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Abstract
In this report, we present the project URWalking conducted at the University of Regensburg. We describe its major outcomes: 
Firstly, an indoor navigation system for pedestrians as a web application and as an Android app with position tracking of 
users in indoor and outdoor environments. Our implementation showcases that a variant of the A∗-algorithm by Ullmann 
(tengetriebene optimierung präferenzadaptiver fußwegrouten durch gebäudekomplexe https://​epub.​uni-​regen​sburg.​de/​43697/, 
2020) can handle the routing problem in large, levelled indoor environments efficiently. Secondly, the apps have been used 
in several studies for a deeper understanding of human wayfinding. We collected  eye tracking and synchronized video data, 
think aloud protocols, and log data of users interacting with the apps. We applied state-of-the-art deep learning models for 
gaze tracking and automatic classification of landmarks. Our results indicate that even the most recent version of the YOLO 
image classifier by Redmon and Farhadi (olov3: An incremental improvement. arXiv, 2018) needs finetuning to recognize 
everyday objects in indoor environments. Furthermore, we provide empirical evidence that appropriate machine learning 
models are helpful to bridge behavioural data from users during wayfinding and conceptual models for the salience of objects 
and landmarks. However, simplistic models are insufficient to reasonably explain wayfinding behaviour in real time—an open 
issue in GeoAI. We conclude that the GeoAI community should collect more naturalistic log data of wayfinding activities in 
order to build efficient machine learning models capable of predicting user reactions to routing instructions and of explaining 
how humans integrate stimuli from the environment as essential information into routing instructions while solving wayfind-
ing tasks. Such models form the basis for real-time wayfinding assistance.
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1 � Overview of the Project

URWalking started as a student project for indoor naviga-
tion at the University of Regensburg. Later on, the project 
was integrated into the research project NADINE (funded by 
BMBF1) to implement a navigation aid for public transport 
users for all public transport stops in Nuremberg (Germany). 
Furthermore, the system was incorporated into the research 
project DIVIS (funded by IuK Bayern) for the implemen-
tation of advanced indoor tracking strategies using mainly 
inertial sensors of smartphones combined with spatial and 
behavioural knowledge. We have developed a web applica-
tion for usage in any browser and an smartphone app for 

Android devices. The interface was iterately improved by 
updating the implementation incorporating results of evalu-
ations of previous versions [2, 19].

URWalking’s knowledge base connects 5,130 rooms in 27 
buildings of the university itself and the nearby University of 
Applied Sciences. The area covered by the system exhibits 
the following quantitative features:

Space in total 4,3 km2

Length of all paths 110 km
Doors 1.563
Elevators 320
Stairs 151

We have also drawn maps for each floor in each of the 
modelled buildings. In this way, we have implemented 
results from several user studies [3, 17].
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Currently, the system is in daily use at the University of 
Regensburg as a web application and an Android app. It 
processes between 100 and 5,000 route inquiries per day—a 
typical situation for a university navigation system: with a 
new term starting, many persons are new to the campus and 
seek assistance to find locations. The inquiries decrease 
as soon as these persons have learned a spatial map of the 
campus.

2 � Components of the System

URWalking consists of four main components: the basic 
component is the web server that stores all maps of the cov-
ered environment and calculates routes. For URWalking 
to be used in a browser, we developed a web client as the 
second component of the URWalking system (see Fig. 1). 
As the web client lacks indoor positioning, users can give 
interactive feedback when they want to see the next routing 
instruction. The third component is our Android application. 

It provides the same functionality as the web client plus 
indoor tracking of the user’s current position along the route 
(see Fig. 2). The fourth component is YAMA—a web app 
for creating, editing, and maintaining map data (see Fig. 4).

2.1 � URWalking Web Server

Routes are calculated by a shortest path algorithm. Edge 
weights have been learned using genetic optimisation in 
order to reflect human route preferences that often lead to 
routes that are very distinct from shortest routes in terms 
of time or distance [15, 24, 25]. When choosing a destina-
tion, users can choose which type of route calculation they 
prefer. Routes that mimic human wayfinding decisions are 
typically longer than shortest routes, but less complex in 
terms of transitions between indoor and outdoor and changes 
in walking directions (see Fig. 3). These preferences seem 
linked to a person’s spatial map of an environment and the 
person’s capability to recall details. It is an challenging issue 
for future research to analyse this relationship in detail.

The web server provides an API used by the both client 
applications for route calculation and access to maps and 
route instructions (see Figs. 1 and 2).

2.2 � Web Application

The purpose of the web app is to visualize maps and rout-
ing instructions in a browser window. As the app runs on all 
common browsers, it requires no installation procedure and 
is used by the majority of the users.

2.3 � Android Application

The Android application (see Fig. 2) relies on the web server 
for calcuations of routes and appropriate instructions. It is 

Fig. 1   Screenshot of our web application

Fig. 2   Screenshots of our android app
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available on Google Play Store2 and constitutes our experi-
mental framework for adding indoor tracking of users in 
order to provide a user experience similar to car navigation 
systems and update maps and routing instructions automat-
ically. In February 2022, there were around 1,700 active 
installations. Reliable indoor tracking of users for several 
hours they spend on the campus performing very different 
activities is still an open research issue.

2.4 � Data for Indoor Navigation

For calculating routes and generating routing instructions, 
the web server uses maps that model the environment [24]. 
Our concept for mapping indoor environments is hybrid. 
Firstly, it is graph-based (for accessibility relations between 
locations that are needed for route calculation). Secondly, it 
is hierarchical in order to formalize the structure of the envi-
ronment (separate areas of an environment, separate build-
ings in an area, separate levels in each building). Thirdly, it 
is also semantic: nodes come in several categories in order 
to capture various functions of locations in indoor buildings 
(e.g. doors, toilettes, offices, corridors, or landmarks—see 
Fig. 4). Edges can also be of different category: e.g. indoor 
connections between two nodes, outdoor connections, stairs, 
elevators, street crossings. Node and edge categories allow 
route calculation to account for user preferences [15]: e.g. 
handicapped users prefer elevators over stairs. Finally, it is 
spatial: as for indoor position tracking we snap positions to 

edges as the most probable footways on a route, sometimes 
we have to consider spatial dimensions are locations: e.g. 
for broad corridors a grid is a better model to allow higher 
degrees of freedom for users to move in the corridor.

For visualizing the model as maps of indoor areas, we 
used Inkscape to generating scalable maps in the SVG vector 
graphics format. All other (symbolic) data can be created, 
edited, and maintained with the editing tool YAMA (see 
Fig. 4) that is part of URWalking.

As all data for running URWalking in an environment can 
be configured with YAMA, URWalking can be configured 
for any environment repeating our systematic procedure to 
create data for the navigation service on the campus. For this 
purpose, our software is available as freeware upon request3.

3 � Applications in Research Contexts

URWalking implements path planning based on state-of-
the-art algorithms. It showcases that real-time route calcu-
lation is tractable in a client server framework with several 
thousand requests per day, many of them concurrently. For 
routing instructions, URWalking according to recent find-
ings in the literature [1, 5, 12, 26] generates instructions 
incorporating the most salient landmark close to the user. 
The instructions are generated completely automatically by 
inspecting their properties for being visible in advance [13, 
22]. To the best of our knowledge, no other freely available 
pedestrian indoor navigation system offers these features.

A further unique property of URWalking is that it runs 
since several years as a service for members of the univer-
sity. As we log usage data, we are collecting a corpus of 
naturalistic user data in realistic settings. Furthermore, we 
conduct experiments using URWalking to investigate two 
important research questions in assisted wayfinding: (1) Can 
we predict how users perceive the current situation at any 
time during a wayfinding task in real-time and what decision 
they will take next? (2) Can we validate the role of concep-
tual models claiming to contribute to an answer by building 
machine learning models implementing these concepts?

3.1 � Data Driven Validation of Wayfinding Models

A prominent conceptual model of human decision making 
during wayfinding such as that proposed in [8]. The authors 
measure the complexity of a routing instruction (type) ti in 
an outdoor environment e:

c(e, ti) =(1 − w1) ⋅ b (ti, e) +

w1 ⋅ (� ⋅ v (ti, e) + (1 − �) ⋅ r (ti, e))

Fig. 3   A shortest path route compared to a route taking human prefer-
ences for wayfinding decisions into account

2  https://​play.​google.​com/​store/​apps/​detai​ls?​id=​de.​ur.​urwal​king.​
urwal​king4​ &​gl=​DE. 3  Please send an email to the corresponding author.

https://play.google.com/store/apps/details?id=de.ur.urwalking.urwalking4%20&gl=DE
https://play.google.com/store/apps/details?id=de.ur.urwalking.urwalking4%20&gl=DE
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Here, b (ti, e) is the branching factor, i.e. the number of 
options for the decision how to continue a route. r (ti, e) is 
the ease of detecting a mentioned landmark in the physi-
cal environment, and v (ti, e) is the visibility in advance of 
landmarks. In order to understand how such models can be 
validated, adjusted, or modified for indoor environments, 
we conducted various controlled eye tracking studies. These 
are controlled experiments in which we record video data 
synchronized with the gaze data (obtained from the SMI Eye 
Tracking Glasses 2) and performance data such as hesita-
tions or errors during wayfinding and the time needed to 
follow URWalking’s routing instructions.

In order to address question (1), we interpret b (ti, e) and 
r (ti, e) as predictors for how users will perceive a routing 
instruction at their current position. In our work, we try to 
find signals that allow use to implement a model that can 
serve as a proxy for b (ti, e) and r (ti, e) , respectively.

In our analyses [1, p. 96], we found that—different to 
outdoor environments—b (ti, e) does not influence the task 
performance, i.e. correct human decisions. We conclude that 
indoor contexts seem to be clearer in terms of changes in 
direction due to architectural elements such as corridors, 
stairs, entries, or elevators.

For a data-driven operationalization of r (ti, e) , we applied 
state-of-the-art machine learning models from computer 
vision to predict the visual salience of landmarks in route 
instructions from photographs of the landmarks [4]. We fine-
tuned a pretrained VGG 19 CNN on the photographs with 
the respective salience as target variable. Results indicate 
that high level style, high level content, and visual complex-
ity of the photographs are the best features the CNN can 

generate for landmark prediction. We conclude that r (ti, e) 
is correlated with v (ti, e) . This observation would allow 
to automatically extract landmarks from visualisations of 
objects in indoor environments. As a consequence, we can 
simplify the the approach in [18]: There is no need to clas-
sify objects as POI to compute their salience. Instead, we can 
estimate it from photographs of the objects.

However, the limitation of this approach is that the pho-
tographs isolate landmarks and do not show them in their 
usual surroundings with many visual detractors.

3.2 � Real‑Time Prediction of Areas of Interest

In order to overcome this limitation, we decided to automati-
cally recognize objects in the video stream gained from the 
Eye Tracking Glasses and thereby detect which objects users 
focus on. This could result in a better proxy for r (ti, e) . For 
object recognition, we we used the YOLO [23] model as a 
state-of-the-art neural network. As our corpus was small, we 
used YOLO pretrained on the COCO dataset [16] without 
any fine-tuning. Our asumption was the COCO contained 
classes of objects that are typical in our indoor wayfinding 
video streams such as doors, stairs, or hallways (see Fig. 5).

The results in Tab. 1 indicate that the pretrained model 
recognizes too many classes with low confidence and accu-
racy values. From these results, we learned that fine-tuning 
is indispensable. For GeoAI, more specific data sets than 
COCO for indoor objects would be beneficial to automati-
cally detect focussed objects during wayfinding. Such data 
would allow us to better understand which environmen-
tal stimuli influence human decision making. In order to 

Fig. 4   Screenshot of the YAMA tool displaying an annotated map of a floor in the central building of the university



KI - Künstliche Intelligenz	

1 3

contribute to the research question (2), we are currently 
annotating our data in order to finetune YOLO on the 

environment of the Regensburg campus. Our objective is to 
come up with an improved proxy for r (ti, e).

3.3 � Prediction of Landmark Salience from Gaze 
Data

The lack of reliable object recognition being a drawback 
for finding a proxy for r (ti, e) , we tried a less supervised 
appraoch: ignoring all visual data, we analysed the gaze data 
recorded sychronously to the video streams. We based our 
analysis on fixations. In earlier research, the fixation dura-
tion was used as an indicator for the difficulty in extracting 
the information processed [11], and the fixation frequency 
was considered as a factor of search efficiency [9]. These 
variables can be used to analyze the cognitive processes dur-
ing wayfinding [14] and indicate how the next situation is 
perceived. Related results in eye tracking research point out 
the distinction between ambient and focal visual processing 
of visually perceived information [20]: During ambient pro-
cessing information is explored superficially and input from 
peripheral vision may control eye movements. During focal 
processing central vision becomes dominant, the collected 
information is processed, and salient objects are recognized 
and interpreted.

As automated detection of fixations on the smartphone’s 
display was not reliable, we annotated each frame manually 
with a binary label: Is the gaze position on the navigation 
aid’s display or outside of it? From the annotated data, we 
could extract the frequency of fixations anywhere on the 
navigation aid’s display and outside of it (see Fig. 6).

Fig. 5   Examples of video frames with objects identified and labelled by YOLO (see [21] for details)

Table 1   YOLO’s classification results for our video data

Class label Object confidence Class accuracy

Train 0.36 0.85
Person 0.64 0.82
Dog 0.47 0.80
Diningtable 0.27 0.74
Refrigerator 0.53 0.71
Chair 0.18 0.68
Laptop 0.81 0.67
Bed 0.44 0.64
Book 0.31 0.59
Bus 0.14 0.59
Cell phone 0.84 0.58
Tvmonitor 0.70 0.56
Cat 0.20 0.53
Clock 0.77 0.48
Keyboard 0.90 0.44
Horse 0.27 0.43
Bench 0.11 0.39
Tie 0.13 0.36
Remote 0.14 0.32
Sofa 0.10 0.27
Car 0.26 0.16
Umbrella 0.25 0.12
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To compute the frequencies of interest (on the display: 
( F on , outside of the display: F out ), we applied Empirical 
Mode Decomposition [7] on the gaze data: According to 
the results in e.g. [6, 20] focal processing is characterized by 
high fixation frequencies. As we worked with two different 
stimuli visible at the same time (display and environment), 
we normalized F out by F on and calculated a relation between 
the degree of focal processing outside and on the display. For 
that purpose, we defined the quotient PS (perceived salience 
of landmarks in routing instructions):

To avoid the case that PS may be undefined, we set 
PS = F out if F on = 0 . Then, the intuition behind PS is the 
following: We can distinguish two cases:

•	 PS > 1 : the degree of focal processing in the environment 
is higher than that on the display. For the current routing 
instruction, the test person can focus his/her attention on 
few objects in the environment and does not need much 
effort to explore the environment to find the landmark 
referred to in the instruction.

•	 PS ≤ 1 : the degree to focal processing in the environ-
ment is low in relation to that on the display. So, propor-
tionally, test persons need more ambient processing to 
explore the environment in order to eventually locate the 
referred landmark.

Figure 7 visualizes the average (over all test persons) per-
ceived salience score PS. The plot shows that despite of care-
ful selection of the landmarks, PS is far from constant. We 
believe to have learned the following lesson: While the con-
cept of PS appears quite simplistic, we can provide evidence, 
that for our data it correlates significantly with the concept 
of visual salience [12, 26] based on subjective self-reports 
(Spearman r = 0.656 , p = 0.0042 ). So, in fact, landmarks 
rated high for visual salience, are also perceived as visually 
salient in the complex physical environment in which they 
are embedded. On the one hand, this observation is excit-
ing, as it allows PS to be interpreted as a real-time proxy 

PS =

F out

F on

.

for visual salience ratings. As a consequence, in the sense 
of research question (2) PS can be beneficial for automated 
generation of routing instructions referring to landmarks that 
are salient for the user at the moment of the instruction being 
given. This is a major advantage over ratings that are col-
lected using questionnaires in a non-naturalistic way.

However, PS is to simplistic to explain the viewing pro-
cess completely. GeoAI in the future should take the chal-
lenge to get more out of eye tracking data by applying more 
detailed models of viewing behaviour in order to under-
stand the influence of architectural constraints imposed by 
the indoor surroundings, e.g. width of corridors. A second 
limitation of our study is the lack of information about which 
objects were fixated by test persons. An automated proce-
dure to extract objects in the environment that were fixated 
significantly more often than others would be a great step 
towards automated identification of salient objects from 
gaze data. In this way, the bias of experimenters to choose 
areas of interest could be removed. This is another strong 
argument for GeoAI to create indoor wayfinding databases 
in order to finetune state-of-the-art image classifiers (see 
Sect. 3.2).

3.4 � Real‑Time Prediction of Assistance Needs

We can get, however, an idea of the influence indoor envi-
ronments have on eye movements by further analysing fixa-
tions. As stated in Sect. 3.3, the PS score showed much more 
variance than the visual salience ratings of the landmarks 
chosen for the routing instructions. For a deeper analysis of 
this behaviour, we aggregated fixations between two routing 
instructions and generated heatmaps for all aggregations. 
We then used the distribution of dwell time [10, p. 535] for 
each aggregated heatmap as a measure for similarity of the 
gaze behaviour of our test persons. So we could also take the 
spatial distribution of fixations into account, not only their 
frequency anywhere in the environment.

With the landmarks in the routing instructions carefully 
chosen as the objects rated best between two subsequent 
wayfinding decision points and satisfying established criteria 
for landmarks [22] better than other objects, we assumed that 
the viewing behaviour should follow a similar pattern for 
each instruction: read it, identify it in the environment, and 

Fig. 6   The fixation frequency on (Fixation-on) and outside (Fixation-
out) the display averaged over all subjects for each landmark in the 
corresponding routing instruction

Fig. 7   The perceived salience score (PS) on average over all subjects 
for each landmark
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continue walking. Consequently, in two subsequent route 
segments the viewing behaviour should be similar if the 
environment did not have high impact on the gaze behav-
iour (e.g. by enforcing the user to take a turn at a crossing 
or while climbing a staircase). We quantified this impact 
by calculating the normalized mean square error between 
the observed dwell time distribution and its estimation from 
the distribution of the preceding aggregation. The resulting 
NMSE values for our test route are presented in Fig. 8. From 
an inspection of the segments with high and low NMSE, 
we conclude that the NMSE is low if there is no change in 
direction from a segment and the subsequent one, while it 
otherwise tends to increase. The highest values in segments 
16, 17, and 20 have been calculated in staircases where per-
sons have to change the direction while going up the stairs 
and reorient themselves continuously.

4 � Conclusions and Current Research 
Interests

In this paper, we presented the URWalking system assist-
ing users during indoor wayfinding. Usage data indicates 
that in real-time situations indoor navigation is appreciated 
by users although indoor positioning is not available as in 
our web application. From think aloud protocols we even 
know that no positioning is better than a system with poor 
performance in this aspect. In this sense, URWalking is inno-
vative as most other indoor navigation systems try to solve 
the positioning issue first. URWalking, instead, first serves 
to collect large data sets that we will leverage to improve 
indoor positioning algorithms in the future.

Another important issue that still waits for a better solu-
tion is how to make URWalking better understand natu-
ral language descriptions of users for their destinations. 
Often, they do not know room identifiers. Our current 

implementation is capable of repairing minor errors in spell-
ing; however, in many cases users describe an event they 
want to attend, a person that they want to meet, or a service 
of the university that they want to use. As we cannot control 
user inputs and do not have a redundant mechanism avail-
able for determining destinations, for most of the inquiries 
we lack reliable ground truth that we could use in machine 
learning approaches to improve the prediction accuracy of 
destinations users want to request wayfinding information 
for.

Finally, from the analyses discussed in this project report 
we learn that real-time tracking of human wayfinding behav-
iour is a difficult task and still needs progress in the GeoAI 
community on the construction of conceptual models, their 
empirical evaluation, and on AI algorithms for analysing 
wayfinding behaviour at run-time in order to provide situa-
tion specific assistance to users.

In order to move ahead, we currently try to find proxies 
for gaze data that we can only collect in controlled experi-
ments, but not from users under naturalistic conditions. 
Therefore, it is one of the important issues on our research 
agenda to find out which interaction data can serve as prox-
ies for human viewing behaviour. Beyond developing our 
models using data that we collect from URWalking users, 
we contribute to this field by sharing our log data with the 
community4, by integrating available indoor tracking imple-
mentations in our application, and by comparing their per-
formance. In this way, we hope that our system can inspire 
the community to address many of issues that require solu-
tions in order to develop better AI based wayfinding aids.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
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the article's Creative Commons licence and your intended use is not 
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