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In this work we investigate the infrared behavior of a Yang-Mills theory coupled to a massless fermion in
the adjoint representation of the gauge group SU(2). This model has many interesting properties,
corresponding to theN ¼ 2 super-Yang-Mills theory without scalars and in the recent years there has been
an increasing interest toward understanding whether confinement and fermion condensation occur at low
energy. We simulate the theory on the lattice close to the massless limit using the overlap discretization of
the fermion action, allowing a precise and clean study of the chiral symmetry-breaking pattern and of the
fermion condensate. We present results for the scale setting, the condensate, and the running of the coupling
constant through the gradient flow—all of them pointing to a theory without an infrared fixed point and
remaining confined deep in the infrared regime.
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I. INTRODUCTION

Non-Abelian Yang-Mills theories coupled to fermions in
the adjoint representation of the gauge group (AdjQCD)
have properties similar to ordinary QCD, while featuring
many additional symmetries which are absent or broken in
gauge theories interacting with fundamental fermions. The
most notable examples are supersymmetry, center symmetry,
and discrete-axial symmetry. For instance, the model of
strong interactions between a gauge field and a massless
adjoint Majorana fermion corresponds to N ¼ 1 super-
Yang-Mills theory (SYM). The theory with two conserved
supercharges,N ¼ 2 SYM, can be broken down to a simple
gauge theory coupled to an adjoint Dirac fermion, namely
Nf ¼ 1AdjQCD, if the mass of the scalars is sent to infinity.
Also,when one of the twoMajorana components of theDirac
fermion becomes infinitely heavy, Nf ¼ 1 AdjQCD is
further reduced to N ¼ 1 SYM and supersymmetry is
restored. From this perspective, among all possible models,
Nf ¼ 1 AdjQCD is a simple but yet very interesting model
for testing the validity of the Seiberg-Witten electromagnetic
duality [1,2], being a connecting bridge between two pure

supersymmetric theories. We are interested in particular in
understandingwhetherNf ¼ 1AdjQCDhas an infrared (IR)
fixed point and lies inside the conformal window or if it is
slightly below the conformal boundary and presents a
dynamically generated scale like a chiral condensate.
If the theory lies below the conformal window, it is also

interesting to ask whether confinement and chiral symmetry
breaking are both simultaneously present. The interplay
between these two nonperturbative phenomena is already
alone a good motivation to study Nf ¼ 1 AdjQCD on the
lattice. While the transition from the hadronic matter to the
quark-gluon plasma at high temperatures is only a smooth
crossover inQCD, if quarks are replaced by adjoint fermions,
center symmetry is preserved and a deconfinement phase
transition occurs at some critical temperature Tc. The
anomalous breaking of UAð1Þ axial symmetry for adjoint
fermions leaves the partition function still invariant under a
discrete subgroup of axial rotations, opening therefore the
possibility for spontaneous symmetry breaking even with
just a single Majorana fermion. AdjQCD theories are there-
fore key models toward the study of how confinement and
chiral symmetry breaking are related one another.
If the gauge group is SUðNcÞ, adjoint fermions have the

property of contributing equally with gluons to the large Nc
limit [3,4], contrary to fundamental quarks that are going to
decouple at leading order when Nc → ∞. When the number
of fermionNf is too largehowever, theβ-function can quickly
develop an infrared fixed point, where the running of the
coupling freezes. In this case the theory is infrared conformal,
meaning for instance that the critical deconfinement
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temperature Tc scales to zero in the fermion massless
limit. While N ¼ 1 SYM has been proven to be confined
and chirally broken [5,6], Nf ¼ 2 lies already within
the conformal window, as probably Nf ¼ 3=2 [7–10].
Therefore, there is the possibility that Nf ¼ 1 AdjQCD lies
within the lower edge of the conformal window, given the
large number of degrees of freedom of adjoint fermions.
Indeed, previous lattice investigations are pointing in this
direction [11–13].An infrared fixedpoint in the runningof the
coupling would be a striking and surprising discovery, given
that N ¼ 2 SYM, including even more matter content, is
well known to be asymptotically free [1,2]. This result
would imply a very rich phase space connecting N ¼ 1 to
N ¼ 2 SYMwhen themasses of the scalars and of one of the
Majorana fermions are sent to infinity.
’t Hooft anomaly matching arguments suggest also a third

alternative scenario for the low-energy effective theory of
Nf ¼ 1AdjQCD,where a dynamical scale generationwould
be provided by a four-fermion condensate in place of a
vanishing vacuum expectation value of the standard chiral
condensate [14,15]. In this case, massless baryons would be
required to correctly saturate all anomalies.
Distinguishing a genuine conformal theory from a con-

fining theory near the lower edge of the conformalwindow is
a challenging task. Nonperturbative lattice simulations can
explore a regime where supersymmetry is broken, and in
general strong interactions outside the perturbative regime.
They are, however, limited to a certain range of scales. In this
contribution we will provide strong numerical evidence that
the theory has a scale provided by the breaking of chiral
symmetry in the range of considered parameters. In Sec. III
we will show the presence of a nonvanishing vacuum
expectation value of the chiral condensate. Fermion con-
densation is already a strong signal for the theory not being
infrared conformal, as the chiral condensate provides a
natural low-energy scale to the theory. Moreover, in
Sec. IV we will also study the behavior of the renormalized
gauge coupling thanks to the Wilson flow, providing more
evidence of the nonconformality. First, we will show how a
nonvanishing scale can be defined through the Wilson flow
evenwhen the chiral limit is taken. Finally, the running of the
strong coupling itself will show no evidence of a fixed point
even for energy regions already deep in the infrared regime.

II. Nf = 1 ADJOINT QCD

A. Continuum action

In this section we begin by recalling the most important
symmetries of the SU(2) gauge theory coupled to one
massless fermion in the adjoint representation. The
Lagrangian in the continuum reads

L ¼ −
1

2
TrðGμνðxÞGμνðxÞÞ

þ ψ̄ðxÞγμð∂μ þ igAa
μðxÞTA

aÞψðxÞ; ð1Þ

where the field strength tensor Gμν is ∂μAν − ∂νAμþ
ig½Aμ; Aν�. The generators TA

a of the gauge group
SU(2) act on the Dirac fermion field ψ in the adjoint
representation.
As in ordinary QCD, AdjQCD has a conserved UVð1Þ

vector symmetry and a UAð1Þ axial symmetry broken by
anomaly. The first difference with respect to QCD is that
axial anomaly leaves the partition function invariant under
a discrete Z2Nc

subgroup. A second difference is a peculiar
flavor symmetry appearing already with a single adjoint
Dirac fermion. In fact, as a gauge group element in the
adjoint representation is real, the real and imaginary parts
of the Dirac spinor do not mix, which means it decouples
into two Majorana spinors in Minkowski space [11]

ψ ¼ 1ffiffiffi
2

p ðλþ þ iλ−Þ; ð2Þ

where

λþ ¼ ψ þ Cψ̄Tffiffiffi
2

p ; λ− ¼ ψ − Cψ̄Tffiffiffi
2

p
i

: ð3Þ

The two components fulfill the Majorana condition by
construction and they can be combined into a Dirac
fermion field λ≡ ðλþ; λ−Þ. After this decomposition, the
Lagrangian of Eq. (1) can be rewritten as

L ¼ 1

2

X
k

λkðxÞðiDÞλkðxÞ −
1

2
TrðGμνðxÞGμνðxÞÞ; ð4Þ

where k ¼ þ;−. A “two-flavor” SUð2Þ symmetry of the
Lagrangian appears in terms of the two Majorana compo-
nents. Therefore, chiral rotations belonging to the group
Uð1ÞA ⊗ SUð2Þ are a symmetry at the classical level of the
Nf ¼ 1 AdjQCD action.
At the quantum level, the group of axial symmetry

transformations leaving the partition function invariant is
Z2Nc

⊗ SUð2Þ. This remaining symmetry can be sponta-
neously broken by a nonvanishing expectation value of the
chiral condensate. In this case, pions emerge as massless
Goldstone bosons associated to the breaking of the con-
tinuous SUð2Þ symmetry, while the remaining discrete part
implies Nc degenerate coexisting manifolds of vacua. For
our specific choice of the gauge group SUð2Þ we have
Nc ¼ 2, and the final unbroken symmetry group would
be Z2 ⊗ SOð2Þ.

B. Lattice discretization

Preserving chiral symmetry is crucial for our numerical
study of the fermion condensate. However, a lattice dis-
cretization of fermion fields preserving chiral symmetry is
challenging due to the limits imposed by the Nielsen-
Ninomiya theorem [16]. As demonstrated in Ref. [17], a
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modified chiral symmetry can be realized on the lattice if
the continuum anticommutator of the massless Dirac
operator D ¼ γμð∂μ þ Aa

μðxÞTA
aÞÞ with γ5

Dγ5 þ γ5D ¼ 0; ð5Þ

is modified by the addition of an irrelevant term (a denotes
the lattice spacing)

Dγ5 þ γ5D ¼ 2aDγ5D: ð6Þ

The modified anticommutator, known as Ginsparg-Wilson
relation, translates to a modified lattice chiral rotation of the
Dirac field,

ψ 0 ¼ expðiαγ5ð1 − aDÞÞψ ;
ψ 0 ¼ ψ̄ expðiαð1 − aDÞγ5Þ: ð7Þ

Using the Ginsparg-Wilson relation Eq. (6) one can verify
that the transformations Eq. (7) leave the Lagrangian
Eq. (4) invariant. However, the chiral condensate for
Ginsparg-Wilson fermions,

Σ≡ hψ̄ð1 −DÞψi; ð8Þ

transforms nontrivially under Eq. (7) and can be considered
as an order parameter for chiral symmetry breaking.
A possible solution of the Ginsparg-Wilson relation is

the massless overlap operator

Dov ¼
1

2
þ 1

2
γ5 signðDHðκÞÞ; ð9Þ

defined through the Hermitian Dirac-Wilson operator
DH ¼ γ5DWðκÞ,

DW ¼ 1 − κ½ð1 − γμÞðVμðxÞÞδxþμ;y

þ ð1þ γμÞðV†
μðx − μÞÞδx−μ;y�:

VμðxÞ are the links in the adjoint representation and the
parameter κ of the Dirac-Wilson operator used inside
the sign function is an extra parameter taking values
κ ∈ ½0.125; 0.25�. It appears as a freedom in choosing
the overlap operator and can be tuned to improve locality.
A more practical way to write the sign function is through
the inverse square root

signðDHÞ ¼
DHðκÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DHðκÞDHðκÞ
p :

Unfortunately the evaluation of the square root of DH is
computationally demanding. Furthermore, the force is ill-
defined around the origin of the spectrum, which can lead
to numerical problems when integrating the equation of

motion for the hybrid Monte Carlo (HMC) algorithm
[18,19].
In our simulations we implement overlap fermions using a

polynomial approximation of order N of the sign function,
following the algorithmdescribed inRef. [20].At finiteN the
Ginsparg-Wilson equation Eq. (6) is only approximately
fulfilled which introduces an explicit breaking of the chiral
symmetry. The quality of the polynomial approximation can
bevisually seenwhen studying the eigenvalues of the overlap
operator, see Fig. 1. An advantage of this approximation is
that it introduces a gap on the spectrum, which acts as an IR
regulator, preventing the forces on the HMC algorithm to
diverge. As N is increased, the approximation converges to
the exact one and in the limit N → ∞, the spectral gap
disappears, the chiral point is reached and the (modified)
chiral symmetry of Eq. (6) is restored. There are several
advantages in our approach compared to standard Wilson
fermions:

(i) there is no need for fine tuning of the fermion mass,
as the chiral limit is reached after a simple N → ∞
extrapolation,

(ii) as such, we can study chiral symmetry breaking in
the massless limit directly using the chiral conden-
sate as order parameter without having to worry
about additive renormalization terms,

(iii) the lattice action is automatically OðaÞ improved.
We have chosen periodic boundary conditions applied to
all fields, motivated by the suppression of finite size effects
observed from our previous experience in supersymmetric
models. In particular, we expect a certain degree of
cancellation between fermion and boson states even if

FIG. 1. Spectrum of the exact and the approximated overlap
operator for N equal to 32 and 80 on the complex plane (84 lattice
at β ¼ 1.75).
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supersymmetry is completely broken in our model by the
infinite mass given to the scalar fields [21].
For the discretization of the gauge part of continuum

action we use a tree level Symanzik improved action. Even
though the strongest source for lattice artifacts is the
fermionic action, the Symanzik improvement helps to evade
spurious phase transitions that could potentially appear when
studying gauge observables like the Polyakov loop.

C. Parameter tuning

The critical behavior of a renormalization group trans-
formation of AdjQCD near the Gaussian fixed point is
dominated by two relevant parameters, namely the gauge
coupling and the fermion mass, if the number of flavors Nf
is below the critical threshold where asymptotic freedom is
lost. The fermion mass is a relevant direction even in the
vicinity of the infrared fixed point inside the conformal

window. In the Wilsonian low energy effective action, a
mass term is generated near a fixed point from the violation
of the Ginsparg-Wilson relation induced by our polynomial
approximation, a mass that is going to vanish in the limit
N → ∞.
We have set the hopping parameter κ of the Dirac-Wilson

operator inside the sign function to 0.2, and we apply one
level of stout smearing to the corresponding link in the
adjoint representation with a parameter ρ ¼ 0.15. We have
verified that the overlap operator has zero eigenvalues, and
our polynomial approximation converges toward the
expected circle while keeping all eigenvalues inside it,
see Fig. 1. The spectrum of the Dirac-Wilson operator is
quite scattered and dense at small β, while converging
toward the expected shape with four holes, one of them
lying around the origin of the complex plane, see Fig. 2.
The projection to the unit circle leads therefore to a single
Dirac fermion interacting with the gauge fields [22].
We have also verified that all our simulations are in the

confined phase in the region of bare couplings we have
explored even at volumes as small as 64, see Table I, and
free from possible bulk phase transitions.

D. Scaling of the pion and fermion
mass toward the chiral limit

The extrapolation of the order of the polynomial
approximation to the limit N → ∞ allows to recover the
Ginsparg-Wilson relation exactly. We expect this limit to be

FIG. 2. Spectrum of the Dirac-Wilson operator (DW) measured
on a single configuration. The configurations have been gene-
rated with the approximated overlap operator (N ¼ 80) on a
84 lattice. (a) β ¼ 1.6 and (b) β ¼ 1.75.

TABLE I. Chiral condensate, plaquette and Polyakov loop of
the small volumes runs used for tuning the bare lattice gauge
coupling. Our lattice volume is L4.

N L β a3Σ hPi hPLi
250 4 1.45 0.00022(25) 0.50504(57) 0.0567(18)
250 4 1.5 0.00295(62) 0.52223(59) 0.0582(17)
250 4 1.55 0.0023(69) 0.53911(62) 0.0614(19)
250 4 1.6 0.00273(66) 0.55582(65) 0.0645(19)
250 4 1.65 0.006(1) 0.57485(67) 0.0671(24)
250 4 1.7 0.0056(22) 0.59275(66) 0.0781(22)
250 4 1.75 0.0053(23) 0.61288(92) 0.0943(37)
250 4 1.8 0.0059(17) 0.63417(75) 0.1269(50)
250 4 1.85 0.0012(15) 0.65579(71) 0.1587(55)
250 4 1.9 0.0045(41) 0.66946(67) 0.1811(55)
250 6 1.4 0.00024(8) 0.48919(27) 0.02762(73)
250 6 1.45 0.00079(8) 0.50542(24) 0.02858(77)
250 6 1.5 0.00237(19) 0.52208(27) 0.02775(69)
250 6 1.55 0.00533(52) 0.53772(28) 0.02832(78)
250 6 1.6 0.00866(29) 0.55461(2) 0.02868(56)
250 6 1.65 0.0157(11) 0.5724(3) 0.0305(9)
250 6 1.7 0.0214(15) 0.59402(36) 0.0348(13)
250 6 1.75 0.0225(15) 0.61602(40) 0.0325(14)
250 6 1.8 0.0118(28) 0.6401(4) 0.0479(18)
250 6 1.85 0.00128(41) 0.65966(28) 0.0724(26)
250 6 1.9 0.00068(34) 0.67341(25) 0.0856(35)
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equivalent to an extrapolation m → 0 using an exact sign
function and a positive nonvanishing explicit fermion mass
parameter to regularize the overlap determinant. In other
words, we expect to observe a relation between 1=N and
fermion mass determined by the partially conserved axial
current (PCAC) relation. It is important to estimate the
dependence of the fermion mass on the order of the
polynomial approximation, to ensure that our simulations
are spanning a sufficiently wide range of pion masses so
that the chiral limit can be reliably estimated and as a
guideline for chiral extrapolations.
We have included simulation on lattices of size 83 × 72,

which, together with the ensembles of size 184, have a
sufficiently large time extent for a reliable measurement of
the exponential decay of the axial and pseudoscalar current
correlators. Our results are summarized in Table II. As
shown in Fig. 3, we observe that the bare fermion mass
amPCAC as a function of 1=N can be well described by a
linear dependence close to the chiral limit, with an addi-
tional quadratic correction for our two smallest polynomial
approximations (N ¼ 32 and N ¼ 40). These observations
lead us to the hypothesis that the fermion mass is just

proportional to 1=N close enough to chiral limit, although
more simulations are required in order to verify whether this
relation extends to different polynomial approximations
defined for instance from a minimization of the sup-norm
in a given interval. It would be interesting to test whether one
particular choice of the polynomial approximation leads to a
faster approach of the chiral limit, i.e., to a smaller pion
mass when comparing polynomials of the same order.
Further evidence for the linear dependence is provided in
Sec. III B below.
From the results in Table II, we see that our simulations

are spanning a reasonable range of pion and PCAC masses.
Given the empirical evidence provided by the scaling of the
fermion mass as a function of the inverse of the polynomial
order, we will extrapolate in the following our measure-
ments to the chiral point using fits as a function of 1=N
including also ensembles for whose parameters we have not
directly measured the PCAC mass.
It is worth noting that the pion mass squared as a

function of bare PCAC fermion mass can be described by a
linear function with a small quadratic correction, as
expected by the Gell-Mann-Oakes-Rennes (GMOR) rela-
tion, without any clear evidence of hyperscaling. We plan to
investigate the full spectrum in a future forthcoming work,
in particular it will be important to study the scaling of the
0þ glueball mass toward the chiral limit.

III. CHIRAL SYMMETRY BREAKING

A. The chiral condensate

The chiral condensate is equal to the derivative of the
partition function with respect to the quark mass. As we are
interested in understanding whether the theory is chirally
broken, an important indication is a nonzero value of the
chiral condensate extrapolated to theN → ∞ limit. We have
measured the chiral condensate directly as defined from
Eq. (8) using 20 noise stochastic estimators for each gauge-

TABLE II. Pion and bare PCAC fermion masses measured on
our lattices with the largest time extent.

N L3 × T β amPCAC amπ mπ × L

32 83 × 72 1.6 0.5009(48) 1.0218(20) 8.174(16)
40 83 × 72 1.6 0.4497(72) 0.9414(65) 7.531(52)
80 83 × 72 1.6 0.2679(36) 0.7194(35) 5.755(28)
250 83 × 72 1.6 0.083(10) 0.4392(93) 3.513(74)
32 183 × 18 1.75 0.210(16) 0.656(5) 11.81(9)
40 183 × 18 1.75 0.199(9) 0.611(5) 10.99(9)
80 183 × 18 1.75 0.104(7) 0.463(6) 8.33(11)
40 183 × 18 1.8 0.076(20) 0.454(8) 8.17(14)
80 183 × 18 1.8 0.052(9) 0.335(14) 6.03(25)

FIG. 3. (a) Bare fermion mass mPCAC as a function of 1=N at β ¼ 1.6. The orange line corresponds to a fit of the function
að1=NÞ þ bð1=NÞ2, while the green line simply to a linear function a=N (b) Pion mass as a function of the bare fermion mass mPCAC at
β ¼ 1.6. As in Fig (a), the green line corresponds to a linear fit and the orange to a quadratic fit.
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field configuration, skipping at least eight consecutive
configurations between each measurement to improve the
tradeoff between computational cost and autocorrelation.
First, we have explored the behavior of the chiral

condensate Σ as a function of the volume. We have found
that in the region of the bare couplings up to β ¼ 1.75 there
is no clear evidence of finite volume effects up to a lattice of
size 84, while at β ¼ 1.8 larger lattice sizes are required. On
all runs used for the extrapolation of the chiral condensate
to the massless limit, the Polyakov loop expectation value is
zero and the theory is therefore in the confined phase.
We have extrapolated the bare chiral condensate as a

function of 1=N to N ¼ ∞ limit at three different β. We
have fitted a quadratic function with a χ2=d:o:f: smaller
than two. The extrapolated condensate is nonzero indicat-
ing that at zero temperature chiral symmetry is sponta-
neously broken, see Fig. 4. As we have observed in the
case of N ¼ 1 super-Yang-Mills, the main contribution
for the nonvanishing expectation value of Σ comes from a
smaller and smaller number of configurations as one
approaches N → ∞. Considering Fig. 5, we see that as

N increases, the overall expectation value of the chiral
condensate measured on each gauge-field configuration
from stochastic estimators decreases, with the notably
exception of some exceptional configuration providing a
compensating nonvanishing contribution to the ensemble
average. This pattern means that we have been able to
effectively regularize the “zero over zero” problem of
simulating massless fermions using a polynomial
approximation.
We plan to complete our simulations at β ¼ 1.8 and to

extend them at β ¼ 1.85, in order to extrapolate the
renormalized value of the chiral condensate to the con-
tinuum limit in future studies. We also plan to add a full
analysis of the chiral condensate as a function of the
volume, which, together with the measurement of the chiral
susceptibility, would enable us to test the order and the
universality class of the chiral phase transition in the
massless limit. In this study, we can just note that the bare
value of Σ in dimensionless units is increasing as a function
of the bare gauge coupling. Assuming that chiral symmetry
breaking persists in the continuum limit, this changing of

FIG. 4. Extrapolation of the bare chiral condensate in dimensionless units to the chiral limit, including in the fit the volumes V ¼ 84

and V ¼ 184. The value of the scale
ffiffiffiffi
t0

p
=a is extrapolated first to the chiral limit, see Sec. IVA for further details. (a) β ¼ 1.6, (b)

β ¼ 1.7, (c) β ¼ 1.75, and (d) β ¼ 1.8.
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hψ̄ψi implies a large anomalous dimension, as it has been
observed in previous investigations with Dirac-Wilson
operator [11].

B. Chiral rotations

As shown in the previous section, chiral symmetry is
spontaneously broken by a nonvanishing vacuum expect-
ation value of the chiral condensate in our simulations. The
remaining symmetry corresponds to Zð2Þ ⊗ SOð2Þ. The
discrete part Zð2Þ corresponds to two manifolds of vacuum
states distinguished by a positive and negative values of the
chiral condensate. It is quite challenging to observe the
coexistence of these phases directly in our simulations, as
we are approaching the chiral limit from small but positive
effective fermion masses. Nevertheless, if we perform a
chiral rotation by an angle π, we expect to map in the limit
N → ∞ a configuration from positive to negative value of
the chiral condensate, leaving its absolute value invariant.
We can use the deviation at fixed N of the absolute value of
the chiral rotated condensate as a measure of how much
chiral symmetry is broken by the polynomial approxima-
tion of the sign function. Alternatively, we can view the
rotation of the chiral condensate as a chiral Ward identity
where the angle is chosen in order to avoid to take into
account the effects of axial anomaly.
In order to perform a chiral rotation numerically, we

approximate Eq. (7) for a small chiral rotation as

ψ → ψ 0 ¼ ψ þ iωγ5ð1 − aDÞψ ;
ψ̄ → ψ 0 ¼ ψ̄ þ iωψ̄ðð1 − aDÞγ5Þ; ð10Þ

such that we can decompose a chiral rotation of an angle α
into n small steps α ¼ P

n ω by applying repeatedly

Eq. (10) repeatedly as many times as needed. We have
computed the chiral condensate Σ0 for a random source ψ
and a rotated chiral condensate Σπ using the same sources
rotated by an angle α ¼ π. The difference in absolute value
between the two condensates ΔΣ ¼ jΣ0j − jΣπj is shown
in Fig. 6.
As we can see, the combination ΔΣ gives a nonzero

value for a finite N. As we increase the order of the
polynomial approximation, the distance to the chiral point
decreases. In the limit N → ∞ the chiral condensate
changes by a sign flip and ΔΣ extrapolates to a value
compatible with zero, pointing out that the Z2 symmetry is
recovered and the chiral symmetry has been restored.

IV. SCALE SETTING AND RUNNING OF THE
STRONG COUPLING CONSTANT

We can show further evidence on the absence of a
conformal behavior if we consider the running of the strong
coupling constant in the infrared limit. The strong coupling
constant αs is a scheme dependent quantity depending on

FIG. 5. Chiral condensate measured on individual gauge-field
configurations at β ¼ 1.75 for the polynomial approximation
N ¼ 400 (blue points) and N ¼ 80 (orange points). As the
polynomial approximation improves, chiral symmetry is re-
covered, and more exceptional configurations appear that pro-
vide, after ensemble averaging, a nonvanishing expectation value
of the chiral condensate. In this way, the chiral limit is reached
smoothly, avoiding the problems of zero modes when simulating
massless fermions.

FIG. 6. Sum of the bare fermion condensate Σ in lattice units
before and after a chiral rotation by an angle ω ¼ π. The final
extrapolated value of the sum is equal to −0.0009(4) at β ¼ 1.6
and −0.0002ð9Þ at β ¼ 1.7. (a) β ¼ 1.6 and (b) β ¼ 1.7.
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the energy scale μ. Perturbation theory is recovered near the
Gaussian fixed point as μ → ∞, while the infrared behavior
in the limit μ → 0 is dominated by nonperturbative effects.
If the theory is infrared conformal, we expect to see a
freezing of the running of αsðμÞ as the energy scale
approaches zero. We want to verify from our lattice
simulations whether this scenario is realized. We have
investigated the running of the strong coupling directly, and
we have also tried to determine whether the theory has an
infrared fixed point by extrapolating the lattice scale to the
chiral limit and observing whether it vanishes or not. In the
following two subsections we consider the scale setting
defined from the gradient flow, which enables us at the same
time to measure also the running of the strong coupling
constant.

A. Scale setting

The gradient flow is a continuous smoothing applied to
gauge fields, defined from a partial differential equation
which is solved numerically to determine the evolution of
certain gauge-invariant observables as a function of the
flow-time τ [23]. In particular, the measure of the flowed
gauge energy density

hEðτÞi ¼ 1

4
Ga

μνGa
μνðτÞ; ð11Þ

allows to define a scale t0=a2 as the flow time τ where
τ2hEðτÞi reaches the reference value 0.3. The lattice spacing
is then proportional to 1=

ffiffiffiffi
t0

p
, and its value in physical units,

such as femtometers, could be defined in principle in terms of
an experimentally measurable quantity.
We measured the scale t0 using the clover plaquette

discretization of the energy density and the Wilson action
for the definition of the flow equations. After ensuring that
finite size effects are under control, see Fig. 7 the extrapo-
lation of t0=a2 to the limit N → ∞ is already an indication
whetherNf ¼ 1AdjQCD is infrared conformal or not. In the
first case, the theory does not possess any scale other than

the fermion mass, and the value of t0=a2 must be zero in the
chiral limit.
The scale measured from our ensemble can be fitted by a

quadratic function of 1=N. The scale data included in the
fits are summarized in Table III and two examples of our
fits are plotted in Fig. 8. The extrapolated value of

ffiffiffiffi
t0

p
=a is

clearly different from zero, providing a first evidence that
the theory is not infrared conformal. We see that

ffiffiffiffi
t0

p
=a

grows as β is increasing, i.e. the lattice spacing is
decreasing in the weak coupling limit as expected for a
confining theory. Indeed, in the simplest way to compute
the strong coupling constant scale dependence on the
lattice, αs is defined in terms of the bare lattice gauge
coupling as αs ¼ 2Nc

4πβ, and the scale μ is equal to 1=a. As
shown in Fig. 9, there are no evidence of an infrared fixed
point in the region of bare coupling we have explored.
However, a measure of the running of αs in the low-energy
regime from the bare lattice coupling requires to per-
form simulations in the strong coupling region where
possible lattice phases might prevent us from observing
the true nature of the infrared fixed point. Further, this
definition of the running coupling does depend on the lattice

FIG. 7. Comparison of the flowed energy density for the
volume V ¼ 188 and 88 with N ¼ 40 at β ¼ 1.6.

TABLE III. Chiral condensate of all large volume simulations,
with in addition the scale

ffiffiffiffi
t0

p
=a for the ensembles included in the

final extrapolation to the chiral and continuum limit of the
running of the strong coupling. The lattice volume is L4, in
QCD units L ≈ 2.5 fm for the L ¼ 18 lattices and L ≈ 1.2 fm for
L ¼ 8.

N L β a3Σ
ffiffiffiffi
t0

p
=a

250 12 1.6 0.01209(15) � � �
250 8 1.6 0.0121(5) 0.8040(15)
250 8 1.7 0.02787(85) 0.8921(19)
250 8 1.75 0.032(13) � � �
160 8 1.75 0.03661(89) 1.033(15)
80 8 1.6 0.02469(31) 0.8069(11)
80 8 1.7 0.04078(54) 0.9049(18)
80 8 1.75 0.0443(7) � � �
80 8 1.8 0.0297(31) � � �
40 8 1.6 0.04161(23) 0.8143(19)
40 8 1.7 0.05343(25) 0.9197(31)
40 8 1.75 0.0528(6) � � �
40 8 1.8 0.038(2) � � �
32 18 1.6 0.050193(3) 0.8226(2)
32 18 1.7 0.058982(4) � � �
32 18 1.75 0.056182(7) 1.0923(14)
32 18 1.8 0.04372(17) 1.4020(79)
80 18 1.6 0.024649(4) � � �
80 18 1.75 0.04524(13) 1.0401(27)
80 18 1.8 0.03983(22) 1.369(12)
40 18 1.6 0.041765(3) � � �
40 18 1.75 0.053316(6) 1.0668(23)
40 18 1.8 0.04143(14) 1.4152(71)
400 8 1.75 0.0288(16) 1.029(9)
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discretization of the continuum action. Fortunately, we can
provide a further and cleaner evidence of the absence of an
infrared fixed point by just exploiting the full dependence of
the flowed gauge energy density on the flow time τ.

B. Running of the strong coupling constant

An efficient method to compute the running of the strong
coupling constant from Monte Carlo simulations is to find
an appropriate scheme which can be defined both on the
lattice and in the continuum, in such a way that different
computation methods and lattice discretizations can be
easily compared among each other. The gradient flow can
be consistently defined independently from the regulariza-
tion used, and a perturbative expansion of the flowed gauge
energy density in the MS scheme reads [23]

hEðτÞi¼3ðN2−1Þ
16τ2π2

g2
MS

ðμÞð1þc1g2MS
ðμÞþOðg4

MS
ÞÞ; ð12Þ

where we have set the scale μ to be equal to 1=
ffiffiffiffiffi
8τ

p
[23–25].

This relation can be truncated to the lowest order and
inverted to define a renormalized gauge coupling

g2GFðμÞ ¼
16π2

3ðN2 − 1Þ τ
2hEðτÞi

����
τ2¼1=8μ

: ð13Þ

The gradient flow scheme we employ requires first to
extrapolate the coupling to the infinite volume limit, then to
the chiral limit and finally to the continuum limit a → 0
[26]. This nonperturbative determination of the running of
strong coupling does not depend on the lattice discretiza-
tion of the continuum action we have chosen, while only
the first two coefficients of the β-function are universal and
scheme independent.
The scale t0 is computed for each ensemble separately.

Then, the running coupling g2GFðμÞ is extrapolated to the
chiral and continuum limit. We have considered a com-
bined fit including all available ensembles in the scaling
region using an ansatz of the form

gðμÞ2 ¼ g0 þ c0t−10 þ c1t
−3
2

0 þ d1

ffiffiffiffi
t0

p
N

þ d2
1

N
þ d3

� ffiffiffiffi
t0

p
N

�
2

:

ð14Þ
The fit is performed for each scale μ independently,
interpolating the flow and its error in order to be able to
include all ensembles at different lattice spacings in a single
fit. The first term g0 represents the continuum limit value of
the square of the running coupling extrapolated in the limit
N → ∞. The terms c0 and c1 are lattice artefact corrections
proportional to a2 and a3, respectively. Finally, terms
corresponding to the coefficient di are corrections propor-
tional to a mass term, to its square and to a lattice
discretization error equal to the bare fermion mass itself.
At high energy, lattice artefacts are dominant, while at low
energy the terms proportional to N becomes relevant, see
Fig. 10. The inclusion of a finite-volume correction term, or
of a logarithmic correction in the lattice spacing to the
leading asymptotic scaling [27], does not improve the χ2

nor does change the final extrapolation significantly.

FIG. 8. Extrapolation to the chiral limit of the scale t0 including
in the fit the volumes 84 (orange points) and 184 (blue points).
The errors on the larger lattices are smaller due to volume
averaging, and the scales measured from both volumes are
consistent. (a) β ¼ 1.6 and (b) β ¼ 1.75.

FIG. 9. Running of the bare lattice coupling squared as a
function of the inverse lattice spacing measured from the scaleffiffiffiffi
t0

p
=a.
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The final extrapolation to the chiral and continuum limit
of the strong coupling determined from the Wilson flow is
presented in Fig. 11 and compared to the perturbative
running in Fig. 12. There are no evidence of an infrared
fixed point in the running of the strong coupling, nor a
signal of a slowing of the growth of the strong coupling
constant in the infrared regime. Our present calculation is in
agreement with our previous study of the β-function in the
Mini-MOM scheme, where no evidence of an infrared fixed
point have been found in the region of momenta we have
been able to explore [28]. Further studies close to the
continuum limit and deeper in the infrared region will be
required to confirm this result.

V. CONCLUSION

We have presented a numerical investigation of the
Nf ¼ 1AdjQCD theory using overlap fermions. Our results
do not show any evidence of an infrared fixed point in the
running of the gradient flow coupling in the region of
energies that we have been able to explore. A nonzero
extrapolated value of the scale t0 indicates consistently that
the theory doesn’t show an infrared conformal behavior.
Our results also support the breaking of chiral sym-

metry induced by a nonvanishing expectation value
of the chiral condensate. Consequently, we would predict
two light pions emerging as Goldstone bosons in the
massless limit. In the previous investigations of Ref. [11],
it has been observed that the glueball 0þ is rather the
lightest particle in the spectrum. However, these investi-
gations have been done in parameter regions significantly
different from our study.
Reference [11] considers Wilson fermions, which allows

a larger statistic and a determination of the particle
spectrum. In addition rather fine lattices can be simulated
with this fermion action. On the other hand, our current
study considers the overlap operator which implements
chiral symmetry on the lattice, but our lattices are rather
coarse and we have not been able to determine particle
masses. In the near future we plan to extend our current

FIG. 10. Extrapolation to the chiral and continuum limit of the
strong coupling constant. The red lines are obtained from the
global fit by fixing the order of the polynomial approximation N
to 32, 40, 80, 160, and 250, from the top to the bottom. For fixed
N, the renormalized fermion mass diverges in the continuum
limit, and the coupling reaches its pure gauge value. (a)

ffiffiffiffi
t0

p
μ ¼

0.5 and (b)
ffiffiffiffi
t0

p
μ ¼ 0.25.

FIG. 11. Extrapolation to the continuum limit of the strong
coupling constant as a function of the scale (red band), extra-
polated from the measured curves at the different β and different
polynomial approximation of the sign function (gray lines).

FIG. 12. Comparison of the perturbative two-loop perturbative
running of the β-function compared to our nonperturbative
determination.
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investigations to study of the bound state spectrum, in order
to be able to identify directly whether pions become lighter
than the glueball states.
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