
Deeply Virtual Compton Scattering at Next-to-Next-to-Leading Order

V.M. Braun,1,* Yao Ji ,2,† and Jakob Schoenleber1,‡
1Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

2Physik Department T31, James-Franck-Straße 1, Technische Universität München, D-85748 Garching, Germany

(Received 25 July 2022; accepted 27 September 2022; published 18 October 2022)

Deeply virtual Compton scattering gives access to the generalized parton distributions that encode the
information on the transverse position of quarks and gluons in the proton with dependence on their
longitudinal momentum. In anticipation of the high-precision experimental data in a broad kinematic range
from the Electron-Ion Collider, we have calculated the two-loop, next-to-next-to-leading order (NNLO)
deeply virtual Compton scattering coefficient functions associated with the dominant Compton form
factors H and E at large energies. The NNLO correction to the imaginary part of H appears to be rather
large, up to factor 2 at the input scale Q2 ¼ 4 GeV2 for simple generalized parton distribution models, due
to a cancellation between quark and gluon contributions.
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Introduction.—The physics program of the planned
Electron-Ion Collider (EIC) [1,2] states three-dimensional
“tomographic” imaging of the proton as a major science
goal. Studies of the deeply virtual Compton scattering
(DVCS) are an important part of this endeavor. This reaction
gives access to the generalized parton distributions (GPDs)
[3–5] that encode the information on the transverse position
of quarks and gluons in the proton with dependence on their
longitudinal momentum. It will be measured with unprec-
edented precision and in a very broad kinematic range. The
insights from these measurements can be fundamental and
manifold. For instance, we want to find out whether quarks
and gluons have similar distributions in transverse space.
Form factors of the energy-momentum tensor can be
accessed. We will be able to study many related quan-
tities—the pressure distribution inside the proton, the
helicity and angular momentum carried by quarks and
gluons with different momentum fractions—and address
many other questions that are currently only tractable within
models or on the lattice.
The QCD description of the DVCS is based on collinear

factorization with GPDs as nonperturbative inputs and
coefficient functions (CFs) which can be calculated order
by order in perturbation theory. Since gluons do not have
electric charge, to the leading order (LO), the whole gluon
GPD contribution is generated by mixing with the quark
GPD and vanishes at the input scale, usually taken to be
Q2

0 ¼ 4 GeV2. The next-to-leading order (NLO) corrections

(one loop) were calculated for massless quarks and gluons in
Ref. [6] and for massive (e.g., charm) quarks in Ref. [7]. The
next-to-next-to-leading order (NNLO) corrections (two
loop) in conformal moments space were estimated in Refs.
[8,9] in a special renormalization scheme using constraints
from conformal symmetry. For the flavor-nonsinglet (NS)
case, they were calculated recently in momentum fraction
space in MS scheme in Refs. [10] and in Refs. [11,12] for
vector and axial-vector contributions, respectively. In this
Letter we extend these results to flavor-singlet vector
contributions that are crucial in the EIC energy range. We
report on the calculation of NNLO flavor-singlet CFs for the
Compton form factors (CFFs) H and E and an exploratory
numerical analysis of their effect. Although the results are
naturally dependent on the choice of model GPDs, the main
conclusions are quite universal. As a side result, we have
rederived and confirmed the expression for the NNLO
flavor-nonsinglet CF, which was obtained in Ref. [10] using
a different method.
The motivation for this work is twofold. On the one hand,

the NNLO accuracy in DVCS is required for theoretical
consistency with the QCD studies of inclusive processes
and also semi-inclusive reactions described in the transverse-
momentum-dependent factorization framework where
NNLO accuracy has become standard. More specifically,
there are reasons to expect that the higher-order corrections
to the gluon CFs are numerically large. It is well known, see,
e.g., Refs. [13,14], although not emphasized strongly in the
literature, that the NLO (one-loop) gluon CF has opposite
sign compared to the leading quark contribution, leading to a
strong cancellation between quarks and gluons at moderate
Q2. At large photon virtualities this (formally subleading)
negative gluon contribution is overcompensated by the
positive contribution generated by the mixing with quarks,
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so that ultimately quark and gluon GPD contributions add
up. This nontrivial interplay of LO and NLO continues
through the whole range of accessible momentum transfers
at JLAB 12 and, in the future, at EIC. We find that the
NNLO corrections follow the same pattern and are in all
cases negative compared to the LO (i.e., same sign as NLO).
They are of the order of 20%–30% of the NLO gluon CF and
significantly smaller for quarks, indicating that perturbation
theory converges reasonably well. However, since all
corrections are negative compared to the leading term,
going over from NLO to NNLO the CFF H is strongly
reduced. Our results reinforce the conclusions of Ref. [14]
that the proper account of gluon contributions is crucial for a
quantitative description of DVCS in the full energy range.
Calculation.—The DVCS scattering amplitude γ�ðqÞ þ

NðpÞ → γðq0Þ þ Nðp0Þ is given by the nucleon (proton)
matrix element of the time-ordered product of two electro-
magnetic currents,

Tμν ¼ i
Z

d4xe−iqxhp0jTfjμðxÞjνð0Þgjpi

¼ −gμν⊥ V þ ϵμν⊥ Aþ power corrections; ð1Þ

where jμðxÞ ¼ P
q eqψ̄qðxÞγμψqðxÞ with the sum running

over active quark flavors q ¼ u; d; s;… of electric charge
eq. Transverse directions can be defined, e.g., as orthogonal
to the scattering plane. (An ambiguity in the separation of
longitudinal and transverse directions is a higher-twist
effect; see Refs. [15,16].)
The vector amplitude V, which is the subject of this

work, is usually parametrized in terms of two Compton
form factors [17,18]:

V¼ 1

2Pþ ūðp0Þ
�
γþHðξ;Q;tÞþ iσþαΔα

2M
Eðξ;Q;tÞ

�
uðpÞ; ð2Þ

where Pμ ¼ 1
2
ðpþ p0Þμ, Δμ ¼ ðq0 − qÞμ, Q2 ¼ −q2, and

M is the nucleon mass. The skewedness parameter ξ to
leading-twist accuracy can be chosen as [18]

ξ ¼ xB
2 − xB

þOð1=Q2Þ; ð3Þ

where xB ¼ Q2=ð2pqÞ is the usual Bjorken variable.
The CFFs can be factorized in terms of the GPDs,

H ¼
X
q

Z
1

−1

dx
ξ
Cqðx=ξ; μ2=Q2; αsðμÞÞHqðx; ξ; t; μÞ

þ
Z

1

−1

dx
ξ2

Cgðx=ξ; μ2=Q2; αsðμÞÞHgðx; ξ; t; μÞ; ð4Þ

and similarly for E, with the same coefficient functions. Here
μ is the factorization scale and we tacitly take the renorm-
alization scale to be same. The quark and gluon GPDs are

assumed to be normalized to the corresponding parton
distribution functions (PDFs) in the forward limit [17,18]:

Hqðx;0;0;μÞ ¼ qðx;μÞ; Hgðx;0;0;μÞ ¼ xgðx;μÞ: ð5Þ

The coefficients 1=ξ and 1=ξ2 in Eq. (4) in front of the quark
and gluon contributions ensure that the corresponding CFs
Cq and Cg depend on the ratio x=ξ only. The CFs are real
functions for jx=ξj < 1 and can be continued analytically to
the jx=ξj > 1 region by the substitution ξ → ξ − iϵ [4,5].
The CFs can be calculated order by order in perturbation

theory,

Cq ¼ Cð0Þ
q þ asC

ð1Þ
q þ a2sC

ð2Þ
q þOða3sÞ;

Cg ¼ asC
ð1Þ
g þ a2sC

ð2Þ
g þOða3sÞ; ð6Þ

where as ¼ αs=ð4πÞ, and in our normalization

Cð0Þ
q ¼ e2q

�
ξ

ξ − x − iϵ
−

ξ

ξþ x − iϵ

�
: ð7Þ

The NLO (one-loop) CFs are available from Refs. [6,7].
The NNLO (two-loop) CFs present our main result. The
answer can be decomposed in contributions of different
color structures and, for quarks, in flavor-nonsinglet and
pure-flavor singlet (PS) contributions with different
dependence on electromagnetic charges:

Cð2Þ
q ¼ 1

2zð1 − zÞ
�
e2qCF

�
CFC

ðFÞ
NS þ CAC

ðAÞ
NS þ β0C

ðβ0Þ
NS

�

þ
�X

q0
e2q0

�
TFCFCPS

�
; ð8Þ

Cð2Þ
g ¼ ðPqe

2
qÞ

4z2ð1 − zÞ2 TFðCFC
ðFÞ
g þ CAC

ðAÞ
g Þ; ð9Þ

where z ¼ 1
2
ð1 − x=ξÞ is the argument of all CðYÞ

X implicitly.
All quark CFs are antisymmetric and gluon CFs symmetric
under the interchange x ↔ −x alias z ↔ 1 − z.
The calculation was performed using computer algebra

techniques. The ∼150 contributing Feynman diagrams were
generated using QGRAF [19] and projected onto the appro-
priate Dirac and Lorentz structures using FORM [20] and
in-house routines. The resulting set of scalar integrals was
reduced to 12 master integrals making use of the integration-
by-parts relations, performed with FIRE [21]. Fortunately, no
new master integrals appeared in the singlet CFs compared
to the nonsinglet case. These integrals have been calculated
recently in Ref. [12] and are partially given in Ref. [22]. The
divergent 1=ϵ terms in the resulting expressions are all
removed when expressing the results in terms of renormal-
ized GPDs and the renormalized coupling, which provides a
strong check of the calculation. In this way also finite
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contributions appear due to convolutions of the OðϵÞ terms
in the one-loop CFs with the one-loop evolution kernels.
These convolutions were performed in both momentum and
position space with the latter using the HyperInt software
package [23]. The final manipulations and the numerical
analysis reported below were done using the HPL package
[24] for handling harmonic polylogarithms [25].
Complete analytic expressions for the CFs CNS, CPS, Cg

up to two loops are given in the Supplemental Material [26]
and collected in the ancillary file CF.m in Mathematica
format available in Ref. [27]. Our results for the two-loop

flavor-nonsinglet CFs CðFÞ
NS , C

ðAÞ
NS , and Cðβ0Þ

NS agree with the
corresponding results in Ref. [10] obtained using a differ-
ent, conformal symmetry based approach.
We observe (see Supplemental Material [26]) that the

quark CF becomes smaller with the inclusion of higher-
order effects, the reason being that the one-loop and
two-loop corrections both have opposite sign as compared
to the LO term (7) apart from a very narrow strip around
x=ξ ¼ 1. The gluon CF becomes significantly larger by
adding the two-loop effects, and has negative sign. Thus the
quark and gluon contributions to the CFFs at μ2 ¼ Q2 have
opposite sign, leading to a strong cancellation in the sum.
The most singular contributions at z → 0 (x → ξ)

increase by two powers of the logarithm for each higher
power of the coupling. We obtain

Cq ≃
e2q
2z

�
1þCFasln2zþ

1

2
C2
Fa

2
s ln4zþ���

�
;

Cg ≃
P

qe
2
q

2z
TFas lnz

�
1þ1

6
ðCAþ5CFÞasln2zþ���

�
: ð10Þ

The “pure singlet” quark contribution CPS (9) does not
contribute to this asymptotic behavior at NNLO so that
the double-logarithmic asymptotics for Cq is given by the
flavor-nonsinglet contribution alone. Our expression in
the first line in Eq. (10) coincides with the one obtained
in Ref. [10], but does not agree with the resummation
formula suggested in Ref. [28].
Numerical analysis.—For the illustration of the numeri-

cal impact of the NNLO corrections on the CFFHðξ; Q2; tÞ,
we will use models for the GPDs based on the conventional
double-distributions parametrization [5,29],

Hiðx; ξ; tÞ ¼
Z Z

jαjþjβj≤1
dαdβfiðβ; α; tÞδðx − β − ξαÞ

þDiðx=ξ; tÞθðξ2 − x2Þ; ð11Þ

where the subscript i denotes the flavor (val for valence
quarks, sea for sea quarks, and g for gluons). We neglect
the D term [30] in what follows, as it is very poorly known
and does not contribute to the dominant imaginary part of
the CFF H at high energies. We also neglect the c-quark

contribution which, according to the analysis in Ref. [7], is
very small at such scales.
The GPDs are constructed using the standard ansatz [31],

fiðβ; α; tÞ ¼ giðβ; tÞhiðβÞ
Γð2ni þ 2Þ

22niþ1Γðni þ 1Þ2

×
½ð1 − jβjÞ2 − α2�ni
ð1 − jβjÞ2niþ1

; ð12Þ

with nval ¼ 1 and ng ¼ nsea ¼ 2. The form of the t
dependence is inspired by the Regge calculus [32,33],

giðβ; tÞ ¼ ebitjβj−α0it; ð13Þ

with parameters specified in Ref. [32]. The functions hiðβÞ
are related to the corresponding PDFs through the normali-
zation condition (5):

hgðβÞ ¼ jβjgðjβjÞ;
hseaðβÞ ¼ qseaðjβjÞsgnðβÞ;
hvalðβÞ ¼ qvalðβÞθðβÞ:

It is well known that the PDFs from global fits depend
rather strongly on the order in perturbation theory. We use
HERAPDF20 [34] LO; NLO; NNLO PDFs for the calculation
of the CFF Hðξ; Q; tÞ including LO; NLO; NNLO CFs,
respectively. The results are shown in Fig. 1 by thin curves.
We also show by thick curves the NLO and NNLO results
using the ABMP16 [35,36] PDF sets for comparison. Quark
contributions (uþ dþ s), gluon contributions, and the total
result forHðξ; Q; tÞ are shown on the left-hand, middle, and
right-hand panels in Fig. 1, respectively. We have chosen
the momentum transfer t ¼ −0.1 GeV2 as a representative
value for these plots.
One sees that the NNLO corrections to the quark

contributions are rather small or, rather, partially compen-
sated by refitting the GPD model to the NNLO PDFs in the
forward limit. However, the NNLO contribution is large for
gluons with ∼ð20%–30Þ% for the imaginary part. Since the
gluon contribution to ImHðξ; tÞ at μ2 ¼ Q2 is large and
negative, the total NNLO correction to the imaginary part of
the CFF at the input scale appears to be very large. For
instance, the total NNLO prediction for ImH is about 5
times smaller at ξ ¼ 0.01 compared to NLO using ABMP16

PDF data as shown in the upper right-hand plot in Fig. 1.
Note that this cancellation becomes stronger for increasing
values of t as by assumption (13) the flavor-singlet con-
tribution has a smaller slope. We believe that these con-
clusions are quite universal although the results presented in
Fig. 1 are naturally dependent on the used GPD model
which may be too simplistic.
Next, we consider the Q2 dependence. Lacking the

three-loop evolution equations for the flavor-singlet
GPDs, a complete NNLO calculation is not possible at
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this time. A sufficiently flexible numerical code for the two-
loop evolution equations is only available in conformal
moments space [9]. (For the one-loop evolution, two highly
efficient codes exist [37,38] and are implemented on the
PARTONS platform [39].) For this reason we decided not to
use the renormalization group improved expressions in what
follows, but implement the Q2 dependence as encoded in
the coefficient functions up to fixed orderOðα2sÞ. In this way
the GPDs are kept at μ2 ¼ 4 GeV2 and Q2 dependence
at LO is introduced by taking into account terms
Oðf1; asL; a2sL2gÞ with L ¼ ln μ2=Q2 in the CFs, corre-
sponding to the first two iterations of the LO evolution
equation. The NLO results are obtained by adding terms
Oðfas; a2sLgÞ, and at NNLO we use complete calculated
CFs, adding terms Oða2sÞ independent of L. This approxi-
mation is sufficient for our purposes as the accessible Q2

range in the ongoing and planned measurements is not large.
The results for a particular choice ξ ¼ 0.005 are shown

in Fig. 2. At LO (left-hand panels), the gluon GPD
contribution (dots) vanishes at the input scale Q2 ¼ μ2 ¼
4 GeV2 and is generated at higher scales due to mixing
with quarks. The Q2 dependence of the quark contribution
shown by dashed curves increases very slowly. The sum of
the quark and gluon contribution (solid curves) increases by
roughly a factor 2 for 4 ≤ Q2 ≤ 100 GeV2. This increase is
driven almost entirely by the gluons.
At NLO, both quark and gluon CFs receive negative

OðαsÞ corrections so that the quark contribution decreases
slightly and the gluon contribution becomes large and
negative. As the result, the CFF H is strongly reduced.

With increasing Q2, this (formally subleading) negative
correction is gradually compensated by a positive contri-
bution from quark-gluon mixing so that the total gluon
contribution changes sign at Q2 ∼ 25 GeV2.
The main effect of the NNLO corrections Oðα2sÞ calcu-

lated in this work is a large additional negative gluon
contribution to the imaginary part of the CFF. As the result,
the cancellation between the quark and gluon contributions
at moderate Q2 < 20 GeV2 becomes stronger and the
CFF H is further reduced—by a factor of 2 or more at
ξ ¼ 0.005, depending on the GPD model.
Conversely, if the quark and gluon GPDs are extracted

by fitting the QCD theory predictions to the experimental
data on the CFF, the results are likely going to be very
unstable against changes in the order of perturbation theory
in the analysis.
Conclusions.—To summarize, in anticipation of the high-

precision experimental data on DVCS in a broad kinematic
range from JLAB 12 and the Electron-Ion Collider, we have
calculated the two-loop, (NNLO) CFs associated with the
dominant Compton form factors H and E at large energies.
We find that the NNLO correction to the gluon contribution
to the imaginary part of H is significant so that the
cancellation between quark and gluons at moderate Q2

(that is already present at NLO) becomes more pronounced.
To tame this instability, a further analysis is needed in both
theory and phenomenology. From the theory side, in
particular the three-loop evolution equations for flavor-
singlet GPDs are missing and will be necessary to quantify
the remaining factorization scale dependence at NNLO.
Also an estimate of the three-loop CF is obtainable by

FIG. 1. Real and imaginary parts of the CFFH as a function of ξ at μ2 ¼ Q2 ¼ 4 GeV2 and t ¼ −0.1 GeV2 for the GPDs normalized
to HERAPDF20 (thin lines) and ABMP16 (thick lines, NLO and NNLO only) PDF sets at the appropriate order in perturbation theory. Solid
lines, LO (black); short dashes, NLO (blue); long dashes, NNLO (orange).
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calculating the two-loop diagrams with an additional
fermion-bubble insertion. Both tasks, however, go beyond
the scope of this Letter.
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