (c′), d).

f

' '
F (f)

Thus G(d) is S-local, and hence there exists a functor G′ : D→ CS suche that G = iG′. Let
now f be a morphism in W . By definition of W we have, functorially on d ∈ D,

HomD(F (c), d) HomD(F (c′), d)

HomC(c, iG′(d)) HomC(c′, iG′(d))

HomCS
(L(c), G′(d)) HomCS

(L(c′), G′(d)),

F (f)

' '
f

' '
L(f)

'

and hence F (f) is invertible, and so we may conclude.

We now claim that there exists a class of morphisms S of Fun(Xop,C) such that Shv(X;C)
can be identified with the full subcategory of S-local objects of Fun(Xop,C). We define S as
the class of morphisms

S = {R�M → x�M | R ↪→ y(x) is a sieve,M ∈ C}.

For any sieve R ↪→ y(x), M ∈ C and F ∈ Fun(Xop,C), since R ' lim−−→
y(x′)→R

y(x′), we have a

commutative diagram

HomC(−, F (x)) HomC(−, lim←−−
y(x′)→R

F (x′))

HomFun(Xop,C)(x�−, F ) HomFun(Xop,C)(R�−, F )

'
'

i
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where the upper horizontal arrow is induced by the canonical map F (x) → lim←−−
y(x′)→R

F (x′).

Thus, we see that the upper horizontal arrow is invertible if and only if the lower horizontal
one is, and so F is a sheaf if and only if it is S-local. In paricular, by the previous proposition,
whenever the inclusion Shv(X;C) ↪→ Fun(Xop,C) admits a left adjoint, the ∞-category
Shv(X;C) is characterized by the universal property

LFun(Shv(X;C),D) ↪→ LFunS(Fun(Xop,C),D)

where the right-hand side denotes the ∞-category of left adjoint functors sending all mor-
phisms in S to equivalence. On the other hand, tensoring the usual sheafification Fun(Xop, S)→
Shv(X) with C gives a colimit preserving functor

L′ : Fun(Xop,C) ' Fun(Xop, S)⊗ C→ Shv(X)⊗ C.

Combining the universal property of the tensor product of cocomplete categories and Theo-
rem 1.2.10, we see that, for any cocomplete ∞-category D, precomposition with L′ may be
factored as

Fun!(Shv(X)⊗ C,D) ' Fun!(C,Fun!(Shv(X),D))

↪→ Fun!(C,Fun!(Fun(Xop, S),D))

' Fun!(Fun(Xop,C),D)

and hence indentifies Fun!(Shv(X)⊗C,D) with the full subcategory of Fun!(Fun(Xop,C),D)
spanned by those functors sending maps in S to equivalences. Hence we obtain a comparison
functor

Shv(X)⊗ C→ Shv(X;C)

but unless C is presentable, there is no evident reason why one should expect this to be an
equivalence.

Remark 1.2.34. A close inspection of the proof of [Lur09, Proposition 6.2.2.7] shows that
the usual formula for sheafifcation provides the desired left adjoint whenever C is bicomplete
and, for every x ∈ X and every sieve R ↪→ y(x), the functor

Fun(Xop,C) C

F (s∗F )(x,R) ' lim←−−
y(x′)→R

F (x′)

is accessible: this will be true automatically for example when C is presentable, since any
functor between presentable∞-categories which is a right adjoint is automatically accessible.
A similar observation in the case of sheaves with values in ordinary 1-categories can be found
in [KS06, 17.4]. However, if we drop the presentability assumption for C, it is not clear a
priori why the inclusion Shv(X;C) ↪→ Fun(Xop,C) should admit a left adjoint.

Remark 1.2.35. Suppose that C is such that Shv(X;C) ↪→ Fun(Xop,C) admits a left adjoint
L. Hence, for any x ∈ X an M ∈ C, by applying L to x�M gives an object denoted by Mx

with the property that, for any other sheaf F , we have a functorial identification

Hom(Mx, F ) ' Hom(M,F (x)).

It follows by [Cis19, Proposition 7.1.18] and Theorem 1.2.10 that, for any cocomplete ∞-
category D, we have a fully faithful functor

Fun!(Shv(X;C),D) ↪→ Fun!(C,Fun(A,D))

and thus any cocontinuous functor with domain Shv(X;C) is uniquely determined by its
values on objects of the type Mx.
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1.3 Shape theory and shape submersions

In this section we will deal with questions related to shape theory from the perspective
of higher topos theory: we recommend [Lur17, Appendix A] and [Hoy18] for some good
introductory accounts to this subject. We will start by defining a version of shape which
is relative to a geometric morphism, and give a detailed description of its functoriality as
well as a proof of its homotopy invariance. After that we will define essential and locally
contractible geometric mophisms: the first notion refers to morphisms f : X → Y whose
relative shape is constant (as a pro-object on Y) locally on X, while the second to essential
geometric morphisms satisfying an additional push-pull formula. After that we will define
shape submersions, i.e. continuous maps which are locally given by projections X × Y → Y ,
where X is such that the unique geometric morphism Shv(X) → S is essential. These are
proven to satisfy a base change formula, which will imply that they induce locally contractible
geometric morphisms.

1.3.1 Relative shape

For any ∞-category C, denote by Pro(C) the ∞-category of pro-objects in C, i.e. the free
completion of C under cofiltered limits. When C is accessible and admits finite limits, one
shows ([Lur09, Proposition 3.1.6]) that Pro(C) is in fact equivalent to the full subcategory of
Fun(C, S)op spanned by the left exact functors.

Let F : C → D be an accessible functor between presentable ∞-categories, and let G :
D → Fun(C, S)op be the composition of the Yoneda embedding D → Fun(C, S)op with F ∗ :
Fun(D, S)op → Fun(C, S)op. By the adjoint functor theorem, G factors through C if and only
if F commutes with limits, and when this condition is verified G is a left adjoint to F . If F is
only left exact, by the characterization stated above G factors through Pro(C): in this case,
we say that G is the left pro-adjoint of F . Notice that, in this situation, G is a genuine left
adjoint of the functor Pro(F ) : Pro(C)→ Pro(D).

Specializing to the case of a geometric morphism between ∞-topoi f : X → Y, we see
that the pullback f∗ admits a pro-left adjoint, that we will denote by f] : X→ Pro(Y). More
explicitly, for every object U ∈ X, f](U) is the pro-object on Y defined by the assignment

V 7→ HomX(U, f∗(V )).

Definition 1.3.1. Let X be an ∞-topos, f : Y → X a geometric morphism. We define the
shape of Y relative to X as

ΠX
∞(Y) := f]1Y,

where 1Y is a terminal object of Y. We will say that f is constant shape if ΠX
∞(Y) belogns to

Y. In the case where f is the unique geometric morphism a : Y → S, a]1Y will be denoted
just by Π∞(Y) and will be called the shape or fundamental pro-∞-groupoid of Y.

Remark 1.3.2. Notice that, as a left exact functor X → S, f]1Y can be identified with the
functor a∗f∗f

∗, where a : X→ S is the unique geometric morphism.

Proposition 1.3.3. There exists a functor

ΠX
∞ : Top/X → Pro(X)

whose values on objects coincides with the shape relative to X and whose values on morphisms

Y Y′

X
f

g

f ′
is given by the transformation

a∗f
′
∗f
′∗ → a∗f

′
∗g∗g

∗f ′∗ ' a∗f∗f∗
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induced by the unit of the adjunction g∗ a g∗.

Proof. Since we clearly have a functor

Funlex(X,X)→ Funlex(X, S) ' Pro(X)op

given by post composition with a∗, it suffices to prove that there is a functor

T : ΠX
∞ : (Top/X)op → Funlex(X,X)

that assigns f∗f
∗ to any f : Y → X and at the level of morphisms

Y Y′

X
f

g

f ′
is given by

the transformation
f ′∗f
′∗ → f ′∗g∗g

∗f ′∗ ' f∗f∗

induced by the unit of the adjunction g∗ a g∗. We will proceed through some reduction steps.
First of all, the Yoneda embedding induces a fully faithful functor

Fun(X,X) ↪→ Fun(X,Fun(Xop, S)) ' Fun(Xop × X, S)

and thus it suffices to construct a functor

(Top/X)op → Fun(Xop × X, S)

whose image lies in Funlex(X,X). By [Cis19, Remark 6.1.5], standard computations with
adjunctions of 1-categories show that we also have, functorially on F,G ∈ X, a commutative
square

HomY(f∗F, f∗G) HomX(F, f∗f
∗G)

HomY′(g
∗f∗F, g∗f∗G) HomX(F, f∗g∗g

∗f∗G),

'

g∗ unit

'

so it suffices to show that the transformation on the left hand side can be enanched to a
functor (Top/X)op → Fun(X× Xop, S). Recall also that we have a forgetful functor

(Top/X)op ' (Topop)X/ Cat∞X/

(f : Y→ X) (f∗ : X→ Y).

Hence, we will construct a functor

Cat∞X/ → Fun(Xop × X, S).

Let Cat∞ be the full subcategory of sSet spanned by∞-categories, and let LFib(Xop×X)
be the full subcategory of sSet/Xop×X spanned by the left fibrations. Since Cat∞ is the
category of fibrant objects in the Joyal model structure on sSet, it follows by [Cis19, Theorem
7.5.18], [Cis19, Example 7.10.14] and [Cis19, Theorem 3.9.7] that one may regard Cat∞ as a
localization of Cat∞ by the class W of fully faithful and essentially surjective functors. Thus,
by [Cis19, Corollary 7.6.13] and [Cis19, Proposition 7.1.7], we get an equivalence Cat∞X/ '
Cat∞X/[W

−1]. On the other hand, LFib(Xop × X) is the category of fibrant objects in the
covariant model structure on sSet/Xop×X, and so by [Cis19, Theorem 7.5.18], [Cis19, Theorem
7.8.9] and [Cis19, Theorem 4.4.14] we may regard Fun(Xop × X, S) as the localization of
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LFib(Xop × X) by the class W ′ of fibrewise equivalences. Thus, to produce T it will suffice
to provide a functor Cat∞X/ → LFib(Xop × X) of 1-categories which maps W into W ′.

Recall that, for any ∞-category C, we have a left fibration S(C) Cop × C,
(s,t)

called

the twisted diagonal, classifying the hom-bifunctor Cop × C → S (as it is defined in [Cis19,
5.6.1]). For any functor f : X→ Y, consider the left fibration defined by the pullback

T (f) S(Y)

Xop × X Yop × Y

(s,t)

fop×f

which classifies the functor

HomX(f(−), f(−)) : Xop × X→ S.

The functoriality on Y of the twisted diagonal and the universal property of pullbacks imply
that T defines a functor Cat∞X/ → LFib(Xop×X), as illustrated by the diagram corresponding

to a morphism
X

Y Y′

f f ′

g

T (f) S(Y)

T (f ′) T (g) S(Y′)

Xop × X Yop × Y (Y′)op × Y′.

S(g)

(s, t) (s,t)

fop×f gop×g

Moreover, [Cis19, Corollary 5.6.6] implies that T sends any fully faithful functor to a fibrewise
equivalence, and hence we can conclude.

Recall that, for two maps Y Y ′
f0

f1

over a topological space X, we say that f0 is

homotopic to f1 over X if there exists a map h : Y × I → Y ′ over X such that ft = hit
t = 0, 1, where it : Y ↪→ Y × I is the inclusion corresponding to t ∈ I.

Corollary 1.3.4 (Homotopy invariance). Let Y, Y ′ be two topological spaces over X, and

let Y Y ′
f0

f1

be two homotopic maps over X. Then the functor T induces an equivalence

T (f0) ' T (f1). In particular, T sends homotopy equivalences over X to invertible morphisms
in Fun(X,X)op.

Proof. Let p : Y × I → Y be the canonical projection. By [Lur17, Lemma A.2.9], we know
that p∗ is fully faithful, and hence T (p) is invertible. Since pi0 = pi1 = idY and T is functorial,
we get an equivalence T (i0) ' T (i1). Thus, since there exists a homotopy h over X such that
ft = hit t = 0, 1, the functoriality of T gives the desired T (f0) ' T (f1).

Remark 1.3.5. Recall that, for any ∞-topos X, there is a fully faithful functor

(1.3.6)
X Top/X

x X/x.
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Since Top/X has small cofiltered limits, the latter can be extended to a functor

β : Pro(X)→ Top/X.

It is possible to construct the functor

ΠX
∞ : Top/X → Pro(X)

directly by showing that there is an equivalence

HomPro(X)(Π
X
∞(Y), Z) ' HomTop/X

(Y, β(Z))

which is functorial on Z ∈ Pro(X), as it is done in [Lur16, Proposition E.2.2.1]. However,
we preferred to prove directly the functoriality of the relative shape, namely because the
approach mentioned above leaves unclear how the functor ΠX

∞ would behave at the level of
morphisms, which is needed to have a proof of homotopy invariance as clean and immediate
as the one above.

Remark 1.3.7. As usual, since Top has pullbacks, the slice Top/X can be equipped with a
contravariantly functorial structure

Topop → Cat∞

that can be described for any geometric morphism g : X→ Y by sending an object (f : Y′ →
Y) ∈ Top/Y to the resulting arrow over X obtained by performing the pullback of f along g.
Thus, since by [Lur09, Remark 6.3.5.8] we have for any y ∈ Y a canonical pullback square

X/f∗y Y/y

X Y
f

in Top, we see that the functor (1.3.6) is actually natural in X, where the left hand side is
functorial by the usual forgetful Topop → Cat∞ sending a geometric morphism f to f∗. In
particular we obtain that

β : Pro(X)→ Top/X

is actually natural in X. Notice that, if one regards Cat∞ as an (∞, 2)-category, the universal
property of Pro(X) and the definition of the slice imply that β can be seen as a natural
transformation between 2-functors. Hence, by [Hau20, Theorem 3.22], by adjunction we may
regard the relative shape as a lax natural transformation, where the 2-cells involved may be
described as follows: any geometric morphism induces an adjunction

Pro(X) Pro(Y)

g]

g∗

a

and for any commutative square of topoi

X′ Y′

X Y

g′

f ′ f

g
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applying g′∗ to the unit of the adjunction f] a f∗ induces a natural transformation

g′∗ → g′∗f∗f] ' f ′∗g∗f]

and hence by transposition
f ′]g
′∗ → g∗f]

called the base change transformation, which when evaluated at 1Y′ gives the desired

f ′]g
′∗1Y′ ' f ′]1X′ → g∗f]1Y′ .

1.3.2 Locally contractible geometric morphisms

We start by recalling the definition of a locally cartesian closed ∞-category.

Definition 1.3.8. An ∞-category C is cartesian closed if it admits finite products and, for
any object c ∈ C, the functor −× c : C→ C admits a right adjoint.

An ∞-category C is locally cartesian closed if it has pullbacks and, for any object c ∈ C,
the slice C/c is cartesian closed, or equivalently, if for any arrow f : c → d in C, the functor
C/d → C/c given by pulling back along f admits a right adjoint called the dependent product
along f and denoted by

∏
f : C/c → C/d. A functor F : C→ D between locally cartesian ∞-

categories if locally cartesian closed if F commutes with pullbacks and dependent products,
i.e. for any arrow f : c→ d in C, we have a commutative square

C/c C/d

D/Fc D/Fd.

F

∏
f

F

∏
Ff

We will denote Catlcc∞ the subcategory of Cat∞ whose objects are locally cartesian closed
∞-categories with locally cartesian closed functors between them.

Example 1.3.9. By universality of colimits and adjoint functor theorem, any ∞-topos is
locally cartesian closed.

Let F → G be a morphism in Pro(Y) and let H → f∗G be a morphism in Pro(X). Then
we have a canonical commutative square

f](f
∗F ×f∗G H) f]H

f]f
∗F f]f

∗G

F G

which determines a unique morphism

(1.3.10) f](f
∗F ×f∗G H)→ F ×G f]H.

Proposition 1.3.11. Let f : X → Y be a geometric morphism between ∞-topoi. Consider
the conditions
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(i) f∗ admits a left adjoint and, for every F → G in Y and H → f∗G in X, the associated
projection morphism is invertible;

(ii) f∗ is locally cartesian closed;

(iii) f∗ admits a left adjoint and, for every F in Y and H in X, the associated projection
morphism

f](f
∗F ×H)→ F × f]H

is invertible.

Then (i) and (ii) are equivalent. Moreover, if f is induced by a continuous map between
topological spaces, then these are also equivalent to (iii).

Proof. We first show that (i) implies (ii). Since f∗ commutes with finite limits, it suffices to
show that it commutes with dependent products. But, for any α : F → G in Y, the square

Y/F Y/G

X/f∗F X/f∗G

f∗

∏
α

f∗

∏
f∗α

commutes if and only if the square given by the corresponding left adjoints commutes. This
last assertion is equivalent to requiring the projection morphims to be invertible, and so we
are done.

We now show that (ii) implies (i). By the same argument as above, it suffices to prove
that f∗ admits a let adjoint. Since f∗ is cocontinuous and preserves finite limits, we are only
left to prove that f∗ commutes with infinite products: we will do this by exhibiting products
(more generally, limits indexed by small ∞-groupoids) in any ∞-topos as a special case of
dependent products, so that the result will follow by assumption (ii). Let X be an ∞-topos,
π : X → S the unique geometric morphism. First of all, we observe that the cocontinuous
functors

S Catop
∞ S Catop

∞

A Fun(A,X) A X/π∗A

are naturally equivalent, since have equivalences

Fun(∆0,X) ' X ' X/π∗∆0 .

In particular, if α : A→ ∆0 is the unique map, we have a corresponding commutative square

X/π∗∆0 X/π∗A

Fun(∆0,X) Fun(A,X)

'

π∗A×−

'

const

where the lower horizontal arrow assigns to an object F of X the constant functor at F . Thus
we obtain an identification of the respective right adjoints, i.e. a commutative square

X/π∗A X/π∗∆0

Fun(A,X) Fun(∆0,X)

'

∏
π∗α

'
lim←−−
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which is what we wanted.
Assume now that we have an essential geometric morphism f : X = Shv(X) → Y =

Shv(Y ) induced by a continuous map f : X → Y . Clearly (iii) is a special case of (i).
Assume then that f satisyes the hypothesis (iii). Let α : F → G be a morphism in Y and let
H → f∗G be a morphism in X. Since the projection morphism is a natural transformation
between colimit preserving functors and since for any H ∈ X/f∗G we have an equivalence
H ' lim−−→

y(U)→G
(H ×f∗G y(f−1U)), we may assume that H → f∗G factors as H → y(f−1U) →

f∗G for some open U ∈ U(Y ), and hence by the pasting properties of pullbacks we may also
assume that G = y(U). Notice that, for any (-1)-truncated object V in a topos Z and for any
other two objects A,B ∈ Z/V , we have an identification A×V B ' A×B: this follows because
for any other object C mapping both to A and B, we have that HomZ(C, V ) is contractible,
and thus HomZ(C,A ×V B) ' HomZ(C,A × B). Thus, since both y(U) and y(f−1U) are
(-1)-truncated, we are only left to prove that

f](f
∗F ×H)→ F × f]H

is invertible, which is true by assumption.

Definition 1.3.12. Let f : X → Y be a geometric morphism of ∞-topoi. We say that f is
essential if f] factors through Y, or equivalently if f∗ admits a left adjoint. Furthermore, we
say that an essential geometric morphism is locally contractible if it satisfies the equivalent
conditions (i) and (ii) in Proposition 1.3.11. We say that a geometric morphism is of trivial
shape if f∗ is fully faithful, or equivalently if the unit transformation idY → f∗f

∗ is an
equivalence. When f is the unique geometric morphism X→ S, we will say that X is locally
contractible.

Remark 1.3.13. For a continuous map f : X → Y be a continuous map inducing a, essential
geometric motphism, one may interpret the condition of being locally contractible geometric
morphism as the requirement of a base change for f] along open immersions. More precicely,
let U be an open subset of Y , and consider the pullback square

f−1(U) U

X Y.

f ′

j′ j

f

For any F ∈ Shv(X), we have natural equivalences

j]j
∗f]F f]F × y(U) f](F × y(f−1(U))) f]j

′
](j
′)∗F j]f

′
](j
′)∗F' ' ' '

where the second morphism is (1.3.10). Therefore, since j] is fully faithful, we obtain a
natural equivalence

j∗f] ' f ′](j′)∗,

and, by transposition, an equivalence

f∗j∗ ' j′∗(f ′)∗.

Example 1.3.14. (i) Recall that any object U ∈ X of an∞-topos determines a geometric
morphism j : X/U → X. By [Lur09, Proposition 6.3.5.1] j is locally contractible, and
j] : X/U → X can be described as the usual forgetful functor.
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(ii) By [Lur17, Proposition A.1.9], an∞-topos is locally contractible if and only if the unique
geometric morphism X → S is essential, since in this case the projection morphism is
automatically invertible.

(iii) Let f : X → Y be an essential geometric morphism. For any the ∞-topos Z, by
Remark 1.2.2 we obtain a geometric morphism f ⊗Z : X⊗Z→ Y⊗Z by applying to f
the functor −⊗Z. Since both f∗ and f] commute with colimits, the adjunction f] a f∗
is preserved by −⊗ Z, and so f ⊗ idZ is an essential geometric morphism.

Remark 1.3.15. Let f : X → Y be a continuous map. Notice that, since the functor

f−1 : U(Y )→ U(X)

preserves open coverings, for any complete ∞-category C we still have a well defined push-
forward f∗ : Shv(X;C) → Shv(Y ;C) given as usual by Γ(U ; f∗F ) = Γ(f−1(U);F ) for all
U ∈ U(Y ). Although at this level of generality there is no reason to expect f∗ to have a left
adjoint, if f induces an essential geometric morphism at the level of sheaves of spaces, then
it actually does. Indeed, recall that there is an equivalence

Shv(X;C) ' Fun∗(Shv(X)op,C).

Through this equivalence and Example 1.2.22 (i), we can identify f∗ : Fun∗(Shv(X)op,C) →
Fun∗(Shv(Y )op,C) with precomposition with the opposite of the pullback f∗ : Shv(Y ) →
Shv(X). Thus, similarly to Remark 1.2.2, by applying the 2-functor Fun∗((−)op,C) to the
adjunction between cocontinuous functors f] a f∗, we obtain the desired left adjoint.

It is straightforward to check that the composition of two locally contractible geometric
morphism is again locally contractible (see [AC21, Corollary 3.2.5]). We observe that the
properties of being essential or locally contractible can be checked locally on the source.

Lemma 1.3.16. Let f : X→ Y be a geometric morphism, and let B ⊆ X which generates X

under colimits. For any object U ∈ B, consider the composite geometric morphism

(1.3.17) X/U X Y.
f

We have the following

(i) f is essential if and only if (1.3.17) is of constant shape for any U ∈ B;

(ii) f is locally contractible if and only if (1.3.17) is locally contractible for any U ∈ B.

Proof. A proof can be found in [AC21, Proposition 3.1.5] and [AC21, Proposition 3.2.6].

Remark 1.3.18. The content of part (i) in Lemma 1.3.16 suggests that a valid alternative
way to call a geometric morphism whose pullback has a left adjoint could have been locally
of constant shape. This is actually the approach taken by Lurie in [Lur17, Appendix A];
however, we have decided to stick with the more concise nomenclature which appears also in
[Joh02] and [AC21].

Corollary 1.3.19. Let X be a locally contractible topological space, a : X → ∗ the unique
map, and assume that X = Shv(X) is hypercomplete. Then Shv(X) is locally contractible
and a] is equivalent to the extension by colimits of the cosheaf Sing. Consequently, for
sheaves of spectra, the functor a] : Shv(X; Sp)→ Sp obtained by applying −⊗Sp is uniquely
determined by the formula a](SU) = Σ∞+U for any U ∈ U(X).
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Proof. Let B be the poset of all contractible open subsets of X. Notice that, even though B in
general is not a sieve, by the hypercompleteness assumption of Shv(X) we get an equivalence

lim−−→
U∈B/V

y(U) ' y(V )

for any V ∈ U(X) that can be easily checked on stalks. In particular, we see that the full
subcategory Shv(B) ⊆ Shv(X) generates Shv(X) under colimits. Thus by Lemma 1.3.16 it
suffices to check that Shv(X)/U ' Shv(U) is of constant shape for any U ∈ B, but this is
true by homotopy invariance of the shape. The last assertion follows immediately by noticing
that through the equivalence S ⊗ Sp ' Sp, an object A ⊗ S corresponds (functorially on A)
to Σ∞+A.

Remark 1.3.20. Beware that the viceversa of Corollary 1.3.19 is not true. For this reason,
to avoid confusion, from now on we will say that a topological space X is essential if Shv(X)
is (or equivalently, if Shv(X) is locally contractible by Example 1.3.14 part (ii)).

1.3.3 Shape submersions

Definition 1.3.21. A continuous map f : X → Y between topological spaces is a shape
submersion if for every point x ∈ X there exist an open neighbourhood U of x and a space
X ′ which is essential, such that f(U) is open in Y , U is homeomorphic to f(U)×X ′ and the
diagram

f(U)×X ′ U X

f(U) Y

∼=

p
f

commutes, where p is the obvious projection.

Example 1.3.22. (i) By Corollary 1.3.19, if X is locally contractible and hypercomplete,
then X → ∗ is a shape submersion.

(ii) Any topological submersion of fiber dimension n is a shape submersion.

Remark 1.3.23. (i) It follows easily from the definition that shape submersions are stable
under pullbacks of topological spaces.

(ii) If f : X → Y is a shape submersion, then the set of open subsets of X of the type
X ′ × V , where V is open in Y and X ′ is essential, forms a basis for the topology of
X. Although this basis is not closed under finite intersections, the set of representable
sheaves corresponding to open subsets homeomorphic to the product of an open in Y
and an essential space generates Shv(X) under colimits. To see this, consider

B = {U ∈ U(X) | U ∼= W, withW ∈ U(V × S) for someV ∈ U(Y ), S essential}.

The set B clearly forms a basis closed under finite intersections, and then we have
Shv(X) ' Shv(B) by [Aok20, Appendix A]. Moreover, since open immersions induce
essential geometric morphisms, and since U(V )×U(S) forms a basis of V × S which is
closed under finite intersections, we get our claim.

In the particular case of a topological submersion of fiber dimension n, since Rn is
hypercomplete, we have an equivalence Shv(Rn) ' Shv(W) where W ⊆ U(Rn) is
the poset of open balls inside Rn, and thus, since Rn is locally compact, we have
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Shv(V × Rn) ' Shv(V )⊗ Shv(W). In particular, the set of representable sheaves corre-
sponding to open subsets homeomorphic to the product of an open in Y and an open
ball in Rn generates Shv(X) under colimits.

For technical reasons that will be justified in a moment, from now on whenever we have
a shape submersion f : X → Y we will assume that either Y is locally compact or all spaces
of locally constant shape appearing in the basis of X are locally compact.

Lemma 1.3.24. Any shape submersion f : X → Y induces an essential geometric morphism.
Thus, for any presentable∞-category C, we obtain an adjunction f] a f∗ for C-valued sheaves.

Proof. Since f∗ is a left adjoint, it is in particular accessible. Hence, by adjoint functor
theorem, it suffices to prove that f∗ commutes with limits. For any functor I → Shv(Y ) we
have a canonical map

f∗(lim←−−
i∈I

Fi)→ lim←−−
i∈I

f∗Fi

and it suffices to check that this is an equivalence after restricting to any open subset in
the basis of X associated to f . Hence, since the operation of restricting a sheaf to an open
subset commutes with limits, we can assume that f is a projection f : X × Y → Y where
either X or Y is locally compact and X is essential. Thus, by point (iii) in Example 1.3.14
and Proposition 1.2.30, we get that f is essential. The last assertion follows immediately by
Corollary 1.2.24.

Lemma 1.3.25 (Smooth base change). Let C be a presentable ∞-category. For every given
pullback square

X ′ X

Y ′ Y

f ′

g′ g

f

of topological spaces where g and g′ are shape submersions, there is a natural equivalence

f∗g] ' g′]f ′∗

and, by transposition, also
g∗f∗ ' f ′∗g′∗

for C-valued sheaves.

Proof. First of all, the base change transformation as defined in Remark 1.3.7 defnes a com-
parison natural transformation. Since all functors appearing are colimit preserving, it suffices
to check that the morphism is an equivalence only on a family of objects generating Shv(X; )
by colimits. Hence, applying Remark 1.3.23 (ii), we see that we can assume that the pullback
square is of the type

X × Y ′ X × Y

Y ′ Y

idX×f

g′ g

f

where X is essential, g and g′ are the canonical projections. By Example 1.3.14 point (iii) and
Proposition 1.2.30, we have (idX × f)∗ ' (idX)∗ ⊗ f∗, g] ' a] ⊗ (idY )] and g′] ' a] ⊗ (idY ′)],
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where a : X → ∗, and so, since ⊗ is a bifunctor, we have

f∗g] ' f∗(a] ⊗ (idY )])

' a] ⊗ f∗

' (a] ⊗ (idY ′)])(id
∗
X ⊗ f∗)

' g′](idX × f)∗.

Corollary 1.3.26 (Smooth projection formula). Let f : X → Y be a shape submersion, C
and D two presentable ∞-categories. Then for any F ∈ Shv(X;C) and G,H ∈ Shv(Y ;D),
we have a canonical equivalence

f](F ⊗ f∗G) ' f]F ⊗G

and hence, by transposition, when C = D is monoidal, equivalences

f∗HomX(F, f∗G) ' HomY (f]F,G)

and
f∗HomY (G,H) ' HomX(f∗G, f∗H).

In particular, any shape submersion induces a locally contractible geometric morphism.

Proof. Let Γf : X → Y be the graph of f . We have

f](F ⊗ f∗G) ' f]Γ∗f (F �G)

' ∆∗(f × idY )](F �G)

' f]F ⊗G

where the second equivalence follows by applying Lemma 1.3.25 to the pullback square

X X × Y

Y Y × Y.

f

Γf

f×idY

∆

The last assertion follows by specializing (1.2.28) to the case when C is S equipped with the
cartesian monoidal structure and by the commutativity of the diagram

F × f∗G f∗(f]F ×G)

Γ∗f (F �G) Γ∗f (f × idY )∗(f × idY )](F �G)

' '

where the upper horizontal arrow is the one which transposes to the projection morphism
and the lower horizontal one transposes to the smooth base change transformation.
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1.4 Localization sequences

We will now prove a version of the localization theorem for sheaves of spaces (and of spectra)
on a topological space X: this essentially states that, for any closed immersion i : Z → X
with open complement j : U → X, the inclusions

Shv(Z) Shv(X) Shv(U)
i∗

j∗

form a recollement (in the sense of [Lur17, Definition A.8.1]). Achieving this goal in our
context will be slightly more complicated than in the case of [KS90, Proposition 2.3.6], namely
because we don’t want to assume all our spaces to be hypercomplete. We will follow instead
the strategy outlined in [Kha19]: the main ingredient will be to show that the pushforward i∗ :
Shv(Z)→ Shv(X) commutes with contractible colimits, i.e. colimits indexed by contractible
simplicial sets. From this we will be able to reduce to checking the theorem in the case of
representable sheaves, which is almost straightforward.

We start by reporting [Kha19, Definition 3.1.5] and [Kha19, Lemma 3.1.6].

Definition 1.4.1. Let X and Y be essentially small ∞-sites, and assume that Y admits
an initial object ∅Y . A functor u : X → Y is topologically quasi-cocontinuous if for every
covering sieve R′ ↪→ y(u(x)) in Y , the sieve R ↪→ y(x), generated by morphisms x′ → x such
that either u(x′) is initial or y(u(x′))→ y(u(x)) factors through R′ ↪→ y(u(x)), is a covering
in X.

Lemma 1.4.2. With notation as in the previous definition, let u : X → Y be a topologically
quasicocontinuous functor. Assume that the initial object ∅Y is strict in the sense that for
any object y ∈ Y , any morphism d → ∅Y is invertible. Assume also that, for any object
y ∈ Y , the sieve ∅Fun(Y,S) ↪→ y(d) is a covering in Y if and only if y is initial (where ∅Fun(Y,S)

denotes the initial object of Fun(Y, S)). Then the functor Shv(Y ) → Shv(X), given by the
assignment F 7→ LX(u∗(F )), where LX : Fun(X, S) → Shv(X) denotes the sheafification
functor, commutes with contractible colimits.

Lemma 1.4.3. Let i : Z ↪→ X be a closed immersion. Then i∗ commutes with contractible
colimits.

Proof. By the lemma above and by unraveling the definition of topologically quasi-cocontinuous
functor, this amounts to check that, for any V ∈ U(X) and any open covering {Wi}i∈I ⊆ U(Z)
of V ∩ Z, the family

T = {U ⊆ V | U ∩ Z = ∅ or U ∩ Z ⊆Wi for some i ∈ I} ⊆ U(X)

covers V . But this is clear, because V \Z ∈ T and any Wi can be written as W ′i ∩Z for some
W ′i ∈ U(V ).

Corollary 1.4.4. Let C be any pointed presentable ∞-category. Then the pushforward
iC∗ : Shv(Z;C) → Shv(X;C) commutes with all colimits, and thus admits a right adjoint
i!C : Shv(X;C)→ Shv(Z;C).

Proof. It suffices to prove the corollary for C = S∗. Note that it suffices to check that i∗
preserves the initial object and commutes with contractible colimits: any F : I → D from a
simplicial set I to an ∞-category D with an initial object ∅D may be seen as I → D∅D/ and
thus corresponds to a functor ∆0 ? I → D with the same colimit as F but indexed by weakly
contractible simplicial set. But i∗ preserves the initial object because Shv(Z; S∗) is pointed,
and thus we may conclude by the previous lemma.
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Let i : Z ↪→ X be a closed immersion with open complement j : U ↪→ X. For any
F ∈ Shv(X), consider the functorial commutative square

j]j
∗(F ) F

j]j
∗i∗i

∗(F ) i∗i
∗(F ),

where all the morphisms are given by the obvious units and counits. Notice that for any
G ∈ Shv(X) and V ∈ U(U), we have

Γ(V ; i∗G) = Γ(U ∩ Z;G) ' ∗,

and so we can identify j∗i∗ : Shv(Z) → Shv(U) with a constant functor with value the
terminal object y(U) ∈ Shv(U). Hence the previous square may be written as

(1.4.5)

j]j
∗(F ) F

j](y(U)) i∗i
∗(F ).

Theorem 1.4.6. The canonical square (1.4.5) is a pushout.

Proof. Since all functors appearing in (1.4.5) commute with contractible colimits and any
sheaf on X is canonically written as colimit indexed by the contractible category U(X)/F =
Shv(X)/F ×Shv(X) U(X) (it has an initial object), it suffices to prove the theorem when
F = y(V ) for some V ∈ U(X), and hence we just need to show that i∗i

∗(y(V )) ' y(U ∪ V ).
For any W ∈ U(X), we have

Γ(W ; i∗i
∗(y(V ))) ' Γ(W ; i∗(y(V ∩ Z)))

= Γ(W ∩ Z; y(V ∩ Z))

= HomU(Z)(W ∩ Z, V ∩ Z)

= HomU(X)(W,V ∪ U)

= Γ(W ; y(V ∪ U)),

where the second to last identification follows by the usual exponential adjunction in the
boolean algebra of all subsets of X.

Corollary 1.4.7. Let i : Z ↪→ X be a closed immersion with open complement j : U ↪→ X,
and let iC∗ , i

∗
C, i!C, jC] and j∗C be the induced pushforward and pullback functors at the level of

C-valued sheaves, where C is any pointed presentable ∞-category. Then we get a canonical
cofiber sequence

(1.4.8) jC] j
∗
CF → F → iC∗i

∗
CF

and dually a fiber sequence

(1.4.9) iC∗i
!
CF → F → jC∗ j

∗
CF.

denote
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Proof. It suffices to treat only the case of the sequence (1.4.8). Furthermore, we only need to
prove the case of sheaves of pointed spaces, since all functors appearing are colimit preserving
and we have a canonical equivalence Shv(X;C) ' Shv(X; S∗)⊗C, where C is any presentable
pointed ∞-category and X is any topological space. We define the canonical morphisms in
(1.4.8) through counit and unit of the appropriate adjunctions, and we see immediately that
the composition of those two morphisms is null-homotopic because i∗S∗j

S∗
] is equivalent to a

constant functor with value the zero object in Shv(Z; S∗).
Let α : Shv(X; S∗) → Shv(X) be the forgetful functor. A close inspection of the appro-

priate universal properties shows that, for any F ∈ Shv(X; S∗), there is a canonical pushout
square

j](y(U)) y(X)

j]j
∗α(F ) α(jS∗] j

∗
S∗
F ),

where the left vertical map is induced by the point of F . Thus, since α reflects pushouts and
we have an equivalence αiS∗∗ i

∗
S∗
' i∗i∗α, it suffices to prove that the canonical square

α(jS∗] j
∗
S∗
F ) α(F )

y(X) i∗i
∗α(F ).

induced by applying α to the sequence (1.4.8) is a pushout. For this purpose, consider the
commutative diagram

j](y(U)) y(X)

j]j
∗α(F ) α(jS∗] j

∗
S∗
F ) α(F )

j]j
∗(y(X)) y(X) i∗i

∗α(F ).

denote The upper left square and the left vertical rectangle are both pushouts, and so also
the lower left square is a pushout. But the lower horizontal rectangle is a pushout, and so
we can conclude.

Corollary 1.4.10. Consider a pullback square

Z ′ Z

X Y

f ′

s′ s

f

where f and f ′ are shape submersions and s (and consequently s′) is a closed immersion.
Then, for sheaves with values in a pointed presentable ∞-category, we have a canonical
equivalence

s!f
′
] ' f]s′!

or equivalently
f ′∗s! ' s′!f∗.
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Proof. Let j and j′ be the complement open immersions associated respectively to s and s′.
By the localization sequences and by smooth base change, we have a commutative diagram
where all the rows are cofiber sequences and all the vertical arrows are invertible

j]j
∗f] f] s!s

∗f]

j]f
′
]j
′∗ f] s!f

′
]s
′∗

f]j
′
]j
′∗ f] f]s

′
!s
′∗.

' ' '

' ' '

Hence we may conclude by precomposing the dotted equivalendenotece with s′!, since s′! is
fully faithful.

Remark 1.4.11. It is not hard to see that one may deduce from Theorem 1.4.6 that i∗ is
fully faithful (this was already proven in [Lur09, Corollary 7.3.2.10]). From this follows imme-
diately that, in the case of sheaves of pointed spaces or of spectra, one has the identification

i! ' fib (i∗ i∗j∗j
∗).

i∗(unit)

Remark 1.4.12. From Theorem 1.4.6 one deduces immediately that, at least when C is
presentable stable, the functors i∗ and j∗ are jointly conservative, i.e. a morphism α : F → G
in Shv(X;C) is invertible if and only if both i∗(α) and j∗(α) are invertible. This implies in
particular that the fully faithful functors i∗ and j∗ make Shv(X;C) a recollement of Shv(Z;C)
and Shv(U ;C), in the sense of [Lur17, Definition A.8.1]. However, this is true in a much greater
generality: see [Hai21] for a proof in the cases when C is an∞-topos or compactly generated.
After Corollary 1.5.16, for stable coefficients, we will also be able to relax the presentability
assumption to the more general requirement for C to admit both limits and colimits.

1.5 Pullbacks with stable bicomplete coefficients

From now on, unless otherwise specified, all the topological spaces we will deal with will be
assumed to be locally compact and Hausdorff. This implies that the following are equivalent

1. f : X → Y is proper (i.e. the preimage of any compact subset of Y is compact);

2. f is closed with compact fibers;

3. f is universally closed.

Another important consequence of the previous assumption is that any map X Y
f

can
be factored as a composition of a closed immersion (which is in particular proper by the
characterization above), an open immersion and a proper map as follows

(1.5.1)
X × Y X × Y

X Y

j×idY

pΓf

f

where Γf is the graph of f , X X
j

is the inclusion of X into its one point compactification
and p is the projection to the second coordinate: this factorization will be used very often
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later. Notice that one may also use the Stone-Cech compactification β to produce a functorial
functorization

(1.5.2)

X

X Y

βX βY

f

j

p

where j is an open immersion and p is proper. However, in many cases it will turn out to be
more convenient to have the proper map in the factorization to be a product projection.

This section contains the central technical ingredients of this chapter. We will explain
what are the two fundamental facts that allow us to construct pullbacks with non-presentable
coefficients: in brief, these these are covariant Verdier duality (see [Lur17, Theorem 5.5.5.1])
and the dualizability of Shv(X; Sp) in Cocontst∞.

We will start by giving an exposition of covariant Verdier Duality. Following [Lur17,
Theorem 5.5.5.1], this is an equivalence between the categories of sheaves and cosheaves on
a locally compact Hausdorff space. We will essentially review the proof of [Lur17, Theorem
5.5.5.1], and try to clarify a bit the last step. The reader who is aware of this result may
safely skip the first part of this section. Later, we will prove that Shv(X; Sp) is strongly
dualizable in the symmetric monoidal ∞-category Cocontst∞, by explicitely exhibiting it as
a retract in Cocontst∞ of a compactly generated ∞-category. This result is not new, as it
could be deduced from [Lur16, Proposition 21.1.7.1] (see also [Hoy]): we would like to thank
Peter Haine for pointing this out. We then use the above retraction to provide a convenient
description of pushforwards along proper maps, that is compatible with tensor products in
Cocontst∞. We conlude the section by showing that f∗Sp⊗C is a left adjoint of fC∗ , which is not
at all immediate. It will require a use of the factorizations mentioned in the beginning, and
a careful combination of all the previously mentioned results.

1.5.1 Recollections on covariant Verdier duality

We start by recalling the definition of K-sheaves.

Definition 1.5.3. Let K(X) be the poset of compact subsets of a topological space X.
Consider the following conditions:

(i) F (∅) is a terminal object,

(ii) For every K,K ′ ∈ K(X) the square

Γ(K ∪K ′;F ) Γ(K;F )

Γ(K ′;F ) Γ(K ∩K ′;F )

is pullback,

(iii) For every K ∈ K(X), the canonical map

lim−−→
KbK′

Γ(K ′;F )→ Γ(K;F )

is invertible, where K b K ′ means that K ′ contains an open neighbourhood of K.

36



Notice that (i) and (ii) together are equivalent to the sheaf condition for the Grothendieck
topology on K(X) given by finite covering. Hence, we will denote by Shv(K(X);C) the
full subcategory spanned by presheaves satifying (i) and (ii). Moreover, we will say that
a functor F : K(X) → C is a K-sheaf if it satisfies (i), (ii) and (iii). We will denote by
ShvK(X;C) ⊆ Fun(K(X)op,C) the full subcategory spanned by K-sheaves.

It is possible to relate K-sheaves with usual sheaves. Let M be the union U(X) ∪K(X)
considered as a poset contained in the power set of X, and let i : U(X) ↪→M and j : K(X) ↪→
M be the corresponding inclusion. We thus get two adjunctions

Fun(U(X)op,C) Fun(Mop,C) Fun(K(X)op,C).

i!

i∗

a

j∗

j∗

a

More explicitly, at the level of objects the functors are given by the formulas

Fun(U(X)op,C) Fun(K(X)op,C)

F (K 7→ lim−−→
K⊆U

Γ(U ;F ))

θ

Fun(K(X)op,C) Fun(U(X)op,C)

G (U 7→ lim←−−
K⊆U

Γ(K;G)).

ψ

These two functors actually restrict to an equivalence, assuming C has limits and colimits,
and filtered colimits are exact.

Theorem 1.5.4. Let C be a bicomplete ∞-category where filtered colimits are exact. Then
the functors θ and ψ defined above restrict to an equivalence

Shv(X;C) ' ShvK(X;C).

Proof. A proof can be found in [Lur09, Theorem 7.3.4.9].

Remark 1.5.5. Since in any stable ∞-category C filtered colimits are exact, and since the
opposite of any stable ∞-category is again stable, by Theorem 1.5.4 we get equivalences

Shv(X;C) ' ShvK(X;C)

and
CoShv(X;C) ' Shv(X;Cop)op ' CoShvK(X;C)

where we define CoShvK(X;C) to be ShvK(X;Cop)op.

Definition 1.5.6. Let F ∈ Shv(X;C), U ∈ U(X), and K any closed subset of X. We define
the sections of F supported at K and compactly supported sections of F over U respectively
as

ΓK(X;F ) := fib(Γ(X;F )→ Γ(X \K;F ))

Γc(U ;F ) := lim−−→
K⊆U

ΓK(X;F ),

where the colimit ranges over all compact subsets of U .
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Remark 1.5.7. Notice that, if K ⊆ U for some open U , we get a pullback square

Γ(X;F ) Γ(X \K;F )

Γ(U ;F ) Γ(U \K;F )

and hence the fibers of the two horizontal maps coincide: for this reason, we will often also
ΓK(X;F ) by ΓK(U ;F ). Furthermore, if S ⊆ X is locally closed, we define

ΓS(X;F ) := ΓZ(U ; j∗F )

where S = U ∩ Z, with U open, Z closed and j : U ↪→ X the inclusion, but we will also use
the notation ΓS(U ;F ).

Remark 1.5.8. The definition of the sections of a sheaf F on a compact K is functorial both
in F and in K: since we have an obvious functor

K(X) Fun(∆1,U(X)op)

K (X → X \K)

we get

K(X)× Fun(U(X)op,C) Fun(∆1,C) C

Fun(∆1,U(X)op)× Fun(U(X)op,C)

fib

◦

where the diagonal arrow is the composition of functors and the right horizontal arrow is
given by taking the fiber of an arrow in C, and so by adjunction we get the desired

Fun(U(X)op,C) Fun(K(X),C)

F (K 7→ ΓK(X;F )).

Finally, by further composing with the functor ψ defined in Theorem 1.5.4, we get

(1.5.9)
Fun(U(X)op,C) Fun(U(X),C)

F (U 7→ Γc(U ;F )).

DC

Theorem 1.5.10. The functor (1.5.9) restricts to an equivalence

DC : Shv(X;C) CoShv(X;C).'

Proof. We first prove that, if F is a sheaf, then DC(F ) is a cosheaf. By virtue of Theorem 1.5.4,
it suffices to prove that the functor

K 7→ ΓK(X;F )

is a K-cosheaf.

• Γ∅(X;F ) ' 0 since F (X)→ F (X \ ∅) is an equivalence.
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• Let K,K ′ ∈ K(X). The square

ΓK∩K′(X;F ) ΓK(X;F )

ΓK′(X;F ) ΓK∪K′(X;F )

is the fiber of the obvious map between the pullback squares

Γ(X;F ) Γ(X;F ) Γ(X \ (K ∩K ′);F ) Γ(X \K;F )

Γ(X;F ) Γ(X;F ) Γ(X \K ′;F ) Γ(X \ (K ∪K ′);F ),

and so it is a pullback. Thus, since C is stable, it’s also a pushout.

• For any K ∈ K(X), we have a map of fiber sequences

ΓK(X;F ) lim←−−
KbK′

ΓK′(X;F )

Γ(X;F ) lim←−−
KbK′

Γ(X;F )

Γ(X \K;F ) lim←−−
KbK′

Γ(X \K ′;F ).

a

b

c

To prove that a is an equivalence, it suffices to prove that b and c are. But b is an
equivalence because the poset {K ′ ∈ K(X) | K b K ′} has a contractible nerve (since it
is filtered) and c is an equivalence because {U ∈ U(X) | U = X \K ′ for someK b K ′}
gives an open covering of X \K.

We will now prove that Dop
Cop is an inverse of DC. By symmetry, it suffices to show that it

is a left inverse. Unraveling the definitions and using the equivalence of Theorem 1.5.4, this
amounts to check that we have a cofiber sequence

(1.5.11) Γc(X \K;F ) Γc(X;F ) Γ(K;F )

natural in K and F .
First of all, we show that it suffices to prove that, for any fixed K ∈ K(X), U ∈ U(X)

containing K and with compact closure, and K ′ ∈ K(X) containing U , the sequence

(1.5.12) ΓK′\U(X;F ) ΓK′(X;F ) Γ(U ;F ),

where the first morphism is given by the functoriality of sections supported on a compact
and the second one is given by Remark 1.5.7, is a cofiber sequence. To see this, we start
by noticing that the sequence is natural in K ′ and F , since both morphisms are canonically
induced by the restrictions of F . Thus we can pass to the colimit ranging over all compacts
K ′ ⊇ U and get a fiber sequence

lim−−→
K′⊇U

ΓK′\U(X;F ) Γc(X;F ) Γ(U ;F ),
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since the poset {K ′ ∈ K(X) | K ′ ⊇ U} is filtered (it is non-empty because it contains the
closure of U) and the inclusion {K ′ ∈ K(X) | K ′ ⊇ U} ⊆ K(X) is cofinal. Since any K ′ ⊇ U
is contained in (K ′ ∪ U) \ U , we get an equivalence

lim−−→
K′⊇U

ΓK′\U(X;F ) ' lim−−→
{K′|K′∩U=∅}

ΓK′(X;F ),

and hence, adding everything up, we obtain a fiber sequence

lim−−→
{K′|K′∩U=∅}

ΓK′(X;F ) Γc(X;F ) Γ(U ;F ),

which is natural in U , since the morphism Γc(X;F )→ Γ(U ;F ) clearly is. Hence we can get
the desired sequence (1.5.11) by passing to the colimit ranging over P = {U ∈ U(X) | U ∈
K(X) andU ⊇ K} because Γ(K;F ) = lim−−→

U∈P
Γ(U ;F ) (since open subsets with compact closure

form a basis of X), and because we have equivalences

lim−−→
U∈P

lim−−→
{K′|K′∩U=∅}

ΓK′(X;F ) ' lim−−→⋃
U∈P
{K′|K′∩U=∅}

ΓK′(X;F )

' lim−−→
K′⊆X\K

ΓK′(X;F )

' Γc(X \K;F )

where the first one follows by [Lur09, Remark 4.2.3.9] and [Lur09, Corollary 4.2.3.10].
We are now left to show that (1.5.12) is a cofiber sequence. Consider the commutative

diagram

ΓK′\U(X;F ) 0

ΓK′(X;F ) Z 0

Γ(X;F ) Γ(X \ (K ′ \ U);F ) Γ(X \K ′;F )

Γ(U ;F ) 0

where Z :− fib(Γ(X \ (K ′ \U);F )→ Γ(X \K ′;F )). Since the middle big horizontal rectangle
is a pullback, it follows that also the left middle square is. But since the left vertical rectangle
is pullback, then also the upper left square is. Then it suffices to prove that the composition

Z → Γ(X \ (K ′ \ U);F )→ Γ(U ;F )

is an equivalence, but this is clear since the lower right square is pullback because F is a
sheaf.
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1.5.2 Dualizability of spectral sheaves

Lemma 1.5.13. Let C be a bicomplete ∞-category where filtered colimits are exact. Then
there exists a functor ϕ : Shv(K(X);C)→ ShvK(X;C) satisfying the following properties

1. for any F ∈ Shv(K(X);C) and K ∈ K(X), we have

Γ(K;ϕF ) ' lim−−→
KbK′

Γ(K ′;F ),

2. ϕ preserves filtered colimits,

3. it is right inverse to the inclusion ShvK(X;C) ↪→ Shv(K(X);C).

Proof. Let M be the set whose elements are pairs (K, i) with K ∈ K(X) and i = 0, 1, where
we define (K, i) ≤ (K ′, j) if K ′ ⊆ K and i = j or K ′ b K and i < j. It is easy to see that ≤
actually defines a partial order on M . We have two functors

K(X)op M

K (K, 0)

i0
K(X)op M

K (K, 1)

i1

and consider the cocontinuous functor

ϕ := (i1)∗(i0)! : Fun(K(X)op,C)→ Fun(K(X)op,C).

Unravelling the definition, we see that

Γ(K;ϕF ) ' lim−−→
(K′,0)→(K,1)

Γ(K ′;F ) ' lim−−→
KbK′

Γ(K ′;F ),

and so ϕF ' F whenever F is a K-sheaf. Hence, to conclude the proof, it suffices to show
that the essential image of ϕ|Shv(K(X);C)

is contained in ShvK(X;C).

Indeed, for any F ∈ Shv(K(X);C) we have

lim−−→
KbK′′

Γ(K ′′;ϕF ) ' lim−−→
KbK′′

lim−−→
K′′bK′

Γ(K ′;F )

' lim−−→
KbK′

Γ(K ′;F )

' Γ(K;ϕF ),

where the second equivalence holds by [Lur09, Remark 4.2.3.9] and [Lur09, Corollary 4.2.3.10]
since for any K compact, the full subposet of K(X)op spanned by those K ′ such that K b K ′

is filtered, and we have ⋃
{K′′|KbK′′}

{K ′|K ′′ b K ′} = {K ′|K b K ′}.

Moreover, since filtered colimits are exact in C, ϕF belongs to Shv(K(X);C), and so it is a
K-sheaf.

Lemma 1.5.13 is useful to describe conveniently pushforwards of sheaves along proper
maps. Let f : X → Y be a proper continuous map between topological spaces, and let again
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C be a bicomplete∞-category where filtered colimits are exact. Since for any K ∈ K(Y ), the
preimage f−1(K) is compact, we obtain a functor

Fun(K(X)op,C) Fun(K(Y )op,C)

F (K 7→ Γ(f−1(K);F )).

f+

Notice that the restriction of f+ to ShvK(X;C) lands in Shv(K(Y );C), but a priori not in
ShvK(Y ;C), therefore we define

fK∗ : ShvK(X;C)→ ShvK(Y ;C)

as the composition of f+ restricted to ShvK(X;C) and ϕ : Shv(K(Y );C)→ ShvK(Y ;C).

Lemma 1.5.14. Let f : X → Y be a proper continuous map between topological spaces, and
let C be bicomplete∞-category where filtered colimits are exact. Then there is a commutative
diagram

Shv(X;C) ShvK(X;C)

Shv(Y ;C) ShvK(Y ;C),

θ

f∗ fK∗

θ

where θ is as in Theorem 1.5.4. In particular, f∗ preserves filtered colimits, and when C is
stable it preserves all colimits.

Proof. For any K ∈ K(Y ), we define

T = {U ∈ U(X) | ∃K ′ c K with f−1(K ′) ⊆ U}.

Notice that if V ∈ U(Y ) contains K, then there exists an open neighbourhood W of K with
compact closure, and thus, since f is proper, f−1(V ) ∈ T . In particular we obtain a functor

α : {V ∈ U(Y ) | K ⊆ V } → T

which is obviously final. We have

Γ(K; fK∗ θF ) ' lim−−→
KbK′

lim−−→
f−1(K′)⊆U

Γ(U ;F )

' lim−−→
U∈T

Γ(U ;F )

' lim−−→
K⊆V

Γ(f−1(V );F )

' Γ(K; θf∗F )

where the second equivalence follows by [Lur09, Remark 4.2.3.9] and [Lur09, Corollary
4.2.3.10], and the third one since α is final.

Another straightforward application of Lemma 1.5.13 is the following theorem, that will
be of crucial importance for what follows.

Theorem 1.5.15. The ∞-category Shv(X; Sp) is a strongly dualizable object in Cocontst∞.
In particular, for any C ∈ Cocontst∞, the canonical functor

CoShv(X; Sp)⊗ C→ CoShv(X;C)

is an equivalence.
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Proof. By Proposition 1.2.14, Theorem 1.5.4 and Remark 1.2.5, it suffices to show that
ShvK(X; Sp) is a retract in Cocontst∞ of a compactly generated ∞-category. We see that
Shv(K(X); Sp) is clearly compactly generated, as it is equivalent to Funlex(K(X)op, Sp). The
proof is then concluded by noticing that the inclusion ShvK(X; Sp) ⊆ Shv(K(X); Sp) and
ϕ : Shv(K(X); Sp) → ShvK(X; Sp) are exact and preserve filtered colimits since filtered col-
imits in Sp are exact, and thus preserves all colimits since Sp is stable. One then concludes
the proof by identifying CoShv(X; Sp) with the dual of Shv(X; Sp), via Lemma 1.2.21.

Corollary 1.5.16. There is a unique equivalence

(1.5.17) η : Shv(X; Sp)⊗ C→ Shv(X;C).

making the diagram

Shv(X; Sp)⊗ C Shv(X;C)

CoShv(X; Sp)⊗ C CoShv(X;C)

η

DSp⊗C DC

Proof. The functor η is obtained by composing

Shv(X; Sp)⊗ C CoShv(X; Sp)⊗ C CoShv(X;C) Shv(X;C).
DSp⊗C ' D−1

C

where the middle map is the one in Theorem 1.5.15. More concretely, for any F ∈ Shv(X; Sp)
and M ∈ C, we have η(F �stM) ' D−1

C (M ◦DSpF ), where M on the right-hand side denotes
the essentially unique colimit preserving functor Sp→ C corresponding to M .

1.5.3 The pullback f ∗C

Proposition 1.5.18. Let f : X → Y be a proper map, and denote by fC∗ : Shv(X;C) →
Shv(Y ;C) the pushforward. Then we have a commutative square

Shv(X; Sp)⊗ C Shv(X;C)

Shv(Y ; Sp)⊗ C Shv(Y ;C).

η

fSp
∗ ⊗C fC∗

η

In particular, fC∗ admits a left adjoint which is identified through η with f∗Sp ⊗ C.

Proof. By a slight abuse of notation, denote as fC∗ : CoShv(X;C) → CoShv(X;C) the push-
forward for cosheaves (i.e. (fC

op

∗ )op). We have that the square

CoShv(X; Sp)⊗ C CoShv(X;C)

CoShv(Y ; Sp)⊗ C CoShv(Y ;C)

'

fSp
∗ ⊗C fC∗

'

commutes since the horizontal arrows can be modelled by a composition of functors, and thus
we are only left to show that the square

Shv(X;C) CoShv(X;C)

Shv(Y ;C) CoShv(Y ;C)

D

f∗ f∗

D
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commutes.
First of all, we show that there exists a natural transformation f∗D→ Df∗ even when f

is not proper. Fix V ∈ U(Y ) and a compact K ⊆ f−1(V ), so that f(K) is a compact subset
of V . For any F ∈ Shv(X;C), the commutative triangle

Γ(X \K;F ) Γ(X \ f−1(f(K));F )

Γ(X;F )

provides a morphism

ΓK(X;F )→ Γf(K)(Y ; f∗F )→ Γc(V ; f∗F ).

Since all morphisms are induced by the restrictions of F , the resulting map is natural in K
and V , and hence gives rise to the desired transformation as K varies. Furthermore, when
f is proper, each compact K ⊆ X is contained in the compact f−1f(K), so by cofinality we
obtain an equivalence

lim−−→
K⊆f−1(V )

ΓK(X;F ) ' lim−−→
C⊆V

ΓC(Y ; f∗F )

where C varies over the compact subsets of V , and thus we may conclude.

Lemma 1.5.19. Let j : U ↪→ X be an open immersion, and denote by j∗C : Shv(X;C) →
Shv(U ;C) the restriction. Then we have a commutative square

Shv(X; Sp)⊗ C Shv(X;C)

Shv(U ; Sp)⊗ C Shv(U ;C).

η

j∗
Sp⊗C j∗

C

η

In particular, j∗C admits a left adjoint which is identified through η with jSp
] ⊗ C.

Proof. By an abuse of notation, denote by j∗C : CoShv(X;C) → CoShv(U ;C) the restriction
for cosheaves. Again we see that the square

CoShv(X; Sp)⊗ C CoShv(X;C)

CoShv(U ; Sp)⊗ C CoShv(U ;C)

'

j∗
Sp⊗C j∗

C

'

is obviously commutative, and thus we only have to show that the square

Shv(X;C) CoShv(X;C)

Shv(U ;C) CoShv(U ;C)

D

j∗ j∗

D

commutes. But this follows immediately because by Remark 1.5.7, and by observing that
Γ(V ; j∗F ) ' Γ(V ;F ) for any V ⊆ U , we have that

Γc(V ; j∗F ) ' Γc(V ;F )

functorially on F and V .
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Corollary 1.5.20. Let f : X → Y be any continuous map. Then the pushforward fC∗ :
Shv(X;C)→ Shv(Y ;C) admits a left adjoint f∗C such that there exists a commutative square

Shv(Y ; Sp)⊗ C Shv(Y ;C)

Shv(X; Sp)⊗ C Shv(X;C).

η

f∗
Sp⊗C f∗

C

η

Proof. Using the factorization 1.5.1, this follows immediately by Proposition 1.5.18 and
Lemma 1.5.19.

Theorem 1.5.21. Let iC : Shv(X;C) ↪→ Fun(U(X)op,C) be the inclusion functor, and let
LSp : Fun(U(X)op, Sp)→ Shv(X; Sp) be the left adjoint of iSp. Denote by LC the composition

Fun(U(X)op, Sp)⊗ C Shv(X; Sp)⊗ C

Fun)(U(X)op,C) Shv(X;C).

LSp⊗C

η'
LC

Then LC is left adjoint to iC.

Proof. From the proof of Theorem 1.2.10 and Remark 1.2.13, we see that we may write any
F ∈ Fun(U(X)op,C) as a colimit

F ' lim−−→
M→Γ(U ;F )

U �stM

where the indexing category is Grothendieck construction of the functor

(U,M) 7→ HomC(M,Γ(U ;F )).

By definition, the presheaf of spectra U �st M represents the functor taking sections at U ,
and thus we get an equivalence

SU = LSp(U � S) ' jSp
] a
∗
SpS

which is natural in U , where j : U ↪→ X denotes an open inclusion, a : U → ∗ the unique
map. We have equivalences

HomShv(X;C)(LCF,G) ' lim←−−
M→Γ(U ;F )

HomShv(X;Sp)⊗C(jSp
] a
∗
SpS �

stM,η−1G)

' lim←−−
M→Γ(U ;F )

HomShv(X;C)(j
C
] a
∗
CM,G)

' lim←−−
M→Γ(U ;F )

HomC(M,Γ(U ;G))

' lim←−−
M→Γ(U ;F )

HomFun(U(X)op,C)(U �M, iCG)

' HomFun(U(X)op,C)(F, i
CG)

where the first equivalence follows by the observations above, and the second is a consequence
of Lemma 1.5.19 and Corollary 1.5.20. Since all identifications are functorial on F and G,
we obtain the thesis.
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Remark 1.5.22. After the results in this section, we are now able to extend everything
we have proven so far for sheaves with presentable coefficients to sheaves with values in a
stable bicomplete ∞-category. The only detail we have to handle with more care is the
functor (1.2.27): since the tensor product of two stable bicomplete ∞-categories is not again
complete in general, (1.2.27) will now take values in Shv(X; Sp) ⊗ (C ⊗ D). Nevertheless,
when C has a monoidal structure such that its tensor ⊗C preserves colimits in both variables,
the composition of (1.2.27) with the obvious functor

Shv(X; Sp)⊗ (C⊗ C)→ Shv(X;C)

still gives the usual monoidal structure on Shv(X;C). As a consequence, we see that the
equivalences in Corollary 1.2.31 and Corollary 1.3.26 still hold in Shv(X; Sp)⊗(C⊗D) and in
Shv(X;C) when (1.2.27) is exchanged with the tensor product in Shv(X;C) described above.

1.6 Six functor formalism

In this section, we will define the operations f! and f !, and prove all the usual formulas
that one expects for these functors. A first attempt towards these results for sheaves of
spectra can be found in the paper [BL96], even though it almost totally lacks proofs. A
proof of the proper base change theorem with unstable coefficients was provided in [Lur09,
Corollary 7.3.1.18], and later extended to spectral coefficients in [Hai21]: our only contribute
to this theorem is to explain how to extend it to general stable bicomplete coefficients. A
novelty of the approach presented in this section is our expression of the formulas involving
tensor products, such as projection or Künneth formula. Here we do not a priori require the
coefficients of our sheaves to be equipped with a monoidal structure, but rely instead on the
tensor product of stable cocomplete ∞-categories. The advantage of this perspective is that,
using the observations in Remark 1.5.22, it clarifies how to obtain all these formulas for a
general stable bicomplete ∞-category equipped with a closed symmetric monoidal structure.
At the end of the section, building up on the our discussion of Section 3 related to shape
theory, we will explain how to prove the formula

f !(1)⊗ f∗ ' f !

for any map f which induce locally contractible geometric morphisms.

1.6.1 The formulas for fC
!

Throughout this section, C is going to be any stable and bicomplete ∞-category. For any
continuous map f : X → Y , consider the functor

(fC
op

∗ )op : Shv(X;Cop)op = CoShv(X;C)→ Shv(Y ;Cop)op = CoShv(Y ;C).

Since taking opposite categories switches left with right adjoints, the functor

(f∗Cop)op : Shv(Y ;Cop)op = CoShv(Y ;C)→ Shv(X;Cop)op = CoShv(X;C)

is right adjoint to (fC
op

∗ )op. Hence, by Theorem 1.5.10, we get a corresponding adjunction at
the level of sheaves

Shv(X;C) Shv(Y ;C).

fC!

f !
C

a
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where fC! and f !
C are defined to be the unique functors fitting in commutative squares

Shv(Y ;C) Shv(Y ;C) Shv(Y ;C) Shv(Y ;C)

CoShv(X;C) CoShv(Y ;C) CoShv(Y ;C) CoShv(X;C).

D

fC!

D

f !
C

D D
(fC

op
∗ )op (f∗

Cop )op

Definition 1.6.1. The functors fC! and f !
C constructed as above are called respectively push-

forward with proper support and exceptional pullback. Unless it is required from the context,
we will often omit to include C in subscripts or superscripts in our notation.

More concretely, f! is the functor uniquely determined by the formula

Γc(U ; f!F ) = Γc(f
−1(U);F )

for all U ∈ U(Y ). In particular, when a : X → ∗ is the unique map, we get

a!F ' Γc(X;F ).

In different geometric contexts, when one deals with six functor formalisms, it is common to
define the shriek operations making use of appropriate compactifications of maps analogous
to (1.5.1). This approach, however, makes it a bit tricky to verify that f! behaves well under
compositions. An advantage of our definition of f! is that its functoriality is more or less
immediate, as illustrated by the following lemma.

Lemma 1.6.2. Let LCH be the category of locally compact Hausdorff spaces. Then, for any
C stable and bicomplete, there is a functor

Shv!(−;C) : LCH→ Cocontst∞

whose values on an object X is given by Shv(X;C), and on a morphism f is given by fC! .

Proof. We first observe that there is a functor

Shv∗(−;C) : LCH→ Cocontst∞

whose value on a morphism f : X → Y is given by the pushforward fC∗ . By definition, fC∗
is given by precomposing with the functor f−1 : U(Y ) → U(X). Thus, the functoriality of
Shv∗(−;C) descends from the functoriality of internal-homs in Cat∞, which is straightforward
in the model of quasi-categories. By passing to opposite categories, we obtain a similar functor
CoShv∗(−;C).

Let J be the interval object for the Joyal model structure (see [Cis19, Definition 3.3.3]),
and consider the monomorphism of simplicial sets Ob(LCH) ↪→ LCH. By Theorem 1.5.10,
we have a functor

Ob(LCH)× J ∪ LCH× {1} Cat∞.
DC∪CoShv∗(−;C)

which admits a lifting

Ob(LCH)× J ∪ LCH× {1} Cat∞

LCH× J

since the vertical arrow is a categorical anodyne extension. Thus we get the desired functor
by restricting the dotted arrow to LCH× {0}.
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Lemma 1.6.3. There exists a natural transformation f! → f∗ which is an equivalence when
f is proper.

Proof. By Verdier duality, it suffices to construct a natural tranformation between Df! → Df∗
and show it is an equivalence when f is proper, which is the content of the second part of
the proof of Proposition 1.5.18.

Corollary 1.6.4. Let i : Z ↪→ X be a closed immersion. Then the functor i!Sp : Shv(X; Sp)→
Shv(Z; Sp) coincides with the one defined in Corollary 1.4.4.

Proof. This follows immediately by the previous lemma, since any closed immersion is proper.

Lemma 1.6.5. Let j : U ↪→ X be an open immersion. Then we have j! a j∗ or equivalently
j∗ ' j!.

Proof. By the proof of Lemma 1.5.19, we have a natural equivalence Dj∗ ' Dj!, and thus we
may conclude.

Remark 1.6.6. A useful consequence of Lemma 1.6.2, Lemma 1.6.5, Lemma 1.6.3 and (1.5.1)
is that the functor fC! is uniquely determined by the fact that it is right adjoint to f∗C when
f is proper and left adjoint to f∗C when f is an open immersion.

From Remark 1.6.6 we also see that f! behaves well with respect to tensor products in
Cocontst∞.

Corollary 1.6.7. Let f : X → Y be any continuous map. Then there is a commutative
square

Shv(X; Sp)⊗ C Shv(X;C)

Shv(Y ; Sp)⊗ C Shv(Y ;C).

η

fSp
! ⊗C fC!

η

Proof. This follows immediately by Remark 1.6.6, Proposition 1.5.18 and Lemma 1.5.19.

Remark 1.6.8. Let j : U ↪→ X be the inclusion of any open subset with compact closure.
Then a simple computation involving Lemma 1.6.3 and the closure of U shows that, for any
sheaf F on X, one has

Γ(U ;F ) ' Γc(X; j∗j
∗F ).

Since U has compact closure, any closed subset of U can be written as the intersection of U
with some compact subset of X, and thus we obtain

Γc(X; j∗j
∗F ) ' lim−−→

K⊆X
ΓU∩K(U ;F )

' lim−−→
S⊆U

ΓS(U ;F ),

where the last colimit ranges over all closed subsets of U .

Proposition 1.6.9 (Base change). For every given pullback square

X ′ X

Y ′ Y

f ′

g′ g

f
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of topological spaces, there is a natural equivalence

f∗g! ' g′!f ′∗

and, by transposition, also
g!f∗ ' f ′∗g′!.

Proof. First of all we observe that, since all functors appearing are colimit preserving, by
Corollary 1.6.7 it suffices to prove the proposition in the case of sheaves of spectra.

By Remark 1.6.6, it suffices to prove the statement in the separate cases when g is an open
immersion or a proper map. The open immersion case follows immediately by Lemma 1.6.5
and Lemma 1.3.25, while the proper case follows by [Hai21, Corollary 3.2]. For the reader’s
convenience, let us briefly summarize the strategy of [Hai21].

By [Lur09, Corollary 7.3.1.18] we know that the statement of the theorem is true for
sheaves of spaces. Since Sp is compactly generated, by Proposition 1.2.16 we

Shv(X; Sp) ' Fun∗(Spop, Shv(X))

' Funlex((Spω)op, Shv(X))

where Spω denotes the full subcatgory of Sp spanned by all compact objects. One checks
easily that, for any continuous map h : W → T of topological spaces, there is a commutative
square

Shv(W ; Sp) Funlex((Spω)op, Shv(W ))

Shv(T ; Sp) Funlex((Spω)op, Shv(T )),

'

hSp
∗ hS∗◦(−)

'

where the right hand vertical square denotes a post-composition with the pushforward hS∗ of
sheaves of spaces. Reasoning analogously to Remark 1.2.2, we see that the functor

Funlex((Spω)op,−)

preserves adjunctions between left exact functors, and so we get a similar commutative square
involving the pullbacks h∗Sp and h∗S. Hence, we obtain base change for spectral sheaves by
applying Funlex((Spω)op,−) to Lurie’s nonabelian proper base change in [Lur09, Corollary
7.3.1.18].

Remark 1.6.10. It follows from Remark 1.2.17 and the definition of the tensor (1.2.27) that
for any topological space X and any bicomplete stable ∞-category C, Shv(X;C) is tensored
over Shv(X; Sp). When there is no possibility of confusion we will denote by F ⊗G the image
through the canonical variablewise colimit preserving functor

Shv(X;C)× Shv(X; Sp)→ Shv(X;C)

of a pair (F,G), and, when G ∈ Shv(X; Sp) by HomX(G,F ) the image of any F ∈ Shv(X;C)
through the right adjoint of −⊗G.

Let f : X → X ′ and g : Y → Y ′ be morphisms of topological spaces, and let f × g :
X × Y → X ′ × Y ′ be the induced map on the products. For any two stable bicomplete
∞-categories C and D, the variable-wise colimit preserving functor

Shv(X;C)× Shv(Y ;D) Shv(X ′;C)× Shv(Y ′;D) Shv(X ′ × Y ′; Sp)⊗ (C⊗D)
f!×g! �

induces a functor

f! � g! : Shv(X × Y ; Sp)⊗ (C⊗D)→ Shv(X ′ × Y ′; Sp)⊗ (C⊗D).
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Proposition 1.6.11 (Künneth formula). We have a natural equivalence

f! � g! ' (f × g)!.

Notice that, since X and Y are locally compact, f!�g! is the image of the pair (f!, g!) through
the bifunctor given by the tensor product of cocomplete ∞-categories.

Proof. By the factorization (1.5.1), it will suffice to prove the statement when both f , g and
f×g are either open immersions or proper maps. By uniqueness of adjoints and Remark 1.2.2,
both cases will then follow by Proposition 1.2.30. More precisely, in the open immersions
case we use that f! � g! is left adjoint to f∗ � g∗, while in the proper case we use that
f! � g! is right adjoint to f∗ � g∗, and by Proposition 1.2.30 we always have an equivalence
f∗ � g∗ ' (f × g)∗.

Proposition 1.6.12 (Projection formula). Let f : X → Y be a morphism of topological
spaces, and let C and D be two stable and bicomplete ∞-categories. Then, for any F ∈
Shv(X;C) and G,H ∈ Shv(Y ;D), we have a canonical equivalence

f!F ⊗G ' f!(F ⊗ f∗G)

or, when C = D has a closed symmetric monoidal structure, by transposition

f∗HomX(F, f !G) ' HomY (f!F,G)

and
f !HomY (G,H) ' HomX(f∗G, f !H).

Proof. Exactly as for the Corollary 1.3.26, one may deduce this result from Proposition 1.6.9
and Proposition 1.6.11 applied to (f × idY )!.

Corollary 1.6.13. Let k : Z → X be the inclusion of a locally closed subset of X, F ∈
Shv(X;C) with C stable and bicomplete. Let D be another stable bicomplete ∞-category,
M ∈ D any object. Then we have a canonical equivalence

k!k
∗(F ⊗M) ' F ⊗MZ .

Moreover, when C has a closed symmetric monoidal structure, we have

k!k
∗F ' F ⊗C 1Z

or equivalently
k∗k

!F ' HomX(1Z , F ),

where 1 and is the monoidal unit of C.

Proof. This is an immediate consequence of Proposition (1.6.12) and Corollary (1.2.31).

Corollary 1.6.14. For every given pullback square

X ′ X

Y ′ Y

f ′

g′ g

f

of topological spaces where f and f ′ are shape submersions, there is a natural equivalence

g!f
′
] ' f]g′!

or equivalently
f ′∗g! ' g′!f∗.
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Proof. First of all we construct a natural transformation. Applying g′! to the unit of the
adjunction f ′] a f ′∗ and using base change we obtain

g′! → g!f
′∗f] ' f∗g!f

′
]

and hence by transposition the desired transformation. By factorization (1.5.1) and Corol-
lary 1.4.10, we are only left to prove the case of a pullback square

X × Y ′ X × Y

Y ′ Y

idX×f

a×idY ′ a×idY

f

where X is compact and a : X → ∗ is the unique map, but this follows by Proposition 1.6.11
and by the functoriality of the tensor product of cocomplete ∞-categories as follows

(a× idY )!(idX × f)] ' (a! ⊗ (idY )!)((idX)] ⊗ f])
' a!f]

' ((id∗)]a!)⊗ (f](idY ′)!)

' ((id∗)] ⊗ f])(a! ⊗ (idY ′)!).

Remark 1.6.15. Using (1.5.2), Lemma 1.3.25, Corollary 1.3.26, Corollary 1.5.20, Proposi-
tion 1.6.9, Proposition 1.6.12, Corollary 1.6.14, and [Man22, Proposition A.5.10], one sees
that the functor

LCHop Cat∞

X Shv(X;C)

(f : X → Y ) f∗C

defines a six functor formalism in the sense of [Man22, Definition A.5.9].

1.6.2 f !
C when f is a locally contractible geometric morphism

Let f : X → Y be a continuous map inducing an essential geometric morphism (see Defini-
tion 1.3.12). In particular, we have an adjunction f] a f∗ for Cop-valued sheaves, and thus,
after passing to opposite categories and applying Theorem 1.5.10, we get an adjunction

Shv(Y ;C) Shv(X;C).

f !

f◦

a

We now want to show that, in the special case when f induces a locally contractible geometric
morphism (see Definition 1.3.12), one the exceptional pullaback coincides with the usual
pullback up to a twist. In this way, we will vastly generalize the classical formula relating
the f ! and f∗ when f is a topological submersion.

Proposition 1.6.16. Let f : X → Y be a continuous map inducing a locally contractible
geometric morphism, and let C and D be two stable and bicomplete ∞-categories. Then, for
any F ∈ Shv(Y ;C) and G ∈ Shv(Y ;D), we have a natural equivalence

f !
CF ⊗ f∗DG ' f !

C⊗D(F ⊗G)
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of functors Shv(X;C) × Shv(Y ;D) → Shv(X × Y ;C⊗D). Equivalently, when C = D has a
closed symmetric monoidal structure, a canonical equivalence for any K ∈ Shv(X;C)

HomY (F, f◦K)→ f∗HomX(f !F,K).

Proof. For any F ∈ Shv(Y ;C), G ∈ Shv(Y ;D) and H ∈ Shv(Y ;C⊗D), we have the map

counit⊗G : f!f
!F ⊗G→ F ⊗G

which by adjunction and Proposition 1.6.12 gives the desired natural transformation

f !(−)⊗ f∗(−)→ f !(−⊗−).

Since all functors appearing are cocontinuous, by Remark 1.6.10 it suffices to prove the
invertibility of the map when C = D = Sp, and after evaluation on pairs of the type (F,SU),
where F ∈ Shv(Y ; Sp), S denotes the sphere spectrum, and j : U ↪→ Y is an open subset.
Keeping the same notations ad in Remark 1.3.13, we see that by Theorem 1.5.10 we have an
equivalence

f !
Cj

C
! ' (j′)C! (f ′)!

C.

Thus, we get

f !(F )⊗ f∗(SU) ' f !(SY )⊗ Sf−1(U)

' j′!(f ′)!j∗(F )

' f !j!j
∗(F )

' f !(F ⊗ SU),

where the second equivalence follows by Corollary 1.6.13 and Lemma 1.6.5, the third by
Remark 1.3.13 and the fourth again by Corollary 1.6.13.

Remark 1.6.17. We thank Marc Hoyois for pointing out that a result similar to Proposi-
tion 1.6.16 can be found in [Ver65, Section 5]. By adapting our proof of Corollary 1.3.26, one
can actually deduce the theorem in [Ver65] from Proposition 1.6.16.

Proposition 1.6.18. Let f : X → Y be a topological submersion of fiber dimension n, C be
any stable bicomplete ∞-category. Then:

(i) if f is a trivial submersion, then there is a canonical equivalence

f ! ' Σnf∗;

(ii) f ! preseves locally constant sheaves;

(iii) for all F ∈ Shv(Y ;C) there is a canonical equivalence

f !SY ⊗ f∗F ' f !F

or equivalently by adjunction, for every G ∈ Shv(X;C)

f]G ' f!(G⊗ f !SY ).
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Proof. Since f∗ preserves locally constant sheaves, we see that (ii) follows from (i). Hence,
we now prove (i). By assumption, f is a projection p : X×Rn → X. By Proposition 1.6.16, it
suffices to show that p!SX ' ΣnSX×Rn . Since p induces a locally contractible geometric mor-
phism, we have that p! preserves colimits. Hence, by Proposition 1.6.11 and the uniqueness
of adjoints, we may assume that p is the unique map a : Rn → ∗.

We first show that p!M is locally constant for each M ∈ Sp. By a standard argument
(see [Hai20, Proposition 3.1] or Proposition 2.5.13) it suffices to show that for any U ⊆ Rn
euclidean chart, the restriction

Γ(Rn; p!M)→ Γ(U ; p!M)

is an equivalence. By adjunction, we know that for any open V there is an equivalence

Γ(V ; p!M) ' HomSp(Γc(V ;SRn),M).

Thus, it will suffice to prove that the canonical map

Γc(U ; SRn)→ Γc(Rn;SRn)

is invertible. Since any compact subset of a vector space is contained in some compact closed
ball, it suffices to show that, for any K compact closed ball in U , the map

ΓK(U ; SRn)→ ΓK(Rn; SRn)

is invertible. But this follows by homotopy invariance of the shape, since the inclusion
U \ K ↪→ Rn \ K is a homotopy equivalence. In particular, we also see that the canonical
map

Γ{0}(R; SR)→ Γc(R; SR)

is an equivalence.
To conclude the proof of (ii) it suffices to check that the global sections of p!M are

equivalent to ΣnM . We start with the case n = 1. Arguing as above, this amounts to
proving that we have an equivalence

Γ{0}(R;SR) ' ΩS.

By Corollary 1.3.4, we may identify Γ{0}(R;SR) with the fiber of the diagonal map

Γ(R; SR)→ Γ(R;SR)⊕ Γ(R; SR).

It is then a straightforward exercise in pasting pushouts to verify that, for any object A of a
stable ∞-category, the fiber of the diagonal map is equivalent to ΩA. For n > 1, we see that
by Proposition 1.6.11 we have

Γc(Rn; SRn) ' Γc(R; SR)⊗ · · · ⊗ Γc(R;SR),

and thus what we wanted.
To conclude, we observe that (iii) follows by Proposition 1.6.16 and the fact that any

locally constant sheaf whose stalks are invertible spectra is an invertible object with respect
to the smash product of sheaves of spectra.
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1.7 Relative Atiyah Duality

Recall that, if X is a compact smooth manifold, then the Atiyah duality states that Σ∞+X
is strongly dual to the Thom spectrum associated to the virtual vector bundle given by the
inverse of the tangent bundle of X, which is denoted by Th(−TX). In this setion we will
revisit Atiyah duality using the six functor formalism, in the spirit of motivic homotopy
theory.

By what we have achieved up to now, we can see very easily that whenever f : X → Y
is a proper map inducing a locally contractible geometric morphism, f](SX) ∈ Shv(Y ; Sp)
is strongly dualizable with dual f!(SX). The question is then about identifying f!(SX) with
some sheaf theoretic construction reminiscent of Thom spectra, at least in more geometric
situations (e.g. when X and Y are manifolds). We will provide a natural trasformation

Th : Vect(X)→ Pic(Shv(X; Sp))

where the left-hand side denotes the∞-groupoid of real vector bundles over X, the right-hand
side is the∞-groupoid of invertible sheaves of spectra, and X ranges through all paracompact
Hausdorff spaces. By observing that the left-hand side is a constant sheaf on the site of
all paracompact Hausdorff spaces, the natural transformation above will automatically be
induced by a functor

Vect(∗)→ Pic(Shv(X; Sp))

given by one-point compactification. After that, we will show that for any vector bundle
E, Th(E) can be described through six operations analogously to the definition in motivic
homotopy theory. The advantage of our perspective on the definition of Th(E) is that it
makes the verification of all its expected properties, such as compatibility with pulling back
vector bundles or short exact sequences, essentially trivial. We will then conclude the section
by showing that for a submersion f between smooth manifolds, there is an equivalence

f !(SY ) ' Th(−Tf )

and hence obtaining a generalization of Atiyah duality.

1.7.1 Thom spaces and the J-homomorphism

Let Vect be the∞-groupoid obtained by taking the coherent nerve of the topological groupoid
whose objects are finite dimensional real vector spaces, and morphisms are spaces of linear
isomorphisms between. Here we consider GLn(R) equipped with the usual topology of a
manifold (or equivalently the compact-open topology). As usual, one may equip Vect with
a symmetric monoidal structure given by sum, and hence we may regard it as an object of
CMon(S). Notice that we have an homotopy equivalence VectR '

∐
n∈N

BGLn(R).

Let PH be the category of paracompact Hausdorff spaces with continuous maps between
them. Throughout this section, we will assume all topological spaces appearing to be in
PH. Recall also that PH can be equipped with a Grothendieck topology with the usual open
coverings. Let U be a universe such that PH is U-small, and denote by S′ the ∞-category of
U-small spaces. Hence, the inclusion of Shv(PH; S′) ↪→ Fun(PHop, S′) admits a left adjoint.

Definition 1.7.1. We denote by

VectPH : PHop → CMon(S′)

the sheafification of the constant presheaf with value Vect.
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The next lemma will justify our choice of notation.

Lemma 1.7.2. There have an equivalence

VectPH(X) ' Sing(Map(X, |Vect|)),

which is natural on X ∈ PH, and Map denotes the mapping space equipped with the compact-
open topology. In particular, π0(VectPH(X)) is in bijection with the set of equivalence classes
of real vector bundles over X.

Proof. This is a consequence of [Lur09, Theorem 7.1.0.1]. The last part of the statement is
standard: see for example [Hat17, Theorem 1.16].

Consider the map
GLn(R)→ HomS∗(S

n,Sn) ' ΩnSn

given by the functoriality of the one-point compactification. The restriction of the map above
to On is what’s known as the J-homomorphism. We thus obtain a functor

Vect→ S'∗

that at the level of objects sends a finite dimensional real vector space V to its one-point
compactification V . Moreover, this is easily seen to be symmetric monoidal, where the right
hand side is equipped with the smash product. By post composing with Σ∞, we get

Vect→ Sp'

and since V is homoemorphic to a sphere, this factors as

Vect→ Pic(Sp),

where Pic(Sp) is the Picard ∞-groupoid of Sp, i.e. the full subcategory of Sp' spanned by
the objects which are invertible with respect to the smash product of spectra.

Let f : X → Y be any map of topological spaces. Since the pullback functor f∗ :
Shv(Y ; Sp)→ Shv(X; Sp) is monoidal, we obtain consequently a functor

PHop CMon(S)

X Pic(Shv(X; Sp))

whose global sections are Pic(Shv(∗; Sp)) ' Pic(Sp). Since taking spectrum objects and
Picard ∞-groupoids both commute with limits, such functor is a sheaf. Thus, Lemma 1.7.2
yields a map

(1.7.3) Th : VectPH → Pic(Shv(−; Sp)).

in Shv(PH; CMon(S)).

Definition 1.7.4. For each vector bundle E → X, we define Th(E) to be the image of E
through the morphism (1.7.3).

Remark 1.7.5. Denote by CMongp(S) the full subcategory of CMon(S) spanned by those
commutative monoids M such that π0(M) is a group. The inclusion CMongp(S) ↪→ CMon(S)
admits a left adjoint, denoted by (−)gp, which is called the group completion. Since

π0(Pic(Shv(X; Sp)))
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is a group, for any X ∈ PH we obtain a morphism

VectPH(X)gp → Pic(Shv(X; Sp)).

In particular we see that, for any vector bundle E → X it makes sense to define Th(−E) as the
tensor inverse of Th(E), where −E denotes the inverse of the class of E in π0(VectPH(X))gp.
Moreover, for any split exact sequence

0→ E → V → E′ → 0

we get an equivalence
Th(V ) ' Th(E)⊗ Th(E′).

Out next goal is to describe Th(E) in terms of the six operations. Let p : E → X be a
real vector bundle over X, and denote by s : X ↪→ E its zero section and by j : E× ↪→ E its
open complement. Consider the sheaf

p]cofib(j]j
∗SE → SE) ∈ Shv(X; Sp)

where the morphism j]j
∗SE → SE is the counit. Notice that p] exists since any vector bundle

is obviously a shape submersion, so indeed the definition above makes sense. Notice also
that, using Theorem 1.4.6, one has p]cofib(j]j

∗SE → SE) ' p]s!SX .
We will need the following lemma.

Lemma 1.7.6. Let
X ′ X

Y ′ Y

f

be any pullback square of locally compact Hausdorff spaces. Then the corresponding diagram

Shv(X ′) Shv(X)

Shv(Y ′) Shv(Y )

is a pullback of ∞-topoi.

Proof. Using the factorization (1.5.1), we just need to prove seperately the case of an open
immersion and a proper map. The first is treated in [Lur09, Remark 6.3.5.8], while the second
follows by the proof of [Lur09, Corollary 7.3.1.18].

Proposition 1.7.7. The assignment E 7→ p]cofib(j]j
∗SE → SE) ∈ Shv(X; Sp) defines a

natural transformation
VectPH → Pic(Shv(−; Sp))

which is naturally equivalent to (1.7.3).

Proof. First of all, we show that the Thom spectrum induces a natural transformation

(1.7.8) VectPH → Shv(−; Sp)

of presheaves of ∞-categories. Let p : E → X be a vector bundle, p× : E× → X be
the induced map on the complement of the zero section. Since one can write Th(E) as
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cofib(p×] SE× → p]SE), it will suffice to show that the associations E 7→ p]SE and E 7→ p×] SE×
induce natural transformations. Consider a pullback square in Top

f∗E E

X ′ X

f ′

p′ p

f

where p is a vector bundle. By Lemma 1.7.6

Shv(f∗E) Shv(E)

Shv(X ′) Shv(X)

f ′

p′ p

f

is a pullback square in Top. Similarly one has that the square

Shv(f∗E×) Shv(E×)

Shv(X ′) Shv(X)

f ′

p′× p×

f

is a pullback. Hence we have two natural transformations

VectPH → Top/Shv(−)

given respectively by sending a vector bundle E → X to Shv(E)→ Shv(X) and to Shv(E×)→
Shv(X), and thus, by further composing with the relative shape, by Remark 1.3.7 we obtain
lax natural transformations

VectPH → Pro(Shv(−))

which factors as
VectPH → Shv(−)

since any shape submersion induces a locally contractible geometric morphism by Corol-
lary 1.3.26. Furthermore, by Lemma 1.3.25 and [Hau20, Theorem 3.22], we see that these
are actually natural transformations, and thus, composing with

Shv(−)→ Shv(−; Sp)

we get the natural transformation (1.7.8).
We now prove that (1.7.8) is symmetric monoidal and that it factors through Pic(Shv(−; Sp)).

Since VectPH is the constant sheaf associated to Vect, for any sheaf F ∈ Shv(PH; CMon(S)),
we have a commutative diagram

Hom(VectPH,Pic(F )) HomCMon(Vect,Pic(F (∗)))

Hom(VectPH, F ) HomCMon(Vect, F (∗))

Hom(VectPH, F ) HomS(Vect, F (∗))

'

'

'

where the horizontal arrows are induced by taking global sections, the upper vertical arrows
by the natural transformation Pic(F ) → F and the lower vertical arrows by the forgetful
functor CMon → S. By Corollary 1.7.9 we know that, after taking global sections, (1.7.8)
factors through Pic(Sp), and thus we may conclude by a simple diagram chase.
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Corollary 1.7.9. Assume that X is essential. Then, for any vector bundle E over X,
a]Th(E) is equivalent to the Thom spectrum of E as classically defined.

Proof. Let b : E → ∗ and c : E× → ∗ be the unique maps. By Corollary 1.3.19, we have
equivalences

a]Th(E) ' b]cofib(j]j
∗SE → SE)

' cofib(c]SE× → b]SE)

' cofib(Σ∞+E
× → Σ∞+E)

and the spectrum on the last line coincides with the usual Thom spectum of E.

Corollary 1.7.10. Let p : E → X be a real vector bundle over X, and denote s : X ↪→ E
its zero section. Then Th(E) is invertible with inverse given by s!SE.

Proof. By definition, we already know that Th(E) is invertible, and thus to compute its
inverse we just need to look at its dual HomX(Th(E), SX). Then we may conclude by Corol-
lary 1.3.26 and Proposition 1.6.12 since

HomX(p]s!SX ,SX) ' p∗HomE(s!SX , SE)

' p∗s∗s!SE
' s!SE.

1.7.2 Relative Atiyah duality

Theorem 1.7.11. Let f : X → Y be a submersion between smooth manifolds. Then we
have an equivalence f !SY ' Th(Tf ), where Tf is the relative tangent bundle of f , defined by
the short exact sequence of vector bundles

(1.7.12) 0→ Tf → TX → f∗TY → 0.

Proof. First of all we prove the case when f is the unique map a : X → ∗ and X is a smooth
manifold. Choose a closed embedding i : X ↪→ Rn, and let a′ : Rn → ∗ be the unique map.
By Proposition 1.6.18, we have a′!S ' ΣnSRn and thus, since TRn is a trivial vector bundle
of fiber dimension n, we have Th(TRn) ' ΣnSRn ' a′!S. Let p : Ni → X be the conormal
bundle of the embedding i, defined by the short exact sequence

(1.7.13) 0→ TX → i∗TRn → Ni → 0,

s : X ↪→ Ni its zero section. Let k : U ↪→ Ni be a tubular neighbourhood of X in Rn. Thus,
we get a commutative triangle

X

U Rn

s̃ i

g

where g is an open immersion and s̃ is a closed immersion. Hence we get an equivalence

i!SRn ' s̃!SU .
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Then, by Proposition 1.6.18 and (1.7.13) we have

a!S ' a′!i!S
' a′!S ⊗ i∗Th(TRn)

' Th(Ni)
−1 ⊗ Th(i∗TRn)

' Th(TX).

Suppose now that f : X → Y is any submersion between smooth manifolds, a : X → ∗ and
b : Y → ∗ be the unique maps. Then, by Proposition 1.6.18 and Remark 1.7.5, we have

Th(Tf ) ' Th(TX)⊗ Th(f∗TY )−1

' a!S ⊗ (f∗b!S)−1

' a!S ⊗ (f !b!S)−1 ⊗ f !SY
' f !SY

and thus we can conclude.

Corollary 1.7.14 (Relative Atiyah Duality). Let f : X → Y be a proper map inducing a
locally contractible geometric morphism. Then f]SX ∈ Shv(Y ; Sp) is strongly dualizable with
dual f!SX . Moreover, if X and Y are smooth manifolds and f is a proper submersion, then
f]SX is strongly dualizable with dual f]Th(−Tf ).

Proof. Since f is proper, by Corollary 1.3.26 and Proposition 1.6.12, we have, functorially on
F ∈ Shv(Y ; Sp)

HomY (f]SX , F ) ' f∗HomX(SX , f∗F )

' f∗f∗F
' f!f

∗F

' f!SX ⊗ F.

In particular, when f is a submersion of smooth manifolds, by Proposition 1.6.18 and the
previous theorem, we have f!SX ' f]Th(−Tf ).

Remark 1.7.15. Let X be a smooth manifold, a : X → ∗ the unique map. By specializing
the previous corollary to a and Corollary 1.7.9, we see that we recover the classical Atiyah
duality.
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Chapter 2

Verdier duality on conically smooth
stratified spaces

2.1 Introduction

Constructible sheaves are of great interest both in algebraic and differential geometry, as they
provide tools to study invariants for singular spaces (such as intersection cohomology, follow-
ing the approach of [BBDG18]) and have surprising and beautiful relations with D-modules
(see [Kas84]). A fundamental feature of constructible sheaves is that, assuming a certain
kind of finiteness properties on the stalks and considering nicely behaved stratifications, they
carry a duality (sometimes referred to as Verdier duality) which enables one, through abstract
trace methods, to associate to any such sheaf a class in Borel–Moore homology. One of the
interests of these classes is that they can be related to Euler characteristics via routine com-
putations with the six functor formalism (see [KS90, Chapter 9] for a discussion on classical
index formulas and their microlocal enhancements).

As far the author knows, it was an idea of MacPherson that the duality should actually
be thought of as a combination of two different equivalences of categories. The former,
given by the usual construction of sections with compact support, was expected to identify
constructible sheaves with constructible cosheaves (without constructibility assumptions, this
was proven by Lurie in [Lur17, Theorem 5.5.5.1], and there named after Verdier); the latter
maps back contravariantly construtible cosheaves to sheaves, and obtained using a foreseen
combinatorial description of constructible (co)sheaves, similar in spirit to the monodromy
for local systems, which is nowadays referred to as exodromy (see [Lur17, Theorem A.9.3],
[BGH18]). In this chapter we make use of the language of ∞-categories to realize the vision
of MacPherson and prove the expected duality result in a very general setting.

Let us spend a few words to specify more precisely the framework in which we are working.
Relying on the theory developed in the first chapter, we will be able to deal with sheaves
valued in any stable bicomplete ∞-category C, equipped with a closed symmetric monoidal
structure. The machinery of six functors developed in the first chapter supplies us with a
dualizing sheaf ωC

X for any C as above and X locally compact Hausdorff stratified space. Our
duality functor will thus be defined as usual by taking an internal-hom into ωC

X , and denoted
by DC

X .
Following the nomenclature of [BGH18], we will define a sheaf with values in C to be

formally constructible1 if its restriction to each stratum is locally constant, and constructible
if furthermore all its stalks are dualizable. Similar definitions can be given for C-valued

1Notice that we will only deal with sheaves which are constructible with respect to a fixed stratification,
as opposed to [KS90, Chapter 8], for example.
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cosheaves by observing that, up to passing to an opposite category, these are just Cop-valued
sheaves. The requirement of dualizability for stalks is really unavoidable mainly because,
when X has a unique point, we see that ωC

X is the monoidal unit of C, and thus the duality
functor coincides with the one coming from the monoidal structure on C. Moreover it is
also extremely reasonable, since if C = D(R) where R is a ring (or more generally, modules
over any E∞-ring spectrum), it is well-known that a complex is dualizable if and only if it is
perfect, and hence our assumptions allow us to recover the classical setting as a special case.

For the geometric side of the story, we will consider conically smooth stratified spaces.
These were introduced by Ayala, Francis and Tanaka in [AFT17], and provide a natural
extension of C∞-structures in the stratified/singular setting. The definition of conically
smooth atlases is rather involved, as it relies on a elaborate inductive construction based on
the depth2 of a stratification. We suggest the reader to have a look at the introduction of
[AFT17] or alternatively, to have a look at the short outilne of the main steps to build up
the construction that we provide in section 2. To convince the reader of the soundness of
this definition, we will also provide a vast class of examples of conically smooth spaces via
the following theorem, that was proven in collaboration with Guglielmo Nocera.

Theorem 2.1.1. Any Whitney stratified space admits a conically smooth structure.

We are now ready to give a precise statement of our duality theorem.

Theorem 2.1.2. Let X be a conically smooth stratified space, and let Shvc(X;C) be the
full subcategory of Shv(X;C) spanned by constructible sheaves. Then the restriction to
Shvc(X;C)op of the functor DC

X factors through an equivalence

DC
X : Shvc(X;C)op Shvc(X;C).'

To conclude this introduction, let us make a short comment on how our proof strategy
goes. Our first observation, as anticipated above, is that the functor DC

X factors through
Lurie’s equivalence

DC : Shv(X;C)→ CoShv(X;C),

and most of the work then lies in proving that the restriction of DC to constructible sheaves
factors through constructible cosheaves. We first show in Proposition 2.6.1 that ωC

X is con-
structible when C = Sp (the ∞-category of spectra), and from the techniques developed in
the first chapter we deduce immediately that

a!
C : C→ Shv(X;C)

factors through formally constructible sheaves. As a consequence of this and some easy
properties of constructible sheaves that follow from homotopy invariance (see Theorem 2.5.3),
one gets that DC maps formally constructible sheaves into formally constructible cosheaves.
We want to stress that the possibility of working with such a general class of coefficients,
which is closed under passing to opposite categories, makes this step extremely formal.

The missing piece then consists in showing that DC preserves the property of having
dualizable stalks, and this is the point where we will actually have to employ the geometry of
conically smooth structures. More specifically, we will use the unzip constuction to prove in

2Recall that, for a stratified space s : X → P , the depth is defined as

depth(X) = sup
x∈X

dimx(X)− dimx(Xs(x)),

where dim denotes the covering dimension and Xs(x) is the stratum of X corresponding to s(x) ∈ P .
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Proposition 2.4.15, through an inductive argument on the depth, that any compact stratified
space equipped with a conically smooth structure has a finite exit path ∞-category. The key
observation then is that, if X = C(Z) with Z compact, x ∈ X is the cone point and F is any
constructible sheaf on X, then there is a fiber sequence

(2.1.3) Γx(X;F )→ Fx → Γ(Z;F ),

where Γx(X;F ) denotes the sections of F supported at x (i.e. the stalk of the associated
cosheaf of compactly supported sections of F ) and Fx is the stalk of F at x. By Proposi-
tion 2.4.15 and the exodromy equivalence (which will be show to hold also for our general
class of coefficients in Theorem 2.5.16), one gets that Γ(Z;F ) must be dualizable, and thus
Fx is dualizable if and only if Γx(X;F ) is, which proves our claim.

2.1.1 Linear overview

We now give a linear overview of the results in this chapter.
In section 2 we recall the definitions of stratified spaces, Whitney conditions and conically

smooth structures. The reader who knows already about all this may directly skip the section.
In Section 3 we prove that any Whitney stratified space admits a conically smooth struc-

ture. We will first recall how to get conical charts using compatible systems of tubular
neighbourhood following [Mat70] and [Mat73], and then check that these charts satisy the
compatibility conditions required for conically smooth atlases in Theorem 2.3.7.

Section 4 is mainly devoted to prove Proposition 2.4.15. In the first part we will recall
the definition of a finite ∞-category, and show how these can be described in the model of
quasi-categories. None of these results or definitions are new, but we decided to include a few
words on the subject since we could not find any reference dealing with it in our preferred
fashion. In the second part we recall Lurie’s definition of the simplicial set of exit-paths of
a stratified topological space, and show in Lemma 2.4.10 how one can conveniently compute
the exit-paths of the cone of a proper stratified fiber bundle L → X in terms of L and X.
The main idea for proving Proposition 2.4.15 is then to cover a conically smooth stratified
space X into the open subset U given by the locus of points of depth zero and a tubular
neighbourhood of the complement of U . By induction and Lemma 2.4.10 one is then left to
show that Exit(U) is finite, but this follows by observing that, through the unzip construction,
U can be identified with the interior of compact manifold with corners.

In Section 5 we deal with extending the results of [HPT20] to sheaves values in stable
bicomplete∞-categories. This is very simple and formal, after one has the six operations. As
a consequence, we show in Corollary 2.5.6 that the stalk at a point x of a constructible sheaf
is the same as sections at any conical chart around x, and compute in Corollary 2.5.9 the
restriction of a construtible sheaf along a stratum in a convenient way. These two results are
essential and are used very often in what follows (for example, the first implies immediately
the existence of (2.1.3)). In the second part we will then characterize constructible sheaves
by the property of being homotopy invariant (see Proposition 2.5.13), and use this to deduce
exodromy for conically smooth spaces with general stable bicomplete coefficients.

Section 6 deals with proving our main result. We start by showing, through an inductive
argument on the depth, that ωC

X is constructible whenever X is C0-stratified. We first reduce
to proving the statement in the case C = Sp by employing the techniques developed in the
first chapter, and then the only non-trivial part consists in showing that, when X = C(Z),
the stalk of the dualizing sheaf at the cone-point is a finite spectrum. We then conclude by
proving Theorem 2.6.3. As explained at the beginning of the introduction, our argument
starts by observing that the duality functor factors through Lurie’s Verdier duality, and
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the hard part then consists in showing that the latter restricts to an equivalence between
constructible (co)sheaves, for which we have to implement all the results obtained previously.

2.2 Background on stratified spaces

In the present section, we recall notations and results from the theory of Whitney stratifica-
tions and of conically smooth stratifications.

2.2.1 Whitney stratifications (Thom, Mather)

For our review of the theory of Whitney stratifications, we follow [Mat70], with minimal
changes made in order to connect the classical terminology to the one used in [AFT17].

Definition 2.2.1. Let M be a smooth manifold, and Z ⊂ M a subset. A smooth strat-
ification of Z is a partition of Z into subsets {Zα}α∈A, such that each Zα is a smooth
submanifold of M . More generally, if M is a Cµ-manifold, then a Cµ stratification of a
subset Z of M is a partition of Z into Cµ-submanifolds of M .

Remark 2.2.2. In particular, all strata of a smoothly stratified space Z ⊂ M are locally
closed subspaces of Z.

Definition 2.2.3 (Whitney’s Condition B in Rn). Let X,Y be smooth submanifolds of Rn,
and let y ∈ Y be a point. The pair (X,Y ) is said to satisfy Whitney’s Condition B
at y if the following holds. Let (xi) ⊂ X be a sequence converging to y, and (yi) ⊂ Y be
another sequence converging to y. Suppose that TxiX converges to some vector space τ in the
r-Grassmannian of Rn and that the lines xiyi converge to some line l in the 1-Grassmannian
(projective space) of Rn. Then l ⊂ τ .

Definition 2.2.4 (Whitney’s condition B). Let X,Y be smooth submanifolds of a smooth
n-dimensional manifold M , and y ∈ Y . The pair (X,Y ) is said to satisfy Whitney’s Condition
B at y if there exist a chart of M φ : U → Rn around y such that (φ(U ∩ X), φ(U ∩ Y ))
satisfies Whitney’s Condition B at φ(y).

Recall (e.g. from [Pfl01, Lemma 1.4.4]) that Whitney’s Condition B is invariant under
change of charts, and therefore Definition 2.2.4 is well-posed.

Definition 2.2.5 (Whitney stratification). Let M be a smooth manifold of dimension n. A
smooth stratification (Z,S) on a subset Z of M is said to satisfy the Whitney conditions if

• (local finiteness) each point has a neighbourhood intersecting only a finite number of
strata;

• (condition of the frontier) if Y is a stratum of S, consider its closure Ȳ in M . Then we
require that (Ȳ \ Y ) ∩ Z is a union of strata, or equivalently that S ∈ S, S ∩ Ȳ 6= ∅⇒
S ⊂ Ȳ ;

• (Whitney’s condition B) Any pair of strata of S satisfies Whitney’s condition B when
seen as smooth submanifolds of M .

Case (1). We define the ne Given two strata of a Whitney stratification X and Y , we say
that X < Y if X ⊂ Ȳ . This is a partial order on S.

A feature of Whitney stratified spaces, perhaps not very evident from the definition, is
the existence of compatible tubular neighbourhoods around strata, in a sense that we will
now recall. We refer to [Mat70, Section 6] for more details.
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Definition 2.2.6. Let M be a manifold and X ⊂M be a submanifold. A tubular neigh-
borhood T of X in M is a triple (E, ε, φ), where π : E → X is a vector bundle with
an inner product 〈, 〉, ε is a positive smooth function on X, and φ is a diffeomorphism of
Bε = {e ∈ E | 〈e, e〉 < ε(π(e))} onto an open subset of M , which commutes with the zero
section ζ of E:

Bε

X M.

φ
ζ

From [Mat73, Corollary 6.4] we obtain that any stratum W of a Whitney stratified space
(M,S) has a tubular neighbourhood, which we denote by (TW , εW ); the relationship with
the previous notation is the following: TW is φ(Bε)∩M (recall that a priori φ(Bε) ⊂M , the
ambient manifold). We also denote by ρ the tubular (or distance) function

TW → R≥0

v 7→ 〈v, v〉

with the notation as in Definition 2.2.6. Note that ρ(v) < ε(π(v)).
A final important feature of the tubular neighbourhoods of strata constructed in Mather’s

proof is that they satisfy the so-called “control conditions” or “commutation relations”.
Namely, consider two strata X < Y of a Whitney stratified space M . Then, if TX and
TY are the tubular neighbourhoods relative to X and Y as constructed by Mather, one has
that

πY πX = πY

ρXπY = ρX .

We explain the situation with an example.

Example 2.2.7. Let M be the real plane R2 and S the stratification given by

X = {(0, 0)}

Y = {x = 0} \ {(0, 0)}

Z = M \ {x = 0}.

We take R2 itself as the ambient manifold. Then Mather’s construction of the tubular neigh-
bourhoods associated to the strata gives a result like in Figure 2.1. Here the circle is TX ,
and the circular segment is a portion of TY around a point of Y . We can see here that TY is
not a “rectangle” around the vertical line, as one could imagine at first thought, because the
control conditions impose that the distance of a point in TW from the origin of the plane is
the same as the distance of its “projection” to Y from the origin.

Keeping this example in mind (together with its upper-dimensional variants) for the rest
of the treatment may be a great help for the visualization of the arguments used in our proofs.

The notion of having a compatible system of tubular neighbourhoods around strata is
axiomatized in the definition of abstract stratified set ([Mat70, Definition 8.1]. Roughly, this
consists of a triple (V,S, I) where V is a locally compact Hausdorff topological space, S is
a partition of V into locally closed subsets (called strata) each equipped “abstractly” with
a smooth structure, and I is a collection of neighbourhoods around each stratum with some
structure abstractly axiomatizing the notion of “tubular” neighbourhood.
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Figure 2.1: Tubular neighbourhoods in (R2, (X,Y, Z)).

Definition 2.2.8. Let (V,S, I) be an abstract stratified set. If P is a smooth manifold and
f : V → P is a continuous mapping, we will say that f is a controlled submersion if the
following conditions are satisfied.

• f |X : X → P is a smooth submersion for each stratum X of V .

• For any stratum X, there is a neighborhood TX′ of X in TX such that f(v) = fπX(v)
for all v ∈ TX′ .

The following result follows from [Mat70, Proposition 7.1].

Proposition 2.2.9. Let (M,S) be a Whitney stratified space. Then it admits a canonical
structure of abstract stratified set (up to equivalence of abstract stratified sets, see again
[Mat70, Definition 8.1]).

Conversely, we have:

Theorem 2.2.10 ([Nat80, Theorem on page 3]). Every paracompact abstract stratified set
(V,S, I) with dimV = n can be topologically embedded in R2n+1 such that the image of the
embedding is a stratified space satisfying the Whitney condition, and the smooth structures
on strata coincide with the ones inherited from R2n+1. All such “realizations” as Whitney
stratified spaces in RN are isotopic if N > 2n+ 2.

2.2.2 Conical and conically smooth stratifications (Lurie, Ayala-Francis-
Tanaka)

We now turn to the more recent side of the story, namely the theory of conically smooth
stratified spaces. In order to do that, we briefly recall the treatment of stratified sets given
by Jacob Lurie in [Lur17], which is the base of the formalism used in [AFT17].

Definition 2.2.11. Let P be a partially ordered set. The Alexandrov topology on P is
defined as follows. A subset U ⊂ P is open if it is closed upwards: if p ≤ q and p ∈ U then
q ∈ U .
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With this definition, closed subsets are downward closed subsets and locally closed subsets
are “convex” subsets: p ≤ r ≤ q, p, q ∈ U ⇒ r ∈ U .

Definition 2.2.12 ([Lur17, Definition A.5.1]). A stratification on a topological space X is a
continuous map s : X → P where P is a poset endowed with the Alexandrov topology. The
fibers of the points p ∈ P are subspaces of X and are called the strata. We denote the fiber
at p by Xp and by S the collection of these strata.

Remark 2.2.13. Note that, by continuity of s, the strata are locally closed subsets of X.
However, in this definition we do not assume any smooth structure, neither on the ambient
space nor on the strata. Furthermore, the condition of the frontier in Definition 2.2.5 need
not hold for stratifications in the sense of Definition 2.2.12: for example, the map R→ {0, 1}
where 0 < 1 and the map is given by mapping the interval (0, 1) to 1 and the rest to 0 is a
stratification in the sense of Definition 2.2.12, but the two strata do not satisfy the condition
of the frontier.

Note however that the condition of the frontier implies that any Whitney stratified space
is stratified in the sense of Definition 2.2.12: indeed, one obtains a map towards the poset S
defined by S < T ⇐⇒ S ⊂ T , which is easily seen to be continuous by the condition of the
frontier.

Definition 2.2.14. A stratified map between stratified spaces (X,P, s) and (Y,Q, t) is the
datum of a continuous map f : X → Y and an order-preserving map φ : P → Q making the
diagram

X Y

P Q

f

s t

φ

commute.

Definition 2.2.15. Let (Z,P, s) be a stratified topological space. We define C(Z) (as a set)
as

Z × [0, 1)

{(z, 0) ∼ (z′, 0)}
.

Its topology and stratified structure are defined in [Mat73, Definition A.5.3]. When Z is
compact, then the topology is the quotient topology. Note that the stratification of C(Z) is
over P /, the poset obtained by adding a new initial element to P : the stratum over this new
point is the vertex of the cone, and the other strata are of the form X × (0, 1), where X is a
stratum of Z.

Definition 2.2.16 ([Lur17, Definition A.5.5]). Let (X,P, s) be a stratified space, p ∈ P , and
x ∈ Xp. Let P>p = {q ∈ P | q > p}. A conical chart at x is the datum of a stratified space
(Z,P>p, t), an unstratified space Y , and a P -stratified open embedding

Y × C(Z) X

P

whose image hits x. Here the stratification of Y × C(Z) is induced by the stratification of
C(Z), namely by the maps Y × C(Z)→ C(Z)→ P≥p → P (see Definition 2.2.15).

A stratified space is conically stratified if it admits a covering by conical charts.
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More precisely, the conically stratified spaces we are interested in are the so-called C0-
stratified spaces defined in [AFT17, Definition 2.1.15]. Here we recall the two important
properties of a C0-stratified space (X, s : X → P ):

• every stratum Xp is a topological manifold ;

• there is a basis of the topology of X formed by conical charts

Ri × C(Z)→ X

where Z is a compact C0-stratified space over the relevant P>p. Note that Z will
have depth strictly less than X; this observation will be useful in order to make many
inductive arguments work.

Hence the definition of [AFT17] may be interpreted as a possible analogue of the notion
of topological manifold in the stratified setting: charts are continuous maps which establish a
stratified homeomorphism between a small open set of the stratified space and some “basic”
stratified set.

Following this point of view, one may raise the question of finding an analogue of “smooth
manifold” (or, more precisely, “smoothly differentiable structure”) in the stratified setting.
We refer to [AFT17, Definition 3.2.21] for the definition of a conically smooth structure
(and to the whole Section 3 there for a complete understanding of the notion), which is a very
satisfying answer to this question. The definition is rather involved, as it relies essentially on
a technical inductive construction based on the depth of a stratification. We sketch the main
steps of the definition below.

Definition 2.2.17 ([AFT17, Definition 2.4.4]). Let s : X → P be a stratified topological
space. We define

depthX = sup
x∈X

(dimx(X)− dimx(Xs(x))),

where dim denotes the covering dimension and Xs(x) is the stratum of X corresponding to
s(x) ∈ P .

Remark 2.2.18. Let Z be an unstratified space of Lebesgue covering dimension n. Then
the depth of the cone C(Z) at the cone point is n+ 1.

Remark 2.2.19. Note that there is an alternative natural definition of depth at a point x:
namely, the maximal k such that there exists a chain of strata of the form X0 < · · · < Xk such
that x ∈ X0. The depth of a stratification at a point in the sense of Definition 2.2.17 is always
greater or equal than the latter, and they coincide if and only if there is a chain of maximal
length X0 < · · · < Xk such that x ∈ X1 and dimXi+1 = dimXi + 1 for i = 0, . . . , k − 1.

The following observation will be useful for the proof of our main result.

Remark 2.2.20. Let (X,P, s) be a C0 stratified space whose strata are all finite dimensional,
and suppose that depth(X,P, s) = 0. Then P is a discrete poset, i.e. for any two p, q ∈ P
we have that p ≤ q ⇐⇒ p = q. Indeed, by assumption, we know that for any x ∈ X the
following formula holds:

dimxXp = dimxX

where Xp is the stratum containing x. Up to taking a conical chart centered at x, this
translates into

dimx(Rn) = dim(x,∗)(Rn × C(Z))

i.e.
n = n+ dimC(Z)

where ∗ is the cone point of C(Z). This implies that Z is empty, hence the conclusion.
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In particular, if X → P is a C0 stratified space such that depthX = 0, then a conically
smooth atlas on X is just the usual notion of a smooth atlas which defines C∞-manifolds.
If depthX > 0, roughly a conically smooth atlas is a collection of stratified open subsets
{Ui}i∈I of X satisfying the following conditions

(i) for each Ui there exists a stratified open embedding ϕi : Rni ×C(Zi) ↪→ X whose image
is Ui, where Zi is a compact stratified space equipped with a conically smooth atlas
(notice that depthZi < depthX, so that by induction the notion of an atlas on Zi is
well defined): an object of the type Rni × C(Zi) where Zi is as above will be called a
basic conically smooth stratified space;

(ii) for any i, j such that Ui ∩ Uj 6= ∅, there exists some k ∈ I and conically smooth open
embeddings Rnk × C(Zk) ↪→ Rni × C(Zi) and Rnk × C(Zk) ↪→ Rnj × C(Zj) such that
the square

Rnk × C(Zk) Rni × C(Zi)

Rnj × C(Zj) X

commutes.

For the above definition to make sense, one has to explain what a conically smooth map
between basics is. By playing again with inductive arguments on the depth of the target,
the main new conceptual input one has to give to formulate precisely this definition is the
notion of differentiability along a cone locus (see [AFT17, Definition 3.1.4]): for a map f :
Rn × C(Z) → Rm × C(S) between basics, this amounts to requiring the existence of a
continuous extension

R≥0 × TRn × C(Z) R≥0 × TRm × C(S)

R>0 × TRn × C(Z) R>0 × TRm × C(S)
γ−1◦f∆◦γ

where the lower horizontal map is built out of f and an appropriate use of the action of
scaling and translating on the conical charts such that, in case in which Z = S = ∅, this
recovers the usual notion of differentiability.

One main feature of conically smooth structures is the unzip construction, that allows
one to functorially resolve any conically smooth stratified space into a manifold with corners.
For example, if Xk ↪→ X is the inclusion of a stratum of maximal depth, there is a square

(2.2.21)

Linkk(X) Unzipk(X)

Xk X

πX

which is both pushout and pullback, and Unzipk(X) is a conically smooth manifold bound-
ary given by Linkk(X) such that both its interior and Linkk(X) have depth strictly smaller
than the one of X. An interesting consequence of the existence of pushout/pullback square
(Equation (2.2.21)) is that the notion of conically smooth map is completely determined by
the one of smooth maps between manifolds with corners.

Definition 2.2.22. A C0-stratified space together with a conically smooth structure is called
a conically smooth stratified space.
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Remark 2.2.23. Let us list some useful properties of conically smooth structures:

• any conically smooth stratified space is a C0-stratified space;

• all strata have an induced structure of smooth manifold, like in the case of Whitney
stratifications;

• the definition of conically smooth space is intrinsic, in the sense that it does not depend
on a given embedding of the topological space into some smooth manifold, in contrast
to the case of Whitney stratifications (see Definition 2.2.1 and Definition 2.2.5);

• the notion of conically smooth map (which is a map inducing conically smooth maps
between basics in charts) differs substantially from the “naive” requirement of being
stratified and smooth along each stratum that one has in the case of Whitney strati-
fications. The introduction of this notion defines a category Strat of conically smooth
stratified spaces. In this setting, [AFT17] are able to build up a very elegant theory and
prove many desirable results such as a functorial resolution of singularities to smooth
manifolds with corners and the existence of tubular neighbourhoods of conically smooth
submanifolds. These results allow to equip Strat with a Kan-enrichment (and hence, a
structure of∞-category); also, the hom-Kan complex of conically smooth maps between
two conically smooth spaces has the “correct” homotopy type (we refer to the introduc-
tion to [AFT17] for a more detailed and precise discussion on this topic), allowing to
define a notion of tangential structure naturally extending the one of a smooth manifold
and to give a very simple description of the exit-path∞-category of a conically smooth
stratified space.

Up to now, the theory of conically smooth spaces has perhaps been in need of a good
quantity of explicit examples, especially of topological nature. The following result (conjec-
tured in [AFT17, Conjecture 1.5.3]) goes in the direction of providing a very broad class of
examples coming from differential geometry and topology.

Theorem 2.2.24. Let (M,S) be a Whitney stratified space. Then it admits a conically
smooth structure in the sense of [AFT17].

The rest of the section is devoted to the proof of this theorem (Theorem 2.3.7).

2.3 Whitney stratifications are conically smooth

2.3.1 Whitney stratifications are conical

Lemma 2.3.1. Let (M,S, I) be an abstract stratified set, T a smooth unstratified manifold,
and let f : M → T be a controlled submersion. Then for every p ∈ T the fiber of f at p has
a natural structure of abstract stratified set inherited from M .

Proof. We may assume that for any stratum, up to shrinking tubular neighbourhoods (in
such a way to obtain an equivalent abss),

f(v) = fπX(v) ∀v ∈ TX .

We only need to prove that for any other stratum Y

(TX \X) ∩ Y → (X ∩ f−1(x))× R≥0

is a submersion.
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Therefore, it suffices to show that the square

TX ∩ f−1(x) X ∩ f−1(x)

TX X

is a pullback. But the pullback is, by definition,

{v ∈ TX | fπ(v) = x}

which is equal to
{v ∈ TX | f(v) = x} = TX ∩ f−1(x).

Lemma 2.3.2. Any open subset U of a space M endowed with a structure of abstract
(M,S, I) stratified set inherits a natural structure of abstract stratified set obtained by
intersecting the elements of I with U .

Proof. This follows from the immediate observation that an open embedding of smooth man-
ifolds is a submersion, applied to the open embeddings Y ∩ U ⊂ Y for every stratum Y .

Now we closely review the proof of [Mat73, Theorem 8.3], but adapted to the context
of abstract stratified sets (whereas the original proof is given for Whitney stratified spaces).
This review is also useful to fix some notations.

Lemma 2.3.3 (Thom’s first isotopy lemma, [Mat70, Corollary 10.2]). Let (V,S, I) be an
abstract stratified set, P be a manifold, and f : V → P be a proper, controlled submersion.
Then f is a locally trivial fibration.

Theorem 2.3.4 ([Mat73, Theorem 8.3]). Let (V,S, I) be an abstract stratified set. Then M
admits a covering by conical charts of the type Ri×C(Z), where Z is a compact topological
space endowed with a natural structure of abstract stratified set.

Proof. Let W be a stratum of V , and let x be a point of W . Denote by πW : TW → W
the projection, ρW : TW → R≥0 the “distance” function. Let us choose a “closed tubular
subneighboorhood” of TW , i.e. a subset N of TW which is of the form

{x ∈ TW | ρW (x) ≤ ε(πW (x))}

for some smooth function ε : W → R>0 such that for every x ∈W we have ε(x) ∈ ρW (π−1
W (x)).

Let also
A = {x ∈ TW | ρW (x) = ε(πW (x))}

and f = πW |A : A→W . Note that f is a proper controlled submersion, since πW is a proper
controlled submersion and for any stratum S of M the differential of πW |S vanishes on the
normal to A∩S. Hence by Lemma 2.3.1 the restriction of the stratification of M to any fiber
of f has a natural structure of abstract stratified set. Consider the mapping

g : N \W →W × (0, 1]

defined by

g(x) =

(
πW (x),

ρW (x)

ε(πW (x))

)
.
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The space N \W inherits from M a structure of abstract stratified set (see Lemma 2.3.2) and,
by [Mat70, Lemma 7.3 and above], the map g is a proper controlled submersion. Thus, since
A = g−1(W ×{1}), by Lemma 2.3.3 one gets a stratified homeomorphism h (with respect to
the stratification induced on A, see Lemma 2.3.1) fitting in the commuting triangle

N \W A× (0, 1]

W × (0, 1]

g

h

f×id
.

Furthermore, since W = ρ−1(0) ⊆ N , h extends to a homeomorphism of pairs

(N,W )
(h,id)−−−→ (C̄(f),W ),

where C̄(f) is the closed mapping cone of f (we recall that f : A → W is the projection
(πW |A)).

Now for any euclidean chart j : Ri ↪→ W around x, the pullback of f along j becomes
a projection Ri × Z → Ri. Note that Z is compact by properness of f , and has an induced
structure of abstract stratified set being a fiber of f , as we have noticed above. Finally,

C̄(f) ' C̄(Ri × Z pr1−−→ Ri) ' C̄(Z)× Ri.

The open cone C(f) is thus of the form C(Z)×Ri, and this provides the sought conical chart
around x.

As a consequence, by [AFT17, Definition 2.1.15, Axiom (5)], every Whitney stratified
space is C0-stratified.

2.3.2 Whitney stratifications are conically smooth

Construction 2.3.5. Let (M,S, I) be an abstract stratified set. The procedure explained
in the proof of Theorem 2.3.4 provides a family

T = {φ : Ri × C(Z) ↪→M}

indexed by the choice of

• W ∈ S

• ψ : Ri ↪→W smooth chart in W

• ε : W → R>0.

We will say that a chart is “centered at the stratum W” and “induced by the smooth chart ψ
and the function ε”. The image of such a chart is a tubular neighbourhood which we denote
by N(W,ψ, ε). The inverse of the chart is (up to composing with the map induced by ψ−1)
exactly the map h appearing in Theorem 2.3.4.

We already know that the family T is a covering of M , and it will be referred to as the
family of Thom-Mather charts associated to the abstract stratified set (V,S, I).

Remark 2.3.6. If two charts are centered at the same stratum W , up to changing the ψ’s
and the ε’s one can assume that their sources are the same basic Rn ×C(Z) (for the same n
and Z).
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In particular, if (M,S) is a Whitney stratified space, by Proposition 2.2.9 we can endow
it with the structure of an abstract stratified set, and thus obtain a family of Thom-Mather
charts. The rest of this section will be devoted to prove that these charts form a conically
smooth atlas in the sense of [AFT17, Definition 3.2.10] for M , as conjectured in [AFT17,
Conjecture 1.5.3 (3)]. We will then prove (Remark 2.3.9) that equivalent structures of abstract
stratified set on the same Whitney stratified space induce equivalent conically smooth atlases,
again in the sense of [AFT17, Definition 3.2.10].

Theorem 2.3.7 (Main Theorem). Let (M,S, I) be an abstract stratified set, and assume
that M has finite dimension. Then the Thom-Mather charts form a conically smooth atlas
on (M,S).

Proof. Since M has finite dimension, the depth of (M,S) must be finite. The proof will
therefore proceed by induction on the depth of (M,S) (see Definition 2.2.17).

In the case of depth 0, by Remark 2.2.20 we know that M is just a disconnected union
of strata which are smooth manifolds. Therefore, the claim follows easily, since the family of
Thom-Mather charts reduces to a collection of smooth atlases for each stratum.

Thus, we may assume by induction that for any abstract stratified set (M ′,S ′, I ′) with

depth(M ′,S ′) < depth(M,S)

the Thom-Mather charts form a conically smooth atlas on (M ′,S ′).
Fix a Thom-Mather chart φ : Ri × C(Z) ↪→ M : then by the proof of Theorem 2.3.4

we know that depth(Z) < depth(M,S) when considering Z with its induced structure of
abstract stratified set; thus, by the inductive hypothesis, the Thom-Mather charts on Z form
a conically smooth atlas, and this implies that the Ri×C(Z) is a basic in the sense of [AFT17,
Definition 3.2.4].

Hence it remains to prove that the “atlas” axiom is satisfied: that is, if m ∈M is a point,
u : Ri × C(Z) → M and v : Rj × C(W ) → M are Thom-Mather charts with images U and
V , such that m ∈ U ∩ V , then there exist a basic Rk × C(T ) and a commuting diagram

(2.3.8)

Rn3 × C(Z3) Rn1 × C(Z1)

Rn2 × C(Z2) M

f1

f2 φ1

φ2

such that x ∈ Im(φ1f1) = Im(φ2f2) and that f1 and f2 are maps of basics in the sense of
[AFT17, Definition 3.2.4].

Let d = depthM , and let Md be the union of all strata X of depth exactly d (i.e. such
that supx∈X depthxM = d). Since M \Md has depth strictly less than d and it is open in
M , by the inductive hypothesis we know that the induced structure of abstract stratified set
on M \Md satisfies the claim (i.e. the Thom-Mather charts form a conically smooth atlas).
Therefore, it will suffice to examine the following two cases:

(1) the two charts are centered at the same stratum W of depth d (and m may or may not
be contained in W or belong to Md)

(2) one chart is centered at a stratum Y of depth < d and the other is centered at a stratum
X of depth d and lying in the closure of Y . (One may use Example 2.2.7 as a guiding
example, with m a point on {x = 0} \ {(0, 0)}.)

72



Indeed, in the remaining case when the two charts are both centered at strata of depth less
than d, then m must lie in M \Md, and therefore, up to choosing smaller ε’s, we can assume
that both charts lie in M \Md and apply the inductive hypothesis.

Case (1). We define the new chart as follows. Suppose that the chart φ1 : Rn×C(Z)→
M is centered at W and induced by the smooth chart ψ1 : Rn → W and the function
ε1 : W → R>0. Analogously, suppose that φ2 : Rn × C(Z) → M is centered at W and
induced by the smooth chart ψ2 : Rn → W and the function ε1 : W → R>0. Note that
we can suppose that the basic has the same form in both cases by Remark 2.3.6. Choose a
smooth chart ψ3 for X and a smooth function ε3 : W → R>0 such that

• Im(ψ3) ⊂ Im(ψ1) ∩ Im(ψ2) ⊂W

• ε3(w) ≤ min(ε1(w), ε2(w)) for any w ∈W

• the image of the Thom-Mather chart φ3 associated to (W,ψ3, ε3) contains m.

We call i1, i2 the transition maps (coming from the smooth structure of X) fitting into
the diagram

Rn Rn

Rn W.

i2

i1

ψ1

ψ2

ψ3

Let us define the following two maps:

f1 : Rn × C(Z)→ Rn × C(Z)

(v, t, z) 7→ (i1(v),
ε3(ψ1i1(v))

ε1(ψ1i1(v))
t, z)

f2 : Rn × C(Z)→ Rn × C(Z)

(v, t, z) 7→ (i2(v),
ε3(ψ2i2(v))

ε2(ψ2i2(v))
t, z).

These are maps of basics. Indeed, let us call, for j = 1, 2, ηj =
ε3ψjij
εjψjij

: Rn → R>0. This

is a smooth function. For j = 1, 2, the verification of the condition that fj is a map of basics
amounts to check that:

• fj is conically smooth along Rn. That is, that the map

R>0 × TRn × C(Z)→ R>0 × TRn × C(Z)

(t, v, x, [s, z]) 7→ (t,
ij(tv + x)− ij(x)

t
, ij(x), [ηj(x)s, z])

extends to t = 0. This follows from smoothness of ij .

• The differential
TxRn × C(Z)→ Tij(x)Rn × C(Z)

(v, [s, z]) 7→ (Dvij(x), [ηj(x)s, z])

is injective. This follows from the fact that ij is a smooth open embedding.
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• the pullback of the atlas A that we are considering on C1 = Rn × R>0 × Z to C2 =
Rn × R>0 × Z along fj |Rn×R>0×Z = ij × η · id × id coincides with A. Indeed, for any
chart c1 = j1 × l1 ×w1 : Rn ×R>0 ×W1 → C1 there exists a chart c2 = ij × η · id×w :
Rn × R>0 ×W2 → C2 and a commutative diagram

Rn × R>0 ×W1 Rn × R>0 ×W2

Rn × R>0 × Z Rn × R>0 × Z.
f |Rn×R>0×Z

c1

j1×l1×id

c2

The last thing to do is to check that, with the notations of the proof of Theorem 2.3.4 and
of Construction 2.3.5, the front square in the diagram

N(W,ψ3, ε3) N(W,ψ1, ε1)

N(W,ψ2, ε2) Rn × C(Z) Rn × C(Z)

Rn × C(Z) M.

φ1f2

φ2

f1

∼
h2

∼
h3

∼
h1

commutes. This follows from the fact that, by an easy computations, for j = 1, 2 the
diagram

N(W,ψ3, ε3) Rn × C(Z)

N(W,ψj , εj) Rn × C(Z)

∼
h3

∼
hj

fj

commutes.
Case (2). We can assume that the point m lies outside Md, and that the image of φ2 is

contained in M \Md. Therefore we have the following diagram:

Rn × R>0 × Z1 Rn × C(Z1)

Rm × C(Z2) M \Md M

By [AFT17, Lemma 3.2.9] (“basics form a basis for basics”) there exists a map of basiscs

i : Rn
′ × C(Z ′1) ↪→ Rn × C(Z1)

whose image is contained in Rn × R>0 × Z1 and contains m. This induces a commutative
diagram

Rn′ × C(Z ′1)

Rn × R>0 × Z Rn × C(Z)

M \Md M.

φ1

i
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and therefore a span

Rn′1 × C(Z ′1)

Rn2 × C(Z2) M \Md.

To this span we can apply the inductive hypothesis, since depthM \Md < d. This yields
maps of basics f ′1 : Rn3 ×C(Z3)→ Rn′1 ×C(Z ′1) and f2 : Rn3 ×C(Z3)→ Rn2 ×C(Z2) fitting
into the diagram

Rn3 × C(Z3) Rn′1 × C(Z ′1) Rn1 × C(Z1)

Rn2 × C(Z2) M \Md M

i

f2

f ′1

Finally, we define f1 = i ◦ f ′1, which is a map of basics because both i and f ′1 are.

Remark 2.3.9. Let (M,S) be a Whitney stratified space. By [Mat70, Proposition 6.1],
different choices of structures of abstract stratified sets over (M,S) (and hence different
families of Thom-Mather charts) induce equivalent conically smooth atlases in the sense of
[AFT17, Definition 3.2.10]. Indeed, the construction of a Thom-Mather atlas A depends
on the choice of a tubular neighbourhood for each stratum X, along with its distance and
projection functions ρX , πX . Thus, let A,A′ be two conically smooth atlases induced by
different choices of a system of tubular neighbourhoods as above. We want to prove that
A ∪ A′ is again an atlas. The nontrivial part of the verification is the following. Let us
fix two strata X,Y , and a point y ∈ Y ; take φX a Thom-Mather chart associated to the
A-tubular neighbourhood TX of X, and ψ′Y a Thom-Mather associated to the A′-tubular
neighbourhood T ′Y of Y . We want to verify the “atlas condition” (2.3.8); let TY be the A-
tubular neighbourhood of Y . Now by [Mat70, Proposition 6.1] there is an isotopy between
T ′Y and TY fixing Y . By pulling back ψ′Y to TY along this isotopy, we obtain an A-Thom
Mather chart ψY around y; we are now left with two A-charts φX and ψY and we finally can
apply the fact that A is an atlas.

2.4 Finite exit paths

This first section contains the main geometric input needed to achieve our goal. Namely,
we show the exit-paths ∞-category of a compact conically smooth stratified space is finite
(Proposition 2.4.15).

2.4.1 Finite ∞-categories

This short section is devoted to recalling the definition of a finite ∞-category. Before going
into that, we say a few words about what an ∞-category is for us. We work in the model
of quasicategories. Following [Cis19, Example 7.10.14], we define Cat∞ as the localization
of the 1-category of simplicial sets at the class of Joyal equivalences. The class of Joyal
equivalences and fibrations equip sSet with the structure of a category with weak equivalences
and fibrations in the sense of [Cis19, Definition 7.4.12], and so by [Cis19, Theorem 7.5.18] it
follows that any object in Cat∞ is equivalent to the image through the localization functor
sSet → Cat∞ of a fibrant object in the Joyal model structure. For this reason, objects of
Cat∞ will be called ∞-categories.
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The first definition we propose is expressed internally to the∞-category Cat∞ in terms of
pushouts, and so in a kind of model-independent fashion. Later we prove that this is actually
equivalent to a notion of finiteness that one might expect in the simplicial model. All the
results appearing here are not at all original, but we still felt the need to write this section
as, in the process of completing this chapter, we could not locate a reference dealing with the
subject.

Definition 2.4.1. An∞-category is said to be finite if it belongs to the smallest full subcat-
egory of Cat∞ which contains ∅, ∆0, and ∆1 and is closed under pushouts. An ∞-groupoid
is said to be finite if it is so as an ∞-category. We will denote by Catf∞ and Sf respectively
the full subcategories of Cat∞ and S spanned by finite objects.

Remark 2.4.2. Recall that the inculsion S ↪→ Cat∞ admits both a left and a right adjoint,
and one may describe the left adjoint on objects by sending and ∞-category C to the local-
ization C[C−1]. Thus, since S ↪→ Cat∞ preserves colimits and ∆1[(∆1)−1] ' ∆0, one may
identify the class of finite ∞-groupoids with the objects of the smallest full subcategory of S
which contains ∅ and ∆0 and it’s closed under pushouts. This implies in particular that, for
any finite ∞-category C, the localization C[C−1] is again finite.

Lemma 2.4.3. Let C be a finite ∞-category, and let W be a finite subcategory of C. Then
the localization C[W−1] is again finite.

Proof. We have a pushout square

W C

W [W−1] C[W−1],

in Cat∞, thus it suffices to show that W [W−1] is finite. This follows immediately by Re-
mark 2.4.2.

Recall that a simplicial set is said to be finite if it has a finite number of non-degenerate
simplices. In the next proposition we reconcile this notion of finiteness with the one in
Definition 2.4.1. We will need the following lemma, whose proof was explained to us by
Sebastian Wolf.

Lemma 2.4.4. Let C be an ∞-category, and let f : K → C be a map of simplicial set,
where K is finite. Moreover, suppose that there exists a finite simplicial set K ′ and a Joyal
equivalence g : K ′ → C. Then there exists a finite simplicial set L and a commutative diagram
of simplicial sets

C

K Lk

f
j

where k is a monomorphism.

Proof. We define inductively a sequence of finite simplicial sets {K ′n}n∈N. We set K ′0 = K ′,
and we define K ′n via the pushout ∐

Λnj→K′n−1

Λnj K ′n−1

∐
∆n→K′n−1

∆n K ′n.
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Now set
K ′∞ := colim(K ′0 ↪→ K ′1 ↪→ · · · ↪→ K ′n ↪→ . . . ).

Furthermore, since all horns are finite simplicial sets, any map Λnj → K ′∞ factors through
some K ′m, and by construction of the sequence we get a commutative diagram

Λnj K ′m K ′∞

∆n K ′m+1

which implies that K ′∞ is an ∞-category. Since the class of categorical anodyne extensions
is saturated (see [Cis19, Definition 3.3.3]), we see that K ′ ↪→ K ′∞ is a categorical anodyne
extension, and in particular a Joyal equivalence. Hence, by the assumption that C is an
∞-category, we get a commutative triangle

K ′ C

K ′∞

g

φ

where φ is a Joyal equivalence by the 2-out-of-3. Since K ′∞ is also an ∞-category, φ admits
a quasi-inverse

ψ : C→ K ′∞.

By the finiteness of K, we get that the composition

ψf : K → C→ K ′∞

factors through some δ : K → K ′n. Thus, we get a triangle

C

K K ′n K ′∞

f

δ

φ

which commutes up to J-homotopy, where J is the interval object for the Joyal model struc-
ture as defined in [Cis19, Definition 3.3.3].

Let now L be the mapping cylinder of δ. Since J is a finite simplicial set, L must be finite
as well. By the usual factorizations obtained via mapping cylinders, we get a triangle

C

K Li

f
p

commuting up to J-homotopy, where i is a monomorphism and p is a Joyal equivalence. If
H is a J-homotopy between f and pi, we may find a map H̃ fitting in the diagram

K × J ∪ L× {1} C

L× J

H∪p

H̃

since K × J ∪L× {1} → L× J is categorical anodyne extension. Hence, by restricting H̃ to
L× {0}, we get the desired commutative triangle, and the proof is then concluded.
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Proposition 2.4.5. Let γ : sSet → Cat∞ be the localization functor. Then an ∞-category
C is finite if and only if there exists a finite simplicial set K and an equivalence C ' γ(K).

Proof. Let sSetf be the full subcategory of sSet spanned by the finite simplicial sets, and
denote by F the essential image of the restriction of γ to sSetf . We need to show that Catf∞
coincides with F.

Let K be any finite simplicial set, so that in particular there exists some finite n such
that K = skn(K). By induction on n and using the cellular decomposition∐

∂∆n→K
∂∆n skn−1(K)

∐
∆n→K

∆n skn(K)

we see that to prove that L(K) belongs to Catf∞, it suffices to show that each ∆n does. But
this is clear because n-simplex is Joyal equivalent to the n-spine. Thus we have F ⊆ Catf∞.

Since F contains ∅, ∆0, and ∆1, we are now only left to show that F is closed under
pushouts. Let

D← C→ E

be any cospan of ∞-categories in F, and let K → C be any Joyal equivalence, where K is a
finite simplicial set. Thus, by applying Lemma 2.4.4 twice, we get a map of cospans

L K M

D C E

where the vertical arrows are Joyal equivalences and the upper horizontal arrows are monomor-
phisms. We then get a Joyal equivalence between the respective homotopy pushouts, and
thus the desired conclusion.

2.4.2 Finiteness properties of compact conically smooth spaces

The main goal of this section is to show that the exit path∞-category of a compact conically
smooth stratified space is finite (Proposition 2.4.15). For this purpose, we make use of
Lurie’s model of the exit path ∞-category, of which we now recall the definition for the
reader’s convenience. By a slight abuse of notation, for a poset P we still denote by P the
topological space obtained by equipping the poset with the Alexandroff topology. If X → P
is a stratified topological space, then we define ExitP (X) by forming the pullback

ExitP (X) Sing(X)

N(P ) Sing(P )

in the category of simplicial sets. Lurie showed that if the stratification X → P is conical,
then ExitP (X) is an∞-category ([Lur17, Theorem A.6.4]). The reason why we prefer to focus
on this perspective is that, as opposed to the model given in [AFT17], it has an evident much
richer functoriality: by the functoriality of Sing, Exit is functorial with respect to general
stratified maps. On the other hand the one in [AFT17] is only functorial with respect to
conically smooth open embeddings. We also see immediately that, if we stratify P over itself
through the identity, then ExitP (P ) = N(P ). We will also need the following easy lemma.
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Definition 2.4.6. Let f : (X → P )→ (Y → Q) be a map of stratified spaces. We say that
f is a full inclusion of strata if the underlying map of posets P → Q is injective and full, and
the square

X Y

P Q

is a pullback of topological spaces.

Lemma 2.4.7. Let X → P and Y → Q be stratified spaces, and assume that the strat-
ification on X is conical. Assume that we have a stratified embedding Y ↪→ X which
is a full inclusion of strata. Then ExitQ(Y ) is an ∞-category and the induced functor
ExitQ(Y )→ ExitP (X) is fully faithful.

Proof. Since the functor Sing from topological spaces to simplicial sets preserves limits and
since Y ↪→ X is inclusion of strata, we get a pullback square

(2.4.8)

ExitQ(Y ) ExitP (X)

N(Q) N(P )

of simplicial sets. By [Lur17, Theorem A.6.4, (1)] the functor ExitP (X) → N(P ) is an
inner fibration, and so by the pullback square (2.4.8) also ExitQ(Y ) → N(Q) is an inner
fibration, which implies that ExitY (Y )) is an ∞-category. Moreover, since the inclusion is
full, we know that the functor N(Q) → N(P ) is fully faithful, and thus we may conclude
again by (2.4.8).

Recall that for a proper conically smooth fiber bundle π : L→ X, we define the fiberwise
cone of π as the pushout

(2.4.9)

L L× R≥0

X C(π)

taken in the category of conically smooth stratified spaces. By definition, we get a new fiber
bundle C(π)→ X whose fibers are isomorphic to basics. We now show how to compute the
exit paths of C(π) in terms of L and X.

Lemma 2.4.10. Let π : L → X be a proper conically smooth fiber bundle. Then the
commutative square

Exit(L) Exit(L× R≥0)

Exit(X) Exit(C(π))

in Cat∞ induced by (2.4.9) is a pushout.

Proof. By the Van Kampen theorem for exit paths [Lur17, Theorem A.7.1], we may assume
that X is a basic. Thus, by [AFT17, Corollary 7.1.4], we may also assume that π is a trivial
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bundle. Since Exit commutes with finite products, we may assume that X = ∗, and hence
we are only left to prove that for any compact conically smooth space L the square

Exit(L) Exit(L× R≥0)

∆0 Exit(C(L))

is a pushout in Cat∞. This follows, for example, by [AFT17, Lemma 6.1.4], or can be easily
checked by hand even without any conically smooth assumption on L.

We will also need to use the unzip and link construction, as defined in [AFT17, Definition
7.3.11]. For any proper constructible embedding X ↪→ Y we have a pullback square

(2.4.11)

LinkX(Y ) UnzipX(Y )

X Y.

πX

Here UnzipX(Y ) is a conically smooth manifold with corners whose interior is identified
with Y \X, and UnzipX(Y )→ Y and πX : LinkX(Y )→ X are proper constructible bundles.
To get a feeling of how UnzipX(Y ) works, one may think of it as a generalization of the
spherical blow-up (see [AK10]): more precisely, when Y is a smooth manifold stratified with
a closed submanifold X and its open complement, then the unzip of X ↪→ Y coincides with the
spherical blow-up of X in Y , and the link is diffeomorphic to the boundary of any normalized
tubular neighbourhood of X in Y .

The link of a proper constructible embedding is used to provide tubular neighbourhoods
in the stratified setting. In [AFT17, Proposition 8.2.5], the authors show that there is a
conically smooth embedding

(2.4.12) C(πX) ↪→ Y

under X which is a refinement onto its image and whose image is open in Y (here we are

using the same notations are in (2.4.11)). Hence, if we denote by LinkX(Y )
:

×R>0 and C(πX)
:

the respective refinements of LinkX(Y )×R>0 and C(πX) through the embedding (2.4.12), a
straightforward application of Van Kampen theorem gives the following.

Corollary 2.4.13. Let X ↪→ Y be a proper conically smooth constructible embedding. Then
the square

Exit(LinkX(Y )
:

× R>0) Exit(Y \X)

Exit(C(πX)
:

) Exit(Y )

is a pushout in Cat∞.

Remark 2.4.14. Notice that, for the existence of tubular neighbourhoods, one may relax
the assumption of properness for a constructible embedding i : X ↪→ Y to just requiring that
there is a factorization

Y ′

X Y

ji′

i
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where i′ is a proper constructible embedding and j is a conically smooth open embedding.
For example, if P is the stratifying poset of Y and X = Yα for some α ∈ P , one may pick
Y ′ = Y≥α and thus get a tubular neighbourhood of Yp.

We are now ready to prove the main result of the section.

Proposition 2.4.15. Let X be any compact conically smooth stratified space. Then Exit(X)
is a finite ∞-category.

Proof. Since X is compact, X is finite dimensional, and hence also has finite depth. We then
argue by induction on depth(X) = k.

If k = 0, it is well known that that Exit(X) = Sing(X) is a finite ∞-groupoid. For
example, this follows by Van Kampen theorem [Lur17, Theorem A.3.1] and the existence of
finite good covers for X.

Assume now that k is positive. Denote by X0 the union of strata of minimal depth, and
by X>0 its complement in X. Clearly X>0 ↪→ X is a proper constructible embedding, and
hence by Corollary 2.4.13 we get a pushout

Exit(Link>0(X)
:

× R>0) Exit(X0)

Exit(C(π>0)
:

) Exit(X).

By Lemma 2.4.10, to conclude the proof it suffices to show that Exit(Link>0(X)
:

), Exit(C(π>0)
:

),
and Exit(X0) are finite.

Being a closed subset of X, the space X>0 is compact. By the pullback square (2.4.11)
Link>0(X) is compact too. Since the depths of both are stricly less than depth(X), by the
inductive hypothesis we get that X>0 and Link>0(X) both have finite exit path∞-categories.
Notice that we have a stratified embedding

Link>0(X)
:

× R>0 ↪→ X0

and X0 is a smooth manifold. In particular, we see that the stratification on Link>0(X)
:

is trivial. Thus Exit(Link>0(X)
:

) is a localization of Exit(Link>0(X)) at all maps, and by

Lemma 2.4.3 we see that Exit(Link>0(X)
:

) is finite.
By Lemma 2.4.10 and the inductive hypothesis, we also know that Exit(C(π>0)) is finite.

By [AFT17, Proposition 1.2.13] we know that the canonical functor

φ : Exit(C(π>0))→ Exit(C(π>0)
:

)

is a localization at the class of exit paths that are inverted by φ. Since the inclusion
C(π>0) ↪→ X lies under X>0, the same argument as above shows that an non-invertible
exit path is inverted φ is and only if it lies inside Link>0(X) × R>0 ↪→ C(π>0). Further-
more, since Link>0(X) × R>0 ↪→ C(π>0) is a full inclusion of strata, by Lemma 2.4.7 the
induced functor on exit paths is the inclusion of a full subcategory. This implies that one can

identify Exit(C(π>0)
:

) with the localization of Exit(C(π>0)) at Exit(Link>0(X)× R>0). By

Lemma 2.4.3, Exit(C(π>0)
:

) is finite.
We know that X0 is the interior of the compact manifold with corners Unzip>0(X).

By an argument completely analogous to [AMGR19, Lemma 2.1.3], one can show that the
existence of collaring for corners ([AFT17, Lemma 8.2.1]) implies that the inclusion X0 ↪→
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Unzip>0(X) is an homotopy equivalence. Hence to conclude the proof it suffices to show that
Sing(Unzip>0(X)) is finite. This follows by the existence of good covers for manifolds with
corners.

Corollary 2.4.16. Let X be a finitary conically smooth stratified space (see [AFT17, Def-
inition 8.3.6]). Then Exit(X) is a finite ∞-category. In particular, if X is the interior of a
compact conically smooth manifold with corners, then Exit(X) is a finite ∞-category.

Proof. By Proposition 2.4.15 and Lemma 2.4.10, the class of conically smooth spaces with
finite exit path∞-category contains all basics. Thus it suffices to show that it is closed under
taking collar glueings. But this is clear, since for any collar glueing f : Y → [−1, 1] we get an
open covering of Y given by f−1([−1, 1)) f−1((−1, 1]) and f−1(0) are finitary.

The last part of the statement follows by [AFT17, Theorem 8.3.10 (1)].

2.5 Homotopy invariance and exodromy with general coeffi-
cients

In this section we explain how to use our development of six operations to extend homo-
topy invariance and the exodromy equivalence to (formally) contructible sheaves (see Def-
inition 2.5.2) valued in stable and bicomplete ∞-categories (Theorem 2.5.16). With these
at hand, we show that global sections of constructible sheaves on compact conically smooth
stratified spaces are dualizable (Corollary 2.5.18).

2.5.1 Homotopy invariance of constructible sheaves

From now on, all ∞-categories appearing as coefficients for sheaves will be assumed to be
stable and bicomplete, all topological spaces locally compact Hausdorff and all posets Noethe-
rian.

Remark 2.5.1. Recall that, by [AFT17, Lemma 2.2.2], any C0-stratified space admits a
basis given by its open subsets homeomorphic to Rn × C(Z), where Z is a compact C0-
stratified space. A simple inductive argument shows that the stratifying poset of Z, and
hence of Rn × C(Z), is finite. Therefore the stratifying poset of any C0-stratified space is
locally finite, and therefore Noetherian.

Definition 2.5.2. Let X → P be a stratified space. We say that a sheaf F ∈ Shv(X;C)
is formally constructible if for any α ∈ P the restriction of F to the stratum Xα is locally
constant.

Assume now that C admits a closed symmetric monoidal structure, and denote by Cdual

the full subcategory of C spanned by dualizable objects. We say that F is constructible if F
is formally constructible and each stalk of F belongs to Cdual.

We denote by Shvfc(X;C) and Shvc(X;C) the full subcategories of Shv(X;C) spanned
respectively by formally constructible and constructible sheaves. Dually, we define formally
constructible and constructible cosheaves on X just as CoShvfc(X;C) := Shvfc(X;Cop)op and
CoShvc(X;C) := Shvc(X;Cop)op.

In this chapter we only deal with constructible sheaves with respect to a specified stratifi-
cation. Therefore, we will take the liberty of omitting the stratifying poset from our notation
for constructible sheaves.

We first recall the proof of the homotopy invariance of constructible sheaves. Our argu-
ment follows precisely the one in [HPT20]. Nevertheless we will try to quickly outline the
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main steps just to convince the reader that all the results in [HPT20], after what we achieved
in the first chapter, generalize to the setting of stable bicomplete coefficients, at least if we
restrict ourselves to locally compact Hausdorff spaces.

Theorem 2.5.3 (Homotopy invariance). LetX → P be a stratified space. Let p : X×[0, 1]→
X be the canonical projection. Then p∗ : Shv(X;C) → Shv(X × [0, 1];C) restricts to an
equivalence

Shvfc(X;C) ' Shvfc(X × [0, 1];C).

As a consequence, if Y → P is another stratified space and f : X → Y is a stratified homotopy
equivalence, then the functor

f∗ : Shvfc(Y ;C)→ Shvfc(X;C).

is an equivalence.

Proof. We first treat the case of locally constant sheaves, i.e. when P = ∗. By [Lur17, Lemma
A.2.9] we know that p∗ is fully faithful. We first show that f∗ preserves constant sheaves: if
a : X → ∗ and b : X × [0, 1] → ∗ are the unique maps then, for any object M ∈ C, the fully
faithfulness of f∗ implies

p∗b
∗M ' p∗p∗a∗M
' a∗M.

Moreover, since I is compact, Proposition 1.6.9 provides a base change formula for p∗. Using
basechange and [HPT20, Lemma 4.9], we then see that p∗ preserves locally constant sheaves.
Hence to conclude we only need to show that, for any locally constant sheaf F on X × I, the
counit map p∗p∗F → F is an equivalence. Again by basechange and [HPT20, Lemma 4.9],
we may reduce to F ' b∗M constant. In this case we have a commutative diagram

p∗p∗b
∗M b∗M

p∗p∗p
∗a∗M p∗a∗M

p∗a∗M

counitb∗M

' '
counitp∗a∗M

p∗(unita∗M ) '
id

which implies the desired result.
Now assume that P is any Noetherian poset. Using basechange, one sees that p∗ preserves

constructible sheaves, and thus we are left to show that for any F constructible p∗p∗F → F is
an equivalence. By Corollary 1.4.7 any stable and bicomplete∞-category respects glueing in
the sense of [HPT20, Definition 5.17]. Hence [HPT20, Lemma 5.19] implies that the functor
given by restricting to the strata of X are jointly conservative. By base change we may thus
assume that F is locally constant, in which case the counit is known to be an equivalence by
the previous step.

The last part of the statement then follows by a standard argument analogous to the
proof of Theorem 2.5.3.

We now present a couple of useful corollaries of homotopy invariance.

Corollary 2.5.4. Let f : X → Y be a stratified homotopy equivalence, F ∈ Shvfc(Y ;C).
The the natural map

Γ(Y ;F )→ Γ(X; f∗F )

is an equivalence.
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Proof. The commutative triangle

X Y

∗

f

a b

induces an invertible natural tranformation f∗b∗ ' a∗. Since both a∗ and b∗ factor through
formally constructible sheaves, we get b∗ ' ηa∗, where η is any adjoint inverse of the re-
striction of f∗ to Shvfc(Y ;C). Thus, by passing to right adjoints, we get the desired equiva-
lence.

We will need the following easy lemma.

Lemma 2.5.5. Let Z be a compact topological space, and let C(Z) be the cone of Z. Then
the family of open subsets

{Cε(Z) | ε ∈ R>0}

forms a basis at the cone point.

Proof. Let R≥0 × Z → C(Z) be the quotient map, and for each ε > 0 denote by Cε(Z) the
image of the open subset [0, ε)× Z. We will prove that for every open subset W of R≥0 × Z
containing {0} × Z there exists some ε > 0 such that [0, ε) × Z ⊆ W . Since Z is compact,
one can obtain a finite covering of {0} ×Z with opens of the type Vi × [0, εi) ⊆W , and thus
by taking ε to be the minimum of the εi we get the claim.

Corollary 2.5.6. Let X be a C0-stratified space and F ∈ Shvfc(X;C). For any point x ∈ X
and any conical chart Rn × C(Z) centered in x, the natural map

Γ(Rn × C(Z);F )→ Fx

is an equivalence.

Proof. By Lemma 2.5.5 and a standard cofinality argument, we see that

lim−−→
ε>0

Γ(Rn × Cε(Z);F ) ' Fx

and by Corollary 2.5.4 we have

Γ(Rn × C(Z);F ) ' lim−−→
ε>0

Γ(Rn × Cε(Z);F )

which concludes our proof.

Now ler X → P be a conically smooth stratified space, and let α ∈ P . By Remark 2.4.14,
we get commutative triangle

Xα

C(πα) X

i iα

j

where πα is the fiber bundle LinkXα(X≥α) → Xα, i is the cone-point section of the fiber
bundle p : C(πα)→ Xα and j is a conically smooth open immersion. For any F ∈ Shv(X;C),
the unit of the adjunction i∗ a i∗ gives a natural map

(2.5.7) p∗j
∗F → p∗i∗i

∗j∗F ' i∗αF.
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Furthermore the map (2.5.7) can be obtained by applying the sheafification functor to

(2.5.8) p∗j
∗F → p∗i∗(i

∗)prej∗F ' (i∗α)preF

where (i∗)pre and (i∗α)pre denote the corresponding presheaf pullback functors.

Corollary 2.5.9. Let Xα ↪→ X be the inclusion of a stratum in a conically smooth stratified
space, and let F be any formally constructible sheaf on X. Then the map (2.5.7) is an
equivalence.

Proof. Since F is a sheaf, it suffices to show that (2.5.8) is an equivalence. As usual, it suffices
to prove that it is an equivalence after taking sections on any euclidean chart U of Xα. For
any such U , by [AFT17, Corollary 7.1.4] we have

Γ(U ; p∗j
∗F ) = Γ(U × C(Z);F )

for some compact conically smooth stratified space Z. Thus we are left to show that the
natural map

(2.5.10) Γ(U × C(Z);F )→ lim−−→
U⊆V

Γ(V ;F )

is an equivalence.
By a cofinality argument, the map (2.5.10) factors through an equivalence

lim−−→
ε>0

Γ(Cε(Z);F ) ' lim−−→
U⊆V

Γ(V ;F ),

and thus we are left to show that

Γ(U × C(Z);F )→ lim−−→
ε>0

Γ(Cε(Z);F )

is an equivalence. This last assertion then follows by Corollary 2.5.4.

2.5.2 Exodromy

This subsection is devoted to extending the proof of the exodromy equivalence on coni-
cally smooth stratified spaces to constructible sheaves valued in stable and bicomplete ∞-
categories. To do this we will use the model of the exit path∞-category of a conically smooth
stratified space given in [AFT17, Definition 1.1.3], so we briefly recall how this is defined.

Let Strat be the 1-category whose objects are conically smooth stratified spaces and
morphisms are conically smooth maps, Snglr the subcategory of Strat with the same objects
and with morphisms given by open immersions, and Bsc the full subcategory of Snglr spanned
by basic conically smooth stratified spaces, i.e. those which are isomorphic in Strat to one of
the type Rn × C(Z), where Z is compact. Thus, one has functors

Bsc→ Snglr→ Strat.

In [AFT17, Lemma 4.1.4], the authors show that all the categories appearing in (2.5.2)
admit enrichments in Kan complexes. By passing to homotopy coherent nerves, one gets
∞-categories that we denote by

(2.5.11) Bsc→ Snglr→ Strat.
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For any conically smooth stratified space, the authors of [AFT17] then define Exit(X) as
the opposite of the slice Bsc/X . Their proof of the exodromy equivalence for constructible
sheaves of spaces, combined with the one in [Lur17], implies that Lurie’s exit paths ∞-
category has to be equivalent to Bsc/X (see [AFT17, Corollary 1.2.10]).

One has obvious functors
Bsc/X Bsc/X

U(X)

γ

im

where im sends an open immersion to its image in X. In [AFT17, Lemma 4.5.1], the authors
show that γ is a localization at the class W of open immersions of basics U ↪→ V such that U
and V are abstractly isomorphic in Strat. That is, precomposing with γ gives an equivalence

(2.5.12) γ∗ : Fun(Exit(X),C)→ FunW (Bscop/X ,C)

where the right-hand side denotes the full subcategory of Fun(Bscop/X ,C) spanned by functors
which send all morphisms in W to equivalences. In the next proposition we show that W
coincides with the class of open immersions which are stratified homotopy equivalences, and
then characterize the property of being formally constructible through these maps.

Proposition 2.5.13. Let X → P be a conically smooth stratified space, and let F ∈
Shv(X;C). Then the following assertions are equivalent:

(i) F is formally constructible;

(ii) for any inclusion V ↪→ U of basic open subsets of X which is a stratified homotopy
equivalence, then

Γ(U ;F )→ Γ(V ;F )

is an equivalence;

(iii) for any inclusion V ↪→ U of basic open subsets of X which are abstractly isomorphic,
then

Γ(U ;F )→ Γ(V ;F )

is an equivalence.

Proof. We first prove that (ii) is equivalent to (iii) by showing that an open immersion
j : V ↪→ U of basic open subsets of X is a stratified homotopy equivalence if and only if U
and V are abstractly isomorphic.

If j is a stratified homotopy equivalence, it follows that U and V are stratified over the
same subposet of P , and so by [AFT17, Lemma 4.3.7] U and V are isomorphic. Viceversa, if
j : Rn×C(Z) ↪→ Rn×C(Z) is a conically smooth open embedding, then by [AFT17, Lemma
4.3.6] j is homotopy equivalent to D0j, where D0j denotes the differential of j at the point
(0, cone pt) (see [AFT17, Definition 3.1.4]). Since D0j is a stratified homotopy equivalence,
then the same is true for j.

By Theorem 2.5.3 we have that (i) implies (ii), so we are left to show that (iii) implies
(i). Let i : Y → X be the inclusion of a stratum, and let V ↪→ U be an inclusion of euclidean
charts of U . By Corollary 2.5.9, the horizontal arrows in the commutative square

Γ(U × C(Z);F ) Γ(U ; i∗F )

Γ(V × C(Z);F ) Γ(V ; i∗F )
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are invertible, and thus Γ(U ; i∗F )→ Γ(V ; i∗F ) is invertible too. Hence, we may assume that
X is a smooth manifold. The result is now a very special case of [HPT20, Proposition 3.1].
For the reader’s convenience, we review and adapt the proof of [HPT20, Proposition 3.1] to
our setting in the following proposition.

Proposition 2.5.14. Let X be a smooth manifold, and let F ∈ Shv(X;C). Then the
following assertions are equivalent:

(i) F is locally constant;

(ii) for any inclusion V ↪→ U of euclidean charts of X, the restriction

Γ(U ;F )→ Γ(V ;F )

is an equivalence.

Proof. Since the question is local, we may assume that X = Rn, in which case we will prove
that condition (ii) implies that F is constant. More precisely, we will show that, if a : Rn → ∗
is the unique map, the counit morphism

(2.5.15) a∗a∗F → F

is an equivalence. Since Rn is hypercomplete and admits a basis given by those open subsets
diffeomorphic to itself, it then suffices to check that for any such open j : U ↪→ Rn, the
map a∗j∗j

∗a∗a∗F → a∗j∗j
∗F obtained by applying to (2.5.15) the functor of sections at U is

invertible. Notice that we have a commutative triangle

a∗j∗j
∗a∗a∗F a∗j∗j

∗F

a∗F

a∗j∗j∗counitF

counita∗F
a∗(unitF )

'

where the diagonal map is invertible by the assumption in (iii), and thus to conclude the
proof it suffices to show that a∗ is fully faithful, which follows by the homotopy invariance of
the shape (see Corollary 1.3.4).

Theorem 2.5.16 (Exodromy). The composition

Fun(Exit(X),C) FunW (Bsc/X ,C) Fun(U(X)op,C)
γ∗ im∗

is fully faithful with essential image Shvfc(X;C). Moreover, if we assume that C has a
closed symmetric monoidal structure, the statement remains true if we replace C by Cdual

and Shvfc(X;C) by Shvc(X;C).

Proof. By Proposition 2.5.13, it suffices to show that the restriction of im∗ to FunW (Bsc/X ,C)

factors through Shvfc(X;C).
Let U be basic open subset of X and let κ : T ↪→ Bsc/U be a covering sieve. Clearly there

is at least one V ∈ T whose image in U intersects the locus of maximal depth. By [AFT17,
Lemma 4.3.7], U and V are abstractly isomorphic. Then for any F ∈ FunW (Bsc/X ,C) we
have a commutative triangle

Γ(U ;F ) lim←−−
O∈T

Γ(O;F )

Γ(V ;F )

'
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where the diagonal map is invertible by assumption. By [AFT17, Proposition 3.2.23] and
[Aok20, Theorem A.6], to conclude the proof it suffices to show that the vertical map is
invertible. Let δ : T → T be the localization of T at W . Since δ is final and κ∗ sends maps
in X to equivalences, the result then follows by observing that V is a terminal object in T.

The second part of the statement is obvious after Corollary 2.5.6.

Remark 2.5.17. Notice that even though we assumed from the beginning that the co-
efficients are stable and bicomplete, all the arguments we have discussed work whenever
Shv(X;C) ↪→ Fun(U(X)op,C) admits a left adjoint and C respects glueings in the sense of
[HPT20, Definition 5.17]. In particular, our proof recovers also the case C = S. A proof of the
exodromy equivalence with presentable coefficients but on a much bigger class of stratified
spaces will appear soon in [PT22].

Corollary 2.5.18. Let Z be any compact conically smooth stratified space, and let F ∈
Shvc(X;C). Then Γ(Z;F ) is dualizable.

Proof. Since γ is final, by Theorem 2.5.16 we know that there exists a functor G : Exit(Z)→
Cdual such that global sections of F are equivalent to the limit of G. Therefore the proof
is concluded by applying Proposition 2.4.15 and observing that, since C is stable and its
monoidal structure is closed, Cdual is is itself stable.

Remark 2.5.19. Let Z be a stratified space such that Exit(Z) is a retract in Cat∞ of a
finite ∞-category, and assume that the exodromy equivalence holds for constructible sheaves
on Z. Since Cdual is idempotent complete, the same argument of Corollary 2.5.18 shows that
for any F ∈ Shvc(X;C), the object Γ(Z;F ) is dualizable.

2.6 Verdier duality

This final section is devoted to proving Verdier duality for conically smooth spaces (Theo-
rem 2.6.3). For this reason, from now on our ∞-categories of coefficients are assumed to be
equipped with a closed symmetric monoidal structure.

We first introduce the usual duality functor. For any stratified space X, we will denote
by ωC

X the sheaf of a!(1C), where a : X → ∗ is the unique map and 1C is the monoidal unit
in C. The sheaf ωC

X will be called the C-valued dualizing sheaf of X. We denote the functor

HomX(−, ωC
X) : Shv(X;C)op → Shv(X;C)

simply by DC
X and, when X = ∗, we will only write DC : Cop → C.

Proposition 2.6.1. For any C0-stratified space X, the dualizing sheaf ωC
X is constructible.

Proof. First of all, notice that, by Proposition 1.6.16, we have an equivalence

ωC
X ' ω

Sp
X ⊗ 1C,

where the right-hand side denotes the image of the pair (ωSp
X ,1C) under the variablewise

cocontinous functor

(2.6.2) Shv(X; Sp)× C→ Shv(X; Sp)⊗ C ' Shv(X;C).

When X = ∗, (2.6.2) corresponds with the usual tensoring over spectra given by cocomplete-
ness and stability of C. Moreover, by Proposition 1.5.18, for each point x : ∗ → X we have
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commutative square

Shv(X; Sp)× C Shv(X;C)

Sp× C C.

x∗
Sp×C x∗

C

Since a spectrum is dualizable if and only if it is finite, and since dualizable objects in C

are closed under finite colimits, we see that it suffices to prove the proposition in the case in
which C = Sp.

We will proceed by induction on the depth of X. If X has depth 0, then X is a topological
manifold, and hence ωX is locally constant of rank the dimension of X. Now assume that
X has finite non-zero depth. Since the question is local on X, by [AFT17, Lemma 2.2.2] we
may assume that X = Rn×C(Z), where Z is a compact C0-stratified space with depth(Z) <
depth(X).

Let p : Rn × C(Z) → C(Z) be the projection, b : C(Z) → ∗ the unique map. By
Proposition 1.6.18, for any sheaf F on C(Z) we have a functorial equivalence p!F ' Σnp∗F ,
so it suffices to show that b!S = ωC(Z) is constructible. Hence we may assume that X = C(Z).

Let i : {x} ↪→ X be the inclusion of the cone point and j : U ↪→ X its open complement,
which is evidently homeomorphic to R× Z. We have a localization sequence

j]j
∗ωX → ωX → i∗i

∗ωX .

By the inductive hypothesis j∗ωX is constructible, and thus for every stratum T ⊆ X which
does not contain the cone point, the restriction of ωX is locally constant. Hence it remains to
prove that the stalk of ωX at the cone point is a finite spectrum. But by a routine cofinality
argument we get

(ωX)x = lim−−→
x∈U

Γ(U ;ωX)

' lim−−→
ε>0

Γ(Cε(Z);ωX)

' lim−−→
ε>0

Hom(Γc(Cε(Z);SX),S).

To conclude the proof, we will now show that the canonical extension map Γc(Cε(Z);SX)→
Γc(X; SX) is an equivalence for each ε and that Γc(X;SX) is a finite spectrum.

First of all, notice that for any K ⊆ Cε(Z) compact containing the cone point, there
exists a T ≥ 0 such that K ⊆ CT (Z) (namely, take T to be the maximum in the image of K
through the projection Cε(Z)→ R≥0). Hence we have a commutative square

Γc(Cε(Z);SX) lim−−→
0≤T<ε

ΓCT (Z)(X; SX)

Γc(X;SX) lim−−→
T≥0

ΓCT (Z)(X;SX).

'

'

Since both colimits on the right-hand side of the square are indexed by filtered posets, to
prove that the horizontal maps are invertible it will suffice to show that the functors of which
we compute both colimits are constant. By definition, there is a fiber sequence

ΓCT (Z)(X; SX)→ Γ(X;SX)→ Γ(X \ CT (Z);SX).
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By homotopy invariance of the shape, since X is contractible and X \ CT (Z) ' Z there is a
commutative diagram

Γ(X;SX) Γ(X \ CT (Z);SX)

HomSp(Σ∞+X,S) HomSp(Σ∞+(X \ CT (Z)),S)

S HomSp(Σ∞+Z,S)

' '

' '

where the lower horizontal arrow is induced by applying the functor HomSp(Σ∞+(−), S) to the
unique arrow Z → ∗. Thus we get

ΓCT (Z)(X; SX) ' fib(S → HomSp(Σ∞+Z,S))

for any T ≥ 0. Hence to conclude the proof it suffices to show that Σ∞+Z is a finite spectrum.
This is clear since, for any spectrum M , we have a functorial equivalence

Hom(Σ∞+Z,M) ' a!a
∗M

and a!a
∗ preserves (filtered) colimits: since the class of compact objects in Sp coincides with

the one of finite spectra, we may conclude. Otherwise, one may see this as a consequence of
Lemma 2.4.3, Proposition 2.4.15 and the fact that Σ∞+ preserves finite objects.

Theorem 2.6.3. Let X be a conically smooth stratified space. Then the restriction to
Shvc(X;C)op of the functor DC

X factors through an equivalence

DC
X : Shvc(X;C)op Shvc(X;C).'

Proof. Let j : U ↪→ X be any open subset of X. Then, for any F ∈ Shv(X;C), by applying
Corollary 1.3.26, Lemma 1.6.5 and Proposition 1.6.12 we get functorial equivalences

Γ(U ; HomX(F, ωX)) ' Γ(U ; HomU(j∗F, j∗ωC
X))

' Γ(U ; HomU(j∗F, ωC
U ))

' HomC(Γc(U ;F ),1C)

and thus there is a factorization

Shv(X;C)op Shv(X;C).

CoShv(X;C)op

HomX(−,ωX)

D
'

DC
•

where DC
• denotes the functor obtained by postcomposing with DC : Cop → C.

We start by showing that D restricts to an equivalence

(2.6.4) D : Shvfc(X;C) ' CoShvfc(X;C).

First of all, we prove that if F ∈ Shv(X;C) is locally constant, then DF is a formally
constructible cosheaf. Since both properties are local, it suffices to show that D sends constant
sheaves to formally constructible sheaves, so assume F ' a∗M where a : X → ∗ is the unique

90



map. In this case we have that DF ' a!
CopM , and so by Proposition 2.6.1 we get what we

want.
Assume now that F is any formally constructible sheaf, and let i : Xα ↪→ X by the

inclusion of a stratum of X, with complement j : U ↪→ X. Thus, we need to show that
i∗CopDF ' Di!CF is locally constant. Since the question is local, by restring to X≥α one may
assume that Xα is a closed stratum, so that we have a fiber sequence

(2.6.5) i!CF → i∗CF → i∗Cj
C
∗ j
∗
CF.

Hence to conclude, since we have already shown that D preserves locally constant sheaves on
smooth manifolds, it suffices to show that jC∗ j

∗
CF is formally constructible. For any inclusion

V ↪→W of basic open subsets of X, we have a commutative square

Γ(V ; jC∗ j
∗
CF ) Γ(V ∩ U ;F )

Γ(W ; jC∗ j
∗
CF ) Γ(W ∩ U ;F ),

'

'

where the right vertical map is an equivalence by Corollary 2.5.4, since V ∩ U ↪→ W ∩ U is
still a stratified homotopy equivalence. Hence, by Proposition 2.5.13 we conclude that jC∗ j

∗
CF

is formally constructible.
We now prove that D restricts to an equivalence

(2.6.6) D : Shvc(X;C) ' CoShvc(X;C).

For this it suffices to show that, for any x ∈ X and F ∈ Shvfc(X;C), Fx ∈ C is dualizable
if and only if (DF )x is dualizable, where the latter denotes the costalk of DF at x. Let
x : ∗ ↪→ X be the inclusion of a point x ∈ X. By definition, there are equivalences (DF )x '
x∗Cop(DF ) ' x!

CF . Thus, by applying global sections to the localization sequence associated
to i and j, we obtain a fiber sequence

x!F ' Γ(X; i∗i
!F )→ Γ(X;F )→ Γ(U ;F )

and hence an equivalence
Γ{x}(X;F ) ' i!F.

Thus, by choosing a conical chart Rn × C(Z) around x and by applying Corollary 2.5.6, we
get a fiber sequence

(DF )x → Fx → Γ((Rn × C(Z)) \ (0, ∗);F )

where ∗ ∈ C(Z) denotes the cone point. Therefore by Corollary 2.5.18, to conclude it will
suffice to show that Exit((Rn × C(Z)) \ (0, ∗)) is finite. But by Van Kampen for exit paths,
one has a pushout

Exit(Rn \ {0} × R>0 × Z) Exit(Rn × R>0 × Z)

Exit(Rn \ {0} × C(Z)) Exit(Rn × C(Z)) \ (0, ∗))

and so the result follows from Proposition 2.4.15 and Lemma 2.4.10.
We finally show that

DC
• : CoShvc(X;C)op → Shvc(X;C)
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is an equivalence. The diagram

Fun(Exit(X), (Cdual)op) Fun(Exit(X),Cdual)

FunW (Bsc/X , (C
dual)op) FunW (Bsc/X ,C

dual)

CoShvc(X;C) Shvc(X;C)

DC
•

γ∗' γ∗'

DC
•

im∗'
DC
•

im∗'

commutes since the horizontal arrows are given by postcompositions and the vertical arrows
by precompositions. Moreover, since the restriction of DC induces a duality on Cdual, the
upper horizontal arrows are equivalences, and thus we get the desired conclusion.

Remark 2.6.7. Since the functor (2.6.4) can be promoted to a natural transformation of
sheaves of ∞-categories on X, to prove that it is actually an equivalence one could have
assumed from the beginning that X is a basic. In this case the stratifying poset of X is finite,
and hence one could have deduced that (2.6.4) is an equivalence by [AMGR19, Corollary
7.4.25] (see [AMGR19, Example 1.10.8]). However, we preferred to give a more concrete and
independent proof to make our discussion as self contained as possible.

Remark 2.6.8. Notice that the equivalences (2.6.4) and (2.6.6) are already interesting on
their own, because they imply that for any stratified map f : X → Y , fC∗ or f∗C preserves
(formal) constructibility if and only if fC! or f !

C does. In particular, we see that f !
C always

preserves (formally) constructible sheaves.

Remark 2.6.9. Any µ-stratification of an analytic manifold in the sense of [KS90] satisfies
the Whitney conditions, and hence by Theorem 2.3.7 defines a conically smooth structure.
Thus, Theorem 2.6.3 recovers and generalizes the duality on constructible sheaves on analytic
manifolds as defined in [KS90] (i.e. sheaves which are constructible in our sense with respect
to some µ-stratification).
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pacts. Séminaire Bourbaki, 9:337–349, 1965.

[Wal65] C. T. C. Wall. Finiteness conditions for CW-complexes. Annals of Mathematics,
81(1):56–69, 1965.

96


	Six functor formalism
	Introduction
	Linear overview

	Sheaves and tensor products
	Tensor product of cocomplete -categories
	Sheaves and cosheaves

	Shape theory and shape submersions
	Relative shape
	Locally contractible geometric morphisms
	Shape submersions

	Localization sequences
	Pullbacks with stable bicomplete coefficients
	Recollections on covariant Verdier duality
	Dualizability of spectral sheaves
	The pullback fC

	Six functor formalism
	The formulas for f!C
	f!C when f is a locally contractible geometric morphism

	Relative Atiyah Duality
	Thom spaces and the J-homomorphism
	Relative Atiyah duality


	Verdier duality on conically smooth stratified spaces
	Introduction
	Linear overview

	Background on stratified spaces
	Whitney stratifications (Thom, Mather)
	Conical and conically smooth stratifications (Lurie, Ayala-Francis-Tanaka)

	Whitney stratifications are conically smooth
	Whitney stratifications are conical
	Whitney stratifications are conically smooth

	Finite exit paths
	Finite -categories
	Finiteness properties of compact conically smooth spaces

	Homotopy invariance and exodromy with general coefficients
	Homotopy invariance of constructible sheaves
	Exodromy

	Verdier duality


