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1 Introduction

The transverse-momentum dependent (TMD) distributions are universal functions that
enter the TMD factorization theorems and describe various aspects of partons’ nonpertur-
bative dynamics. The TMD distributions that appear in the leading power (LP) term of the
factorization theorem for a variety of processes are known very well. For the review of the
recent theoretical and phenomenological development and further references, see refs. [1–4].
At the next-to-leading power (NLP) accuracy, a new set of TMD distributions emerges.
These TMD distributions are usually referred to as twist-three distributions, and in gen-
eral are studied much less. Despite being introduced long ago [5], and discussed in many
works, twist-three TMD distributions suffer from a lack of a systematic approach. This is
a natural consequence of the NLP TMD factorization theory being at its earlier stage of
development. The first convincing studies appeared only recently [6–10]. Further progress
in this direction requires the systematization of knowledge about TMD distributions of
twist-three, which we present in this paper.

The term higher-twist (and particularly twist-three) distributions requires some clari-
fication. There are several meanings of the term “twist”, which are often mixed up in the
literature. The exact definitions and pedagogical explanations can be found in refs. [11–
13]. One should clearly distinguish between genuine and generic higher-twist distribu-
tions. The genuine distributions are defined by the specification of quantum numbers of
the corresponding operator. They are mathematically self-contained, although often too
complicated for direct practical applications. On the contrary, generic distributions are
usually defined by the power counting for observables, and thus have no simple theoretical
structure, but are convenient practically. The best common sense analogies for the generic
distributions are structure functions, which are functionals of genuine distributions.

The relations and properties of genuine and generic twist-three collinear distributions
are known well (some recent development and further references can be found, e.g., in [14–
16]). For the TMD distributions, the theory is much less developed. So far, all twist-three
TMD distributions that have been discussed were generic and, therefore, their properties
remain almost unexplored. For instance, there is no complete classification, and even
evolution equations, which are the central element of definition, are unknown. The reason
is that a mathematically-rigorous definition of a “genuine twist” for TMD distributions has
been introduced only recently in ref. [9].

In ref. [9] the TMD-twist is defined as a composition of geometric twists (“dimension-
spin”) of the light-ray parts of the TMD operators. The accurate definition is presented in
section 2.1. The decomposition with respect to this parameter guarantees the independence
of operators in the sense that their evolution is autonomous. As a result, the basis of
corresponding TMD distributions is orthogonal. Each TMD distribution with a definite
TMD-twist is an independent nonperturbative function. In this way, the TMD distributions
with the specific TMD-twist serve as elementary blocks for constructing other twist-three
TMD distributions. However, as we discuss in this paper, the proper definition of TMD
requires extra details. It appears that individual terms of cross-section, computed with
the naïve definition, are divergent (although the sum of all terms is finite). Therefore,
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the definition of physical TMD distributions (i.e., such that provide finite cross-section
term-by-term) includes extra subtraction terms.

The aim of this work is to find a suitable definition of physical TMD distributions
of twist-three and derive their main properties (such as evolution equations, symmetries,
support properties, etc.). To find a good definition, we start with the most mathematically
convenient definite-TMD-twist TMD distribution in position space. Then, step-by-step, we
modify it improving its properties. This procedure allows us to derive evolution equations
and other aspects of physical TMD distributions without significant effort. The result-
ing functions are well-defined and suitable for phenomenological studies. Additionally,
we establish relations with widely-used generic distributions and compute the evolution
equations for the latter for the first time.

To make the exposition concentrated, we deal only with the quark TMD parton dis-
tribution function (TMDPDFs) in the singlet color representation. These distributions are
the most important since they are the main twist-three building blocks for cross-sections
of the Drell-Yan (DY) process and Semi-Inclusive Deep-Inelastic scattering (SIDIS). Other
distributions, such as gluon TMDPDFs, TMD fragmentation functions (TMDFFs), or dis-
tributions with octet color representation, can be considered in the same way. Moreover,
many properties are the same (e.g., evolution equations for TMDFFs can be easily obtained
from those for TMDPDFs).

The paper is split into five sections, each representing a complete discussion on a
particular stage of manipulations.

• We start in section 2 by introducing the definite-TMD-twist TMD distribution in
position space, as it was proposed in ref. [9]. This is the defining representation, since
the operator expansion that gives rise to the factorization theorem is derived in the
position space. However, in such a form, distributions are useless for phenomenology.
They are complex functions with indefinite T-parity and unclear interpretation.

• In section 3, we define definite-TMD-twist TMD distribution in momentum-fraction
space, discussing their interpretation and support properties. However, the Fourier
transformation to the momentum-fraction space makes evolution equations bulky.

• In section 4, we introduce particular combinations of the definite-TMD-twist TMD
distributions, in such a way that they present more ‘natural’ symmetry properties:
specifically they have definite complexity (i.e., they are either real or purely imag-
inary) and definite T-parity. This is the most convenient stage to introduce the
parameterization of particular components of TMD correlators. These distributions
are not entirely autonomous but obey pairwise mixing under evolution. These dis-
tributions are not usual functions but rather generalized functions, i.e., they have
indefinite values at certain points but definite integrals.

• The expression for the cross-section involves combinations of the zeroth Mellin mo-
ments of TMD distributions, which are individually singular but their sum, relevant
for the cross-section, is finite. In section 5, we explicitly compute the singular part of
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the zeroth moment and demonstrate that it is equivalent to the rapidity divergence.
Finally, we introduce the physical TMD distribution by subtracting the divergent
terms. The definition of physical distributions is the final product of this work. The
cross-section evaluated in terms of physical TMD distributions is finite term-by-term.

• In section 6, we discuss the connection of physical TMD distributions, and generic
TMD distributions introduced in works [5, 17, 18]. In particular, we demonstrate that
evolution equations for generic twist-three distributions are not closed. However, the
evolution equation essentially simplifies and closes in the large-Nc limit which allows
the phenomenology of these distributions with controllable precision.

We support the work with three appendices, which contains the synopsis of vector al-
gebra definition (appendix A), additional details on the LO evolution kernels (appendix B),
and leading small-b asymptotic form for TMD distribution of twist-three (appendix C).

2 TMD correlators in position space

In this section, we define and discuss the TMD correlators in the position space. The
general discussion about the construction of TMD operators and distributions at sub-
leading powers of TMD factorization can be found in refs. [6, 8, 9]. The LO expressions for
the evolution kernels are taken from ref. [9], where one can also find details of its derivation.

2.1 Definition

All TMD correlators at any power of the TMD factorization theorem have the same general
structure. Namely, they are a composition of two semi-compact light-cone operators U ,
separated by a transverse distance b

Φ̃AB(z1, . . . , za, zb, . . . , zn; b) ∼ 〈p, s|UA(z1, . . . , za; b)UB(zb, . . . , zn; 0)|p, s〉, (2.1)

where A and B indicate the quantum numbers of U . The operator U({zi}; b) is a product
of QCD fields positioned at points (zin+ b), where nµ is the light-cone vector and bµ is the
transverse vector. The fields are first transported to the light-cone infinity by light-cone
Wilson lines, and then to transverse infinity by a transverse Wilson line,1 such that the
matrix element (2.1) is explicitly gauge invariant. The operator U spans an infinite range,
and for that reason it is called semi-compact.

The properties of TMD correlators are related to the TMD-twist of the defining op-
erator, the notion of which was introduced in ref. [9]. The TMD-twist is given by a pair

1Transverse gauge links do not contribute to perturbative calculation in regular gauges (such as the
covariant gauge), because in these gauge the gluon field vanishes at infinities. In singular gauges (such
as the light-cone gauge), transverse links could produce a non-vanishing contribution [19]. However, one
can select an auxiliary gauge condition such that interactions with the transverse link vanish. Explicit
inclusion of transverse links essentially complicates the computation, and spoils determination of some
global properties. For instance, it makes impossible the definition of twist in any form. Therefore, we
omit writing transverse links along the paper, assuming that all relations are valid in regular gauges or
gauges with appropriate boundary conditions. An extended discussion on inclusion of traverse links into
the perturbation theory and selection of convenient gauge can be found in refs. [9, 19, 20].
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of integer numbers (N,M), where N and M are geometrical twists (i.e. “dimension-spin”)
of semi-compact operators2 U in eq. (2.1). The LP TMD factorization theorem deals with
distributions of the TMD-twist (1,1). At NLP, a new set of TMD distributions appears
with TMD-twists (1,2) and (2,1). At NNLP one has TMD-twists (1,3), (3,1) and (2,2), and
so on. This structure resembles the ordinary structure of power expansion in the collinear
factorizations with the twist equals to the sum (N +M). Importantly, even if (N +M) is
the same, operators with different TMD-twists (N,M) obey different evolution equations
and symmetry properties as a consequence of the Lorentz invariance. However, for simplic-
ity, we refer to TMD-twist (1,1) as twist-two and TMD-twists (2,1) and (1,2) as twist-three
if it does not create a confusion.

At LP and NLP of the TMD factorization theorem for DY and SIDIS processes only
two kinds of semi-compact operators appear. They are

U1,i({z}, b) = [Ln+ b, zn+ b]qi(zn+ b), (2.2)
Uµ2,i({z1, z2}, b) = g[Ln+ b, z1n+ b]Fµ+[z1n+ b, z2n+ b]qi(z2n+ b),

where g is the QCD coupling constant, q is the quark field, Fµ+ = FµνA tAnν is the gluon
field-strength tensor with tA being the generator of SU(Nc). The index i is the spinor
index. The gauge links are defined as usual

[a, b] = P exp
(
−ig

∫ b

a
dzµAµ(z)

)
. (2.3)

The letter L denotes the infinity and depends on the process for which the factorization is
derived. So,

L = s∞, with s =

+1, for SIDIS,
−1, for DY,

(2.4)

where s is introduced for future convenience.
For convenience, we explicitly write the conjugation of the operators in eqs. (2.2):

U1,i({z}, b) = q̄i(zn+ b)[zn+ b, Ln+ b], (2.5)
U
µ
2,i({z1, z2}, b) = gq̄i(z1n+ b)[z1n+ b, z2n+ b]Fµ+[z2n+ b, Ln+ b],

2Formally, the geometrical twist is defined for a local operator, and generalized to non-local operators
by means of the generating function [21]. Applying this definition to semi-compact operators one needs
to regularize them by setting L being finite. Regularized operators can be presented as a series of local
operators, for which geometrical twist are computed by the usual “dimension-spin”-rule. For example, at
finite L, the operator U1 can be presented as

U1({0}, 0T ) =
∞∑
n=0

inLn

n! Dn
+q(0).

For good components of the quark field, operators Dn
+q have the dimension n+3/2 and the spin n+1/2, and

thus U1 has geometrical twist-1. For bad components of quark field, operator has no definite geometrical
twist, since it can have spin n+1/2 or n−1/2. After the twist-decomposition the limit L→ ±∞ can be taken.
Such scheme correctly reproduces properties of the operator product expansion as demonstrated in ref. [22].
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Semi-compact operators (2.2) and (2.5) have triplet and anti-triplet color representations.
Other semi-compact operators with same power counting have higher color representations.
We do not considered neither these operators nor the pure gluon operators in this work.

The product of semi-compact operators (2.2) and (2.5) produces the TMD operators,
whose matrix elements define TMD correlators and distributions. There is a single TMD
correlator of twist-two

Φ̃ij
11,bare(z1, z2, b) = 〈p, s|U j1({z1}, b)× U i1({z2}, 0)|p, s〉, (2.6)

= 〈p, s|T{q̄j(z1n+ b)[z1n+ b, Ln+ b] × [Ln, z2n]qi(z2n)}|p, s〉,

and two TMD correlators of twist-three

Φ̃ij,µ
21,bare(z1,z2,z3,b)=〈p,s|U j,µ2 ({z1,z2},b)×U i1({z3},0)|p,s〉 (2.7)

=g〈p,s|T{q̄j(z1n+b)[z1n+b,z2n+b]Fµ+[z2n+b,Ln+b]× [Ln,z3n]qi(z3n)}|p,s〉
Φ̃ij,µ

12,bare(z1,z2,z3,b)=〈p,s|U j1({z1},b)×U i,µ2 ({z2,z3},0)|p,s〉
=g〈p,s|T{q̄j(z1n+b)[z1n+b,Ln+b]× [Ln,z2n]Fµ+[z2n,z3n]qi(z3n)}|p,s〉.

In these expressions, the symbol × indicates the position where the transverse link should
be inserted (see footnote 1). The color indices are not explicitly indicated but contracted
in a natural way from quark to anti-quark fields along gauge links, such that the operator
is color-neutral. The subscript “bare” indicates that these TMD correlators still require
renormalization, which is discussed in the next section. The ket |p, s〉 denotes the hadron
state with the spin sµ and the momentum pµ. The large and small components of the
hadrons’ momentum defines the light-cone vectors n̄µ and nµ,

pµ = p+n̄µ + M2

2p+n
µ, n2 = n̄2 = 0, (nn̄) = 1, (2.8)

whereM is the hadron’s mass. Along the paper we neglect mass corrections, and effectively
consider massless hadron. We use the standard notation for vector decomposition aµ =
a+n̄µ + a−nµ + aµT , where a

µ
T is the transverse component. The synopsis of vector algebra

definitions is presented in appendix A.
The spinor indices i, j play a crucial role for the correlator’s properties. In particular,

the TMD-twist of the operator is different for different components of spinor matrix, since
they define the projection of the quark’s spin. The genuine twist-two and twist-three
operators require good components of both quark fields.

It is convenient to adopt the standard notation

Φ̃[Γ]
11 = 1

2Tr(Γ Φ̃11), Φ̃[Γ]
µ,12 = 1

2Tr(Γ Φ̃µ,12), Φ̃[Γ]
µ,21 = 1

2Tr(Γ Φ̃µ,21), (2.9)

where Γ is a Dirac matrix. Let us denote the set of Dirac matrices which project both quark
fields to good components as Γ+. Such matrices form a vector space with the standard basis

Γ+
basis = {γ+, γ+γ5, iσα+γ5}, (2.10)
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where α is a transverse index, and γ5 = iγ0γ1γ2γ3. For Γ ∈ Γ+, the TMD correlator
Φ̃[Γ]

11 has TMD-twist (1,1), whereas Φ̃[Γ]
µ,21 and Φ̃[Γ]

µ,12 have TMD-twists (2,1) and (1,2) cor-
respondingly.

The basis of TMD correlators {Φ̃[Γ]
11 , Φ̃

[Γ]
µ,21, Φ̃

[Γ]
µ,12} (with Γ ∈ Γ+) is complete at NLP.

In the sense, that no other quark TMD correlators appear in the TMD factorization theo-
rem [9].

In some applications, it is convenient to introduce TMD correlators Φ̃[Γ]
11 with a Dirac

matrix Γ 6∈ Γ+ that projects a good and a bad components of quark fields (see e.g. refs. [10,
18]). The set of such Γ’s is denoted as ΓT , see (A.7). The operator U1 with a bad
component has a mixed geometrical twist, and therefore, TMD correlator Φ̃[ΓT ]

11 also do
not have a definite TMD-twist. As the result, their evolution equations are not closed,
and are expressed via the basis correlators. Additionally, the rapidity divergences of such
correlators cannot by renomalized in the usual manner, as it is shown in section 5. In the
section 6, we discuss the relation between Φ̃[ΓT ]

11 and TMD correlators with the definite
twist and derive some of their properties.

2.2 Renormalization

Any TMD operator has two kinds of singularities that are separately renormalized. These
are ultraviolet (UV) singularities and rapidity singularities. The UV singularities are spe-
cific to each semi-compact operator, and therefore, a TMD correlator is renormalized by
two UV renormalization constants. The rapidity divergences appear due to the interaction
of a semi-compact operator with the Wilson line of another semi-compact operator, and
thus their renormalization is common for the whole TMD correlator. The renormalized
TMD correlators (2.7) read

Φ̃[Γ]
11,bare(z1, z2, b) = R

(
b2
)
ZU1(z1)ZU1(z2)Φ̃[Γ]

11 (z1, z2, b;µ, ζ),

Φ̃[Γ]
µ,21,bare(z1, z2, z3, b) = R

(
b2
)
ZU2(z2, z1)ZU1(z3)⊗ Φ̃[Γ]

µ,21(z1, z2, z3, b;µ, ζ), (2.11)

Φ̃[Γ]
µ,12,bare(z1, z2, z3, b) = R

(
b2
)
ZU1(z1)ZU2(z2, z3)⊗ Φ̃[Γ]

µ,12(z1, z2, z3, b;µ, ζ),

where R is the rapidity renormalization constant, ZU1 and ZU2 are the UV renormalization
constants for the semi-compact operators U1 and U2, correspondingly. The symbol ⊗
denotes the integral convolution between ZU2 and the TMD correlator. The scales µ and
ζ are renormalization scales for UV and rapidity divergences, respectively.

The UV- and rapidity-renormalized TMD correlators are called subtracted [23, 24].
Since they are the main object of this paper, we restrain from introducing any special label.

The expressions (2.11) implicitly depend on the process in which they appear. This
dependence enters through the renormalization condition for rapidity divergences. The
standard renormalization condition states that the cross-section for DY and SIDIS processes
is proportional to a convolution of two TMD distributions without extra nonperturbative
factors. Schematically,

dσ ∼
∫
d2be−i(qb)Φ̃(z−, b;µ, ζ)Φ̃(z+, b;µ, ζ̄), (2.12)

– 7 –
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where ζζ̄ = (2q+q−)2. This scheme is defined nonperturbatively. In particular, it implies
that the nonperturbative LP soft factor can be written as a product

SLP(δ+δ−, b2) = R

(
δ+

q+ , ζ, b
2
)
R

(
δ−

q−
, ζ̄, b2

)
, (2.13)

where δ± are the chosen regulators for rapidity divergences in the n and n̄ directions.
Therefore, the rapidity renormalization factor contains nonperturbative parts. For a de-
tailed discussion we refer to refs. [23, 25, 26].

Note that the soft factor has it own UV renormalization factor. Moreover, ZUN and R
have collinear divergences which cancel in the product. Therefore, the explicit expressions
for ZUN ’s and R depend on the order of the renormalization. This mutual dependence
gives rise to the Collins-Soper equation (2.23). Apart from it, renormalization constants
are independent. The explicit expression for R up to NNLO (three-loops) can be found
in ref. [26]. The renormalization constant ZU1 is equal to the quark-field renormaliza-
tion in the light-cone gauge, and it is know at NNLO (three-loops), see e.g. [27]. The
renormalization constant ZU2 has been derived in ref. [9] at LO.

2.3 Evolution equations

The presence of two independent renormalization factors produces two scales, traditionally
denoted as µ (for UV scaling) and ζ (for rapidity scaling). Correspondingly, each TMD
correlator obeys a pair of evolution equations.

The evolution equations with respect to µ are

µ2 d

dµ2 Φ̃[Γ]
11 (z1,z2, b;µ,ζ) = (γ̃1(z1,µ,ζ)+ γ̃1(z2,µ,ζ)) Φ̃[Γ]

11 (z1,z2, b;µ,ζ),

µ2 d

dµ2 Φ̃[Γ]
µ,21(z1,z2,z3, b;µ,ζ) = (γ̃2(z2,z1,µ,ζ)+ γ̃1(z3,µ,ζ))Φ̃[Γ]

µ,21(z1,z2,z3, b;µ,ζ), (2.14)

µ2 d

dµ2 Φ̃[Γ]
µ,12(z1,z2,z3, b;µ,ζ) = (γ̃1(z1,µ,ζ)+ γ̃2(z2,z3,µ,ζ))Φ̃[Γ]

µ,12(z1,z2,z3, b;µ,ζ),

where anomalous dimensions are integro-differential operators. At LO they are

γ̃1(z, µ, ζ) = as(µ)CF
(

3
2 + ln

(
µ2

ζ

)
+ 2 ln

(
q+

−s∂+
z

))
+O(a2

s), (2.15)

γ̃2(z2, z3, µ, ζ) = as(µ)
{
Hz2z3 + CF

(
3
2 + ln

(
µ2

ζ

))
(2.16)

+CA ln
(

q+

−s∂+
z2

)
+ 2

(
CF −

CA
2

)
ln
(

q+

−s∂+
z3

)}
+O(a2

s),

where as = g2/(4π)2, CF = (N2
c − 1)/2Nc, CA = Nc for Nc colors. The parameter q+

arises due to the redefinition of the rapidity renormalization scale in the boost invariant
form [23, 25, 26], and is defined together with the values of ζ and ζ̄. The convenient choice
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for q+ is

q+ =


|pq̄| = |pq|, for Φ̃[Γ]

11 ,

|pq̄|, for Φ̃[Γ]
12 ,

|pq|, for Φ̃[Γ]
21 ,

(2.17)

where pq̄ and pq are the momenta of anti-quark and quark fields, correspondingly. Such
selection naturally appears in the DY and SIDIS cross-sections due to the renormalization
condition (2.12), and implies ζζ̄ = (2q+q−)2 = (Q2−q2

T )2 (where Q and qT are the invariant
mass and the transverse momentum of the hard current). In the following, we adopt this
convention. The expressions for a different (positive) value of q+ can be found by the
rescaling q+ → αq+ and ζ → α−2ζ.

The logarithms ln(q+/∂+) are a short (and convenient) notation for particular integral
convolutions which are understood formally by their action on the generating function:
ln(q+/∂+)eizp+ = ln(q+/ip+)eizp+ . Such notation allows us to operate in position space
(where expressions are generally shorter), without the necessity to write the convolution
explicitly. The notation is also convenient for the subsequent Fourier transformation.

Importantly the logarithms ln(q+/∂+) are in general complex-valued.3 The complex-
ness of evolution kernel translates into important physics effects discussed in the following
sections. The origin of these logarithms are the collinear divergences that appear in the UV
divergent diagrams shown in figure 1. In the δ-regularization, the collinear divergence of di-
agrams (c1) and (c2) are ∼ (CF −CA/2)/ε ln

(
δ+/(−s∂+

z1)
)
and ∼ CA/(2ε) ln

(
δ+/(−s∂+

z2)
)
,

correspondingly. These divergences are cancelled by the collinear divergence of the LP soft
factor, ∼ CF /ε ln(δ+/q+). The logarithms ln(q+/∂+) are remnants of this cancellation.
The soft-factor is momentum-independent and real, while the momenta of quark and gluon
can have any sign. Therefore, for any choice of q+ these logarithms have complex parts.
The same takes place for U1 operators.

In the case of γ̃1(z1) and γ̃1(z2) acting to Φ11, the imaginary parts of logarithms have
opposite signs, and thus Φ11 has a real-valued evolution kernel. This is the consequence of
the translation invariance, which for the forward matrix element4 implies (∂z1 +∂z2)Φ̃11 = 0.

3To determine the complex part of expression, one should inspect the regularized expression prior to the
cancellation. In the δ-regularization, the integral that produces these logarithms has the form [9]

lim
δ→0

∫ 1

0
dα

−∂+

α∂+ − sδ
= − lim

δ→0
ln
(
∂+ − sδ
−sδ

)
= ln

(
δ

−s∂+

)
. (2.18)

Since ∂+ is pure imaginary (and s is defined in eq. (2.4)) this expression is regular and totally determines
the phase.

4The evolution equations (2.14) represent the properties of the TMD operator only, and is valid for any
matrix element. In particular, they are also valid for the case of generalized TMD distributions (GTMDs),
which are off-forward matrix elements of TMD operators [28].
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Fµ+

(c1)

Fµ+

(c2) n̄ (c3)

Figure 1. Diagrams (c1) and (c2) produce the collinear divergence in the UV evolution kernels for
operator U2. The diagrams (c3) produces the corresponding divergence in the LP soft factor. The
blue arrows indicate the limits in which in the loop diagram the divergences occur. Divergences
cancel in the ratio between the correlator and the soft factor, leaving the remnant logarithms
ln(q+/(−s∂+)) in eq. (2.14). These logarithms are responsible for the complex part of the evolution
kernel.

The integral kernel H in eq. (2.17) is the ordinary evolution kernels for quasi-partonic
operators [29, 30]. Its action to the correlator reads

Hz2z3Φ̃[Γ]
µ,12(z1,z2,z3)= (2.19)

=CA

∫ 1

0

dα

α

(
ᾱ2Φ̃[Γ]

µ,12(z1,z
α
23,z3)+ᾱΦ̃[Γ]

µ,12(z1,z2,z
α
32)−2Φ̃[Γ]

µ,12(z1,z2,z3)
)

+CA
∫ 1

0
dα

∫ ᾱ

0
dβᾱΦ̃[Γγµγν ]

ν,12 (z1,z
α
23,z

β
32)−2

(
CF−

CA
2

)∫ 1

0
dα

∫ 1

ᾱ
dβᾱΦ̃[Γγµγν ]

ν,12 (z1,z
α
23,z

β
32)

+
(
CF−

CA
2

)∫ 1

0
dαᾱΦ̃[Γγνγµ]

ν,12 (z1,z
α
32,z2),

where the scaling arguments are omitted for brevity, ᾱ = 1− α and

zαij = zi(1− α) + zjα. (2.20)

The action of H to Φ̃[Γ]
µ,21 is analogous but the order of Dirac matrices should be reversed.

In the appendix B, we provide extra details about the structure of H.
The evolution in the rapidity scale is the same for all TMD correlators. It reads

ζ
d

dζ
Φ̃[Γ]

11 (z1, z2, b;µ, ζ) = −D(b, µ)Φ̃[Γ]
11 (z1, z2, b;µ, ζ),

ζ
d

dζ
Φ̃[Γ]
µ,12(z1, z2, z3, b;µ, ζ) = −D(b, µ)Φ̃[Γ]

µ,12(z1, z2, z3, b;µ, ζ), (2.21)

ζ
d

dζ
Φ̃[Γ]
µ,21(z1, z2, z3, b;µ, ζ) = −D(b, µ)Φ̃[Γ]

µ,21(z1, z2, z3, b;µ, ζ),

where D is the Collins-Soper kernel [31], which is sometimes denoted as K̃ = −2D [23].
The Collins-Soper kernel is known up to NNLO (three-loops) [32]. The LO expression in
the dimensional regularization (d = 4− 2ε) is

D(b, µ) = −2asCF
[
Γ(−ε)

(
−b2µ2

4e−2γE

)ε
+ 1
ε

]
+O(a2

s) (2.22)

= 2asCF ln
(
−b2µ2

4e−2γE

)
+O(a2

s),

where in the second line the limit ε→ 0 is taken.
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The anomalous dimensions γ̃ and the Collins-Soper kernel satisfy the relation

− ζ d
dζ

(γ̃N (µ, ζ) + γ̃M (µ, ζ)) = µ2 d

dµ2D(b, µ) = Γcusp(µ)
2 , (2.23)

where N and M are 1 or 2, and Γcusp is the anomalous dimension for the cusp of the
light-like Wilson lines. This relation represents the integrability condition of the pair of
differential equations (2.14) and (2.21), and guaranties the existence of a common solution.

2.4 Symmetry properties

There are three essential symmetry relations for TMD distributions and correlators. They
follow from complex conjugation, parity transformation and time-reversal transformation.
Their derivation is straightforward and discussed in many articles, see e.g. refs. [33–35].
Here, we summarize these relations without derivation.

The complex conjugation gives

[Φ̃[Γ]
11 (z1, z2, b)]∗ = Φ̃[γ0Γ†γ0]

11 (z2, z1,−b),

[Φ̃[Γ]
µ,21(z1, z2, z3, b)]∗ = Φ̃[γ0Γ†γ0]

µ,12 (z3, z2, z1,−b), (2.24)

[Φ̃[Γ]
µ,12(z1, z2, z3, b)]∗ = Φ̃[γ0Γ†γ0]

µ,21 (z3, z2, z1,−b).

Importantly, the complex conjugate of Φ̃[Γ]
µ,12 is expressed via Φ̃[Γ]

µ,21, and vise versa. It implies
that these correlators cannot be parametrized by real distributions, but only combinations
of them can.

The parity transformation gives

PΦ̃[Γ]
11 (z1, z2, b; p, s, n)P−1 = Φ̃[γ0Γγ0]

11 (z1, z2,−b; p̄,−s̄, n̄),

PΦ̃[Γ]
µ,21(z1, z2, z3, b; p, s, n)P−1 = −Φ̃[γ0Γγ0]

µ,21 (z1, z2, z3,−b; p̄,−s̄, n̄), (2.25)

PΦ̃[Γ]
µ,12(z1, z2, z3, b; p, s, n)P−1 = −Φ̃[γ0Γγ0]

µ,12 (z1, z2, z3,−b; p̄,−s̄, n̄),

where p̄ = (p0,−p1,−p2,−p3) and same for s̄.
The time-reversal transformation is conveniently combined with the parity transfor-

mation (which effectively gives charge-conjugation), producing

PT Φ̃[Γ]
11 (z1,z2, b;s,L)(PT )−1 = Φ̃[γ0TΓ∗T−1γ0]

11 (−z2,−z1,−b;−s,−L),

PT Φ̃[Γ]
µ,21(z1,z2,z3, b;s,L)(PT )−1 = −Φ̃[γ0TΓ∗T−1γ0]

µ,12 (−z3,−z2,−z1,−b;−s,−L), (2.26)

PT Φ̃[Γ]
µ,12(z1,z2,z3, b;s,L)(PT )−1 = −Φ̃[γ0TΓ∗T−1γ0]

µ,21 (−z3,−z2,−z1,−b;−s,−L),

where T (γ0)∗T−1 = γ0 and T (γi)∗T−1 = −γi. Note that the PT transformation preserves
the orientation of the light-cone vectors, but changes the position of the light-cone infinity
(L → −L). It effectively connects TMD correlators defined in DY and SIDIS kinematics.
Alike the complex conjugation, PT transformation relates DY and SIDIS definition of TMD
distributions of the TMD twist-(1,1), but turns TMD-twist-(1,2) to (2,1) (and vice-versa).
Therefore, TMD correlators Φ12 and Φ21 do not have definite T-parity, which was pointed
out in ref. [33].
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x1

x2

x3

Φ21

x1 + x2 + x3 = 0

(+−−)

(+−+)

(−−+)

(−++)

(−+−)

(+ +−)

(0,1,-1)

(1,0,-1)

(1,-1,0)(0,-1,1)

(-1,0,1)

(-1,1,0)

x

kT

Figure 2. Support of the TMD correlator Φ21 in the space x1, x2, x3. The momentum fractions
are constrained to x1 + x2 + x3 = 0 and xi ∈ [−1, 1]. Each sector of the hexagon has independent
interpretation as a process with radiation/absorption of partons with positive collinear momentum
fractions. The difference between transverse momenta of quark and anti-quark-gluon pair is kT .
The interpretation process for each sector is shown by diagrams, where horizontal/vertical axis is
for collinear/transverse momentum. For the correlator Φ12 the picture is analogous, but with the
transverse momentum of the gluon reversed.

Finally, being defined by forward matrix elements, the TMD correlators are indepen-
dent on the global position of the operator, i.e.

Φ̃[Γ]
11 (z1, z2, b) = Φ̃[Γ]

11 (z1 + y, z2 + y, b),
Φ̃[Γ]
µ,12(z1, z2, z3, b) = Φ̃[Γ]

µ,12(z1 + y, z2 + y, z3 + y, b), (2.27)

Φ̃[Γ]
µ,21(z1, z2, z3, b) = Φ̃[Γ]

µ,21(z1 + y, z2 + y, z3 + y, b),

where y is an arbitrary number.

3 TMD correlators in momentum-fraction space

In this section we discuss the TMD correlators in the momentum-fraction space. They are
related to distributions in position space by a Fourier transform, and represent distribu-
tions of partons with specified collinear momenta. The momentum-fraction distributions
are certainly more useful in phenomenology. However, the distributions in position space
are simpler theoretically, due to much more compact expressions. Therefore, in the fol-
lowing sections, we often return to the position space definition, even talking about the
momentum-fraction representation.
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3.1 Definition and support properties

The TMD correlators in momentum-fraction space are defined as

Φ̃[Γ]
11 (z1, z2, b) = p+

∫ 1

−1
dxeix(z1−z2)p+Φ[Γ]

11 (x, b),

Φ̃[Γ]
µ,21(z1, z2, z3, b) = (p+)2

∫
[dx]e−i(x1z1+x2z2+x3z3)p+Φ[Γ]

µ,21(x1, x2, x3, b), (3.1)

Φ̃[Γ]
µ,12(z1, z2, z3, b) = (p+)2

∫
[dx]e−i(x1z1+x2z2+x3z3)p+Φ[Γ]

µ,12(x1, x2, x3, b),

where the integration measure is∫
[dx] =

∫ 1

−1
dx1

∫ 1

−1
dx2

∫ 1

−1
dx3 δ(x1 + x2 + x3). (3.2)

The delta-function in the integration measure is required in order to fulfill the translation
invariance (2.27). Note that Fourier exponents for Φ[Γ]

11 and {Φ[Γ]
12 ,Φ

[Γ]
21 } have different signs.

This choice is made in agreement with the usual convention for twist-two and twist-three
collinear distributions, see appendix C.3, or compare to refs. [11, 36, 37]. Also note, that
the canonical dimension of Φ[Γ] in the units of mass is [Φ[Γ]] = 0, while [Φ[Γ]

12 ] = [Φ[Γ]
21 ] = 1.

The TMD correlators of Φ[Γ]
12 and Φ[Γ]

21 depend on two momentum fractions. The three
argument notation implicitly implies that Φ(x1, x2, x3) is defined only for x1 +x2 +x3 = 0.
It is convenient to keep three x’s explicit, because in this form TMD correlators obey simple
symmetry properties and simpler evolution equations.5 The support (3.2) is conveniently
drawn in the barycentric coordinate system, where it takes the form of the hexagon [37, 39]
shown in figure 2.

Formally, the Fourier transformation between position and momentum-fraction spaces
is made by the integration over the infinite domain. However, the correlators Φ are zero
for |xi| > 1. This statement is derived following the same route as the one used in ref. [40]
for collinear distributions. First, one observes that the T-ordering in eq. (2.7) can be
omitted, because the (anti-)commutators of fields are zero due to the causality relation.
Next, inserting the compete set of states in-between fields and solving the momentum
conservation condition (for p+ > 0) one finds that correlators vanish at |x| > 1. In the TMD
case (in contrast to the collinear case discussed in ref. [40]) one should also account for the
transverse distance/momentum. However, it only makes momentum inequalities sharper.

The same consideration gives rise to the partonic interpretation for correlators, as
the probability of emission (for x > 0) and absorption (for x < 0) of partons in the

5In works [10, 38], an alternative two-variable notation is used with x being the (positive) momentum
fraction of a single parton, and ξ being imbalance of momentum fractions in the quark-gluon pair. Such as,

Φ[Γ]
µ,12(x, ξ)ref. [10] ∼ Φ[Γ]

µ,12(−x, (1− ξ)x, ξx), Φ[Γ]
µ,21(x, ξ)ref. [10] ∼ Φ[Γ]

µ,21(ξx, (1− ξ)x,−x). (3.3)

In this notation some expressions are a bit shorter (see e.g. expressions for evolution kernels in appendix C
of ref. [9]), but the support of these distributions is more cumbersome,

− 1− x
x

< ξ <
1
x

(for 0 < x < 1), − 1
x
< ξ <

1 + x

x
(for − 1 < x < 0). (3.4)

Therefore, manipulations in these variables are generally more involved.
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target’s infinite momentum frame. Ordering of parton fields from positive to negative x
(such that energies of partons are positive) allows to identify twist-two TMD correlators
in positive/negative domains of x with quark/anti-quarks distributions. The relations are

Φ[γ+]
11 (x, b) = θ(x)Φ[γ+]

q (x, b)− θ(−x)Φ[γ+]
q̄ (−x,−b),

Φ[γ+γ5]
11 (x, b) = θ(x)Φ[γ+γ5]

q (x, b) + θ(−x)Φ[γ+γ5]
q̄ (−x,−b). (3.5)

Φ[iσα+γ5]
11 (x, b) = θ(x)Φ[iσα+γ5]

q (x, b)− θ(−x)Φ[iσα+γ5]
q̄ (−x,−b),

where θ(x) is the Heaviside theta-function. The relative minus sign is due to the sign
produced by the charge-conjugation [5]. The distributions Φq and Φq̄ are defined for 0 <
x < 1. These distributions are entirely independent, and do not mix under evolution.

The interpretation of twist-three correlators is more cumbersome. They are interpreted
as amplitudes of processes with radiation/absorption of a parton versus a parton pair. For
example, the segment x1 < 0 and x2, x3 > 0 can be interpreted as the radiation of a
quark-gluon pair and absorption of a quark, whereas the segment x2 > 0 and x1, x3 <

0 can be interpreted as the radiation of a gluon and absorption of a quark-anti-quark
pair. This is analogous to collinear distributions [40]. The TMD correlators additionally
store the information about the transverse momentum of emitted/absorbed partons. The
transverse momentum kT (Fourier conjugated to b) is the relative transverse momentum of
the quark and the quark-gluon pair, irrespectively their x’s signs. Therefore, distributions
of transverse momentum is different for Φ[Γ]

12 and Φ[Γ]
21 in any segment of x’s. For example,

in the segment x1 < 0 and x2, x3 > 0, the transverse momentum kT is the difference
between momenta the quark-gluon pair and the quark for the correlator Φ[Γ]

12 , while it is
the difference between momenta of the anti-quark-gluon pair and the anti-quark for the
correlator Φ[Γ]

21 . In total, there are six interpretation regions for each correlator Φ[Γ]
12 and

Φ[Γ]
21 , which are schematically shown in figure 2. These twelve combinations of x’s and kT

show all possible quark-gluon-quark-transition processes with a single measured kT .
The involved interpretation makes impossible to identify quark and anti-quark twist-

three distributions in a similar way to (3.5). However, one can introduce a similar notation,
which also helps conveying similar properties. We define

Φ[Γ]
21 (x1, x2, x3, b) = θ(x3)Φ[Γ]

q,21(x1, x2, x3, b)± θ(−x3)Φ[Γ]
q̄,21(x1, x2,−x3,−b), (3.6)

Φ[Γ]
12 (x1, x2, x3, b) = θ(x1)Φ[Γ]

q,12(x1, x2, x3, b)± θ(−x1)Φ[Γ]
q̄,12(−x1, x2, x3,−b),

where the sign ± is selected in accordance to Γ in the same way as in eq. (3.5). The
distributions Φq and Φq̄ do not mix with each other under evolution (this statement is
proved in the following section), and therefore, they are entirely independent. However,
the signs of momenta of any parton pair are not fixed, and they mixes in the evolution.
Therefore, any further decomposition is not practical. The splitting (3.6) preserves the
general picture of physical process and naturally applied to many practical cases (see e.g.
section 6)). For the sake of compactness of results, without loss of generality we will not
employ the decompositon (3.6).
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Θx1x2x3
CF − CA

2

−CA
2

−
(
CF − CA

2

)
CA
2

Px2x1

(x1, x2, x3)

(x2, x1, x3)

x3 > 0

Figure 3. Illustration for the elements of the evolution kernel. Left panel: the function Θx1x2x3

defined in eq. (3.14). The same shading of the segment corresponds to the same coefficient. The LO
value for the coefficient is written inside each sector. Right panel: example of the integration paths
for the evolution kernel Px2x1 in the barycentric coordinates. The black and white dot represent
the coordinates of the special points of the integral kernels (v = 0). The black one for the ‘natural’
ordered coordinates. The white one for the exchanged quark and gluon momenta, which take place
in the last lines of eqs. (3.15), (3.16).

The inverse transformation (from position to momentum-fraction spaces) requires fix-
ation of the global position of the correlators. For example, fixing the position of the
quark-field at the origin, one gets

Φ[Γ]
11 (x, b) =

∫ ∞
−∞

dz

2πe
−ixzp+Φ̃[Γ]

11 (z, 0, b),

Φ[Γ]
µ,21(x1, x2, x3, b) =

∫ ∞
−∞

dz1dz2
(2π)2 e

i(x1z1+x2z2)p+Φ̃[Γ]
µ,21(z1, z2, 0, b), (3.7)

Φ[Γ]
µ,12(x1, x2, x3, b) =

∫ ∞
−∞

dz1dz2
(2π)2 e

i(x1z1+x2z2)p+Φ̃[Γ]
µ,12(z1, z2, 0, b),

where x3 = −x1−x2. If a distribution with a different global position appears, it is always
possible to shift it using eq. (2.27).

We emphasize that negative values of momentum fractions are physical and contribute
to the factorized expression. We also stress that the evolution equation (see the next
section) mixes contributions of different sectors. This effect is well-known in the case of
collinear distributions of twist-three and higher, see e.g. discussion in refs. [37, 41]. However,
in contrast to collinear twist-three distributions, the TMD distributions are not definite at
points xi = 0. This point is elaborated on in details in the following sections.

3.2 Evolution equations

The pair of evolution equations for the LP TMD correlator is well known (see [24, 42]):

µ2 d

dµ2 Φ[Γ]
11 (x, b;µ, ζ) =

(
Γcusp

2 ln
(
µ2

ζ

)
− γV

2

)
Φ[Γ]

11 (x, b;µ, ζ), (3.8)

ζ
d

dζ
Φ[Γ]

11 (x, b;µ, ζ) = −D(b, µ)Φ[Γ]
11 (x, b;µ, ζ),
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where γV is the anomalous dimension of the quark vector form factor. At LO one has

Γcusp = 4CF as +O(a2
s), γV = −6CF as +O(a2

s). (3.9)

The higher perturbative orders can be found, e.g. in ref. [43].
The evolution equation for the TMD correlators of twist-three are more complicated.

The expression for the UV evolution kernels is computed by

δ(x1 + x2 + x3)γN ⊗ Φ(x1, x2, x3, b) (3.10)

= (p+)3
∫ ∞
−∞

dz1dz2dz3
(2π)3 ei(x1z1+x2z2+x3z3)p+

∫
[dy]γ̃N ⊗ e−i(y1z1+y2z2+y3z3)p+Φ(y1, y2, y3, b),

where ⊗ are integral convolutions. The resulting equations are conveniently written in the
form

µ2 d

dµ2 Φ[Γ]
µ,21 =

(
Γcusp

2 ln
(
µ2

ζ

)
+ Υx1x2x3 + 2πi sΘx1x2x3

)
Φ[Γ]
µ,21

+PAx2x1 ⊗ Φ[γνγµΓ]
ν,21 + PBx2x1 ⊗ Φ[γµγνΓ]

ν,21 , (3.11)

µ2 d

dµ2 Φ[Γ]
µ,12 =

(
Γcusp

2 ln
(
µ2

ζ

)
+ Υx3x2x1 + 2πi sΘx3x2x1

)
Φ[Γ]
µ,12

+PAx2x3 ⊗ Φ[Γγµγν ]
ν,12 + PBx2x3 ⊗ Φ[Γγνγµ]

ν,12 ,

where we suppressed the argument (x1, x2, x3, b;µ, ζ) of the TMD correlators for brevity.
The elements P, Υ and Θ are defined below. The coefficient in front of the ln ζ (i.e. Γcusp)
is fixed by the integrability condition (2.23) and at LO is given in eq. (3.9). Although this
equation is derived at LO, it is clear that the same pattern of kernels is preserved at all
orders, since it is the most general pattern that can be written.

The function Υ incorporates the terms that multiply TMD correlator without convo-
lution. The LO expression is

Υx1x2x3 = as

[
3CF + CA ln

( |x3|
|x2|

)
+ 2

(
CF −

CA
2

)
ln
( |x3|
|x1|

)]
+O(a2

s). (3.12)

The expression for Υx3x2x1 is obtained from Υx1x2x3 replacing x1 ↔ x3. To obtain this
function we used the convention (2.17). For arbitrary q+ the function Υ reads

Υx1x2x3 = Γcusp ln
(
q+

p+

)
+ as

[
3CF − 2CF ln |x1x3| − CA ln

( |x2|
|x1|

)]
+O(a2

s), (3.13)

where the dependence on q+/p+ is accumulated in the first term.
The function Θ results from the complex parts of the logarithms ln(q+/∂+), whose

real parts are collected into Υ’s. The values of Θ depend on the segment of the support
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domain. At LO, one has

Θx1x2x3 = as ×



CA
2 x1,2,3 ∈ (+,−,−),
−
(
CF − CA

2

)
x1,2,3 ∈ (+,−,+),

0 x1,2,3 ∈ (−,−,+),
−CA

2 x1,2,3 ∈ (−,+,+),
CF − CA

2 x1,2,3 ∈ (−,+,−),
0 x1,2,3 ∈ (+,+,−),

+O(a2
s), (3.14)

where x1,2,3 ∈ (+,−,−) indicates the sector {x1 > 0, x2 < 0, x3 < 0} (see also figure 2) and
similar for other cases. The function Θx3x2x1 is obtained from Θx1x2x3 with replacement
x1 ↔ x3. The visual representation of Θx1x2x3 is given in figure 3.

The fact that the evolution kernel has a complex part is worrisome. However, the
evolving function is complex-valued and thus it only indicates that the real and complex
parts of TMD correlators evolve by different evolution kernels. The physical observables,
that are real, are expressed via the real-valued combinations of TMD distributions (see the
next section). Such combinations are evolved by real kernels. We emphasize that the com-
plex part of the evolution kernel depends on the process, via the sign-variable s. To our best
knowledge, it is the first observation of the process-dependence in the evolution equation.

The evolution kernels P in momentum-fraction space are obtained from eq. (2.14) via
the transformation (3.10). They read

PAx2x1⊗Φ(x1,x2,x3) =−as2

{
δx20CAΦ(x1,0,x3) (3.15)

+CA
∫ ∞
−∞

dv

[
x2
v

[(v+x2)Φ(x1,x2,x3)−x2Φ(x1−v,x2 +v,x3)]θ(v,x2)−θ(−v,−x2)
(v+x2)2

+x1
v

(Φ(x1,x2,x3)−Φ(x1−v,x2 +v,x3))θ(v,−x1)−θ(−v,x1)
v−x1

]
−CA

∫ ∞
−∞

dv

[
x2

2(v+2x2 +x1)
(x1 +x2)2

θ(v,x2)−θ(−v,−x2)
(v+x2)2

+x1(2x2 +x1)
(x1 +x2)2

θ(v,−x1)−θ(−v,x1)
v−x1

]
Φ(x1−v,x2 +v,x3)

+2
(
CF −

CA
2

)∫ ∞
−∞

dv

[ −x2
2

(x1 +x2)2
θ(v,x2)−θ(−v,−x2)

v+x2

+x1(x1x2−2vx2−vx1)
(x1 +x2)2

θ(v,−x1)−θ(−v,x1)
(v−x1)2

]
Φ(x2 +v,x1−v,x3)

}
+O(a2

s),

PBx2x1⊗Φ(x1,x2,x3) =−as2

{
δx20 2(CA−CF )Φ(x1,0,x3) (3.16)

+CA
∫ ∞
−∞

dv

[
x2
v

[(v+x2)Φ(x1,x2,x3)−x2Φ(x1−v,x2 +v,x3)]θ(v,x2)−θ(−v,−x2)
(v+x2)2

+x1
v

(Φ(x1,x2,x3)−Φ(x1−v,x2 +v,x3))θ(v,−x1)−θ(−v,x1)
v−x1

]
+2
(
CF −

CA
2

)∫ ∞
−∞

dvx1Φ(x2 +v,x1−v,x3)θ(v,−x1)−θ(−v,x1)
(v−x1)2

}
+O(a2

s).
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In these expressions

θ(v, x) =

 1, v > 0 and x > 0
0, v 6 0 or x 6 0,

δx0 =

 1, x = 0
0, x 6= 0.

(3.17)

The kernels Px2x3 are defined analogously with exchange x1 ↔ x3 and Φ(x1, x2, x3) →
Φ(x3, x2, x1). The integration paths in the barycentric coordinates are shown in figure 3.
The kernels Px2x1 are regular and continuous at x1 = 0 or x2 = 0. Also they preserve the
value of x1 + x2 = −x3 at each point of the integral, and therefore, the values of function
at x1 + x2 > 0 (x3 < 0) does not mix with the values at x1 + x2 < 0 (x3 > 0). This allows
identification of quark- and anti-quark components in eq. (3.6). However, the signs of x1
and x2 are not preserved individually.

The evolution equations with respect to rapidity scales are the same as in the position
space (2.21):

ζ
d

dζ
Φ[Γ]
µ,12(x1, x2, x3, b;µ, ζ) = −D(b, µ)Φ[Γ]

µ,12(x1, x2, x3, b;µ, ζ), (3.18)

ζ
d

dζ
Φ[Γ]
µ,21(x1, x2, x3, b;µ, ζ) = −D(b, µ)Φ[Γ]

µ,21(x1, x2, x3, b;µ, ζ).

3.3 Symmetry properties

The symmetry relations for TMD correlators in momentum-fraction space are obtained by
substituting definition (3.1) into relations listed in section 2.4. The complex conjugation
relations (2.24) give

[Φ[Γ]
11 (x, b)]∗ = Φ[γ0Γ†γ0]

11 (x,−b),

[Φ[Γ]
µ,12(x1, x2, x3, b)]∗ = Φ[γ0Γ†γ0]

µ,21 (−x3,−x2,−x1,−b), (3.19)

[Φ[Γ]
µ,21(x1, x2, x3, b)]∗ = Φ[γ0Γ†γ0]

µ,12 (−x3,−x2,−x1,−b).

The parity transformation relations (2.25) give

PΦ[Γ]
11 (x, b; p, s, n)P−1 = Φ[γ0Γγ0]

11 (x,−b; p̄,−s̄, n̄),

PΦ[Γ]
µ,12(x1, x2, x3, b; p, s, n)P−1 = −Φ[γ0Γγ0]

µ,12 (x1, x2, x3,−b; p̄,−s̄, n̄), (3.20)

PΦ[Γ]
µ,21(x1, x2, x3, b; p, s, n)P−1 = −Φ[γ0Γγ0]

µ,21 (x1, x2, x3,−b; p̄,−s̄, n̄).

The PT-transformation relations (2.26) give

PT Φ[Γ]
11 (x,b;s,L)(PT )−1 = Φ[γ0TΓ∗T−1γ0]

11 (x,−b;−s,−L),

PT Φ[Γ]
µ,12(x1,x2,x3, b;s,L)(PT )−1 = −Φ[γ0TΓ∗T−1γ0]

µ,21 (−x3,−x2,−x1,−b;−s,−L), (3.21)

PT Φ[Γ]
µ,21(x1,x2,x3, b;s,L)(PT )−1 = −Φ[γ0TΓ∗T−1γ0]

µ,12 (−x3,−x2,−x1,−b;−s,−L).

The translation invariance (2.27) is already accounted in the definition of TMD correlator
in momentum-fraction space since it is implicitly assumed that x1 + x2 + x3 = 0.
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4 TMD distributions with definite T-parity

The main drawback of the definite-TMD-twist TMD distributions is their complex-valued
evolution kernels. Also, the TMD correlators Φ[Γ]

µ,12 and Φ[Γ]
µ,21 do not satisfy simple rules of

complex conjugation (3.19) and have indefinite T-parity (3.21). For that reason they are
impractical. In this section, we introduce combinations more suitable for practical applica-
tions. The new combinations remove the issues above at the price of more involved evolution
equations. We refer to these combinations as TMD distributions with definite T-parity.

4.1 TMD correlators with definite T-parity

We define two independent combinations of the definite-TMD-twist TMD distributions,

Φ[Γ]
µ,⊕(x1, x2, x3, b) =

Φ[Γ]
µ,21(x1, x2, x3, b) + Φ[Γ]

µ,12(−x3,−x2,−x1, b)
2 , (4.1)

Φ[Γ]
µ,	(x1, x2, x3, b) = i

Φ[Γ]
µ,21(x1, x2, x3, b)− Φ[Γ]

µ,12(−x3,−x2,−x1, b)
2 ,

where we omit arguments (µ, ζ) for brevity. Note that the combinations involves
momentum-fractions with opposite signs, but they have the same transverse separation.
Such correlators lack a simple partonic interpretation. Since the renormalization of Φ12
and Φ21 operators is independent, the renormalization of Φ⊕ and Φ	 is convoluted. For
this reason, the correlators (4.1) cannot be presented as a matrix element of a single bare
operator. Nonetheless, these combinations are the ones that appear in the practical appli-
cations [9, 18, 33].

The symmetry relations for TMD distributions with definite T-parity resemble the
relations for the leading-twist TMD correlator. The complex conjugation gives

[Φ[Γ]
µ,⊕(x1, x2, x3, b)]∗ = Φ[γ0Γ†γ0]

µ,⊕ (x1, x2, x3,−b), (4.2)

[Φ[Γ]
µ,	(x1, x2, x3, b)]∗ = Φ[γ0Γ†γ0]

µ,	 (x1, x2, x3,−b).

The parity transformation gives

PΦ[Γ]
µ,⊕(x1, x2, x3, b; p, s, n)P−1 = −Φ[γ0Γγ0]

µ,⊕ (x1, x2, x3,−b; p̄,−s̄, n̄),

PΦ[Γ]
µ,	(x1, x2, x3, b; p, s, n)P−1 = −Φ[γ0Γγ0]

µ,	 (x1, x2, x3,−b; p̄,−s̄, n̄).

The PT-transformation gives

PT Φ[Γ]
µ,⊕(x1, x2, x3, b; s, L)(PT )−1 = −Φ[γ0TΓ∗T−1γ0]

µ,⊕ (x1, x2, x3,−b;−s,−L), (4.3)

PT Φ[Γ]
µ,	(x1, x2, x3, b; s, L)(PT )−1 = +Φ[γ0TΓ∗T−1γ0]

µ,	 (x1, x2, x3,−b;−s,−L).

Note that, due to the composition of momentum fraction x’s in the definition (4.1), the
form of the split into functions with quark and anti-quark labels (3.6) is preserved.
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U L TJ=0 TJ=1 TJ=2

U f⊥• g⊥• h• h⊥•

L f⊥•L g⊥•L h•L h⊥•L

T f•T , f⊥•T g•T , g⊥•T hD⊥•T hA⊥•T hS⊥•T , hT⊥•T

Table 1. Quark TMD distributions of twist-three sorted with respect to polarization properties
of both the operator (columns) and the hadron (rows). The labels U, H, and T are for the unpo-
larized, longitudinal and transverse polarizations. The subscript J differentiates different angular
momentum for the transversely-polarized case. The bullet • stands for the ⊕, 	 labels.

The evolution equations for Φ⊕ and Φ	 are

µ2 d

dµ2 Φµ[Γ]
⊕ =

(
Γcusp

2 ln
(
µ2

ζ

)
+ Υx1x2x3

)
Φµ[Γ]
⊕ + 2πsΘx1x2x3Φµ[Γ]

	

+PAx2x1 ⊗
(

Φ[ 1
2 (Γγµγν+γνγµΓ)]
ν,⊕ + Φ[ i2 (Γγµγν−γνγµΓ)]

ν,	

)
(4.4)

+PBx2x1 ⊗
(

Φ[ 1
2 (Γγνγµ+γµγνΓ)]
ν,⊕ + Φ[ i2 (Γγνγµ−γµγνΓ)]

ν,	

)
µ2 d

dµ2 Φµ[Γ]
	 =

(
Γcusp

2 ln
(
µ2

ζ

)
+ Υx1x2x3

)
Φµ[Γ]
	 − 2πsΘx1x2x3Φµ[Γ]

⊕

+PAx2x1 ⊗
(

Φ[ 1
2 (Γγµγν+γνγµΓ)]
ν,	 − Φ[ i2 (Γγµγν−γνγµΓ)]

ν,⊕

)
(4.5)

+PBx2x1 ⊗
(

Φ[ 1
2 (Γγνγµ+γµγνΓ)]
ν,	 − Φ[ i2 (Γγνγµ−γµγνΓ)]

ν,⊕

)
,

where it was used that Υ−x1−x2−x3 = Υx1x2x3 , Θ−x1−x2−x3 = −Θx1x2x3 , [Px2x3 ⊗
Φ](−x3,−x2,−x1) = [Px2x1 ⊗ Φ(−x3,−x2,−x1)].

In this representation the evolution kernels are real. An amazing feature of these evolu-
tion equations is that they mix the functions with different T-parity. However, the mixing
terms are proportional to s, which changes sign under L→ −L. Thus, the T-parity of each
correlator is preserved, and it remains process independent (apart of trivial sign-change
for T-odd functions). To our best knowledge, it is the first example of such behaviour.

4.2 Parameterization

The discussion is matured enough to allow us to introduce the parameterization for the
TMD correlators in the terms of TMD distributions. For each TMD correlator we write
all possible spin and tensor structures in accordance to its parity and dimension. As an
elements of contraction one can use the vectors bµ and sµ, and the tensors gµνT and εµνT .
The spin vector is spit into the longitudinal and transverse projections

sµ = λ
p−nµ − p+n̄µ

M
+ sµT , (4.6)

where M is the mass of the hadron. It implies λ = Ms+/p+.
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The standard parameterization of the leading twist TMD correlators has been carried
out in ref. [5]. We present this parameterization here for completeness

Φ[γ+](x, b) = f1(x, b) + iεµνT bµsTνMf⊥1T (x, b), (4.7)
Φ[γ+γ5](x, b) = λg1(x, b) + i(b · sT )Mg1T (x, b), (4.8)

Φ[iσα+γ5](x, b) = sαTh1(x, b)− iλbαMh⊥1L(x, b) (4.9)

+iεαµbµMh⊥1 (x, b)− M2b2

2

(
gαµT
2 − bαbµ

b2

)
sTµh

⊥
1T (x, b),

where b2 < 0. All TMD distributions are dimensionsless real function that depend on b2

(the argument b is used for shortness).
The parameterization of the sub-leading correlators is

Φµ[γ+]
• (x1,2,3,b) = εµνsTνMf•T (x1,2,3,b)+ibµM2f⊥• (x1,2,3,b) (4.10)

+iλεµνbνM2f⊥•L(x1,2,3,b)+b2M3εµνT

(
gT,νρ

2 − bνbρ
b2

)
sρT f

⊥
•T (x1,2,3,b),

Φµ[γ+γ5]
• (x1,2,3,b) = sµTMg•T (x1,2,3,b)−iεµνT bνM

2g⊥• (x1,2,3,b) (4.11)

+iλbµM2g⊥•L(x1,2,3,b)+b2M3
(
gµνT
2 −

bµbν

b2

)
sTνg

⊥
•T (x1,2,3,b),

Φµ[iσα+γ5]
• (x1,2,3,b) = λgµαT Mh•L(x1,2,3,b)+εµαT Mh•(x1,2,3,b)+igµαT (b·sT )M2hD⊥•T (x1,2,3,b)

+i(bµsαT−s
µ
T b

α)M2hA⊥•T (x1,2,3,b)+(bµεαβT bβ+εµβT bβb
α)M3h⊥• (x1,2,3,b)

+λM3b2
(
gµαT
2 −

bµbα

b2

)
h⊥•L(x1,2,3,b) (4.12)

+i(b·sT )M2
(
gµαT
2 −

bµbα

b2

)
hT⊥•T (x1,2,3,b)

+iM2
(
bµsαT +sµT bα

2 − b
µbα

b2
(b·sT )

)
hS⊥•T (x1,2,3,b),

where • is ⊕ or 	, and (x1,2,3, b) is a shorten notation for (x1, x2, x3, b;µ, ζ). We emphasize
that the parameterization is written for distributions with the upper index µ, i.e. Φµ[Γ]

• =
gµνT Φ[iσα+γ5]

ν• . This is important because all indices are transverse and thus change sign
upon rising and lowering, i.e. g11

T = g22
T = −1, b1 = −b1, etc.

The distributions defined in (4.10), (4.11), (4.12) are dimensionless and real functions.
The elements of parameterization (signs and tensors) are adjusted such that the evolution
equations have simpler structure and minimal mixing between distributions.6 The nota-
tion for the TMD distributions follows the traditional pattern used in the parameterization
of leading TMD distributions (4.7), (4.8), (4.9) (known as the Amsterdam notation [5]).
Namely, the proportionality to b is marked by the superscript ⊥, and the polarization by
subscript L (for longitudinal) or T (for transverse). In the tensor case, one faces four struc-
tures ∼ bµsαT , which are denoted as hA⊥T , hD⊥T , hS⊥T , hT⊥T for antisymmetric, diagonal, sym-
metric, and traceless components. In total there are 32 TMD distributions of twist-three.

6Let us mention the different tensor structures for f⊥•T (4.10) and f⊥T defined in eq. (6.4). The tensor
structure traditionally used for f⊥T generates extra mixing terms.
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Correlator T-even T-odd
Φ[Γ]

11 f1, g1, g1T , h1, h
⊥
1L, h

⊥
1T f⊥1T , h

⊥
1

Φ[γ+]
µ• f⊕T , f

⊥
⊕L, f

⊥
⊕T , f

⊥
	 f⊥⊕ , f	T , f

⊥
	L, f

⊥
	T

Φ[γ+γ5]
µ• g⊥⊕, g	T , g

⊥
	L, g

⊥
	T g⊕T , g

⊥
⊕L, g

⊥
⊕T , g

⊥
	

Φ[iσα+γ5]
µ•

h⊕, h
⊥
⊕, h	L, h

D⊥
	T , h⊕L, h

D⊥
⊕T , h

S⊥
⊕T , h

A⊥
⊕T ,

hS⊥	T , h
A⊥
	T , h

T⊥
	T , h

⊥
	L hT⊥⊕T , h

⊥
⊕L, h	, h

⊥
	

Φ[ΓT ]
q̄q

e, f⊥, gT , g
⊥
L eL, eT , e

⊥
T , h

g⊥T , h
⊥
T , h

⊥
L , hT fT , f

⊥
T , f

⊥
L , g

⊥

Table 2. The T-parity of TMD distributions of the twist-two, twist-three and bi-quark distribu-
tions.

The Dirac matrices project particular components of the quark polarizations, which
provide an extra layer of interpretation for TMD distributions, as densities of unpolarized
(for γ+), helicity (for γ+γ5) and transversity (for iσα+γ5) quark compositions. Twist-three
distributions must also account for gluon polarization vector. The cases of unpolarized and
helicity operators correspond to different combinations with opposite quark helicities, such
as ↑⇑↓, ↓⇑↑, etc (here the single (double) arrow indicates the spin component of the quark
(gluon), respectively). In the transversity case, one can split operator into three compo-
nents with angular momenta 0, 1, and 2. They correspond to the trace part ∼ σα+Fα+, the
anti-symmetric part ∼ εαβT σα+Fβ+, and the symmetric-traceless combination. In the terms
of helicity states, these operators are build from the combinations with the same quark
helicities, such as ↑⇑↑, ↑⇓↑, etc. Note that the exact interpretation of these distributions
is not possible since the operators for (4.1) are not simple. Nonetheless, it allows to sort
TMD distributions of twist-three with respect to their spin-content, see table 1.

Among the 32 TMD distributions, 16 distributions change the sign under T-parity
transformation, and 16 do not. It means that 16 distributions are naïvely T-odd. They
have different sign but same shape once measured in the Drell-Yan and SIDIS processes,
similarly to the Sivers and Boer-Mulders functions [33, 44]. The T-parity of all TMD
distributions discussed in this paper is summarized in the table 2.

4.3 Evolution equations for TMD distributions

The evolution equations for the twsit-two TMD distributions are the same as for TMD
correlators, i.e.

µ2 d

dµ2F1(x, b;µ, ζ) =
(

Γcusp
2 ln

(
µ2

ζ

)
− γV

2

)
F1(x, b;µ, ζ), (4.13)

ζ
dF1(x, b;µ, ζ)

dζ
= −D(b, µ)F1(x, b;µ, ζ), (4.14)

where F1 ∈ {f1, f
⊥
1T , g1, g1T , h1, h

⊥
1L, h

⊥
1 , h

⊥
1T }, and anomalous dimensions are defined af-

ter (3.8).
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As already alluded, the evolution equations for TMD distributions of twist-three take
on a non-trivial matrix form. To find it we substitute the parameterizations (4.10)–(4.12)
into the evolution equations for the correlators (4.4), (4.5), and extract independent tensor
combinations. We found that chiral-even and chiral-odd sectors obey different evolution
equations.

For the chiral-even sector we find

µ2 d

dµ2


F⊕

G	

G⊕

F	

 =
(

Γcusp
2 ln

(
µ2

ζ

)
+Υx1x2x3

)

F⊕

G	

G⊕

F	

 (4.15)

+


PAx2x1 +PBx2x1 PAx2x1−P

B
x2x1 0 2πsΘx1x2x3

PAx2x1−P
B
x2x1 PAx2x1 +PBx2x1 −2πsΘx1x2x3 0

0 2πsΘx1x2x3 PAx2x1 +PBx2x1 −P
A
x2x1 +PBx2x1

−2πsΘx1x2x3 0 −PAx2x1 +PBx2x1 PAx2x1 +PBx2x1




F⊕

G	

G⊕

F	

,

where the argument of distributions (x1, x2, x3, b;µ, ζ) is omitted. The pair of distributions
{F,G} is any of the pairs out of {fT , gT }, {f⊥, g⊥}, {f⊥L , g⊥L }, {f⊥T , g⊥T }, with ⊕ and 	. The
definitions of functions Υ, Θ and kernels P are given in eqs. (3.12), (3.14) and (3.15), (3.16),
respectively.

The evolution equations for chiral-odd distributions split into two subsets with equa-
tions

µ2 d

dµ2

HA
⊕

HA
	

 =
(

Γcusp
2 ln

(
µ2

ζ

)
+ Υx1x2x3

)HA
⊕

HA
	

 (4.16)

+

 2PAx2x1 2πsΘx1x2x3

−2πsΘx1x2x3 2PAx2x1

HA
⊕

HA
	

 ,
µ2 d

dµ2

HB
⊕

HB
	

 =
(

Γcusp
2 ln

(
µ2

ζ

)
+ Υx1x2x3

)HB
⊕

HB
	

 (4.17)

+

 2PBx2x1 2πsΘx1x2x3

−2πsΘx1x2x3 2PBx2x1

HB
⊕

HB
	

 ,

where again the argument of distributions (x1, x2, x3, b;µ, ζ) is omitted. The two set of
distributions are HA ∈ {h, hL, hD⊥T , hA⊥T } and HB ∈ {h⊥, h⊥L , hS⊥T , hT⊥T }.
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The evolution equations for chiral-even sector (4.15) can be rewritten in the same form
as (4.16), (4.17). We write

µ2 d

dµ2

F⊕ +G	

F	 −G⊕

 =
(

Γcusp
2 ln

(
µ2

ζ

)
+ Υx1x2x3

)F⊕ +G	

F	 −G⊕

 (4.18)

+

 2PAx2x1 2πsΘx1x2x3

−2πsΘx1x2x3 2PAx2x1

F⊕ +G	

F	 −G⊕

 ,
µ2 d

dµ2

F⊕ −G	
F	 +G⊕

 =
(

Γcusp
2 ln

(
µ2

ζ

)
+ Υx1x2x3

)F⊕ −G	
F	 +G⊕

 (4.19)

+

 2PBx2x1 2πsΘx1x2x3

−2πsΘx1x2x3 2PBx2x1

F⊕ −G	
F	 +G⊕

 ,
where the notation is the same as in eq. (4.15). These combinations of F and G functions
naturally appear in the applications, as it is shown in section 6.

The evolution equations are explicitly real, and explicitly preserve the T-parity, despite
mixing the distributions of different parity. The full set of 32 TMD distributions of twist-
three is split into two subsets — the one evolving with the kernel PA (4.18), (4.16), and the
one evolving with the kernel PB (4.18), (4.16). The two subsets of equations correspond
to the different spin content of a quark-gluon pair. So, the pair with helicity structures ⇑↑
and ⇓↓ evolves with PA, while the pair with ⇑↓ evolves with PB. In section 6.3 we show
that kernels PA and PB (and the associated distributions) have different properties in the
large-Nc limit.

5 Physical TMD distributions

The TMD correlators and distributions of twist-three are indefinite at xi = 0. It can be seen
in several ways. First, the evolution kernels are discontinuous at xi = 0 due to the Θ-term,
and also has logarithmic singularity due to Υ-term. As a consequence any continuous (or
even vanishing) function at xi = 0 will turn to a discontinuous and singular function after
evolution to a different scale. Second, the discontinuity is explicitly revealed in the small-b
limit which can be computed explicitly. This computation is presented in appendix C.
Already, at one-loop the expressions at xi = 0 are indefinite, see eq. (C.4). Nonetheless,
TMD distributions of twist-three are integrable at xi = 0.

In a sense, TMD distributions of twist-three (and higher twists as well) are generalized
functions. They do not have definite values at each point of the support, but have definite
integrals. This situation is unusual, and it is not yet clear how to incorporate such functions
into the phenomenology. The positive point is that all known observables are expressed
via integrals, and thus can be defined.

Here, however, one faces another complication. Many physical observables, such as
cross-sections of Drell-Yan and SIDIS processes [7, 9, 10], quasi-TMD distributions [45], etc.
contain integrals with an additional singularity at x2 = 0. A typical expression contributing
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Fµ+

(r1)

Fµ+

(r2)

Fµ+

(r3)

Fµ+

(r4)

Figure 4. The diagrams contributing to the rapidity divergence of TMD-twist-(1,2) operator.
The blue arrow shows the rapidity divergent limit.

into the hadronic tensor incorporates zeroth Mellin moment of twist-three distributions:

Φ(0)[Γ]
µ,21 (x, b) =

∫
[dx]δ(x− x3)

Φ[Γ]
µ,21(x1, x2, x3, b)

x2 − is0
, (5.1)

Φ(0)[Γ]
µ,12 (x, b) =

∫
[dx]δ(x+ x1)

Φ[Γ]
µ,12(x1, x2, x3, b)

x2 − is0
.

These integrals are divergent, since Φ’s are non-analytical at x2 = 0 and limx2→+0 Φ 6=
limx2→−0 Φ.

In this section, we demonstrate that divergence of integrals (5.1) is the rapidity di-
vergence. It can be explicitly computed and subtracted. It gives rise to a new layer of
definition of TMD distributions of twist-three, which we refer as physical distributions.
Physical distributions have finite zeroth-momentum and the observables written in their
terms are finite term-by-term.

5.1 Divergence at x2 = 0 at LO

We start with the explicit computation of the divergent part of zeroth moments (5.1) at
LO. As usual, it is more intuitive to perform computation in the position space, where the
zeroth moments read7

Φ̃(0)[Γ]
µ,21 (z1, z2, b) = −i

∫ z1

L
dσΦ̃[Γ]

µ,21(z1, σ, z2, b), (5.4)

Φ̃(0)[Γ]
µ,12 (z1, z2, b) = −i

∫ z2

L
dσΦ̃[Γ]

µ,12(z1, σ, z2, b).

7Explicitly, these integrals can be written in terms of operators as follow:

Φ̃(0)[Γ]
µ,21 (z1, z2, b) = −〈p, s|T{q̄(z1n+ b)

(
Dµ[z1n+ b, Ln+ b]

)Γ
2 [Ln, z2n]q(z2n)}|p, s〉, (5.2)

Φ̃(0)[Γ]
µ,12 (z1, z2, b) = +〈p, s|T{q̄(z1n+ b)[z1n+ b, Ln+ b]Γ2

(
[Ln, z2n]←−Dµ

)
q(z2n)}|p, s〉,

where Dµ is the covariant derivative. In the terms of SCET fields, these correlators are

Φ̃(0)[Γ]
µ,21 (z1, z2, b) = i〈p, s|T{χ̄n̄(z1n)Bn̄,µ(z1n)Γ

2 χn̄(z2n)}|p, s〉, (5.3)

Φ̃(0)[Γ]
µ,12 (z1, z2, b) = i〈p, s|T{χ̄n̄(z1n)Γ

2B
†
n̄,µ(z2n)χn̄(z2n)}|p, s〉,

where we use the convention by ref. [8].
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Here, the transformation between position and momentum spaces is done according to
“single momentum-fraction rule” (3.1), i.e.

Φ̃(0)[Γ]
µ,21 (z1, z2, b) = p+

∫ 1

−1
dxeix(z1−z2)p+Φ(0)[Γ]

µ,21 (x, b), (5.5)

and similar for Φ̃(0)[Γ]
µ,12 .

We would like to compute the rapidity divergence for these operators at one-loop.
The rapidity divergence appears in the loop diagrams with the gluon attached to the
far-end of the light-cone Wilson line. There are two possibilities to receive divergence for
discussed operators.

• The first case (standard) is to have a diagram with a gluon coupled to the Wilson
line. Such diagrams are shown in figures 4 ((r1), (r2) and (r3)).

• The second case (special) is to couple Fµ+ to the rest of the operator. In the limit
limz2→L F

µ+(z2) this diagram (diagram (r4) in figure 4) is also rapidity divergent.
Importantly, the special case does not appear for the operators Φ, where the position
of Fµ+ is fixed. This special case appears only for operators Φ(0), and represents
the divergent part of zeroth moments (5.1) at x2 = 0. This divergence can be also
classified as the end-point divergence.

We regularize the rapidity divergences by the δ-regularization [43, 46]. It consists in
the multiplication of gluon fields in the Wilson line, including Fµ+, by the suppressing
factor e−sδ, with δ > 0. The technique of computation with δ-regulator can be found in
refs. [9, 26, 39]. In particular, the detailed computation of diagrams (r1), (r2) and (r3) is
provided in section 8.1 of ref. [9]. The result of computation is

Φ̃(0)[Γ](r1+r2+r3)
µ,21 (z1,z2,b) = −4asCFΓ(−ε)

(
−b2

4

)ε
ln
(
δ+

q+

)
Φ̃(0)[Γ]
µ,21 (z1,z2,b)+fin.terms, (5.6)

Φ̃(0)[Γ](r1+r2+r3)
µ,12 (z1,z2,b) = −4asCFΓ(−ε)

(
−b2

4

)ε
ln
(
δ+

q+

)
Φ̃(0)[Γ]
µ,12 (z1,z2,b)+fin.terms,

where “fin.terms” are terms finite at δ+ → 0. The value of q+ is |pq̄| and |pq| for Φ̃(0)[Γ]
µ,12

and Φ̃(0)[Γ]
µ,21 , correspondingly. The expressions (5.6) provide the bare LO expression for the

rapidity renormalization factor R introduced in eq. (2.11). The complete expression for R
at O(as) reads [26, 46]

R(b2) = 1− 4asCF ln
(
δ+

q+

)(
Γ(−ε)

(
−b2

4

)ε
+ 1
ε

)
+O(a2

s), (5.7)

where we include 1/ε term from the renormalization.
The diagram (r4) is calculated similarly. In this diagram, the gluon field is totally

quantum and thus the final operator contains only quark fields. The difference in dimen-
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sions of operators is compensated by an inverse power of b. We obtain8 expressions that
are finite at ε→ 0,

Φ̃(0)[Γ](r4)
µ,21 (z1, z2, b) = −4asCF

bµ
b2

ln
(
δ+

q+

)
Φ̃[Γ]

11 (z1, z2, b) + fin.terms, (5.9)

Φ̃(0)[Γ](r4)
µ,12 (z1, z2, b) = −4asCF

bµ
b2

ln
(
δ+

q+

)
Φ̃[Γ]

11 (z1, z2, b) + fin.terms.

Note that the coefficient in front of the correlator Φ̃11 in eq. (5.9) exactly reproduces the
derivative of R (5.7).

The expressions (5.9) represent only the perturbative part of the rapidity renormal-
ization factor. At larger values of b the nonperturbative corrections appears. Altogether
they must combine into the derivative of (nonperturbative) factor R = exp(−2D ln δ+B),
where B is some finite terms [26]. Therefore, the complete LO expressions for rapidity
divergent part of zeroth moments are

Φ̃(0)[Γ](r4)
µ,21 (z1, z2, b) = ln

(
δ+

q+

)
∂µD(b)Φ̃[Γ]

11 (z1, z2, b) + fin.terms, (5.10)

Φ̃(0)[Γ](r4)
µ,12 (z1, z2, b) = ln

(
δ+

q+

)
∂µD(b)Φ̃[Γ]

11 (z1, z2, b) + fin.terms,

where
∂µD(b) = ∂

∂bµ
D(b) = 2bµ ∂

∂b2
D(b), (5.11)

is the derivative of the nonperturbative Collins-Soper kernel.
One could expect a contribution to the “special” rapidity divergence from the operators

with two emitted gluons (see diagrams C and D in figure 5). The explicit computation
presented in appendix C shows that such diagrams are finite.

We combine the expressions for rapidity divergent parts of Φ(0),

Φ̃(0)[Γ]
µ,12 (z1,z2, b)

∣∣∣
rap.div.

=R(b2)Φ̃(0)[Γ]
µ,12 (z1,z2, b)+

(
∂µD(b) ln

(
δ+

q+

)
+O(a2

s)
)

Φ̃[Γ]
11 (z1,z2, b),

Φ̃(0)[Γ]
µ,21 (z1,z2, b)

∣∣∣
rap.div.

=R(b2)Φ̃(0)[Γ]
µ,21 (z1,z2, b)+

(
∂µD(b) ln

(
δ+

q+

)
+O(a2

s)
)

Φ̃[Γ]
11 (z1,z2, b).

(5.12)
8The equation (5.9) can be also derived from know results. Using the relation

∂µ[z1n, z2n] = ig

(
Aµ[z1n, z2n]− [z1n, z2n]Aµ +

∫ z1

z2

dτ [z1n, τn]Fµ+[τn, z2n]
)
,

we can relate the rapidity divergent diagrams for twist-two and twist-three operators (at least at the one-loop
order). We find

Φ̃(0)[Γ]
µ,12

∣∣∣
rap.div.

= Φ̃(0)[Γ]
µ,21

∣∣∣
rap.div.

= −1
2
∂

∂bµ
Φ̃[Γ]

11

∣∣∣
rap.div.

, (5.8)

where derivative does not act on the quark field, and factor 1/2 is to compensate the absence of the
symmetric contribution. The LO rapidity divergence for Φ̃[Γ]

11 has been computed in many papers, see
e.g. [23, 39, 43, 47]. Explicitly, it is given in, e.g., equation (5.35) in ref. [39]. Substituting Φ̃[Γ]

11

∣∣∣
rap.div.

into (5.8), we receive eq. (5.9).
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The terms proportional to twist-three correlators are exact at all orders. The terms propor-
tional to twist-two correlators at higher perturbative orders are different from derivative
of R, and can contain integral convolutions. The term in brackets is the same for both
correlators at all perturbative orders as a consequence of PT-invariance (2.26).

5.2 Definition of physical TMD distributions

The physical cross-section is a sum of terms with various combinations of TMD correlators.
Some of them have the following schematic form

dσ ∼
∫
d2be−i(qb)[H ⊗ Φtw3](x, b)Φ11(x̃, b), (5.13)

where H is a hard coefficient function, Φtw3 is a twist-three TMD distribution, and ⊗ is a
convolution with respect to momentum fractions. For example, the LO of H ⊗Φtw3 is the
zeroth moment (5.1). After the renormalization procedure (2.11) explicit divergences of H
and Φ’s cancel. Nonetheless, the convolution H ⊗Φtw3 still contains the (special) rapidity
divergences. These divergences, however, do not imply the breaking of the factorization
theorem at NLP, because they cancel in-between various terms of the factorization theorem.
Therefore, even if the factorization theorem holds and the cross-sections are finite, it makes
impossible to straightforward compute the convolutions term-by-term, using the TMD
distributions defined earlier. This is, of course, a problem for any phenomenological study
involving twist-three TMD distributions.

In order to make physical quantities well-defined term-by-term, we further modify the
definition of twist-three TMD distributions by subtracting the (special) divergent part. We
define

Φ̃[Γ]
µ,12(z1, z2, z3) = Φ̃[Γ]

µ,12(z1, z2, z3)− [R12 ⊗ Φ̃11][Γ]
µ (z1, z2, z3, b), (5.14)

Φ̃[Γ]
µ,21(z1, z2, z3) = Φ̃[Γ]

µ,21(z1, z2, z3)− [R21 ⊗ Φ̃11][Γ]
µ (z1, z2, z3, b),

where ⊗ is some integral convolution. The kernel R is defined with respect to the hard-
coefficient function H, such that the integral convolution H ⊗Φtw3 is finite. The physical
observables expressed in terms of Φ are finite term-by-term. For that reason, we call
correlators defined in eq. (5.14), and corresponding distributions, physical.

Physical TMD correlators satisfy the same symmetry properties as subtracted TMD
correlators discussed in sections 2 and 3. Thus one can define TMD correlators with
definite T-parity analogously to eq. (4.1), and define TMD distribution as in section 4.2.
The physical analogs of corresponding distributions we denote by the bold font.

Note that not each physical TMD distribution has subtraction term. In some cases,
the subtraction term [R⊗ Φ][Γ] has a zero projection to corresponding tensor structure.

The functionsR are to be constructed order-by-order in the perturbation theory. Using
the computation made in the previous section, we can construct R at LO. We find

[R21 ⊗ Φ̃11][Γ]
µ (z1, z2, z3, b) = ∂µD(b)

∫ 1

0
dα

∂

∂z1
Φ[Γ]

11 (z1, z
α
23, b) +O(a2

s), (5.15)

[R12 ⊗ Φ̃11][Γ]
µ (z1, z2, z3, b) = ∂µD(b)

∫ 1

0
dα

∂

∂z3
Φ[Γ]

11 (zα21, z3, b) +O(a2
s).
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It is straightforward to check that integrals (5.4) computed with (5.15) reproduce (5.9).
Therefore the zeroth moment of the physical distribution and corresponding term in the
cross-section are finite.

The subtraction term removes the “special” rapidity divergence of the zeroth moment.
Therefore, the physical TMD distributions satisfy ordinary evolution equation with respect
to the scale ζ

ζ
d

dζ
Φ̃(0)[Γ]
µ,• (z1, z2, b;µ, ζ) = −D(b, µ)Φ̃(0)[Γ]

µ,• (z1, z2, b;µ, ζ), (5.16)

where • is (12), (21), ⊕ or 	. Importantly, the physical distributions also satisfy ordinary
rapidity-evolution equation (2.21) without modifications

ζ
d

dζ
Φ̃[Γ]
µ,•(z1, z2, z3, b;µ, ζ) = −D(b, µ)Φ̃[Γ]

µ,•(z1, z2, z3, b;µ, ζ), (5.17)

where • is (12), (21), ⊕ or 	. The evolution equations with respect to µ are identical to the
corresponding equations for twist-three TMD correlators, because d[R ⊗ Φ]/dµ ∼ O(a2

s)
at LO. At the moment, it is not clear how the transformation (5.14) affects the evolution
equations with respect to µ at higher perturbative orders. It is also not clear how to
explicitly guarantee the finiteness of integrals in the numerical form.

In the momentum-fraction space, the expressions (5.15) become

[R21⊗Φ11][Γ]
µ (x1,x2,x3, b) = i∂µD(b)

∫ 1

−1
dy

∫ 1

0
dαδ(x3−αy)δ(x2− ᾱy)yΦ[Γ]

11 (y,b)+O(a2
s),

[R12⊗Φ11][Γ]
µ (x1,x2,x3, b) =−i∂µD(b)

∫ 1

−1
dy

∫ 1

0
dαδ(x1 +αy)δ(x2 + ᾱy)yΦ[Γ]

11 (y,b)+O(a2
s),

(5.18)
At x2 = 0 the values of expressions (5.18) are not defined. In this case, the integral
depends on the order in which one evaluate the Dirac-delta functions. However, the integral
over x2 is well-defined. Therefore, eqs. (5.18) represent generalized functions. The zeroth
moments (5.1) of eqs. (5.18) are rapidity divergent at x2 = 0. Thus, the expression for the
physical TMD correlator has finite zeroth momentum, and evolves according to eq. (5.16).

For x2 6= 0, one has

[R21⊗Φ11][Γ]
µ (x1,x2,x3,b) = i∂µD(b)Φ[Γ]

11 (−x1,b)(θ(x2,x3)−θ(−x2,−x3))+O(a2
s), (5.19)

[R12⊗Φ11][Γ]
µ (x1,x2,x3,b) = i∂µD(b)Φ[Γ]

11 (x3,b)(θ(x1,x2)−θ(−x1,−x2))+O(a2
s).

The value of discontinuity at x2 = 0 is proportional to the difference between quark and
anti-quark distributions. Indeed,(

lim
x2→+0

− lim
x2→−0

)
[R21⊗Φ11][Γ]

µ (x1, x2, x3, b) = i∂µD(b)
(
Φ[Γ]

11 (x, b) + Φ[Γ]
11 (−x, b)

)
, (5.20)

where x = |x3| = |x1|, and similar for the (12)-case. Since the physical TMD correlator
has a finite zeroth moment, one can expect that it is smooth at x2 = 0, and thus the
discontinuity of Φ[Γ]

µ,21 is given by eq. (5.20).
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The integrals (5.1) appear in the factorized cross-section at the tree-level. At higher
perturbative orders one faces more singular combinations, such as ln x2/x2 [9]. To study
these NLO terms one has to perform two-loop computation, which goes beyond the
present work. However, we expect that the general strategy presented in this section holds
at all orders of perturbation theory. It is also evident that the higher powers of TMD
factorization theorem will suffer similar problems of singular integrals. We expect that the
receipt suggested here is of general validity, i.e. the higher twist TMD distributions can
be turned to physical ones, that provide term-by-term finite cross-section, by subtracting
lower twist parts.

Since the physical distributions are defined with respect to kernel H, they generally are
not universal, and could depend on the process. However, for SIDIS, Drell-Yan and semi-
inclusive annihilation processes the hard coefficient functions are the same. It is also the
same in the factorization theorem for quasi-TMD correlators [45]. Therefore, the physical
TMD distributions defined here have at least a large spectrum of validity, and can be used
for description of all these cases.

The present definition of physical TMD distributions requires only the finiteness of
integral convolution [H ⊗ Φ]. It leaves a large freedom in the definition of the subtraction
terms. The suggested terms (5.15) represent the “minimal subtraction scheme”, where only
the divergent part is removed. Clearly, one can also incorporate finite terms, and use this
freedom to improve the properties of physical distributions. For example, one can prepare
physical distributions of twist-three regular in the small-b limit (see appendix C). This is
a very important point which requires a detailed study in the future.

6 Bi-quark TMD correlators

The distributions introduced in the previous sections are fundamental. They have closed
evolution equations, and the factorization theorem is expressed in their terms at any order
of the perturbative expansion. However, they are also very complicated from the practical
point of view. To start with, they are functions of two independent momentum fractions,
which complicates all formulas. For practical applications, it may be convenient to also
have a simpler approximation.

Until recently, the TMD factorization theorem at NLP was known only at the three
order, which can be expressed in the terms of TMD correlators Φ[ΓT ]

11 , where ΓT projects
one good and one bad components of quark fields. Such bi-quark distributions are visually
simpler, albeit having very convoluted properties. In this section we derive the relations
between bi-quark distributions and genuine twist-three TMD distributions. We also demon-
strate that the evolution equations for bi-quark distributions are not closed. Finally, we
show that the large-Nc limit ensures a simpler system of evolution equations and closure
of the evolution of bi-quark distributions.
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6.1 Definition

The bi-quark TMD correlators were introduced in analogy to the leading-twist TMD cor-
relators in ref. [5]. They are defined as

Φ[Γ]
q̄q (x, b) =

∫ ∞
−∞

dz

2πe
−ixzp+〈p, s|T{q̄(zn+ b)[zn+ b, Ln+ b]Γ2 [Ln, 0]q(0)}|p, s〉, (6.1)

where Γ is any Dirac matrix. For Γ ∈ Γ+ the bi-quark correlator has TMD-twist-(1,1) and
coincides with Φ[Γ]

11 . For other Γ’s bi-quark correlators do not have definite twist.
We consider the correlators of twist-three with Γ ∈ ΓT , where ΓT projects one good and

one bad component of the quark fields (A.5). The standard parameterization for bi-quark
twist-three TMD distributions reads9

Φ[1]
q̄q (x, b) = M

p+

[
e(x, b) + iεµνT bµsTνM e⊥T (x, b)

]
, (6.2)

Φ[iγ5]
q̄q (x, b) = M

p+

[
λeL(x, b) + i(b · sT )M eT (x, b)

]
, (6.3)

Φ[γα]
q̄q (x, b) = M

p+

[
− εαµT sTµfT (x, b) + iλεαµbµM f⊥L (x, b)− ibαMf⊥(x, b) (6.4)

−b2M2
(
gαµT
2 − bαbµ

b2

)
εTµνs

ν
T f
⊥
T (x, b)

]
,

Φ[γαγ5]
q̄q (x, b) = M

p+

[
sαT gT (x, b)− iλbαM g⊥L (x, b) + iεαµbµMg⊥(x, b) (6.5)

−b2M2
(
gαµT
2 − bαbµ

b2

)
sTνg

⊥
T (x, b)

]
,

Φ[iσαβγ5]
q̄q (x, b) = M

p+

[
i(bαsβT − s

α
T b

β)Mh⊥T (x, b)− εαβh(x, b)
]
, (6.6)

Φ[iσ+−γ5]
q̄q (x, b) = M

p+

[
λh⊥L (x, b) + i(b · sT )MhT (x, b)

]
, (6.7)

where all indices are transverse. There are 16 TMD bi-quark distribution of twist-3. Eight
of them are T-even and eight are T-odd, see table 2. These distributions are often used
in the phenomenology. Among these distributions, one of the most studied is the e dis-
tribution, see, e.g., refs. [48, 49] and references therein. The e distribution has one of the
simplest structures in terms of twist-three distributions and, unlike others, contains no
leading-twist contributions.

6.2 Relation between bi-quark and definite-twist distributions

On the theory side, the bi-quark TMD-correlators for Γ 6∈ Γ+ are not well-defined objects,
in the sense that their renormalization is troublesome. To explicitly reveal the problems,

9The standard parameterization is defined in refs. [5, 18], in the momentum space. The parameterization
in the transverse distance space is obtained by Fourier transformation, see e.g. refs. [34, 35], which basically
consists in the replacement pµT → −ib

µM2.
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we use the equations of motion for the bad components of the quark fields to obtain [18, 33]

Φ̃[ΓT ]
q̄q (z1, z2, b) = −1

2

∫ 0

L
dτ

∂

∂bµ

(
Φ̃[γµγ+ΓT ]

11 (z1 + τ, z2, b)− Φ̃[ΓT γ+γµ]
11 (z1, z2 + τ, b)

)
(6.8)

+ i

2

∫ 0

L
dτ

∫ τ

L
dσ
(
Φ̃[γµγ+ΓT ]
µ,21 (z1 + τ, z1 + σ, z2, b)− Φ̃[ΓT γ+γµ]

µ,12 (z1, z2 + σ, z2 + τ, b)
)
.

Here we omit the quark mass terms for simplicity. These terms are proportional to Φ̃11,
and can be simply restored if needed. The matrices {γµγ+ΓT ,ΓTγ+γµ} ∈ Γ+ for any ΓT .
Therefore, the distributions in the first line of eq. (6.8) have TMD-twist-(1,1), while in
the second line TMD-twists (2,1) and (1,2). In the momentum fraction representation the
relation is

Φ[ΓT ]
q̄q (x, b) = i

2xp+
∂

∂bµ

(
Φ[γµγ+ΓT ]

11 (x, b) + Φ[ΓT γ+γµ]
11 (x, b)

)
(6.9)

+ i

2xp+

(
Φ(0)[γµγ+ΓT ]
µ,21 (x, b)− Φ(0)[ΓT γ+γµ]

µ,12 (x, b)
)
,

where the zeroth moments are defined in eqs. (5.1). This bare relation clearly demonstrates
the issues of the definition:

• The UV renormalization of the zeroth moments Φ(0)
µ,• does not express via itself.

Therefore, the evolution equation for Φ[ΓT ]
q̄q is not closed, but mixes with integrals of

genuine twist-three TMD distributions;

• The rapidity renormalization of the zeroth moments Φ(0)
µ,• is not multiplicative.

Namely, in addition to ordinary rapidity divergences (that are renormalized by R),
there are special rapidity divergences alike ones considered in section 5.1.

Thus, the bi-quark TMD distributions are not well-defined.
Let us also point that the derivative of bare twist-two distributions does not commute

with the rapidity renomalization factor R(b). It produces extra terms ∼ ∂µR during the
renormalization procedure. These terms resemble special rapidity divergences in zeroth
moments terms (5.12). However, they do not cancel each other due to extra factor 1/2 in
eq. (5.12).

All mentioned problems arise at NLO of perturbative expression. In fact, bi-quark
correlators were introduced just as convenient combinations which appeared at the tree-
order of factorization theorem [18, 33]. Already at NLO of factorization theorem, this
notation is inconvenient, because genuine twist-three and twist-two parts receives different
hard coefficient functions [9], which break down the combinations. The situation here is
similar to the bi-quark twist-three collinear distributions gT , hL, e (see e.g. [11]), which
appears in the polarized DIS. They are not more than a convenient combinations of genuine
parton distributions, and their convenience does not hold beyond LO approximation.

For applications beyond LO, the bi-quark distributions are defined as the corresponding
combinations of renormalized distributions. Similarly, we define bi-quark TMD distribu-
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tions as combinations of physical TMD distributions,

Φ[ΓT ]
q̄q (x, b;µ, ζ) = i

2xp+
∂

∂bµ

(
Φ[γµγ+ΓT ]

11 (x, b;µ, ζ) + Φ[ΓT γ+γµ]
11 (x, b;µ, ζ)

)
(6.10)

+ i

2xp+

(
Φ(0)[γµγ+ΓT ]
µ,21 (x, b;µ, ζ)−Φ(0)[ΓT γ+γµ]

µ,12 (x, b;µ, ζ)
)
.

This expression is well-defined at all orders in perturbation theory, and reduces to eq. (6.1)
at LO.

Comparing the parameterizations for bi-quark correlators and physical TMD distribu-
tions, we obtain the following set of relations

x e = 2h(0)
⊕ , (6.11)

x e⊥T = 2h(0)A⊥
⊕,T , (6.12)

x eL = 2h(0)
⊕,L , (6.13)

x eT = 2h(0)D⊥
⊕,T , (6.14)

x fT = f (0)
	,T − g(0)

⊕,T − f
⊥
1T −

b2M2

2 f̊⊥1T , (6.15)

x f⊥L = −f (0)⊥
	,L + g(0)⊥

⊕,L , (6.16)

x f⊥ = f (0)⊥
	 − g(0)⊥

⊕ + f̊1 , (6.17)
x f⊥T = −f (0)⊥

	,T + g(0)⊥
⊕,T + f̊⊥1T , (6.18)

x gT = −f (0)
⊕,T − g(0)

	,T + g1T + b2M2

2 g̊1T , (6.19)

x g⊥L = f (0)⊥
⊕,L + g(0)⊥

	,L + g̊1 , (6.20)

x g⊥ = f (0)⊥
⊕ + g(0)⊥

	 , (6.21)
x g⊥T = f (0)⊥

⊕,T + g(0)⊥
	,T + g̊1T , (6.22)

xh⊥T = 2h(0)A⊥
	,T + h̊1 − h⊥1T −

b2M2

4 h̊⊥1T , (6.23)

xh = −2h(0)
	 − 2

(
h⊥1 + b2M2

2 h̊⊥1

)
, (6.24)

xh⊥L = −2h(0)
	,L − 2

(
h⊥1L + b2M2

2 h̊⊥1L

)
, (6.25)

xhT = −2h(0)D⊥
	,T − h̊1 − h⊥1T −

b2M2

4 h̊⊥1T , (6.26)

where we omit the argument (x, b;µ, ζ) for all functions, and

F̊ = 2
M2

∂

∂b2
F. (6.27)

In the space of transverse momentum (Fourier conjugated to b) these relations were derived
in ref. [18].
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The relations (6.11)–(6.26) involves only a half of the twist-three quark-gluon-quark
distributions, namely f⊥⊕ + g⊥	

f⊥	 − g⊥⊕,

 ,
 f⊥⊕,L + g⊥	,L

f⊥	,L − g⊥⊕,L

 ,
 f⊕,T + g	,T

f	,T − g⊕,T

 ,
 f⊥⊕,T + g⊥	,T

f⊥	,T − g⊥⊕,T

 , (6.28)

 h⊕
h	

 ,
 h⊕,L
h	,L

 ,
 hA⊥⊕,T
hA⊥	,T

 ,
 hD⊥⊕,T
hD⊥	,T

 .
These are the distributions with the quark-gluon pair having opposite helicities only, i.e.
only ⇑↓ or ⇓↑. The pairs (6.28) evolve autonomously with the kernel PA (3.15) (see sec-
tion 4.3), and do not mix with other distributions. Elements of a pair have opposite
T-parity, and mix only due to non-zero Θ. This mixture implies that pairs of twist-three
bi-quark distributions {f, g}, {h, e} (with the same labels) are intrinsically connected.

The rest distributions,

f	,T + g⊕,T , f⊥	,L + g⊥⊕,L, f⊥	,T + g⊥⊕,T , f⊥	 + g⊥⊕,

f⊕,T − g	,T , f⊥⊕,L − g⊥	,L, f⊥⊕,T − g⊥	,T , f⊥⊕ − g⊥	, (6.29)
h⊥⊕, h⊥⊕,L, hT⊥⊕,T , hS⊥⊕,T , h⊥	, h⊥	,L, hT⊥	,T , hS⊥	,T ,

do not contribute to the NLP factorization theorem, and evolve with the kernel PB (3.16).
However, they could appear at NNLP factorization.

6.3 Evolution equations

To find the evolution of the bi-quark distributions one needs to compute the zeroth moment
of the evolution kernels (4.4), (4.5). This computation is presented in the appendix B.2.
The resulting expression does not reproduces the zeroth momentum and has also terms
with convolutions of twist-three distributions. Therefore, the evolution equations with
respect to µ for the bi-quark distributions has the following schematic form

µ2 d

dµ2

F+

F−

 =
(

Γcusp
2 ln

(
µ2

ζ

)
+ γ1

)F+

F−

− (γ1 + γV
2

) 1
x

 f+

f−

 (6.30)

+ 1
x

∫ [dx]
x2

 2P 2πsΘ
−2πsΘ 2P

Φ+

Φ−

 ,
where {F+, F−} is a pair bi-quark distributions ({f, g} or {h, e} with the same labels),
{f+, f−} are the corresponding twist-two parts, and {Φ+,Φ−} are twist-three distribu-
tions (6.28). The cusp anomalous dimension Γcusp and the quark anomalous dimension γV
are defined in eq. (3.9). The anomalous dimension γ1 at LO is

γ1 = as(µ)CF +O(a2
s). (6.31)

The mixing with twist-two terms depend on the specific distribution and are given in
eqs. (6.34)–(6.49). The last term in eq. (6.30) mixes distributions with different T-parity.
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The kernels P and Θ are combinations of PA (3.15), Υ (3.12) and Θ (3.14). They are given
in eq. (B.12).

Since equations (6.30) do not have practical importance we do not write anomalous
dimensions and kernels explicitly. If necessary they could be found combining defini-
tions (6.11)–(6.26), with equations (4.18), (4.16), (B.12). Importantly, these equations
significantly simplify in the large-Nc limit, where

P = O
(
as
Nc

)
, Θ = O

(
as
Nc

)
, (6.32)

which is derived in appendix B.2. This structure is also evident in the NLO coefficient
function for TMD factorization (see eq. (6.15) in ref. [9]).

In the large-Nc limit, the zeroth moments of twist-three TMD distributions from the
list (6.28) have autonomous evolution. Alike twist-two distributions, they satisfy the pair
of equations

µ2 d

dµ2F
(0)
A (x, b) =

(
Γcusp

2 ln
(
µ2

ζ

)
+ γ1

)
F

(0)
A (x, b) +O

(
as
Nc

)
, (6.33)

ζ
d

dζ
F

(0)
A (x, b) = −D(b, µ)F (0)

A (x, b),

where F (0)
A is the zeroth moment (5.1) of any twist-three distribution listed in eq. (6.28),

Γcusp is the cusp anomalous dimension, and γ1 is given in (6.31). The evolution for the
zeroth moments of other twist-three distributions, i.e. those that are listed in eq. (6.29),
does not simplify in the large-Nc limit. It is given in equation (B.12).

Consequently, the evolution equations for bi-quark distributions in the large-Nc limit
are also closed. This observation is analogous to the situation with the twist-three structure
functions for DIS and baryon distribution amplitudes, for which the evolution equations
at LO and large-Nc are also closed [50, 51]. In the collinear case, this effect happens due
to the conformal properties of the operator [12]. In the TMD case, we do not have any
general explanation yet.

For completeness we provide the complete list of evolution equations in the large-Nc

limit explicitly

µ2 d

dµ2 e =
(

Γcusp
2 ln

(
µ2

ζ

)
+ asCF

)
e , (6.34)

µ2 d

dµ2 e
⊥
T =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
e⊥T , (6.35)

µ2 d

dµ2 eL =
(

Γcusp
2 ln

(
µ2

ζ

)
+ asCF

)
eL , (6.36)

µ2 d

dµ2 eT =
(

Γcusp
2 ln

(
µ2

ζ

)
+ asCF

)
eT , (6.37)

µ2 d

dµ2 fT =
(

Γcusp
2 ln

(
µ2

ζ

)
+ asCF

)
fT −

2asCF
x

(
f⊥1T + b2M2

2 f̊⊥1T

)
, (6.38)
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µ2 d

dµ2 f
⊥
L =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
f⊥L , (6.39)

µ2 d

dµ2 f
⊥ =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
f⊥ + 2asCF

x
f̊1 , (6.40)

µ2 d

dµ2 f
⊥
T =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
f⊥T + 2asCF

x
f̊⊥1T , (6.41)

µ2 d

dµ2 gT =
(

Γcusp
2 ln

(
µ2

ζ

)
+ asCF

)
gT + 2asCF

x

(
g1T + b2M2

2 g̊1T

)
, (6.42)

µ2 d

dµ2 g
⊥
L =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
g⊥L + 2asCF

x
g̊1 , (6.43)

µ2 d

dµ2 g
⊥ =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
g⊥ , (6.44)

µ2 d

dµ2 g
⊥
T =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
g⊥T + 2asCF

x
g̊1T , (6.45)

µ2 d

dµ2h
⊥
T =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
h⊥T + 2asCF

x

(̊
h1 − h⊥1T −

b2M2

4 h̊⊥1T

)
, (6.46)

µ2 d

dµ2h =
(

Γcusp
2 ln

(
µ2

ζ

)
+ asCF

)
h− 4asCF

x

(
h⊥1 + b2M2

2 h̊⊥1

)
, (6.47)

µ2 d

dµ2h
⊥
L =

(
Γcusp

2 ln
(
µ2

ζ

)
+ asCF

)
h⊥L −

2asCF
x

(
h⊥1L + b2M2

4 h̊⊥1L

)
, (6.48)

µ2 d

dµ2hT =
(

Γcusp
2 ln

(
µ2

ζ

)
+ asCF

)
hT −

2asCF
x

(̊
h1 + h⊥1T + b2M2

4 h̊⊥1T

)
, (6.49)

where we omit the arguments (x, b;µ, ζ) for each function, and the term O(as/Nc) for
brevity. Note that the twist-two and twist-three parts of bi-quark distributions can be
evolved separately, and added together afterwards.

The evolution with respect to scale ζ is much simpler, thanks to the physical distribu-
tions Φ in the definition (6.10). Since twist-two and twist-three distributions satisfies the
same evolution with ζ, the only deviation from ordinary evolution equations happen due
derivatives of twist-two terms. For completeness we provide the list of evolution equations
with respect to ζ

ζ
d

dζ
e = −D e , ζ

d

dζ
e⊥T = −D e⊥T , (6.50)

ζ
d

dζ
eL = −D eL , ζ

d

dζ
eT = −D eT , (6.51)

ζ
d

dζ
fT = −D fT + b2M2

2x D̊ f
⊥
1T , ζ

d

dζ
f⊥L = −Df⊥L , (6.52)

ζ
d

dζ
f⊥ = −D f⊥ − D̊ f1

x
, ζ

d

dζ
f⊥T = −D f⊥T − D̊

f⊥1T
x

, (6.53)

ζ
d

dζ
gT = −D gT −

b2M2

2x D̊ g1T , ζ
d

dζ
g⊥L = −D g⊥L − D̊

g1
x
, (6.54)
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ζ
d

dζ
g⊥ = −D g⊥ , ζ

d

dζ
g⊥T = −D g⊥T − D̊

g1T
x
, (6.55)

ζ
d

dζ
h⊥T = −D h⊥T − D̊

h1
x

+ b2M2

4x D̊ h
⊥
1T , ζ

d

dζ
h = −D h+ b2M2

x
D̊ h⊥1 , (6.56)

ζ
d

dζ
h⊥L = −D h⊥L + b2M2

4x D̊ h
⊥
1L , ζ

d

dζ
hT = −D hT + D̊h1

x
+ b2M2

4x D̊ h
⊥
1T , (6.57)

where we omit the arguments (x, b;µ, ζ) for each distribution and arguments (b, µ) for
the Collins-Soper kernels for brevity. Note that these equations are exact at all orders of
perturbation theory.

The derivative of the Collis-Soper kernel is singular at b→ 0,

D̊(b, µ) = Γcusp
2b2M2 + 2CFβ0

as
b2M2 +O

(
a2
s

b2M2

)
+ NP-terms, (6.58)

where β0 is the LO coefficient of the QCD beta-function. The “NP-terms” are non-
perturbative terms which are O(1) [52]. Additionally, the terms with D̊ are multiplied
by x−1. Therefore, the contribution of D̊ to the evolution is numerically large. From this,
we expect that the functions {f⊥, f⊥T , g⊥L , h⊥T , hT } are larger than other bi-quark TMD
distributions. Although this effect can be isolated to the twist-two part, we observe that
the genuine twist-three part of these functions have a singular small-b behavior (see ap-
pendix C.3). This implies that the functions {f⊥, f⊥T , g⊥L , h⊥T , hT } contribute to the cross-
section (at large pT ) at one power higher in comparison to naïve counting. This observation
could resolve the old-stated problem of mismatches in power counting between fixed-order
and TMD factorization for some observable [53]. The possibility of such a scenario was
discussed in ref. [54]. The detailed study of this mechanism is left for future publications.

7 Conclusion

This paper presents a study of twist-three TMD distributions starting from the operator
definition obtained within the NLP factorization theorem [9]. We discuss and demonstrate
issues of this definition, such as complex-valued functions, discontinuities at xi = 0, and
others. We revise these issues step-by-step, modifying the definition of twist-three TMD
distributions in order to solve them. In such a way, we introduce physical TMD distri-
butions of twist-three, which are well-defined in all aspects and can be used for practical
applications. The results of this work are of principal importance for the description of
available and future data on spin asymmetries in Drell-Yan and SIDIS processes. The
recent measurements by CLAS [55] allow testing of twist-three distributions’ predicted
scaling and asymptotic values.

The bottom-top strategy allows us to keep track of the properties of TMD distributions
and derive them with minimal efforts. So, we equip the definition with the evolution
equations, LO evolution kernels, symmetry relations, discussions on interpretation, support
properties, and small-b limit. We also link the genuine distributions discussed here with
the generic distributions. It provides the evolution equations for the latter. In this work,
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we consider only quark TMDPDFs. The study of TMDFFs and/or gluon distributions can
be made in the same way.

To our best knowledge, it is the first systematic first-principles study of genuine TMD
distributions of twist-three. Let us emphasize several points that we consider to be the
most important.

• There are 32 genuine TMDPDFs of twist-three. Only half of them contribute to the
NLP cross-section of the SIDIS or Drell-Yan process. Out of these TMDPDFs, 16
are T-odd, i.e., they change signs between DY and SIDIS definitions.

• The evolution equations for twist-three TMD distributions mix T-even and T-odd
TMD distributions. This mixture is proportional to a process-dependent sign factor,
such that each function preserves its T-parity and in-between-process universality.

• The genuine twist-three TMD distributions are generalized functions. Namely, their
value is not defined for some points of support domain (most importantly for the
vanishing gluon momentum), albeit they have definite integrals.

• The convolutions that contribute to the factorized cross-section are singular due to
discontinuities of TMD distributions, albeit producing a finite cross-section thanks
to the cancellation of divergences between different terms. The value of discontinuity
can be computed and subtracted. It gives rise to the definition of the physical TMD
distribution of twist-three, which provides a term-by-term finite cross-section.

• Some of the genuine twist-three TMD distributions have singular behavior at small-b,
namely as b−1. This behavior changes the naïve counting of terms in cross-section at
large transverse momenta, such as the one studied in ref. [53].

• The evolution of bi-quark twist-three TMD distributions is autonomous in the large-
Nc limit.

Each of these points is important for the further development of the theory and practice
of twist-three TMD distributions.
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A Convention for vector algebra

Along the paper, we use the following convention for light-cone decomposition with vectors
nµ and n̄µ (n2 = n̄2 = 0 and (n · n̄) = 1). The components of vectors are

vµ = v+n̄µ + v−nµ + vµT , (A.1)
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where vT is the transverse component. The symmetric and anti-symmetric tensors acting
in the transverse space are

gµνT = gµν − nµn̄ν − n̄µnν , εµνT = n̄αnβε
αβµν = ε−+µν , (A.2)

with ε0123 = +1.
The (massless) hadron moves along n̄µ, i.e. its momentum is pµ = p+n̄µ. It defines the

good component (ξ) and the bad component (η) of the quark field as

ξ = γ−γ+

2 q, η = γ+γ−

2 q. (A.3)

These projectors split the space of Dirac matrices Γ into three subspaces {Γ+,ΓT ,Γ−},
such that any quark-bilinear has decomposition

q̄Γq = ξ̄Γ+ξ + ξ̄ΓT η + η̄ΓT ξ + η̄Γ−η. (A.4)

The only non-vanishing projections of Dirac matrices for each set are

γ+γ−

2 Γ+ γ
−γ+

2 6= 0, γ+γ−

2 ΓT
γ+γ−

2 6= 0, γ−γ+

2 Γ− γ
+γ−

2 6= 0. (A.5)

The standard decomposition bases for Γ+ and ΓT are

Γ+
basis = {γ+, γ+γ5, iσα+γ5}, (A.6)

ΓT,basis = {1, iγ5, γα, γαγ5, iσαβγ5, iσ+−γ5}, (A.7)

where α and β are transverse indices. The σ and γ5 matrices defined as

σµν = i(γµγν − γνγµ)
2 , γ5 = iγ0γ1γ2γ3 = −i4! ε

µνρσγµγνγργσ = −i2 εµνT γ+γ−γµγν . (A.8)

γαγ5 = iεαβT γ+γ−γβ , (A.9)

where α is the transverse index.

B Evolution kernels

In this appendix we provide additional information about evolution kernels for twist-three
distributions.

B.1 Elementary kernels

The evolution kernel H has an convoluted form. For practical manipulations, it is conve-
nient to consider it as a sum of elementary kernels acting to the parton fields. We have

Hz2z3Uµ(z2,z3) = −CAĤUµ(z2,z3)+CAH+γµγ
νUν(z2,z3) (B.1)

−2
(
CF −

CA
2

)
H−γµγνUν(z2,z3)+

(
CF −

CA
2

)
P12He,(1)γνγ

µUν(z2,z3),
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where
Uµ(z2, z3) = Fµ+(z2n)q(z3n). (B.2)

The elementary evolution kernels are [30],

Ĥf(z2, z3) =
∫ 1

0

dα

α

(
2f(z2, z3)− ᾱ2f(zα23, z3)− ᾱf(z2, z

α
32)
)
,

H+f(z2, z3) =
∫ 1

0
dα

∫ ᾱ

0
dβ ᾱf(zα23, z

β
32), (B.3)

H−f(z2, z3) =
∫ 1

0
dα

∫ 1

ᾱ
dβ ᾱf(zα23, z

β
32),

P12He,(1)f(z2, z3) =
∫ 1

0
dα ᾱf(zα32, z2),

where zαij = zi(1−α) + zjα. These kernels obey different properties, each one representing
various components of conformal transformation. The action of the kernel on q̄(z3)Fµ+(z2)
is analogous, but with inverted order of gamma-matrices. The momentum representation
can be found in refs. [9, 56].

B.2 Evolution kernels for zeroth moments

The zeroth moment is defined as

f (0)
µ (z3) = −i

∫ z3

L
dz2f(z2, z3)e−sδz2 , (B.4)

where δ > 0 is a regulator required for determination of phases in the following integrals.
The evolution kernels for the zeroth moment can be computed using that

Hf (0)(z3) = −i
∫ z3

L
dz2Hf(z2, z3), (B.5)

where H is elementary kernel defined in eqs. (B.3). This computation is easier to perform
in terms of the generation functions. Using the shift operator we present

f(z2, z3) = ez2∂z2+z3∂z3f(0, 0), (B.6)

where ∂z are derivatives acting on the argument z. Then the integrals can be carried out
formally. We find

Ĥf (0)(z3) = f (0)(z3)− i
∫ z3

L
dz2

∂z2 + ∂z3
∂3

ln
(−s(∂2 + ∂3)

−s∂2

)
f(z2, z3), (B.7)

H+f (0)(z3) = − i2

∫ z3

L
dz2

∂z2
∂z3

ln
(−s(∂z2 + ∂z3)

−s∂z2

)
f(z2, z3), (B.8)

H−f (0)(z3) = 1
2f

(0)(z3) + i

2

∫ z3

L
dz2

∂z3
∂z2

ln
(−s(∂z2 + ∂z3)

−s∂z3

)
f(z2, z3), (B.9)

P12He,(1)f (0)(z3) = −f (0)(z3)− i
∫ z3

L
dz2

∂z2 + ∂z3
∂z2

ln
(−s(∂z2 + ∂z3)

−s∂z3

)
f(z2, z3). (B.10)
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In this expression the logarithms and their complex parts are presented and understood in
the same way as in eq. (2.14) (see footnote 3). Combining other elements of the evolution
equation (2.14) we obtain the LO equation for the zeroth moment of Φ12

µ2 d

dµ2 Φ̃(0)[Γ]
µ,21 (z1,z3, b) = as(µ)

{
CF

(
1+2ln

(
µ2

ζ

))
Φ̃(0)[Γ]
µ,21 (z1,z3, b) (B.11)

−i
∫ z1

L
dz2

[
CA ln

(
q+

+s∂z3

)
+2CF ln

(
q+

−s∂z3

)

−2
(
CF −

CA
2

)(
∂z3
∂z2

ln
(

q+

−s∂z1

)
+ ∂z1
∂z2

ln
(

q+

−s∂z3

))]
Φ̃[Γ]
µ,21(z1,z2,z3, b)

−i
∫ z1

L
dz2

[
− CA2

∂z2
∂z1

ln
(+s∂z3
−s∂z2

)
+
(
CF −

CA
2

)
ln
(+s∂z3
−s∂z1

)]
Φ̃[Γγνγµ]
ν,21 (z1,z2,z3, b)

}
,

where we use that (∂z1 + ∂z2 + ∂z3)Φ = 0, to simplify the expression. Let us emphasize
the combination of logarithms in the second line. These logarithms have the same real but
distinct imaginary parts. The equation for Φ12 is obtained by replacing ∂z1 ↔ ∂z3 and
reverting the order of gamma-matrices.

In the momentum-fractions space, the kernel reads

µ2 d

dµ2 Φ(0)[Γ]
µ,21 (x,b) = as(µ)

{
CF

(
1+2ln

(
µ2

ζ

))
Φ(0)[Γ]
µ,12 (x,b) (B.12)

+
∫ [dx]
x2− is0

δ(x−x3)
[
2
(
CF −

CA
2

)[
x3
x2

ln
( |x3|
|x1|

)
+ iπs

2 θ(0)
x1x2x3

]
Φ[Γ]
µ,21(x1,x2,x3, b)

+
[
− CA2

x2
x1

ln
( |x3|
|x2|

)
+
(
CF −

CA
2

)
ln
( |x3|
|x1|

)
+ iπsθ(1)

x1x2x3

]
Φ[Γγνγµ]
ν,21 (x1,x2,x3, b)

]}
.

In this expression we set q+ = |x3p
+| as prescribed by the convention eq. (2.17). The

expression enclosed by square brackets is regular at x2 = 0. The complex parts are

θ(0)
x1x2x3 =



−1, x1,2,3 ∈ (+,−,−),
1, x1,2,3 ∈ (+,−,+),
1, x1,2,3 ∈ (−,−,+),
1, x1,2,3 ∈ (−,+,+),
−1, x1,2,3 ∈ (−,+,−),
−1, x1,2,3 ∈ (+,+,−),

θ(1)
x1x2x3 =



−CA
2
x2
x1
, x1,2,3 ∈ (+,−,−),

CF − CA
2 , x1,2,3 ∈ (+,−,+),

0, x1,2,3 ∈ (−,−,+),
CA
2
x2
x1
, x1,2,3 ∈ (−,+,+),

−
(
CF − CA

2

)
, x1,2,3 ∈ (−,+,−),

0, x1,2,3 ∈ (+,+,−).
(B.13)

This expression can be compared with the logarithmic part of the hard coefficient func-
tion in the factorization theorem [9], and agrees with it. We emphasize the non-trivial
cancellation between complex parts of the logarithms.
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In the large-Nc limit the expression essentially simplifies

µ2 d

dµ2 Φ(0)[Γ]
µ,21 (x, b) = as(µ)

{
CF

(
1 + 2 ln

(
µ2

ζ

))
Φ(0)[Γ]
µ,12 (x, b) (B.14)

+
∫ [dx]
x2 − is0

δ(x− x3)
[
− CA

2
x2
x1

ln
( |x3|
|x2|

)
+ iπsθ(1)

x1x2x3

]
Φ[Γγνγµ]
ν,21 (x1, x2, x3, b)

]}

+O
(
as
Nc

)
.

The part of the kernel with Φ[Γ] expresses via the zeroth moment only, whereas the part
involving Φ[Γγνγµ] does not. Therefore, the action of the kernel PA (3.15) to the zeroth
moment expresses via the zeroth moment again in the large-Nc limit, whereas the action
of the kernel PB (3.16) has a more general structure.

The definition q+ (2.17) plays the crucial role in the large-Nc simplification. For
a general q+ one gets an additional term in the square brackets of eq. (B.12) propor-
tional to ln(q+/|x3p

+|). This term survives in the large-Nc limit, and produces the term
2Nc ln(q+/|x3p

+|)Φ[Γ]
21 in the square brackets in eq. (B.14). It spoils the simplification of

evolution equations for bi-quark TMD distributions.

C On leading behavior of TMD distributions at small-b

At the small values of b, the TMD correlators are expressed via the spatially compact
light-cone operators. The knowledge of asymptotic small-b expansion is important for
phenomenology since it relates collinear and TMD distributions, increasing their mutual
predictive power [57]. In this appendix, we discuss the leading terms of small-b expansion
for some of sub-leading TMD distributions, with a particular emphasis on the singular
∼ b−1 behavior. The list of relations presented here is incomplete. It lacks some of
the 32 twist-three distributions which have leading matching at higher twist order. The
main purpose of this appendix is to present examples of singular small-b behavior, as the
phenomenon of the lowering of collinear twist. The complete evaluation and detailed study
is a topic left for a separate investigation.

C.1 Computation of the small-b matching

The small-b expansion for the twist-two TMD distributions is studied in details. The
coefficient functions for leading terms are known at NLO for all TMD distributions [39, 47,
58, 59] (except pretzelosity h⊥1T that has leading term at twist-four, see ref. [22]). In some
cases the coefficient functions are known at NNLO [43, 60, 61] and at N3LO [62, 63].

The tree order of the small-b expansion corresponds to a Taylor expansion of the TMD
operator. Clearly, this operation can only increase the geometrical twist of the light-cone
operator. Therefore, for an operator with the TMD-twist-(N,M) the leading small-b term
has twist-(N+M). Therefore, for the present case the smallest-twist distributions are of
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Fµ+

(A)

Fµ+

(B)

Fµ+

(C)

Fµ+

(D)

Figure 5. The diagrams that are singular at b → 0, and which provide leading contribution to
the matching ∼ as/b for Φ[Γ]

µ,12 (diagrams A and C) and Φ[Γ]
µ,21 (diagrams B and D).

twist-three. The leading term is

Φ̃[Γ]
µ,21(z1,z2,z3,b)=g〈p,s|T{q̄(z1n)[z1n,z2n]Fµ+[z2n,z3n]Γ2 q(z3n)}|p,s〉+O(b,asb−1), (C.1)

Φ̃[Γ]
µ,12(z1,z2,z3,b)=g〈p,s|T{q̄(z1n)[z1n,z2n]Fµ+[z2n,z3n]Γ2 q(z3n)}|p,s〉+O(b,asb−1),

where the infinite parts of Wilson lines are cancelled. The LO/LP expressions for Φ[Γ]
µ,12

and Φ[Γ]
µ,21 are identical. The corrections O(b) incorporate higher-twist operators. The

corrections O(as/b) incorporate twist-two distributions accompanied by the inverse power
of b, as it is demonstrated below.

The complete computation of the one-loop correction to (C.1) is complicated and we
do not cover it, for the time being. However, there exists a particular contribution which
gives a singular behavior at small-b. This contribution arises from the 2 → 1 diagrams10

with two quantum fields turning to a single classical field shown in figure 5. The leading
small-b expression for these diagrams is straightforward to compute using the background-
field approach, see ref. [39]. The result is UV finite. The quark contribution is given by
diagrams (A) and (B)

Φ̃[Γ](A)
µ,12 (z1, z2, z3, b) = 2iasCF

bν

b2

∫ 1

0
dα〈p, s|q̄(zα21n)←−∂+(αγνγµ + γµγν)Γ

2 q(z3n)|p, s〉, (C.2)

Φ̃[Γ](B)
µ,21 (z1, z2, z3, b) = 2iasCF

bν

b2

∫ 1

0
dα〈p, s|q̄(z1n)Γ

2 (γνγµ + αγµγν)∂+q(zα23n)|p, s〉,

where we drop the higher power terms (including ∼ b0), and zαij is defined in eq. (2.20).
The pure gluon contribution is given by diagrams (C) and (D). At twist-two level their
expressions are identical,

Φ̃[Γ](C)
µ,12 (z1, z2, z3, b) = Φ̃[Γ](D)

µ,21 (z1, z2, z3, b) (C.3)

= 2asTF
bρ
b2

∫ 1

0
dα
αTr(γργνγ−Γ)− ᾱTr(γνγργ−Γ)

2 〈p, s|Fµ+(z2n)Fν+(zα31n)|p, s〉,

where TF = 1/2 is the normalization of SU(Nc) generators. These expressions are ∼
bµ/b2 ∼ b−1. Thus, they present the true leading behavior of twist-three TMD distributions

10Such diagrams are also present in the renormalization of twist-three collinear operators and twist-two
semi-compact operators (see e.g. diagram u2 in figure 8 of ref. [9]). They are power divergent. However,
their renormalization does not mix twists in the MS-scheme, where power divergences are removed by
definition.
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at small-b. Note that we compute only the part proportional to twist-two distributions,
neglecting higher twist terms, which could be also singular at b→ 0.

In the momentum-fraction space the relations (C.2) read

Φ[Γ](A)
µ,12 (x1, x2, x3, b) = (C.4)

= 2asCF
bν

b2

∫ 1

0
dα

∫ 1

−1
dy yδ(x1 + αy)δ(x2 + ᾱy)

(
αΦ[γνγµΓ](y) + Φ[γµγνΓ](y)

)
,

Φ[Γ](B)
µ,21 (x1, x2, x3, b) =

= −2asCF
bν

b2

∫ 1

0
dα

∫ 1

−1
dy yδ(x3 − αy)δ(x2 − ᾱy)

(
αΦ[Γγµγν ](y) + Φ[Γγνγµ](y)

)
,

where Φ[Γ](x) is the collinear distributions defined by correlators (3.1) at b = 0. The
integral over the delta-functions produces

Φ[Γ](A)
µ,12 (x1, x2, x3, b) = (C.5)

= −2asCF
bν

b2

(
Φ[Γγνγµ](x3)− x1

x3
Φ[Γγµγν ](x3)

)
(θ(x1, x2)− θ(−x1,−x2)), x1, x2 6= 0,

Φ[Γ](B)
µ,21 (x1, x2, x3, b) =

= −2asCF
bν

b2

(
Φ[γµγνΓ](−x1)− x3

x1
Φ[γνγµΓ](−x1)

)
(θ(x2, x3)− θ(−x2,−x3)), x2, x3 6= 0,

where the relation x1 + x2 + x3 = 0 is used for simplification.
In the momentum-fraction space the relations (C.3) read

Φ[Γ](C)
µ,12 (x1, x2, x3, b) = Φ[Γ](D)

µ,21 (x1, x2, x3, b) (C.6)

= asTF
bρ
b2

∫ 1

0
dα

∫ 1

−1
dy yδ(x1 − αy)δ(x3 − ᾱy)αTr(γργνγ−Γ)− ᾱTr(γνγργ−Γ)

2 Φµν(y),

where Φµν is defined in eq. (C.16). Integrating over δ-function we obtain

Φ[Γ](C)
µ,12 (x1, x2, x3, b) = Φ[Γ](D)

µ,21 (x1, x2, x3, b) (C.7)

= −asTF
bρ
b2
x1Tr(γργνγ−Γ)− x3Tr(γνγργ−Γ)

2x2
Φµν(−x2)(θ(x1, x3)− θ(−x1,−x3)),

x1, x3 6= 0,

where we used x1 + x2 + x3 = 0 for simplification.
At x1 = 0, or x2 = 0, or x3 = 0 these expressions are not defined, but have finite

integral over these points. Let us for concreteness inspect the diagram B. Once x2 or x3
turns to zero, the product of δ function became indefinite, in the sense that its result
depends on the order of integration over α and y. However, performing the integration
over x2 or x3, one specifies the order of integration and the result of integration is definite.
Therefore, the functions Φ[Γ]

µ,12 and Φ[Γ]
µ,21 should be understood as generalized functions.

It is important to mention that the formula (C.7) has finite zeroth moment, despite
an extra factor 1/x2. Indeed, computing the zeroth moment of the diagram (D) we find
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for x > 0 ∫
[dx]

Φ[Γ](D)
µ,21 (x1, x2, x3, b)

x2
δ(x3 − x) (C.8)

= asTF
bρ
b2

∫ 1

x

dα

α

ᾱTr(γργνγ−Γ)− αTr(γνγργ−Γ)
2 Φµν

(
x

α

)
,

and similar expression for the diagram (C). Therefore, the gluon diagrams do not contribute
to the special rapidity divergence discussed in section 5.1.

C.2 Leading small-b expressions for TMD distributions

The matching expression for TMD distributions are obtained by comparing the param-
eterizations for TMD and collinear matrix elements. The standard parameterization for
collinear matrix elements is summarized in appendix B for convenience. The TMD distri-
butions with non-zero regular matching are

f⊕T (x1, x2, x3, b) = T (x1, x2, x3) +O(as),
g	T (x1, x2, x3, b) = −∆T (x1, x2, x3) +O(as), (C.9)
h⊕(x1, x2, x3, b) = δTε(x1, x2, x3) +O(as),
h	L(x1, x2, x3, b) = −δTg(x1, x2, x3) +O(as).

The distributions which have singular matching are

f⊥⊕L(x1,x2,x3, b) = 2as
M2b2

[
−CF

x2
x1
g1(−x1)(θ(x2,x3)−θ(−x2,−x3))

+TF
x1−x3
x2

fg(−x2)(θ(x1,x3)−θ(−x1,−x3))
]

+O
(
b2,

a2
s

b2

)
,

f⊥	 (x1,x2,x3, b) = 2as
M2b2

[
−CF

x1−x3
x1

f1(−x1)(θ(x2,x3)−θ(−x2,−x3))

+TF
x1−x3
x2

fg(−x2)(θ(x1,x3)−θ(−x1,−x3))
]

+O
(
b2,

a2
s

b2

)
,

g⊥⊕(x1,x2,x3, b) = 2as
M2b2

[
CF

x2
x1
f1(−x1)(θ(x2,x3)−θ(−x2,−x3))

−TF gg(−x2)(θ(x1,x3)−θ(−x1,−x3))
]

+O
(
b2,

a2
s

b2

)
,

g⊥	L(x1,x2,x3, b) = 2as
M2b2

[
CF

x1−x3
x1

g1(−x1)(θ(x2,x3)−θ(−x2,−x3)) (C.10)

+TF gg(−x2)(θ(x1,x3)−θ(−x1,−x3))
]

+O
(
b2,

a2
s

b2

)
,

hD⊥	T (x1,x2,x3, b) = 2asCF
M2b2

x3
x1
h1(−x1)(θ(x2,x3)−θ(−x2,−x3))+O

(
b2,

a2
s

b2

)
,

hA⊥	T (x1,x2,x3, b) = 2asCF
M2b2

x3
x1
h1(−x1)(θ(x2,x3)−θ(−x2,−x3))+O

(
b2,

a2
s

b2

)
,
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hS⊥	T (x1,x2,x3, b) = −4asCF
M2b2

h1(−x1)(θ(x2,x3)−θ(−x2,−x3))+O
(
b2,

a2
s

b2

)
,

hT⊥	T (x1,x2,x3, b) = 4asCF
M2b2

h1(−x1)(θ(x2,x3)−θ(−x2,−x3))+O
(
b2,

a2
s

b2

)
.

Let us mention, that the T-odd counter-partner distributions to (C.10) are zero at this
order. Nonetheless, they receives the singular matching at the two-loop level, at least due
to the evolution equations (4.15), (4.16), (4.17). Therefore, we have

{f⊥	L, f⊥⊕ , g⊥	, g⊥⊕L, hD⊥⊕T , hA⊥⊕T , hS⊥⊕T , hT⊥⊕T } = s×O
(
a2
s

b2

)
. (C.11)

These are only a part of small-b relations. To obtain the leading term for the left 12
distributions, one needs to compute a one power higher. Without this computation we
cannot strictly identify is the power of the leading small-b term.

The presented here relations violate the naïve expectations about power counting of
TMD distributions in the large-pT asymptotic. It explains the problems with “mismatch-
ing” between the fixed order computations and the leading twist TMD factorization ob-
served in ref. [53]. In ref. [54] authors discuss a possible resolution of this problem by
applying “violated” counting. Comparing the known asymptotics for the SIDIS structure
function F cosφ

UU , and computing the deficit, they derive the large-kT expression for the TMD
bi-quark function f⊥ (6.4). Their result agrees with our expressions for f⊥	 and g⊥⊕ in the
power-scaling, but has the different coefficient. It is due to the fact the authors of ref. [53]
ignore the contribution of twist-four distributions to the large-pT asymptotic.

C.3 Parameterization for collinear distributions

The standard parameterization for the collinear distributions of the twist-two [11] reads

〈p, s|q̄(zn)[zn, 0]γ
+

2 q(0)|p, s〉 = p+
∫ 1

−1
dxeixzp

+
f1(x), (C.12)

〈p, s|q̄(zn)[zn, 0]γ
+γ5

2 q(0)|p, s〉 = λp+
∫ 1

−1
dxeixzp

+
g1(x), (C.13)

〈p, s|q̄(zn)[zn, 0] iσ
α+γ5

2 q(0)|p, s〉 = sαT p
+
∫ 1

−1
dxeixzp

+
h1(x), (C.14)

where f1, g1 and h1 are unpolarized, helicity and transversity PDFs (also denoted as q,
∆q and δq). The sµT is the transverse part of the spin vector, and λ = Ms+/p+ is its
longitudinal part. The twist-two PDFs are defined at −1 < x < 1 and for the negative
values of x are associated with PDF for anti-quarks

f1(x) = θ(x)f1,q←h(x)− θ(−x)f1,q̄←h(−x), (C.15)

and similar for g1 and h1.
The gluon distribution is defined as

〈p, s|Fµ+(zn)[zn, 0]Fν+|p, s〉 = p2
+
2

∫ 1

−1
dxeixzp

+
xΦµν(x). (C.16)
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The components of Φµν are

Φµν(x) = −gµνT fg(x)− iλεµνgg(x), (C.17)

where fg and gg are the unpolarized and helicity gluon distributions.
The twist-three distributions are parametrized as [35]

〈p, s|q̄(z1n)Fµ+(z2n)γ
+

2 q(z3n)|p, s〉 = (C.18)

= p2
+ε

µν
T sTνM

∫
[dx]e−i(x1z1+x2z2+x3z3)p+

T (x1, x2, x3),

〈p, s|q̄(z1n)Fµ+(z2n)γ
+γ5

2 q(z3n)|p, s〉 = (C.19)

= ip2
+s

µ
TM

∫
[dx]e−i(x1z1+x2z2+x3z3)p+∆T (x1, x2, x3),

〈p, s|q̄(z1n)Fµ+(z2n) iσ
α+γ5

2 q(z3n)|p, s〉 = (C.20)

= p2
+ε

µα
T M

∫
[dx]e−i(x1z1+x2z2+x3z3)p+

δTε(x1, x2, x3)

+ip2
+λg

µα
T M

∫
[dx]e−i(x1z1+x2z2+x3z3)p+

δTg(x1, x2, x3),

where we omit Wilson lines in the operator for brevity. The tensors εµνT and gµνT are defined
in eq. (A.2), and

∫
[dx] is defined in eq. (3.2). For relation of this notation to other notations

see [35, 37, 64].
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