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We propose a method to substantially improve the signal-to-noise ratio of lattice correlation functions for
bosonic operators or other operator combinations with disconnected contributions. The technique is
applicable for correlations between operators on two planes (zero momentum correlators) when the
dimension of the plane is larger than the separation between the two planes which are correlated. In this
case, the correlation arises primarily from points whose in-plane coordinates are close, but noise arises from
all pairs of points. By breaking each plane into bins and computing bin-bin correlations, it is possible to
capture these short-distance correlators exactly while replacing (small) correlators at large spatial extent
with a fit, with smaller uncertainty than the data. The cost is only marginally larger than averaging each
plane before correlating, but the improvement in signal-to-noise can be substantial. We test the method on
correlators of the gradient-flowed topological charge density and squared field strength, finding noise
reductions by a factor of ∼3–7 compared to the conventional approach on the same ensemble of
configurations.
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I. INTRODUCTION

Many problems in quantum field theory can be expres-
sed in terms of the correlation function of two operators as a
function of separation along one axis, while averaging over
directions transverse to that axis. For example, when the
operators are the interpolating operator for a particle, the
exponential rate of the falloff of the correlator determines
the particle mass. Moreover, zero spatial-momentum
correlators of conserved currents, such as the energy-
momentum tensor (EMT) or the vector current, encode
transport coefficients like shear and bulk viscosity or flavor
diffusion coefficients and the electrical conductivity in the
small-frequency limiting behavior of their reconstructed
spectral functions. For a review see Ref. [1]. Some recent
lattice studies using this approach for the calculation of
viscosities can be found in Refs. [2–6] and for a recent
overview of results for the electrical conductivity see
Ref. [7]. Problems like these ultimately come down to
the computation of correlation functions of operators

averaged over a transverse plane, evaluated as a function
of the separation between two planes.
Usually such studies require that the correlation function

be determined very precisely. For some operators built out
of fermions which carry nontrivial flavor, there are no
disconnected contributions. In this case, the precision is
generally good, as there are explicit factors of propagators
between the two planes, which cause the configuration-
by-configuration value of the correlator to decay. In this
case the signal to noise is generally good,1 and the main
limitations are, for example, contamination from higher
states, the continuum limit, etc. However, for correlation
functions of operators consisting of bosonic fields, or cor-
relators built out of fermions such that there are discon-
nected contributions, signal-to-noise problems are generi-
cally severe. Recently there have been some advances in
dealing with this problem, such as covariant coordinate-
space methods [9,10], frequency splitting methods [11],
and the cluster decomposition method [12].
This paper will introduce and demonstrate a new

approach for problems where such disconnected contri-
butions lead to severe signal-to-noise problems. In the
next section, we review the origin of the noise in such
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1In some cases, e.g., correlators of baryon operators, the
signal-to-noise is bad even though there are only connected
contributions [8]. This paper will not address this problem.
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disconnected correlation functions. We show a numerically
efficient way to express the correlation function between
operators on two planes as an integral over the transverse
separation between the operator locations on the planes in
Sec. III. The signal is dominated by small transverse
separations; the noise is dominated by large transverse
separations. By fitting the region with a strong signal and
using the fit where the signal is poor, one can avoid these
noisy contributions, improving the overall signal-to-noise
significantly. We demonstrate this for EMT correlators in
the bulk channel and the topological charge density
correlator in Sec. IV. As a byproduct of this work we also
update the double extrapolated topological charge density
correlators which we provided recently [13].

II. ORIGIN OF THE PROBLEM

The origin of noise in correlators was first explored by
Parisi [8], and our analysis follows his pioneering work.
Consider an operator O of dimension Δ and its Hermitian
conjugate O†. Suppose we are interested in the correlation
function

GðτÞ≡ 1

L3

Z
d3x⃗d3y⃗hO†ðx⃗; τÞOðy⃗; 0Þi: ð1Þ

Here the transverse space integration d3x⃗ is over a trans-
verse space of extent L3, and we are primarily concerned
with the case where τ ≪ L. This is the case for transport
coefficients because τ < 1=ð2TÞ but L ≫ 1=T to ensure
that we are close to the thermodynamic limit. In the
opposite limit, that is τ > L, our approach will be

ineffective. For correlations between planes which include
the time direction and are separated instead along a space
axis, exchange the label τ for the label of the relevant space
direction in what follows.
First let us analyze the expected size of the signal. On

dimensional grounds we expect that

hO†ðx⃗; τÞOðy⃗; 0Þi ∼ ððx⃗ − y⃗Þ2 þ τ2Þ−Δ; ð2Þ

GðτÞ ¼ 1

L3

Z
d3x⃗d3y⃗hO†ðx⃗; τÞOðy⃗; 0Þi

∝
1

L3

Z
d3

x⃗þ y⃗
2

Z
d3ðx⃗ − y⃗Þ 1

ððx⃗ − y⃗Þ2 þ τ2ÞΔ
∼ τ3−2Δ: ð3Þ

The correlation function is extensive in the transverse
area because of the integral over the average coordinate
ðx⃗þ y⃗Þ=2; the integral over the difference coordinate x⃗ − y⃗
is dominated by jx⃗ − y⃗j≲ τ.
If a large mass gap plays a role in the correlator of

interest, the decay will instead be exponential. In general,
one expects polynomial decay at short distances and
exponential decay at large distances.
Next we want to understand the noise. The signal-to-

noise achieved from Nsample independent gauge field
configurations will scale as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsample

p
times the signal-

to-noise from a single configuration. We can estimate this
noise by asking about the mean value ofGðτÞ and about the
mean-squared value of GðτÞ. Then the variance of the
measurement is determined as usual by

σ2G ¼ hGðτÞG�ðτÞi − jhGðτÞij2

¼ 1

L6

Z
d3x⃗1d3x⃗2d3y⃗1d3y⃗2ðhO†ðx⃗1; τÞOðx⃗2; τÞOðy⃗1; 0ÞO†ðy⃗2; 0Þi − hO†ðx⃗1; τÞOðy⃗1; 0ÞihOðx⃗2; τÞO†ðy⃗2; 0ÞiÞ

≃
1

L6

Z
d3x⃗1d3x⃗2hO†ðx⃗1; τÞOðx⃗2; τÞi

Z
dy⃗1dy⃗2hOðy⃗1; 0ÞO†ðy⃗2; 0Þi

∼
1

L6

Z
d3

x⃗1 þ x⃗2
2

Z
d3ðx⃗1 − x⃗2Þjx⃗1 − x⃗2j−2Δ

Z
d3

y⃗1 þ y⃗2
2

Z
d3ðy⃗1 − y⃗2Þjy⃗1 − y⃗2j−2Δ: ð4Þ

The first term in the second line is the full correlator,
including both the connected correlator and various dis-
connected contributions. The second term cancels one of
these disconnected contributions, but the disconnected
contribution shown in the third line involves large small-
separation contributions when x⃗1 ≈ x⃗2 and y⃗1 ≈ y⃗2, and is
therefore expected to dominate the correlation function.
The variance has twoworrying features. First, the integrals

over ðx⃗1 − x⃗2Þ and ðy⃗1 − y⃗2Þ are short-distance divergent,
presumably cut off by the lattice spacing a. Second, each
overall integration

R
d3ðx⃗1 þ x⃗2Þ=2,

R
d3ðy⃗1 þ y⃗2Þ=2 intro-

duces an overall L3 factor. Thus one estimates that

σ2G ∼ a6−4Δ: ð5Þ

The signal-to-noise fromcorrelating a single pair of planes on
a single lattice is therefore on the order of GðτÞ=σG ∼
ða=τÞ2Δ−3 ≪ 1.
The gradient flow method [14,15] offers an approach to

ameliorate the short-distance divergent behavior in these
correlation functions. Rather than evaluating the correlation
functions directly on the lattice configuration, one first
applies a well-defined procedure to remove UV fluctua-
tions in the fields down to a length scale ∼

ffiffiffiffiffiffiffi
8τF

p
, where

τF is the gradient-flow depth. This reduces the divergent
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short-distance behavior such that
R
dx⃗hO†ðx⃗; 0ÞOð0⃗; 0Þi∼

ð8τFÞð3−2ΔÞ=2. Physical results require an extrapolation to
small τF, which partially counteracts the gain in signal-to-
noise. Nevertheless, it is still necessary to apply some
additional kind of noise-reduction technique in order to get
a signal in a reasonable amount of computing time.2

This leaves, however, the problem that the signal-to-noise
does not improve as one makes L large. One might have
hoped for such improvement, because boxes with larger
transverse extent L should be generating more statistically
independent samples. But we do not see such an improve-
ment in our parametric estimates, nor in simulations. To see
why, we look at the role of transverse integrations in the
signal and in the noise. In Eq. (2)we see that only jx⃗ − y⃗j≲ τ,
that is, small transverse separations, contribute to the signal.
ButEq. (4) contains independent integrations overdx⃗ anddy⃗;
all values of x⃗ − y⃗ contribute equally to the noise. So points
with small transverse difference are responsible for signal
and noise, but points with large transverse difference
contribute to the noise, but not to the signal.
In this work we propose a blocking technique which

eliminates the noise contributions from large transverse
separations, and restores the expected behavior that the
signal-to-noise ratio improves as ðL=τÞ3=2. The technique is
numerically cheap and can be used in conjunction with
gradient flow. In addition, it is applied at the analysis level,
not as part of the configuration generation, and it is
perfectly compatible with unquenching.
Naturally we are far from the first people to confront this

particular problem. The issue of rapid falloff in the signal
but not the noise has been known for a long time [8], and
has been discussed and confronted frequently in the recent
literature [24–29]. In particular, Ref. [12] presented an
approach which is in some ways similar to what we argue
for here. We will discuss the relative advantages of the
approaches after giving an exposition of what we propose.

III. BLOCKING METHOD

Let us specialize to Hermitian operators O and consider
the lattice form of the correlation function, where space
integrals are replaced by discrete sums:

Gðτ1 − τ2Þ ¼
a3

V

X
x⃗∈V

Oðτ1; x⃗Þ
X
y⃗∈V

Oðτ2; y⃗Þ; ð6Þ

where V ¼ NxNyNz is the spatial volume of the lattice. To
calculate it one first evaluates the operator on each site on
the plane at temporal position τ1 and also those at τ2. The
two planes are shown as grey squares at τ ¼ τ1 and τ ¼ τ2
in a simplified 3D sketch in Fig. 1. Then one calculates all
site-to-site correlators of two operators: one operator runs
over all sites on plane τ ¼ τ1 while the other is fixed to one
site on plane τ ¼ τ2 and the process is repeated for each site
on the second plane. The economical and also the most
common way to do this is to first compute the sum of the
operators on the plane at τ ¼ τ1 and then repeat this
procedure for all planes. The data on each plane can be
reduced to a single number, thus saving memory.
The method mentioned above includes contributions

from all possible spatial distances (s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx⃗ − y⃗Þ2

p
). But

as we have seen, the signal is dominated by small
s≲ τ2 − τ1. Therefore, we want to obtain differential
information, namely, how the correlation function varies
as a function of s. A complete differential measurement
involves correlating each x⃗ position with each y⃗ position.
The numerical cost of this scales as V2, which is prohibi-
tive, so we must seek a numerically less costly alternative,
which we now present.
In the blocking method, each plane, for instance the

τ ¼ τ1 plane in Fig. 1, is split into equal-sized bins. In each
bin, we measure the operator on all sites belonging to this
bin and save the sum at one corner. For instance, the blue
square in Fig. 1 encloses one bin of size 2 × 2 and the sum
is denoted as a dot at the origin. The relative position of this
dot inside of the bin should be the same for all bins.
Covering the whole lattice with bins leads to Fig. 2, in
which the original lattice has effectively been compressed
into a smaller lattice denoted by the blue dots. On this
smaller lattice a calculation of the point-to-point correlators
at all possible distances is feasible. One can see this

FIG. 1. Illustration of a 3D lattice on which a temporal
correlator is measured. Operators at each site of plane τ ¼ τ1
are summed and the same is done for τ ¼ τ2. Two summed
operators will be correlated via Eq. (6).

2An alternative noise-reduction technique is the use of the
multilevel algorithm [16]. The multilevel method has been
successfully applied to correlation functions relevant for transport
[17–20]. However, this technique is only applicable to pure-glue
theories; it cannot directly be generalized to the unquenched case.
Furthermore, it is implemented using Monte Carlo updates of the
gauge fields, rather than during the calculation of correlation
functions on generated configurations. Ideas on the implementa-
tion of multilevel algorithms including dynamical fermions can
be found in Refs. [21,22]. Reference [23] presented an approach
for combining multilevel and gradient flow techniques.

LATTICE QCD NOISE REDUCTION FOR BOSONIC … PHYS. REV. D 105, 094505 (2022)

094505-3



procedure is nothing but rewriting Eq. (6) as

GðτÞ ¼ a3

V

X
fv1g

�X
m⃗∈v1

Oðτ1; m⃗Þ
�X
fv2g

�X
n⃗∈v2

Oðτ2; n⃗Þ
�

ð7Þ

where τ ¼ τ1 − τ2, v1, v2 are the individual bins in each
plane, and m⃗ ∈ v1 are all points in the bin v1. We advocate
the use of cubic bins, that is, each bin contains Vb ¼
nb × nb × nb lattice sites. Defining

Ov1ðτ1Þ ¼
X
m⃗∈v1

Oðτ1; m⃗Þ;

Gv1v2ðτÞ ¼ hOv1ðτ1ÞOv2ðτ2Þi ð8Þ

we can reexpress Eq. (7) as

GðτÞ ¼ a3

V

X
v1;v2

Gv1v2ðτÞ: ð9Þ

It is useful to rearrange this sum in terms of the transverse
separation between the corner points of the bins
s ¼ jv⃗1 − v⃗2j. For s ¼ 0 there are V=Vb contributions
(equal to the number of bins). For any other s value there
is an additional degeneracy factor ds. For instance, for
s ¼ nb we can have v⃗1 − v⃗2 ∈ f½�nb; 0; 0�; ½0;�nb; 0�;
½0; 0;�nb�g for a total of ds ¼ 6 degenerate choices.3

Introducing the sum of all correlations between bins with
separation s, normalized to contain V=Vb contributions,

Gðτ; sÞ ¼ a3d−1s
X
v1;v2

Gv1v2ðτÞδðjv⃗1 − v⃗2j − sÞ; ð10Þ

we can write the total correlation function as

GðτÞ ¼ 1

Vb

Xsmax

s¼0

dsGðτ; sÞ; ð11Þ

where s2max ¼ 3ðL
2
Þ2.

This representation will be particularly practical in the
following. Specifically, Gðτ; sÞ should be a smooth func-
tion of s, which allows us to fit its behavior in a range of s
where the signal-to-noise is good, and to use this fit to
estimate its behavior at large s, where the signal-to-noise
is bad.
A similar decomposition can be achieved using Fourier

techniques, as described in Ref. [12]. The authors show how
fast Fourier transform techniques can determine the trans-
verse-separation-by-separation correlator with of order
V logV operations. (In comparison, our approach requires
of order V2=n6b operations; in practice, either scaling renders
the required compute time small compared to the time
required to update and gradient-flow gauge configurations,
except perhaps on extremely large lattices.) To get something
analogous to Eq. (10), one could histogram the resulting
separation-by-separationcorrelator into transverse-separation
ranges, which allows a transverse-separation-differential
analysis of the data which is analogous to what we achieve
here. Therefore we consider the Fourier method of Ref. [12],
together with some histogramming, to be an alternative to our
blocking technique, with very similar advantages. The main
difference between our approach and the approach of
Ref. [12] will be in how we use this differential information.
The next section will show how we extract the integrated
correlator, applying it to two specific physical problems.

IV. APPLICATIONS OF THE BLOCKINGMETHOD

Let us illustrate how to take advantage of blocked-
correlator information in a real calculation which can be
used to study transport phenomena.
Bulk viscosity can be determined from the small-

frequency behavior of the spectral function for the squared
field strength operator

EðxÞ ¼ 1

4
Fa
ρσðxÞFa

ρσðxÞ: ð12Þ

To compute bulk viscosity on the lattice, we first need the
zero-momentum correlation function

GðτÞ≡
Z

d3x⃗hδEð0; 0⃗ÞδEðτ; x⃗Þi ð13Þ

as a function of τ. Here δEðxÞ≡ EðxÞ − hEðxÞi is the field
strength with its expectation value subtracted off to remove

FIG. 2. Illustration of how the blocking method works: each
plane is divided into bins. The operators in each bin are summed
and saved to the site denoted by the blue dot on the corner. Then,
for each pair of planes, one computes the correlators of all pairs of
blue dots, one on each plane.

3Normalizing s to s2=n2b ¼ 0; 1; 2; 3;…, the ds with s2 ≤
ðL=2nbÞ2 are the OEIS integer sequence A005875; see https://
oeis.org/A005875.
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the disconnected contributions. In our implementation, we
construct E using the clover definition of the field strength
tensor. In this work we will focus on determining this
correlator with good signal-to-noise. The issues of correctly
normalizing the operator, continuum and zero-flow extra-
polating, and extracting the bulk viscosity from GðτÞ are
left for a separate study. We measure this correlator using
the blocking method on a 643 × 16 quenched lattice over
10 000 configurations under gradient flow, determining
errors using the bootstrap method. The bin size is 4 × 4 × 4.
The lattice setup and gradient flow setup are the same as used
in Ref. [13]. We will also revisit the correlation function of
topological charge density q which we first addressed in
Ref. [13], using the same q definition introduced there and
the same lattice setup as just described.
We illustrate the EMT correlators calculated using the

blocking method in Fig. 3. The left panel shows the
correlator Gðs; τÞ as a function of s at a fixed flow time
τF=a2 ¼ 1.28 and temporal separation τ=a ¼ 8, where a is
the lattice spacing. We can see that Gðs; τÞ is a relatively
smooth function of s, and that it falls off fast such that only
the first few data points (s=a≲ 15) contribute significantly
to GðτÞ. At distances s=a > 17 the correlators cannot be
statistically distinguished from zero. If one sums the
correlator over all s ≤ s0, including the degeneracy factor,
one obtains the data shown in the right panel of Fig. 3. The
data point at the largest s0 recovers the result and errors
calculated in the usual (nonblocking) way. It can be seen
that at s0=a ∼ 15 the integrated correlator reaches a plateau
but the error size becomes larger and larger as s0 increases.
From this it is clear that the bin-to-bin correlators with
small s are contributing most of the signal while the large-s
ones mainly introduce noise. The key idea of the blocking
method is to use only the reliable lattice data coming from
small s and to estimate the contribution from the long tail

by fitting the data that has good signal-to-noise using some
theoretically inspired Ansatz.
For each ðτ; τFÞ pair, we break the s range into three

regions based on two cut points, s0 and scut. The first
region, s < s0, is characterized by very high signal-to-noise
ratios in the data Gðτ; sÞ. The point s0 is chosen as the
largest s value where the signal-to-noise is better than 10.
This point is very easy to find from the data, and its value is
stable across different bootstrap samples. We will justify
this choice a posteriori, after describing the rest of the
fitting procedure. The middle region s0 ≤ s ≤ scut, is
characterized by signal-to-noise between 10 and 2. scut
is determined in a self-consistent way which we will
explain soon. Finally, there is the region s > scut, where
the signal-to-noise is very poor. Our procedure is to
perform a fit of the data, and to replace a direct evaluation
of GðτÞ with an evaluation which takes into account the fit,
as follows:

GðτÞ ¼ GdomðτÞ þ GmidðτÞ þ GtailðτÞ;

GdomðτÞ≡ a3

Vb

Xs0−1
s¼0

dsGðτ; sÞ;

GmidðτÞ≡ a3

Vb

Xscut
s¼s0

dsðxGfitðτ; sÞ þ ð1 − xÞGðτ; sÞÞ;

GtailðτÞ≡ a3

Vb

X
s>scut

dsGfitðτ; sÞ: ð14Þ

Here x ¼ ðs − s0Þ=ðscut − s0Þ is the fraction of the way
from s0 to scut; that is, in the first region we purely use the
data, in the middle region we vary linearly from purely
using the data at s ¼ s0 to purely using the fit at s ¼ scut,
and in the final region we purely use the fit.

FIG. 3. Left: (bare) energy-momentum tensor correlator as a function of spatial distance s on a 16 × 643 lattice at temperature
T ¼ 1.5Tc in the bulk channel at temporal separation τ=a ¼ 8 and flow depth τF=a2 ¼ 1.28. The correlator is measured using the
blocking method on 10 000 quenched configurations. The bin size is 4 × 4 × 4. Right: sum of the correlator (sum of all terms s ≤ s0) as a
function of the maximal spatial distance s0. The last data point (at the largest s0) is equal to the correlator calculated in the conventional
way (without blocking) using Eq. (6).
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To perform a fit of the data we need two things: an
Ansatz, and a data range to use in the fit. We will return to
the Ansatz momentarily. First we need to emphasize what s
range the fit needs to be precise in. It is not important to find
a fit function which describes the whole s range. As we see
in Eq. (14), we only use the fit for s > s0. We know on
physical grounds that Gðτ; sÞ falls rapidly at large s, and
this should be reflected in our Ansatz. Therefore, the data
range where Gfitðτ; sÞ is most important is the range around
s0 and scut. This fact needs to be reflected both in our choice
of Ansatz, and in the data range we use to fit the Ansatz. In
particular, using data with s < s0 in our fitting procedure is
actually not a good idea. The high signal-to-noise tends to
control the fit, but it gives information about the functional
form too far away from the region where we need the fit to
work. Therefore, we choose instead to fit the data with
s ≥ s0. We could cut off the s range used in the fitting
procedure, for instance, at the not-yet-established value
scut, but in practice the fit is always dominated by the first
few points above s0, even if we use all data with s ≥ s0.
This is in fact what we do: we fit a physically well-
motivated Ansatz to all data with s ≥ s0. We have checked
that the fit, χ2, and errors in the fit parameters are almost
unaffected by introducing an upper cutoff on the s range
used in the fit.
With a fit in hand, we can then estimate the signal-to-

noise ratio as STNðsÞ ¼ Gfitðτ; sÞ=σðτ; sÞ, where the noise
is determined from the fluctuations in the data and the
signal is estimated from the fit. We choose scut to be the s
value above which this estimated signal-to-noise ratio is
always worse than 2. That is, we fully replace the data with
the result of our fit starting where the signal-to-noise is
consistently below 2. We estimate the errors in Gdom, Gmid
and Gtail, whose sum gives the total correlator, using the
bootstrap method.
Next we discuss the Ansatz (Ansätze) used in the fits. The

choice of Ansatz is clearly dependent on the specifics of the
theory under consideration; here we specialize to correla-
tion functions of the action density E and of the topological
charge density q.
The first Ansatz is a simple power law in s,

a5Gðs; τÞ ¼ Aðs=spivotÞ−B, where A and B are fit param-
eters and spivot is the third s value larger than s0.

4 The
motivation is that a rapidly falling function is generically fit

over a narrow range by a power law. Also, Eq. (2) implies
that the true falloff could be a power law, with an unknown
coefficient due to operator anomalous dimensions.5

The second Ansatz is based on the leading-order per-
turbative value for the correlator, accounting for time
periodicity, gradient flow, and our blocking procedure.
In vacuum, the leading-order correlator of two field
strength tensors is

hFa
μνðrÞFb

αβð0Þi

¼ g2δab
π2r4

�
δμαδνβ − δμβδνα

−
2

r2
ðrμrαδνβ − rμrβδνα − rνrαδμβ þ rνrβδμαÞ

�
: ð15Þ

Applying gradient flow to a depth τF modifies this
expression to [30]

hGa
μνðrÞGb

αβð0ÞiτF
¼ g2δab

π2r4

�
Aðr; τFÞðδμαδνβ − δμβδναÞ

þBðr; τFÞ
r2

ðrμrαδνβ − rμrβδνα − rνrαδμβ þ rνrβδμαÞ
�
;

ð16Þ

Aðr; τFÞ ¼ 1 −
�
1þ r2

8τF

�
e−r

2=8τF ; ð17Þ

Bðr; τFÞ ¼ −2þ
�
2 − 2

r2

8τF
þ
�
r2

8τF

�
2
�
e−r

2=8τF : ð18Þ

Note that this is a continuum, not lattice, expression; but
when τF=a2 > 0.5 the lattice-continuum difference for
flowed correlators is small, and the use of a continuum
limit at fixed flow depth based only on data which satisfies
this criterion should avoid the need to include lattice
spacing corrections as well.
Using these expressions, the leading-order hEEi corre-

lator at finite τF; τ; jr⃗j and with periodic boundaries in the
time direction is

hEðr⃗; τÞEð0; 0ÞiτF ∝
X

n1;n2∈Z

Aðr1ÞAðr2Þ
r41r

4
2

þ Aðr1ÞBðr2Þ þ Aðr2ÞBðr1Þ
2r41r

4
2

þ Bðr1ÞBðr2Þ
6r61r

6
2

ð2ðr1 · r2Þ2 þ r21r
2
2Þ; ð19Þ

4spivot is introduced to suppress the correlation between A and B, which stabilizes the fit.

5If the falloff is with distance, one should really fit to ðs2 þ τ2Þ−B=2. Since scut is almost always significantly larger than τ, this turns
out to make very little difference.
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where r1 ¼ ðτ þ n1β; r⃗Þ and r2 ¼ ðτ þ n2β; r⃗Þ are the 4-displacement with the temporal displacement shifted
by independent integer multiples of the inverse temperature β. Similarly, when we compute the correlation func-
tion of two topological charge density operators q ¼ FμνF̃μν=32π2 (see below), the leading-order correlation function after
flow is

hqðr⃗; τÞqð0; 0ÞiτF ∝ −
X

n1;n2∈Z

Aðr1ÞAðr2Þ
r41r

4
2

þ Aðr1ÞBðr2Þ þ Aðr2ÞBðr1Þ
2r41r

4
2

þ Bðr1ÞBðr2Þ
6r61r

6
2

ðr21r22 − ðr1 · r2Þ2Þ: ð20Þ

Our second Ansatz is, for each s value, to integrate these
expressions over the relative coordinates in the two bins
whose centers are separated by s to determine what the
time-periodic, flowed, bin-averaged correlation function
would be at leading perturbative order. We then fit to a
single overall normalization. This fit gives a poor descrip-
tion of the whole correlator Gðs; τÞ, because it does not get
the ratio of the peak to the tail accurately. However, it gives
a reasonable description of the tail shape with a single
fitting parameter.
Our third Ansatz will be based on the generic expected

long-distance behavior for correlation functions in a
nontrivial interacting theory. Consider a correlator as a
function of space separation s along the z axis. If we
think about the z axis as “Euclidean time,” then this
corresponds to a zero-temperature system in a space with
one compact periodic direction R2 × S1. This theory is
expected to have a gapped spectrum, and the large-
distance correlation behavior is controlled by the lightest
state in the symmetry channel under investigation.
One then expects that the correlation function decays

at asymptotically large distances as6 a5Gðs; τÞ ¼
Aðs=spivotÞ−1 expð−Bðs − spivotÞÞ, where A, B are two
fitting parameters. This Ansatz makes sense if one
assumes that s is large enough to suppress the contri-
butions of all higher excited states.
Some readers may be concerned about the ad hoc nature

of our fitting functions. It is important to emphasize three
things:

(i) The function Gðs; τÞ falls very fast with s. Pertur-
batively, Gðs; τÞ ∝ s−8. We see this rapid falloff
explicitly in Fig. 3, both in the data and in the fits.
Therefore, it is only important that our fit to Gðs; τÞ
be reasonable in a fairly narrow range above s0.

(ii) The fit is stable when we introduce an upper s cutoff
on the fit range, and it is stable when we adjust
(somewhat) the starting point s0 for the fit.

FIG. 4. Left: the same data as in the left panel of Fig. 3, but zoomed in around the value where the signal-to-noise becomes poor,
together with three fits of the data, representing fitting functions and fit ranges as described in the text. Right: the same as the right plot in
Fig. 3, but also showing the result summed over s ≤ s0 using the mix of data and Ansatz defined in Eq. (14). Also, the fully summed
result from Eq. (14) (using power law and free Ansatz) and from the conventional approach using 10 times as many configurations are
shown (with a slight horizontal offset) as single data points on the far right.

6In R3 ×R, a5G ∝ ðs=spivotÞ−3=2 expð−Bðs − spivotÞÞ (see for
instance Ref. [29]), but the presence of a small-radius S1 makes
the large-distance s ≫ 1=T decay behave like that in R2 ×R.
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(iii) The influence of the fit Ansatz is small, as determined
by comparing these three rather different Ansätze.

To illustrate these points, consider Fig. 4. The left panel
shows the same data as in Fig. 3, but zoomed in around the
region where the signal-to-noise becomes poor. The vertical
bars indicate s0 and scut, the red points are the data, and the
indicated lines are three fits to the data. We see that all three
fit Ansätze give nearly the same results, and the free- Ansatz
fit is almost unchanged when we fit to the data in the range
½s0; scut� rather than all data with s ≥ s0. The fit indicates
that the correlation function becomes very small for s a
little higher than scut, consistent with the data but without
the large error bars.
In the right panel of Fig. 4 we show a comparison of the

correlators measured in the conventional way on 100 000
configurations (green data point), fitted correlators based
on blocking data on 10 000 configurations with the free
Ansatz (black points), and the same using the power-law
Ansatz (red data point) and exponential-decaying Ansatz
(blue point). These are compared to the same partial sums
as in Fig. 3. We can see that if we fit the tail of our data to a
proper Ansatz, we can reduce the error by a significant
factor (in this case by a factor of ∼4). Comparison with a
much larger data set shows that this is achieved without
corrupting the value; the blocking method gives a result
which is consistent with that achieved by the conventional
method using 10 times more data.
Now we return to discussing our choice of s0; scut.

Table I lists the values of s0 and scut determined at some

typical separations τ and flow times τF. We see that s0 is
primarily determined by the gradient flow depth, and
secondarily by τ. scut is additionally weakly dependent
on our Ansatz choice. Since s0; scut are determined from the
data signal-to-noise, they will also change as we increase/
decrease the computational resources and hence the amount
of fit data. Specifically, more data means better signal-to-
noise which means larger s0; scut. Our approach always
balances s0 such that the fit is only used where the signal-
to-noise has become problematic.
Our choice for s0 was based on the somewhat arbitrary

criterion of a signal-to-noise of 10. We have explored what
happenswhenweeither loosen or sharpen this criterion. Ifwe
choose a smaller value for the signal-to-noise, the fit ceases to
be very constraining, and we fail to get a good description of
the tail. Butwhat ifwe start the fitwhere the signal-to-noise is
much higher, say, 50? We explored this possibility, and our
choice, over the full range of τ; τF values which we use in
our data analysis. We consistently find that the χ2=d:o:f: of
our fits, using the data in the range ½s0; scut�, is close to 1 for
the criterionwe use. Butwhenwe set s0 at the pointwhere the
S/N is 50, we find that the smallest-τF results—where the
data is the noisiest—produce a poor (large) χ2=d:o:f:,
apparently because the fit relies on data at a small s value
where none of our fitting functions are good descriptions.
This χ2 analysis provides an a posteriori justification for our
s0 choice: it gives fits which are constraining but which are
also internally consistent.
To understand our procedure better, Table II shows a

decomposition of the total determined GðτÞ based on the
three regions defined in Eq. (14), together with the fitted
parameters for each Ansatz. It can be seen that the first two
Ansätze give almost the same contribution for each part.
The exponential Ansatz has a somewhat larger scut, such
that the middle and tail regions contain a different number
of points. But the sum of these two regions is approx-
imately the same in all cases. The difference between the
results using different Ansätze is about 10 times smaller
than the overall statistical uncertainty.
An alternative approach, advocated in Ref. [12], is to use

physical arguments to determine the s value where almost
all of the signal has been included, and to discard the data at
higher s values. In Fig. 4, this would correspond to using
the purple data point at an s0 value somewhere above
s0=a ¼ 20. We see that this approach would be consistent
with ours, but with larger errors.

TABLE I. s0 and scut values for the correlator defined in
Eq. (13) using our three fitting Ansätze, based on 10 000
independent configurations at the indicated values of lattice size,
block size, and τ; τF values.

N2
σ × Nτ nb τ=a τF=a2 Ansatz s0=a scut=a

643 × 16 4 4 1.28 Free 13.9 17.9
643 × 16 4 8 1.28 Free 12.6 17.4
643 × 16 4 8 0.605 Free 8.0 12.0

643 × 16 4 4 1.28 Power law 13.9 18.3
643 × 16 4 8 1.28 Power law 12.6 17.4
643 × 16 4 8 0.606 Power law 8.0 12.0

643 × 16 4 4 1.28 Exponential 13.9 18.8
643 × 16 4 8 1.28 Exponential 12.6 17.9
643 × 16 4 8 0.605 Exponential 8.0 12.6

TABLE II. A comparison of the three fitting Ansätze, showing the fit coefficients and the decomposition of the
correlator shown in Eq. (14) for each Ansatz. The other values are the same as in each middle line of Table I.

Ansatz Gdom × 106 Gmid × 106 Gtail × 106 A B

Free 355.5 (6.6) 44.6 (11.8) 24.3 (1.9) 5.5 × 10−5 (4.3 × 10−6) � � �
Power law 355.5 (6.6) 43.7 (11.5) 23.9 (6.7) 2.1 × 10−7 (1.7 × 10−8) 5.7 (0.56)
Exponential 355.5 (6.6) 46.2 (12.1) 19.3 (6.9) 2.2 × 10−7 (1.8 × 10−8) 0.27 (0.049)
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As an application of our technique, we reanalyze the
topological charge density correlators which we originally
explored in Ref. [13]. The correlation function under study is

GqqðτÞ ¼
Z

d3x⃗hqð0⃗; 0Þqðx⃗; τÞi; ð21Þ

where the topological charge density is defined as

qðxÞ ¼ g2

32π2
ϵμνρσTrfFμνðxÞFρσðxÞg: ð22Þ

Our implementation constructs this operator using an
improved field strength tensor FμνðxÞ; see Ref. [13] for
details.We repeat the analysis of Ref. [13] carried out on five
lattices—643 × 16, 803 × 20, 963 × 24, 1203 × 30 and
1443 × 36—but now applying the blocking method. The
bin size is 43; 43; 43; 63; 83 for each lattice respectively. The
number of configurations is 10 000 for all lattices. Other
details about the lattice setup and gradient flow setup can be
found in Ref. [13].
In Fig. 5 we show a comparison of the correlators

measured in the conventional way to those from the
blocking method on the same configurations. Only corre-
lators in the flow time range valid for the τF → 0 extrapo-
lation are shown. In the left panel we take the finest
available lattice as an example. In the right panel we
compare the correlators after continuum extrapolation and
flow time extrapolation. From the left panel we can see that
the two ways of calculating the correlators give consistent
results but with significantly reduced statistical uncertainty
at the cost of introducing tiny systematic uncertainty when
using the blocking method. In the right panel a discrepancy
between two methods occurs in the range τT ∈ ½0.27; 0.35�.
This is mostly due to two discrepant points in the original

data analysis (not shown) at τT ¼ 0.3, 0.35 on the 803 × 20
lattice, which pull the original continuum extrapolation in
this region. The smaller-error results obtained with the
blocking method are in better agreement with the other
lattice spacings, suggesting that the problem lies in the
results obtained without blocking. Besides these two
points, the results using the new approach generally lie
within the error bars of the previous determinations. Using
this higher-precision data, we repeat the spectral analysis
carried out in Ref. [13] with the updated correlators, and
find that the spectral function Ansätze we considered there
cannot describe our data well any more. All the fits have
χ2=d:o:f: > 10. This indicates that more sophisticated and
physically motivated Ansätze for the spectral function are
needed. We leave this for future work.

V. CONCLUSION

In this paper we proposed a novel blocking method to
improve the signal-to-noise ratio of Euclidean two-point
correlators calculated on the lattice. Taking the bulk
channel energy-momentum tensor correlators as an exam-
ple, we demonstrated a factor of 3–7 improvement in the
signal-to-noise ratio, with almost no additional cost in
numerical effort. Equivalently, this is a factor of 10–50
reduction in computational cost to achieve a given precision
goal. We then applied the blocking method to the topo-
logical charge density correlators that we studied in a
previous publication, finding that the Ansatz for the spectral
function which we previously considered no longer gave a
good fit to the data. Our blocking method can be easily
implemented on the lattice and used to study various
correlators. It is applied at the analysis level, and does
not have to be integrated into the configuration-generating
procedure. There is also no obstacle to using it on

FIG. 5. Left: a comparison of the topological charge density correlators measured in the conventional way on 10 000 configurations
taken from Ref. [13] (grey bands) and those from blocking fits (colorful bands) on the same configurations on the 1443 × 36 lattice.
Right: the same as in the left panel, but after continuum and flow-time-to-zero extrapolation.
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unquenched lattices for various bosonic correlators with
any physically justified model.
Let us briefly address our choice of bin size. We chose to

use bins somewhat smaller than the largest τ difference to
be considered, in order to get sufficiently differential
information about GðsÞ. As the bin size is made smaller,
the numerical cost to correlate all bins eventually becomes
significant. For the bin sizes considered here, this was not
yet a problem. Also, as we make the bin size smaller, we
increase the relative error in each individual bin, which
might affect our procedure for choosing s0. If the bins are
chosen smaller than the gradient-flow radius, then data at
neighboring s values also becomes correlated, and auto-
correlations in Gðτ; sÞ at nearby s values must be handled
carefully. In the opposite direction, if the bins are too large
then we get an insufficiently refined determination of the

s dependence of the correlation function. It might be useful
to systematically investigate how bin-size choice affects our
procedure, but we leave this for future investigation.
All data from our calculations, presented in the figures of

this paper, can be found in Ref. [31].
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