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We compute the single-spin asymmetry AUL in semi-inclusive deep-inelastic scattering of unpolarized
leptons and longitudinally polarized protons at a large transverse momentum of the produced hadron. Our
calculation is performed in collinear factorization at the lowest order of QCD perturbation theory. For
photon exchange, the asymmetry is T-odd and receives contributions from the interference of the tree level
and one-loop absorptive amplitudes. We consider the behavior of the spin asymmetry at low transverse
momentum where contact to the formalism based on transverse momentum dependent distribution
functions can be made. We also present some phenomenological results relevant for the COMPASS and
HERMES experiments and the future Electron-Ion Collider.

DOI: 10.1103/PhysRevD.106.014020

I. INTRODUCTION

T-odd effects in semi-inclusive deep-inelastic scattering
(SIDIS) have been a focus of numerous theoretical and
experimental studies in recent years [1]. These studies were
motivated by the discovery [2–4] that a proton can in fact
have intrinsic T-odd parton distribution functions, associ-
ated with the interplay of transverse polarization of the
proton or its partons with the partonic transverse momenta.
Here, the term “T-odd” refers to a “naive” time-reversal
operation, which corresponds to ordinary time reversal
without the interchange of initial and final states of the
reaction considered.
T-odd effects can, however, also be generated in per-

turbation theory. They are absent at tree level, but the
seminal papers [5–10] described how they can arise from
absorptive parts of loop amplitudes at Oðα2sÞ in QCD hard
scattering, where αs is the strong coupling. Initially
proposed as tests of QCD and its gluon self-coupling
[6,7,9], T-odd effects in perturbative QCD have remained a
subject of interest ever since [11–21]. In regards to SIDIS,
the early studies [10,16,17] have addressed neutrino
scattering as well as scattering of longitudinally polarized
leptons off unpolarized protons [16,17].
In the present paper, we extend the previous work and

compute the leading perturbative T-odd effects for SIDIS

with unpolarized leptons colliding with longitudinally
polarized protons via photon exchange [22–24], which,
to our knowledge, have not been investigated by other
authors. Calculating the relevant absorptive parts of one-
loop amplitudes and using collinear factorization, we derive
the corresponding azimuthal terms in the spin asymmetry
AUL when the proton beam helicity is flipped. Our
calculation is to be seen in the same spirit as other
approaches that aim to obtain the phase required for (in
their case, transverse) single-spin asymmetries through a
hard-scattering mechanism [20,21,25]. In particular,
Ref. [21] has investigated perturbative T-odd effects for
the single- transverse SIDIS spin asymmetry AUT via the
structure function gT , and, as we shall see, there are
interesting connections of that study to our present work.
There are several aspects of this observable that motivate

us to carry out this study. First, and perhaps foremost,
perturbative T-odd effects in QCD have remained elusive
so far, and, given their unique property of arising from loop
effects in QCD, any observable sensitive to them is
valuable. In this context, it is also worth mentioning that
for AUL, the effects are sensitive to the proton’s helicity
parton distributions despite the fact that an unpolarized
lepton beam is used. This is quite unique as well since
usually conservation of parity in strong interactions pro-
hibits such single-longitudinal spin asymmetries.
Second, measurements of the relevant azimuthal terms

have been carried out in various fixed-target experiments
by the HERMES [26–29], CLAS [30], and COMPASS
[31–33] collaborations, albeit in kinematic regions that are
not clearly in the perturbative regime. Nevertheless, it is
interesting to see whether the perturbative calculations give
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results that are roughly consistent with data at the highest
transverse momenta Ph⊥ of the produced hadron accessed
so far. Much higher Ph⊥ should become available at the
future Electron-Ion Collider (EIC), where SIDIS studies
with exquisite precision will be feasible [34]. It is therefore
valuable to extend the “library” of observables relevant at
the EIC.
Finally, as mentioned above, most studies of T-odd

effects in QCD have addressed the nonperturbative regime
in terms of parton distributions and fragmentation func-
tions. For SIDIS, this approach becomes particularly useful
when the transverse momentum of the outgoing hadron
is relatively low, P2

h⊥ ≪ Q2, with Q2 the virtuality of the
exchanged photon. In this case, one can describe SIDIS in
terms of “transverse momentum dependent” (TMD) parton
distributions and fragmentation functions [35,36]. As has
been shown [37,38], TMDs can indeed generate the SIDIS
spin asymmetry AUL, and numerous phenomenological
studies have been performed [39–46]. Having also a
perturbative calculation of AUL, for which the observed
transverse momentum is acquired by the recoil against a
hard parton in the scattering process, one can address the
question in how far the TMD formalism is recovered as one
takes the limit P2

h⊥ ≪ Q2. General statements about the
high-transverse-momentum tail of TMDs were developed
in [47], which also make predictions for the behavior of
AUL that may be directly compared to our results. In this
context, the T-odd beam-spin asymmetry ALU is also
interesting [16,17,48,49], for which the initial lepton is
polarized, and we will briefly discuss this asymmetry as
well. We note that additional insights into the matching of
TMDs to perturbative calculations have become available
in recent years [50–59].
Our paper is organized as follows. In Sec. II, we introduce

the kinematic variables and the main ingredients for the
perturbative description of the spin-dependent SIDIS cross
section. In Sec. III, we briefly review the main properties of
T-odd asymmetries and describe the strategy for our
calculation. Section IV presents our perturbative results
for the T-odd contributions to the SIDIS spin asymmetry.
Next, in Sec. V, we consider the limit of small transverse
momenta and compare to known results in the TMD regime.
Phenomenological results are presented in Sec. VI. Here, we
consider the spin asymmetry AUL at the EIC and also
compare to the COMPASS [31] and HERMES data
[26,29]. Section VII concludes our paper.

II. PERTURBATIVE SIDIS CROSS SECTION

We consider the SIDIS process,

lðkÞ þ pðP; SÞ → l0ðk0Þ þ hðPhÞ þ X;

where we have indicated the four-momenta of the partici-
pating particles, and where S is the proton spin vector. We
set q≡ k − k0 and Q2 ≡ −q2 for the exchanged virtual

gauge boson, for which we will consider only a virtual
photon, thus excluding parity-violating effects. The usual
kinematical variables relevant for SIDIS are defined as

x ¼ Q2

2P · q
; y ¼ P · q

P · k
; z ¼ P · Ph

P · q
: ð1Þ

In the following, we will consider the transverse momen-
tum Ph⊥ and its azimuthal angle ϕh with respect to the
lepton plane, defined in a suitable reference frame. For
SIDIS phenomenology, one usually adopts the proton rest
frame. The kinematics of the process in this frame are
depicted on the left side of Fig. 1. The x3 axis is defined by
the direction of the photon three-momentum q⃗. Our actual
calculations will be performed in the Breit frame in which
the photon four-momentum has a vanishing energy com-
ponent, q ¼ ð0; 0; 0; QÞ, which simplifies the calculations.
This frame is related to the rest frame by a longitudinal
boost along the x3 axis so that all transverse components
remain unchanged. The situation in the Breit frame is
shown on the right side of Fig. 1.
As discussed in the Introduction, we consider longi-

tudinal polarization for the proton. In the proton rest frame,
this is defined by choosing the proton’s spin vector along
(or opposite to) the direction of the virtual photon. Here,
S⃗kq⃗will correspond to negative longitudinal polarization of
the proton. We note that in actual experiments, one will
define longitudinal polarization in the proton rest frame by
choosing the spin parallel or antiparallel to the lepton beam
direction rather than the photon one. The two cases are, of
course, related; all details may be found in Ref. [60] (see
also [29]). Specifically, they differ by admixtures related to
the corresponding transverse single-spin asymmetry AUT,
which can be taken into account in the experimental
analysis. Note that the case with polarization along the
lepton beam direction readily extends to the situation at an
lp collider, where a longitudinally polarized proton will
be in a helicity state. In the following, we will therefore
consider protons with either positive or negative helicity.

FIG. 1. Left: Kinematics of the SIDIS process in the rest frame
of the proton. Right: Same in the Breit frame.
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For an incoming unpolarized lepton scattering off a longitudinally polarized proton, two independent structure functions
contribute to the proton helicity-dependent part of the cross section [38,47,61], entering with dependencies of the form
sinðϕhÞ or sinð2ϕhÞ, respectively. Explicitly, we have

d5Δσh

dxdydzdP2
h⊥dϕh

¼ 1

2

�
d5σhþ

dxdydzdP2
h⊥dϕh

−
d5σh−

dxdydzdP2
h⊥dϕh

�

¼ πα2

xQ2

y
1 − ε

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
Fsinϕh
UL sinðϕhÞ þ εFsin 2ϕh

UL sinð2ϕhÞ
o
; ð2Þ

where the subscripts � denote proton helicities, and ε is defined as the ratio of longitudinal and transverse photon fluxes,

ε≡ 1 − y
1 − yþ y2=2

: ð3Þ

The structure functions Fsinϕh
UL ; Fsin 2ϕh

UL depend on x; z; Q2, and P2
h⊥, which we will usually not write out. In the following,

we will compute them in collinear factorization, where they become double convolutions of helicity parton distribution
functions, fragmentation functions, and perturbative partonic coefficient functions. We will only consider the lowest order
(LO) in perturbation theory, at which the structure functions may be cast into the forms,

Fsinϕh
UL ¼

�
αsðμ2Þ
2π

�
2 x
Q2z2

X
a;b

¼q;q̄;g

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
Δfa

�
x
x̂
; μ2

�
Csinϕh;a→b
UL ðx̂; ẑÞDh

b

�
z
ẑ
; μ2

�
δ

�
q2T
Q2

−
ð1 − x̂Þð1 − ẑÞ

x̂ ẑ

�
; ð4Þ

and likewise for Fsin 2ϕh
UL . The factor ðαs=ð2πÞÞ2x=ðQ2z2Þ

has been introduced for convenience; it explicitly exhibits
the leading power of αs of the structure functions and also
makes the coefficient functions Csinϕh;a→b

UL , Csin 2ϕh;a→b
UL

dimensionless functions of only the two partonic variables,

x̂≡ Q2

2pa · q
; ẑ≡ pa · pb

pa · q
; ð5Þ

which are the partonic counterparts of the hadronic vari-
ables in Eq. (1). The coefficient functions are to be derived
for each 2 → 2 partonic channel γ� þ a → bþ c, where
parton b fragments into the observed hadron, and parton c
remains unobserved. These processes are γ�qðq̄Þ → qðq̄Þg,
γ�qðq̄Þ → gqðq̄Þ, γ�g → qq̄, and γ�g → q̄q.
In Eq. (4),Δfaðξ; μ2Þ is the helicity distribution of parton

a ¼ q; q̄; g in the proton at momentum fraction ξ and
factorization scale μ (which, for simplicity, we choose
equal to the renormalization scale μ appearing in the strong
coupling constant αs). Furthermore, Dh

bðζ; μ2Þ is the cor-
responding fragmentation function for parton b going to the
observed hadron h, at momentum fraction ζ and, again,
at factorization scale μ. All functions in Eq. (4) are tied
together by the δ function in the second line, which
expresses the fact that at LO, the recoiling partonic system
consists of a single massless parton c. For convenience, we
have introduced the variable,

q2T ≡ P2
h⊥
z2

: ð6Þ

III. T-ODD SINGLE-SPIN ASYMMETRY
AT LOWEST ORDER

The terms proportional to sinðϕhÞ and sinð2ϕhÞ represent
correlations of the forms, S⃗ ·ðk⃗ 0⊥× P⃗h⊥Þ and S⃗ · ðk⃗ 0⊥ × P⃗h⊥Þ
ðk⃗ 0⊥ · P⃗h⊥Þ, respectively, which already suggests that they
are “naively” time-reversal odd. This sets a constraint on
the partonic scattering processes that may contribute to the
corresponding asymmetries in perturbation theory. To set
the stage for our derivations, we briefly review how this
constraint can be exploited to simplify the calculations.
Denoting as Sfi the scattering matrix element between an

initial state i and a final state f, a naive time-reversal
transformation corresponds to a time-reversal without
interchange of initial and final states. Hence, a T-odd
observable is characterized by [10,62,63]

jSfij2 ≠ jSf̃ ĩj2; ð7Þ

where ĩðf̃Þ is obtained from iðfÞ by reversing momenta and
spins. T-odd effects can also be present in theories that are
invariant under true time-reversal, fulfilling

jSfij2 ¼ jSĩ f̃j2: ð8Þ

This is easily understood by considering the reaction
matrix T:

Sfi ≡ δfi þ ið2πÞ4δð4ÞðPf − PiÞTfi; ð9Þ
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and the unitarity condition for the scattering matrix,

Tfi − T�
if ¼ i

X
X

T�
XfTXiδ

ð4ÞðPX − PiÞ≡ iαfi; ð10Þ

where, in the last equation, we introduced the absorptive
part αfi of the reaction amplitude. Equation (10) can be
rewritten as T�

if ¼ Tfi − iαfi. Taking the square modulus of
both sides, we find

jTifj2 ¼ jTfij2 þ 2 ImðT�
fiαfiÞ þ jαfij2: ð11Þ

True time reversal invariance, Eq. (8), implies jTifj2 ¼
jTf̃ ĩj2 (leaving aside the case i ¼ f). Thus, if only QED and
QCD interactions are present, Eq. (11) gives an expression
for T-odd terms:

jTf̃ ĩj2 − jTfij2 ¼ 2ImðT�
fiαfiÞ þ jαfij2: ð12Þ

If we consider the partonic processes underlying semi-
inclusive DIS, the LO contributions to Tfi are the tree-level
diagrams for γ� þ q → qþ g and γ� þ g → qþ q̄ shown in
Fig. 2. The leading terms for the absorptive amplitude αfi
arise from loop corrections already at one-loop order. The
one-loop diagrams shown in Fig. 3 for the initial-quark
channel and in Fig. 4 for the initial-gluon channel all have
the property that they have an imaginary part and hence,

produce a phase relative to the corresponding tree-level
amplitudes. As a result, the term 2ImðT�

fiαfiÞ in Eq. (12) is
nonvanishing already due to the interferences of the one-
loop and tree amplitudes. We conclude that LO contribu-
tions to T-odd effects in SIDIS come precisely from these
interferences and are of order Oðα2sÞ [10].
Let us briefly describe the strategy we have adopted in

computing the T-odd interference contributions. Introducing
the amplitudes M�

ab for positive and negative helicity of
parton a in the channel γ� þ a → bþ c, we write the
difference of their squares as

jMþ
abj2 − jM−

abj2 ¼ LμνðŴþ
μν − Ŵ−

μνÞ≡ LμνΔŴμν; ð13Þ

where

FIG. 2. Tree-level diagrams for γ� þ q → qþ g and γ� þ g → qþ q̄.

FIG. 3. One-loop diagrams for γ� þ q → qþ g that provide a phase relative to the tree-level amplitude. We note that there are
additional one-loop diagrams that do not produce a phase.

FIG. 4. One-loop diagrams for γ� þ g → qþ q̄ that provide a
phase relative to the tree-level amplitude.
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Lμν ¼ 2

�
kμk0ν þ kνk0μ −

Q2

2
gμν

�
ð14Þ

is the leptonic tensor, and

ΔŴμν ≡ hpa;þjJμð0ÞjpbpcihpbpcjJνð0Þjpa;þi
− hpa;−jJμð0ÞjpbpcihpbpcjJνð0Þjpa;−i ð15Þ

is the partonic tensor for a polarized parton a in the initial
state and a fragmenting parton b in the final state (at LO,
the final state is completely fixed by a and b). Since, as
discussed above, only interferences between tree-level and
one-loop amplitudes contribute to the order we are consid-
ering, we have

ΔŴμν ¼ ½hpa;þjJμ;treeð0ÞjpbpcihpbpcjJν;loopð0Þjpa;þi þ hpa;þjJμ;loopð0ÞjpbpcihpbpcjJν;treeð0Þjpa;þi�
− ½hpa;−jJμ;treeð0ÞjpbpcihpbpcjJν;loopð0Þjpa;−i þ hpa;−jJμ;loopð0ÞjpbpcihpbpcjJν;treeð0Þjpa;−i�: ð16Þ

The phase required for a nonvanishing imaginary part is
generated by analytic continuation of logarithms in the loop
integrals, e.g.,

ln

�
−

μ2

ŝþ iϵ

�
→ ln

�
μ2

ŝ

�
þ iπ; ð17Þ

where ŝ ¼ ðqþ pÞ2 ¼ Q2ð1 − x̂Þ=x̂. As mentioned, such
phases only appear in the s-channel diagrams and the two
box-diagrams in Fig. 3 for initial quarks (or antiquarks). For
initial gluons, they appear in the two box diagrams in Fig. 4.
It is quite straightforward to compute the partonic tensor

ΔŴμν. The only subtlety is related to the use of the Dirac
matrix γ5 and the Levi-Civita tensor εμνρσ in dimensional
regularization in d ¼ 4 − 2ϵ dimensions. Here, we have
used the scheme of Refs. [64,65], which is known to be

algebraically consistent. We have used the MATHEMATICA

package TRACER [66] to compute the Dirac traces and
contractions and PACKAGE-X [67] for the evaluation of the
loop integrals and their imaginary parts. We note that poles
in ϵ ¼ 0 arise at various intermediate stages of the
calculation; these all have to cancel in the end since, at
the lowest order, the T-odd part of the hadronic tensor must
not have any ultraviolet or infrared or collinear singular-
ities. This provides a useful check on our calculation. The
partonic coefficient functions are found from the final result
for LμνΔŴμν as the coefficients of the terms ∼ sinðϕhÞ and
∼ sinð2ϕhÞ. No other angular dependencies appear.

IV. ANALYTICAL RESULTS

For the partonic coefficient functions for Fsinϕh
UL , we find

[23,24]

Csinϕh;q→q
UL ðx̂; ẑÞ ¼ e2qCF

�
CAð1 − x̂Þ þ CFðx̂ − 1 − ẑþ 3x̂ ẑÞ þ ðCA − 2CFÞð1 − 2x̂Þ ẑ ln ẑ

1 − ẑ

�
Q
qT

;

Csinϕh;q→g
UL ðx̂; ẑÞ ¼ −e2qCF

ð1 − ẑÞ
ẑ

�
CAð1 − x̂Þ þ CFð−3x̂ ẑþ4x̂þ ẑ − 2Þ þ ðCA − 2CFÞð1 − 2x̂Þ ð1 − ẑÞ lnð1 − ẑÞ

ẑ

�
Q
qT

;

Csinϕh;g→q
UL ðx̂; ẑÞ ¼ e2qðCA − 2CFÞð1 − x̂Þ 1

2ẑ2

�
x̂ ẑð1 − 2ẑÞ − ð1 − x̂Þ lnð1 − ẑÞ þ ð1 − x̂Þ ẑ lnðẑÞ

1 − ẑ

�
Q
qT

; ð18Þ

while for the coefficients for Fsin 2ϕh
UL , we have [23,24]

Csin 2ϕh;q→q
UL ðx̂; ẑÞ ¼ e2qCFð1 − x̂Þ

�
ðCA − 2CFÞ

ð1 − 2ẑÞ ln ẑ
1 − ẑ

− ðCA þ ð1 − 3ẑÞCFÞ
�
Q2

q2T
;

Csin 2ϕh;q→g
UL ðx̂; ẑÞ ¼ −e2qCFð1 − x̂Þ ð1 − ẑÞ2

ẑ2

�
ðCA − 2CFÞ

ð1 − 2ẑÞ lnð1 − ẑÞ
ẑ

þ ðCA − ð2 − 3ẑÞCFÞ
�
Q2

q2T
;

Csin 2ϕh;g→q
UL ðx̂; ẑÞ ¼ e2qðCA − 2CFÞð1 − x̂Þ2 1

2ẑ3

�
ẑð2ð1 − ẑÞẑ − 1Þ − ð1 − ẑÞ lnð1 − ẑÞ − ẑ2 ln ẑ

1 − ẑ

�
Q2

q2T
: ð19Þ

Note that the ratio qT=Q in the above expressions is fixed by x̂ and ẑ through the δ-function in (4). The q → q and q → g
coefficients are related by crossing symmetry in the following way:
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Csinϕh;q→g
UL ðx̂; ẑÞ ¼ −Csinϕh;q→q

UL ðx̂; 1 − ẑÞ;
Csin 2ϕh;q→g
UL ðx̂; ẑÞ ¼ Csin 2ϕh;q→q

UL ðx̂; 1 − ẑÞ: ð20Þ

Furthermore, because of charge conjugation and parity
invariance, the results for the antiquark channels q̄ → q̄ and
q̄ → g are identical to those for q → q and q → g, respec-
tively. In addition, we have

Csinϕh;g→q̄
UL ðx̂; ẑÞ ¼ −Csinϕh;g→q

UL ðx̂; 1 − ẑÞ;
Csin 2ϕh;g→q̄
UL ðx̂; ẑÞ ¼ Csin 2ϕh;g→q

UL ðx̂; 1 − ẑÞ: ð21Þ

In Ref. [22], we have also derived these results via crossing
of the corresponding T-odd asymmetries in eþe− annihi-
lation in [17]. Our results given above correct the sign of
the results in [22]. For the case of quark-initiated processes,
an independent cross-check is provided by the SIDIS beam
asymmetries ALU calculated in Ref. [10]. Indeed, for the
charged-current case considered in these papers, the inter-
action mediated byW bosons selects left-handed quarks so
that even if the target is unpolarized, the partonic matrix
elements are the same as in our Eq. (16), albeit with
reversed helicity. For instance, by looking at the functions
F8 and F9 in Eqs. (3.14) of [17], in the case of quark-
initiated diagrams, one can verify that they correspond

to our Csinϕh
UL and Csin 2ϕh

UL functions with a reversed sign.
Clearly, this reasoning does not allow comparisons in the
case of incoming gluons.
As we mentioned in the Introduction, there are interest-

ing connections of our work to the recent study [21] on a
two-loop perturbative mechanism for the single-transverse
SIDIS spin asymmetry AUT involving the structure function
gT . A well-known feature of gT is that its Wandzura-
Wilczek [68] part is proportional to an integral over the
quark and gluon helicity parton distributions. This part of
the calculation of [21] therefore involves hard-scattering
cross sections with definite helicities of the incoming
partons. Remarkably, these turn out to be the same as
the ones we have presented above (apart, of course, from
normalization, which is necessarily different for AUL and
AUT). This feature deserves further investigation in the
future.

V. LOW-qT LIMIT

As discussed in the Introduction, it is interesting to
expand the above results for the structure functions for low
values of qT=Q, in order to make contact with results
predicted by the TMD formalism. When q2T=Q

2 → 0, we
can expand the delta condition in (4) as described, for
example, in [69–71]:

1

x̂ ẑ
δ

�
q2T
Q2

−
ð1 − x̂Þð1 − ẑÞ

x̂ ẑ

�
¼ δð1 − ẑÞδð1 − x̂Þ ln

�
Q2

q2T

�
þ δð1 − ẑÞ
ð1 − x̂Þþ

þ δð1 − x̂Þ
ð1 − ẑÞþ

þO
�
q2T
Q2

�
: ð22Þ

Here, the “plus” distribution is defined in the usual way upon integration with a regular function:

Z
1

0

dyðfðyÞÞþgðyÞ≡
Z

1

0

dyfðyÞðgðyÞ − gð1ÞÞ: ð23Þ

To simplify notation, we write the double convolution integral as (we omit the scale dependence of the parton distributions
and fragmentation functions here):

ðΔf ⊗ C ⊗ DÞðx; zÞ≡
Z

1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
δ

�
q2T
Q2

−
ð1 − x̂Þð1 − ẑÞ

x̂ ẑ

�
Δf

�
x
x̂

�
Cðx̂; ẑÞD

�
z
ẑ

�
: ð24Þ

From the sinðϕhÞ terms in (18), we then find the following contribution to the q → q coefficient at low qT=Q:

ðΔfq ⊗ Csinϕh;q→q
UL ⊗Dh

qÞðx; zÞ ¼ e2q
Q
qT

CA

2

�
−CF

�
2 ln

�
q2T
Q2

�
þ 3

�
ΔfqðxÞDh

qðzÞ þDh
qðzÞ

Z
1

x
dx̂δPqqðx̂ÞΔfq

�
x
x̂

�

þΔfqðxÞ
Z

1

z
dẑδPqqðẑÞDh

q

�
z
ẑ

��
− e2q

Q
qT

CF

CA
ΔfqðxÞ

Z
1

z
dẑ

ẑ
1− ẑ

�
1þ ln ẑ

1− ẑ

�
Dh

q

�
z
ẑ

�
;

ð25Þ

where

δPqqðxÞ≡ CF

�
2x

ð1 − xÞþ
þ 3

2
δð1 − xÞ

�
ð26Þ
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is the LO splitting function for the scale evolution of the transversity distributions. In the q → g channel, we obtain

ðΔfq ⊗ Csinϕh;q→g
UL ⊗ Dh

gÞðx; zÞ ¼ e2q
Q
qT

CFΔfqðxÞ
Z

1

z
dẑ

1 − ẑ
ẑ2

ððCA − 2CFÞ lnð1 − ẑÞ − 2CFẑÞDh
g

�
z
ẑ

�
: ð27Þ

For the process γ�g → qq̄, the coefficient function diverges logarithmically for ẑ → 1. In addition to the expansion (22), we
therefore also need

lnð1 − ẑÞ
x̂ ẑ

δ

�
q2T
Q2

−
ð1 − x̂Þð1 − ẑÞ

x̂ ẑ

�
¼ −

1

2
ln2

�
Q2

q2T

�
δð1 − x̂Þδð1 − ẑÞ − δð1 − ẑÞ

ð1 − x̂Þþ
ln

�
Q2

q2T

�

þ δð1 − x̂Þ
�
lnð1 − ẑÞ
1 − ẑ

�
þ
− δð1 − ẑÞ

��
ln ð1 − x̂Þ
1 − x̂

�
þ
−

ln x̂
1 − x̂

�
: ð28Þ

Details of the derivation of this equation are given in Appendix A. We then find

ðΔfg ⊗ Csinϕh;g→q
UL ⊗ Dh

qÞðx; zÞ� ¼
e2q
2

Q
qT

ðCA − 2CFÞDh
qðzÞ

Z
1

x
dx̂Δfg

�
x
x̂

��
ð1 − x̂Þ ln

�
Q2

q2T

�
þ ð1 − x̂Þ ln

�
1 − x̂
x̂

�
− 1

�
:

ð29Þ

The results in Eqs. (25), (27), and (29) are valid up to terms
of order qT=Q. Keeping in mind the overall factor 1=Q2 in
Eq. (4), we see that the structure function Fsinϕh

UL is predicted
to have the leading power,

Fsinϕh
UL ∝

1

QqT
þO

�
1

Q2

�
; ð30Þ

at low qT, modulo logarithms. The behavior found for
γ�q → qg in Eq. (25) is particularly interesting. The term
−CFð2 lnðq2T=Q2Þ þ 3Þ is the well-known first-order con-
tribution to the Sudakov form factor. The next two terms
both contain the LO transversity splitting function δPqq,
convoluted with either the helicity parton distribution or the
fragmentation function. A generic low-qT structure with the
Sudakov form factor and splitting functions is familiar from
the spin-averaged case (see Ref. [71]). However, the

appearance of the transversity splitting function in combi-
nation with Δfq orDh

q, and along with an overall factor CA,
is quite remarkable. This feature must be related to the fact
that in the TMD framework the leading part of Asinϕh

UL
receives contributions from the T-even function hL, which
is twist three and describes the distribution of transversely
polarized quarks in a longitudinally polarized hadron,
convoluted with the Collins function probing the fragmen-
tation of transversely polarized quarks [38]. The last term in
(25) and the results in Eqs. (27) and (29) do not appear to
have a straightforward structure. Another striking feature is
the appearance of a logarithm of qT=Q in the result for the
g → q channel in Eq. (29): Such logarithms do not usually
appear in off-diagonal contributions at lowest order.
Similarly, we can consider the low-qT=Q limit for the

sinð2ϕhÞ terms. Here, we find for the q → q channel:

ðΔfq ⊗ Csin 2ϕh;q→q
UL ⊗ Dh

qÞðx; zÞ ¼ −e2q
3

4
CA

�
−CF

�
2 ln

�
q2T
Q2

�
þ 3

�
ΔfqðxÞDh

qðzÞ ln
�
q2T
Q2

�

þDh
qðzÞ

Z
1

x
dx̂ δPqqðx̂ÞΔfq

�
x
x̂

�
þ ΔfqðxÞ

Z
1

z
dẑ δPqqðẑÞDh

q

�
z
ẑ

��

þ CF

2CA
ΔfqðxÞ

Z
1

z
dẑ

ẑ
ð1 − ẑÞ2

�
1 − 3ẑ − 2ð2ẑ − 1Þ ln ẑ

1 − ẑ

�
Dh

q

�
z
ẑ

�
: ð31Þ

Apart from normalization, the first three terms are identical to the corresponding ones in Eq. (25). We note that, despite first
appearances, the integrand of the last term is regular as ẑ → 1.
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In the q → g channel, we have

ðΔfq ⊗ Csin 2ϕh;q→g
UL ⊗ Dh

gÞðx; zÞ ¼ −e2qCFΔfqðxÞ
Z

1

z

dẑ
ẑ

�
ðCA − 2CFÞ

ð1 − 2ẑÞ lnð1 − ẑÞ
ẑ

þ ðCA − ð2 − 3ẑÞCFÞ
�
Dh

g

�
z
ẑ

�
:

ð32Þ

For the channel γ�g → qq̄, we again need the expansion (28) and obtain

ðΔfg ⊗ Csin 2ϕh;g→q
UL ⊗ Dh

qÞðx; zÞ ¼
e2q
2
ðCA − 2CFÞDh

qðzÞ
Z

1

x
dx̂Δfg

�
x
x̂

�
x̂

�
ln

�
Q2

q2T

�
þ ln

�
1 − x̂
x̂

�
þ 3

2

�
: ð33Þ

The results in Eqs. (32) and (33) receive corrections of
order q2T=Q

2 so that

Fsin 2ϕh
UL ∝

1

Q2
þO

�
q2T
Q4

�
; ð34Þ

again up to logarithms.
Our low-qT expansions fill two of the gaps reported in

Table 2 of Ref. [47], providing the missing perturbative
expressions for the ϕh-dependent T-odd cross sections.
From the point of view of TMD factorization, they
correspond to the leading part of the “high-qT calcula-
tion.” As discussed in [47], the TMD framework predicts
the same behavior ∝ 1=ðQqTÞ of the sinðϕhÞ terms as we
find in Eq. (30). In this sense, the TMD calculation
matches the collinear one. At this point, however, one
cannot decide whether this matching is really quantitative
in the sense that not just the overall power counting
matches, but also the full combination of hard-scattering
coefficients, parton distributions, and fragmentation func-
tions. Currently, despite enormous progress in recent
years [50–59], the high-transverse-momentum tails of
TMDs are not understood at a sufficient level to obtain
definitive results for AUL, especially in the case of the
fragmentation correlators. Clearly, it will be very interest-
ing to explore this issue more deeply in the future, also in
the light of TMD factorization theorems extending beyond
leading twist proposed recently [56,58].
For the sinð2ϕhÞ terms, we find in Eq. (34) that the

perturbative structure function becomes constant at low qT.
Including the factors of the strong coupling, Fsin 2ϕh

UL
behaves in total as α2s=Q2. This result is not in accordance
with the TMD prediction [47] that the high-qT tail of this
structure function should behave as αs=q4T . In the TMD
framework, Fsin 2ϕh

UL is leading twist, being a convolution of
the longitudinal worm-gear functions with Collins func-
tions [38]. As one can see, even the powers of the strong
coupling differ between the TMD prediction and our
perturbative result.
In the context of this discussion, it is also interesting to

recall the corresponding results for the T-odd beam spin

asymmetry ALU [16,17], for which the initial lepton is
polarized. The relevant results are given in Appendix B.
Interestingly, at low qT, the same features as described
above for AUL are encountered.

VI. PHENOMENOLOGICAL RESULTS

We now present some simple phenomenology of the
T-odd effects in SIDIS with longitudinally polarized
protons. We will not carry out any full-fledged study;
rather, we wish to explore the overall size of the sinϕh and
sinð2ϕhÞ modulations.
The quantities of interest in polarization experiments are

typically spin asymmetries. In the present case, the longi-
tudinal proton helicity single spin asymmetry in SIDIS is
defined as

AULðϕhÞ≡ dσhþðϕhÞ − dσh−ðϕhÞ
dσhþðϕhÞ þ dσh−ðϕhÞ

; ð35Þ

where, as in Sec. II, dσh� represents the (differential) cross
section for positive (negative) proton helicity. The denom-
inator of the asymmetry is just twice the spin-averaged
cross section as a function of the azimuthal angle ϕh. As is
well known [38,69], this cross section has a ϕh independent
piece as well as terms proportional to cosðϕhÞ and
cosð2ϕhÞ. Dividing numerator and denominator by the
ϕh independent term, we may write

AULðϕhÞ ¼
Asinϕh
UL sinϕh þ Asin 2ϕh

UL sin 2ϕh

1þ Acosϕh
UU cosϕh þ Acos 2ϕh

UU cos 2ϕh

: ð36Þ

The various angular modulations Asinϕh
UL etc. are also known

as analyzing powers. The ones of interest to us here, Asinϕh
UL

and Asin 2ϕh
UL , may be extracted from the full cross section as

follows:

Asinnϕh
UL ¼

R
2π
0 dϕh sinðnϕhÞ½dσhþðϕhÞ−dσh−ðϕhÞ�

1
2

R
2π
0 dϕh½dσhþðϕhÞþdσh−ðϕhÞ�

ðn¼1;2Þ:

ð37Þ
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In this way, the terms with cosðϕhÞ and cosð2ϕhÞ in
the spin-averaged cross section do not contribute.
Experimental data are commonly reported in terms of
the Asin nϕh

UL , and accordingly, these are the quantities that
we will consider for our numerical predictions.
As stated earlier, in the present paper, we restrict

ourselves to LO predictions for the T-odd terms, keeping
the leading contribution ∝ α2s in the numerator. For con-
sistency, we therefore also need to use only the LO term in
the denominator, which is only of order αs and is easily
computed [61]. (We note that the NLO corrections for the
spin-averaged cross section in the denominator are avail-
able [72–74].) Because of this mismatch of perturbative
orders in the numerator and denominator, the analyzing
powers Asinϕh

UL ; Asin 2ϕh
UL are themselves of order αs, which is

in contrast to most other spin asymmetries for which
the leading power of αs cancels. We therefore expect
Asinϕh
UL ; Asin 2ϕh

UL to be quite sensitive to the choice of scale
and to higher-order corrections.
For our numerical studies, we use the DSSV [75,76] set

for the helicity parton distributions and the DSS14 [77] set
of fragmentation functions. We note that only pion frag-
mentation is considered in this set. We set the

renormalization and factorization scales equal to Q. For
the denominator of the asymmetries, we use the NNPDF31
[78] set of unpolarized parton distributions. We call this set
from the LHAPDF library [79].
We start by presenting estimates for the future EIC with a

center-of-mass energy of 140 GeV. At this fairly high
energy, the sinϕh and sinð2ϕhÞ modulations are overall
quite strongly suppressed. The reason is that at high
energies rather low, momentum fractions in the parton
distribution functions are probed, where the polarized
distributions are much smaller than the unpolarized ones.
The left part of Fig. 5 shows x dependence of the analyzing
powers Asinϕh

UL (blue solid line) and −Asin 2ϕh
UL (red dashed

line) for πþ production, at a set of fixed values of z, Q2,
and Ph⊥. These values have been chosen by considering the
“projected EIC data” shown in Ref. [34]. We observe that
the asymmetries indeed rapidly decrease toward low values
of x. The right part of the figure shows the z dependence of
the asymmetries, which is much more moderate through
most of the range considered.
In the following, we show results integrated over large

bins in z and Q2, but differential in Ph⊥ and x. To this end,
we define

Asin nϕh
UL;int ≡

R
zmax
zmin

dz
RQ2

max

Q2
min

dQ2
R
2π
0 dϕh sinðnϕhÞ½dσþðϕhÞ − dσ−ðϕhÞ�

1
2

R
zmax
zmin

dz
RQ2

max

Q2
min

dQ2
R
2π
0 dϕh½dσþðϕhÞ þ dσ−ðϕhÞ�

ðn ¼ 1; 2Þ: ð38Þ

Figure 6 shows Asinϕh
UL;int and A

sin 2ϕh
UL;int as functions of Ph⊥ at the

EIC, for fixed values x ¼ 0.1 (blue solid) and x ¼ 0.01 (red
dashed), for production of positive and negative pions. As
expected for an OðαsÞ effect, and because of the suppres-
sion of the polarized parton distributions already men-
tioned, the asymmetries are quite small, especially for
x ¼ 0.01. Also, Asin 2ϕh

UL;int is generally smaller than Asinϕh
UL;int

because of its stronger suppression at low qT=Q discussed
in the previous section. We also observe that the asymme-
tries for positively and negatively charged pions tend to
have opposite signs, which is due to the dominance of the
(positive) up-quark helicity parton distribution for πþ
production and of the (negative) down-quark helicity
distribution in case of π−. We note that detailed studies

FIG. 5. Left: x dependence and Right: z dependence of the analyzing powers for lp → lπþX at the future EIC. The sinð2ϕhÞ
analyzing power has been multiplied by (−1). For the left graph, z ¼ 0.4, while for the right graph, x ¼ 0.1. In both cases, we useffiffiffi
s

p ¼ 140 GeV, Q2 ¼ 50 GeV2, and Ph⊥ ¼ 2 GeV.
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of the uncertainties to be expected for such measurements
at the EIC will evidently require a full analysis that also
incorporates efficiencies and detector effects, which is
beyond the scope of our paper. A ballpark estimate based
on the spin-averaged SIDIS rates expected at the EIC
(as reported in [34]) provides confidence that even asym-
metries of the small size as in Fig. 6 should be resolvable at
the EIC.
We proceed by presenting a comparison to data from

COMPASS [31] where the asymmetry AUL has been
measured in muon scattering off longitudinally polarized
deuterons at

ffiffiffi
s

p ¼ 17.4 GeV. Such a comparison is of
course somewhat precarious as the hadron transverse
momenta accessed in the COMPASS SIDIS data are
typically below 1 GeV. Even though Q2 extends to values
well in the perturbative regime and qT ¼ Ph⊥=z is typically
significantly larger than 1 GeV, it is clear that the use of
perturbation theory is questionable. Arguably a TMD
description would appear to be more appropriate here.
Related to this, for a valid perturbative description, one
should address the Sudakov logarithms we have found at
low qT (see Sec. V) and resum them to all orders of
perturbation theory. Such an analysis is presently not
possible since the evolution of all TMD functions

contributing to AUL is not yet available. In any case, our
main interest here is to explore the rough size of the
perturbative predictions for AUL and to see whether there is
broad consistency with the experimental data.
We note that COMPASS has considered the production

of arbitrary charged hadrons. Sets of fragmentation func-
tions for h� are not available in DSS14, so we continue to
use the pion fragmentation functions. Given that pions
dominate the spectrum of produced hadrons and that
fragmentation effects cancel to some extent in the spin
asymmetry, this should be more than sufficient for a first
comparison. We consider the πþ-channel: μd → μπþX. As
in [31], we integrate over x ∈ ½0.004; 0.7�, z ∈ ½0.01; 1�,
and Q2=ðGeVÞ2 ∈ ½1; 100� and divide by the value
jPLj ¼ 0.8 of the muon beam polarization. Figure 7 shows
the comparisons both for Asinϕh

UL and for Asin 2ϕh
UL . We observe

reasonable agreement, given the rather large uncertainties
of the data and keeping in mind that the Ph⊥ values are such
that a TMD description would appear to be more appro-
priate as discussed above.
We finally also show a comparison to data from the

HERMES experiment [26,29] taken for π� production atffiffiffi
s

p ¼ 7.25 GeV. As we discussed in Sec. II, in an actual

FIG. 6. T-odd asymmetries as functions of Ph⊥ for x ¼ 0.1 and x ¼ 0.01 for lp → lπþX and lp → lπ−X at the EIC. We have
integrated the cross sections over Q2=ðGeVÞ2 ∈ ½10; 100� for x ¼ 0.1 (blue solid) and Q2=ðGeVÞ2 ∈ ½2; 10� for x ¼ 0.01 (red dashed),
and in both cases over z ∈ ½0.05; 0.8�.
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experiment, the target is polarized along (or opposite to) the
lepton beam direction. This means that the measured
asymmetry AUL receives contributions from both the
longitudinal and transverse spin asymmetries with respect
to the direction of the virtual photon [29,60] so that
AULðlÞ ≠ AULðqÞ (where the arguments l and q denote
target polarization defined relative to the lepton or photon
direction, respectively). For HERMES with its relatively
modest Q2 values, the difference between AULðlÞ and
AULðqÞ—which is of subleading twist—is expected to be

potentially more pronounced. Combining with data taken
with a transversely polarized target, HERMES has in fact
been able to provide an extraction of AULðqÞ [29]. Figure 8
shows both sets of HERMES data, Asinϕh

UL ðlÞ and Asinϕh
UL ðqÞ,

compared to our calculations of Asinϕh
UL ðqÞ. We show the

comparisons as functions of x and z, using the mean values
of x, z, Q2, and Ph⊥ for each point reported in Table 1 of
[29]. One can see that for positively charged pions, the

differences between Asinϕh
UL ðlÞ and Asinϕh

UL ðqÞ are quite large,

FIG. 7. Comparison of our numerical estimates for Asinϕh
UL and Asin 2ϕh

UL with data from the COMPASS collaboration [31] in hadron
production off longitudinally polarized deuterons at

ffiffiffi
s

p ¼ 17.4 GeV. We show the Ph⊥ distribution of the asymmetry integrated over
x ∈ ½0.004; 0.7�, z ∈ ½0.01; 1�, and Q2=ðGeVÞ2 ∈ ½1; 100�.

FIG. 8. Comparison of our calculations of Asinϕh
UL with data from the HERMES collaboration [29] in π� production off longitudinally

polarized protons, as functions of x (left) and z (right). Asinϕh
UL ðlÞ and Asinϕh

UL ðqÞ represent the asymmetries for target polarization defined
relative to the lepton or photon direction, respectively.
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while they are small for π− production. We also notice that
our calculations reproduce the trend of the data rather well
overall, despite the fact that HERMES accessed only rather
small transverse momenta.
HERMES data for the sin 2ϕh asymmetry are available

only without correction for the polarization direction
[26]. The right part of Fig. 9 shows the data for Asin 2ϕh

UL ðlÞ
for πþ production, compared to our calculations. Here,
we have used the mean values of x and Q2 for each point
as given in [26], while adopting hzi and hPh⊥i from [29].
To facilitate comparison with the sinϕh asymmetry, we
show the corresponding results for Asinϕh

UL on the left side
of Fig. 9. As before, the sin 2ϕh asymmetry is smaller.
Our calculations are overall in fair agreement with the
data for both asymmetries; in particular, they nicely
capture the difference in magnitude between the sinϕh
and sin 2ϕh components. The situation thus appears to be
different from that for the cos 2ϕh unpolarized structure
function Fcos 2ϕh

UU analyzed in [80], for which the pertur-
bative OðαsÞ prediction for HERMES kinematics was
shown to be negligible compared to higher-twist effects.
It should be stressed again, however, that the data shown
in Fig. 9 have not been corrected for the polarization
direction, and according to Fig. 8, such correction effects
are expected to be particularly important in the case of πþ
production.

VII. CONCLUSIONS

We have presented a perturbative calculation for the
single-spin asymmetry AUL in semi-inclusive deep-inelastic
scattering, which may be measured by scattering unpolar-
ized leptons off longitudinally polarized nucleons. This
asymmetry is interesting because, in the absence of

parity violation, it is T-odd and receives perturbative
contributions only via QCD loop effects. Also, it is
sensitive to the proton’s helicity parton distributions,
despite the fact that it is measured with an unpolarized
lepton beam. Our calculation builds on the large body
of previous work on T-odd effects in hard scattering,
opening a new avenue for future measurements at the EIC.
We have provided compact expressions for the T-odd

contributions in the various partonic channels. We have
used these to derive the low-transverse-momentum behav-
ior of the T-odd terms, which shows striking features. Our
results add new information on the relations between
TMDs and perturbative hard scattering, which had been
missing so far. They may be used for comparisons to
detailed quantitative predictions to be obtained in the future
within the TMD formalism.
Our phenomenological calculations reveal the expected

relatively small size of the T-odd asymmetries. We have
made predictions for the asymmetries at the future EIC,
where it should be possible to explore them. Our results
are also broadly consistent with available COMPASS and
HERMES data, although the applicability of a purely
hard-scattering picture is questionable here. All in all, we
hope that our paper will contribute to the long-standing
quest to establish and understand T-odd effects in QCD.
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FIG. 9. Numerical results for Asinϕh
UL and Asin 2ϕh

UL compared to HERMES data [26] for πþ production off longitudinally polarized
protons. The data have not been corrected for the polarization direction.
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APPENDIX A: DERIVATION OF EQ. (28)

Setting ρ≡ q2T=Q
2, we consider the expression,

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
lnð1 − ẑÞδ

�
ρ −

ð1 − x̂Þð1 − ẑÞ
x̂ ẑ

�
Δf

�
x
x̂

�
D

�
z
ẑ

�

¼
Z1−z1−zð1−ρÞ

x

dx̂
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lnð1 − ẑÞ

1 − x̂ð1 − ρÞΔf
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D
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ẑ

��
ẑ¼ 1−x̂

1−x̂ð1−ρÞ
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lnð ρx̂

1−x̂ð1−ρÞÞ
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− ΔfðxÞ
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�
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−DðzÞ
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þDðzÞ
�
Δf

�
x
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�
− ΔfðxÞ

�
þ ΔfðxÞ

�
D

�
z
ẑ

�
−DðzÞ

�
þ ΔfðxÞDðzÞ

�
ẑ¼ 1−x̂

1−x̂ð1−ρÞ

: ðA1Þ

In the second equality, we have added and subtracted terms in such a way that four types of contributions arise. The first one
with ðΔfðx=x̂Þ − ΔfðxÞÞðDðz=ẑÞ −DðzÞÞ is easily seen to vanish for qT=Q → 0 since ẑ → 1 in that limit. The second term
becomes, at small ρ,

DðzÞ
Z1−z1−zð1−ρÞ

x

dx̂
lnð ρx̂

1−x̂ð1−ρÞÞ
1 − x̂ð1 − ρÞ
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þ ln x̂
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ln2ð1 − xÞ − ln ρ lnð1 − xÞ þ Li2ð1 − xÞ

�
þOðρÞ;

ðA2Þ

where the plus distribution is defined as in Eq. (23) and where Li2 denotes the dilogarithm function. For the third term, we
go back to ẑ as integration variable. We then find

ΔfðxÞ
Z1−x1−xð1−ρÞ
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dẑ
lnð1 − ẑÞ

1 − ẑð1 − ρÞ
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ðA3Þ

Finally, for the last term in (A1), we obtain

ΔfðxÞDðzÞ
Z1−z1−zð1−ρÞ

x

dx̂
ln
	

ρx̂
1−x̂ð1−ρÞ



1 − x̂ð1 − ρÞ ¼ ΔfðxÞDðzÞ

�
−
1

2
ln2ðρÞ þ ln ρ lnð1 − xÞ

−
1

2
ln2ð1 − xÞ þ 1

2
ln2ð1 − zÞ − Li2ð1 − xÞ

�
þOðρÞ: ðA4Þ

Combining all terms in (A2)–(A4) and expressing them in terms of distributions, we directly recover Eq. (28). Note that all
terms involving logarithms or dilogarithms of the lower integration limits x, z cancel in the final answer, as they should,
since we have defined our plus distributions by integrations from 0 to 1 [see Eq. (23)].
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APPENDIX B: PERTURBATIVE RESULTS FOR THE BEAM-SPIN ASYMMETRY ALU

The cross section for the beam-spin asymmetry ALU may be written as [38]

d5Δσh

dxdydzdP2
h⊥dϕh

¼ 1

2

�
d5σhþ

dxdydzdP2
h⊥dϕh

−
d5σh−

dxdydzdP2
h⊥dϕh

�

¼ πα2y
xQ2

ffiffiffiffiffiffiffiffiffiffi
2ε

1 − ε

r
Fsinϕh
LU sinðϕhÞ: ðB1Þ

As is well-known, there is no term with sinð2ϕhÞ for single-photon exchange. Writing the structure function Fsinϕh
LU as

Fsinϕh
LU ¼

�
αsðμ2Þ
2π

�
2 x
Q2z2

X
a;b

¼q;q̄;g

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
Δfa

�
x
x̂
; μ2

�
Csinϕh;a→b
LU ðx̂; ẑÞDh

b

�
z
ẑ
; μ2

�
δ

�
q2T
Q2

−
ð1 − x̂Þð1 − ẑÞ

x̂ ẑ

�
; ðB2Þ

we have from Refs. [10,17]:

Csinϕh;q→q
LU ðx̂; ẑÞ ¼ −e2qCF

�
CAð1 − x̂Þ − CFð1 − x̂þ ẑþ x̂ ẑÞ þ ðCA − 2CFÞ

ẑ ln ẑ
1 − ẑ

�
Q
qT

;

Csinϕh;q→g
LU ðx̂; ẑÞ ¼ e2qCF

ð1 − ẑÞ
ẑ

�
CAð1 − x̂Þ þ CFðx̂ ẑþẑ − 2Þ þ ðCA − 2CFÞ

ð1 − ẑÞ lnð1 − ẑÞ
ẑ

�
Q
qT

;

Csinϕh;g→q
LU ðx̂; ẑÞ ¼ −e2qðCA − 2CFÞ

1 − x̂
2ẑ2

�
−x̂ ẑð1 − 2ẑÞ − ð1 − x̂Þ lnð1 − ẑÞ þ ð1 − x̂Þ ẑ lnðẑÞ

1 − ẑ

�
Q
qT

: ðB3Þ

Carrying out the expansions for low qT=Q we find, up to corrections of order qT=Q,

ðfq ⊗ Csinϕh;q→q
LU ⊗Dh

qÞðx; zÞ ¼ e2q
Q
qT

CA

2

�
−CF

�
2 ln

�
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x
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ẑ

��
− e2q

Q
qT

CF

CA
fqðxÞ

Z
1

z
dẑ

ẑ
1− ẑ
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1þ ln ẑ

1− ẑ
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q
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ðfq ⊗ Csinϕh;q→g
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gÞðx; zÞ ¼ e2q
Q
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1− ẑ
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;
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LU ⊗Dh

qÞðx; zÞ� ¼ −
e2q
2

Q
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ðCA − 2CFÞDh
qðzÞ
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�
x
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��
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�
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�
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where the convolution has been defined in (24) and the transversity splitting function in (26).
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