
Nonlinearity
            

PAPER • OPEN ACCESS

On a fluid–structure interaction problem for plaque
growth
To cite this article: Helmut Abels and Yadong Liu 2023 Nonlinearity 36 537

 

View the article online for updates and enhancements.

You may also like
Small data global existence for a fluid-
structure model
Mihaela Ignatova, Igor Kukavica, Irena
Lasiecka et al.

-

Analysis of a nonlinear fluid-structure
interaction model with mechanical
dissipation and delay
Gilbert Peralta and Karl Kunisch

-

Fluid-Structure interaction framework
based on structured RANS solver
Davide Cinquegrana and Pier Luigi
Vitagliano

-

This content was downloaded from IP address 132.199.243.29 on 24/01/2023 at 08:09

https://doi.org/10.1088/1361-6544/aca5e1
/article/10.1088/1361-6544/aa4ec4
/article/10.1088/1361-6544/aa4ec4
/article/10.1088/1361-6544/ab46f5
/article/10.1088/1361-6544/ab46f5
/article/10.1088/1361-6544/ab46f5
/article/10.1088/1742-6596/1786/1/012031
/article/10.1088/1742-6596/1786/1/012031


Nonlinearity

Nonlinearity 36 (2023) 537–583 https://doi.org/10.1088/1361-6544/aca5e1

On a fluid–structure interaction problem for
plaque growth

Helmut Abels∗ and Yadong Liu

Fakultät für Mathematik, Universität Regensburg, 93053 Regensburg, Germany

E-mail: Helmut.Abels@ur.de

Received 11 November 2021; revised 1 November 2022
Accepted for publication 24 November 2022
Published 9 December 2022

Recommended by Dr Nader Masmoudi

Abstract
We study a free-boundary fluid–structure interaction problem with growth,
which arises from the plaque formation in blood vessels. The fluid is described
by the incompressible Navier–Stokes equations, while the structure is con-
sidered as a viscoelastic incompressible neo-Hookean material. Moreover,
the growth due to the biochemical process is taken into account. Applying
the maximal regularity theory to a linearization of the equations, along with
a deformation mapping, we prove the well-posedness of the full nonlinear
problem via the contraction mapping principle.
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1. Introduction

In this paper, we consider a free-boundary fluid–structure interaction problem with growth,
which is used to describe the plaque formation in a human artery. The motion of the blood is
assumed to be represented by the incompressible Navier–Stokes equations and the artery is
modeled by an elastic equation with viscosity. Based on [46], where the model was proposed
and simulated in a cylindrical domain, we analyse such problem in a bounded domainΩt ⊂ Rn,
n⩾ 2. See figure 1. Here, Ωt =Ωt

f ∪Ωt
s ∪Γt, where Ωt is divided by the interface Γt into two
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Figure 1. Domain of the problem.

disjoint parts, fluid domainΩt
f and solid domainΩt

s.Γ
t
s denotes the outer boundary ofΩ

t, which
is also a free boundary.

For t ∈ (0,T), T > 0, the PDE system describing the problem reads as

ρf (∂t+ vf ·∇)vf = divσf, in Ωt
f (1.1a)

divvf = 0, in Ωt
f, (1.1b)

ρs (∂t+ vs ·∇)vs = divσs, in Ωt
s, (1.1c)

(∂t+ vs ·∇)ρs+ ρsdivvs = fgs , in Ωt
s, (1.1d)

∂tcf + div(cfvf)−Df∆cf = 0, in Ωt
f, (1.1e)

∂tcs + div(csvs)−Ds∆cs =−f rs , in Ωt
s, (1.1f )

∂tc
∗
s + div(c∗s vs) = f rs , in Ωt

s, (1.1g)

where ρf/s are the densities and vf/s are the velocities of the fluid and the solid respectively,
σf(vf,πf) =−πfI+ νf(∇vf +∇⊤vf) denotes the Cauchy stress tensor of the fluid, πf is the
unknown fluid pressure and νf represents the fluid viscosity, while σs is the Cauchy stress
tensor of the solid that includes viscoelastic effects and will be discussed with more details
in section 1.1. fgs is called the growth function, representing the rate of mass growth per unit
volume due to the formation of plaque (see e.g. [7, 27, 46]), which will be specified together
with the growth. In addition, cf, cs, c∗s denote the concentrations of the monocytes, the macro-
phages and the foam cells, respectively. The constant Df/s > 0 are the diffusion coefficients in
the blood and vessel, which are assumed to be constants. f rs is the reaction functions, modeling
the rate of conversion from macrophages cs into foam cells c∗s .

Moreover, the system (1.1) is subjected to the boundary and initial conditions

[[v]] = 0, [[σ]]nΓt = 0, on Γt, (1.1h)

[[D∇c]] ·nΓt = 0, ζ [[c]]−Ds∇cs ·nΓt = 0, on Γt, (1.1i)

σsnΓt
s
= 0, Ds∇cs ·nΓt

s
= 0, on Γts, (1.1j)
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Figure 2. Deformation φ mapping from Ω̂ into Ωt.

vf|t=0 = v0f , vs|t=0 = v0s , c|t=0 = c0, c∗s |t=0 = 0, (1.1k)

where nΓt stands for the outer unit normal vector on Γt pointing from Ωt
f to Ωt

s and nΓt
s
is the

unit outer normal vector on Γts = ∂Ωt. The constant ζ denotes the permeability of the interface
Γt between blood and vessel regarding the cells. For a quantity f, [[ f ]] denotes the jump defined
on Ωt

f and Ωt
s across Γ

t, namely,

[[ f ]] (x) := lim
θ→0

f(x+ θnΓt(x))− f(x− θnΓt(x)), ∀x ∈ Γt.

Before giving a precise explanation of the model, we introduce the setting of Lagrangian
coordinates. For convenience, we define the moving domain at initial time t= 0 as Ω̂ =
Ωf ∪Ωs ∪Γ, where Ωf =Ω0

f , Ωs =Ω0
s and Γ = Γ0. From the viewpoint of material deform-

ation (see e.g. [14, 23]), we set the so-called reference configuration at t= 0 and the deformed
configuration at time t. Moreover, we denote the spatial variable at t= 0 by the Lagrangian vari-
able X, and by the Eulerian variable x the spatial variable at t. The velocities of displacements
are v̂(X, t) and v(x, t) respectively. In the sequel, without a special statement, the quantities or
operators with a hat ‘̂·’ will indicate those in Lagrangian coordinates. To formulate the model,
we define the deformation as (see figure 2)

ϕ : Ω̂→ Ωt,

with

x= ϕ(X, t) = X+
ˆ t

0
v̂(X, τ)dτ, ∀X ∈ Ω̂,

and x|t=0 = ϕ(X,0) = X.
Subsequently, we denote by F̂ the deformation gradient

F̂=
∂

∂X
ϕ(X, t) = ∇̂ϕ(X, t) = I+

ˆ t

0
∇̂v̂(X, τ)dτ, ∀X ∈ Ω̂, (1.2)

with initial deformation F̂|t=0 = I and by Ĵ= det F̂ its determinant. Conversely, the inverse
deformation gradient is defined by F= F̂−1. In the following, quantities in fluid and structure
domain will be distinguished by subscript ‘f ’ and ‘s’ respectively, quantities without subscript
are defined both in fluid and structure domain.
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1.1. Fluid–solid interaction with a free interface

The motion of the blood is modeled by the classical incompressible Navier–Stokes
equations (1.1a) and (1.1b), while the solid part is described by an incompressible solid
equation (1.1c) and (1.1d). The crucial difference comes from the stress tensor σs, which
is defined as σs := σe

s +σ v
s with

σe
s =−πsI+µs

(
(Fes)

−1
(Fes)

−⊤ − I
)
,

σ v
s = νs

(
∂tFs

−1 + ∂tFs
−⊤)Fs

−⊤.

Here πs is the unknown solid pressure, µs denotes the Lamé coefficient and νs represents
the solid viscosity, which are all positive constants. (1.1c) is the balance equation of the
momentum, whereinσe

s is given by the constitutive relation of an incompressible neo-Hookean
material as above, which is hyperelastic, isotropic and incompressible. This relationship has
been widely used to describe blood vessels by many investigators, see e.g. [44, 46]. The tensor
Fes is the inverse elastic deformation gradient under the assumption of growth and will be
assigned later in section 1.3. We consider not only the elastic stress tensor σe

s , but also the
viscoelastic stress tensor σ v

s , which could be deduced by linearizing the Kelvin–Voigt stress
tensor, see Mielke and Roubíček [35].

Remark 1.1. For short time existence, the Kelvin–Voigt viscous stress tensorσ v
s we introduced

brings the parabolicity to the system for the solid, which dominates the regularity of solutions.
Moreover, after linearization one obtains a two-phase Stokes type problem, which allows us to
get the solvabilities and regularities of fluid and solid velocities by maximal regularity theory.
In a recent work [9], a similar stress tensor of the solid part was also considered to investig-
ate weak solutions of the interaction between an incompressible fluid and an incompressible
immersed viscous-hyperelastic solid structure.

Remark 1.2. In [44, 46], some numerical simulations are carried out by considering that µs

depends on the concentration of some chemical species, and hence varies from healthy vessel
to plaque area. In the case of viscoelasticity, νs may also vary over the solid domain. However,
to simplify the model for the analysis, we assume that these coefficients are constant over the
solid domain.

The interaction between the fluid and solid is modeled by transmission conditions (1.1h) on the
interface Γt, which consists of the continuity of velocity and the balance of normal stresses.
Moreover, to ensure the compatibility between growth and incompressibility, the boundary
condition on Γts is assumed to be the so-called ‘stress-free’ boundary condition (1.1j).

Remark 1.3. We choose the ‘stress-free’ boundary condition for the velocity in (1.1j) to obtain
physical compatibility. Since we consider the growth of the solid part and both the fluid and
solid are incompressible, we can not impose some types of boundary conditions. For example,
the no-slip condition vs = 0 on Γts (correspondingly, vs = ∂tus = 0 on Γts with us being the
solid displacement) is incompatible with the incompressible growth assumption (see later in
section 1.3). Namely,

0=
ˆ
∂Ωt

vs ·ndσ =
d
dt

ˆ
Ωt

dx︸ ︷︷ ︸
by the Reynolds transport theorem

=
d
dt

|Ωt|=
ˆ
Ωt

s

divvs dx=
ˆ
Ωt

s

fgs /ρs dx 6= 0,

due to growth.
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Remark 1.4. In this work, the fluid part is supposed to be surrounded by the solid part. In
fact, if the solid is immersed in the fluid domain, there will be no essential difference in our
framework of analysis. Specifically, the outer boundary will still be a Neumann-type boundary,
which is a ‘do-nothing’ outer boundary condition for fluid.

1.2. Biochemical processes

The formation of plaque is usually caused by the accumulation of foam cells resulting from
biochemical processes in the blood flow and vessel wall. To describe the phenomenon prop-
erly, we follow the assumptions and modeling in [46, 47]. More precisely, (1.1e) and (1.1f )
imply the dynamics of monocytes cf in the blood and of macrophages cs in the vessel respect-
ively, which are both advection–reaction–diffusion equations. This is because the transport
and diffusion of cells are happening along with the motion of the blood and vessel, while the
reaction is caused by the conversion from macrophages cs into foam cells c∗s indicated by the
function −f rs . Note that vessels could be inhomogeneous, which reveals different diffusion
rates in healthy and diseased vessels, see e.g. [46]. To simplify the model, we assume that
the solid is a homogeneous material, and thus Ds is a constant. Furthermore, the foam cells
are considered to be transported by vs inside the solid material leading to the equation (1.1g).
Here again, we have the reaction term f rs meaning the gain of mass from macrophages, which
is supposed to depend on the concentration of macrophages cs linearly,

f rs = βcs, in Ωt
s,

where β > 0 is assumed to be a constant. In reality, it is way more complicated and may depend
on the concentration of other chemical species. We just assume a linear relation for the sake
of analysis. Then, we give another linear dependence of fgs , which is

fgs = γf rs = γβcs, in Ωt
s, (1.3)

with a positive constant γ. (1.3) describes the growth of the elastic solid wall as mentioned
in (1.1d), resulting from the accumulation of foam cells.

In addition to the process in the fluid or solid domain, one needs to specify the interfacial
laws for the cell interactions in (1.1i). The first one denotes the balance of the normal concen-
tration flux at the interface, while due to the flux, cells move across the interface (penetration),
which is the second equation in (1.1i). Here the permeability ζ of the interface Γt in general
should depend on the hemodynamical stress σf ·nΓt , which, however, is supposed to be a con-
stant for simplicity. The outer concentration flux is assumed to vanish on Γts as in (1.1j).

1.3. Description of growth

Normally, prescribing the rate of growth function fgs is not enough to capture the full effect of
the tissue growth. Specifically, the real deformation and corresponding deformation gradient
F̂s are influenced by both growth and mechanics. Namely, the deformation gradient F̂s alone
does not determine the stress tensor of the solid σe

s .
As in [46], Yang et al took the idea of a deformation gradient decomposition based on the

theory of multiple natural configurations. In this formulation, one needs a new configuration,
which is usually called natural configuration, so that one can decompose the whole process
into a pure growth and a pure elastic one. For more details, one is referred to [7, 27, 39, 46,
47]. Therefore, we assume the decomposition of the deformation gradient F̂s as

F̂s = F̂esF̂
g
s , in Ωs,
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where F̂g
s is the so-called growth tensor and F̂es represents the elastic tensor. The associated

determinants are

Ĵgs = det F̂g
s , Ĵes = det F̂es , in Ωs,

respectively. Then we have

Ĵs = Ĵgs Ĵ
e
s .

Growth may happen in different ways. In applications, two assumptions were most com-
monly employed: constant-density growth, which stands for adding new material with the
same density; constant-volume growth, by which the total mass is added and density varies.
Since constant-density growth is usually coupled with the assumption of an incompressible
tissue, see e.g. [27, 39], we take this kind of growth into consideration in this work. Then the
equation (1.1d) reduces to

ρsdivvs = fgs in Ωt
s.

Moreover, we assume that plaques grows isotropically:

F̂g
s = ĝI, in Ωs,

where ĝ= ĝ(X, t) is the metric of growth, a scalar function depending on the concentration of
macrophages. Hence,

F̂es =
1
ĝ
F̂s, Ĵgs = ĝn,

where n is the dimension of space. As mentioned in [7], ĝ describes the deformation state
of the material, either growing if ĝ> 1 or resorbing if 0< ĝ< 1. Consequently, under the
assumption of constant-density growth, one deduces the equation for growth in Lagrangian
coordinates

∂tĝ=
γβ

nρ̂s
ĉsĝ, in Ωs. (1.4)

This shows the specific dependence of ĝ on ĉs. At initial state, the growth tensor F̂
g
s is supposed

to be the identity, i.e.

ĝ(X,0) = 1, in Ωs,

without growth or resorption of the material.

1.4. Literature

During the last decades, fluid–structure interaction problems attracted much attention from
mathematicians due to their strong applications in various areas, e.g. biomechanics, hemody-
namics, aeroelasticity and hydroelasticity. Studies can be divided into two types depending
on the dimensions of the fluid and the solid. They are for example 3d–3d coupled and 3d–2d
coupled systems, where the solid is contained in the fluid and one part of the fluid’s boundary,
respectively.

In the case of a 3d–3d model, which is exactly our consideration, let us recall some exist-
ence results of strong solutions.Well-posedness of suchmodel was first established byCoutand
and Shkoller [15], where they investigated the interaction problem between the Navier–Stokes
equation and a linear Kirchhoff elastic material. The results were extended to the quasilin-
ear elastodynamics case by them, where they regularised the hyperbolic elastic equation by
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a particular artificial viscosity to obtain a parabolic system. Then they proved the existence
of strong solutions together with the a priori estimates in [16]. Thereafter, Ignatova et al
[24, 25] investigated the coupled system of the incompressible Navier–Stokes equations and a
wave equation from different aspects. More specifically, in [24], static damping and velocity
internal damping were added in the wave equation and boundary friction was considered, by
which exponential decay was obtained. Later, the boundary friction was removed in [25] by
introducing the tangential and time-tangential energy estimates. The coupling of the Navier–
Stokes equations and the Lamé system was analysed by Kukavica and Tuffaha [28] with
initial regularity (v0, ξ1) ∈ H3(Ωf)×H2(Ωs), while Raymond and Vanninathan [38] further
proved the existence and uniqueness of local strong solutions with a weaker initial regularity
(v0, ξ1) ∈ H3/2+ε(Ωf)×H1+ε(Ωs), for ε> 0 arbitrarily small, with periodic boundary condi-
tions. Later, Boulakia et al [11] showed a similar result for the Navier–Stokes–Lamé system
in a smooth domain with reduced demand on the initial regularity.

There are also other variants of free-boundary fluid–structure interaction models. For
a compressible fluid coupled with elastic bodies, we refer to [10], where Boulakia and
Guerrero addressed the local in time existence and the uniqueness of regular solutions
with the initial data (ρ0,u0,w0,w1) ∈ H3(Ωf)×H4(Ωf)×H3(Ωs)×H2(Ωs). This results was
later improved by Kukavica and Tuffaha [29] with a weaker initial regularity (ρ0,u0,w1) ∈
H3(Ωf)×H3/2+r(Ωf)×H3/2+r(Ωs), r > 0. More recently, Shen et al [40] considered the mag-
netohydrodynamics (MHD)-structure interaction system, where the fluid is described by the
incompressible viscous non-resistive MHD equation and the structure is modeled by the wave
equation with a superconductor material. They showed the existence of local strong solutions
with penalization and regularization techniques.

For 3d–2d/2d–1d systems where the structure is seen as one part of the fluid’s boundary, we
just mention several works on the existence and uniqueness of strong solutions to be concise.
The mostly investigated case is the fluid-beam/plate systems where the beam/plate equation
was imposed with different mechanical mechanisms (rigidity, stretching, friction, rotation,
etc). Readers are refer to [8, 17, 21, 22, 30, 31, 34, 36] and references therein. Moreover, the
fluid-structure interaction problems with nonlinear shells were studied in [12, 13, 33]. It has
to be mentioned that in the recent works [17, 34], a maximal regularity framework, which
requires lower initial regularity and fewer compatibility conditions compared to the energy
method, was employed.

1.5. Mathematical strategy and features

The new difficulties arise from the plaque formation in the blood vessels, along with the inter-
action between the fluid and the solid separated by a free interface, the reaction and the diffu-
sion of different cells and the growth of the vessel wall. Numerical computations were carried
out in recent years [20, 46, 47] to simulate the plaque formation and test the effects of different
parameters. To our best knowledge, this is the first work concerning the existence of strong
solutions to the fluid–structure interaction problems with growth. Unlike most of the literature
above, where L2-Sobolev spaces and energy methods are used, we establish our local strong
solutions in the framework of maximal Lq-regularity for any space dimension (n⩾ 2). The
method is based on the Banach fixed-point theorem, for which we rewrite the free boundary
problem established in Eulerian coordinates in Lagrangian coordinates, linearise the system at
the initial configuration, construct a contraction mapping in a suitable ball and show the local
existence and uniqueness of strong solutions. Throughout the proof, we point out the following
features:
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(a) We adapt the maximal Lq-regularity theory for the Stokes system to solve our problem.
Hence, there will be no ‘regularity loss’ from the data to the solution spaces and only a
few compatibility conditions are needed.

(b) The growth is considered to be of constant-density type. Then under the assumption of
isotropy, the growth will be described by the metric function ĝ. An ordinary differential
equation for ĝ provides the regularity of ĝ needed for the solid velocity and the concentra-
tion of macrophages.

(c) The Kelvin–Voigt viscous stress tensor σ v
s , we introduced, brings parabolicity to the solid

equation. For the linearization, we can use a two-phase Stokes type problem for the fluid-
structure interaction problem. This ensures that we can get the solvabilities and regularities
of fluid and solid velocities by maximal Lq-regularity theory.

(d) The transformed two-phase Stokes problem is endowed with a stress-free (Neumann-type)
outer boundary condition, cf remark 1.3. One of our aims is to obtain the solvability of such
system. To this end, reduction and truncation arguments are applied. More specifically,
we first reduce the inhomogeneous linear system to a semi-homogeneous problem (with
inhomogeneous the boundary terms), in order to obtain the pressure regularities. Then by
choosing a cutoff function (see (3.13)) which is supported in a subsetU⊆ Ω̂ and imposing
an artificial vanishing Dirichlet boundary on Γs = ∂Ω̂, one obtains the solvability of the
linear system since the two-phase Stokes problem with Dirichlet boundary is solved in
appendix A.1.

1.6. Outline of the paper

In section 2 we briefly introduce some notations and function spaces along with several pre-
liminary results. The transformation from the deformed configuration to the reference one is
shown in the last subsection, as well as the main theorem for the transformed system. Section 3
is devoted to the analysis of the underlying linear problems, where three separate parts of the
analysis are treated. The main results of this section are the maximal Lq-regularities for these
linear problems. The first one is the two-phase Stokes problems with Neumann boundary con-
ditions, to which reduction and truncation (localization) arguments are applied. The second
problem consists of two reaction–diffusion systems with Neumann boundary conditions due
to the decoupling of the transmission problem, while the last one is an ordinary differential
equation for the growth of the foam cells. In section 4, we first give some estimates related
to the deformation gradient, which are of much importance when proving that the constructed
nonlinear terms are well-defined and Lipschitz continuous. Then the full nonlinear system is
shown to be well-posed locally in time via the Banach fixed-point theorem. Moreover, the cell
concentrations are proved to be always nonnegative, provided that the initial data is nonnegat-
ive. Additionally, we introduce some maximal Lq-regularity results of several linear systems
in appendix A and establish uniform extension operators of the Sobolev–Slobodeckij spaces
in appendix B.

2. General settings and main results

2.1. Mathematical notations

For matrices A,B ∈ Rn×n, let A : B= tr(B⊤A). The corresponding induced modulus of A is
denoted by |A|=

√
A : A. The set of invertible matrices in Rn×n is GL(n,R). For a differenti-

able A : R+ → GL(n,R), we have two useful formulas
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d
dt

detA= tr

(
A−1 d

dt
A

)
detA (2.1)

d
dt
A−1 =−A−1

(
d
dt
A

)
A−1, (2.2)

which can be found in [19, 23]. Furthermore, for a vector function u and a tensor matrix T,
we give an identity, which will be used later (see e.g. [23, (3.20)]):

div
(
T⊤u

)
= T :∇u+u · divT. (2.3)

For metric spaces X, BX(x,r) represents the open ball with radius r > 0 around x ∈ X. For
normed spaces X,Y overK= R orC, the set of bounded, linear operators T : X→ Y is denoted
by L(X,Y) and in particular, L(X) = L(X,X).

Throughout the paper, unless we give a special declaration, the letterCwill denote a generic
positive constant that may change its value from line to line, or even in the same line.

2.2. Function spaces

If M⊆ Rd, d ∈ N+ is measurable, Lq(M), 1⩽ q⩽∞ denotes the usual Lebesgue space and
‖·‖Lq(M) its norm, as well as the mean value zero Lebesgue space

Lq(0)(M) :=

{
f ∈ Lq(M) :

ˆ
M
fdµ= 0

}
,

with |M|<∞. Moreover, Lq(M;X) denotes its vector-valued variant of strongly measurable q-
integrable functions/essentially bounded functions, where X is a Banach space. If M= (a,b),
we write for simplicity Lq(a,b) and Lq(a,b;X). By simple computation, we have

‖ f‖Lq(a,b) ⩽ |a− b|
1
q ‖ f‖L∞(a,b) . (2.4)

LetΩ⊆ Rn be a open and nonempty domain,Wm
q (Ω) denotes the usual Sobolev space with

m ∈ N and 1⩽ q⩽∞, and Lq(Ω) =W0
q(Ω). Moreover, we set

Wm
q,0(Ω) = C∞

0 (Ω)
Wm
q (Ω)

, W−m
q (Ω) := [Wm

q′,0(Ω)]
′,

Wm
q,(0)(Ω) =Wm

q (Ω)∩L
q
(0)(Ω), W−m

q,(0)(Ω) := [Wm
q′,(0)(Ω)]

′,

where q′ is the conjugate exponent to q satisfying 1
q +

1
q ′ = 1.

For k,k ′ ∈ N with k< k ′, we consider the standard definition of the Besov spaces by real
interpolation of Sobolev spaces (see Lunardi [32])

Bsq,p(Ω) =
(
Wk
q(Ω),W

k′
q (Ω)

)
θ,p
,

where s= (1− θ)k+ θk ′, θ ∈ (0,1). In the special case q= p, we also have Sobolev–
Slobodeckij spaces

Ws
q(Ω) = Bsq,q(Ω) =

(
Wk
q(Ω),W

k′
q (Ω)

)
θ,q
,

which is endowed with norm ‖·‖Ws
q(Ω) = ‖·‖Lq(Ω) + [·]Ws

q(Ω), where

[ f ]qWs
q(Ω) =

ˆ
Ω

ˆ
Ω

(
| f(x)− f(y)|
|x− y|s

)q dxdy
|x− y|n

.

The multiplication property of such space is given in the next lemma.
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Lemma 2.1 (Multiplication). Let Ω be a bounded Lipschitz domain. For f,g ∈Ws
q(Ω) and

sq> n with s > 0. We have the multiplication property for all f,g ∈Ws
q(Ω)

‖ fg‖Ws
q(Ω) ⩽Mq ‖ f‖Ws

q(Ω) ‖g‖Ws
q(Ω) ,

where Mq is a constant depending on q, s and Ω.

Proof. For the case s ∈ N+, we refer to [45, theorem 1]. For the other cases, since Ws
q = Bsq,q

for every s ∈ R+\N, [26, theorem 6.6] implies the statement.

Next, for an interval I⊂ R and a Banach space X, we recall the definition of vector-valued
Sobolev–Slobodeckij space as

Ws
q(I;X) :=

{
f ∈ Lq(I;X) : ‖ f‖Ws

q(I;X)
<∞

}
,

whose norm is ‖·‖Ws
q(I;X)

= ‖·‖Lq(I;X) + [·]Ws
q(I;X)

with

[ f ]qWs
q(I;X)

=

ˆ
I

ˆ
I

(
‖ f(t)− f(τ)‖X

|t− τ |s
)q dtdτ

|t− τ |
.

Then we define 0W
s
q(0,T;X) with 0< T⩽∞ as the linear subspace with a vanishing trace at

t= 0, i.e.

0W
s
q(0,T;X) :=

{
u ∈Ws

q(0,T;X) : u|t=0 = 0
}
.

In addition, we introduce one embedding result from Simon [43, corollary 17].

Lemma 2.2. Suppose 0< r⩽ s< 1 and 1⩽ q⩽∞. Then

Ws
q(I;X) ↪→Wr

q(I;X)

and, for all f ∈Ws
q(I;X),

[ f ]Wr
q(I;X)

⩽


|I|s−r

[ f ]Ws
q(I;X)

for bounded I,

[ f ]Ws
q(I;X)

+
4
r
‖ f‖Lq(I;X) for all I.

For r,s⩾ 0, the anisotropic Sobolev–Slobodeckij spaces Wr,s
q is defined as

Wr,s
q (Ω× I) := Lq

(
I;Wr

q(Ω)
)
∩Ws

q (I;L
q(Ω)) . (2.5)

Based on the trace interpolation method [37, section 3.4.6] and [6, chapter III, theorem 4.10.2],
we give some useful embeddings, which will be employed later.

Lemma 2.3. Let X1,X0 be two Banach spaces and X1 ↪→ X0. Define XT = Lq(0,T;X1)∩
W1
q(0,T;X0) for all 1< q<∞ and 0< T<∞. Then

XT ↪→ C([0,T];Xγ) ,

where

Xγ = (X0,X1)1− 1
q ,q

=
{
u|t=0 : u ∈ XT

}
is the trace space. Moreover, if XT is endowed with the norm

‖u‖XT := ‖u‖Lq(0,T;X1)
+ ‖u‖W1

q([0,T];X0)
+
∥∥u|t=0

∥∥
Xγ
,

then there is some C>0 independent of T such that for T ∈ [0,∞) and u ∈ XT,

‖u‖C(0,T;Xγ)
⩽ C‖u‖XT .
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In particular, ifΩ⊂ Rn, n⩾ 2, is a bounded domain, n< q<∞, and if X1 =W2
q (Ω), X0 =

Lq(Ω), then Xγ =W
2− 2

q
q (Ω) and

W2,1
q (Ω× (0,T)) ↪→ C

(
[0,T];W

2− 2
q

q (Ω)

)
↪→ C

(
[0,T];W1

q(Ω)
)
, (2.6)

together with

‖u‖C([0,T];W1
q(Ω)) ⩽ C

(
‖u‖W2,1

q (Ω×(0,T)) + ‖u0‖
W

2− 2
q

q

)
,

‖u− v‖C([0,T];W1
q(Ω)) ⩽ C‖u− v‖W2,1

q (Ω×(0,T)) ,

for u,v ∈W2,1
q (Ω× (0,T)) with u|t=0 = v|t=0 = u0.

Lemma 2.4. LetΣ be a compact sufficiently smooth hypersurface. For 1< q<∞, 1q < α⩽ 1

and 0< T<∞, define XT := Lq(0,T;W2α
q (Σ))∩Wα

q (0,T;L
q(Σ)), then

XT ↪→ C([0,T];Xγ) ,

where

Xγ =
{
u|t=0 : u ∈ XT

}
=W

2α− 2
q

q (Σ).

Moreover, if XT is endowed with the norm

‖u‖XT := ‖u‖Lq(0,T;X1)
+ ‖u‖Wα

q (0,T;X0)
+
∥∥u|t=0

∥∥
Xγ
,

then there is some C>0 independent of T such that for all u ∈ XT,

‖u‖C([0,T];Xγ)
⩽ C‖u‖XT .

2.3. An equivalent system in Lagrangian reference configuration

In this section, we transform the free-boundary fluid–structure problem with growth from
deformed Eulerian configuration to a fixed reference Lagrangian configuration and state the
main result. For quantities in different configurations, we define

v̂(X, t) = v(x, t), π̂(X, t) = π(x, t), σ̂(X, t) = σ(x, t),

ρ̂(X, t) = ρ(x, t), µ̂(X, t) = µ(x, t), ν̂(X, t) = ν(x, t),
(2.7)

for all x= ϕ(X, t), X ∈ Ω̂ and t⩾ 0. Then one can easily deduce the relation of derivatives for
quantities in different configurations as

∂tû(X, t) = (∂t+ v(x, t) ·∇)u(x, t), (2.8)

∇φ= F̂−1∇̂φ̂, ∇u= F̂−1∇̂û, (2.9)

divu= tr(∇u) = tr(F̂−1∇̂û) = F̂−⊤ : ∇̂û, (2.10)

where φ/φ̂ is any scalar function in Ωt/Ω̂ and u/û is any vector-valued function in Ωt/Ω̂.
From [14], we know that the Piola transform establishes a correspondence between tensor
field defined in deformed and reference configurations, which is

T̂(X, t) = Ĵ(X, t)σ(x, t)F̂−⊤(X, t), for all x= ϕ(X, t), X ∈ Ω̂, (2.11)

where T̂ is the first Piola–Kirchhoff stress tensor. Moreover, the following property of the Piola
transformation will be useful:
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Lemma 2.5 [14, theorem 1.7-1]. For a stress tensor σ(x, t) in the deformed configuration Ω,
and the corresponding first Piola–Kirchhoff stress tensor T̂(X, t) in the reference configuration
Ω̂, we have:

d̂ivT̂(X, t) = Ĵ(X, t)divσ(x, t), for all x= ϕ(X, t), X ∈ Ω̂,

T̂(X, t)n̂dâ= σ(x, t)nda, for all x= ϕ(X, t), X ∈ Ω̂.

For the fluid part, it follows from (2.1) that

∂tĴf = tr
(
F̂−1∂tF̂

)
Ĵf = tr

(
F̂−1∇̂v̂

)
Ĵf = divvĴf = 0,

which implies

Ĵf = Ĵf
∣∣∣
t=0

= detI= 1, in Ωf. (2.12)

For the solid part, since the deformation from natural configuration Ωg
s to the deformed con-

figuration Ωt
s conserves mass, incompressibility yields Ĵes = 1 and hence

Ĵs = Ĵgs = ĝn, in Ωs.

Now combining formulas (1.4), (2.7)–(2.12) and lemma 2.5, we rewrite the fluid–structure
interaction problem (1.1) in the reference configuration Ω̂.

ρ̂f∂tv̂f − d̂iv
(
σ̂fF̂

−⊤
f

)
= 0

F̂−⊤
f : ∇̂v̂f = 0

∂tĉf − D̂fd̂iv
(
F̂−1
f F̂−⊤

f ∇̂ĉf
)
= 0

 in Ωf × (0,T), (2.13)

ρ̂s∂tv̂s − Ĵs
−1

d̂iv
(
Ĵsσ̂sF̂−⊤

s

)
= 0

F̂−⊤
s : ∇̂v̂s −

γβ

ρ̂s
ĉs = 0

∂tĉs − D̂sĴs
−1

d̂iv
(
ĴsF̂−1

s F̂−⊤
s ∇̂ĉs

)
+βĉs

(
1+

γ

ρ̂s
ĉs

)
= 0

∂tĉ
∗
s −βĉs +

γβ

ρ̂s
ĉsĉ

∗
s = 0, ∂tĝ−

γβ

nρ̂s
ĉsĝ= 0


in Ωs × (0,T), (2.14)

[[v̂]] = 0,
[[
σ̂F̂−⊤

]]
n̂Γ = 0,

[[
D̂F̂−1F̂−⊤∇̂ĉ

]]
n̂Γ = 0

ζ [[ĉ]]− D̂sF̂−1
s F̂−⊤

s ∇̂ĉs · n̂Γ = 0

 on Γ× (0,T), (2.15)

σ̂sF̂−⊤
s n̂Γs = 0, D̂sF̂−1

s F̂−⊤
s ∇̂ĉs · n̂Γs = 0 on Γs × (0,T), (2.16)

v̂|t=0 = v̂0, ĉ|t=0 = ĉ0 in Ω̃, (2.17)

ĉ∗s |t=0 = 0, ĝ|t=0 = 1 in Ωs, (2.18)

where the corresponding stress tensors are

σ̂f =−π̂fI+ ν̂f

(
F̂−1
f ∇̂v̂f + ∇̂⊤v̂fF̂

−⊤
f

)
, σ̂s = σ̂e

s + σ̂ v
s ,

σ̂e
s =−π̂sI+ µ̂s

(
F̂esF̂

e
s
⊤
− I
)
=−π̂sI+ µ̂s

(
1

(ĝ)2
F̂sF̂⊤

s − I
)
,

σ̂ v
s = ν̂s

(
∇̂v̂s + ∇̂⊤v̂s

)
F̂⊤
s .
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For the maximal Lq-regularity setting, we assume

v̂0 ∈ B1−1/q
q,q (Ω̂)n ∩B2(1−1/q)

q,q (Ω̃)n, ĉ0 ∈ B2(1−1/q)
q,q (Ω̃),

that is,

v̂0 ∈W1−1/q
q (Ω̂)n ∩W2(1−1/q)

q (Ω̃)n =:D1
q, ĉ0 ∈W2(1−1/q)

q (Ω̃) =:D2
q,

where we define Ω̃ = Ωf ∪Ωs. Dq :=D1
q ×D2

q will be the initial space for velocities and con-
centrations. Moreover, we introduce the compatibility conditions for q> n+ 2, which were
also used in e.g. Abels [1], Prüss and Simonett [37], Shibata and Shimizu [41], Shimizu [42]:

d̂ivv̂0 = 0,
[[
v̂0
]]∣∣

Γ
= 0,

[[(
ν̂
(
∇̂v̂0 + ∇̂⊤v̂0

)
n̂Γ
)
τ

]]∣∣∣
Γ
= 0,(

ν̂
(
∇̂v̂0 + ∇̂⊤v̂0

)
n̂Γs

)
τ

∣∣∣
Γs

= 0,
(2.19)

and (
ζ
[[
ĉ0
]]
− D̂s∇̂ĉ0s · n̂Γ

)∣∣∣
Γ
= 0,

[[
D̂∇̂ĉ0

]]
· n̂Γ
∣∣∣
Γ
= 0, D̂s∇̂ĉ0s · n̂Γs

∣∣∣
Γs

= 0, (2.20)

where (·)τ denotes the tangential part on the surface, namely, (·)τ = (I− n̂⊗ n̂)·. Besides this,
we define the solution space for (v̂, π̂, ĉ, ĉ∗s , ĝ) as YT = Y1T×Y2T×Y3T×Y4T×Y4T, where

Y1T = Lq
(
0,T;W2

q (Ω̃)∩W1
q(Ω̂)

)n
∩W1

q

(
0,T;Lq(Ω̂)

)n
,

Y2T =


π̂ ∈ Lq

(
0,T;W1

q(Ω̂)
)
: [[π̂]] ∈W

1− 1
q ,

1
2 (1−

1
q )

q (Γ× (0,T))

π̂|Γs
∈W

1− 1
q ,

1
2 (1−

1
q )

q (Γs × (0,T))

 ,
Y3T = Lq

(
0,T;W2

q (Ω̃)
)
∩W1

q

(
0,T;Lq(Ω̂)

)
,

Y4T =W1
q

(
0,T;W1

q(Ωs)
)
,

equipped with norms

‖v̂‖Y1T = ‖v̂‖Lq(0,T;W 2
q (Ω̃)∩W1

q,0(Ω̂))
n + ‖v̂‖W1

q(0,T;Lq(Ω̂))
n ,

‖π̂‖Y2T = ‖π̂‖Lq(0,T;W1
q(Ω̂)) + ‖[[π̂]]‖

W
1− 1

q ,
1
2 (1− 1

q )
q (Γ×(0,T))

+
∥∥ π̂|Γs

∥∥
W

1− 1
q ,

1
2 (1− 1

q )
q (Γs×(0,T))

,

‖ĉ‖Y3T = ‖ĉ‖Lq(0,T;W 2
q (Ω̃)) + ‖ĉ‖W1

q(0,T;Lq(Ω̂)) ,

‖ĉ∗s ‖Y4T = ‖ĉ∗s ‖W1
q(0,T;W1

q(Ωs)) , ‖ĝ‖Y4T = ‖ĝ‖W1
q(0,T;W1

q(Ωs)) .

Moreover, we set YvT := Y1T×Y2T.

Remark 2.1. These spaces are constructed from the problem and the maximal regularity the-
ory, endowed with the natural norms. In particular, [[π̂]] and π̂|Γs

are determined by the reg-
ularities of the Neumann trace of v̂ on Γ and Γs respectively. Hence, we add the norm of
‖[[π̂]]‖

W1−1/q,(1−1/q)/2
q (Γ×(0,T))

and
∥∥ π̂|Γs

∥∥
W1−1/q,(1−1/q)/2
q (Γs×(0,T))

in Y2T-norm correspondingly.

One can easily verify that all spaces are Banach spaces.

Now the main theorem is given as follows.
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Theorem 2.1 (Main theorem). Let q> n+ 2. Assume that Γ, Γs are hypersurfaces of class C3,
(v̂0, ĉ0) ∈ Dq such that the compatibility conditions (2.19) and (2.20) hold, then there is a posit-
ive T0 = T0(

∥∥(v̂0, ĉ0)∥∥Dq
)<∞ such that there exists a unique strong solution (v̂, π̂, ĉ, ĉ∗s , ĝ) ∈

YT0 to system (2.13)–(2.18). Moreover, ĉ⩾ 0 and ĉ∗s , ĝ> 0, if ĉ0 ⩾ 0.

Remark 2.2. In this work, the boundary of the domain is supposed to be C3. We remark here
that if the domain is not smooth enough, for example, with boundary contact, it is still an
open problem. The authors considered a similar model with ninety degree contact angles in
[3] recently.

The proof of theorem 2.1 relies on the Banach fixed-point theorem. To this end, we need to
linearise the nonlinear system (2.13)–(2.18). Since we consider a nonzero initial reference
configuration, a standard perturbation method is applied to (2.13)–(2.18), for which we linear-
ise the system at the initial deformation and move all reminder terms to the right-hand side,
namely,

ρ̂f∂tv̂f − d̂ivS(v̂f, π̂f) =Kf

d̂ivv̂f = Gf

}
in Ωf × (0,T), (2.21)

ρ̂s∂tv̂s − d̂ivS(v̂s, π̂s) = K̄s +Kg
s =:Ks

d̂ivv̂s −
γβ

ρ̂s
ĉs = Gs

 in Ωs × (0,T), (2.22)

[[v̂]] = 0, [[S(v̂, π̂)]] n̂Γ =H1 on Γ× (0,T), (2.23)

S(v̂s, π̂s)n̂Γs =H2 on Γs × (0,T), (2.24)

v̂|t=0 = v̂0 in Ω̃, (2.25)

∂tĉf − D̂f∆̂ĉf = F1
f in Ωf × (0,T), (2.26)

∂tĉs − D̂f∆̂ĉs = F̄1
s +Fg

s =: F1
s in Ωs × (0,T), (2.27)

D̂f∇̂ĉf · n̂Γ = D̂s∇ĉs · n̂Γ + F̄2
f =: F2

f

D̂s∇̂ĉs · n̂Γ = ζ [[ĉ]] + F̄2
s =: F2

s

}
on Γ× (0,T), (2.28)

D̂s∇̂ĉs · n̂Γs = F 3 on Γs × (0,T), (2.29)

ĉ|t=0 = ĉ0 in Ω̃, (2.30)

∂tĉ
∗
s −βĉs = F 4 in Ωs × (0,T), (2.31)

ĉ∗s |t=0 = 0 in Ωs, (2.32)

∂tĝ−
γβ

nρ̂s
ĉs = F 5 in Ωs × (0,T), (2.33)

ĝ|t=0 = 1 in Ωs, (2.34)
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where S(v̂, π̂) =−π̂I+ ν̂
(
∇̂v̂+ ∇̂⊤v̂

)
in Ω̃ and

Kf = d̂ivK̃f, K̄s = d̂ivK̃s, Kg
s =−

(
σ̂sF̂−⊤

s

) n∇̂ĝ
ĝ
,

G =−
(
F̂−⊤ − I

)
: ∇̂v̂, H1 =−

[[
K̃
]]
· n̂Γ, H2 =−K̃s · n̂Γs ,

F1
f = d̂ivF̃f, F̄1

s = d̂ivF̃s, (2.35)

Fg
s =−βĉs

(
1+

γ

ρ̂s
ĉs

)
− n∇̂ĝ

ĝ
·
(
D̂sF̂−1

s F̂−⊤
s ∇̂ĉs

)
,

F̄2
f =−

[[
F̃
]]
· n̂Γ, F̄2

s =−F̃s · n̂Γ, F 3 =−F̃s · n̂Γs ,

F 4 =−γβ
ρ̂s
ĉsĉ

∗
s , F 5 =− γβ

nρ̂s
ĉs (ĝ− 1) ,

with

K̃f =−π̂f
(
F̂−⊤
f − I

)
+ νf

(
F̂−1
f ∇̂v̂f + ∇̂⊤v̂fF̂

−⊤
f

)(
F̂−⊤
f − I

)
+ νf

((
F̂−1
f − I

)
∇̂v̂f + ∇̂⊤v̂f

(
F̂−⊤
f − I

))
,

K̃s =−π̂s
(
F̂−⊤
s − I

)
+µs

(
1
ĝ2

(
F̂s − I

)
+

(
1
ĝ2

− 1

)
I−
(
F̂−⊤
s − I

))
,

F̃ = D̂
(
F̂−1F̂−⊤ − I

)
∇̂ĉ.

Then we analyse system (2.21)–(2.34), which is exactly (2.13)–(2.18).

Remark 2.3. It follows from the Piola identity, which can be found in [14, page 39], that

d̂iv
(
Ĵ F̂−⊤

)
= 0.

Then from (2.3),

Ĵ F̂−⊤ : ∇̂v̂= d̂iv
(
Ĵ F̂−1v̂

)
.

Hence, G possesses the form

Gf =−d̂iv
((

F̂−1
f − I

)
v̂f
)
, Gs =−d̂iv

((
F̂−1
s − I

)
v̂s
)
+ v̂s · d̂ivF̂−⊤

s . (2.36)

Remark 2.4. The system (2.26)–(2.30) for the concentrations of monocytes and macrophages
can be considered as a transmission problem in Ωf and Ωs with a common boundary Γ. How-
ever, if we use the concentration and stress jump condition as boundary condition on Γ, we will
meet a regularity problem due to the high order term Ds∇̂ĉs · n̂Γ in (2.28)2. More precisely,
in our further perturbation argument, all perturbated or unrelated terms will be moved to the
right-hand side of the equation and the regularities of both sides should coincide. The point
is that in such argument, the right-hand side of (2.28)2 contains Ds∇̂ĉs · n̂Γ, which leads to a
lower regularity, provided the same regularity of ĉ on the both side.

Therefore, to avoid such awkward situation, we rewrite the transmission conditions as two
Neumann type boundary conditions. Then the transmission problem can be decoupled into two
separate parabolic system, which are both imposed with Neumann boundary and defined in
Ωf and Ωs respectively. This is why we treat the boundary conditions on Γ as the form shown
in (2.28).
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Consequently, given data (K,G,H1,H2,F 1,F 2,F 3,F 4,F 5) with suitable regularities, exist-
ence and uniqueness of (v̂, π̂, ĉ, ĉ∗s , ĝ) in the associated spaces will be obtained by the well-
posedness of linear systems in the next section.

3. Analysis of the linear systems

As seen in (2.21)–(2.34), the linearised system can be seen as a two-phase type Stokes prob-
lem (2.21)–(2.25), two separate reaction–diffusion systems (2.26)–(2.30) and two ordinary
differential equations (2.31)–(2.34) (equation for foam cells and growth, respectively). In this
section, thanks to the maximal Lq-regularity theory, we establish the existence for strong solu-
tions to these systems with prescribed initial data and source terms in appropriate spaces.

3.1. Two-phase Stokes problems with Neumann boundary condition

Observing that (K,G,H1,H2)
∣∣
t=0

= 0, one replaces (K,G,H1,H2) in (2.21)–(2.25) by known
functions (k,g,h1,h2)with (k,g,h1,h2)

∣∣
t=0

= 0 in (2.22). Then we get the problem addressed
in this subsection.

ρ̂∂tv̂− d̂ivS(v̂, π̂) = k in Ω̃× (0,T),

d̂ivv̂= g in Ω̃× (0,T),

[[v̂]] = 0 on Γ× (0,T),

[[S(v̂, π̂)]] n̂Γ = h1 on Γ× (0,T),

S(v̂s, π̂s)n̂Γs = h2 on Γs × (0,T),

v̂|t=0 = v̂0 in Ω̃.

(3.1)

Now, wewill prove the following theorem, namely, existence of unique solution to a two-phase
Stokes problem with outer Neumann boundary condition.

Theorem 3.1. Let q> n+ 2, T > 0, Ω̂ a bounded domain as before with Γs ∈ C3, Γ a closed
hypersurface of class C3. Assume that (k,g,h1,h2) are known functions contained in ZvT with
initial value zero and v̂0 ∈ D1

q with compatibility conditions

d̂ivv̂0 = g|t=0 ,
[[
v̂0
]]∣∣

Γ
= 0,

[[(
ν̂
(
∇̂v̂0 + ∇̂⊤v̂0

)
n̂Γ
)
τ

]]∣∣∣
Γ
= 0,(

ν̂
(
∇̂v̂0 + ∇̂⊤v̂0

)
n̂Γs

)
τ

∣∣∣
Γs

= 0.

Then the Stokes problem (3.1) admits a unique strong solution (v̂, π̂) in YvT. Moreover, there
exist a time T0 > 0 and a constant C= C(T0)> 0 such that for 0< T⩽ T0,

‖(v̂, π̂)‖Y vT ⩽ C
∥∥(k,g,h1,h2, v̂0)∥∥

Z vT×D1
q
, (3.2)

where ZvT := Z1T×Z2T×Z3T×Z4T with

Z1T := Lq
(
0,T;Lq(Ω̃)

)n
, (3.3)

Z2T :=


g ∈ Lq

(
0,T;W1

q(Ω̃)
)
∩W1

q

(
0,T;W−1

q (Ω̂)
)
:

trΓ(g) ∈W
1− 1

q ,
1
2 (1−

1
q )

q (Γ× (0,T)),

trΓs(g) ∈W
1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0,T))

 , (3.4)

552



Nonlinearity 36 (2023) 537 H Abels and Y Liu

Z3T :=W
1− 1

q ,
1
2 (1−

1
q )

q (Γ× (0,T))n, Z4T :=W
1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0,T))n, (3.5)

endowed with the norms

‖k‖Z1T = ‖k‖Lq(0,T;Lq(Ω̃))
n ,

‖g‖Z2T = ‖g‖Lq(0,T;W1
q(Ω̃)) + ‖g‖W1

q(0,T;W
−1
q (Ω̂))

+ ‖trΓ(g)‖
W

1− 1
q ,

1
2 (1− 1

q )
q (Γ×(0,T))

+ ‖trΓs(g)‖
W

1− 1
q ,

1
2 (1− 1

q )
q (Γs×(0,T))

,∥∥h1∥∥
Z3T

= ‖h‖
W

1− 1
q ,

1
2 (1− 1

q )
q (Γ×(0,T))n

,
∥∥h2∥∥

Z4T
= ‖h‖

W
1− 1

q ,
1
2 (1− 1

q )
q (Γs×(0,T))n

.

3.1.1. Reductions. To simplify the proof of theorem 3.1, we reduce (3.1) to the case
(k,g, v̂0) = 0.

First of all, we define v̄ as the solution of the parabolic transmission problem

ρ̂f∂tv̄− d̂ivS(v̄,0) = k in Ω̃× (0,T),

[[v̂]] = 0 on Γ× (0,T),

[[S(v̄,0)]] n̂Γ = 0 on Γ× (0,T),

S(v̄s,0)n̂Γs = 0 on Γs × (0,T),

v̄|t=0 = v̂0 in Ω̃,

(3.6)

with k ∈ Lq(Ω̃× (0,T)) and v̂0 ∈ D1
q . Since the Lopatinskii–Shapiro conditions are satisfied,

(3.6) is uniquely solvable in W2,1
q (Ω̂× (0,T)), thanks to [37, theorem 6.5.1].

Now, we are in the position to reduce g to zero. To this end, we introduce a elliptic trans-
mission problem with Dirichlet boundary

∆̂φ= g− d̂ivv̄=: g̃ in Ω̃,

[[ρ̂φ]] = 0 on Γ,[[
∇̂φ
]]
· n̂Γ = 0 on Γ,

ρ̂sφs = 0 on Γs,

(3.7)

with g̃ ∈ Lq(Ω̃). Then (3.7) is uniquely solvable by proposition A.3. In addition, with the reg-
ularity of g and v, the solution satisfies ∇̂φ ∈ Y1T. Employing the decomposition

(v̂, π̂) = (v̄+ ∇̂φ+ ṽ,−ρ̂∂tφ+ ν̂∆̂φ+ π̃), (3.8)

we know that (ṽ, π̃) solves system (3.1) with (k,g, v̂0) = 0 and modified nonvanishing data
(h1,h2) (not to be relabeled) in the right regularity classes having a vanishing trace at t= 0.
Thus, we will focus on the reduced system in the case (k,g, v̂0) = 0.

Remark 3.1. Because of the decomposition (3.8), the regularity of π̂ given in Y2T indicates
that ∂tφ and ∆̂φ must be contained in Y2T. Since ∇̂φ ∈ Y1T = Lq(0,T;W2

q (Ω̃)∩W1
q(Ω̂))

n ∩
W1
q(0,T;L

q(Ω̂))n, it is clear that ∂tφ,∆̂φ ∈ Lq(0,T;W1
q(Ω̃)). Moreover:

(a) The Vanishing Dirichlet boundary conditions of φ on Γ and Γs lead to [[∂tφ]]|Γ =

∂tφ|Γs
= 0, which naturally satisfy the boundary regularity W1−1/q,(1−1/q)/2

q (Γ× (0,T))

and W1−1/q,(1−1/q)/2
q (Γs × (0,T)). Hence ∂tφ ∈ Y2T.
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(b) For ∆̂φ= g̃= g− d̂ivv̄, the boundary regularity for d̂ivv̄ is not a problem due to the zero
Neumann boundary of v̄. Thus, to ensure the validation of the regularity for π̂, we add
trace regularities on Γ and Γs for g in Z2T. Namely,

trΓ(g) ∈W1−1/q,(1−1/q)/2
q (Γ× (0,T)), trΓs(g) ∈W1−1/q,(1−1/q)/2

q (Γs × (0,T)).

Consequently, ∆̂φ ∈ Y2T.

3.1.2. Proof of theorem 3.1. As stated in the last section, we analyse the reduced system
of (3.1) with (k,g, v̂0) = 0. Due to the outer Neumann boundary condition, the proof is pro-
ceeded by a truncation (localization) argument, based on the results given in appendix A.More
precisely, with a suitable cutoff function, we decompose the system into a two-phase Stokes
problem with Dirichlet boundary conditions and a one-phase nonstationary Stokes problem,
which are uniquely solvable as in section A.1 and Abels [2, theorem 1.1] respectively.

Proof (Proof of theorem 3.1). Step 1. The first step is finding (v̂1, π̂1) to solve

ρ̂∂tv̂1 − d̂ivS(v̂1, π̂1) = 0 in Ω̃× (0,T),

d̂ivv̂1 = 0 in Ω̃× (0,T),[[
v̂1
]]
= 0 on Γ× (0,T),[[

S(v̂1, π̂1)
]]
n̂Γ = h1 on Γ× (0,T),

v̂1 = 0 on Γs × (0,T),

v̂1
∣∣
t=0

= 0 in Ω̃,

(3.9)

where h1 ∈ Z3T with h1
∣∣
t=0

= 0. Since v̂1
∣∣
t=0

= 0, the compatibility conditions (A.2) hold true
and then (3.9) admits a unique solution (v̂1, π̂) in YvT, thanks to proposition A.1. In addition,
we have the estimate∥∥(v̂1, π̂1)

∥∥
Y vT

⩽ C
∥∥h1∥∥

Z3T
, (3.10)

for some C > 0 independent of v̂1, π̂1,h1.
Step 2. Now, we construct (v̂2s , π̂

2
s ) to solve the Stokes problem with Neumann boundary

condition, which reads

ρ̂s∂tv̂2s − d̂ivS(v̂2s , π̂
2
s ) = 0 in Ωs × (0,T),

d̂ivv̂2s = 0 in Ωs × (0,T),

S(v̂2s , π̂
2
s )n̂Γ = 0 on Γ× (0,T),

S(v̂2s , π̂
2
s )n̂Γs = h2 on Γs × (0,T),

v̂2
∣∣
t=0

= 0 in Ωs,

(3.11)

where h2 ∈ Z4T with h2
∣∣
t=0

= 0. Thanks to theorem 1.1 in Abels [2] with Γ1 = ∅, (3.11) admits

a unique solution (v̂2, π̂2) inW2,1
q (Ω̃)×Lq(0,T;W1

q(Ω̃)). Due to v̂2s
∣∣
t=0

= 0, all the compatib-
ility conditions are satisfied. Moreover,∥∥(v̂2, π̂2)

∥∥
W2,1
q (Ω̃)×Lq(0,T;W1

q(Ω̃))
⩽ C

∥∥h2∥∥
Z4T
, (3.12)

for some C > 0 independent of v̂2, π̂2,h2.
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Step 3. Finally, we combine the regularity results above by truncation. Specifically, let ψ ∈
C∞
0 (Ω̂) be a cutoff function over Ω̂ such that

ψ(x) =

{
1, in a neighborhood of Ωf,

0, in a neighborhood of Γs.
(3.13)

We define

ṽ := ψv̂1 +(1−ψ)v̂2, π̃ := ψπ̂1 +(1−ψ)π̂2.

Then (ṽ, π̃) ∈ YvT solves

ρ̂∂tṽ− d̂ivS(ṽ, π̃) = R1 in Ω̃× (0,T),

d̂ivṽ= R2 in Ω̃× (0,T),

[[ṽ]] = 0 on Γ× (0,T),

[[S(ṽ, π̃)]] n̂Γ = h1 on Γ× (0,T),

S(ṽs, π̃s)n̂Γs = h2 on Γs × (0,T),

ṽ|t=0 = 0 in Ω̃,

(3.14)

where R1 and R2 vanish in Ωf, while in Ωs,

R1 =−S(v̂1s − v̂2s , π̂
1
s − π̂2

s )∇̂ψ

− 2ν̂s
(
∆̂ψ

(
v̂1s − v̂2s

)
+
(
∇̂v̂1s −∇̂v̂2s

)
∇̂ψ+ ∇̂2ψ

(
v̂1s − v̂2s

))
,

R2 = ∇̂ψ ·
(
v̂1s − v̂2s

)
.

Since the embedding

0W
2,1
q (Ωs × (0,T)) ↪→ 0W

1
2
q
(
0,T;W1

q(Ωs)
)

holds, we know v̂i ∈ 0W
1
2
q (0,T;W1

q(Ωs)), i= 1,2. For the reduced system, propositions 8.2.1
and 7.3.5 in Prüss and Simonett [37] imply that π̂1 and π̂2

s enjoys extra time regularities π̂1 ∈
0W

α
q (0,T;L

q(Ω̂)) and π̂2
s ∈ 0W

α
q (0,T;L

q(Ωs)) respectively for 0< α < 1
2

(
1− 1

q

)
. Hence

R1 ∈ 0W
α
q (0,T;L

q(Ωs))∩Lq
(
0,T;W1

q(Ωs)
)
,

for some fixed 0< α < 1
2

(
1− 1

q

)
.

To complete the proof, we still need to prove that the right-hand side terms of (3.14) can
be in fact substituted by the right-hand side terms of (3.1) in appropriate spaces. Since the
regularity of v̂is and π̂

i
s, i= 1,2, are not enough to control R1 and R2 for small times, we are

going to remove the inhomogeneitiesR1 and R2. ForR1, we construct a φ̄ solving the problem

φ̄f = 0 in Ωf,

∆̂φ̄s = d̂ivR1 in Ωs,

φ̄s = 0 on Γ,

φ̄s = 0 on Γs.

(3.15)
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Then we obtain ∇̂φ̄
∣∣∣
t=0

= R1
∣∣
t=0

= 0. By elliptic theory and regularity of R1, (3.15) admits a

unique solution φ̄ satisfying 0W
α
q (0,T;W

1
q(Ωs))∩Lq(0,T;W2

q (Ωs)). ForR2, we find a φ solving
the elliptic transmission problem

∆̂φf = 0 in Ωf,

∆̂φs = R2 in Ωs,

[[ρ̂φ]] = 0 on Γ,[[
∇̂φ
]]
· n̂Γ = 0 on Γ,

ρ̂sφs = 0 on Γs.

(3.16)

Then we have φ|t=0 = 0. Since v̂1s − v̂2s ∈ 0W
2,1
q (Ωs × (0,T))n, R2 ∈ 0W

2,1
q (Ωs × (0,T)) ↪→

0W
1
2
q (0,T;W1

q(Ωs)). Together with proposition A.3, one concludes that (3.16) admits a solu-

tion such that ∇̂φ is unique, with regularity

∇̂φ ∈ E0 := 0W
1
q(0,T;W

1
q(Ω̃))

n ∩ 0W
1
4
q (0,T;W2

q (Ω̃))
n.

For its traces on Γ and Γs, we have[[
∇̂φ
]]
∈ E1 := 0W

1
q

(
0,T;W

1− 1
q

q (Γ)

)n

∩ 0W
1
4
q

(
0,T;W

2− 1
q

q (Γ)

)n

,

∇̂φs ∈ Es1 := 0W
1
q

(
0,T;W

1− 1
q

q (Γ)

)n

∩ 0W
1
4
q

(
0,T;W

2− 1
q

q (Γs)

)n

.

Besides, [[
ν̂∇̂2φ

]]
∈ E2 := 0W

1− 1
2q

q (0,T;Lq(Γ))n×n ∩ 0W
1
4
q

(
0,T;W

1− 1
q

q (Γ)

)n×n

,

ν̂s∇̂2φs ∈ Es2 := 0W
1− 1

2q
q (0,T;Lq(Γs))

n×n ∩ 0W
1
4
q

(
0,T;W

1− 1
q

q (Γ)

)n×n

.

Moreover, the following estimate holds for a constant C, independent of 0< T< T0,∥∥∥∇̂φ∥∥∥
E0

+
∥∥∥[[∇̂φ]]∥∥∥

E1

+
∥∥∥∇̂φs∥∥∥

Es1
+
∥∥∥[[ν̂∇̂2φ

]]∥∥∥
E2

+
∥∥∥ν̂s∇̂2φ

∥∥∥
Es2

⩽ C
∥∥v̂1s − v̂2s

∥∥
W2,1
q (Ωs×(0,T))n

.

Finally, define

v♯ := ṽ−∇̂φ, π♯ := π̃+ ρ̂∂tφ− φ̄− 2ν̂∆̂φ.

Since [[ρ̂φ]]|Γ , ρ̂sφ|Γs
= 0, we have [[ρ̂∂tφ]]|Γ , ρ̂s∂tφ|Γs

= 0. Then (v♯,π♯) solves

ρ̂∂tv♯ − d̂ivS(v♯,π♯) = R1 −∇̂φ̄=: R0 in Ω̃× (0,T),

d̂ivv♯ = 0 in Ω̃× (0,T),[[
v♯
]]
= R ′ on Γ× (0,T),[[

S(v♯,π♯)
]]
n̂Γ = h1 +R3 on Γ× (0,T),

S(v♯s ,π
♯
s )n̂Γs = h2 +R4 on Γs × (0,T),

v♯
∣∣
t=0

= 0 in Ω̃,

(3.17)

556



Nonlinearity 36 (2023) 537 H Abels and Y Liu

where

d̂ivR0 = 0, R′ =−
[[
∇̂φ
]]

R3 =
[[
2ν̂∇̂2φ

]]
n̂Γ −

[[
2ν̂s∆̂φ

]]
n̂Γ R4 = 2ν̂s∇̂2φsn̂Γs − 2ν̂s∆̂φsn̂Γs .

R0 can be seen as a Helmholtz projection of R1 and

R0 ∈ 0W
α
q (0,T;L

q(Ωs))
n ∩Lq(0,T;W2α

q (Ωs))
n, for all 0< α <

1
2
− 1

2q
.

By lemma 2.4,

R0 ∈ C
(
[0,T];W

2α− 2
q

q (Ωs)

)n

↪→ C([0,T];Lq(Ωs))
n

holds for 1
q < α < 1

2 −
1
2q . Hence, for R

0
∣∣
t=0

= (∇̂φ̄−R1)
∣∣∣
t=0

= 0,∥∥R0
∥∥
Z1T

⩽ CT
1
q
∥∥R0

∥∥
C([0,T];Lq(Ωs))n

⩽ CT
1
q
∥∥R0

∥∥
0Wα

q (0,T;L
q(Ωs))n∩Lq(0,T;W2α

q (Ωs))n

⩽ CT
1
q

(
max
i=1,2

∥∥(v̂i, π̂i)∥∥
Y vT

)
⩽ CT

1
q
∥∥(k,g,h1,h2, v̂0)∥∥

Z vT×D1
q
,

for 0< T< T0. According to appendix A, the regularity space of R ′ is defined as Z ′
T :=

W
2− 1

q ,1−
1
2q

q (Γ× (0,T)). Then with lemma 2.2 and Ws
q(0,T;X) ↪→ C([0,T];X) for sq> 1,

∥∥R′∥∥
Z′T

⩽ C

∥∥∥[[∇̂ϕ
]]∥∥∥

Lq

(
0,T;W

2− 1
q

q (Γ)

)n

+
∥∥∥[[∇̂ϕ

]]∥∥∥
Lq(0,T;Lq(Γ))n

+
[[[

∇̂ϕ
]]]

W
1− 1

2q
q (0,T;Lq(Γ))n

)
⩽ CT

1
q

∥∥∥[[∇̂ϕ
]]∥∥∥

0W
1
4
q

(
0,T;W

2− 1
q

q (Γ)

)n +CT
1
2q

[[[
∇̂ϕ

]]]
0W1

q

(
0,T;W

1− 1
q

q (Γ)

)n

⩽ CT
1
2q

(
max
i=1,2

∥∥∥(v̂i, π̂i)∥∥∥
Y vT

)
⩽ CT

1
2q

∥∥∥(k,g,h1,h2, v̂0)∥∥∥
Z vT×D1

q

.

Since Γ and Γs are of class C3, n̂Γ and n̂Γs are contained in C2. Then we obtain

∥∥∥R3
∥∥∥
Z3T

⩽ C

∥∥∥[[∇̂2ϕ
]]∥∥∥

Lq

(
0,T;W

1− 1
q

q (Γ)

)n×n

+
∥∥∥[[∇̂2ϕ

]]∥∥∥
Lq(0,T;Lq(Γ))n×n

+
[[[

∇̂2ϕ
]]]

W
1
2 (1−

1
q )

q (0,T;Lq(Γ))n×n

)
⩽ CT

1
q

∥∥∥[[∇̂2ϕ
]]∥∥∥

0W
1
4
q

(
0,T;W

1− 1
q

q (Γ)

)n×n +CT
1
2

[[[
∇̂2ϕ

]]]
0W

1− 1
2q

q (0,T;Lq(Γ))n×n

⩽ CT
1
q

(
max
i=1,2

∥∥∥(v̂i, π̂i)∥∥∥
Y vT

)
⩽ CT

1
q

∥∥∥(k,g,h1,h2, v̂0)∥∥∥
Z vT×D1

q

,

with the help of lemma 2.2. Similarly,∥∥R4
∥∥
Z4T
⩽ CT

1
q

(
max
i=1,2

∥∥(v̂i, π̂i)∥∥
Y vT

)
⩽ CT

1
q
∥∥(k,g,h1,h2, v̂0)∥∥

Z vT×D1
q
.
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Taking T0 sufficiently small such that CT
1
2q

0 ⩽ 1
2 , we have∥∥R0(y)

∥∥
Z1T
+ ‖R′(y)‖Z′T +

∥∥R3(y)
∥∥
Z3T
+
∥∥R4(y)

∥∥
Z4T
⩽ 1

2
‖y‖Z vT×D1

q
,

for y= (k,g,h1,h2, v̂0)⊤. By a Neumann series argument,

Φ : ỹ 7→ ỹ+(R0,0,R′,R3,R4,0)⊤(ỹ)

is invertible for ỹ= (k,g,0,h1,h2, v̂0)⊤. Consequently, replacing ỹ by Φ−1(ỹ) in (3.14)
yields the solvability of (3.17) for 0< T< T0 ⩽ 1/(2C)2q. Solving (3.1) iteratively on [0,T0],
[T0,2T0], . . . , with initial values v̂0, v̂0

∣∣
t=T0

, . . . , one obtains the solvability for any T0 > 0.
Additionally, estimate (3.2) is a result of (3.10) and (3.12). This completes the proof.

Remark 3.2. Since ĉ is contained in Y3T = Lq(0,T;W2
q (Ω̃))∩W1

q(0,T;L
q(Ω̂)), which will be

given in section 3.2, one can easily verify that ĉ ∈ Z2T. Hence, we replace g in (3.1) by g+
γβ
ρ̂s
ĉs

with the same existence and regularity results to the original linear system. To be more precise,
we find (v̄, π̄) ∈ YvT to solve

ρ̂∂tv̄− d̂ivS(v̄, π̄) = 0 in Ω̃× (0,T),

d̂ivv̄=
γβ

ρ̂s
ĉs in Ω̃× (0,T),

[[v̄]] = 0 on Γ× (0,T),

[[S(v̄, π̄)]] · n̂Γ = 0 on Γ× (0,T),

S(v̄s, π̄s) · n̂Γs = 0 on Γs × (0,T),

v̄|t=0 = 0 in Ω̃,

with ĉ ∈ Z2T, thanks to theorem 3.1. Then (v̂+ v̄, π̂+ π̄) solves the original linear system.

3.2. Heat equations with Neumann boundary condition

From (2.26)–(2.30), we have two decoupled systems with given functions ( f1, f 2, f 3), that is,
∂tĉf − D̂f∆̂ĉf = f1f in Ωf × (0,T),

D̂f∇̂ĉf · n̂Γ = f2f on Γ× (0,T),

ĉf|t=0 = ĉ0f in Ωf,

(3.18)

and 
∂tĉs − D̂s∆̂ĉs = f1s in Ωs × (0,T),

D̂s∇̂ĉs · n̂Γ = f2s on Γ× (0,T),

D̂s∇̂ĉs · n̂Γ = f 3 on Γs × (0,T),

ĉs|t=0 = ĉ0s in Ωs,

(3.19)

According to the maximal Lq-regularity results we introduced in appendix A.2, we immedi-
ately have following theorem.

Theorem 3.2. Let q> n+ 2, Ω̂ be a bounded domain as before withΓs ∈ C3,Γ a closed hyper-
surface of class C3. Assume that ( f1, f 2, f 3) are known functions contained in ZcT and ĉ

0 ∈ D2
q

with compatibility conditions

D̂f∇̂ĉ0f · n̂Γ
∣∣∣
Γ
= f2f

∣∣
t=0

, D̂s∇̂ĉ0s · n̂Γ
∣∣∣
Γ
= f2s

∣∣
t=0

, D̂s∇̂ĉ0s · n̂Γs

∣∣∣
Γs

= f 3
∣∣
t=0

.
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Then the parabolic problems (3.18) and (3.19) admit unique strong solutions ĉf and ĉs in Y3T
respectively. Moreover, there exist a constant C> 0 and a time T0 > 0 such that for 0< T< T0,

‖ĉ‖Y3T ⩽ C
∥∥( f1, f 2, f 3, ĉ0)∥∥

ZcT×D2
q
, (3.20)

where ZcT := Z5
T ×Z6

T ×Z7T with

Z5
T := Lq(0,T;Lq(Ω̃)),

Z6
T :=W

1− 1
q ,

1
2 (1−

1
q )

q (Γ× (0,T)) , Z7T :=W
1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0,T)) .

3.3. Ordinary differential equations for foam cells and growth

Given functions ( f 4, f 5) in Ωs, we have

∂tĉ
∗
s −βĉs = f 4, in Ωs × (0,T),

ĉ∗s |t=0 = 0, in Ωs,
(3.21)

∂tĝ−
γβ

nρ̂s
ĉs = f 5, in Ωs × (0,T),

ĝ|t=0 = 1, in Ωs.

(3.22)

Since (3.21) and (3.22) are linear ordinary differential equations, it follows easily from ĉs ∈ Y3T
in theorem 3.2 that system (3.21) and (3.22) admits a unique solution ĉ∗s and ĝ, respectively,
both in Z8T := Lq(0,T;W1

q(Ωs)). Moreover, there exists a constant C independent of T such that

‖ĉ∗s ‖Y4T + ‖ĝ‖Y4T ⩽ C
∥∥( f 4, f 5, ĉ)∥∥

Z8T×Z8T×Y3T
. (3.23)

4. Local in time existence

This section is intended to prove theorem 2.1.

4.1. Some key estimates

Before showing theorem 2.1, let us give some useful estimates with regard to the deformation

gradient F̂−1and vector-valued Sobolev–Slobodeckij space W
1
2−ε
q (0,T;Lq(Ω)).

Lemma 4.1 (Estimates on deformation gradient). Let q> n, n⩾ 2 and F̂(v̂) be the deform-
ation gradient defined in (1.2) corresponding to a function v̂ ∈ Y1T. Then for every R> 0, there
are a constant C= C(R)> 0 and a finite time 0< TR < 1 depending on R such that for all
0< T< TR, F̂−1 exists and

(a)
∥∥∥F̂−1

∥∥∥
L∞(0,T;W1

q(Ω̃))
n×n ⩽ C,

∥∥∥∂tF̂−1
∥∥∥
Lq(0,T;W1

q(Ω̃))
n×n ⩽ C‖v̂‖Y1T;

(b)
∥∥∥F̂−1 − I

∥∥∥
L∞(0,T;W1

q(Ω̃))n×n
⩽ CT

1
q ′ ‖v̂‖Y1T;

(c) sup
0⩽t⩽T

ˆ t

0

∥∥∥∆h

(
F̂−1 − I

)
(·, t)

∥∥∥q
W1
q(Ω̃)n×n

h1+
q

2q ′
dh


1
q

⩽ CT
1

2q ′ ‖v̂‖Y1T;
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(d)
[
F̂−1 − I

]
W

1
2 (1− 1

q )
q (0,T;W1

q(Ω̃))
n×n

⩽ CT
1
q+

1
2q ′ ‖v̂‖Y1T , for all ‖v̂‖Y1T ⩽ R, where ∆h f(t) :=

f(t)− f(t− h) is a difference of the time shift for a function f. Moreover, for another û ∈ Y1T
with ‖û‖Y1T ⩽ R and v̂|t=0 = û|t=0, we have

(e)
∥∥∥F̂−1(û)− F̂−1(v̂)

∥∥∥
L∞(0,T;W1

q(Ω̃))
n×n ⩽ CT

1
q ′ ‖û− v̂‖Y1T;∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)

∥∥∥
Lq(0,T;L∞(Ω̃))

n×n ⩽ CT
1
q−

1
r ‖û− v̂‖Y1T;

(f) sup
0⩽t⩽T

ˆ t

0

∥∥∥∆h

(
F̂−1(û)− F̂−1(v̂)

)
(·, t)

∥∥∥q
W1
q(Ω̃)n×n

h1+
q

2q ′
dh


1
q

⩽ CT
1

2q ′ ‖û− v̂‖Y1T;

(g)
[
F̂−1(û)− F̂−1(v̂)

]
W

1
2 (1− 1

q )
q (0,T;W1

q(Ω̃))
n×n

⩽ CT
1
q+

1
2q ′ ‖û− v̂‖Y1T ,

where r= q2

n .

Proof. Recall from (1.2) the definition of F̂ that

F̂(X, t) = I+
ˆ t

0
∇̂v̂(X, τ)dτ, ∀X ∈ Ω̂.

Then we have

sup
0⩽t⩽T

∥∥∥F̂− I
∥∥∥
W1
q(Ω̃)n×n

= sup
0⩽t⩽T

∥∥∥∥ˆ t

0
∇̂v̂(X, τ)dτ

∥∥∥∥
W1
q(Ω̃)n×n

⩽ CT
1
q′ R,

for all ‖v̂‖Y1T ⩽ R. Choosing TR > T so small that CT
1
q ′

R R⩽ 1
2Mq

, we know

sup
0⩽t⩽T

∥∥∥F̂− I
∥∥∥
W1
q(Ω̃)n×n

⩽ 1
2Mq

,

where Mq is the constant of multiplication in W1
q(Ω̃), see lemma 2.1. According to the Neu-

mann series (see [5, section 5.7]), F̂−1 does exist and

F̂−1 =
(
F̂− I+ I

)−1
=
(
I−
(
I− F̂

))−1
=

∞∑
k=0

(
I− F̂

)k
.

Then from lemma 2.1, one obtains

sup
0⩽t⩽T

∥∥∥F̂−1
∥∥∥
W1
q(Ω̃)n×n

⩽ sup
0⩽t⩽T

∞∑
k=0

∥∥∥∥(I− F̂
)k∥∥∥∥

W1
q(Ω̃)n×n

⩽ 1
Mq

∞∑
k=0

(
Mq sup

0⩽t⩽T

∥∥∥I− F̂
∥∥∥
W1
q(Ω̃)n×n

)k

⩽ 1
Mq

∞∑
k=0

(
1
2

)k

=
2
Mq

,

Consequently, if follows from (2.2) and lemma 2.1 that∥∥∥∂tF̂−1
∥∥∥
Lq(0,T;W1

q(Ω̃))
n×n

⩽M2
q

∥∥∥F̂−1
∥∥∥2
L∞(0,T;Wq

q(Ω̃))
n×n

∥∥∥∇̂v̂
∥∥∥
Lq(0,T:W1

q(Ω̃))
n×n ⩽ C‖v̂‖Y1T ,
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for all 0< T< TR and∥∥∥F̂−1 − I
∥∥∥
L∞(0,T;W1

q(Ω̃))
n×n ⩽

ˆ T

0

∥∥∥∂tF̂−1(·, τ)
∥∥∥
W1
q(Ω̃)n×n

dτ ⩽ CT
1
q′ ‖v̂‖Y1T ,

where C= C(R) depends on R. These estimates prove the first two statements.
For the third and fourth statements, we have∥∥∥∆h

(
F̂−1 − I

)
(·, t)

∥∥∥
W1
q(Ω̃)n×n

⩽
ˆ t

t−h

∥∥∥∂tF̂−1(·, τ)
∥∥∥
W1
q(Ω̃)n×n

dτ ⩽ Ch
1
q′ ‖v̂‖Y1T ,

which can be used to deduce

sup
0⩽t⩽T

ˆ t

0

∥∥∥∆h

(
F̂−1 − I

)
(·, t)

∥∥∥q
W1
q(Ω̃)n×n

h1+
q

2q′
dh


1
q

⩽ C sup
0⩽t⩽T

(ˆ t

0
h−1+ q

2q′ dh

) 1
q

‖v̂‖Y1T = C2q′ sup
0⩽t⩽T

t
1

2q′ ‖v̂‖Y1T ⩽ CT
1

2q′ ‖v̂‖Y1T ,

and therefore from (2.4) and the definition of Sobolev–Slobodeckij space,[
F̂−1 − I

]
W

1
2 (1− 1

q )
q (0,T;W1

q(Ω̃))
n×n

⩽ CT
1
q+

1
2q′ ‖v̂‖Y1T .

For the rest statements, we notice from (1.2) that

F̂(û)− F̂(v̂) =
ˆ t

0

(
∇̂û−∇̂v̂

)
(X, τ)dτ.

Then for all 0< T< TR,

sup
0⩽t⩽T

∥∥∥F̂(û)− F̂(v̂)
∥∥∥
W1
q(Ω̃)n×n

⩽ CT
1
q′ ‖û− v̂‖Y1T .

Since

F̂−1(û)− F̂−1(v̂) =−F̂−1(û)
(
F̂(û)− F̂(v̂)

)
F̂−1(v̂),

it follows from the multiplication property of W1
q(Ω̃) again that for all 0< T< TR,

sup
0⩽t⩽T

∥∥∥F̂−1(û)− F̂−1(v̂)
∥∥∥
W1
q(Ω̃)n×n

⩽M2
q sup
0⩽t⩽T

∥∥∥F̂−1(û)
∥∥∥
W1
q(Ω̃)n×n

∥∥∥F̂−1(v̂)
∥∥∥
W1
q(Ω̃)n×n

∥∥∥F̂(û)− F̂(v̂)
∥∥∥
W1
q(Ω̃)n×n

⩽ CT
1
q′ ‖û− v̂‖Y1T .

Moreover,

∂tF̂
−1(û)− ∂tF̂

−1(v̂) =−∂tF̂
−1(û)

(
F̂(û)− F̂(v̂)

)
F̂−1(v̂)− F̂−1(û)∂t

(
F̂(û)− F̂(v̂)

)
F̂−1(v̂)

− F̂−1(û)
(
F̂(û)− F̂(v̂)

)
∂tF̂

−1(v̂). (4.1)
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Hence ∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)
∥∥∥
Lq(0,T;L∞(Ω̃))

n×n

⩽
∥∥∥∂tF̂−1(û)

(
F̂(û)− F̂(v̂)

)
F̂−1(v̂)

∥∥∥
Lq(0,T;L∞(Ω̃))

n×n

+
∥∥∥F̂−1(û)

(
∇̂û−∇̂v̂

)
F̂−1(v̂)

∥∥∥
Lq(0,T;L∞(Ω̃))

n×n

+
∥∥∥F̂−1(û)

(
F̂(û)− F̂(v̂)

)
∂tF̂−1(v̂)

∥∥∥
Lq(0,T;L∞(Ω̃))

n×n =: F1 +F2 +F3.

From the embedding (2.6), we know that for v̂ ∈ Y1T,

sup
0⩽t⩽T

∥∥∥∇̂v̂
∥∥∥
Lq(Ω̃)n×n

⩽ C
(
‖v̂‖Y1T +

∥∥ v̂|t=0

∥∥
W1
q(Ω̃)

)
.

The Gagliardo–Nirenberg inequality tells us∥∥∥∇̂v̂
∥∥∥
L∞(Ω̃)n×n

⩽ C
∥∥∥∇̂v̂

∥∥∥1− n
q

Lq(Ω̃)n×n

∥∥∥∇̂v̂
∥∥∥ n

q

W1
q(Ω̃)n×n

.

For r= q2

n > q, we obtain∥∥∥∇̂v̂
∥∥∥
Lr(0,T;L∞(Ω̃))

n×n ⩽ C
∥∥∥∇̂v̂

∥∥∥1− n
q

L∞(0,T;Lq(Ω̃))
n×n

∥∥∥∇̂v̂
∥∥∥ n

q

Lq(0,T;W1
q(Ω̃))

n×n ⩽ C(R).

Then, ∥∥∥∇̂v̂
∥∥∥
Lq(0,T;L∞(Ω̃))

n×n ⩽ T
1
q−

1
r

∥∥∥∇̂v̂
∥∥∥
Lr(0,T;L∞(Ω̃))

n×n ⩽ C(R)T
1
q−

1
r ,

and also, for û ∈ Y1T, ‖û‖Y1T ⩽ R,∥∥∥∇̂v̂−∇̂û
∥∥∥
Lq(0,T;L∞(Ω̃))

n×n ⩽ C(R)T
1
q−

1
r ‖v̂− û‖Y1T . (4.2)

Consequently, with W1
q(Ω̃) ↪→ L∞(Ω̃) for q> n,

F1 ⩽
∥∥∥∂tF̂−1(û)

∥∥∥
Lq(0,T;L∞(Ω̃))

n×n

×
∥∥∥F̂(û)− F̂(v̂)

∥∥∥
L∞(0,T;L∞(Ω̃))

n×n

∥∥∥F̂−1(v̂)
∥∥∥
L∞(0,T;L∞(Ω̃))

n×n

⩽
∥∥∥∇̂û

∥∥∥
Lq(0,T;L∞(Ω̃))

n×n

∥∥∥F̂−1(û)
∥∥∥2
L∞(0,T;L∞(Ω̃))

n×n

×
∥∥∥F̂(û)− F̂(v̂)

∥∥∥
L∞(0,T;L∞(Ω̃))

n×n

∥∥∥F̂−1(v̂)
∥∥∥
L∞(0,T;L∞(Ω̃))

n×n

⩽ CT
1
q−

1
r ‖û− v̂‖Y1T .

Similarly,

F2 ⩽ CT
1
q−

1
r ‖û− v̂‖Y1T , F3 ⩽ CT

1
q−

1
r ‖û− v̂‖Y1T .

Thus, ∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)
∥∥∥
Lq(0,T;L∞(Ω̃))

n×n ⩽ CT
1
q−

1
r ‖û− v̂‖Y1T .

562



Nonlinearity 36 (2023) 537 H Abels and Y Liu

Moreover, we can also conclude from (4.1) that∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)
∥∥∥
Lq(0,T;W1

q(Ω̃))
n×n ⩽ C‖û− v̂‖Y1T .

Using that
(
F̂−1
0 (û)− F̂−1

0 (v̂)
)
= 0,∥∥∥∆h

(
F̂−1(û)− F̂−1(v̂)

)
(·, t)

∥∥∥
W1
q(Ω̃)n×n

⩽
ˆ t

t−h

∥∥∥∂t(F̂−1(û)− F̂−1(v̂)
)
(·, τ)

∥∥∥
W1
q(Ω̃)n×n

dτ ⩽ Ch
1
q′ ‖û− v̂‖Y1T .

Therefore, for all 0< T< TR,

sup
0⩽t⩽T

ˆ h

0

∥∥∥∆h

(
F̂−1(û)− F̂−1(v̂)

)
(·, t)

∥∥∥q
W1
q(Ω̃)n×n

h1+
q

2q′
dh


1
q

⩽ C sup
0⩽t⩽T

t
1

2q′ ‖û− v̂‖Y1T = CT
1

2q′ ‖û− v̂‖Y1T .

Again with the help of (2.4) and the definition of Sobolev–Slobodeckij space, one obtains the
last statement. This completes the proof.

Lemma 4.2. Under the assumption of lemma 4.1, there exist a constant C= C(R)> 0 and a
finite time TR > 0 depending on R such that for all 0< T< TR and for two arbitrary functions
f ∈ Lq(0,T;W1

q(Ω̃)) and f ∈ Lq(0,T;W2
q (Ω̃))

n,

(a)
∥∥∥(F̂−1(v̂)− I

)
f
∥∥∥
Lq(0,T;W1

q(Ω̃))
n ⩽ CT

1
q ′ ‖ f‖Lq(0,T;W1

q(Ω̃)) ‖v̂‖Y1T;∥∥∥(F̂−1(v̂)− I
)(

∇̂f
)∥∥∥

Lq(0,T;W1
q(Ω̃))

n×n ⩽ CT
1
q ′ ‖f‖Lq(0,T;W 2

q (Ω̃))
n ‖v̂‖Y1T;

(b)
∥∥∥(F̂−1(û)− F̂−1(v̂)

)
f
∥∥∥
Lq(0,T;W1

q(Ω̃))
n ⩽ CT

1
q ′ ‖ f‖Lq(0,T;W1

q(Ω̃)) ‖û− v̂‖Y1T;∥∥∥(F̂−1(û)− F̂−1(v̂)
)(

∇̂f
)∥∥∥

Lq(0,T;W1
q(Ω̃))

n×n ⩽ CT
1
q ′ ‖f‖Lq(0,T;W 2

q (Ω̃))
n ‖û− v̂‖Y1T;

(c)
∥∥∥(F̂−1(û)− F̂−1(v̂)

)(
∇̂fF̂−1(û)

)∥∥∥
Lq(0,T;W1

q(Ω̃))
n×n ⩽ CT

1
q ′ ‖f‖Lq(0,T;W 2

q (Ω̃))
n ‖û− v̂‖Y1T .

Proof. The key point to deduce these estimates is to use the multiplication property ofW1
q(Ω̃)

with q> n, which was given in lemma 2.1. Then lemma 4.1 implies these results.

Lemma 4.3. Let 1< q<∞, T0 > 0 and Ω⊆ Rn, n⩾ 2, be a bounded domain with C1,1

boundary. Then[
∇̂v̂
]
W

1
2−ε
q (0,T;Lq(Ω))n×n

⩽ CTε
0 [v̂]W2,1

q (Ω×(0,T))n ,

for every v̂ ∈W2,1
q (Ω× (0,T))n, ε ∈ (0, 12 ) and 0< T< T0. Here C depends on ε.

Proof. The lemma can be easily proved by using the argument in [1, lemma 4.2], where a
layer-like domain with C1,1 boundary is considered. Besides, it can be seen as a corollary of
lemma 2.2.
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4.2. Proof of theorem 2.1

In this subsection, we prove theorem 2.1 by applying the strategy of a fixed-point procedure.
For the proof, we set w= (v̂, π̂, ĉ, ĉ∗s , ĝ), w0 := (v̂0, ĉ0,0,1) and reformulate the initial and

boundary value problem (2.21)–(2.34) as an abstract equation:

L (w) = N (w,w0), for all w ∈ YT, (v̂0, ĉ0) ∈ Dq, (4.3)

where

L (w) :=



∂tv̂− d̂ivS(v̂, π̂)

d̂iv(v̂)− γβ

ρ̂s
ĉs

[[S(v̂, π̂)]] · n̂Γ
S(v̂s, π̂s) · n̂Γs

∂tĉ− D̂∆̂ĉ

D̂∇̂ĉ · n̂Γ
D̂s∇̂ĉs · n̂Γs

∂tĉ
∗
s −βĉs

∂tĝ−
γβ

nρ̂s
ĉs

(v̂, ĉ, ĉ∗s , ĝ)
⊤∣∣

t=0



, N (w,w0) :=



K(w)

G(w)

H1(w)

H2(w)

F 1(w)

F 2(w)

F 3(w)

F 4(w)

F 5(w)

w0



.

In the sequel, we focus on (4.3). For L , we have the following proposition.

Proposition 4.1. LetL be defined as in (4.3). ThenL is an isomorphism from YT to ZT×Dq.

Proof. As L ∈ L(YT,ZT×Dq), it suffices to show that L is bijective, thanks to the bounded
inverse theorem.
Injective. Take any w1,w2 ∈ YT. Then, from (3.2), (3.20) and (3.23),∥∥L (w1)−L (w2)

∥∥
ZT×Dq

⩽ C
∥∥w1 −w2

∥∥
YT
,

which implies the injectivity of L .
Surjective. The existence of (3.1), (3.18)–(3.19) and (3.21)–(3.22) immediately yields the

surjectivity of L .

To employ the contraction mapping principle to (4.3), we investigate the dependence and con-
traction property of (K,G,H1,H2,F 1,F 2,F 3,F 4,F 5) on (v̂, π̂, ĉ, ĉ∗s , ĝ). To this end, we define

M (w) :=
(
K(w),G(w),H1(w),H2(w),F 1(w),F 2(w),F 3(w),F 4(w),F 5(w)

)⊤
,

where the elements are given by (2.35). Then it is still needed to show that M : YT → ZT
is well-defined for w= (v̂, π̂, ĉ, ĉ∗s , ĝ) ∈ YT and to verify that M possesses the contraction
property.

Proposition 4.2. Let q> n and R>0. Assume w= (v̂, π̂, ĉ, ĉ∗s , ĝ) ∈ YT with ĝ|t=0 = 1 and
‖w‖YT ⩽ R, then there exist a constant C= C(R)> 0, a finite time TR > 0 depending on R
and δ >0 such that for 0< T< TR, M : YT → ZT is well-defined and bounded along with the
estimates:

‖M (w)‖ZT ⩽ C(R)Tδ
(
‖w‖YT + 1

)
. (4.4)
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Moreover, for w1 = (v̂1, π̂1, ĉ1, ĉ∗s
1, ĝ1),w2 = (v̂2, π̂2, ĉ2, ĉ∗s

2, ĝ2) ∈ YT with w1 6= w2, ĉi
∣∣
t=0

=

ĉ0, ĉ∗s |t=0 = 0, ĝi
∣∣
t=0

= 1 and
∥∥wi∥∥

YT
⩽ R (i= 1,2), there exist a constant C= C(R)> 0, a

finite time TR > 0 depending on R and δ >0 such that for 0< T< TR,∥∥M (w1)−M (w2)
∥∥
ZT
⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
. (4.5)

Proof. First of all, we prove the second part. To this end, for
∥∥wi∥∥

YT
⩽ R, i= 1,2 we estimate

the following terms respectively∥∥K(w1)−K(w2)
∥∥
Z1T
,
∥∥G(w1)−G(w2)

∥∥
Z2T
,∥∥Hj(w1)−Hj(w2)

∥∥
Zj+2
T
,
∥∥F k(w1)−F k(w2)

∥∥
Zk+4
T
,
∥∥F 5(w1)−F 5(w2)

∥∥
Z8T
,

where j ∈ {1,2}, k ∈ {1,2,3,4}. If 0< T⩽ 1, we have Ts < Ts
′
for s> s ′ > 0. In the sequel,

we set a universal constant δ =min{ 1
2q ′ ,

1
q −

1
r }, where q

′ = q
q−1 , r=

q2

n .

Estimate of
∥∥K(w1)−K(w2)

∥∥
Z1T
. For Kf = d̂ivK̃f from (2.35), with the help of lemmas

2.1, 4.1 and 4.2, we derive that∥∥K̃f(w
1)− K̃f(w

2)
∥∥
Lq(0,T;W1

q(Ωf))
n×n

⩽
∥∥∥π̂1

f

(
F̂−⊤
f (v̂1f )− F̂−⊤

f (v̂2f )
)
+
(
π̂1
f − π̂2

f

)(
F̂−⊤
f (v̂2f )− I

)∥∥∥
Lq(0,T;W1

q(Ωf))
n×n

+ νf

∥∥∥(F̂−1
f (v̂1f )∇̂v̂1f + ∇̂⊤v̂1f F̂

−⊤
f (v̂1f )

)(
F̂−⊤
f (v̂1f )− F̂−⊤

f (v̂2f )
)∥∥∥

Lq(0,T;W1
q(Ωf))

n×n

+ 2νf
∥∥∥((F̂−1

f (v̂1f )− F̂−1
f (v̂2f )

)
∇̂v̂1f + F̂−1

f (v̂2f )
(
∇̂v̂1f −∇̂v̂2f

))
×
(
F̂−⊤
f (v̂2f )− I

)∥∥∥
Lq(0,T;W1

q(Ωf))
n×n

+ 2νf
∥∥∥(F̂−1

f (v̂1f )− F̂−1
f (v̂2f )∇̂v̂1f

)(
F̂−1
f (v̂2f )− I

)(
∇̂v̂1f −∇̂v̂2f

)∥∥∥
Lq(0,T;W1

q(Ωf))
n×n

⩽ CT
1
q′
(∥∥π̂1

f

∥∥
Y2T

∥∥v̂1f − v̂2f
∥∥
Y1T
+
∥∥π̂1

f − π̂2
f

∥∥
Y2T

∥∥v̂2f ∥∥Y1T)+CT
1
q′
∥∥v̂1f ∥∥Y1T ∥∥v̂1f − v̂2f

∥∥
Y1T

+CT
2
q′
∥∥v̂1f ∥∥Y1T ∥∥v̂1f − v̂2f

∥∥
Y1T

∥∥v̂2f ∥∥Y1T +CT
1
q′
∥∥v̂1f − v̂2f

∥∥
Y1T

∥∥v̂2f ∥∥Y1T
+CT

1
q′
(∥∥v̂1f ∥∥Y1T ∥∥v̂1f − v̂2f

∥∥
Y1T
+
∥∥v̂1f − v̂2f

∥∥
Y1T

∥∥v̂2f ∥∥Y1T)⩽ C(R)Tδ
∥∥w1 −w2

∥∥
YT
.

Let ĝ ∈W1
q(0,T;W

1
q(Ωs))with ĝ|t=0 = 1. Nowwe claim that there exists a time TR > 0 such

that for 0< T< TR, ĝ⩾ 1
2 > 0. Let ĝ be such a function with ‖ĝ‖W1

q(0,T;W
1
q(Ωs))

⩽ R for some
R> 0. Then for 0< t< T,

‖ĝ(t)− 1‖L∞(Ωs)
⩽ C

∥∥∥∥ˆ t

0
∂tĝ(X, τ)dτ

∥∥∥∥
W1
q(Ωs)

⩽ CT
1
q′ R⩽ 1

2
,

where we choose TR > 0 small enough such that T
1
q ′

R ⩽ 1
2CR . Hence,

ĝ⩾ 1
2
> 0.
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For Ks = d̂ivK̃s + K̄g
s , the first part can be estimated similarly using∥∥K̃s(w
1)− K̃s(w

2)
∥∥
Lq(0,T;W1

q(Ωs))
n×n ⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
.

For the second part it follows from (2.4), lemma 4.1 and 4.2 that∥∥K̄g
s (w

1)− K̄g
s (w

2)
∥∥
Lq(0,T;Lq(Ωs))

n×n

⩽
∥∥∥∥∥(σ̂s(v̂1s , π̂

1
s , ĝ

1)F̂−⊤
s (v̂1s )− σ̂s(v̂2s , π̂

2
s , ĝ

2)F̂−⊤
s (v̂2s )

) n∇̂ĝ1
ĝ1

∥∥∥∥∥
Lq(0,T;Lq(Ωs))

n×n

+

∥∥∥∥∥σ̂s(v̂2s , π̂
2
s , ĝ

2)F̂−⊤
s (v̂2s )

(
n∇̂ĝ1

ĝ1
− n∇̂ĝ2

ĝ2

)∥∥∥∥∥
Lq(0,T;Lq(Ωs))

n×n

=: N1 +N2.

From the definition of σ̂s and ĝ⩾ 1/2,

N1 ⩽ C
∥∥∥∇̂ĝ1∥∥∥

L∞(0,T;Lq(Ωs))
n
N1
1 ⩽ C(R)T

1
q′ N1

1,

where

N1
1 :=

∥∥∥π̂1
s

(
F̂−⊤
s (v̂1s )− F̂−⊤

s (v̂2s )
)∥∥∥

Lq(0,T;L∞(Ωs))
n×n

+
∥∥∥(π̂1

s − π̂2
s

)
F̂−⊤
s (v̂2s )

∥∥∥
Lq(0,T;L∞(Ωs))

n×n
+ ν̂s

∥∥∥∇̂v̂1s −∇̂v̂2s
∥∥∥
Lq(0,T;L∞(Ωs))

n×n

+ µ̂s

(∥∥∥∥ 1
(ĝ1)2

(
F̂s(v̂1s )− F̂s(v̂2s )

)∥∥∥∥
Lq(0,T;L∞(Ωs))

n×n

+

∥∥∥∥( 1
(ĝ1)2

− 1
(ĝ2)2

)
F̂s(v̂2s )

∥∥∥∥
Lq(0,T;L∞(Ωs))

n×n

+
∥∥∥F̂−⊤

s (v̂1s )− F̂−⊤
s (v̂2s )

∥∥∥
Lq(0,T;L∞(Ωs))

n×n

)
⩽ CT

1
q′
∥∥π̂1

s

∥∥
Y2T

∥∥v̂1s − v̂2s
∥∥
Y1T
+C

∥∥π̂1
s − π̂2

s

∥∥
Y2T
+C

∥∥v̂1s − v̂2s
∥∥
Y1T

+ µ̂s

(
CT

1
q′
∥∥v̂1s − v̂2s

∥∥
Y1T
+CT

1
q′
∥∥ĝ1 − ĝ2

∥∥
Y4T

∥∥v̂2s∥∥Y1T (∥∥ĝ1∥∥Y4T +∥∥ĝ2∥∥Y4T)
+CT

1
q′
∥∥v̂1s − v̂2s

∥∥
Y1T

)
⩽ C(R)

∥∥w1 −w2
∥∥
YT
.

Then we get

N1 +N2 ⩽ C(R)T
1
q′
∥∥w1 −w2

∥∥
YT
.

Consequently, ∥∥K(w1)−K(w2)
∥∥
Z1T
⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
. (4.6)

Estimate of
∥∥G(w1)−G(w2)

∥∥
Z2T
. From the definition of Z2T given by (3.4), we need to verify

thatG(w1)−G(w2) is contained both in Lq(0,T;W1
q(Ω̃)) andW

1
q(0,T;W

−1
q (Ω̂)), as well as the

trace regularity

trΓ(G(w
1)−G(w2)) ∈W

1− 1
q ,

1
2 (1−

1
q )

q (Γ× (0,T)),

trΓs(G(w
1)−G(w2)) ∈W

1− 1
q ,

1
2 (1−

1
q )

q (Γs × (0,T)).
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For the first regularity it follows easily from (2.35), lemmas 4.1 and 4.2 that∥∥G(w1)−G(w2)
∥∥
Lq(0,T;W1

q(Ω̃))

⩽ CT
1
q′
∥∥v̂1∥∥

Y1T

∥∥v̂1 − v̂2
∥∥
Y1T
+CT

1
q′
∥∥v̂2∥∥

Y1T

∥∥v̂1 − v̂2
∥∥
Y1T
⩽ CTδR

∥∥w1 −w2
∥∥
YT
.

From the approximation argument in [4, page 15], we know that a weak derivative with respect
to time does exist forG. Hence, substitutingG by the form (2.36) and using integration by parts,
we have

〈∂tG(·, t),φ〉W−1
q ×W1

q′,0
=

d
dt

〈G(·, t),φ〉W−1
q ×W1

q′,0

=
d
dt

(〈(
F̂−1 − I

)
v̂,∇̂φ

〉
Lq×Lq′

−
〈
v̂s · d̂ivF̂−⊤

s ,φ
〉
Lq×Lq′

)
=

ˆ
Ω̂

((
∂tF̂−1

)
v̂+

(
F̂−1 − I

)
∂tv̂
)
· ∇̂φdX

+

ˆ
Ωs

(
∂tv̂s · d̂ivF̂−⊤

s + v̂s · d̂iv∂tF̂−⊤
s

)
·φdX

=

ˆ
Ωf

(
∂tF̂

−1
f

)
v̂f · ∇̂φdX+

ˆ
Ω̂

((
F̂−1 − I

)
∂tv̂
)
· ∇̂φdX

+

ˆ
Ωs

(
∂tv̂s · d̂ivF̂−⊤

s + ∂tF̂−⊤
s : ∇̂v̂s

)
·φdX,

for every φ ∈W1
q ′,0(Ω̂), where 〈·, ·〉X×X ′ denotes the duality product between a dual pair of

spaces X and X′. Then according to (2.2), the Sobolev embedding W1
q(Ω̂) ↪→ C0,1−n/q(Ω̂) ↪→

L∞(Ω̂) and lemma 4.1, one obtains∥∥∂tG(w1)− ∂tG(w
2)
∥∥
Lq(0,T;W−1

q (Ω̂))

⩽
∥∥∥(∂tF̂−1

f (v̂1)− ∂tF̂
−1
f (v̂2f )

)
v̂1f + ∂tF̂

−1
f (v̂2f )

(
v̂1f − v̂2f

)∥∥∥
Lq(0,T;Lq(Ω̂))

n

+
∥∥∥(F̂−1(v̂1)− F̂−1(v̂2)

)
∂tv̂1 +

(
F̂−1(v̂2)− I

)(
∂tv̂1 − ∂tv̂2

)∥∥∥
Lq(0,T;Lq(Ω̂))

n

+
∥∥∥∂tv̂1s ·(d̂ivF̂−⊤

s (v̂1)− d̂ivF̂−⊤
s (v̂2s )

)∥∥∥
Lq(0,T;Lq(Ωs))

+
∥∥∥(∂tv̂1s − ∂tv̂2s

)
· d̂ivF̂−⊤

s (v̂2s )
∥∥∥
Lq(0,T;Lq(Ωs))

+
∥∥∥(∂tF̂−⊤

s (v̂1s )− ∂tF̂−⊤
s (v̂2s )

)
: ∇̂v̂1s

∥∥∥
Lq(0,T;Lq(Ωs))

+
∥∥∥∂tF̂−⊤

s (v̂2s ) :
(
∇̂v̂1s −∇̂v̂2s

)∥∥∥
Lq(0,T;Lq(Ωs))

⩽ CT
1
q−

1
r
∥∥v̂1 − v̂2

∥∥
Y1T

(
1+T

1
q′
∥∥v̂1∥∥

Y1T

)
+CT

1
q′
∥∥v̂2∥∥

Y1T

∥∥v̂1 − v̂2
∥∥
Y1T

+CT
1
q′
∥∥v̂1 − v̂2

∥∥
Y1T

∥∥v̂1∥∥
Y1T
+CT

1
q′
∥∥v̂2∥∥

Y1T

∥∥v̂1 − v̂2
∥∥
Y1T

+CT
1
q′
∥∥v̂1∥∥

Y1T

∥∥v̂1 − v̂2
∥∥
Y1T
+CT

1
q′
∥∥v̂1 − v̂2

∥∥
Y1T

∥∥v̂2∥∥
Y1T

+CT
1
q−

1
r
∥∥v̂1 − v̂2

∥∥
Y1T

∥∥v̂1∥∥
Y1T
+CT

1
q′
∥∥v̂2∥∥

Y1T

∥∥v̂1 − v̂2
∥∥
Y1T

⩽ C(R)Tδ
∥∥w1 −w2

∥∥
YT
.
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Then we are in the position to prove trΓ(G(w1)−G(w2)) ∈W1−1/q,(1−1/q)/2
q (Γ× (0,T)).

Recalling the definition of such mixed space (2.5), we first write the norm explicitly:∥∥trΓ (G(w1)−G(w2)
)∥∥

W
1− 1

q ,
1
2 (1− 1

q )
q (Γ×(0,T))

=
∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
: ∇̂v̂1

∥∥∥
Lq
(
0,T;W

1− 1
q

q (Γ)
)

+
∥∥∥(F̂−⊤(v̂2)− I

)
:
(
∇̂v̂1 −∇̂v̂2

)∥∥∥
Lq
(
0,T;W

1− 1
q

q (Γ)
)

+
∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
: ∇̂v̂1

∥∥∥
W

1
2 (1− 1

q )
q (0,T;Lq(Γ))

+
∥∥∥(F̂−⊤(v̂2)− I

)
:
(
∇̂v̂1 −∇̂v̂2

)∥∥∥
W

1
2 (1− 1

q )
q (0,T;Lq(Γ))

=:
4∑
i=1

Ii.

According to the trace theorem from W1
q(Ω̃) into W

1− 1
q

q (Γ), lemmas 2.1, 4.1 and 4.2,

I1 ⩽ C
∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
: ∇̂v̂1

∥∥∥
Lq(0,T;W1

q(Ω̃))
⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
,

I2 ⩽ C
∥∥∥(F̂−⊤(v̂2)− I

)
:
(
∇̂v̂1 −∇̂v̂2

)∥∥∥
Lq(0,T;W1

q(Ω̃))
⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
.

It follows from the definition of vector valued Sobolev–Slobodeckij spaces, lemmas 4.1 and
4.3 that

I3 ⩽

ˆ T

0

ˆ t

0

∥∥∥∆h

(
F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
(t) : ∇̂v̂1(t− h)

∥∥∥q
Lq(Γ)

h1+
q
2 (1−

1
q )

dhdt


1
q

+

ˆ T

0

ˆ t

0

∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)
)
(t) : ∆h

(
∇̂v̂1

)
(t)
∥∥∥q
Lq(Γ)

h1+
q
2 (1−

1
q )

dhdt


1
q

⩽ sup
0⩽t⩽T

ˆ t

0

∥∥∥∆h

(
F̂−⊤(v̂1)− F̂−⊤(v̂2)

)∥∥∥q
L∞(Γ)n×n

h1+
q
2 (1−

1
q )

dh


1
q ∥∥∥∇̂v̂1

∥∥∥
Lq(0,T;Lq(Γ))n×n

+ sup
0⩽t⩽T

∥∥∥F̂−⊤(v̂1)− F̂−⊤(v̂2)
∥∥∥
W1
q(Ω̃)n×n

[
∇̂v̂1

]
W

1
2 (1− 1

q )
q (0,T;Lq(Γ))n×n

⩽ C
(
T

1
2q′
∥∥v̂1∥∥

Y1T

∥∥v̂1 − v̂2
∥∥
Y1T
+T

1
q′
∥∥v̂1 − v̂2

∥∥
Y1T

∥∥v̂1∥∥
Y1T

)
⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
,
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where we used the property of ∆h that ∆h( fg)(t) = ∆h f(t)g(t− h)+ f(t)∆hg(t). Similarly,

I4 ⩽ C(R)Tδ
∥∥w1 −w2

∥∥
YT
.

Collecting Ii, i= 1, . . . ,4, we get∥∥trΓ (G(w1)−G(w2)
)∥∥

W
1− 1

q ,
1
2 (1− 1

q )
q (Γ×(0,T))

⩽ C(R)Tδ
∥∥w1 −w2

∥∥
YT
.

Since the trace regularities for G on Γ and Γs are same, one also obtains∥∥trΓs

(
G(w1)−G(w2)

)∥∥
W

1− 1
q ,

1
2 (1− 1

q )
q (Γs×(0,T))

⩽ C(R)Tδ
∥∥w1 −w2

∥∥
YT
.

Then ∥∥G(w1)−G(w2)
∥∥
Z2T
⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
,

Estimate of
∥∥H1(w1)−H1(w2)

∥∥
Z3T
,
∥∥H2(w1)−H2(w2)

∥∥
Z4T
. Since Γ is of class C3, n̂Γ ∈

C2(∂Ωf). Then by similar estimates as for trΓ(G(w1)−G(w2)), the norm ofH1(w1)−H1(w2)
in Z3T can be estimated as∥∥H1(w1)−H1(w2)

∥∥
Z3T
=
∥∥[[K̃(w1)− K̃(w2)

]]
n̂Γ
∥∥
W

1
2 (1− 1

q )
q (0,T;Lq(Γ))n

+
∥∥[[K̃(w1)− K̃(w2)

]]
n̂Γ
∥∥
Lq(0,T;W

1− 1
q

q (Γ))n

⩽ C
∥∥K̃f(w

1)− K̃f(w
2)+ K̃s(w

1)− K̃s(w
2)
∥∥
W

1
2 (1− 1

q )
q (0,T;Lq(Γ))n×n

+C
∥∥(K̃(w1)− K̃(w2)

)∥∥
Lq(0,T;W1

q(Ω̃))
n×n ⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
.

As the similar situation, we can easily derive∥∥H2(w1)−H2(w2)
∥∥
Z4T
⩽ CTδ (1+R)2

∥∥w1 −w2
∥∥
YT
.

Estimate of
∥∥F 1(w1)−F 1(w2)

∥∥
Z 5
T
. For F1

f = d̂ivF̃f, we have∥∥F1
f (w

1)−F1
f (w

2)
∥∥
Z 5
T

⩽
∥∥F̃f(w

1)− F̃f(w
2)
∥∥
Lq(0,T;W1

q(Ωf))n

⩽ D̂f

∥∥∥(F̂−1
f (v̂1f )F̂

−⊤
f (v̂1f )− F̂−1

f (v̂2f )F̂
−⊤
f (v̂2f )

)
∇̂ĉ1f

∥∥∥
Lq(0,T;W1

q(Ωf))n

+ D̂f

∥∥∥(F̂−1
f (v̂2f )F̂

−⊤
f (v̂2f )− I

)(
∇̂ĉ1f −∇̂ĉ2f

)∥∥∥
Lq(0,T;W1

q(Ωf))n
=: F1 +F2.

Lemma 4.1 and the multiplication property of W1
q(Ωf) in lemma 2.1 imply that

F1 ⩽ C

(∥∥∥F̂−1
f (v̂1f )

(
F̂−⊤
f (v̂1f )− F̂−⊤

f (v̂2f )
)∥∥∥

L∞(0,T;W1
q(Ωf))n×n

+
∥∥∥(F̂−1

f (v̂1f )− F̂−1
f (v̂2f )

)
F̂−⊤
f (v̂2f )

∥∥∥
L∞(0,T;W1

q(Ωf))n×n

)∥∥∥∇̂ĉ1f ∥∥∥
Lq(0,T;W1

q(Ωf))n

⩽ C(R)T
1
q′
∥∥w1 −w2

∥∥
YT
,
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and

F2 ⩽ C

(∥∥∥F̂−1
f (v̂2f )

(
F̂−⊤
f (v̂2f )− I

)∥∥∥
L∞(0,T;W1

q(Ωf))n×n

+
∥∥∥F̂−1

f (v̂2f )− I
∥∥∥
L∞(0,T;W1

q(Ωf))n×n

)∥∥∥∇̂ĉ1f −∇̂ĉ2f
∥∥∥
Lq(0,T;W1

q(Ωf))n

⩽ C(R)T
1
q′
∥∥w1 −w2

∥∥
YT
.

Then ∥∥F1
f (w

1)−F1
f (w

2)
∥∥
Z 5
T
⩽ C(R)T

1
q′
∥∥w1 −w2

∥∥
YT
.

For F1
s = F̄1

s +Fg
s = d̂ivF̃s +Fg

s , it can be deduced similarly as for F1
f that∥∥F̄1

s (w
1)− F̄1

s (w
2)
∥∥
Z 5
T
⩽ C(R)T

1
q′
∥∥w1 −w2

∥∥
YT
.

Moreover, ∥∥Fg
s (w

1)−Fg
s (w

2)
∥∥
Z 5
T

⩽ β

∥∥∥∥(ĉ1s − ĉ2s
)(

1+
γ

ρ̂s
ĉ1s

)∥∥∥∥
Lq(Ωs×(0,T))

+β
∥∥ĉ2s (ĉ1s − ĉ2s

)∥∥
Lq(Ωs×(0,T))

+ n

∥∥∥∥∥∇̂ĝ1ĝ1

(
F̃s(w

1)− F̃s(w
2)+

(
∇̂ĉ1s −∇̂ĉ2s

))∥∥∥∥∥
Lq(Ωs×(0,T))

+ n

∥∥∥∥∥
(
∇̂ĝ1

ĝ1
− ∇̂ĝ2

ĝ2

)
F̂−1
s (v̂2s )F̂

−⊤
s (v̂2s )∇̂ĉ2s

∥∥∥∥∥
Lq(Ωs×(0,T))

=:
4∑
i=1

Fg
i .

Apparently, with ĉi
∣∣
t=0

= ĉ0, i= 1,2,

Fg
1 +Fg

2 ⩽ C
∥∥ĉ1s − ĉ2s

∥∥
L∞(0,T;Lq(Ωs))

∥∥∥∥1+ γ

ρ̂s
ĉ1s

∥∥∥∥
Lq(0,T;L∞(Ωs))

+C
∥∥ĉ1s − ĉ2s

∥∥
L∞(0,T;Lq(Ωs))

∥∥ĉ2s∥∥Lq(0,T;L∞(Ωs))
⩽ C(R)T

1
q′
∥∥w1 −w2

∥∥
YT
.

Proceeding the same estimates as F̃f above, we have

Fg
3 +Fg

4 ⩽ C(R)T
1
q′
∥∥w1 −w2

∥∥
YT
,

by ĝ⩾ 1
2 and lemma 4.1. Collecting Fg

i , i= 1, . . . ,4 together, one concludes∥∥F1
s (w

1)−F1
s (w

2)
∥∥
Z 5
T
⩽ C(R)T

1
q′
∥∥w1 −w2

∥∥
YT
.

Estimate of
∥∥F 2(w1)−F 2(w2)

∥∥
Z 6
T
,
∥∥F 3(w1)−F 3(w2)

∥∥
Z7T
. Since the key ingredient here

is to estimate F̃(w1)− F̃(w2) in the space W
1− 1

q ,
1
2 (1−

1
q )

q (Γ× (0,T)), we only give the details
to handle this term. By definition,∥∥F̃(w1)− F̃(w2)

∥∥
W

1− 1
q ,

1
2 (1− 1

q )
q (Γ×(0,T))n

=
∥∥F̃(w1)− F̃(w2)

∥∥
Lq

(
0,T;W

1− 1
q

q (Γ)

)n +
∥∥F̃(w1)− F̃(w2)

∥∥
W

1
2 (1− 1

q )
q (0,T;Lq(Γ))n

.
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The first term can be controlled easily by the trace theorem for q> n and the estimates of F̃ in
Ω̃ above. Namely,∥∥F̃(w1)− F̃(w2)

∥∥
Lq

(
0,T;W

1− 1
q

q (Γ)

)n

⩽ C
∥∥F̃(w1)− F̃(w2)

∥∥
Lq(0,T;W1

q(Ω̃))n
⩽ C(R)T

1
q′
∥∥w1 −w2

∥∥
YT
.

For the second term, again by the definition of vector-valued Sobolev–Slobodeckij space, we
have ∥∥F̃(w1)− F̃(w2)

∥∥
W

1
2 (1− 1

q )
q (0,T;Lq(Γ))n

⩽ C(R)T
1

2q′
∥∥w1 −w2

∥∥
YT
,

following the argument of estimating trΓ(G(w1)−G(w2)). Then,∥∥F 2(w1)−F 2(w2)
∥∥
Z 6
T
+
∥∥F 3(w1)−F 3(w2)

∥∥
Z7T
⩽ C(R)Tδ

∥∥w1 −w2
∥∥
YT
.

Estimate of
∥∥F 4(w1)−F 4(w2)

∥∥
Z8T
,
∥∥F 5(w1)−F 5(w2)

∥∥
Z8T
. Observing that the nonlinear-

ities in F4 and F5 are ĉsĉ∗s and ĉsĝ, which are all quadratic, we control them under the assump-
tions ĉi

∣∣
t=0

= ĉ0, ĉ∗s |t=0 = 0, ĝi
∣∣
t=0

= 1, i= 1,2, and by

‖uv‖Lq(0,T;W1
q(Ωs))

⩽Mq ‖u‖L∞(0,T;W1
q(Ωs))

‖v‖Lq(0,T;W1
q(Ωs))

,

for u,v ∈W1
q(0,T;W

1
q(Ωs)). Hence,∥∥F 4(w1)−F 4(w2)

∥∥
Z8T
+
∥∥F 5(w1)−F 5(w2)

∥∥
Z8T
⩽ C(R)T

1
q′
∥∥w1 −w2

∥∥
YT
.

Consequently, we derive (4.5). Now, choosing w1 = w and w2 = (0,0,0,0,1) in (4.5), (4.4)
follows immediately from the fact that M (0,0,0,0,1) = 0.

Proof (Proof of theorem 2.1). Since L : YT → ZT×Dq is an isomorphism as showed in pro-
position 4.1, and because of the estimates in theorem 3.1, we can set a well-defined constant

CL := sup
0⩽T⩽1

∥∥L −1
∥∥
L(ZT×Dq,YT)

.

We choose R> 0 so large that R⩾ 2CL

∥∥(v̂0, ĉ0)∥∥Dq
. Then∥∥L −1N (0,w0)

∥∥
YT
⩽ CL

∥∥(v̂0, ĉ0)∥∥Dq
⩽ R

2
. (4.7)

For
∥∥wi∥∥

YT
⩽ R, i= 1,2, we take TR > 0 small enough such that

CLC(R)Tδ
R ⩽ 1

2
,

where C(R) is the constant in (4.5). Then for 0< T< TR, we infer from theorem 4.2 that∥∥L −1N (w1,w0)−L −1N (w2,w0)
∥∥
YT

⩽ CLC(R)Tδ
∥∥w1 −w2

∥∥
YT
⩽ 1

2

∥∥w1 −w2
∥∥
YT
,

(4.8)

which implies the contraction property. From (4.7) and (4.8), we have∥∥L −1N (w,w0)
∥∥
YT
⩽
∥∥L −1N (0,w0)

∥∥
YT
+
∥∥L −1N (w,w0)−L −1N (0,w0)

∥∥
YT
⩽ R.
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We define MR,T by

MR,T :=
{
w ∈ BYT(0,R) : w= (v̂, π̂, ĉ, ĉ∗s , ĝ), ĝ|t=0 = 1, ĉ|t=0 = ĉ0

}
,

which is a closed subset of YT . Hence, L −1N :MR,T →MR,T is well-defined for all 0<
T< TR and a strict contraction. Since YT is a Banach space, the Banach fixed-point theorem
implies the existence of a unique fixed-point of L −1N in MR,T, i.e. (2.21)–(2.34) admits a
unique strong solution in MR,T for small time 0< T< TR.

In the following, we prove the uniqueness of solutions in YT by a continuity argument.
Let w1,w2 ∈ YT be two different solutions of (2.21)–(2.34) and R̃ :=max{

∥∥w1
∥∥
YT
,
∥∥w2

∥∥
YT
},

then there is a time TR̃ ⩽ T such that L −1N :MR̃,TR̃
→MR̃,TR̃

is a contraction and therefore

w1
∣∣
[0,TR̃]

= w2
∣∣
[0,TR̃]

. Now we argue by contradiction. We define T̃ as

T̃ := sup
{
T′ ∈ (0,T] : w1

∣∣
[0,T′]

= w2
∣∣
[0,T′]

}
,

and assume T̃< T. Since w1
∣∣
[0,T̃]

= w2
∣∣
[0,T̃]

, we consider w1
∣∣
t=T̃

= w2
∣∣
t=T̃

as the initial value

for (2.21)–(2.34). Repeating the argument above, we see that there is a time T̂ ∈ (T̃,T) such
that w1

∣∣
[T̃,T̂]

= w2
∣∣
[T̃,T̂]

, which contradicts the definition of T̃.
In conclusion, (2.21)–(2.34) admits a unique solution in YT .
For the nonnegativity of ĉ, we show it in Eulerian coordinates. Let UT = (Ωt\Γt)×

(0,T), Uf,T =Ωt
f × (0,T), Us,T =Ωt

s × (0,T), and define the parabolic boundary ∂PUf,T :=

(Ω
0
f ×{0})∪ (Γt× [0,T]), ∂PUs,T := (Ω

0
s ×{0})∪ ((Γt ∪Γts)× [0,T]) and ∂PUT := ∂PUf,T ∪

∂PUs,T. First of all, we claim that c ∈ C2,1
loc (UT)∩C(UT), where

C2s,s(UT) :=
{
c(·, t) ∈ C2s(Ωt\Γt), c(x, ·) ∈ Cs(0,T), ∀x ∈ Ωt\Γt, t ∈ (0,T)

}
,

for s> 0. As shown above, we assume that c ∈ Y3T is the solution of

∂tc−D∆c=−(v ·∇c+(divv+β)c) =: f. (4.9)

With the regularity of v,c and embedding theorems, we know that f ∈ Cα,α/2
loc (UT) for some

0< α < 1. By the local regularity theory for parabolic equations, one obtains

c ∈ C2+α,1+α
2

loc (UT) ↪→ C2,1
loc (UT).

The continuity of c can be derived directly from the lemma 2.3, especially (2.6) with

W1
q ↪→ C1− n

q ↪→ C0, for q> n.

Now, given a nonnegative initial value c0(x)⩾ 0, x ∈ Ω0. Define cλ := e−λtc where λ> 0
is a constant, which will be assigned later. Adding ccλ to the both sides of (4.9), we have the
equation for cλ

∂tcλ −D∆cλ + v ·∇cλ +(divv+ c+β+λ)cλ = c2e−λt ⩾ 0.

Taking λ sufficiently large such that

β+λ⩾ sup
0⩽t⩽T,x∈Ωt\Σt

|divv|+ |c| ,
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one obtains

divv+ c+β+λ⩾ 0.

By the weak maximum principle for parabolic equations, we have

min
Uf,T

cf(x, t)⩾− max
∂PUf,T

c−f (x, t), min
Us,T

cs(x, t)⩾− max
∂PUs,T

c−s (x, τ),

namely,

min
UT

c(x, t)⩾−max
∂PUT

c−(x, t),

where c−(x, t) :=−min{c(x, t),0}.
Since c0(x)⩾ 0, now we claim that c(x, t)⩾ 0 for all (x, t) ∈ (Γt ∪Γts)× [0,T]. To this end,

we argue by contradiction. Assume that for some t0 ∈ (0,T], there exists a point x0 ∈ Γt0 ∪Γt0s ,
such that

c(x0, t0) =− max
x∈Γt0∪Γ

t0
s

c−(x, t0)< 0,

that is,

min
x∈Γt0∪Γ

t0
s

min{c(x, t0),0}< 0.

This implies that x 7→min{c(x, t0),0} attains a negative minimum at x0, i.e. x 7→ c(x, t0) attains
a negative minimum at x0.

Case 1: x0 ∈ Γt0 . For both Ωt0
f and Ωt0

s , since Γ
t0 is assumed to be a C3− interface, we infer

from Hopf’s Lemma that

Df∇cf ·nΓt0 (x0)< 0, Ds∇cs ·nΓt0 (x0)> 0,onΓt0 .

Hence,

[[D∇c]] ·nΓt0 (x0)< 0,

which contradicts (1.1i).
Case 2: x0 ∈ Γt0s . Again by Hopf’s Lemma, one obtains

D∇c ·nΓt0
s
(x0)< 0,onΓt0s ,

which contradicts to (1.1j).
In summary, c(x, t)⩾ 0 for all (x, t) ∈ Ω

t× [0,T].
For ĉ∗s and ĝ, we note that the equations for them in Lagrangian coordinates are ordinary

differential equations with suitable ĉs ⩾ 0. Then

ĉ∗s =
ˆ t

0
e
´ σ
t

γβ
ρ̂s
ĉs(x,τ)dτβĉs(x,σ)dσ > 0, ĝ= e

´ t
0

γβ
nρ̂s

ĉs(x,τ)dτ > 0,

which completes the proof.
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Appendix A. Some results on linear systems

In this section, we give several maximal Lq-regularity results of different problems, which are
needed for the whole system.

A.1. Two-phase Stokes problems with Dirichlet boundary condition

In this section, we focus on the following nonstationary two-phase Stokes problem.

%∂tv− div(2µDv)+∇p= %fu, in Ω\Σ× (0,T),

divv= gd, in Ω\Σ× (0,T),

v= gb, on ∂Ω× (0,T),

[[v]] = gu, on Σ× (0,T),

[[−2µDv+ pI]]νΣ = g, on Σ× (0,T),

v|t=0 = v0, in Ω\Σ,

(A.1)

where Ω⊂ Rn, n⩾ 2, is a bounded domain with ∂Ω ∈ C3, Σ⊂ Ω a closed hypersurface of
class C3. %j are positive constants, j= 1,2. v : Ω× (0,T)→ Rn is the velocity of the fluid, p :
Ω× (0,T)→ R denotes the pressure. µ> 0 is the constant viscosity and Dv= 1

2

(
∇v+∇v⊤

)
.

νΣ represents the unit outer normal vector on Σ. fu,gd,gb,gu,g are given functions and v0 is
the prescribed initial value. System (A.1) has been investigated by many scholars in various
aspects. We refer for the maximal Lq regularity results of such kind of two-phase Stokes prob-
lem to Prüss and Simonett [37]. Readers can also find similar results in Abels and Moser [4]
for (gb,gu) = 0.

Proposition A.1. Let q> n+ 2, Ω⊂ Rn be a bounded domain with ∂Ω ∈ C3, Σ⊂ Ω a closed
hypersurface of class C3. Assume that ( fu,gd,gb,gu,g) ∈ ZT where

ZT :=


fu ∈ Lq (0,T;Lq(Ω))n , gd ∈ Lq

(
0,T;W1

q(Ω\Σ)
)
,

gb ∈W
2− 1

q ,1−
1
2q

q (∂Ω× (0,T))n, gu ∈W
2− 1

q ,1−
1
2q

q (Σ× (0,T))n,

g ∈W
1− 1

q ,
1
2 (1−

1
q )

q (Σ× (0,T))n : (gd,gb · ν∂Ω,gu · νΣ) ∈W1
q

(
0,T;Ŵ−1

q (Ω)
)


and v0 ∈W
2− 2

q
q (Ω\Σ)n satisfying the compatibility conditions

divv0 = gd|t=0 , v0|∂Ω = gb|t=0 , [[v0]]|Σ = gu|t=0 , [[(2µDv0νΣ)τ ]]|Σ = gτ |t=0 . (A.2)

Then two-phase Stokes problem (A.1) admits a unique solution (v, p) with regularity

v ∈ Lq
(
0,T;W2

q (Ω\Σ)
)n ∩W1

q (0,T;L
q(Ω))

n
,

p ∈ Lq
(
0,T;W1

q,(0)(Ω\Σ)
)
, [[p]] ∈W

1− 1
q ,

1
2 (1−

1
q )

q (Σ× (0,T)).

Moreover, for any fixed 0< T0 <∞, there is a constant C, independent of T ∈ (0,T0], such
that
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‖v‖Lq(0,T;W 2
q (Ω\Σ))

n + ‖v‖W1
q(0,T;L

q(Ω))n + ‖p‖
Lq
(
0,T;W1

q,(0)(Ω\Σ)
)+ ‖[[p]]‖

W
1− 1

q ,
1
2 (1− 1

q )
q (Σ×(0,T))

⩽ C

(
‖ fu‖Lq(0,T;Lq(Ω))n + ‖gd‖Lq(0,T;W1

q(Ω\Σ)) + ‖gb‖
W

2− 1
q ,1−

1
2q

q (∂Ω×(0,T))n

+‖gu‖
W

2− 1
q ,1−

1
2q

q (Σ×(0,T))n
+ ‖∂t(gd,gb · ν∂Ω,gu · νΣ)‖Lq(0,T;Ŵ−1

q (Ω))

+‖g‖
W

1− 1
q ,

1
2 (1− 1

q )
q (Σ×(0,T))n

+ ‖v0‖
W

2− 2
q

q (Ω\Σ)n

)
. (A.3)

Here, Ŵ−1
q (Ω) is the space of all triples (ϕ,ψ,χ) ∈ Lq(Ω)×W2−1/q

q (∂Ω)n×W2−1/q
q (Σ)n,

which enjoy the regularity property (ϕ,ψ · ν∂Ω,χ · νΣ) ∈ Ẇ−1
q (Ω) = (Ẇ1

q ′(Ω)) ′, where

〈(ϕ,ψ · ν∂Ω,χ · νΣ),φ〉 :=−〈ϕ,φ〉Ω + 〈ψ · ν∂Ω,φ〉∂Ω + 〈χ · νΣ,φ〉Σ , (A.4)

for all φ ∈ Ẇ1
q ′(Ω).

Proof. We proceed to prove this theorem with theorem 8.1.4 in [37], by which we
need some special treatments for (A.1). The first one is to extend the quintuple
( fu,gd,gb,gu,g) from ZT to Z∞. Since fu ∈ Lq(0,T;Lq(Ω))n is without time derivatives,
we simply extend it by zero to a new function f̄u = χ[0,T]fu ∈ Lq(0,∞;Lq(Ω))n. Since
gd ∈ Lq(0,T;W1

q(Ω\Σ))∩W1
q(0,T;W

−1
q (Ω)), by theorem B.2 with X1 =W1

q(Ω\Σ), X0 =

W−1
q (Ω), we obtain a new function ḡd := E(gd) ∈ Lq(0,∞;W1

q(Ω\Σ))∩W1
q(0,∞;W−1

q (Ω)),

which is uniformly bounded for T⩽ T0. For (gb,gu,g) ∈W2−1/q,1−1/2q
q (∂Ω× (0,T))n×

W2−1/q,1−1/2q
q (Σ× (0,T))n×W1−1/q,(1−1/q)/2

q (Σ× (0,T))n, theorem B.3 with α= 1−
1/2q> 1/q and (1− 1/q)/2> 1/q respectively imply that they can be extended as
(ḡb, ḡu, ḡ) := E(gb,gu,g) ∈ W2−1/q,1−1/2q

q (∂Ω × (0,∞))n × W2−1/q,1−1/2q
q (Σ × (0,∞))n×

W1−1/q,(1−1/q)/2
q (Σ× (0,∞))n, which are uniformly bounded for T⩽ T0. In summary,

( f̄u, ḡd, ḡb, ḡu, ḡ)
∣∣
[0,T]

= (fu,gd,gb,gu,g)

and

( f̄u, ḡd, ḡb, ḡu, ḡ) ∈ Z∞.

Now, for a constant ω > ω0 ⩾ 0, define

( f̃u, g̃d, g̃b, g̃u, g̃)(t) = e−ωt( f̄u, ḡd, ḡb, ḡu, ḡ)(t).

Then it is easy to verify that ( f̃u, g̃d, g̃b, g̃u, g̃) is also contained in Z∞, since e−ωt is smooth and
bounded with respect to time t.

Let (u,π) be the solution of (8.4) in [37] with ( fu,gd,gb,gu,g) = ( f̃u, g̃d, g̃b, g̃u, g̃) given
above, as well as the constant viscosity µ> 0 in (A.1). For all t ∈ R+, we define

v(t) = eωtu(t), p(t) = eωtπ(t),

then (v, p) solves (A.1) for t ∈ [0,T]. Consequently, existence and regularity of (u,π), which
are given by theorem 8.1.4 in [37], imply those of (v, p). Additionally, (A.3) holds under our
construction of (v, p).

Finally, we need to show that our solution is unique. To this end, let (v1,p1) 6= (v2,p2)
be two solutions of (A.1) in (0,T) with same source terms and initial value. Define (v,p) =
(v1 − v2,p1 − p2). Since (A.1) is linear, (v, p) satisfies
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%∂tv− div(2µDv)+∇p= 0, in Ω\Σ× (0,T),

divv= 0, in Ω\Σ× (0,T),

v= 0, on ∂Ω× (0,T),

[[v]] = 0, on Σ× (0,T),

[[−2µDv+ pI]]νΣ = 0, on Σ× (0,T),

v|t=0 = 0, in Ω\Σ.

(A.5)

Multiplying the first equation of (A.5) by v and integrating by parts over Ω\Σ× (0, t), one
obtains

ˆ
Ω\Σ

% |v(t)|2 dx+
ˆ t

0

ˆ
Ω\Σ

2µ |Dv(x, t)|2 dxdt= 0, for a.e.t ∈ (0,T),

which implies the uniqueness and completes the proof.

Remark A.1. For (gd,gb · ν∂Ω,gu · νΣ) ∈W1
q(0,T;Ŵ

−1
q (Ω)), we notice that

ˆ
Ω

gddx=
ˆ
∂Ω

gb · ν∂Ωd(∂Ω)−
ˆ
Σ

gu · νΣdΣ,

when φ= 1 in (A.4), the regularity property of Ŵ−1
q (Ω). Thus, for the zero-Dirichlet problem,

which means gb = gu = 0 in (A.1), one has an hidden compatibility conditionˆ
Ω

gddx= 0.

This is an important condition when we solve the Stokes type problems with homogeneous
Dirichlet boundary conditions.

A.2. Parabolic equations with Neumann boundary conditions

Thanks to the general maximal regularity theory for parabolic problems, for example, Prüss
and Simonett [37, section 6.3], we obtain the solvability of parabolic systems with Neumann
boundary conditions. Let Ω⊂ Rn, n⩾ 1, be a domain with compact boundary ∂Ω of class C2,
we consider the following system

∂tu−D∆u= f, in Ω× (0,T),

D∇u · ν = g, on ∂Ω× (0,T),

u|t=0 = u0, in Ω,

(A.6)

where u represents some physical property, for example, temperature or concentration.D is the
diffusion coefficient. ν denotes the unit outer normal vector on ∂Ω. f and g are give functions
standing for the source or reaction term. Now we state the proposition for (A.6).

Proposition A.2. Let Ω⊂ Rn, n⩾ 1, be a domain with compact boundary ∂Ω of class C2,
q > 3. Assume that

f ∈ Lq(0,T;Lq(Ω)), g ∈W
1− 1

q ,
1
2 (1−

1
q )

q (Ω× (0,T)),

and u0 ∈W
2− 2

q
q (Ω) satisfying the compatibility condition

D∇u0 · ν|∂Ω = g|t=0 .
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Then there exists a unique solution u ∈W2,1
q (Ω× (0,T)) of (A.6). Moreover,

‖u‖W2,1
q (Ω×(0,T)) ⩽ C

(
‖ f‖Lq(0,T;Lq(Ω)) + ‖g‖

W
1− 1

q ,
1
2 (1− 1

q )
q (Ω×(0,T))

+ ‖u0‖
W

2− 2
q

q (Ω)

)
,

where C does not depend on T ∈ (0,T0] for any fixed 0< T0 <∞.

Proof. This proposition can be easily shown by means of Prüss and Simonett [37, theorem
6.3.2], for which we need to extend the right-hand sides just as in the proof of proposition A.1
and construct a solution solving (6.45) in [37]. This can be done since we established general
extension theorems in appendix B.

A.3. Laplacian transmission problems with Dirichlet boundary

In this section, we investigate a transmission problem for the Laplacian equation with Dirichlet
boundary condition, which reads

−∆ψ = f in Ω\Σ,
[[∂νψ]] = g on Σ,

[[ψ]] = h on Σ,

ψ = gb on ∂Ω.

(A.7)

Here, we denote the inner domain byΩ−, resp. outer domain byΩ+ and the unit normal vector
on Σ= ∂Ω− by ν.

The second result concerns strong solutions.

Proposition A.3. Let 1< q<∞, Ω⊂ Rn, n⩾ 2, with boundary ∂Ω of class C3−, and
let Σ⊂ Ω be a closed hypersurface of class C3−, s ∈ {0,1}. For all f ∈Ws

q(Ω\Σ), g ∈
W1+s−1/q
q (Σ), h ∈W2+s−1/q

q (Σ), gb ∈W2+s−1/q
q (∂Ω), the problem (A.7) admits a unique solu-

tion ψ ∈W2+s
q (Ω\Σ). Moreover, there is a constant C> 0 such that

‖ψ‖W2+s
q

⩽ C

(
‖ f‖Ws

q
+ ‖g‖

W
1+s− 1

q
q

+ ‖h‖
W

2+s− 1
q

q

+ ‖gb‖
W

2+s− 1
q

q

)
.

Proof. Step 1: Reduction. We first reduce to the case (h,gb) = 0. To this end, we find a ϕ
solving

−∆ϕ= 0 in Ω−,

ϕ= h on Σ,

and

−∆ϕ= 0 in Ω+,

ϕ= 0 on Σ,

ϕ= gb on ∂Ω.

The existence and uniqueness of these two systems are clear due to elliptic theory. Thanks to
the trace theorem, the extra outer normal derivatives terms on Σ enjoys the same regularities
as g. Substracting ϕ from ψ, we can investigate the reduced system (A.7) with (h,gb) = 0.
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Step 2: Weak solution with L2-setting. Now, let Hk =Wk
2 and H

k
0 =Wk

2,0 for k ∈ N. Test-
ing (A.7) by a function φ ∈ H1

0(Ω) and integrating by parts, one obtainsˆ
Ω\Σ

∇ψ ·∇φdx=
ˆ
Ω\Σ

fφdx−
ˆ
Σ

gφdΣ=: 〈F,φ〉H−1×H1
0
,

as a result of the regularities of f and g. The Lax–Milgram Lemma implies existence of a
unique weak solution ψ ∈ H1

0(Ω) to (A.7) with (h,gb) = 0.
Step 3: Truncation. Since the problem (A.7) with Neumann boundary conditions on ∂Ω

has been uniquely solved, see e.g. Prüss and Simonett [37, proposition 8.6.1], we show the
proposition by a truncation method.More specifically, we choose a cutoff function η ∈ C∞

0 (Ω)
such that

η(x) =

{
1, in a neighborhood of Ω−,

0, in a neighborhood of Ω+.

We decompose ψ = ηψ+(1− η)ψ =: u1 + u2, where u1 solves

−∆u1 = ηf− 2∇η ·∇ψ+ψ∆η =: f 1 in Ω\Σ,
[[∂νu1]] = [[∂νψ]] = g on Σ,

[[u]] = [[ψ]] = 0 on Σ,

∂νu1 = 0 on ∂Ω,

weakly and u2 solves

−∆u2 = (1− η)f+ 2∇η ·∇ψ−ψ∆η =: f 2 in Ω,

u2 = 0 on ∂Ω.

Step 4: Improving the regularity. From step 2, we already know that (A.7) admits a unique
weak solution ψ enjoying the regularity ∇ψ ∈ L2(Ω), which means f i ∈ L2(Ω) in step 3. By
classical elliptic theory and [37], one obtains u1 ∈ H2(Ω\Σ), u2 ∈ H1

0(Ω)∩H2(Ω). Then ψ ∈
H1

0(Ω)∩H2(Ω\Σ). Moreover,

∇ψ ∈ H1(Ω\Σ) ↪→


Lp(Ω\Σ), if 1⩽ p<∞, n= 2,

Lp(Ω\Σ), if 1⩽ p⩽ p∗ :=
2n
n− 2

, n> 2,

due to the Sobolev Embedding Theorem. For n= 2, the right-hand side terms f 1 and f 2 in
Step 3 are contained in Lp(Ω\Σ), 1⩽ p<∞. Consequently with p= q, proposition 8.6.1 and
corollary 7.4.5 in Prüss and Simonett [37] indicate that u1 ∈W2

q (Ω\Σ) and u2 ∈W2
q (Ω), which

impliesψ ∈W2
q (Ω\Σ). For n> 2, we have f i ∈ Lp

∗
, i= 1,2. Again by regularity results in [37],

we have u1 ∈W2
p∗(Ω\Σ) and u2 ∈W2

p∗(Ω) and hence

∇ψ ∈W1
p∗(Ω\Σ) ↪→


Lp(Ω\Σ), 1⩽ p<∞, n= q∗,

Lp(Ω\Σ), 1⩽ p⩽ p∗∗ :=
np∗

n− p∗
, n> p∗,

Cα(Ω\Σ), 0< α⩽ 1− n
p∗

2< n< p∗.

For the first and third cases, we find f i ∈ Lp(Ω\Σ), i= 1,2, 1⩽ p<∞, and then get the regu-
larity ofψ. For the second case, we know p∗∗ = np∗

n−p∗ > p∗. Therefore, by a bootstrapping argu-
ment, we can always increase the space index until we obtain Lq. Thus, by proposition 8.6.1
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and corollary 7.4.5 in Prüss and Simonett [37], one obtains u1 ∈W2
q (Ω\Σ) and u2 ∈W2

q (Ω),
i.e. ψ ∈W2

q (Ω\Σ) with the estimate

‖ψ‖W 2
q (Ω\Σ) ⩽ C

(
‖ f‖Lq(Ω\Σ) + ‖g‖

W
1− 1

q
q (Σ)

+ ‖h‖
W

2− 1
q

q (Σ)
+ ‖gb‖

W
2− 1

q
q (∂Ω)

)
,

for some constant C > 0. Then as above, one gets f i ∈W1
q(Ω\Σ), i= 1,2. With the help of

proposition 8.6.1 and corollary 7.4.5 in Prüss and Simonett [37], we have the desired regularity
and estimate with s= 1.

Appendix B. Extension of Sobolev–Slobodeckij space

In this section, we are intended to construct an extension operator from Ws
q(0,T;X) to

Ws
q(0,∞;X), where s ∈ ( 1q ,1] and X is a Banach space. The main feature is that the operator

norms can be bounded independent of T > 0, compared to the extension theorem for general
Sobolev–Slobodeckij spaces. The reason wemade suchmodification here is that if the constant
depends on T, then the extended normmay blow up for small T, which is the case we addressed
in this paper. For example, in the proof of theorem 5.4 in [18], the extension from Ws

q(Ω) to

Ws
q(Rn) with 0< s< 1, several smooth functions ψj satisfying 0⩽ ψj ⩽ 1 and

∑k
j=0ψj = 1

are chosen to construct the extension operator. In the case |Ω| → 0, we have∇ψj →∞, which
means that the extension is not valid. To avoid such problem, we employ an even extension
and make use of the embedding results in Simon [43]. Now, we give the extension theorem.

Theorem B.1. Let q⩾ 1, s= 0, or s ∈ ( 1q ,1], T > 0 and X be a Banach space. Then there
exists an extension operator ET : 0Ws

q(0,T;X)→Ws
q(0,∞;X), where 0Ws

q(0,T;X) = {u ∈
Ws
q(0,T;X) : u|t=0 = 0, ifs> 1

q}, such that ET(u)|[0,T] = u and

‖ET(u)‖Ws
q(0,∞;X) ⩽ C‖u‖

0Ws
q(0,T;X)

,

where C>0 depends on s, q and does not depend on T.

Proof. The proof is divided into three cases, namely, s= 0, 1
q < s< 1 and s= 1.

Case 1: s= 0. In this situation, Ws
q(0,T;X) is just the Lebesgue space Lq(0,T;X), which

does not contain any time regularity. Hence for any function u ∈ Lq(0,T;X), we can take the
zero extension.

Case 2: s= 1.With u|t=0 = 0, we apply an even extension to u in [0,T] around T to [0,2T]
and zero extension for T> 2T such that the extended function ū is weakly differentiable with

∂tū(t) =


∂tu(t), if 0⩽ t⩽ T,

− ∂tu(2T− t), if T< t⩽ 2T,

0, if t> 2T.

Then we have

‖ū‖W1
q(0,∞;X) = 2

1
q ‖u‖W1

q(0,T;X)
.

Case 3: 1
q < s< 1. With the same extension as in Case 2, we define the same function

ũ. Now we are in the position to show ũ ∈Ws
q(0,∞;X), for which we only need to prove
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[ũ]Ws
q(0,∞;X) ⩽ C [u]Ws

q(0,T;X)
, where C is independent of T. From the definition of Sobolev–

Slobodeckij space,

[ũ]qWs
q(0,∞;X) =

ˆ T

0

ˆ T

0

‖u(t)− u(τ)‖qX
|t− τ |1+sq

dtdτ +
ˆ 2T

T

ˆ 2T

T

‖u(2T− t)− u(2T− τ)‖qX
|t− τ |1+sq

dtdτ

+ 2
ˆ T

0

ˆ 2T

T

‖u(t)− u(2T− τ)‖qX
|t− τ |1+sq

dτdt+ 2
ˆ 2T

0

ˆ ∞

2T

‖ũ(t)‖qX
|t− τ |1+sq

dτdt=:
4∑
i=1

Qi.

It is clear that

Q1 +Q2 = 2 [u]qWs
q(0,T;X)

.

Since |t− τ |⩾ |t− (2T− τ)| with t ∈ [0,T] and τ ∈ [T,2T], we have

Q3 ⩽ 2
ˆ T

0

ˆ T

0

‖u(t)− u(h)‖qX
|t− h|1+sq

dhdt= 2 [u]qWs
q(0,T;X)

.

Noticing that ũ|t=2T = 0 due to the even extension, we get

Q4 =
2
sq

ˆ 2T

0

‖ũ(2T− h)− ũ(2T)‖qX
hsq

dh

⩽ 2
sq

ˆ 2T

0

(
‖ũ(· − h)− ũ(·)‖L∞(h,2T;X)

hs−
1
q

)q
dh
h

=
2
sq

[ũ]q

B
s− 1

q
∞,q (0,2T;X)

,

where the seminorm of Bsp,q(0,T;X) is given by

[ f ]Bsp,q(0,T;X) =

(ˆ T

0

(
‖∆h f(t)‖L p(h,T;X)

hs

)q
dh
h

) 1
q

for 0< s< 1 and 1⩽ p,q⩽∞. From theorem 10 in Simon [43], we know that for 1
q < s< 1

and q⩾ 1,

[ f ]
B
s− 1

q
∞,q (0,T;X)

⩽ 3θ

s− 1
q

[ f ]Bsq,q(0,T;X) =
3θ

s− 1
q

[ f ]Ws
q(0,T;X)

, ∀f ∈Ws
q(0,T;X),

where θ = 31−(s−1/q). Hence,

Q4 ⩽
6θ

sq(sq− 1)
[ũ]qWs

q(0,2T;X)
⩽ 24θ
sq(sq− 1)

[u]qWs
q(0,T;X)

.

Combining the estimates of Qi, i= 1, . . . ,4, one obtains

[ũ]Ws
q(0,∞;X) ⩽ C [u]Ws

q(0,T;X)
,

where C=
(
4+ 24θ

sq(sq−1)

)1/q
.

Now, let ET(u) = ũ. Then ET(u) is well-defined from 0Ws
q(0,T;X) toW

s
q(0,T;X) as well as

ET(u)|[0,T] = u and

‖ET(u)‖Ws
q(0,∞;X) ⩽ C‖u‖

0Ws
q(0,T;X)

,

where C > 0 depends on s, q and does not depend on T.
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Next, we give an extension theorem for general functions.

TheoremB.2. Let X1,X0 be two Banach spaces and X1 ↪→ X0. For 1< q<∞ and 0< T<∞,
define XT := Lq(0,T;X1)∩W1

q(0,T;X0) endowed with the norm

‖u‖XT := ‖u‖Lq(0,T;X1)
+ ‖u‖W1

q(0,T;X0)
+
∥∥u|t=0

∥∥
Xγ
,

where Xγ = (X0,X1)1−1/q,q. Then there exists an extension operator E ∈ L(XT,X∞) satisfying
E(u)|[0,T] = u, for all u ∈ XT. Moreover, there is a constant C> 0, independent of 0< T<∞,
such that

‖E(u)‖X∞
⩽ C‖u‖XT , (B.1)

for all u ∈ XT.

Proof. First of all, we consider the case u|t=0 = 0. Let E be the extension operator as in the-
orem B.1. Define ũ= E(u). Then we have ũ|[0,T] = u and

‖ũ‖X∞
⩽ C‖u‖XT ,

where C does not depend on T.
Let u0 := u|t=0 ∈ Xγ . Since Xγ = (X0,X1)1−1/q,q, the trace method of interpolation implies

that there exists a function v ∈ X∞ such that v|t=0 = u0, see e.g. [32, proposition 1.13].
Moreover, it follows from the norm of XT that there is a constant C > 0 such that

‖v‖X∞
⩽ C

∥∥u|t=0

∥∥
Xγ

⩽ C‖u‖XT .

Now for general u ∈ XT, we define w := u− v. Then w is reduced to the case w|t=0 = 0 and
can be extended to E(w) in X∞ like ũ. Now we define the extension operator as E(u) := w+ v.
Then one obtains E(u)|[0,T] = u and there is a constant, independent of T, such that

‖E(u)‖X∞
⩽ C‖w‖X∞

+C‖v‖X∞
⩽ C‖u‖XT ,

for all u ∈ XT, which completes the proof.

With a similar argument, we have the following extension theorem for functions in W2α,α
q .

Theorem B.3. Let Σ be a compact sufficiently smooth hypersurface. For 1< q<∞,
1/q< α⩽ 1 and 0< T<∞, let W2α,α

q (Σ× (0,T)) := Lq(0,T;W2α
q (Σ))∩Wα

q (0,T;L
q(Σ))

be endowed with norm

‖g‖W2α,α
q (Σ×(0,T)) := ‖g‖Lq(0,T;W2α

q (Σ)) + ‖g‖Wα
q (0,T;L

q(Σ)) +
∥∥g|t=0

∥∥
W

2α− 2
q

q (Σ)
.

Then for g ∈W2α,α
q (Σ× (0,T)), there exists an extension operator E ∈ L(W2α,α

q (Σ×
(0,T)),W2α,α

q (Σ× (0,∞))) satisfying E(g)|[0,T] = g. Moreover, there is a constant C> 0,
independent of 0< T<∞, such that

‖E(g)‖W2α,α
q (Σ×(0,∞)) ⩽ C‖g‖W2α,α

q (Σ×(0,T)) . (B.2)

Remark B.1. The proof is similar to what in theorem B.2, for which it relies on theorem B.1
for 1/q< α < 1 and the trace method interpolation, namely,

W
2α− 2

q
q (Σ) =

{
g(0) : g ∈ Lq(0,T;W2α

q (Σ))∩Wα
q (0,T;L

q(Σ))
}
,

see e.g. lemma 2.4 or [37, example 3.4.9(i)]. These results can also be extended to more gen-
eral anisotropic Sobolev–Slobodeckij spaces with general trace theorem, see e.g. [37, theorem
3.4.8].
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