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Conformal symmetry of QCD is restored at the Wilson-Fisher critical point in noninteger 4 − 2ε
space-time dimensions. Correlation functions of multiplicatively renormalizable operators with different 
anomalous dimensions at the critical point vanish identically. We show that this property allows one 
to calculate off-diagonal parts of the anomalous dimension matrices for leading-twist operators from 
a set of two-point correlation functions of gauge-invariant operators which can be evaluated using 
standard computer algebra techniques. As an illustration, we present the results for the NNLO anomalous 
dimension matrix for flavor-singlet QCD operators for spin N ≤ 8.
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1. Introduction

The Electron-Ion Collider [1,2] will allow one to access general-
ized parton distributions (GPDs) [3–5] in a broad kinematic range. 
In particular the possibility to study the three-dimensional gluon 
distributions in the longitudinal and transverse plane is new and 
very exciting. The scale dependence of GPDs is governed by evo-
lution equations that are more complicated as compared to the 
usual parton distributions (PDFs). In the language of the operator 
product expansion (OPE), the added complication in this case is to 
take into account mixing with operators containing total deriva-
tives. Going over to the momentum fraction space, this mixing 
translates to the evolution kernels involving extra variables. The 
complete set of the NLO (two-loop) evolution kernels is available 
for a long time [6] and the NNLO (three-loop) evolution kernels for 
flavor-nonsinglet operators were calculated more recently in [7]. 
Both calculations use conformal symmetry constraints that allow 
one to obtain the kernels for GPDs from the known NLO and NNLO 
evolution kernels for PDFs and a computation of the so-called con-
formal anomaly from conformal Ward identities at one order less, 
i.e. a two-loop anomaly [8] is sufficient to obtain the NNLO ker-
nels. The NNLO flavor-singlet kernels can, in principle, be obtained 
in the same way, but the calculation becomes too large to be done 
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without computer algebra methods. The required algorithmic im-
plementation is, unfortunately, not available.

In this letter we suggest an alternative approach that allows 
one to calculate off-diagonal parts of the anomalous dimension 
(AD) matrices of local flavor-singlet operators from a set of two-
point correlation functions which can be evaluated using standard 
computer algebra software packages.1 The main advantage of this 
technique as compared to the direct calculation is that gauge non-
invariant Equation of Motion (EOM) and BRST operators can be 
completely neglected. A disadvantage as compared to the approach 
of [6,7] is that the calculation is done for local operators with given 
(not very high) spin, alias for the first few moments of GPDs. The 
results can be used to obtain a certain approximation for the NNLO 
evolution kernels, but their construction is likely to be more com-
plicated as compared to the well-studied case of PDFs. This is a 
separate problem that will not be considered here.

The starting point is that conformal symmetry of QCD at quan-
tum level is restored at the Wilson-Fisher critical point [10] at 
noninteger space-time dimension d = 4 − 2ε∗ [11]

ε∗(a) = −β0a − β1a2 − . . . , a = αs/4π, (1)

where β0, β1,. . . are the first few coefficients of the QCD β-function 
and αs is the strong coupling. At the critical point, the two-point 
correlation functions of multiplicatively renormalizable operators 
with different ADs vanish to all orders of perturbation theory [12]

1 A similar approach was used in [9] for the study of the 1/N expansion in the 
nonlinear σ -model.
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〈[O]n(x)[O]m(0)〉 ∼ δnm , x /=0 , (2)

where 〈. . .〉 stands for the vacuum expectation value. We will show 
that this condition allows one to find the eigenvectors of the renor-
malization group (RG) equation in the chosen operator basis from a 
calculation of the corresponding unrenormalized correlation func-
tions with m ≤ n. Since the eigenvalues (ADs) are known, this 
information is sufficient to restore the complete mixing matrix. 
Last but not least, the ADs of composite operators in minimal sub-
traction schemes do not depend on ε by construction and are the 
same for the physical d = 4 and the critical d = 4 − 2ε∗ space-time 
dimensions. Thus the calculated mixing matrix for the leading-
twist operators at the critical point coincides identically with that 
in physical theory in four dimensions [13,8,7].

In this letter we will first explain application of this technique 
on a simple example in NLO, followed by a more systematic pre-
sentation for the most interesting case of flavor-singlet operators. 
The NNLO mixing matrix (in the Gegenbauer basis) for flavor-
singlet QCD operators for spin N ≤ 8 presents our main result. As 
a byproduct of this calculation we re-derive and confirm the cor-
responding results of Ref. [7] for the flavor-nonsinglet operators.

2. Simple example

As an example, consider the twist-two operator

O 2(x) = ∂2+ q̄1(x) C (3/2)

2

(←
D+ − →

D+
←
D+ + →

D+

)
γ+q2(x), (3)

where q1 and q2 are quark fields of different flavor, ∂μ = ∂/∂xμ , 

C (3/2)

2 (y) is the Gegenbauer polynomial and 
←
D+ , 

→
D+ are left and 

right covariant derivatives, respectively. The “plus” projection cor-
responds to a multiplication by an arbitrary light-like vector γ+ =
γμnμ , n2 = 0.

In processes involving a momentum transfer between the initial 
and the final states one needs to take into account mixing of O2(x)
with the (second) total derivative of the vector current

O 1(x) = ∂2+q̄1(x)γ+q2(x) , (4)

so that the renormalized operators in the MS scheme take the 
form

[O 2] = Z22 O 2 + Z21 O 1 , [O 1] = Z11 O 1 . (5)

It is convenient to introduce matrix notation

O =
(

O 1
O 2

)
, Z =

(
Z11 0
Z21 Z22

)
. (6)

Renormalized operators satisfy the RG equation(
μ∂μ + β(a)∂a + γ

)[O ] = 0 . (7)

Here

γ =
(

γ11 0
γ21 γ22

)
(8)

is the AD-matrix and β(a) is the d-dimensional beta function

β(a) = μ
da

dμ
= −2a(ε + aβ0 + a2β1 + . . .), (9)

where

β0 = 11

3
C A − 2

3
n f , β1 = 2

3

[
17C2

A − 5C An f − 3C F n f

]
. (10)

Since the vector current is conserved γ11 = 0 and Z11 = 1 to all 
orders in perturbation theory. The γ22 entry is the usual AD of the 
2

Fig. 1. Feynman diagrams for the calculation of γ
(2)

21 .

leading-twist operator with two derivatives. It is known to five-
loop order [14]. For Nc = 3

γ22 = aγ (1)
22 + a2γ

(2)
22 +O(a3) , (11)

with

γ
(1)

22 = 100

9
, γ

(2)
22 = 34450

243
− 830

81
n f , (12)

etc. The advantage of using the Gegenbauer polynomial in (3) is 
that the off-diagonal ADs start at order O(a2) in this basis:

γ21 = a2γ
(2)

21 +O(a3) . (13)

In what follows we describe a simple method to calculate γ (2)
21 .

The mixing matrix (8) can be written in the following form(
γ11 0
γ21 γ22

)
=

(
1 0

A21 1

)−1 (
γ11 0
0 γ22

)(
1 0

A21 1

)
(14)

with A21 = γ21/(γ22 − γ11) = aA(1)
21 + a2 A(2)

21 + . . ..
Let

O =
(

1 0
A21 1

)
[O ] =

( [O 1]
[O 2] + A21[O 1]

)
(15)

and set the space-time dimension to its critical value (1) such that 
the β-function (9) vanishes. With this choice, the RG equation in 
(7) decouples into separate equations for the “rotated” operators(
μ∂μ + γ11

)
O1 = 0 ,

(
μ∂μ + γ22

)
O2 = 0 , (16)

and conformal symmetry requires that to all orders of perturbation 
theory

〈O2(x)O1(0)〉 = 〈[O 2](x)[O 1](0)〉 + A21〈[O 1](x)[O 1](0)〉 = 0 .

(17)

Using (5) we can rewrite this equation in terms of bare correlation 
functions

Z22〈O 2(x)O 1(0)〉 + Z21〈O 1(x)O 1(0)〉 + A21〈O 1(x)O 1(0)〉 = 0 .

(18)

This can be solved for A21 or, equivalently, γ21, if the other en-
tries are calculated to the sufficient accuracy. Let us note that 
Eq. (17) implies that the correlation functions 〈[O 1](x)[O 1](0)〉
and 〈[O 2](x)[O 1](0)〉 have the same x-dependence. This property 
is a consequence of conformal symmetry and is valid at the critical 
point only, ε 	→ ε∗ .

The renormalization factors in Eq. (18) take the form

Z22(a, ε) = 1 + a

2ε
γ

(1)
22 +O(a2) ,

Z21(a, ε) = a2

4ε
γ

(2)
21 +O(a3) (19)
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and, since γ11 = 0, γ
(2)

21 = A(1)
21 γ

(1)
22 . Thus in order to find γ

(2)
21

we need to calculate 〈O 2(x)O 1(0)〉 to O(a) (two-loop) and 
〈O 1(x)O 1(0)〉 to O(1) (one-loop) accuracy. Since Z21 = O(a2), the 
second term on the l.h.s. of (18) can be omitted. The relevant Feyn-
man diagrams are shown in Fig. 1. One obtains

〈O 1(x)O 1(0)〉 = N
[
− 105 +O(a, ε)

]
,

〈O 2(x)O 1(0)〉 = N
[

63ε + 70a +O(a2,aε, ε2)
]
, (20)

where

N = (n · x)6

(4π)d

(
4

−x2 + i0

)d+4

. (21)

Using these expressions and the one-loop result for Z22 (19), ex-
panding everything to O(a) accuracy and replacing ε 	→ −β0a one 
obtains from Eq. (18)

A21 = 13

5
− 2

5
n f , γ

(2)
21 = 260

9
− 40

9
nF , (22)

in agreement with the known result [6,7]. This calculation is much 
easier as compared to a direct calculation of γ (2)

21 from the two-
loop Green function of O 2 and two quark fields.

3. General case

The approach sketched above can be generalized to all orders 
in perturbation theory and also for flavor-singlet operators. Let

Oq
n = i ∂n+

n f∑
f =1

q̄ f C (3/2)
n

(←
D+ − →

D+
←
D+ + →

D+

)
γ+q f , (23a)

Og
n = 6 ∂n−1+ F μ,+ C (5/2)

n−1

(←
D+ − →

D+
←
D+ + →

D+

)
Fμ,+. (23b)

These operators have spin N = n + 1 and mix with each other un-
der renormalization,

[Oα
n ] = Zαβ

n Oβ
n + total derivatives. (24)

Here and below [. . .] stands for a renormalization in MS scheme. 
Since operators containing total derivatives do not contribute to 
the forward matrix elements, these matrix elements satisfy the 
RGE of the form((

μ∂μ + β(a)∂a
)
δαβ + γ

αβ
n (a)

)
〈p|[Oβ

n ]|p〉 = 0, (25)

where α, β ∈ {q, g}. The anomalous dimensions

γ
αβ

n = −μ∂μ Zαα′
n (Z−1

n )α
′β, (26)

are 2 × 2 matrices

γn =
(

γ
qq

n γ
qg

n

γ
gq

n γ
gg

n

)
= aγ (1)

n + a2γ
(2)

n + . . . . (27)

They are known to three-loop accuracy for all n [15] and to four 
loops for n = 1, 3, 5, 7 [16]. In a theory in d = 4 − 2ε dimensions 
the RGE (25) has the same form as in d = 4, but with the d-
dimensional β-function (9).

In processes involving matrix elements with nonzero momen-
tum transfer the RGE becomes more complicated. In this case mix-
ing with operators containing total derivatives,

Oα
mn = ∂n−m+ Oα

m , m = n − 2,n − 4, . . . , (28)
3

has to be taken into account. For definiteness, and having in mind 
applications to two-photon reactions such as DVCS, we will con-
sider C-parity-even operators n = 1, 3, 5, . . . (even spin). Taking 
into account that [∂n−m+ Oα

m] = ∂n−m+ [Oα
m] we can write

[Oα
mn] =

∑
k=1,3,...,m

Zαβ

mk O
β

kn, (29)

which has the same form for all n, so that this subscript is essen-
tially redundant.

It is convenient to introduce matrix notation

�On =
(
Oq

n

Og
n

)
(30)

and

On =

⎛⎜⎜⎜⎝
�O1n
�O3n
...

�Onn

⎞⎟⎟⎟⎠ , Zn =

⎛⎜⎜⎜⎝
Z11 0 · · · 0
Z31 Z33 · · · 0
...

...
. . .

...

Zn1 Zn3 · · · Znn

⎞⎟⎟⎟⎠ , (31)

where each entry Zmk is a 2 × 2 matrix Zαβ

mk . Note that the matrix 
Zm for m < n is a principal submatrix of Zn: The subscript only 
specifies the size of the matrix while the entries do not depend on 
it. The RG equation for [On] = ZnOn takes the form(
μ∂μ + β(a)∂a + γ n(a)

)[On] = 0 , (32)

where

γ n(a) =

⎛⎜⎜⎜⎝
γ11 0 · · · 0
γ31 γ33 · · · 0
...

...
. . .

...

γn1 γn3 · · · γnn

⎞⎟⎟⎟⎠ . (33)

The diagonal entries γnn are nothing else as the forward ADs (26), 
γnn ≡ γn , and our task is to find the off-diagonal entries γkm , k >
m. In the chosen (Gegenbauer polynomial) operator basis the off-
diagonal entries are O (a2):

γmm(a) = aγ (1)
mm + a2γ

(2)
mm + a3γ

(3)
mm + . . . ,

γkm(a) = a2γ
(2)

km + a3γ
(3)

km + . . . , k > m . (34)

The AD matrix (33) can be brought to the block-diagonal form

γ̂ n(a) = An(a)γ n(a)A−1
n (a) , (35)

where γ̂ n(a) = diag{γ1(a), . . . , γn(a)} and

An(a) =

⎛⎜⎜⎜⎝
1 0 · · · 0

A31 1 · · · 0
...

...
. . .

...

An1 An3 · · · 1

⎞⎟⎟⎟⎠ , (36)

where all entries are 2 × 2 matrices in quark-gluon space, cf. (27). 
Next, define a rotated operator

On = An(a)[On] (37)

and set the space-time dimension to the critical value ε 	→ ε∗ , 
β(a)|ε=ε∗ = 0. The RGE for On (at the critical point) takes the 
form 

(
μ∂μ + γ̂ n

)
On = 0 and decouples in n independent equa-

tions, 
(
μ∂μ + γm

) �Omn = 0. Further, since �Omn = ∂n−m+ �Omm , the 
dependence on n is trivial and it is sufficient to consider the case 
n = m:
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(
μ∂μ + γm

) �Omm = 0 , �Omm ≡ �Om. (38)

This equation means that the operators Oα
mm , α = q, g at ε = ε∗

can be written as linear combinations of two operators with cer-
tain scaling dimensions, which transform in a proper way un-
der conformal transformations (dubbed conformal operators). Since 
correlation functions of conformal operators with different scaling 
dimensions vanish, we conclude that

〈Oα
nn(x)Oβ

mm(0)〉 = 0 (39)

for m /=n and x �= 0. For definiteness we assume n > m.
It proves to be convenient to write the operators Oα

nn in a 
slightly different form,

Oα
nn = [Oα

nn] +
∑

m=1,3,...,n−2

Aαβ
nm[Oβ

mn]

= [Oα
nn] +

∑
m=1,3,...,n−2

Bαβ
nmOβ

mn. (40)

The matrices A and B are related to each other as

A = (1− B)−1. (41)

Then it follows from Eq. (39)

〈[Oα
nn](x)Oβ

mm(0)〉 = −
∑

k=1,3,...,n−2

Bαγ
nk 〈Oγ

kn(x)Oβ
mm(0)〉

= −Bαγ
nm 〈Oγ

mn(x)Oβ
mm(0)〉 . (42)

Note that only one term with k = m survives in the sum on the 
r.h.s. We will show that this equation allows one to determine the 
coefficients Bαγ

nk .
In practice, it is more convenient to do calculations in momen-

tum representation. We consider the correlation functions of bare 
operators

i

∫
ddx eipx〈Oα

kk(x)Oβ
mm(0)〉

= (ip+)k+m+2

(4π)d/2
μ−2ε T αβ

km (s,ab, ε), (43)

where ab is the bare coupling and s = μ2/(−p2 − i0). A perturba-
tive expansion for T αβ

km can be written as

T αβ

km (s,ab, ε) =
∑

≥1

a
−1
b sε
(D
)

αβ

km , (44)

where 
 is the number of loops. The renormalized correlation func-
tions [T αβ

km ](s, a, ε) are given by

[T αβ

km ](s,a, ε) =
∑

k′,m′,α′,β ′
Zαα′

kk′ T αβ

k′m′(s, Zaa, ε)Zββ ′
mm′ , (45)

or, in matrix notation, [T](s, a, ε) = Z T(s, Zaa, ε) ZT . These func-
tions still have a 1/ε pole coming from the integration around 
x = 0 (recall that Eq. (42) holds only for x �= 0). This divergent con-
tribution can be removed applying the derivative in s:

T
αβ

km (s,a, ε) = s
d

ds
[Tαβ

km ](s,a, ε)

= ε
∑

≥1


a
−1sε
 Zαα′
kk′ (D
)

α′β ′
k′m′ Zββ ′

mm′ . (46)

This object is finite and we can put the space-time dimension to its 
critical value ε 	→ ε∗ . In what follows we use a shorthand notation 
T∗(s, a) = T(s, a, ε∗).
4

The momentum-space version of Eq. (42) takes the form

T∗AT = −BAT∗AT , (47)

so that

B = −V R−1, (48)

where

Vαβ
nm = (T∗AT )

αβ
nm , Rγ β

km = (AT∗AT )
γ β

km . (49)

Note that B and V (for n > m) are lower block-triangular and R is a 
block-diagonal matrix. The matrices V and R depend on B through 
A = (1 − B)−1 and implicitly through off-diagonal elements in the 
renormalization factors Z.

It remains to expand Eq. (48) in powers of the coupling 
constant. Note that V = O(a) since the correlation functions 
〈Oα

n (x)Oβ
m(0)〉 with n �= m vanish in d = 4 at leading (one-loop) 

order. As a consequence, terms of order ak in the expansion of 
Eq. (48) only contain the B-matrix dependent terms of one order 
less on the r.h.s., so that it can be solved iteratively, order-by-order. 
Write

V = a V1 + a2 V2 + . . . , R = R0 + aR1 + . . . ,

B = a B1 + a2 B2 + . . . (50)

Then

B1 = −V1R−1
0 , (51)

where V1 and R0 are obtained from two-loop correlation functions 
(D2)

αβ

km (44) and do not depend on B. Once B1 is found, one can 
calculate the two-loop AD matrix

γ (2) = γ̂ (2) − [B1, γ̂
(1)] (52)

and the two-loop renormalization factor

Z = 1 + a

2ε
γ (1) + a2

4ε
γ (2)

+ a2

8ε2
(γ (1))2 − a2

4ε2
β0γ

(1) + · · · (53)

As the next step, we obtain V2 and R1 with the input from three-
loop correlation functions (D3)

αβ

km . This allows one to calculate B2

as

B2 = −V2R−1
0 + V1R−1

0 R1R−1
0 (54)

and determine the three-loop AD matrix

γ (3) = γ̂ (3) − [B2, γ̂
(1)] − [B1, γ̂

(2)] − [B1, γ̂
(1)]B1. (55)

This procedure can be continued iteratively to any order, O(ak), 
provided the correlation functions (43), (44) are calculated to the 

 = k loops accuracy.

Finally, note that one can consider correlation functions of the 
operators (23) defined with two different auxiliary light-cone vec-
tors n and n̄, schematically 〈O(n)(x)O (n̄)(0). We have checked that 
this freedom does not produce new constraints while choosing 
n �= n̄ complicates the calculations.
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4. Flavor-singlet operators with spin N ≤ 8

We have calculated the correlation functions (D
)
qq
km , (D
)

qg
km , 

(D
)
gq
km , (D
)

gg
km as defined in Eqs. (43), (44) for k, m = 1, 3, 5, 7

to three-loop accuracy in 4 − 2ε dimensions for a generic gauge 
group. All the diagrams were generated with the help of QGRAF 
[17] and evaluated with FORM [18] programs MINCER [19] and 
COLOR [20].

The results are collected in the ancillary file. Using these ex-
pressions we determined the off-diagonal parts of the AD (mixing) 
matrices for C-parity even flavor-singlet operators. The complete 
expressions with all color structures are lengthy and are given in 
the second ancillary file. Here we present the results for Nc = 3, 
separating contributions with the different n f dependence

γ (2) = γ (2,0) + n f γ
(2,1) ,

γ (3) = γ (3,0) + n f γ
(3,1) + n2

f γ
(3,2) . (56)

For the two-loop ADs we obtain

γ
(2,0)

31 =
(

8668
243 0

− 2728
27 198

)
, γ

(2,0)
51 =

(
120692

8505 0

− 968
9

22825
84

)
,

γ
(2,0)

53 =
(

261232
7875 0

− 18052
225

42867
350

)
, γ

(2,0)
71 =

(
226526
35721 0

− 617252
5103

15631
45

)
,

γ
(2,0)

73 =
(

982399
55125 0

− 118364
1575

539
5

)
, γ

(2,0)
75 =

(
7320742
250047 0

− 68445364
893025

10766899
110250

)
(57)

and

γ
(2,1)

31 =
(

− 400
81 − 131

81

− 176
27 − 176

27

)
, γ

(2,1)
51 =

(
− 224

81 − 259
108

− 3520
567 − 3520

567

)
,

γ
(2,1)

53 =
(

− 172
75

371
250

− 352
105 − 968

1575

)
, γ

(2,1)
71 =

(
− 344

189 − 67357
34020

− 1480
243 − 1480

243

)
,

γ
(2,1)

73 =
(

− 521
315

83501
189000

− 148
45 − 407

675

)
, γ

(2,1)
75 =

(
− 168272

99225
37316851
41674500

− 3848
1701 − 10582

59535

)
.

(58)

These expressions coincide with those obtained in [6,21]. The 
three-loop mixing matrix presents our main result:

γ
(3,0)

31 =
(

36623912
54675 0

− 2430374
3645

261063
50

)
,

γ
(3,0)

51 =
(

8049304723
31255875 0

− 26632998209
112521150

2829671009
329280

)
,

γ
(3,0)

53 =
(

320657981731
520931250 0

− 29333397389
20837250

14378664569
6860000

)
,

γ
(3,0)

71 =
(

7192640196053
56710659600 0
52031947546

506345175
49155659027

3969000

)
,

γ
(3,0)

73 =
(

159898280729473
525098700000 0

− 5108698450661
3750705000

832037077
441000

)
,

γ
(3,0)

75 =
(

220023775251709
396974617200 0

− 10780083012803
7088832450

16149051685793
9724050000

)
, (59)
5

γ
(3,1)

31 =
(

− 8730029
54675 − 332059

24300
5490814

18225 − 300187
675

)
,

γ
(3,1)

51 =
(

− 28845421
357210 − 243735889

14817600
335801338

1250235 − 224376685
333396

)
,

γ
(3,1)

53 =
(

− 2153638
21875

144714911021
8334900000

3312237599
17364375 − 20587053491

69457500

)
,

γ
(3,1)

71 =
(

− 55283376439
1080203040 − 546050628929

54010152000
993217273

3857868 − 172371032413
192893400

)
,

γ
(3,1)

73 =
(

− 2741596879177
50009400000

1181185770041
300056400000

1249920631
7441875 − 277307247263

1071630000

)
,

γ
(3,1)

75 =
(

− 540390286778953
6616243620000

40476782277763
4725888300000

3992643276739
23629441500 − 5479061294213

23629441500

)
, (60)

and

γ
(3,2)

31 =
(

1547
675

3877
4050

628
45

628
45

)
,

γ
(3,2)

71 =
(

− 1533233
12859560

47089801
128595600

15641
2187

15641
2187

)
,

γ
(3,2)

51 =
(

165364
416745

17006749
20003760

112304
11907

112304
11907

)
,

γ
(3,2)

73 =
(

21577379
23814000 − 80173297

476280000
23041
4050

253451
243000

)
,

γ
(3,2)

53 =
(

597476
385875 − 141661001

138915000
10072
1225

27698
18375

)
,

γ
(3,2)

75 =
(

3052708451
2250423000 − 28293919771

63011844000
3472391
535815

38196301
75014100

)
. (61)

As a byproduct of this calculation we have considered flavor-
nonsinglet operators as well, and confirm the corresponding results 
of Ref. [7].

The size of the three-loop corrections for a ∼ 1/40 and n f = 4
is typically of the order of 20% of the two-loop results, with a few 
exceptions. The γ gq and γ gg entries are in all cases much larger 
than γ qg and γ qq .

5. Conclusions

We have presented a method to calculate off-diagonal parts of 
the mixing matrices of leading-twist operators with the operators 
including total derivatives based on conformal symmetry of QCD at 
the Wilson-Fisher critical point in noninteger dimensions. In this 
approach, the calculation of the ADs to 
-loop accuracy, O(a
), 
is reduced to a calculation of 
-loop gauge-invariant correlation 
functions of leading-twist operators. As an illustration, we have 
calculated three-loop ADs of flavor-singlet operators for spin N ≤ 8
which contribute, e.g., to the moments of generalized parton distri-
butions. The main advantage of this technique is that mixing with 
non-gauge-invariant operators can be ignored altogether and also 
the number of Feynman diagrams is much smaller as compared 
to the standard approach. An extension to higher moments and to 
four loops is straightforward but will require significant computer 
resources. Restoration of the off-forward evolution kernels in mo-
mentum fraction space from the results for a given set of moments 
is a nontrivial problem which goes beyond the task of this letter.
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