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Ιθάκη

Σὰ βγεῖς στὸν πηγαιμὸ γιὰ τὴν ᾿Ιθάκη,

νὰ εὔχεσαι νά ῾ναι μακρὺς ὁ δρόμος,

γεμάτος περιπέτειες, γεμάτος γνώσεις....

...῾Η ᾿Ιθάκη σ᾿ ἔδωσε τ᾿ ὡραῖο ταξίδι.

Χωρὶς αὐτὴν δὲν θά ῾βγαινες στὸν δρόμο.

῎Αλλα δὲν ἔχει νὰ σὲ δώσει πιά.

Κι ἂν πτωχικὴ τὴν βρεῖς, ἡ ᾿Ιθάκη δὲν σὲ γέλασε.

῎Ετσι σοφὸς ποὺ ἔγινες, μὲ τόση πεῖρα,

ἤδη θὰ τὸ κατάλαβες οἱ ᾿Ιθάκες τὶ σημαίνουν.

Κωνσταντίνος Καβάφης

Ithaka

Once you set out for Ithaka

hope your road to be long,

full of adventures, full of knowledge...

...Ithaka gave you the beautiful journey.

Without her you wouldn’t have set out

there’s nothing else to give you anymore.

And if you find her poor, Ithaka hasn’t fooled you.

Now that you became wise with so much experience,

you should have already understood what Ithakas mean.

Constantine P. Cavafy
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How to read this thesis

Even though it is not usual, it would not be so illogical to provide guidance to the reader regarding

the tools one needs to follow the topic. Most of this thesis is devoted to string theory matrix

models, and therefore, to understand the logic, analysis, and results in their core, one should have

some pre-existing exposure to string theory.

To be self-consistent, the thesis is organised into six parts, beginning from the very basics.

The first part contains the main stimuli and a general introduction to the topic of the dissertation,

and where it might be helpful and applicable. This is indeed one of the parts that most readers

should go through carefully. Part two is an elementary introduction to, both conceptual and

concrete, string theory and matrix models. This information contains the foundations one needs

to follow the thesis. Readers familiar with both topics could skip directly to part three at first

read.

The third part contains all new results and developments from the Monte Carlo simulations

performed in a supercomputer starting with some basic introduction also. This is one of the

genuine parts of the topic and experts could directly start with this. At the end of each section of

this part, we include also a small table addressing the most important points, in the view of the

author, of each work and the scientific contribution in the high-energy and gravity communities.

The fourth part, on the other hand, is as genuine as it is abstract. It examines a non-established

connection, if it exists by any means, between matrix models emanating from string theory and

specific coarse-grained spin networks from loop quantum gravity. Readers not familiar with ideas

of loop quantum gravity could skip it at first read.

Part five contains the synopsis of the dissertation and how its contents might benefit the

scientific community. It also contains some future directions that could potentially be investigated

using the results presented here. In the final part, we supplement the reader with miscellaneous

results concerning some important points that have been used in the main body of the thesis.

We hope the reader finds the exposure to the above topics as enjoyable as the author found

their embedding and construction into this thesis.



List of abbreviations and symbols

Here we provide a list with some abbreviations and symbols that will play an important role.

BFSS The D0-brane model suggested by Banks, Fishcler, Susskind, Shenker

BMN The massive deformation of BFSS proposed by Berestein, Maldacena, Nastase

w.r.t With respect to

LHS Left hand side

RHS Right hand side

QFT Quantum field theory

CFT Conformal field theory

N The degrees of freedom, number of D0-branes, and the size of the matrix

S The lattice spacing

T Temperature (dimensionfull)

µ The mass of BMN model

λ The ’t Hooft coupling

H The Hamiltonian

H The Hilbert space

`s The string length

`P The Planck length

α′ `2s

gs The string coupling

gYM The Yang-Mills coupling

UV Ultraviolet

IR Infrared



viii



Contents

Author declaration and publications v

How to read this thesis vi

List of abbreviations and symbols vii

I Prolegomena xiii

1 Introduction and motivation 1

II Introduction to string theory and matrix models 7

2 String theory 9

2.1 Conceptual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 World-volume and spacetime descriptions . . . . . . . . . . . . . . . . . 10

2.1.2 Dynamical classical variables . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Some quantum aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Main analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Worldsheet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Conformal Field Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 The conformal group in D dimensions . . . . . . . . . . . . . . . . . . . 26

2.3.2 The special case of two dimensions . . . . . . . . . . . . . . . . . . . . . 31

2.4 Gravity from string theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Superstring theories and their classification . . . . . . . . . . . . . . . . . . . . . 42

2.6 The simplest example of Kaluza-Klein reduction . . . . . . . . . . . . . . . . . . 44

2.7 Introduction to M-theory and its contents . . . . . . . . . . . . . . . . . . . . . 45

3 Matrix models and gravity 55

3.1 Quantum gravity in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Zero dimensional matrix model . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.2 One-dimensional matrix models . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Matrix String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 A unification of matrices, membranes and D0-branes . . . . . . . . . . . 60

3.2.2 The BFSS model: Dimensional reduction . . . . . . . . . . . . . . . . . 67

ix



CONTENTS

3.2.3 An unconventional holography . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4 The IKKT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 The BMN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 The gravity duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Weak and strong notions of holography for matrix models . . . . . . . . 81

3.4.2 The gravity dual of BFSS . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3 The gravity dual of BMN . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Thermodynamics of the BMN model . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Confinement and deconfinement phases and their relations with gravity interpretations 97

3.6.1 The gauge theory side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6.2 The gravity side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

III Simulating matrix models in a supercomputer 103

4 Simulations 105

4.1 Introduction to simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.1 Real time dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.2 Preserving supersymmetry on the lattice . . . . . . . . . . . . . . . . . . 107

4.1.3 Lattice discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.4 The parameters that control the system . . . . . . . . . . . . . . . . . . 110

4.2 Some interesting examples at large d . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.2 Black strings in higher dimensions . . . . . . . . . . . . . . . . . . . . . 114

4.2.3 Large d analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Confinement-deconfinement in BMN model and appearance of M-theory . . . . . 125

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3.2 Short summary of the main claim . . . . . . . . . . . . . . . . . . . . . 126

4.3.3 Trivial and fuzzy-sphere vacuum in the BMN matrix model . . . . . . . . 131

4.3.4 Conjectured phase structure at finite temperature . . . . . . . . . . . . . 133

4.3.5 BFSS matrix model (µ = 0) . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.6 BMN matrix model (µ > 0) . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3.7 Numerical determination of the phase transitions . . . . . . . . . . . . . 141

4.3.8 Phase transitions in the bosonic BMN model . . . . . . . . . . . . . . . 142

4.3.9 Phase transitions in the full BMN model . . . . . . . . . . . . . . . . . . 143

4.3.10 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.4 Gauged and Ungauged matrix models . . . . . . . . . . . . . . . . . . . . . . . 162

4.4.1 Gauged vs ungauged: the conjecture . . . . . . . . . . . . . . . . . . . . 165

4.4.2 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.4.3 Simulation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.4.4 Energy of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.4.5 Other observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.4.6 Hamiltonian splitting in perturbative regime . . . . . . . . . . . . . . . . 177

4.4.7 Representation algebra of the BMN model . . . . . . . . . . . . . . . . . 182

4.4.8 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

x



CONTENTS

4.5 Low temperature supergravity and matrix models . . . . . . . . . . . . . . . . . 185

IV Spin networks, polyhedra and matrix models 195

5 Polyhedra and Matrix models? 197

5.1 Quantum Polyhedra and spin networks . . . . . . . . . . . . . . . . . . . . . . . 198

5.1.1 Coarse-grained spin network . . . . . . . . . . . . . . . . . . . . . . . . 199

5.1.2 Realizing U(N) on the surface . . . . . . . . . . . . . . . . . . . . . . . 202

5.2 Fuzzy spheres and matrix models . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.2.1 Mini bosonic BMN model . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.3 Are the models connected by any means? . . . . . . . . . . . . . . . . . . . . . 209

V Epilegomena 213

6 Synopsis 215

VI Appendices 219

A The potential barrier in the BMN model 221

B Effects of the BMN geometry on a D0-brane and a D2-brane 223

B.1 A D0-brane feels only the trivial vacua . . . . . . . . . . . . . . . . . . . . . . . 223

B.2 A D2-brane feels the SU(2) vacua . . . . . . . . . . . . . . . . . . . . . . . . . 224

C Microcanonical and grandcanonical statistics 229

D The Schwarzschild black hole in 11 dimensions 233

List of figures 235

Acknowledgments 247

Translations of epigraphs 249

xi



CONTENTS

xii



Part I

Prolegomena

xiii





1
Introduction and motivation

Αρχή σοφίας της αγνοίας η

γνώσις

Socrates

The unification of all forces of nature has haunted theoretical physicists since the birth of

the celebrated standard model which unifies electrodynamics, the weak and strong interactions

of the nuclei of fundamental particles. Even though this unified theory describes particle

physics very well, it certainly cannot describe gravitational systems. Even before that,

Einstein, the father of the current gravitational theory, spent a big part of his life trying to

unify all physics. The same theory instructs us that one should not consider gravity as a force,

since Einstein’s equation makes clear that one can think of matter entirely as a geometrical

entity. In a very precise way, gravity is equivalent to geometry in this theory and it does not

seem to combine very well with the above particle theories. The underlying characteristic

of the so-called standard model unifying the forces above is their quantum nature. This is

not so unexpected, since the (known) particles contained in nature are different modes of the

fields which subject to quantum mechanical laws in their fundamental nature. Therefore,

if someone insists on the unification idea one should better describe gravity as a quantum

theory, namely a theory of quantum gravity.

Interestingly, the quantum nature of gravity is treated on equal footing by communities

that do not believe in a unified theory, but rather try to understand in a mathematically

rigorous way quantum aspects of gravity in Planck scales. At these scales where, speaking

in geometrical terms, the curvature is very large, we expect that the gravitational theory

will be dominated by quantum effects. This indeed instructs us to treat spacetime as a

quantum geometry at these scales, leading to a physical marriage of the two pillars of nature.

Independent of the approach, the study of the behaviour of gravity in micro scales as well

as its interaction with other theories which contain matter is one of the most interesting

problems in the branch of theoretical physics.

Quantum gravity has one very important characteristic that makes it unique, it has to
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be non-local. This is in stark contrast to what most physicists are used to because the most

successful theory that describes nature at the quantum level is the quantum field theory

(QFT) which is certainly local. However, taking a skeptical point of view, it is not entirely

clear whether the latter theory is a fundamental aspect of nature or just an analytic tool that

is carefully constructed to describe nature. Nevertheless, tool or not, the important point

is that indeed one can perform analytic calculations in a local theory and compare with the

experimental data with an outstanding accuracy [1].

On the other hand, for a theory of quantum gravity, we do not have concrete experiments,

at least not in the usual sense. Instead, we have every theoretical physicist’s favourite

experiment, the so-called Gedanken (thought) experiments. Such an experiment reveals the

non-local nature of a theory of quantum gravity when one takes into account the holographic

principle [2, 3]. Before performing this Gedankenexperiment, let us point out that after the

work of Hawking [4, 5] a temperature was assigned to the event horizon of the black hole

and later the four laws for black hole mechanics were constructed [6] per the four laws of

thermodynamics. Having a temperature, the black hole should also have energy as well as

entropy. The interpretation of the entropy as information initially appeared even before the

work of Hawking in [7], where Bekenstein conjectured a natural bound which claims that a

black hole stores information according to one bit per Planck area patch (`2P ) on the black

hole event horizon. This is the minimal, physically allowed bound mainly for two reasons:

first of all, we do not have length scales smaller than Planks’ length, and secondly, we do

not know what is happening inside the event horizon. Since the inside of a black hole cannot

communicate with the region outside, a compromise has to be made in order to access the

information of a black hole. The compromise is to put all the black hole information on the

surface of the horizon respecting Bekenstein’s bound in such a way that an outside observer

could potentially access it. In other words, if someone would throw this thesis into the black

hole then the information contained in this thesis would probably remain on the black hole

event horizon but it would be inaccessible for an external observer since one would see that

the information contained in the thesis would be lost because the ”information” emitted

from the black hole as radiation would depend only on the mass, the angular momentum

and the charge of the black hole due to the no-hair theorem. Let us pause this discussion

here because it leads to the black hole information paradox and will just make the situation

more complicated. At the same time, the event horizon has the right characteristics to store

information (as entropy) since every time we throw something into the black hole, its horizon

increases [8]. The entropy of the black hole scales as

SBH =
kBA

4`2P
, `P =

√
G~
c3
. (1.1)

In theoretical physics, it is quite common to put all constants, such as the speed of light (c),

the gravitational constant (G), ~, and the Boltzmann constant (kB) to unity. A is the area

of the black hole horizon, which indicates that the information we can store in a black hole,

scales like the area in accordance with Bekenstein’s bound.

Let us now switch to a QFT description in flat spacetime and perform the Gedankenexperi-

ment. Let us consider an imaginary cube that encloses a region of space and let us suppose

that we want to store information in this region. To this end, we may discretise the cube in a

three-dimensional lattice using minimal discretization length, namely the Planck length, and

consider N cites where we can place one degree of freedom per site by Bekenstein’s bound.
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Then, it should be clear that the information we can put into this three-dimensional cube,

expressed as the entropy, should scale as

Scube ∼
N3

`3P
, (1.2)

or, in other words, should scale like the volume of this cube V . Therefore, we see that a

local QFT theory predicts storage information scaling like the volume, while a gravitational

theory considers a scaling of the entropy like the horizon area surface. Note that at constant

time slices, both the black hole and the cube are indeed three-dimensional objects. Hence, a

quantum theory of gravity should have a non-local profile.

Every approach to quantum gravity tries to reproduce this interesting black hole behaviour

from a statistical point of view. Recalling that thermodynamics is actually the large number

of degrees of freedom of a statistical system, one can revert the logic and try to find what

the microstates of the black hole are [9–44].

This interesting behaviour led to the proposal of the so-called holographic principle [2]

where a lower-dimensional surface (actually a co-dimension 2 surface such as the black hole

horizon) stores information for higher-dimensional objects. Let us not forget, after all, that

in a four-dimensional spacetime the black hole remains to be three-dimensional (at constant

time slices) and hence the information for this three-dimensional black hole is entirely given

by a two-dimensional surface, its horizon. The actual term, holography, emanates from the

more familiar situation of real-world holograms.

The first concrete example of such holography is proposed in [45] in the context of string

theory, where a d-dimensional gauge theory is conjectured to be equivalent to a (d + 1)-

gravitational theory. Both the field theory and the gravity theory in this example were

specific, but later this was generalised to the celebrated gauge/gravity duality [46–50].

One of the most important ingredients of the duality is a large number of degrees of

freedom N since in this case, the gravity theory becomes classical, in particular a supergravity

theory. Another valuable ingredient is the kind of Dp-branes that appear. These, after

the second superstring revolution, became genuine contents of a superstring theory and are

objects extending in p spatial dimensions of the superstring’s ten-dimensional spacetime.

They are dynamical, non-perturbative objects in their nature and host the endpoints of the

string [51,52].

The original example of such a duality [45] considers p = 3. At this specific value,

the gauge theory defined on the worldvolume of N coincident D3-branes becomes a four-

dimensional conformal field theory (CFT4) since the ’t Hooft coupling becomes dimensionless.

On the other side, the gravitational theory lives in a hyperbolic, five-dimensional spacetime

and has negative curvature, namely, it is a five-dimensional anti-de-Sitter spacetime (AdS5).

This dissertation, considers exclusively the case p = 0 that corresponds to zero-dimensional

D-branes whose dynamics create a worldline. In this particular case, there is not a CFT1,

since the ’t Hooft coupling becomes dimensionful. Instead, we have a one-dimensional

quantum mechanical matrix model having a U(N) gauge symmetry. The rank of this group

gives the number of degrees of freedom which is also the size of the matrices appearing in

the matrix model. Hence it is not necessary to look for an AdS2 spacetime. On the other

hand, the gravitational dual of this one-dimensional quantum mechanical matrix model is

a black zero-brane geometry. This geometry lives in the ten-dimensional spacetime of the

type IIA supergravity and, in addition, is asymptotically flat. The number of D0-branes
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gives the degrees of freedom in the gravitational theory such that N has a dual description.

Interestingly, a one-dimensional matrix model living on a worldline is the gauge dual of a ten-

dimensional gravitational theory in the large N limit. This unconventional holography defines

the matrix holography, or more rarely the worldline holography for such one-dimensional

quantum mechanical systems.

The authors of [53] pushed the duality a step forward and they claimed that this one-

dimensional matrix model can describe the contents of M-theory! This might not be so

surprising if one already knows that the latter theory is the underlying theory that connects

all five superstring theories [54]. However, this connection is a bit more subtle than the

conventional holography. Specifically, as we will see the type IIA superstring theory (and

supergravity) is defined as M-theory compactified on a spatial dimension. The idea of [53]

was to perform a boost along this spatial circle and uplift the ten-dimensional contents on

the eleven-dimensional spacetime where M-theory lives. This boosting procedure corresponds

essentially to the large N limit of the theory as we shall see when we will discuss precisely

this problem. At the same time, this procedure is still subtle because having a black hole

in eleven dimensions and boosting along one spatial dimension raises the question of what

happens to the black hole under the boost. If Lorentz contracts, such as normal objects

do, this would lead to a violation of the second law of thermodynamics because its horizon

would contract and be assigned to entropy then the entropy would decrease! Fortunately,

black holes do not Lorentz contract under a boost. On the other hand, examining the boost

carefully, one is led to the interesting question of what happens to the Bekenstein bound if

the boosting procedure corresponds to the large N limit. The degrees of freedom increase

but the black hole cannot accommodate them without violating Bekenstein’s bound. This

leads to the notion of strong holography which in the case of matrix models states that black

holes should expand under a boost [37].

The matrix character of the one dimensional model makes analytic gauge theory calcula-

tions intractable. On the other hand, one can employ numerical results in the gauge theory

and compare with the gravitational calculations which in the large N limit are tractable.

Keeping λ = g2
YMN finite, the large N limit corresponds to a classical gravitational theory,

namely a supergravity because this limit corresponds also to the planar limit of superstring

theory (surfaces of genus zero). Quantum corrections, or effects characterizing a theory of

quantum gravity, are considered for finite N . That is because 1/Na corrections correspond

to gas expansions which are corrections in a-loops of a supergravity theory. In matrix models,

this situation is depicted from keeping finite the size of the matrices. At the same time, finite

N calculations for supergravity corrections become intractable so one always has to make a

compromise between them.

The best possible compromise at this current level is to use simulations for the matrix

model while taking the large N limit and comparing it with supergravity. In this way,

the gauge/gravity duality could be put in more precise and concrete tests and potentially

be verified or falsified. The non-perturbative nature of D-branes allows also for a non-

perturbative cross check for the already developed perturbative intuition for the gauge/gravity

duality. Upon careful treatment, one can exploit this powerful tool and examine various

interesting phenomena, both in the gauge theory and the gravity side such as the confinement/

deconfinement transition, black hole physics, Hawking radiation, topology changes, and the

behaviour of the systems in specific parameter limits.
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In particular, in the forthcoming chapters, we shall see that these matrix models can be

used beyond the scope of string theory. Indeed, they can be generalised to a spacetime having

an arbitrary dimensionality and describe (gauge) theories consisting of partons. Whether

these gauge theories have a gravitational dual is not known, but we examine an interesting

comparison at first level. Leaving the arbitrary spacetime dimensionality and moving to the

ten-dimensional setting, we study a more concrete gauge/gravity example. In particular,

a one-dimensional matrix model is dual to ten-dimensional supergravity. In this particular

project, we show that the large N limit of the matrix model indeed follows the predicted

gravity behaviour, while finite N corrections corresponding to quantum effects show a small

discrepancy. One of the most exciting characteristics of this project is the fact that a

parameter region not accessible in the past was examined using the D0-matrix models upon

careful treatment. Specifically, we studied a theory considered to be out of reach until now

with the current resources available. In other words, we have promising indications that

we just entered the M-theory region by an interesting topology change of the gravitational

system.

Another interesting direction was to push this duality in a parameter region where

the temperatures are small. Even though this project is currently under examination and

construction we have strong hints that the supergravity results are reproduced by matrix

model numerics while a precision test requires more resources. The significance of this

project is that going to smaller temperatures, α′ corrections of string theory become negligible

because the gravity theory is dominated by classical non-stringy supergravity and analytic

results are available. At the same parameter region, we can study better the above transition

between string theory and M-theory.

In the same parameter region, we can test equally appealing phenomena. In particular,

the gauge constraint responsible for the gauge/gravity correspondence is examined according

to a recent conjecture which states that it is not that important for the duality at low

temperatures. We tested this for our matrix models and indeed we can verify that the

partition functions of the gauged and ungauged models are exponentially close to each other

at small temperatures. Apart from the genuine physical motivation, one further interest goes

to the development of the quantum computer, where physical models which do not have a

gauge symmetry are easier to realise and thus simulate.

A last and equally interesting topic discussed is a possible connection between matrix

models with a different branch of quantum gravity physics emanating from loop quantum

gravity. The underlying structure appearing in these two models is the fuzzy sphere. The

latter is related to polyhedra in the language of coarse-grained spin networks of loop quantum

gravity. Based on work built in this direction we discuss possible uses of matrix models to

relate and eventually study those specific spin networks by using matrix models from string

theory.

The non-perturbative, matrix character of these models allows a deep, not accesible in

the past, examination of physical systems where all the relevant information is contained in

these N ×N matrices. In the large N limit we probe classical physics which is the analogue

of the thermodynamic limit, while, on the other hand, finite N corrections correspond to

the quantum character of the system. In this dissertation, we use these D0-matrix models

to describe different physical systems, and via the gauge/gravity correspondence we study

classical and quantum gravity.
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Part II

Introduction to string theory and

matrix models
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2
String theory

Ετεή δε ουδέν ίδμεν. Εν βυθώ

γαρ η αλήθεια

Democritus

This chapter is aiming for a brief introduction to string theory [55–62]. Being such a

vast topic, string theory cannot be deeply understood by any brief introduction, instead, we

are going to provide as much intuition and details, as we think, are sufficient to follow the

explanations and the importance of the main ideas we are going to present later on. As an

introduction, it cannot be considered by any means a complete description of the topic and

we advise the interested reader to consult the standard references above. We shall begin

very elementarily, keeping the fundamental ideas at the core of the discussion, and gradually

change gears towards the ingredients that are important for the contents of this thesis. But

before presenting the materials let us comment on some important historical remarks.

Let us begin by stating that even though string theory today is believed to be also a

theory of quantum gravity, the original idea had nothing to do with gravity. However, we

shall see how gravity appears from string theory. It was in quantum chromodynamics where

firstly, the usage of a string described strong interactions between quarks. The Veneziano

amplitude (describing the S-matrix) of strong interactions between fundamental particles,

was given a physical interpretation. The nuclear forces between them could be described as

one-dimensional strings! Later this concept, leaving the dimensionality of spacetime abstract,

was formulated in a different context and created string theory.

One peculiar thing about string theory is the need for extra dimensions. This is what

makes it so popular, so exciting and so controversial at the same time. But, in physics, we

know that we should not add extra structure if it is not needed. After general relativity,

the dimensions of spacetime were always considered to be four. However, as we will see

later, mathematical consistency required from Lorentz invariant of the theory forces extra

dimensions in our theory. In particular, demanding invariance under the Lorentz group of

9



2.1. CONCEPTUAL ANALYSIS

the earliest bosonic string theory made the spacetime have 26 dimensions, while the later

fermionic supersymmetric string theory lowered them down to 10 spacetime dimensions.

It was only when the discovery of a mode of the string spectrum that was named the

graviton came into the game and made things even more fascinating. The graviton is

expected to be massless because the gravitational force has a very long range, and appears to

propagate at the speed of light. In addition, it must be a spin-2 boson because the source of

gravitation is the stress–energy tensor, a second-order tensor. Additionally, it can be shown

that any massless spin-2 field would give rise to a force indistinguishable from gravitation,

because a massless spin-2 field would couple to the stress–energy tensor in the same way

that gravitational interactions do, so if a massless spin-2 boson particle is to be discovered

it has to be a graviton [55, 61]. People started believing that string theory could unify all

the fundamental interactions since gravity1 also appeared quite naturally. After that, many

researchers started working on string theory leading to several discoveries.

The first superstring revolution, began in 1984 when this scientific community realized

that string theory could describe all elementary particles and interactions between each other.

Intense research leads to five different string theories one year later: type I, two types II

(IIA and IIB), and two heterotic (SO(32) and E8 × E8). The second superstring revolution

consisted of one extra dimension and some interesting objects appearing in the theories.

In particular, after the work of [54] the community realised that the above types of string

theories could be imagined as different limits of one more fundamental theory living in eleven

dimensions though! This new theory comes with a new name and some new objects. It was

baptised as M-theory, with M being undetermined while the most worthy meaning was M for

mysterious because we do not know (up to now) what exactly this theory is. We would like

to motivate, later on, that the name changed M for matrix as we will see in Sec. 3.2.1 and

Sec. 4.3. Moreover, the second revolution introduces some new objects, called D-branes [63,64]

where the endpoints of the (open) string can live. These objects were obtained as solutions

to the low energy limit of ten-dimensional supergravity and they seem to provide a non-

perturbative study of string theory [65]. However, there is no complete understanding of

what they are and how to think about them. Let us also notice that M-theory is not a string

theory since it does not contain strings, but the fundamental objects are the supergraviton,

the membrane, and the five-brane. For a more precise analysis we shall refer to Sec. 2.7.

2.1 Conceptual analysis

2.1.1 World-volume and spacetime descriptions

Let us consider a spatially extended classical and p-dimensional object (relativistic or not) -

a p-brane which propagates in a spacetime M with coordinates xµ = (t, xi). Such an object

however is not rigid but it can change by bending, wiggling such that it has it’s own dynamics.

A p-brane can be fundamental or not. There are two aspects in which a brane can be

fundamental or not:

� the brane is an assembly of lower-dimensional branes bound together by some force

1Here by gravity we mean the hypothetical carrier of the gravity force, the graviton, and we shall give a

more precise meaning later on.
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2.1. CONCEPTUAL ANALYSIS

� the fact that it appears to be p-dimensional can be an approximation by forgetting about

some dimensions if those are not observable (In the same spirit, a two-dimensional brane

on a flatland could be a projection of a three-dimensional object of a three-dimensional

world. Thus, species living in the flatland and being able to only observe two-dimensions

would never detect the extra dimension and the true nature of the three-dimensional

brane)

On the other hand, a fundamental object cannot be decomposed in terms of lower-dimensional

elements nor can any structure be found in it. However, a brane can split into several

other objects. Moreover, fundamental objects of the same type are indistinguishable (at the

quantum level) by definition: they can be in different quantum states but their nature is

identical. This can be summarised as:

Some ontological aspects

The string and the particle are different in their existential aspects. A fundamental

particle is ontologically one and cannot be divided: it can decay in several other

particles but the latter cannot be seen as being part of the first one. Simply imagine

decays of particles. This is because for an observer there is a clear notion of a particle,

defined as the intersection between its equal-time surfaces and the worldline of the

particle. This is not the case for the string: any set of strings that have interacted

together do not have an independent existence, and only the full world-sheet has an

ontological property.

This is related to the non-locality of the string interactions, implying that the two

observers cannot agree on the question ”when does the string cease to exist?” A more

intuitive picture is that a string can be cut into pieces, and these pieces do not acquire

some new property making them ”different” than the initial one. Nonetheless one

cannot say that the original string is made out of pieces with some glue tying them

together since it can be separated at any point (due to the non-locality), and the above

reasoning would imply that the string is not fundamental.

For example, one can imagine that a 0-brane is a point, and thus any particle falls in this

category. A 1-brane is all kinds of strings, a 2-brane is any kind of surface, etc. A violin string

is not fundamental because it is made out of many atoms which are made out of fundamental

particles (0-branes). This is (one) of the differences between a string of string theory and a

string of a string theory.

2.1.2 Dynamical classical variables

The history of a p-brane2 is called the world-volume W and it is parameterized in terms

of coordinates σa(a = 0, · · · , p). The dynamics can be described in two different fashions,

depending on the variables chosen and the way they relate the object to the spacetime:

� Worldvolume (or σ-model) approach: the spacetime position of the object Xµ(σa)

given as functions of the worldvolume coordinates are the dynamical variables. They

2History requires a time of course, and here we mean the time evolution of the p-brane and its spatial

locations.
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2.1. CONCEPTUAL ANALYSIS

are mapped describing the embedding of the p-brane worldvolume in spacetime (they

can be viewed as a field on the worldvolume)

� Spacetime (or field) approach: the object position is encoded in a field Ψ[Xµ(shape)]

which is a function(al) of the object spacetime coordinates (giving a p-dimensional

shape). The simplest instance being the density field.

At the conceptual level, both descriptions are fully equivalent, but they differ as computational

tools since some calculations (if at all possible) are simpler in one of them. Of course, there

are advantages and disadvantages that we will address later on. This means that we will

briefly review both of them.

Other descriptions do not rely at all on a Lagrangian such as the conformal bootstrap

and scattering amplitude programs. However, we will not review these here

The goal of an action is to describe the dynamics of a system by making extremal one

of its properties. Given a geometric object, it is natural to consider its shape, hence the

simplest action for a brane is the worldvolume

S = −T
∫
W

dV ol, (2.1)

where T is the tension of the brane and gives the correct units to the RHS and W is the

worldvolume. Then, introducing the embedding maps Xµ(σ), one can rewrite the above

action as

S = −T
∫

dp+1σ
√
−deth, (2.2)

where h is the induced metric on the brane

hab = ηµν
∂Xµ

∂σa
∂Xν

∂σb
, (2.3)

from the spacetime Minkowski metric ηµν with signature (−1, 1, · · · , 1). Introducing an

independent metric gab(σ) on the worldvolume, one can rewrite the above action as

S = −T
2

∫
dp+1σ

√
−det gηµνg

ab∂aX
µ∂bX

ν +
p− 1

2
T

∫
dp+1σ

√
−det g, (2.4)

where the classical equations of motion yield a proportionality between gab and hab

The above action is problematic for p > 1 because it describes too many degrees of

freedom. The worldvolume itself should not have intrinsic dynamics, which corresponds

to gab having no degrees of freedom. To get rid of them, one can only impose

diffeomorphisms and possibly Weyl invariance (local rescalings of the metric). This

gives in total p + 2 constraints for an object which has (p+2)(p+1)
2 degrees of freedom.

The worldvolume metric can be fixed only for p = 0 (with diffeomorphisms) and p = 1

(with diffeomorphisms and Weyl invariance). That the string p = 1 has Weyl invariance

it is a special case since for a generic p-brane we have

√
−hhab → Ω

p−1
2

√
−hhab. (2.5)
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In the worldvolume description, nothing should depend on the parameterization of the

surface: the worldvolume coordinates σa are merely internal labels that indicate how to read

off the corresponding spacetime position from the dynamical variable (the same applies to

the maps Xµ(σa) or the metric gab(σ) which are just tools to describe a physical object).

This leads to the existence of a gauge symmetry that can be fixed, for example by equating

some of the parameters with some spacetime coordinates. In particular, it is natural to set

the proper-time τ ≡ σ0 equal to the time τ = t when there is a foliation of the spacetime

in spatial slices. We also note that the gauge symmetry for a relativistic system leads to

constraints among the canonical momenta, which in turn implies that the (worldvolume)

energy-momentum tensor vanishes, including the Hamiltonian

HW = 0. (2.6)

These constraints are equivalent to the on-shell condition for the brane: as a consequence, the

tools available in QFT (renormalization, analyticity, etc) which rely on an off-shell formulation

and which ensure the consistency of the theory (gauge invariance, divergences, unitarity,

causality) are not available in the worldsheet formulation.

The spacetime action is found by introducing some fields given by the functional Ψ[Xµ(shape)]3

and the free action is quadratic in the fields

S =

∫
dXµ(shape)ΨKΨ, (2.7)

withK being an adapted kinetic operator. For the example of a particle, one hasK = ∂2+m2.

2.1.3 Some quantum aspects

Depending on the framework one is working on, the canonical quantization, which replaces

the dynamical variables by operators, leads to different descriptions:

� First-quantization (worldvolume): the spacetime positions of each object become operators

X̂µ(σ) (in the Schrödinger picture). The evolution is given in terms of a (one-brane)

wave-function ψp[X
µ(σ), τ ] satisfying the Schrödinger equation with time τ and p

denoting collectively eigenvalues. Multi-brane states are found by solving the Schrödinger

equation for the (anti-)symmetrized tensor product of one-brane wave functions.

� Second-quantization (spacetime): the field is promoted to an operator Ψ̂[Xµ(shape)]

which can be decomposed in terms of annihilation and creation operators âp and â†p
with first-quantized wave functions as coefficients

Ψ̂[Xµ(shape)] =
∑
p

(
âpψp[X

µ(shape)] + â†pψp[X
µ(shape)]∗

)
. (2.8)

These operators build the Fock space (multi-brane states) by acting on the vacuum |0〉
which is the no-brane state.

The second quantization can also be viewed (for a single-brane system) as reinterpreting

the first-quantized wave function as a classical spacetime field, which is then quantized (the

proper-time dependence is absent due to the gauge symmetry).

3It is a functional since the position depends on the shape of the object.
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Even if multi-brane systems can be considered in the first quantization, the resulting

description is much more complicated than with a field. For example, if the wave-function

of one brane has K degrees of freedom (and generically is K = ∞, due to the spacetime

dependence), then an N-brane wave-function would have KN components. On the other

hand, a field always has K components.

2.1.4 Interactions

Also, the interactions of strings are handled differently in the two formalisms:

� In the worldvolume picture amplitudes are computed by a path integral, which is

weighted by the free action of one brane, with a sum over all possible processes

〈O1 · · · On〉 ∼
∑
W

λ#(W)e−S[W]. (2.9)

The sum is over all worldvolumesW with the external states as to boundary conditions.

The interaction vertices with the corresponding coupling constant λ are added by hand

and determine all possible topologies. Note that for simplicity we have introduced only

one coupling constant, but in general, each vertex comes with its own coupling.

� In the spacetime picture the interaction between n fields is described by adding a

monomial of order n in the fields in the action

Sint =

∫
dXµ(shape)Ψn[Xµ(shape)], (2.10)

and then the scattering amplitudes are built from the Feynman graphs, which are

themselves uniquely fixed by the action

〈O1 · · · On〉 ∼
∫

dXµ(shape)e−Sfree[Ψ]−Sint[Ψ]O1 · · · On. (2.11)

Typically the scattering amplitudes diverge and as always there are UV and IR divergences.

The former originate from the high-energy region in loop diagrams, and they are removed

by renormalizing with counterterms. The latter arise when an internal particle is forced to

be on-shell, either as a part of a massless particle tadpole of a propagator on an external

leg or of an internal propagator. Physically they correspond to quantum effects which shift

the vacuum and the masses. Both problems are cured by renormalizing. In addition to

these physical divergences, there are also non-physical ones coming from the fact of a bad

parameterization of the amplitudes.

Renormalization is an intrinsically off-shell procedure and thus it can be employed only

with difficulties in the worldvolume formalism. Moreover, since the masses of the states

are shifted due to quantum effects, only (quantum) amplitudes for protected states can be

computed. We note that a protected state is a state whose mass is not renormalized due to

some symmetry (gauge, supersymmetry, etc) or because of representation symmetry.

Comparison of two formalisms

This brings us to a brief comparison between the two formalisms. In particular, we will just

state the disadvantages of the worldvolume formalism over the field theory.
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Firstly, the worldvolume approach cannot describe interactions since the path integral is

weighted with the action of a single brane, and its Hilbert space does not include multi-brane

states. The arbitrariness in the worldvolume approach complicates highly the models when

several particles can interact in many different ways. Also, the worldvolume formulation is

perturbative since the sum over the topologies is perturbative. On the other hand, a field

theory can probe non-perturbative features of the system since the partition function is not

given as a series in the coupling constant.

The rest of the disadvantages have been implicitly or explicitly stated before, but we

collect them in the following list:

Caveats of the worldvolume formalism

� No natural description of multi-particle states

� On-shell states

� Lack of renormalization

� Infrared divergences

� Hard to check consistency (unitarity, causality, etc)

� Scattering amplitudes only for protected states

� Absence of non-perturbative processes

Some of these problems can be avoided with some prescriptions - or even in some cases

they turn out to have some positive outcomes (such case is when scattering amplitudes in the

worldvolume formalism can be computed with CFT methods)- but ultimately we should have

a unified and systematic prescription, which is to be found in the field theory description.

Vocabulary of strings

In this subsection, we shall give some properties of the strings that we will use throughout

the whole chapter. Thus we will collect the most obvious properties here.

String tension

If we consider a static non-relativistic string, then to describe it we need three parameters.

The mass per unit of length µ, the tension T and the rest length l0. If one wishes to stretch

the string to a length l, its potential energy is given by V = T (l− l0)2/2 and the mass-energy

µl0c
2. The minimal energy is for l = l0.
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The tension is independent of the parameters. To see this, we consider a spring with

stiffness k1. Then the force we have to give to the spring to modify its length by ∆l is

given as F = k∆l by Hookes’ law. Next, we replace the original spring with two springs

of half the size of the first one but made from the same material. Applying the same

force, the total change of the length is still ∆l and it splits equally between the two

springs, so ∆l2 = ∆l1
2 . The force that applies on the two springs is F = k2∆l2, yielding

k2 = 2k1. From this, we see that the stiffness is inversely proportional to the length.

Now, if we consider a string to be a series of many such springs, upon integration one

obtains the tension as this coefficient of proportionality. Then it is understood that

tension is energy per unit length or in other words it is a force.

Next, we consider a relativistic string with tension T defined in the rest frame and attach it

such that its length is l. Then its energy is given as E = T l and is equal to the potential energy

due to the stretching. From special relativity we know that the energy is the sum of the rest

mass and the potential energy, implying that the string is massless. However, we can associate

an effective mass (per unit length) due to the tension through µc2 = E/l = T . Hence, in

contrast to the non-relativistic case, mass and tension are not independent parameters.

Taking into account quantum effects, the string cannot shrink without limit due to the

uncertainty relation

l · p ≥ ~
2
, (2.12)

since doing so would require infinite momentum. To find the natural string length, we do the

following. We consider the center of the mass to have momentum p which can be related to

energy as

p =
E

c
=
µc2l

c
=
T l

c
, (2.13)

since the center of the mass behaves like a massless particle with pµ = (E,−E/c). Then

taking the equality in the uncertainty relation yields

l ∼
√

~c
2T

. (2.14)

The string length is defined with an additional factor4 of π

`s =

√
~c

2πT
⇒ T =

~c
2π`s

. (2.15)

Note that this is the only length one can create on the dimensional ground using just the

tension and the fundamental constants. Since it arises from a quantum argument one may

expect it to be close to the Planck length.

This means that any string which is not attached to something will spontaneously shrink.

In particular, closed strings cannot be attached to anything and will tend to be very tiny,

of the order of ls, and thus just a few orders of magnitude above the Planck length. Note

4The precise relation between the energy and the tension depends on the details of the system. For example

a rotating string has E = π
2
T , so the precise factor defining `s is a matter of convention. Moreover the length

is often parametrized to range from 0 to 2π: since the action is proportional to T , it is convenient to rewrite

them in terms of `2s such that the spatial integral is normalized by 2π.
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that the size of the string depends on its energy, and thus on its momentum and vibrational

mode.

At the classical level, the lowest energy of string is obtained when the string shrinks

to a point. But one can consider classical configurations where the string is of finite

length even if it is not attached to anything. This is explained by the conservation of

energy: the length of the string is fixed as an initial condition and the energy cannot

change because one considers an isolated free string.

The last parameter to be introduced is the Regge slop α′, defined by the relation

J

~
= α′E2, (2.16)

where J is the angular momentum. Considering a rotating string gives the relation

T =
1

2π~cα′
, `s = ~c

√
α′. (2.17)

Finally, it makes sense to speak about the string tension or the string length because one

considers only one type of string. In fact, there will be two types of strings, closed and open,

but unitarity requires them to have the same elementary properties, only their shapes differ.

Spectrum

Let us give some intuition about the states described by a closed string. One can start by

choosing the gauge gab = ηab and after imposing the equations of motion, write the Fourier

expansion of the fields Xµ as

Xµ(τ, σ) ∼ xµ + pµτ +
i√
2

∑
n∈Z∗

1

n

(
αµne

−in(τ−σ) + ᾱµne
−in(τ+σ)

)
, (2.18)

where xµ is the center-of-mass of the string and pµ its momentum, satisfying the usual

commutation relation

[xµ, pν ] = iηµν . (2.19)

This differs from the expansion for a point-particle due to the third term. The later introduces

an infinite number of oscillators αµn and ᾱµn which satisfy canonical commutation relations for

creation (n < 0) and annihilation operators (n > 0)

[αµk , α
ν
l ] = ηµνδk+l,0. (2.20)

For the case of opens strings, we just have to set αn = ᾱn. The Hamiltonian for the closed

and open strings is respectively

Hclosed = −m
2

2
+N + N̄ − 2 (2.21)

Hopen = −m2 +N − 1, (2.22)

where m2 = −pµpµ is the mass of the state in Planck units, N and N̄ count the numbers Nn

and N̄n of oscillators αn and ᾱn weighted by their mode index n

N =
1

n

∑
n∈N

nNn, Nn = α−n · αn, (2.23)

N =
1

n

∑
n∈N

nN̄n, N̄n = ᾱ−n · ᾱn. (2.24)
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Knowing these, one can construct the Hilbert space of the string theory. Recalling that

invariance under reparametrization implies that the Hamiltonian vanishes, translates to

H |ψ〉 = 0, (2.25)

for any physical state. Another constraint for the closed string is the so-called level matching

condition

(N − N̄) |ψ〉 = 0. (2.26)

The ground state |p〉 with momentum p is defined to be the eigenstate of momentum operator

which does not contain any oscillator

∀n > 0 : αµn |p〉 = 0. (2.27)

Then it is understood that one can built an arbitrary excited state by applying successively

creation operators

|ψ〉 =
∏
n>0

d∏
µ=0

(
αµ−n

)Nn,µ |p〉 , (2.28)

where Nn,µ ∈ N counts how many times the oscillator αµ−n appears. For the moment we will

focus on the first two levels of states.

The ground state is a tachyon because the Hamiltonian constraint shows that it has

negative mass

closed : m2 = −4, (2.29)

open : m2 = −1. (2.30)

The first excited state of the open string is found by applying α−1

αµ−1 |p〉 , (2.31)

one finds that it is massless and since it transforms as a Lorentz vector (spin 1), it is identified

with a U(1) gauge boson. In fact, one can write a superposition of such states as

|A〉 =

∫
dDpAµ(p)αµ−1 |p〉 , (2.32)

and the coefficient Aµ(p) of the Fourier expansion is interpreted as the spacetime field for the

gauge boson. Reparametrization invariance is equivalent to the equation of motion

p2Aµ = 0. (2.33)

Furthermore, one can prove that the field obeys the Lorentz gauge condition

pµAµ = 0, (2.34)

which results from gauge fixing the U(1) gauge invariance

Aµ → Aµ + pµλ. (2.35)

It is interesting also (and can be checked) that the low energy action reproduces the Maxwell

action.
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The first level of a closed string is obtained by applying both αµ−1 and ᾱµ−1 (which is the

only way to match N and N̄ at this level)

αµ−1ᾱ
ν
−1 |p〉 , (2.36)

and the corresponding states are massless as well. Furthermore, these states can be decomposed

into irreducible representations of the Lorentz group(
αµ−1ᾱ

ν
−1 + αν−1ᾱ

µ
−1 −

1

D
ηµνα−1 · ᾱ−1

)
|p〉 ,(

αµ−1ᾱ
ν
−1 − αν−1ᾱ

µ
−1

)
|p〉 , 1

D
ηµνα

µ
−1ᾱ

ν
−1 |p〉 .

These are respectively associated to the spacetime fields Gµν (metric, spin 2), Bµν (Kalb-

Ramond 2-form, spin 1) and Φ (dilaton, spin 0). The appearance of a massless spin 2 particle

is a key result that raised interest in string theory. This is because the low energy action of

this particle is the Einstein-Hilbert action.

Reparametrization invariance leads to other constraints than H = 0. In particular,

it implies that the massless fields have the correct gauge invariance and hence the

correct degrees of freedom. Note that, after taking into account these constraints, the

remaining modes correspond to excitations of the string in the directions transverse to

it.

Each vibrational mode (harmonic) of the string corresponds to a spacetime field for a

point-particle. Linear superpositions of these modes can describe several fields. Thus, this is

how string theory is supposed to unify different theories since each field of every theory can

be expressed as a superposition of the excitation of the modes of a single string. The spin

and other properties of the particles are provided by the internal structure of the string and

in particular its vibrational mode.

One disadvantage of the bosonic string theory is the fact that the spectrum contains

tachyons. While the interpretation for open strings is the fact that they tend to form closed

strings and stabilize the situation for closed strings is more subtle. In a sense, it indicates that

spacetime itself is unstable and tends to decay! Since our lack of understanding is manifest,

we remove the problem by introducing supersymmetry, and then the spectrum does not

contain any tachyon and the dimension of the spacetime is lowered to 10.

2.2 Main analysis

2.2.1 Worldsheet Theory

The string worldsheet is a Riemannian surface W = Σn of genus n; the genus counts the

number of holes or handles. The wordlsheet itself is the object on which all the string

theory information is encoded. Coordinates on this two-dimensional worldsheet are denoted

as σa = (τ, σ). Whenever there is no risk of confusion, σ will be used to denote collectively

both. Let us furthermore consider the case of closed strings (the treatment of open strings is

analogous) and hence the topology of the worldsheet will be a cylinder with a spatial direction

being a circle S1 of unit radius, such that

σ ∈ [0, 2π) , σ ∼ σ + 2π. (2.37)
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Then the string itself is embedded in arbitrary dimensional (D) spacetimes M with metric

Gµν via the embedding maps

Xµ(σa) : W →M , µ = 0, · · · , D − 1. (2.38)

These are the dynamical variables we saw at the beginning of the chapter in the section

on conceptual analysis. The Nambu-Goto action is the starting point of the worldsheet

description

SNG[Xµ] =
1

2πα′

∫
d2σ

√
detGµν(X)

∂Xµ

∂σa
∂Xν

∂σb
. (2.39)

Quantizing this action turns to be difficult because it is highly non-linear. One way out is to

introduce a Lagrange multiplier to remove the square root by introducing an auxiliary field

that corresponds to an intrinsic worldsheet metric gab(σ). Then the dynamical behaviour of

the worldsheet is described by the Polyakov action

SP [g,Xµ] =
1

4πα′

∫
d2σ
√
ggabGµν(X)

∂Xµ

∂σa
∂Xν

∂σb
, (2.40)

which classically is equivalent to the Nambu-Goto action. The embeddings Xµ characterize

the string theory under consideration in two ways: firstly their number gives the dimensionality

of spacetime in which the strings propagate. More generally, they describe properties of the

spacetime. Secondly, they describe the internal degrees of freedom of the string (i.e the

vibration modes which are constrained by the spacetime).

However, one can use more general matter to describe a different spacetime or different

degrees of freedom. For example in Polyakov’s formalism, the worldsheet geometry is equipped

with a metric gab(σ) together with a set of fields living on it. The scalar fields Xµ(σ) can

be described by a general sigma model which encodes the embedding of the string in D

non-compact dimensions, and other fields can be added, for example, to describe compact

dimensions or spin. Thus, different sets of fields and actions correspond to different string

theories. Yet, to describe the other possibilities, one has to first understand the constraints

on the worldsheet theories and introduce conformal field theories.

One important topological invariant is the Euler characteristic. This is computed by

integrating the Riemann curvature R of the metric gab over the surface Σn

χ := 2− 2n =
1

4π

∫
Σn

d2σ
√
gR, (2.41)

with n being the genus of the surface. Note that oriented Riemann surfaces without boundaries

are completely classified topologically by χ or equivalently n.

To describe a proper string theory the metric should not be dynamical: this corresponds

to the worldsheet not having intrinsic dynamics and that no supplementary degrees of freedom

are introduced when parametrizing the worldsheet with a metric. If any, a way to remove

these degrees of freedom is by introducing gauge symmetries with the number of the gauge

parameters to be equal to the number of degrees of freedom. Since the worldsheet theory is

effectively a QFT coupled to gravity, it makes sense to ask invariance under diffeomorphisms.

Physically this means that the choice of space parameter σ and the time parameter τ of the

worldsheet is arbitrary. However, this invariance is not sufficient to completely fix the metric.

Another natural candidate is Weyl invariance corresponding to local rescalings of the metric.
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Having a diffeomorphism ϕ ∈ Diff(Σn) it acts on the fields as

σ′a = ϕa(σb) , g′(σ′) = ϕ∗g(σ) , Ψ′(σ′) = ϕ∗Ψ(σ), (2.42)

where ∗ denotes the pullback by ϕ, and by Ψ we denote collectively the matter fields. In

coordinate notation, the metric and the scalar fields transform precisely as

g′ab(σ
′) =

∂σc

∂σ′a
∂σd

∂σ′b
gcd(σ) , X ′µ(σ′) = Xµ(σ). (2.43)

The index µ here is redundant and not affected since from the worldsheet point of view it

just labels a collection of worldsheet scalar fields and it is thus a target spacetime index. The

infinitesimal analogues are generated by vector fields on Σn

δξσ
a = ξa , δξΨ = LξΨ , δξgab = Lξgab, (2.44)

with Lξ denoting the Lie derivative with respect to the vector field ξ ∈ diff(Σn) ' TΣn. The

Lie derivative of the metric is

Lξgab = ξc∂cgab + gac∂bξ
c + gbc∂aξ

c = ∇aξb +∇bξa. (2.45)

The Lie algebra generates only transformations in the connected component Diff0(Σn) of the

diffeomorphism group which contains the identity. The rest of transformations not contained

in Diff0(Σ) are called large diffeomorphisms (e.g reflections). By taking the quotient of the

two groups, one obtains the modular group

Gg :=
Diff(Σn)

Diff0(Σn)
, (2.46)

which depends only on the genus of the Riemann surface and not on the metric. For g ≥ 1

it is an infinite discrete group and in particular G1 = SL(2,Z).

On the other hand a Weyl transformation e2ω ∈Weyl(Σn) corresponds to a local rescaling

of the metric and leaves the other fields unaffected

g′ab(σ) = e2ω(σ)gab(σ) , Ψ′(σ) = Ψ(σ). (2.47)

This implicitly excludes fermionic fields which do not transform under a Weyl transformation.

In addition, the exponentiation is in direct analogy with the fact that eω and not ω is an

element of the group. Infinitesimally one has

δωgab = 2ωgab , δωΨ = 0, (2.48)

where ω ∈ weyl(Σ) ' F(Σn) is a function on the manifold. Two metrics are said to be

conformally equivalent if they are related in this way. The conformal structure of Riemann

surface is defined by

Conf(Σn) :=
Met(Σn)

Weyl(Σn)
, (2.49)

where Met(Σn) denotes the space of all metrics on Σn.

Diffeomorphisms have two components ξa while Weyl transformations just one ω. It

is therefore sufficient to locally fix the three components of the metric (using a symmetric

matrix) and the total gauge group of the theory is the semi-direct product

G := Diff(Σn) n Weyl(Σn). (2.50)
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Similarly, the component connected to the identity is

G0 := Diff0(Σn) n Weyl0(Σn). (2.51)

The semi-direct character is because the Weyl parameter is not inert under diffeomorphisms.

This is shown by the combination of the two transformations

g′ = ϕ∗(e2ωg) = e2ϕ∗ωϕ∗g, (2.52)

since the diffeomorphism acts also on the conformal factor. Such combinations for the

transformations can be chosen to fix the metric in a convenient gauge. For example the

conformal gauge is

gab(σ) = e2φ(σ)ḡab(σ), (2.53)

where ḡab is some fixed background metric and φ(σ) the conformal factor. Note that this is

also called Liouville field, a field that plays an important role in two-dimensional quantum

gravity. Fixing only diffeomorphisms amounts to keep φ arbitrary, while this can be fixed

with a Weyl transformation. As an example, one can use the conformally flat gauge

ḡab = δab , φ arbitrary (2.54)

with a diffeomorphism and then reach the flat gauge

ḡab = δab , φ = 0 (2.55)

with a Weyl transformation.

Active and passive transformations

Symmetries are usually described by active transformations, which means that the field

seems to change under transformations. At the same time, gauge fixing is seen as a

passive transformation where the field is expressed in terms of other fields (e.g different

parametrization). These are mathematically equivalent since both cases correspond to

inverse elements, and one can choose the most convenient representation.

Topology and gauge choices

While it is always possible to adopt the flat gauge (2.55) locally it is not always possible

to extend it globally. The sign of the curvature is given by 1 − n but the curvature

of the flat metric is zero, meaning that curvature must be localized somewhere on the

surface and this prevents from using just one coordinate patch.

All in all the system is described by an action Sm[g, ψ] which has the following properties

� local in the fields

� renormalizable

� non-linear sigma models for a subset of the fields

� invariant under diffeomorphisms
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� invariant under Weyl transformations

The last two conditions are summarized as

Sm[ϕ∗g, ϕ∗Ψ] = Sm[g,Ψ], Sm[e2ωg,Ψ] = Sm[g,Ψ]. (2.56)

The invariance under diffeomorphisms is straightforward to enforce by focusing only on

covariant objects. The non-linear sigma model condition means that there is a spacetime

interpretation for the string: the sigma model fields and the target manifold are respectively

the spacetime coordinates and the manifold. The isometries of the target manifold metric

become global symmetries of Sm.

To make the action consistent with the topology of the worldsheet, the fields must satisfy

appropriate boundary conditions. In the simplest case, the bosonic fields should be periodic

Xµ(τ, σ) ∼ Xµ(τ, σ + 2π). (2.57)

2D gravity (see also Sec. 3.1)

The ingredients in two-dimensional gravity are similar, except that the system has, in

general, no Weyl invariance. As a consequence, one component of the metric, which is

usually taken to be the Liouville mode remains unconstrained. In the conformal gauge

(2.53), only ḡ is fixed.

The symmetries (2.56) imply that the matter is conformally invariant on flat space gab =

δab. A conformal field theory (CFT) is characterized by a central charge c (see Sec. 2.3) which

roughly measures the quantum degrees of freedom. In addition, is additive for decoupled

sectors and in particular, the scalar fields Xµ contribute as the spacetime dimension D and

it is useful to define a perpendicular CFT with central charge c⊥ as matter which does not

describe the non-compact space:

c = D + c⊥. (2.58)

In general the energy-momentum tensor is defined via

Tab := − 4π
√
g

δS

δgab
. (2.59)

The variation of the action under transformations (2.44) vanishes on-shell if the energy-

momentum tensor is conserved

∇aTab = 0. (2.60)

On the other hand, variation under (2.48) vanishes off-shell if the energy-momentum

tensor is traceless:

gabTab = 0. (2.61)

The respective conserved charges generates worldsheet translations

P a :=

∫
dσT 0a. (2.62)

The first component is identified with the worldsheet Hamiltonian P 0 = H and generates

time translations while the second component generates spatial translations.
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Traceless and curvature

The trace of the energy-momentum tensor is proportional to the curvature

gabTab ∝ R. (2.63)

Then, the equations of motion are invariant since the integral of R is a topological

invariant. The theory is invariant even if the action is not. For example, this happens

for fields at the quantum level (Weyl anomaly) and in the Liouville theory.

2.2.2 Path integral

One among the different ways to quantize the system is by considering the path integral

which is achieved via the partition function

Zn :=

∫
[dngab]

Ωgauge[n]
Zm[n] , Zm[n] =

∫
[dnΨ]e−Sm[g,ψ], (2.64)

of fixed genus n. The integration over gab is performed over all metrics (geometries) of the

surface Σn! The factor Ωgauge ∈ Met(Σn) is a normalization inserted to make the integral

finite and it depends on the metric. Usually it is the volume of the gauge group of the theory.

That it depends on the metric explains (mathematically) why it is placed after the integral.

Its value is determined by requiring the cancellation of the infinities due to gauge parameters,

and of course, the latter is sensitive to the theory under consideration. This partition function

corresponds to n−loop expansion, similarly to the case of Feynman diagrams in the usual

quantum field theory, but here the expansion is over different topologies. This program is

considered in the case of calculation of amplitudes and it is something that we will not need

in this thesis and not explain further.

In order to proceed with gauge fixing and handle the path integral (2.64), one has to

define an integration measure over the fields. That the space is infinite-dimensional makes

the difficulty of the problem obvious, and one possibility is to define the measure implicitly

through Gaussian integration over the field tangent space. Because a Gaussian integration

involves a quadratic form, which is an inner product and equivalently a metric on the field

space. However, to reduce the freedom in the definition of the inner product it is insightful

to introduce three natural assumptions:

� Ultralocality : the measure is invariant under reparametrizations and defined point-wise,

which implies that it can depend on the fields but not on their derivatives

� Invariance: the measure for the matter transforms trivially under any symmetry of the

matter theory which is achieved by contracting indices with appropriate tensors

� Free-field : for fields other than the worldsheet metric and matter (e.g ghost fields,

Killing vectors, etc), the measure is the one of a free field.

Thus, the inner product is obtained by contracting worldsheet indices of the fields with a

tensor built only from the worldsheet metric, by contracting other indices (like the spacetime)

with some invariant tensor (like the spacetime metric) and integrating over the worldsheet.

We also wish to distinguish the matter fields from those appearing in the gauge fixing

procedure. The matter fields live in the representation of some group under which the
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inner product is invariant. In other words, it is not possible to define each field measure

independently if the exponential of the inner products does not factorize. For example in

a curved background one has [dX] 6=
∏
µ dXµ. However, these data are not needed if we

already know that the matter is a CFT, this suffices to gauge fix the theory. In this procedure,

different types of fields appear which do not carry indices beyond the worldsheet metric.

Therefore under the third condition ensuring free-field measures we define measures of those

single fields.

Let us consider the finite elements δΦ1 and δΦ2 of tangent space at the point Φ of the

state of fields. Then the inner product and the associated norm are written as

(δΦ1, δΦ2)g =

∫
d2σ
√
ghg (δΦ1, δΦ2) , |δΦ|2g = (δΦ, δΦ)g , (2.65)

where hg is the metric on the δΦ (tangent space). It is taken to be flat for all fields except for

the metric. In principle one requires that these inner-product are ultralocal in a sense that

h depends only on gab but not on its derivatives. Moreover the dependence of the flat metric

h on g reflects the diffeomorphism invariant of the inner product which in turn will lead

to a metric-dependent but nevertheless diffeomorphism invariant measure. The functional

measure is then normalised via a Gaussian integral∫
[dgδΦ]e−

1
2

(δΦ,δΦ)g =
1√

dethg
. (2.66)

This, will lead to a measure on the field space itself∫
[dΦ]

√
dethg (2.67)

on the tangent space. The determinant can be absorbed in the measure such that∫
[dgδΦ]e−

1
2

(δΦ,δΦ)g = 1. (2.68)

This normalization and the definition of the inner product is ambiguous, but the ultralocality

condition fixes uniquely [66] √
dethg = e−µhSµ[g] , µh ∈ R, (2.69)

since Sµ is the only renormalizable covariant functional depending on the metric but not on

its derivative. The effect is to redefine the cosmological constant which is responsible for the

Weyl anomaly.

Weyl anomaly

The Weyl anomaly is equivalent to a non-zero trace of the quantum energy-momentum

tensor

〈gµνTµν〉 =
c

12
R, (2.70)

where c is the central charge and R the Ricci scalar. The Weyl anomaly

can be equivalent traded for a gravitational anomaly which translates to broken

diffeomorphisms at quantum level [67].
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Fadeed-Popov method

At first sight the integration over the space of metrics Met(Σn) of all metrics Σn at fixed

genus n leads to divergence of the functional integral since equivalent configurations

(ϕ∗g, ϕ∗Ψ) ∼ (g,Ψ) , (e2ωg,Ψ) ∼ (g,Ψ) (2.71)

contribute in the same way to the integral. Since this redundancy is infinite, the integral

diverges, and because the multiple counting is generated by the gauge group, the infinite

contribution corresponds to the volume of this gauge group.

The Fadeed-Popov procedure is a mechanism to extract this volume by separating the

integration over the gauge and physical degrees of freedom, schematically

d(fields) = Jacobian× d(gauge)× d(physical). (2.72)

The space of fields denoted by (g,Ψ) is divided into equivalent classes and one integrates

over only one representative of each class, i.e over a gauge slice. This change of variables

introduces a Jacobian factor which can be represented by a partition function with ghost

fields, which are fields with negative norm.

Mathematically, the Faddeev-Popov procedure consists in identifying the orbits (class

of equivalent metrics) under the gauge group G and writing the integral in terms

of G-invariant objects (orbits instead of individual metrics). This can be done by

decomposing the tangent space into variations generated by G and its complement.

Then, one can define a foliation of the field space which equips it with a fiber bundle

structure: the base is the push forward of the complement and the fiber corresponds

to the gauge orbits. The integral is then defined by selecting a section of this bundle.

2.3 Conformal Field Theories

In this section, we explain some basic ideas about conformal field theories (CFT) that

we will refer later on. We do not need all the ingredients, nor will we perform strict

computations using its tools but its simplicity instructs us to mention a few words for

completeness. Conformal field theories are called the theories that are invariant under

conformal transformations. This is quite general, as it is the fact that conformal transformations

are called those that leave the angle between two vectors invariant. Since the aim of this thesis

does not involve conformal field theories much we will rather present the basic ideas while

details and more advanced topics will be omitted. Hence we will start with the conformal

analysis in arbitrary D dimensions and then we will conclude with the CFT on the string

worldsheet.

2.3.1 The conformal group in D dimensions

Let us start with an arbitrary D dimensional manifold M equipped with a metric g with

signature (p, q), such that p+ q = D. In a components notation, a conformal transformation

is one that leaves the angle gµνu
µvν/

√
u2v2 invariant. More precisely, the group of conformal
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transformations is the subgroup of coordinate transformations φ :M→M which leave the

metric invariant up to a (spacetime depended) scale factor, such that

φ : g 7→ g′ = φ∗g := Ωg , Ω ∈ F(M), (2.73)

where Ω is the scale factor and F(M) is the space of functions on M. One can write the

above transformation in components

gµν(x) 7−→ g′µν(x′) = Ω(x)gµν(x). (2.74)

Note that this rescaling of the metric should not be confused with the Weyl transformations

on the metric which do not act on the coordinates. In fact, conformal transformations are a

subgroup of diffeomorphisms.

One important point is that in conformal field theories it is the angles that matter and

not length scales since the latter are absent. In addition, the interpretation of (2.74) depends

on whether or not the metric is kept dynamical. When it is dynamical, the conformal

transformations are local and hence they are treated as a gauge symmetry. On the other

hand, when the metric is fixed, the transformation corresponds to a global symmetry and

one usually expects to have conserved currents associated with this.

Since in most CFT treatments the metric is flat we will also follow this recipe such

that gµν = ηµν , and therefore the manifold M will be identified with Rp,q. Recalling the

transformation law of the metric under a coordinate transformation

xµ 7−→ x′
µ

= xµ(x), (2.75)

we have

gµν(x) 7−→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (2.76)

Comparing now with (2.74) and for the case of flat metric one gets

Ω(x)ηµν =
∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ. (2.77)

For the case of flat metric, the Poincaré group and hence the Lorentz group are subgroups of

the conformal transformations with Ω(x) = 1.

We shall examine the generators of these transformations. Let us then consider an

infinitesimal coordinate transformation such that

xµ 7−→ x′
µ

= xµ + εµ(x) +O(ε2) , ε(x)� 1. (2.78)

Then from (2.77) one finds that

ηρσ∂µ(xρ + ερ(x) +O(ε2))∂ν(xσ + εσ(x) +O(ε2)) = ηµν + (∂µεν + ∂νεµ) +O(ε2). (2.79)

In order to have a conformal transformation the last expression should be a scaling factor of

the metric, i.e

∂µεν + ∂νεµ = K(x)ηµν , (2.80)

such that from (2.76) infinitesimally we must have

Ω(x)ηµν := (1 +K(x))ηµν . (2.81)
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Concretely we have to find this scaling factor K(x) for these transformations. In order to do

this, we can take the trace of (2.80) yielding

K(x) =
2

D
∂µε

µ, (2.82)

such that we find the scaling factor

Ω(x) = 1 +
2

D
(∂ · ε) +O(ε2). (2.83)

This is on fact the conformal Killing equation in flat spacetime

Conformal Killing equation in flat spacetime

∂µεν + ∂νεµ = K(x)ηµν , K(x) =
2

D
∂µε

µ. (2.84)

Note that in the general non-flat case one has to use the Lie derivative

Conformal Killing equation in curved spacetime

A conformal Killing vector is defined as a vector field ε ∈ X(M) on the manifold

M such that when the metric is transported along the curves generated by ε its Lie

derivative is proportional to itself

Lεg = Kg, (2.85)

for some scalar field K = K(x), x ∈M.

Physically speaking the meaning of equation (2.85) is that as the metric is transported

along some curve, or some congruence of curves its change is given by K. In case K is an

arbitrary function, it could be different along the manifold and vary. Contrary it could be that

it is either zero, representing the familiar Killing equation resulting in a genuine invariance of

the metric or it could be a constant that scales the metric along the curves. Such an example

could be the dilatations where the killing vector is characterized as homothetic.

Returning in the flat case we can write interesting constraints for ε such that it allows

conformal transformations. If we differentiate twice both sides of the flat Killing equation

with respect to (w.r.t) x we get

∂ν∂
ρ (∂µερ + ∂ρεµ) =∂ν∂

ρ

[
2

D
(∂ · ε)ηµρ

]
∂ν∂µ(∂ · ε) + 2∂νεµ =

2

D
∂ν∂µ(∂ · ε) , 2 := ∂ρ∂ρ. (2.86)

We can add now ∂µ∂ν(∂ · ε) + 2∂µεν = (2/D)∂µ∂ν(∂ · ε) to the previous equation (note that

it is the same equation with µ↔ ν exchanged) such that

2∂µ∂ν(∂ · ε) + 2 (∂µεν + ∂νεµ) =
4

D
∂µ∂ν(∂ · ε),

[ηµν2 + (D − 2)∂µ∂ν ] (∂ · ε) =0, (2.87)
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where we have used the flat conformal Killing equation. We can furthermore contract with

ηµν yielding

2(D − 1)2(∂ · ε) = 0. (2.88)

This is the constraint that ε has to satisfy such that it can generate conformal transformations.

It is also obvious that the cases D = 1 and D = 2 are special and this will be the topic of the

next subsection. Before going to this discussion however it would be illustrative to classify the

possible conformal transformations. Let us consider the case D > 2 and since the operator

ηµν2+(D−2)∂µ∂ν is non-degenerate it follows that ∂ ·ε can be at most linear in xµ. Therefore,

one can propose a general ansatz

εµ(x) = aµ + bµνx
ν + cµνρx

νxρ. (2.89)

Each term in the r.h.s of the above equation gives rise to a conformal transformation in D

dimensions. Explicitly we have the following possibilities

� For εµ(x) = aµ and infinitesimally

x′
µ

= xµ + aµ, (2.90)

which are translations generated by Pµ = −i∂µ.

� If εµ(x) = bµνx
ν , we have scaling transformations and rotations. Indeed the conformal

flat Killing equation gives

bµν + bνµ =
2

D
(ηρσbρσ)ηµν , (2.91)

implying that the symmetric part of bµν ∼ ηµν . By decomposing into symmetric and

antisymmetric parts we have

bµν = ληµν + ωµν , ωµν = −ωνµ. (2.92)

Focusing on the symmetric part, it yields

εµ = ληµνxν −→ x′
µ

= xµ + εµ(x) = (1 + λ)xµ, (2.93)

which are infinitesimal scaling transformations generated by the Liouville vector field

D = −ixµ∂µ. Focusing instead on the antisymmetric part, we have infinitesimal

rotations

x′
µ

= xµ + ωµνx
ν = (δµν + ωµν )xν , (2.94)

which are generated by the operators Jµν = i (xµ∂ν − xν∂µ).

� The last case εµ(x) = cµνρx
νxρ, corresponds to special conformal transformations. Let

us differentiate the conformal flat Killing equation w.r.t x

∂ρ∂νεµ + ∂ρ∂µεν =
2

D
∂ρ(∂ · ε)ηµν . (2.95)
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Let us furthermore consider cyclic permutations of the indices of the above equation

∂ν∂µερ + ∂µ∂νερ =
2

D
∂µ(∂ · ε)ηνρ, (2.96)

∂µ∂ρεν + ∂ν∂ρεµ =
2

D
∂ν(∂ · ε)ηρµ. (2.97)

Then, we have that (2.96)+(2.97)-(2.95) yields

∂µ∂νερ =
1

D
(ηνρ∂µ + ηρµ∂ν − ηµν∂ρ) (∂ · ε), (2.98)

which furthermore using ερ(x) = cρσγx
σxγ gives

cρµν = ηνρbµ + ηρµbν − ηµνbρ, (2.99)

where we have defined b := 1
D c

σ
σµ. Therefore, infinitesimally one has

x′
ρ

=xρ + cρµνx
µxν

=xρ + δρµbνx
µxν + δρνbµx

µxν − ηµνbρxµxν

=xρ + 2(x · b)xρ − x2bρ. (2.100)

This corresponds to an inversion, followed by a translation and then again an inversion.

Let us show this,

xρ 7→ 1

xρ
=
xρ

x2
(2.101)

7→ xρ

x2
− bρ =

xρ − bρ − x2

x2
(2.102)

7→ (xρ − bρx2)x2

(xρ − bρx2)2
=

xρ − bρx2

1− 2(x · b) + b2x2
(2.103)

≈
[(

1 + 2(x · b)− b2x2
)] (

xρ − bρx2
)

, b� 1

=xρ + 2(x · b)xρ − x2bρ +O(b2) (2.104)

In the first line, we have an inversion, in the second line a translation while in the third

line again an inversion. The generator for these special conformal transformations is

Kµ = −i
(
2xµx

ν∂ν − x2∂µ
)
.

We summarise all the transformations in the following table.
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Conformal transformations in D dimensions

transformations Ω(x) generators # generators

translations 1 Pµ = −i∂µ D

x′µ = xµ + aµ

rotations 1 Jµν = i(xµ∂ν − xν∂µ) 1
2D(D − 1)

x′µ = (δµν + ωµν )xν

dilatations 1
λ2 D = −ixµ∂µ 1

x′µ = λxµ

special conformal (1 + 2b · x+2 x2)2 Kµ = −i(2xµ · ∂ − x2∂µ) D

x′µ = xµ+bµx2

1+2b·x+b2x2

The corresponding algebra is the one generated by the above generators whose total number

is

# generators =
1

2
(d+ 1)(d+ 2) =

1

2
(p+ q + 1)(p+ q + 2), (2.105)

while their commutation relations are

[Jµν ,Pρ] =− i(ηµρPν − ηνρPµ),

[Pµ,Kν ] =2i (Jµν − ηµνD) ,

[Jµν ,Jρσ] =− i (ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ) ,
[Jµν ,Kρ] =− i (ηµρKν − ηνρKµ) ,

[D,Kµ] =iKµ, [D,Pµ] = −iPµ, [Jµν ,D] = 0.

In a space with signature (p, q) the Lorentz group is SO(p, q). The above algebra is locally

isomorphic to SO(p+ 1, q + 1). In fact, one can collect the generators in a group defined by

an antisymmetric (D+ 2)× (D+ 2) matrix, which creates rotations in (D+ 2)−dimensions.

Therefore, the number of generators of the conformal group in D dimensions is the same as

for the group of rotations in (D + 2)−dimensions.

2.3.2 The special case of two dimensions

The case of D = 2 is more special as we will see. The Killing flat conformal equation becomes

∂µεν + ∂νεµ = (∂ · ε)ηµν , (2.106)

and considering the case of a Euclidean two-dimensional metric gµν = δµν the only non-

vanishing components are

∂1ε1 =∂2ε2, (2.107)

∂1ε2 =− ∂2ε1. (2.108)
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We recognize the Cauchy-Riemann conditions for a function to be holomorphic. This means

that indeed we can construct a complex function

f : A ⊂ C −→ C : f(x1 + ix2) = ε1 + iε2 holomoprhic⇔ ∂ε1
∂x1

=
∂ε2
∂x2

,
∂ε1
∂x2

= − ∂ε2
∂x1

.

In our case we can think of ε1 and ε2 as the real and imaginary part of a holomorphic function

ε(z) = ε1 + iε2 with z = x1 + ix2, (2.109)

and similarly the real and imaginary part of an anti-holomorphic function

ε̄(z̄) = ε̄1 − iε̄2 with z̄ = x1 − ix2. (2.110)

This characterises conformal transformations in the two dimensional plane as analytic coordinate

transformations on the complex plane

z → f(z) and z̄ → f̄(z̄). (2.111)

Since there is an infinite number of coordinate transformations, the conformal algebra is

infinite dimensional as well. The infinitesimal transformations can be written as

z 7−→ z′ = z + ε(z) , z̄ 7−→ z̄′ = z̄ + ε̄(z̄) (2.112)

where ε(z) can be expanded in infinite series as

ε(z) = −
∑
n

anz
n+1 , ε̄(z̄) = −

∑
n

ānz̄
n+1, (2.113)

whilst the relevant generators are

ξn = izn+1∂z , ξ̄n = iz̄n+1∂̄z, (2.114)

that is ξn and ξ̄n generate the coordinate transformations with ε = −zn+1 and ε̄ = −z̄n+1

respectively. These generators close an algebra, identified by

[ξm, ξn] = (m− n)ξm+n , [ξ̄m, ξ̄n] = (m− n)ξ̄m+n , [ξm, ξ̄n] = 0, (2.115)

and can be proven by applying the commutator on an arbitrary f(z) function.

Conformal algebra in two dimensions

The classical (local) form of the conformal algebra in two dimensions is

[ξm, ξn] =(m− n)ξm+n,

[ξ̄m, ξ̄n] =(m− n)ξ̄m+n.

[ξm, ξ̄n] =0.

This algebra is isomorphic to the classical Virasoro algebra or Witt algebra.

Despite the fact that the two-dimensional conformal algebra is infinite-dimensional, there

exists a finite subgroup generated by ξ0, ξ±1 and ξ̄0, ξ̄±1. These generators are the only ones

who are well defined on the whole Riemann sphere S2 = C∪∞ and they generate the following

transformations
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Generator Infinitesimal Finite Type

ξ−1 z → z − ε z → z + α translations

ξ0 z → z − εz z → λz scaling

ξ1 z → z − εz2 z → z
1−βz special conformal

One can use combinations between ξ’s and ξ̄’s such that i(ξ0− ξ̄0) generates a rescaling of

the phase or, in other words, rotations on the z−plane. Dilatations are generated by ξ0 + ξ̄0.

SL(2,C) subgroup

The group SL(2,C) is generated by the ξ, ξ̄ generators upon inserted in the Virasoro

algebra and the transformations they generate are summarised as

z 7−→ az + b

cz + d
, z̄ 7−→ āz̄ + b̄

c̄z̄ + d̄
with a, b, c, d ∈ C and ad− bc = 1. (2.116)

This is the group SL(2,C) and when we quotient Z2, reflecting the invariance of the

transformations by replacing a, b, c, d with their negatives, we get

PSL(2,C) ∼= SL(2,C)/Z2
∼= SO(3, 1), (2.117)

which is known as the group of projective conformal transformations in Euclidean

dimensions. In the Lorentzian case, it gets replaced by

SO(2, 2) ∼= SL(2,R)× SL(2,R), (2.118)

where one factor pertains to left-movers and the other to right-movers.

This is the global conformal group in two dimensions and this apparent difference between

the local and global case is a pathology of the two-dimensional case because in D > 2 only

the global conformal group exists. In fact, the true conformal group in two dimensions is

SO(3, 1) because the remaining conformal transformations do not admit global inverse on

the Riemannian sphere S2.

A CFT on the worldsheet

At this point, we have all information we need to make direct conduct with the worldsheet

of string theory. One last bit of information will be the lightcone coordinates defined as

X± =
1√
2

(
X0 ±XD−1

)
, (2.119)

generically. We recall the construction of the worldsheet energy-momentum tensor Tab in

equation (2.59). As a consequence of Weyl symmetry, in lightcone gauge the vanishing of
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energy-momentum tensor becomes T−+ = T+− = 0, and

T−− =2`2s

∞∑
m=−∞

Ξme
−2im(τ−σ) (2.120)

T++ =2`2s

∞∑
m=−∞

Ξ̄me
−2im(τ+σ), (2.121)

where the Fourier coefficients are the Virasoro generators

Ξm =
1

2

∞∑
n=−∞

αm−n · αn and Ξ̄m =
1

2

∞∑
n=−∞

ᾱm−n · ᾱn (2.122)

Requiring vanishing of the energy-momentum tensor results in

Ξm = 0 = Ξ̄m for m ∈ Z. (2.123)

In the quantum theory, to overcome the issue of singularities (note that we are evaluating

the product of two operators ∂z∂zX(z) of the same spacetime point z) these operators are

defined to be normal-ordered, that is,

Ξm :=
1

2

∞∑
n=−∞

: αm−n · αn : . (2.124)

These operators generate a quantum version of the Virasoro algebra

Quantum Virasoro algebra

In the quantum case, the Virasoro algebra can acquire a central extension, or the so-

called conformal anomaly, with central charge c, in which case it takes the following

form

[Ξm,Ξn] = (m− n)Ξm+n +
c

12
m(m2 − 1)δm+n,0. (2.125)

In a two-dimensional CFT, the Virasoro operators are the modes of the energy-momentum

tensor, which therefore is the operator generating conformal transformations. The term

central extension means that the constant term can be understood to multiply the unit

operator which furthermore is adjoined to the Lie algebra. In addition, the conformal anomaly

can be interpreted, in certain cases, as breaking the conformal character of the theory at the

quantum mechanical level, a feature that happens whenever there exists a central charge in

the quantum algebra.

According to the usual convention of the normal-ordering prescription, the lowering operators

always appear to the right of the raising operators. In particular, Ξ0 becomes

Ξ0 =
1

2
α2

0 +

∞∑
n=1

α−n · αn. (2.126)

Since the worldsheet theory has translation symmetry, this tensor is also conserved as we

saw

∂aTab = 0. (2.127)
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Now, after Wick rotation the lightcone indices ± are replaced by (z, z̄) such that the non-

vanishing components are Tzz = T (z) and Tz̄z̄ = T̃ (z). As we mentioned before, the Virasoro

generators are the modes of the energy-momentum tensor. When we set `s =
√

2α′ = 1, and

we recall the expansion (2.18) we can treat separately left-movers and right-movers as

Xµ
R(σ, τ)→ Xµ

R(z) =
1

2
xµ − i

4
pµ ln z +

i

2

∑
n

1

n
αµnz

−n, (2.128)

Xµ
L(σ, τ)→ Xµ

L(z̄) =
1

2
xµ − i

4
pµ ln z̄ +

i

2

∑
n

1

n
ᾱµnz̄

−n. (2.129)

The holomorphic derivatives are respectively

∂Xµ(z, z̄) =− i

2

∞∑
n=−∞

αµnz
−n−1, (2.130)

∂̄Xµ(z, z̄) =− i

2

∞∑
n=−∞

ᾱµnz̄
−n−1, (2.131)

and therefore we can compute the energy-momentum tensor

T (z) = −2 : ∂X · ∂X :=
∞∑

n=−∞

Ξn
zn+2

. (2.132)

Similarly

T̄ (z̄) = −2 : ∂̄X · ∂̄X :=

∞∑
n=−∞

Ξ̄n
z̄n+2

. (2.133)

Since the two-dimensional conformal algebra is infinite-dimensional, there is an infinite number

of conserved charges, namely the Virasoro generators. For an infinitesimal conformal transfor-

mation

δz = ε(x) and δz̄ = ε̄(z̄), (2.134)

the associated conserved charge that generates this transformation is

Q = Qε +Qε̄ =
1

2πi

∮ [
T (z)ε(z) dz + T̄ (z̄)ε̄(z) dz̄

]
, (2.135)

where the integral is performed over a circle of fixed radius.

A conformal field theory is characterised by a set of composite fields, or operators called

O(z, z̄). The variation of this field/operator under a conformal transformation is given by

δεO(z, z̄) = [Qε,O(z, z̄)] and δε̄O(z, z̄) = [Qε̄,O(z, z̄)]. (2.136)

The fields/operators of a CFT are characterised by their conformal dimensions, which specify

how they transform under scale transformations.

35



2.3. CONFORMAL FIELD THEORIES

Primary fields

� Primary operator:

∀ w meromorphic : O(z, z̄) =

(
∂w

∂z

)h(∂w̄
∂z̄

)h̄
O(w(z), w̄(z̄)) (2.137)

� Quasi-primary (or SL(2,C) primary) operator:

∀ w ∈ PSL(2,C) : O(z, z̄) =

(
∂w

∂z

)h(∂w̄
∂z̄

)h̄
O(w(z), w̄(z̄)). (2.138)

The parameters (h, h̄) are the conformal weights of the operator O and independent

of each other. They combine together such that they give the conformal dimension ∆

and spin s of the operator/state O

∆ := h+ h̄ , s := h− h̄. (2.139)

From another point of view, the (h, h̄) differential

O(z, z̄)(dz)h(dz̄)h̄ (2.140)

is invariant under local/global conformal transformations.

Another ingredient that characterises a CFT is the operator product expansion (OPE)

and specifically the OPE coefficients. It simply means that when two local operators come

close to each other it is possible to replace their product by a sum of local operators

Oi(zi, z̄i)Oj(zj , z̄j) =
∑
k

ckij

z
hi+hj−hk
ij z̄

h̄i+h̄j
ij − h̄k

Ok(zj , z̄j), (2.141)

where the OPE coefficients ckij are some constants and their sum runs over all operators. In

the case where Ok is a primary operator, the coefficients are related to the structure constants

and the field metric as

Cijk = gklc
l
ij . (2.142)

For a generic primary operator O(w), one finds the OPE of with stress-energy tensor to be

T (z)O(w) =
hO(w)

(z − w)2
+
∂O(w)

z − w
+ · · · , (2.143)

where h is the conformal weight of the operator. One of the most important OPE’s is the

one of energy-momentum tensor with itself. In fact, this gives the central charge of a CFT,

the latter found as the coefficient of the z−4 term in the expansion

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ · · · . (2.144)

From this one deduces that the conformal weight for the energy-momentum tensor is h = 2

analogously h̄ = 2. In addition one realises that the central charge gives the spacetime

dimensions D of the theory. This central charge appearing here is the same c as in the

quantum Virasoro algebra (2.125). That this is the case one can motivate as follows: from

36



2.3. CONFORMAL FIELD THEORIES

the definition of the components of stress energy tensor from equations (2.132),(2.133) one

can write the expression in the z → w limit, meaning locality

: ∂Xµ(z)∂xν(z) := lim
z→w

(
∂zX

µ(z)∂wX
ν(w) +

ηµν

4(w − z)2

)
. (2.145)

Then each scalar field gives a contribution one to the conformal anomaly c. Therefore in D

dimensions the Xµ coordinates give c = c̄ = D. It is rather obvious to note that in order for

the energy-momentum tensor to be a conformal field it should be the case such that c = 0,

hence another motivation of conformal anomaly.

Under a finite conformal transformation z → w(z) the energy-momentum tensor transforms

as

(∂w)2T ′(w) = T (z)− c

12
S(w, z), (2.146)

with S(w, z) being the so-called Schwarzian derivative

S(w, z) =
2(∂w)(∂3w)− 3(∂2w)2

2(∂w)2
. (2.147)

At this point, we have all the ingredients needed to completely describe a CFT. Independent

of the dimensions one needs the conformal weights of the operators and the OPE coefficients.

The worldsheet of a closed string propagating in spacetime is locally topologically equivalent

to a cylinder R × S1 of circumference L. We will show that the cylinder can be mapped to

the complex plane and thus to the Riemann sphere (after removing the poles) on which all

the analysis that took place above can be applied. We note that this is insensitive to string

theory interpretation and generically one can define two-dimensional models on the cylinder.

The compactification R → S1 cures the infrared divergences, and in addition, it leads to a

convenient definition of the ”time” component and thus a Hamiltonian in the Euclidean case.

Let us start by denoting the worldsheet coordinates in Lorentzian signature by (t, σ) with

t ∈ R , σ ∈ [0, L) , σ = σ + L. (2.148)

The metric yields

ds2 = −dt2 + dσ2 = −dσ+ dσ−, (2.149)

where we have introduced the light-cone coordinates

dσ± = dt± dσ. (2.150)

Then by performing a Wick rotation τ = it, the metric becomes

ds2 = dτ2 + dσ2. (2.151)

In addition we introduce complex coordinates

w = τ + iσ , w̄ = τ − iσ, (2.152)

for which the metric becomes

ds2 = dw dw̄, (2.153)

while the relation to Lorentzian light-cone coordinates is

w = i(t+ σ) = iσ+ , w̄ = i(t− σ) = −iσ−. (2.154)
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Therefore, a(n) (anti)-holomorphic function of w(w̄) depends only on σ+(σ−) before Wick

rotating and this leads to the identification on the left-and right-movers with the holomorphic

and anti-holomorphic parts of the theory.

The cylinder can be mapped to the complex plane through

z = e2πw/L , z̄ = e2πw̄/L, (2.155)

while the corresponding metric is

ds2 =

(
L

2π

)2 dz dz̄

|z|2
. (2.156)

A conformal transformation can bring this metric to the flat one

ds2 = dx2 + dy2 = dz dz̄. (2.157)

The map from the cylinder works by sending the bottom end (infinite past) of the cylinder

to the origin of the complex plane and the top end (infinite future) to infinity. Since the

cylinder has two boundaries (its ends) in the complex plane one has to exclude these points

corresponding to the z = 0 and z = ∞, obtaining in this way the space C∗. This space

consequently can be mapped to the Riemann two-sphere Σ0,2.

The physical meaning for the difference of Σ0 and Σ0,2 is quite interesting. Since one

considers the propagation of a closed string, it means that in a sense the worldsheet itself

corresponds to an amplitude with two external states, which are then mapped to the sphere

as punctures on the north and south poles. Removing the external states, yielding in this

way the tree-level vacuum amplitude, corresponds to gluing a half-sphere at each end of

the cylinder (i.e gluing the upper and lower hemispheres). Then, it can be mapped to the

Riemann sphere without the punctures and as a consequence, the properties of tree-level

string theory are found by studying the matter and ghost CFTs on the Riemann sphere.

Why extra dimensions?

Finally, we close the CFT analysis with some remarks regarding the dimensionality of space-

time of string theory. For simplicity, we shall consider the bosonic string theory where the

spacetime dimensions turn out to be D = 26. We shall also not pursue all the analysis here

because this is done in standard string theory textbooks [55,57,59] but we shall state the two

common ways to obtain this:

� The Lorentz symmetry in string theory is not satisfied trivially, in a sense that the

theory is not constructed as manifestly Lorentz invariant. In fact, neither the spacetime

dimensionality (i.e the dimensions of target space) is specified. Then, defining the

Lorentz generators one computes the algebra and demanding closure sets D = 26 [55].

Another intuitive way to grasp the idea is the following: the analysis of spin for massive

and massless states is different. For a massive particle, one goes to the rest frame

pµ = (m, 0, · · · , 0) and then the internal states form a representation of the spatial

rotation group SO(D − 1). For the case of a massless particle there is no rest frame,

hence what one does is to choose for example the frame pµ = (E,E, 0, · · · , 0). Now

the SO(D − 2) acting on the transverse directions leaves pµ invariant, and then the

internal states form a representation of this smaller group. Similarly, in D dimensions,
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a massive vector particle thus has D − 1 spin states while a massless vector needs to

have only D − 2 states. This is the generalization of the familiar case of D = 4 where

spin states are labeled by representations of SO(3) giving 2j + 1 states, while massless

particles are labeled by their helicity λ, which represents the eigenvalue of the single

generator of SO(2). Lorentz invariance alone thus requires only one state, while CPT

symmetry takes λ to −λ and so requires two states for λ 6= 0. Thus, in the light-cone

gauge of bosonic string theory D − 2 transverse degrees of freedom produce oscillators

ain, i = 1, · · · , D− 2. The squared mass of the string in an arbitrary spacetime is given

by the total number of all the harmonic oscillators

M2 =
∑

n∈Z+,i

ai−na
i
n. (2.158)

In addition each normal operator of the harmonic oscillator is normalised as
√
n · a

turning the zero point energy of string theory to (see eq. (2.126))

1

2

D−2∑
i=1

: ai−0a
i
0 : +

D − 2

2

∞∑
m=1

n ≡︸︷︷︸
ai0|0〉=0

E0 =
D − 2

2

∞∑
n=1

n. (2.159)

The first excited state, gets excited by ai−1 and considering the harmonic oscillator

picture and remembering that the total energy is given by the total sum over the

harmonic oscillators will add unity to the total energy as

a−1 |0〉 = 1 · |0〉 . (2.160)

This is a level one (n = 1) state and it is a spacetime (bosonic) vector. Therefore it has

D − 2 components rather than D − 1 components, so it must correspond to a massless

state. This leads to
D − 2

2

(
− 1

12

)
+ 1

!
= 0. (2.161)

This leads to D = 26 upon using the famous result

∞∑
n=1

n = ζ(−1) = − 1

12
, (2.162)

with ζ(s) being the Riemann ζ function.

� Another common, but more advanced, way is the BRST quantization of the string.

BRST stands for the Becchi-Rouet-Stora-Tyupin transformations and the formalism

itself is essentially a way to handle the ghosts introduced in the theory. With the

introduction of ghosts in the action for gauge-fixing, the theory is no more invariant

under the original gauge symmetry. The BRST symmetry is an extension of the original

symmetry, which remains intact. Therefore, all physical states must be BRST invariant.

The introduction of ghost fields results, at the quantum level, to a further extension of

the original Virasoro algebra (2.125) as

[Ξm,Ξn] = (m− n)Ξm+n +A(m)δm+n, (2.163)

with

A(m) =
c

12
m(m2 − 1) +

1

6
(m− 13m3) + 2am, (2.164)

and the last constant term is due to normal ordering of Ξ0 in (2.126). We see that this

extension vanishes if c = D = 26 and a = 1.
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2.4 Gravity from string theory

Being a potential theory of unification, string theory should also contain gravity. In fact,

statement simply means that Einstein’s equation should be present somehow in string theory.

One could fairly argue that since the topic of string theory is so vast there should be

somewhere there. However, we will see Einstein’s equation arising by demanding the theory

on the worldsheet to be conformal invariant and in particular Weyl invariant. In a usual QFT

conformal invariance implies scale invariance while it is not known yet if the inverse is true.

On the other hand, likely for a two-dimensional unitary QFT with one compact dimension

(i.e for closed strings) scale invariance means conformal invariance. Possible deviations from

scale invariance are captured by the so-called beta function which describes the change of the

coupling constant concerning a specific energy scale.

Let us then start by recalling the Polyakov action (2.40)

SP [g,Xµ] =
1

4πα′

∫
d2σ
√
ggabGµν(X)∂aX

µ∂bX
ν , (2.165)

by introducing the notation ∂a := ∂/∂σa. This worldsheet theory is and interacting theory,

the so-called non-linear sigma model in contrast to propagation of the string in flat space

which is a free theory. To see the interacting part it is convenient to expand the fields as

Xµ(σ) = xµ +
√
α′Y µ(σ). (2.166)

This simply means that we consider the mean position of the string to be located at a point

xµ and Y µ(σ) are the dynamical, yet small fluctuations around this point. In addition
√
α′

serves as a dimensional regulator and has dimensions of [length]. We can furthermore expand

the spacetime metric such that the Lagrangian becomes

Gµν(X)∂aX
µ∂bX

ν = α′
(
Gµν(x) +

√
α′∂ρGµν(x)Y ρ +

α′

2
∂ρ∂δGµν(x)Y ρY δ + · · ·

)
∂aX

µ∂bX
ν ,

(2.167)

This expansion leads to two obvious facts: 1) the coupling constants are derivatives of the

metric; 2) there is an infinite number of those. Moreover, classically the Polyakov action

is conformal invariant but this is not true anymore in the quantum level due to the Weyl

anomaly. To begin, let us use the Riemann normal coordinates such that the expansion of

Xµ(σ) = xµ +
√
α′Y µ(σ) will give

Gµν(x) = δµν −
α′

3
Rµλνκ(x)Y λY κ +O

(
Y αY βY γ

)
, (2.168)

which plugging it back into the action (2.165) yields

SP [g,Xµ] =
1

4π

∫
d2σ
√
g

(
∂aY µ∂aY

νδµν −
α′

3
RµλνκY

λY κ∂aY µ∂aY
ν + · · ·

)
. (2.169)

We can treat this action as a QFT in two dimensions and immediately we recognize a

diagrammatic expansion. The quartic interaction gives a cross vertex consisting of four lines

as it can be seen in the left panel of Fig. 2.1, while in momentum space derivatives become

the momenta kµσ . Now it remains to compute the beta function of this theory and one easy

way to do so is by curing the divergences occurring from the one-loop diagram of the right

panel of Fig. 2.1. In position space, the propagator of a scalar field is given by

〈Y λ(σ)Y κ(σ)〉 = −1

2
δλκ ln

(
|σ − σ′|2

)
. (2.170)
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The scalar field running in the loop reach the same location after a 2π rotation yielding a

divergence reflecting in this way the ultraviolet divergence that we would see in the momentum

integral around the loop. We can choose a dimensional regularization to cure this divergence

as d = 2− ε. The propagator in momentum space then takes the form

〈Y λ(σ)Y κ(σ)〉 = 2πδλκ
∫

ddk

(2π)d
eik(σ−σ′)

k2
, (2.171)

and in the limit σ → σ′ it becomes

lim
σ→σ′
〈Y λ(σ)Y κ(σ)〉 =2πδλκ

∫
ddk

(2π)d
1

k2

=2πδλκπd/2Γ

(
2− d

2

)
=2π−ε/2δλκ

(
2

ε
− γ +O(ε)

)
. (2.172)

To go to the second line we have used the formula∫
ddk

(2π)d
1

(k2 + a2)r
= πd/2ad−2rΓ (r − d/2)

Γ(r)
, (2.173)

while for the next line we have expanded the gamma function around ε. At the end, we are

interested in the limit ε → 0 and it is obvious from the expression that we have truncated

linear and higher orders in ε since in this limit the first term diverges. In addition γ ≈ 0.5772

is the Euler-Mascheroni constant. Let us then schematically write the propagator in the limit

ε→ 0 as

lim
ε→0
〈Y λY κ〉 −→ δλκ

ε
. (2.174)

This divergence coming from the first (one loop) correction of the second term in the action

(2.169) is obvious when we substitute Y λY κ with 〈Y λY κ〉 resulting in a term

− 1

ε
Rµν∂

aY µ∂aY
ν . (2.175)

We can absorb this divergence if we add the following counter term

RµλνκY
λY κ∂aY µ∂aY

ν → RµλνκY
λY κ∂aY µ∂aY

ν − 1

ε
Rµν∂

aY µ∂aY
ν . (2.176)

Moreover, this can be absorbed by a wave function renormalization Y µ → Y µ−(α′/6ε)RµνY
ν

accompanied with the renormalization of the coupling constant

Gµν → Gµν +
α′

ε
Rµν . (2.177)

This specifies the value of the beta function at one loop to be

β(G) = α′Rµν (2.178)

and demanding scale invariance yields

β(G) = 0⇒ Rµν = 0. (2.179)
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Figure 2.1: [Left]: The Feynman diagram representation of the quartic vertex interaction.

[Right]: The one-loop diagram.

One recognizes Einstein’s equation in vacuum with zero cosmological constant. Remember

that this analysis has been done for Polyakov action, at the level of the worldsheet, and

demanding scale invariance of the theory yields Einstein’s vacuum equation! This means

that the string propagates in Einstein vacuum backgrounds.

Gravity in string theory

General relativity in string theory is not implemented in any way. On the contrary,

one starts with arbitrary string interactions on a Riemann surface, and demanding

scale invariance of the worldsheet theory gives vacuum Einstein’s equations

Rµν = 0. (2.180)

In other words, we get gravity as an output and not as an input of the theory.

The problems with bosonic string theory

We see that the idea of string theory is fairly simple. The fundamental object is the

string itself, usually called the fundamental string and each vibrational mode of this string

corresponds to a spacetime field for a point-particle, while linear superpositions of modes can

describe several fields. This idea is at the core of a unified theory, in which all contents of

the theory, such as all possible fields in the standard model and gravity are produced by a

single string. These fields correspond to the lowest excitation modes since the higher massive

modes are too heavy to be observed at low energy.

On the other hand, bosonic string theory contains tachyons! Therefore we see that the

price one has to pay with the unification idea, is a theory that at first sight seems to have no

contact with the physical world whatsoever. This makes the theory unstable since the ground

state of the theory itself is a tachyon resulting in negative masses, m2 = −4 for closed strings

and m2 = −1 for open strings in units where α′ = 1 as we saw earlier in this chapter. While

the instability of open strings can be naturally explained as decaying-and condensing-to closed

strings the instability of the latter is much more worrisome. Being assigned to gravity and

spacetime, instability of closed strings rather suggests that somehow spacetime itself should

decay! To avoid this unfortunate event, one then is forced to introduce supersymmetry which

indeed removes the tachyons from the spectrum of string theory.
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2.5 Superstring theories and their classification

So far we have discussed the bosonic string theory, yet the most interesting theories are

the ones that contain supersymmetry. The interest emerges from the hope that by adding

supersymmetry in a string theory, one can actually obtain the particles, and perhaps matter

that construct or are contained in our physical world, a feature that is not possible in a purely

bosonic theory.

The idea of supersymmetry achieves a two-fold goal at once. On one hand, the (perturbati-

vely) bosonic spectrum is enriched with spacetime fermions making the standard model goal

appear more plausible, and on the other hand, the spacetime dimensionality becomes D = 10.

The ultimate goal is to reproduce the standard model and the dimensionality of our spacetime

D = 4, therefore one could argue along these lines that the compactification procedure

might be easier. Indeed at first sight it seems that removing 6 dimensions would be more

straightforward yet the different choices one could compactify a supersymmetric string theory

are given by the classification of the compactification manifolds, the so-called Calabi-Yau

manifolds whose counting still grows with the latest counting been O(10272000) [68].

The worldsheet field theory of closed strings in fact contains two sectors, the so-called left-

and right-moving sectors (what we encountered earlier as αn and ᾱn modes). An important

feature is that despite they being treated symmetrically in the simplest modes, the two sectors

are in fact independent up to the zero-mode, and in principle, the corresponding CFT can

be chosen to be distinct.

The action of supersymmetry associates to each boson a fermion, and conversely, through

the action of a supercharge Q as

|boson〉 = Q |fermion〉 . (2.181)

One can generalize this by considering N such supercharges which build up a class of several

bosonic and fermionic partners. In D = 4 each, supercharge increases the spin by 1/2, and

hence there is an upper limit for the number of supersymmetries. This feature is only true in

interacting theories with a finite number of fields in order to keep the spin of a class in the

range where consistent actions exist, while for a free-and higher spin- theories this bound is

absent. Therefore we have the following first classification

� Nmax = 4 without gravity (−1 ≤ spin ≤ 1),

� Nmax = 8 with gravity (−2 ≤ spin ≤ 2).

This classification serves as a basis to determine the maximal number of supersymmetries in

other dimensions by relating them through dimensional reductions. However, we will only

be interested in the worldsheet theory and the supersymmetries equipped with it. Since the

CFT’s of the closed-left and right-moving sectors are in principle different, we can also equip

them with a different number of supercharges which we will call NL and NR for left and right

movers respectively.

Type II superstrings have (NL, NR) = (1, 1) and come into two classes called type IIA

and type IIB according to the spacetime gravitini chiralities. This results in a distinction of

the kind of Dp-branes each theory can host with p being an even number for IIA and an odd

number for IIB. On the other hand, a theory is called heterotic if NL > NR and contains only

closed strings since open strings require NL = NR. For the case NL 6= NR the two sectors
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give different critical dimensions5 and hence one has to use gauge symmetries to get rid of

the additional dimensions of one of the sectors.

Gauge groups G associated with spacetime gauge bosons appear in two different ways in

string theory. Firstly, as we discussed in heterotic models to balance the critical dimensions

of the left-and right-moving sectors. Another possibility is to add degrees of freedom, known

as the Chan-Paton indices at the ends of open strings. One of them transforms in the

fundamental representation, while the other one in the anti-fundamental. This results in

the modes of the open string residing in the adjoint representation, and the massless spin-1

particles become the gauge bosons of non-Abelian gauge symmetry.

One last point is the orientation of strings. Since an oriented string possesses an internal

direction, there is a difference between going from left to right for open strings, or circling

clockwise or anti-clockwise for closed strings. This orientation is inherited globally to the

spacetime history of all strings either with interactions or not. The un-oriented string can be

obtained by the Z2 worldsheet parity, which exchanges the left-and right-moving sectors.

We report all the supersymmetric theories and the relevant information in table 2.5. Only

the bosonic string theory contains the tachyon, while all the rest supersymmetric theories are

tachyon-free.

Classification of superstring theories and their content

worldsheet spacetime gauge open

susy D susy group string oriented

bosonic (0, 0) 26 0 any yes yes/no

type I (1, 1) 10 (1, 0) SO(32) yes no

type IIA (1, 1) 10 (1, 1) U(1) yes yes

type IIB (1, 1) 10 (2, 0) none yes yes

heterotic SO(32) (1, 0) 10 (1, 0) SO(32) no yes

heterotic E8 (1, 0) 10 (1, 0) E8 × E8 no yes

heterotic SO(16) (1, 0) 10 (0, 0) SO(16)×SO(16) no yes

Table 2.3: Classification of all supertsting theories and their relevant condent

We may also make some remarks regarding the above table. Strictly speaking, the type

II theories do not have an open string in their vacuum, in fact, they require a D-brane

background. This might be expected if one knows that there is no gauge multiplet in D = 10

with (1, 1) or (2, 0) supergravities since the D-brane solutions break half of the supersymmetry.

In addition, we included the bosonic case for comparison and the ultraviolet divergences

beyond the tachyon which are interpreted as closed string dilaton tadpoles, cancel only for

the unoriented plus closed strings with gauge group SO(213) = SO(8192).

5Remember that the critical dimension depends on the number of supersymmetries and as we saw D(N =

0) = 26, D(N = 1) = 10
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2.6 The simplest example of Kaluza-Klein reduction

In this brief section, we shall discuss the simplest example of Kaluza [69] and Klein [70]

compactification (KK) while suppressing more sophisticated and advanced ideas to be discussed

for the dimensional reduction of super Yang-Mill theory to obtain the BFSS model in Sec. 3.2.2.

As we will demonstrate, one can think of this procedure in its simplest form, as a

mechanism that produces mass in a lower-dimensional spacetime by compactifying massless

modes in spatial dimensions of a higher dimensional spacetime. This can be easily illustrated

in three dimensions considering for example a spacetime of topology R1,2 where propagation of

a massless scalar field φ takes place. The question we want to answer is how does this massless

field appears in a two-dimensional spacetime when we compactify one spatial dimension.

Therefore, we will consider a compact dimension of the topology of a circle S1 leading to

an isomorphism R1,2 ∼= R1,1 × S1. Let us then write the Klein-Gordon equation in the

non-compact space for a massless scalar field

23φ = 0 , 2 := ∂a · ∂a , a = 1, 2, 3. (2.182)

Under compactification, we expand the field in Fourier modes taking advantage of the symmetries

associated with the topology as

φ =
∞∑

n=−∞
φne

ikx, (2.183)

with k := n/R. n ∈ Z+ indicates the number of (longitudinal) momentum modes running in

the compact circle whose radius is given by R. In other words, each time the massless field

goes around the compact circle gives one unit of momenta. Using properties of the derivative

23 = 22 + 2S1 the Klein-Gordon equation results in(
22 −

n2

R2

)
φn = 0. (2.184)

We see that we started with a massless field in three dimensions and after compactifying

one spatial dimension leads to a massive Klein-Gordon equation in two dimensions for the

two-dimensional field φn! The mass parameter is given as the momenta m := k = n/R,

and keeping fixed the units of momenta it is obvious that light modes and massive modes

correspond to large and small R respectively.

We shall see in what follows that this simple idea is at the heart of the idea of uplifting

the five 10-dimensional string theories to eleven dimensions.

2.7 Introduction to M-theory and its contents

Inevitably, superstring theories are defined only as divergent asymptotic power series in the

string coupling constant gs, which is related to the expectation value of the massless dilaton

field φ appearing in the effective supergravity theory, gs = e〈φ〉. This is one of the reasons

why superstring theory fails to be truly considered as a unified theory. The other reason

discussed previously, is that there exist five of them. A true theory of unification should

be at least unique by all means and defined non-perturbatively. M-theory is a candidate of

such a theory as we shall see, yet the mystery that governs it justifies its name. The idea

goes back to the work of [71] where the construction of supergravity in eleven dimensions is
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discussed along the lines of Kaluza-Klein compactifications. However, this program faced two

difficulties: the non-renormalizability of D = 11 supergravity and its failure to admit chiral

compactifications. Both problems were resolved by superstring theory but the price that had

to be paid was the reduction to D = 10 dimensions.

The fact that type IIA supergravity is the dimensional reduction of D = 11 supergravity

[72], offered hope of a possible role for D = 11. In fact, since string theories were defined

perturbatively in gs the hope was that somehow the eleventh dimension was not shown in

this perturbation but it should be present in a non-perturbative way. We shall see in a

while how but before doing so, let us discuss how the contents of type IIA and M-theory

are related. Whereas the two-form potential for D = 10 supergravity theories is naturally

associated with a string, the three-form potential of D = 11 supergravity is naturally

associated with a membrane [73]. Several works along this line led to the construction of

D = 11 supermembrane action and the interpretation of D = 11 supergravity as an effective

field theory of a hypothetical supermembrane theory [73, 74]. By simultaneous dimensional

reduction of the worldvolume and the spacetime in [75] it was suggested the interpretation

of the type IIA superstring as a membrane wrapped around the circular eleventh dimension.

This was strengthened even more by the subsequent works [76,77] where the construction of an

extreme membrane solution of D = 11 supergravity, reduces in D = 10 to the extreme string

solution of type IIA supergravity. A further important development was the construction

of the fivebrane solution of D = 11 supergravity [78] which was shown to be geodesically

complete [79]. In a sense, the fivebrane is the ”magnetic” dual of the ”electric” membrane

in D = 11, in agreement with the general prescription [80] that the dual of a p−brane is a

(D − p− 4)-brane.

The connections between D = 10 and D = 11 supergravities still being at the classical

level, it was still seemed impossible that the quantum type IIA superstring theory, with

D = 10 as its critical dimension, could be eleven-dimensional. On the other hand, it was

noted that the inclusion of wrapping modes of the fivebrane and membrane led to a spectrum

of solitons identical to that of type IIA superstring if the latter includes the wrapping modes

of the D = 10 p−branes carrying Ramond-Ramond charges [81].

Because of the connection between the dilaton and the string coupling, it was obvious that

an improved understanding of the role of the dilaton would be crucial to any advance in non-

perturbative string theory. In addition, because the type IIA supergravity is the dimensional

reduction of D = 11 supergravity led to a Kaluza-Klein interpretation of the dilaton as a

measure of the radius of the eleventh circle R11

R11 = gs
√
α′. (2.185)

This clearly demonstrates that perturbative analysis in string theory corresponds to an

expansion around R11 = 0 such that the eleventh dimension is absent in perturbation theory.

The correct interpretation of the tension of the supermembrane includes a factor of R11 only

in D = 11 dimensions while in D = 10 this is absent, while at the same time the D0−brane

mass is proportional to 1/R11 as required for its KK interpretation. We shall return to this

point with more precise details when we will discuss the connection of M-theory with type

IIA superstring theory.

In the strong coupling limit, where R11 → ∞, the vacuum of the theory is eleven-

dimensional Minkowski and the effective field theory is D = 11 supergravity. This special
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moduli space of vacua is known as M-theory and if a true theory of unification exists, it should

be realized in this limit where M-theory and superstring theory are realized as approximations

of this unified theory.

11-dimensional supergravity

Being itself a theory of gravity there should be a graviton state, which is realized as a

symmetric traceless tensor of SO(D− 2), the little group of a massless particle. The number

of independent components of a symmetric (D−2)×(D−2) matrix is given as 1
2(D−1)(D−2)

while due to tracelessness we have to subtract one state. This will result in

1

2
(D − 2)× (D − 2)− 1 =

1

2
D(D − 3) = 44 (2.186)

physical degrees of freedom counting the polarization states. That this theory contains

fermions, demands the usage of the vielbein formalism where one can represent the graviton

with a vielbein field eaM . Since we are in eleven dimensions we can call it an elfbein 6. The

capital indices M run over the base-space (curved) vectors in eleven dimensions while the

small indices a are used for tangent-space (flat) vectors. While the former transform non-

trivially under general coordinate transformations, the latter transform non-trivially under

local Lorentz transformations.

Being the theory itself supersymmetric, the gauge field for local supersymmetry is the

gravitino field ΨM , which has an implicit spinor index in addition to its explicit vector index.

In other words, for each index I the gravitino is a 32-component Majorana spinor. When

in addition spinors are included, the little group becomes the covering of SO(9), which is

Spin(9). From the point of view of group theory, the Spin(9) Kronecker product of a vector

and a spinor is 9× 16 = 128 + 16. The construction in four dimensions gives spins 3/2 and

1/2 while the analysis for a free vector-spinor field carried out by Rarita and Schwinger [82],

showed that there is a local gauge invariance of the form δΨM = ∂Mε which precisely cancels

the spin 1/2 degrees of freedom giving pure spin 3/2. This can be deduced from the fact that

the kinetic term of a gravitino field ΨM in any dimension has the structure

SΨi ∼
∫

dDxΨ̄MΓMNP∂NΨP . (2.187)

Because of the antisymmetry of the Dirac matrices ΓMNP , for δΨI = ∂Iε the kinetic term

will be invariant up to a total derivative.

Similarly, the physical states for the eleven-dimensional free theory due to this local

symmetry are 128, while in the interacting case this local symmetry is identified as local

supersymmetry. This amount of supersymmetry gives 32 conserved charges which form a

Majorana spinor. Indeed, this is the dimension of the minimal spinor in eleven dimensions,

so there could not be less supersymmetry than that in a Lorentz invariant vacuum. On the

other hand, if there were more supersymmetry, the representation theory of the algebra would

require the existence of massless states with spin greater than two. However, it is believed to

be impossible to construct states with higher spins in Minkowski spacetime and this would

require for example to find non-trivial supersymmetric theories for D > 11.

So far we have 44 bosonic and 128 fermionic degrees of freedom. In order to be considered

a successful supersymmetric theory, supergravity should somehow contain 84 more bosonic

6For the curious reader viel means many in German while elf means eleven.
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degrees of freedom. The missing bosonic polarization states come from a rank-3 antisymmetric

tensor, AMNP , which can be represented as a three-form A3. Recalling from conventional

electromagnetism which contains the one-form (gauge field) A1 these theories are invariant

under gauge transformations

An → An + dΛn−1, (2.188)

where Λn−1 is a (n − 1)−form. As it also happens in the case of electromagnetism, for

antisymmetric tensor gauge fields, the gauge invariance ensures that the indices for the

independent physical polarizations are transverse. In particular, in the case of a three-form

in eleven dimensions one has precisely 9 · 8 · 7/3! = 84 such polarizations, the ones needed to

match the gravitino degrees of freedom, which is the only Fermi field of the theory.

Local Lorentz invariance, invariance underA3 gauge transformations, and general coordina-

te invariance assign a lot of constraints on the form of the action. Even though we will not need

the fermionic content of the action as it is common in all supergravity theories, dimensional

analysis determines the latter as the constraint: the number of derivatives plus half of

the number of Fermi fields equals two. Requiring also local supersymmetry as we argued

previously along the lines of superstring theory, gives us D = 11. Then the ambiguity of

the action drops to a few numerical coefficients depending on normalization and conventions.

That still one can write an action taking into account all the above requirements is quite

phenomenal.

The bosonic part of the eleven-dimensional supergravity action is given as

S11 =
1

16πG11

∫
d11x

√
−GMN

(
R− 1

2
|C4|2

)
− 1

6

∫
A3 ∧ C4 ∧ C4, (2.189)

where R is the scalar curvature, C4 = dA3 is the field strength associated with the potential

A3 and G11 is the eleven-dimensional Newton’s constant related with Planck’s length via

16πG11 =
1

2π
(2π`p)

9 . (2.190)

It is furthermore possible to reformulate the action in terms of the elfbein, where the part of

the action (2.189) that will depend on it, is only the first term because of the structure of

the metric

GMN = ηABe
A
Me

B
N , (2.191)

while the last term of (2.189) which has a Chern-Simons structure is independent of the

elfbein. Lastly the quantity |C4|2 is defined by the general rule

|C4|2 =
1

n!
GM1N1GM2N2 · · ·GMnNnCM1M2···MnCN1N2···Nn . (2.192)

M-branes

Another ingredient of M-theory is the presence of M-branes. The only accessible action we

have is the one of eleven-dimensional supergravity (2.189), yet its content reveals the presence

of more objects. The 3-form A3 appearing in the action couples electrically to a two-brane

and magnetically to a five-brane. The former we will be calling the membrane while the

latter as the fivebrane, yet there is not available an action describing them. If their tension

saturates the BPS bound (as they do), these turn out to be stable supersymmetric branes

48



2.7. INTRODUCTION TO M-THEORY AND ITS CONTENTS

whose tensions can be computed exactly. Thus, by focusing on BPS M-branes, it is possible to

learn various facts about M-theory that go beyond the low-energy effective action expansion.

The only available scaling in M-theory is the eleven-dimensional Plank length `p. Therefore,

the M-brane tensions can be determined, up to numerical coefficients by doing dimensional

analysis. The exact results that relate the M-branes also with the IIA superstring theories

which are furthermore confirmed by dualities are determined as

TM2 = 2π (2π`p)
−3 , TM5 = 2π (2π`p)

−6 . (2.193)

As with all BPS branes, a M-brane can also be excited so that it is no longer a BPS, but it

would be unstable and radiate until reaching the minimal BPS energy density as in (2.193).

The full eleven-dimensional supertranslation algebra that generates the above contents of

M-theory is [83]

{Qα, Qβ} =
(
CΓM

)
αβ
PM + (CΓMN )αβ Z

MN
(2) + (CΓMNPOK)αβ Z

MNPOK
(5) , (2.194)

where C = Γ0, under the choice of real Dirac matrices. The three types of charge appearing

on the right-hand side are those associated with the supergraviton, the membrane, and the

fivebrane, which are the three basic ingredients of M-theory. In this sense, it would be

natural to regard (2.194) as the M-theory superalgebra. The total number of algebraically

independent charges that could appear on the right-hand side is

11 + 55 + 462 = 528, (2.195)

so that the algebra is also maximally extended.

Contents of M-theory

One can write the action of eleven-dimensional supergravity (2.189) which is the low

energy limit of M-theory. The contents of the M-theory are

� the supergravitona,

� the membrane,

� the fivebrane,

generated by the algebra (2.194). The supergraviton is in a sense a local object while

the membrane and the fivebrane are extended non-local objects with dimensionality

two and five respectively. M-theory is conjectured to be realized as an ultraviolet

completion of the effective low energy supergravity theory.

aIn literature, the entire 256-dimensional supermultiplet is referred to as the supergraviton, a notion

that we will adopt in what follows.

M-theory/type IIA superstring correspondence

We shall demonstrate the explicit connection, or if the reader prefers construction, of the

action of ten-dimensional supergravity from eleven-dimensional supergravity. Then the conje-

cture in the high energy limit is that M-theory will be dual to type IIA superstring theory.

Note however that there is still not a clear proof (to all orders) of the above such that it
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remains a conjecture, since the high energy profile of M-theory is unknown, as it is the one

of type IIA superstring while the latter is constructed also perturbatively. The difficulty

is because the high energy limit of superstring theory is constructed perturbatively with

perturbation parameter gs. We recall (also below) that this parameter also controls the size

of the eleventh compact dimension.

The procedure of connecting the supergravities is fairly easy, and in fact, it is one of the

most straightforward connections of superstring theories and M-theory and the only relevant

for this thesis. It heavily relies on the idea of dimensional reduction (KK), demonstrated in its

simplest form above, in Sec. 2.6. Dimensional reduction is not equivalent to compactification,

since the in the latter case one keeps all the modes in the Fourier expansions of the various

fields, while in the former only the zero modes are kept in the lower dimensional theory. The

compact circle has a radius given by

R11 = gs`s. (2.196)

Then we shall demonstrate how the different eleven-dimensional field contents appear in ten

dimensions.

We start with a qualitative discussion of fermionic fields. The massless fermions of

type IIA supergravity consist of two Majorana-Weyl gravitinos of opposite chirality and

two Majorana-Weyl dilatinos of opposite chirality. These can be obtained by taking a

32-component eleven-dimensional Majorana gravitino and dimensionally reducing it to ten

dimensions. This will result in a pair of 16-component Majorana-Weyl spinors of opposite

chirality. Then, the first ten components of these give the two ten-dimensional gravitinos

while the eleventh component Ψ11 will give the two ten-dimensional dilatinos. Each type

IIA dilatino has eight physical degrees of freedom because the Dirac equation implies that

half of the 16 components describe independent propagating modes. Then, to match the

original polarization states it is clear that each gravitino should have 56 degrees of freedom.

This is indeed the dimension of the irreducible representation of Spin(8), so the above

discussion could be interpreted as the splitting of 128 representation of Spin(9) to irreducible

representations of Spin(8). The preservation of physical degrees of freedom is a general

feature of dimensional reduction on compact manifolds such as circles or tori.

Let us then continue with a quantitative discussion of dimensional reduction of bosonic

fields, the metric and the three-form A3. One index choice we can do here is to denote small

Greek letters µ, ν referring to first ten components of the eleven-dimensional indices denoted

by M,N = 0, · · · , 9, 11 skipping the 10th compact dimension. The metric is decomposed as

GMN = e−
2Φ
3

(
gµν + e2ΦAµAν e2ΦAµ

e2ΦAν e2Φ

)
, (2.197)

where the dependence of the fields is exclusively on ten-dimensional spacetime. This decompo-

sition allows a ten-dimensional metric gµν , a U(1) gauge field Aµ and a scalar dilaton field

Φ, while the exponential factors are introduced for convenience. In addition we can write the

decomposition in the following form

ds2
11 = GMN dxM dxN = e−

2Φ
3 gµν dxµ dxν + e

4Φ
3
(
dx11 +Aµ dxµ

)2
, (2.198)

that is, given either a ten dimensional or eleven dimensional metric we can immediately either

uplift it to eleven dimensions or reduce it to ten dimensions respectively.
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One can also rewrite this metric decomposition in the vielbein formalism, something that

we will not demonstrate here because we will not need it. In addition, the three-form in

D = 11 decomposes to a three-form and a two-form in ten dimensions

A(11)
µνρ =Aµνρ, (2.199)

A
(11)
µν11 =Bµν , (2.200)

with corresponding field strengths given by

C
(11)
µνρλ =e

4Φ
3
(
Cµνρλ + 4A[µHνρλ]

)
= e

4Φ
3 C̃µνρλ, (2.201)

C
(11)
µνρ11 =e

Φ
3 Hµνρ, (2.202)

such that upon dimensional reduction, the eleven-dimensional field strength is a combination

of a four-form and a three-form field strength

C(4) = e
4Φ
3 C̃(4) + e

Φ
3 H(3)Γ11, (2.203)

with Γ11 being the ten-dimensional chirality operator, and the forms defined by

C(4) =
1

4!
CMNPOΓMNPO. (2.204)

In a differential form notation the rescaled field strength is written as

C̃4 = dA3 +A1 ∧H3, (2.205)

and invariance of C̃4 under the U(1) gauge transformation δA1 = dΛ yields that the three-

form potential should transform as

δA3 = dΛ ∧B. (2.206)

Then

δC̃4 = d (dΛ ∧B) + dΛ ∧H3 = 0. (2.207)

In addition to the above, an interesting ingredient that we will need later is the relation

between the eleven-dimensional and ten-dimensional Newton’s constants. To define those we

need to know the string coupling, which for the case of type IIA supergravity is given as the

vacuum expectation value of the dilaton

gs := e〈Φ〉. (2.208)

In eleven dimensions the only length scale is the Planck length. From the metric (2.198) we

can deduce that if we set a scale in the ten-dimensional theory, in a sense that if a distance in

the ten-dimensional case in string units is ds10 = 1 then in eleven dimensions and in Planck

units is

ds11 =
(
e−

2Φ
3 ds2

10

) 1
2

= g
− 1

3
s . (2.209)

So we immediately see that if the string coupling is small, the Planck length is smaller than the

string length. In other words, if gs is small, the Planck length measured in eleven-dimensions

is g
1
3
s times smaller than the string length such that generically we have

`p = g
1
3
s `s with `s =

√
α′. (2.210)

51
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In ten dimensions, gs and `s combine to give Newtons constant as

16πG10 =
1

2π
(2π`s)

8g2
s . (2.211)

Then dimensional reduction on a circle of radius R11 gives a relation between Newtons

constant in ten and eleven dimensions

G11 = 2πR11G10. (2.212)

We can use (2.190) with (2.211) to get a relation of R11 in terms of gs

R11 = g2/3
s `p = gs`s. (2.213)

The ten-dimensional bosonic action for type IIA supergravity can be obtained by integrating

(2.189) over the compact coordinate. The result yields three distinct pieces for the action, a

Neveu-Schwarz term, a Ramond term, and a Cern-Simons term denoted respectively as

Ssugra = SNS + SR + SCS . (2.214)

The first term has the form

SNS =
1

2κ2

∫
d10x
√
−ge−2Φ

(
R+ 3∂µΦ∂µΦ− 1

2
|H3|2

)
, (2.215)

where we have defined 2κ2 := (2π`s)
8/2π. This string-frame action is characterised by the

exponential dependence of the dilaton in front of the curvature scalarR. Note that we can use

the relations above to show that the SNS itself does not have a string coupling dependence.

The remaining two terms in the action, involve the R-R fields and are given by

SR =− 1

4κ2

∫
d10x
√
−g
(
|C2|2 + |C̃4|2

)
, (2.216)

SCS =− 1

4κ2

∫
B2 ∧ C4 ∧ C4. (2.217)

Let us remark on the structure of the various terms appearing in Ssugra. It is a general

rule, that a worldsheet of Euler characteristic χ gives a contribution with a dilaton dependence

eχΦ, which leads to the correct dependence on the string coupling constant. Therefore, all

terms in (2.214) correspond to a spherical worldsheet with Euler characteristic χ = −2. Now,

this is obvious only in the first term SNS while for the terms SR and SCS this can be easily

achieved by doing a field redefinition with appropriate exponential powers of e−Φ such that

we have an overall e−2Φ factor in front of the whole action Ssugra. Since this field redefinition

is not usually adopted in the literature we shall leave the action as it is.

The low energy regimes of the two theories are related via the respective supergravities

as we demonstrated above. Yet, the full correspondence should also contain the high energy

limits. However, this is particularly challenging since there is no action description available

in the high energy limits of both theories. The difficulty in type IIA, relies on the fact that

this limit is only defined perturbatively in gs. Therefore, one should exploit non-perturbative

tools to explore this regime and make the connection with M-theory slightly more precise. D-

branes are such non-perturbative objects and the lowest dimensional ones are the D0-branes.

Their mass, in string frame, is given as (`sgs)
−1, so in perturbation theory around gs ≈ 0 it

blows up.
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The claim is that the mass of the D0-branes can be related with supergraviton KK modes

compactified on a circle of radius R11. This goes along the lines of the simple idea we

demonstrated in Sec. 2.6 as we shall see. Before we continue, let us remind that the entire

256-dimensional supermultiplet is referred to as the supergraviton.

Let us then consider eleven-dimensional supergravity (or low energy M-theory), compacti-

fied on a circle. The mass of the supergraviton in eleven dimensions is zero

M2
11 = −pMpM = 0 , M = 0, 1, · · · , 9, 11, (2.218)

while in ten dimensions it takes the form

M2
10 = −pµpµ = p2

11 , µ = 0, 1, · · · , 9. (2.219)

The momentum on the compact dimension is quantized p11 = N/R11 and hence the spectrum

of the ten-dimensional masses is

M2
N =

(
N

R11

)2

, N ∈ Z, (2.220)

representing a tower of Kaluza-Klein modes. These states also form a short 256-dimensional

supermultiplet, such that they are all BPS states, and carry N units of a conserved charge

of U(1) type. For N = 1, the correspondence with the mass of a single D0-brane requires

R11 = `sgs, (2.221)

in agreement with the claim presented repetitively in this chapter. Indeed, this is a non-

perturbative correspondence independent of the values of gs. On the other hand, the value

of gs encodes the perturbative regime of type IIA theory. In particular, the weak coupling

regime is given as gs → 0 which via (2.221) corresponds to R11 → 0, while the strong coupling

regime corresponds to the inverse limit, namely gs → ∞ which results in R11 → ∞. The

former limit corresponds strictly to a ten-dimensional theory (type IIA), while the latter to

an eleven-dimensional one (M-theory). The latter is true since the compact circle opens up

and all the ten spatial dimensions are treated on equal footing.

In fact, this argument can be also used to argue for the existence of bound states of D0-

branes. More precisely, the N-th Kaluza-Klein excitation gives a multiplet of stable particles

in ten dimensions that have N units of charge. Therefore, this multiplet can be regarded as

a bound state consisting of N D0-branes, which in addition has zero-binding energy. Indeed,

there is no room for any binding energy, since these states saturate a BPS bound, which

means that they are as light as they are allowed to be for a state with N units of D0-brane

charge. It also means that the formula (2.220) is exact to all orders in gs.

These bound states can be related to higher dimensional structures with which they couple

electrically and magnetically [65]. One important example is that D0-branes couple with a

three-form forming a D2-brane consisting of D0-branes via the well-known Myers effect [84].

We close this chapter with the correspondence between contents of M-theory and contents

of type IIA superstring theory given as:
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M-theory/type IIA superstring correspondence

M-theory type IIA superstring

KK photon (gM11) RR gauge field Aµ
supergraviton with p11 = 1/R11 D0-brane

wrapped membrane IIA fundamental string

unwrapped membrane IIA D2-brane

wrapped fivebrane IIA D4-brane

unwrapped fivebrane IIA NS5-brane
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3
Matrix models and gravity

Φύσις κρύπτεσθαι φιλεί.

Heraclitus

Matrix models in string theory play an important role. Some specific models can be

used to describe quantum gravity in two dimensions [85–87] (see also [88]). We will not

pursue a relevant analysis here but we will say a few words about two-dimensional quantum

gravity and we will focus on setting the ground such that the reader will understand the

matrix models that will play a major role for this thesis. We will also spend some time on a

particular matrix model that describes (and regularizes) the membrane in eleven dimensions

as well as its quantization. This will be the key ingredient to proceed to the following

constructions. Then we shall move to the D0-brane matrix model [53] which we will use

throughout this dissertation. We shall discuss it’s construction from dimensional reduction, as

well as its massive deformation presented by Berestein-Maldacena-Nastase [89]. Proceeding,

we shall also discuss their geometric, i.e gravity interpretation using holography and explain

the parameters that control the gauge and the gravity systems as well as their interpretation

in both cases.

3.1 Quantum gravity in two dimensions

It is quite well known that in the first quantization of string theory, summation over string

trajectories reduces to a two-dimensional quantum gravity on the worldsheet [57, 58]. The

full string action includes the Einstein-Hilbert term and a cosmological constant Λ for the

wordlsheet metric. Then, this action defines a theory of D scalar fields Xµ coupled minimally1

to the world sheet metric hab. The Euclidean action is

S =

∫
d2σ
√
h

(
1

4πα′
hab∂aX

µ∂bXµ +
φ

4π
R+ Λ

)
. (3.1)

1This means that we consider the partial derivative in the action.

55



3.1. QUANTUM GRAVITY IN TWO DIMENSIONS

In two dimensions, the Einstein-Hilbert action is a topological term and equals the Euler

character

χ =

∫
d2σ
√
h

(
R

4π

)
= 2− 2n, (3.2)

with n being the genus of the worldsheet surface Mn which in this case is a sphere S2 with

n handles. The parameter φ is related to the expectation value of the dilaton field and thus

it is determined by the string coupling

e〈φ〉 = gs. (3.3)

Moreover, the partition function is given by

Z =
∑
n

g2n−2
s

∫
[dXµ][dhab] exp

(
−
∫
Mn

d2σ
√
h

(
1

4πα′
hab∂aX

µ∂bXµ + Λ

))
. (3.4)

There exists a lattice-like regularisation of this theory in discretising the worldsheet geometries

by dynamical triangulations, meaning the replacement of the integration over the worldsheet

metrics by a summation over wordlsheet triangulations [90–93]. Another approach is to

collectively gauge fix and use the Fadeev-Popov method such that the description of string

coordinates and the metric is given by Liouville theory [66, 94] but we will not discuss it

further here and we shall demonstrate the first choice because in an analogy with field theory

it does not require gauge fixing.

The easiest example to consider is the D = 0 theory. The latter is an empty theory of

surfaces with no conformal matter and the partition function is given as

Z =
∑
n

g2n−2
s

∫
[dhab]e

(−
∫
Mn

d2σ
√
hΛ). (3.5)

This model describes fluctuations of the internal metric and topology of the zero-dimensional

wordlsheet. The essence of dynamical surface triangulation is the approximation of the surface

of genus n by a combination of equilateral triangles. On the plane, at each vertex i there are

Ni = 6 such triangles meeting since there is no curvature. The latter is determined via the

Ricci scalar

Ri = 2π
6−Ni

Ni
, (3.6)

and it is non-zero whenever Ni 6= 6. That this is the Ricci scalar can be verified by the

following argumentation: each triangulation is characterised by a number of vertices V , a

number of edges E, and a number of faces F . By construction it holds hat V =
∑

iNi

and topologically each edge is shared by two vertices such that 2E = V . Moreover, each

face has three edges and each edge is shared by two faces, therefore 2E = 3F . The area of

triangulation is

A =

∫
d2σ
√
h =

∑
i

Ni

3
=
V

3
=

2E

3
= F. (3.7)

Indeed this is the total number of triangles. In addition the Einstein-Hilbert term is∫
d2σ
√
hR =

∑
i

Ni

3
2π

6−Ni

Ni
= 4π

(
V − F

2

)
= 4π(V − E + F ) = 4πχ, (3.8)

as it should be. As a result, the partition function becomes discretised and given by

Zd =
∑
n

g2n−2
s

∑
Tn

e−ΛF , (3.9)
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with the sum running over the dynamical triangulations Tn of the surfacesMn. Importantly

the number of triangles F should not be predetermined such that it remains a dynamical

variable, and hence in a sense, summation over Tn translates to summation over F .

The exponential dependence on F is the reason for the convergence of the sum over

triangulations, at least for (sufficiently) large values of Λ. However, as Λ starts decreasing

the partition function could diverge at the critical value Λ = Λc. Of crucial importance

for dynamical triangulations is the fact that the total number of graphs of genus n formed

by F triangles increases exponentially with F as exp(ΛcF )/F−bn [91], with the exponent bn
depending on n. The continuum limit is defined as

Λ −→ Λc, (3.10)

and it is independent of n. In this limit, the discretised statistical sum Zd reproduces

continuous Z2D. The contribution of entropy (the number of different graphs for a given F )

dominates over the exponentially suppressed energy contribution of the Boltzmann weight

and, as a result, the partition function diverges in a second-order phase transition. This

behaviour is reflected in the string susceptibility given by

f =
∂2Zd
∂Λ2

=
∑
n

g2n−2
s (Λ− Λc)

−γn , γn = −bn + 3, (3.11)

with γn being the string susceptibility index. This index characterises the scaling of the

entropy since as we saw it appears in the area of the triangulation F bn . For further details

see the original reference [95].

3.1.1 Zero dimensional matrix model

Let us consider the cubic model with partition function

Zα =

∫
[dΦ]e−N TrV (Φ) , V (Φ) =

1

2
Φ2 − 1

3
αΦ3, (3.12)

where Φ are N ×N Hermitian matrices, α is a constant and [dΦ] is the measure over these

matrices explicitly given as

[dΦ] =
N∏
i>j

dReΦij dImΦij

N∏
i=1

dΦii. (3.13)

The propagator of this theory is arising as the simplest Gaussian matrix integral [86]

(2π)−N
2/2
∫

dΦe−
N
2

Tr Φ2〈ΦijΦkl〉 =
1

N
δijδkl, (3.14)

and is represented as a double line (double indices). These two lines are oriented due to

Hermiticity and are opposite oriented. A typical Feynman diagram consists of an oriented

two-dimensional surface formed by polygons that are bounded by index loops. Three propagators

construct a three-point matrix vertex. Then one can imagine this three-point vertex to be

dual to a triangle and hence the so-called dual diagram will be a dynamical triangulation of

a Riemann surface.

Now by using ’tHooft [96] counting we can organise the diagrammatic expansion in powers

of 1
N where each order corresponds to a different topology. We can furthermore translate the
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number of vertices V , edges E and faces F to vertices, propagators and loops respectively.

The vertex carries one factor of N as well as the loop while the propagator carries N−1

factor. Combining all leads to NV−E+F = Nχ = N2−2n. From this follows that the partition

function can be expanded in powers of N

Zα = N2Z(0)
α + Z(1)

α +N−2Z(2)
α + · · · =

∑
n

N2−2nZn. (3.15)

Therefore, also the free energy admits a 1/N expansion via

Fα = logZα =
∑
n

N2−2nFn, (3.16)

where Fn is given by the sum of the connected Feynman diagrams that can be drawn on a

sphere with n handles. On the other hand, Zα generates both connected and disconnected

diagrams.

Let us consider an arbitrary (connected) diagram Γ. Since each three-point vertex is dual

to a triangle the number of three-point vertices vΓ equals the number of triangles F . By

normalising the area of each triangle to one the total area is A = F = vΓ. This corresponds

to a Feynman diagram which is proportional to αvΓ and to avoid over-counting we shall also

normalise it by the order of the relevant discrete symmetry group SΓ. This discrete symmetry

group of the Feynman diagram is the analog of the isometry group manifold of continuum

manifolds [87].

The free energy for connected diagrams is then

Fn =
∑

Γ

αvΓ

SΓ
, (3.17)

while for arbitrary diagrams

Fα = logZα =
∑
n

N2−2n
∑

Γ

αvΓ

SΓ
. (3.18)

Using, (3.9) and assigning

N = e−〈φ〉 =
1

gs
, e−Λ = α, (3.19)

the free energy of this model equals the partition function of the dynamical triangulated

model

Fα = Zd. (3.20)

As it is expected in lattice theories, there should exist a critical value of α → αc such that

there is a phase transition. Moreover, since the number of degrees of freedom is setted by N ,

one has to consider N →∞ limit to make this transition feasible. Therefore, the continuum

limit at fixed string coupling constant is a double scaling limit with N →∞, α→ αc with

φ :=
1

N (αc − α)5/4
= fixed, (3.21)

where φ is dimensionless by the requirement that 1
N = α

5
2 and [α] = 2 in length units. At

this limit the partition function diverges, signalling a second order phase transition. That is

because the first term of (3.15) (planar partition function) behaves as

Zα ≈N2Z(0)
α + · · ·

≈N2 (αc − α)2−γ ≈ −N2Aγ−2, (3.22)
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where A is the expectation value of the area A = 〈F 〉 = 〈vΓ〉 and γ is the string susceptibility.

We have used a zero-dimensional cubic matrix model to describe discretization of Rieman-

nian surfaces resulting in a dynamical triangulation because the dual graph of the three-point

vertices are triangles. It is straightforward to claim that instead of a cubic matrix model,

we could have used an arbitrary polynomial potential yielding in this way to a dynamical

polygonization of Riemannian surfaces.

3.1.2 One-dimensional matrix models

In the previous subsection we saw a single matrix, zero-dimensional model. This can be

generalised first of all to multi matrix models and accordingly the strings described by this

model are embedded in a space of greater dimensionality. In fact we can consider a (open)

chain of q matrices given by the partition function

Zβ =

∫ q∏
i=1

[dΦi] exp

(
−

q∑
i=1

N TrV (Φi) +N

q−1∑
i=1

Tr ΦiΦi+1

)
. (3.23)

Such matrix models describe the discretization of bosonic strings in the regime 0 < D ≤ 1

since the diagrammatic expansion generates discretized surfaces where q different Φi states

exist at the vertices [87]. In addition, it describes two-dimensional quantum gravity coupled

to conformal matter in D dimensions, which recalling the unitary discrete series of conformal

field theories they are labeled by an integer m ≥ 2 which specifies the central charge c

c = D = 1− 6

m(m+ 1)
. (3.24)

The central charges are normalised such that the c = 1 case corresponds to one boson.

In addition, if we couple conformal field theories with these fractional dimensions to two-

dimensional gravity the approach from Liouville theory predicts a relationship between the

susceptibility and the central charge of the conformal field theory given by (see for example

[87])

γstr =
1

12

[
D − 1−

√
(D − 1)(D − 25)

]
= − 1

m
. (3.25)

Previously we discussed the case m = 2 where c = D = 0 and γstr = −1
2 corresponding to

pure gravity. From m ≥ 3 the fractional dimensions start with the case m = 3 belonging

to Ising model where c = D = 1
2 and γstr = −1

3 . The case under consideration is the limit

m→∞ giving c = D = 1 and γstr → 0.

In this limit we only have one boson, and moreover when we consider the limit q →∞ we

get the description of a one-dimensional lattice where the coupling term is a nearest neighbour

interaction. More precisely, the i index above may be substituted by a continuous variable t

and the matrix chain with q →∞ can be regarded as a lattice regularization of the statistical

sum of one-dimensional matrix model. The partition function becomes

Zβ
∫

[dΦ(t)] exp

[
−N

∫
dt

(
1

2
Φ̇2 +

m2

2
Φ2 + Vint(Φ)

)]
. (3.26)

Each perturbation theory diagram is accompanied by its Feynman integral given as [86]

FΓ =

∫ ∏
i

dXi

2m
exp

−m∑
〈ij〉

|Xi −Xj |

 (3.27)
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in coordinate space. The variables Xi are regarded as the values of string coordinate X in

diagram vertices and the summation is over links i → j. In this case, the one-dimensional

propagator reproduces the kinetic term for the bosonic field Φ.

Based on this demonstration a matrix model of string theory can be built up equivalent

to string theory in any dimension where the matrix model lives (D) [97]. However, there are

several problems arising with the obvious one being that for D > 1 the critical exponent γstr

admits an imaginary part. In addition, for greater D where one should consider the matrix

field theory and not zero-dimensional integrals and quantum mechanics neither the exact

solution in the limit N →∞ nor the construction of 1/N expansion is possible. Furthermore,

the squared mass of the lowest string excitation scales like (1−D) and for D > 1 the ground

state becomes a tachyon. Due to this infrared instability, the string worldsheet degenerates

to a quasi-one-dimensional object, known in the literature as a branching polymer. Hence

the bosonic string fails to describe a system with an infinite number of degrees of freedom

because it cannot accommodate them.

D = 1 is the upper barrier for writing a consistent matrix model for string theory.

3.2 Matrix String Theory

3.2.1 A unification of matrices, membranes and D0-branes

We shall start by presenting the correspondence between matrix theory, membranes, and

contents of type IIA string theory. This idea starts with the work of Hoppe, de Witt and

Nikolai back in 1988 [98], where a quantization of the supermembrane was performed in

terms of matrices. We shall explain this idea in detail but before doing so, let us remark

that in 1988 there was no such thing as M-theory! After Witten’s proposal [99], the eleven-

dimensional super membrane was thought of as being part of the content of the so-called

M-theory, yet in 1997 it was realised by Banks-Fischler-Shenker-Susskind [53] that there

should be a connection between matrices and supermembranes. This was established even

further by the work of [100] where D0-brane dynamics in the low energy limit, give the same

Hamiltonian as the BFSS. We present all these connections with a graphic representation

given in Fig. 3.1. As we proceed, we shall explain these ideas at a level that depends on the

effort one needs to understand the connection between them.

Quantization of the membrane

Let us then start with a historically ordered presentation and let us write an action for an

arbitrary p-brane in D-dimensional spacetime with metric given by GMN = (−1, 1, · · · , 1) and

p < D. As we saw and it can be easily understood a p-brane is a p-dimensional object and as

such, moving in a D-dimensional spacetime will produce a (p+1)-dimensional worldvolume.

Let us denote the p-brane coordinates as σµ, µ = 0, · · · , p− 1, σ0 = τ , and a local (auxiliary

on word-volume) metric denoted as hµν . The embedding maps XM thought of as coordinates

of the spacetime that hosts the p-brane can be written in terms of the latter as

XM = XM (σ0, · · · , σp−1), (3.28)
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M-Theory 10D Yang-Mills

IIA String Theory
Matrix 

Quantum 
Mechanics

Compactify 
one 
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Duality

Weak 
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Figure 3.1: The correspondence between supersymmetric matrix quantum mechanics M-

theory and type IIA string theory.

and therefore the induced metric on the p-brane will be given as the pullback

gµν = GMN∂µX
M∂νX

N . (3.29)

The Lorentz invariant infinitesimal world-volume element is given as

dsp =
√
−det gµν dp+1σ. (3.30)

To construct the action, we shall need one more piece of information, that is the tension of

the p-brane denoted by Tp. Therefore, we end up with the quite general action

Sp = −Tp
∫

dsp = −Tp
∫ √

−det gµν dp+1σ, (3.31)

which describes any free, subject to no interactions, p-brane. The relevant case for us, is

when p = 2 yielding a membrane with action

S2 = −T2

∫ √
−det gµν d3σ. (3.32)

This goes along the lines of string theory analysis we did in Sec. 2.2.1, and indeed the above

action is the Nambu-Goto action for a p-brane. Similarly, we can write a Polyakov action

also by adding a cosmological term Λ

S2 = −T ′2
∫

d3σ
√
−h (hµνgµν − Λ) . (3.33)
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The difference with the Polyakov action of a string given by (2.40), is the cosmological term

Λ. The latter has been introduced to make the world-volume theory scale invariant since

one can check that for p 6= 1 there is not such invariance. In the same sense that string

theory lives in D = 10, the supermebrane does in D = 11 [73,98,101]. Using the well-known

variation

δ(
√
−h) = −

√
−hhµνδhµν

2
, (3.34)

one can find the equation of motion for the metric hµν

gµν =
1

2
hµν (hµνgµν − Λ) . (3.35)

By tracing with hµν we get

hµνgµν = 3Λ⇒ gµν = Λhµν , (3.36)

and substituting this into the Nambu-Goto action above we get a relation between the tension

T2 and the new tension T ′2
2T ′2 =

√
ΛT2. (3.37)

In fact, we see that the equations of motion for h yield the fact that the auxiliary metric

h that was introduced is the physical metric gµν up to rescaling by Λ. The metric hµν
being three-dimensional, contains six independent components and the membrane action is

invariant under three diffeomorphisms σµ → σ′µ = fµ(σ). This means that three components

of this metric can be fixed by using three suitable gauge choices. We can restrict ourselves

to positive curvature geometries where the membrane will be given as R ×Σ, where Σ is a

Riemannian surface of fixed topology. For the case in which Σ has the topology of a sphere,

one can fix the h0ν components of the metric as follows

h0a =0, (3.38)

h00 =− 4

v2
det gab. (3.39)

In this gauge, the constraints in terms of the embeddings language become

GMN∂0X
M∂aX

N =0, (3.40)

GMN∂0X
M∂0X

N =− 4

v2
det gab. (3.41)

We may note that v here is a normalisation constant that will be chosen later for convenience.

We then wish to write the Polyakov action in terms of the above terminology. The square

root yields √
−det gµν = −v

2
GMN∂0X

M∂0X
N =

2

v
det gab, (3.42)

therefore the membrane action becomes

S2 =
vT2

4

∫
d2σ dτ

(
GMN∂0X

M∂0X
N − 4

v2
det gab

)
. (3.43)

It is also natural to rewrite this theory in terms of a canonical Poisson bracket on the

membrane at constant τ where {f, g} := εab∂af∂bg with ε12 = 1. The idea behind expressing

this action in terms of Poisson brackets will reveal its power when we will discuss the

quantization of the membrane. We also assume that the coordinates σ are such, that with
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respect to the symplectic form associated to this canonical Poisson bracket the volume of the

Riemann surface Σ is
∫

d2σ = 4π. In addition, when we write the pulled-back metric in a

matrix notation we can easily prove that

det gab =∂1X
M∂1X

M∂2X
N∂2X

N − ∂1X
M∂2X

M∂1X
N∂2X

N

=
1

2
{XM , XN}{XM , XN}, (3.44)

and adopting the notation ∂0X
M := ẊM we may rewrite the action as

S2 =
vT2

4

∫
d2σ dτ

(
ẊMẊM −

2

v2
{XM , XN}{XM , XN}

)
. (3.45)

The equations of motion for the embeddings XM are computed to be

ẌM =
4

v2
{{XM , XN}, XN}, (3.46)

while the constraints due to the gauge freedom we used on h0i, h00 become

ẊM∂iX
N =0, (3.47)

ẊMẊM =− 2

v2
{XM , XN}{XM , XN}. (3.48)

The first constraint can be expanded to write

GMN{ẊM , XN} = {ẊM , XM} = 0, (3.49)

which later on we will be calling as the Gauß constraint.

Let us furthermore, rewrite the the above action in light-front coordinates. To this end,

we introduce

X± =
X0 ±XD−1

√
2

, (3.50)

and choose the light-cone gauge

X+(τ, σ1, σ2) = τ. (3.51)

Note that after doing this, we reduce the number of degrees of freedom from D to D − 2

since the X+ embedding is constrained by X0 and XD−1. On the other hand, X− can be

computed by solving the constraints in the same way it is done for the bosonic string theory.

The latter are

Ẋ− =
1

2
ẊiẊi +

1

v2
{Xi, Xi}{Xi, Xi}, (3.52)

∂aX
− =Ẋi∂aX

i. (3.53)

We want to bring our system to a Hamiltonian formalism. To this end we may write the

Lagrangian

L2 =
vT2

4

(
Ẋ− +

1

2
Ẋ2
a −

1

v2
{Xa, Xb}2

)
, (3.54)

from which we can compute the conjugate momenta and Legendre transform to obtain the

Hamiltonian. This results in

P+ =
δL2

δẊ−
=
vT2

4
, (3.55)

P a =
δL2

δẊ+
=
vT2

4
Ẋa (3.56)
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with Hamiltonian

H2 =

∫
d2σ

(
P+Ẋ− + P aẊa − L2

)
=
vT2

4

∫
d2σ

(
1

2
Ẋ2
a +

1

v2
{Xa, Xb}2

)
. (3.57)

The remaining constraint affects the transverse degrees of freedom which furthermore satisfy

the Gauß constraint

{Ẋi, Xi} = 0. (3.58)

Before we move further on, we remark on some important issues. Recalling the constraints

from eq. (3.47) we see that the Hamiltonian (3.57) is written as a sum of constraints. In

addition, the Gauß constraint is a first-class constraint and as such, according to Dirac’s

conjecture [102], it creates gauge redundancy on the theory. In particular, there is a residual

invariance under time-independent area-preserving diffeomorphisms. These diffeomorphisms

do not change the symplectic form and thus leave the hamiltonian of the system invariant.

This system in the light-cone reminds the case of bosonic string theory, and one would

expect that the quantization will be straightforward as is usually done in string theory.

However, the fact that the equations of motion are non-linear in matrices X raises some

obvious obstacles to this procedure, and hence following the well-established technique as in

the case of string theory is not preferred. On the other hand, a particular regularization in

light-front membrane theory was found in [103] for the case where the Riemannian surface Σ

has the topology of a sphere S2. According to this regularisation, functions on the membrane

surface are mapped to N ×N matrices, the Poisson bracket is replaced by the commutator,

the integral gives its form to a normalised trace, differentiation is performed by adjoint

commutators, and coordinates on the surface are mapped to SU(2) generators Ji. The

representation of the latter is the irreducible one with maximal spin s = (N −1)/2, while the

total number of degrees of freedom N2 equals the number of linearly independent polarization

tensors Tlm with l ≤ N − 1, where the latter and in the large N limit they map to the usual

spherical harmonics.

We can rephrase everything we mentioned above passing to the quantum theory as

Regularization map for the membrane

ξa 7→
2

N
Ja , a = 1, 2, 3, (3.59)

{·, ·} 7→ − iN

2
[·, ·], (3.60)

Li = −iεijkxj∂k 7→[Li, ·], (3.61)∫
d2σ{·} 7→4π

N
Tr {·}. (3.62)

The analysis above and the regularization map can be generalised to membranes of

arbitrary topology [104]. With this new regularization procedure, the Hamiltonian of the

membrane system reads

H2 =
1

2πl3p
Tr

(
1

2
Ẋ2
a −

1

4
[Xa, Xb]

2

)
, (3.63)
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where we have used the normalization v = N and the conventions πT2 = 1/2πl3p. The

equations of motion are given as before

Ẍi + [[Xi, Xj ], Xj ] = 0, (3.64)

which must be supplemented with the Gauß constraint

[Ẋi, Xi] = 0. (3.65)

The quantization procedure of such a system with finite degrees of freedom is straightforward,

yet solving the system is still non-trivial due to the non-linearity of the equations of motions

as we mentioned. The Gauß constraint forces the observables of the theory to be invariant

under the gauge group U(N), while the non-commutativity gives rise to fuzzy physics and

in particular the fuzzy sphere in the context of geometric quantization [105]. In the large

N limit, the fuzzy sphere approximates the continuous sphere while the group U(N → ∞)

gives the area-preserving diffeomorphisms on the sphere [106]. At finite N on the other

hand the matrix membrane is like a ”fuzzy” membrane which is discrete and preserves the

SU(2) ∼= SO(3) rotational symmetry of the original smooth sphere.

The supermembrane

To make contact with M-theory, and in addition, to make our membrane well-behaved it is

necessary to use supersymmetry. Supersymmetric membrane theories can be constructed in

4, 5, 7, and 11 dimensions. These theories have different degrees of supersymmetry, with 2,

4, 8, 16 independent supersymmetric generators respectively. Among these, only the latter

is free from anomalies in the Lorentz algebra. In the same sense that supersymmetric string

theory selects D = 10, for the case of the supersymmetric membrane theory this becomes

D = 11. Details about the whole construction can be found in the original work of [73],

while a review is given in [107]. The so-called, local, fermionic κ-symmetry implies that

the background of the theory satisfies the equations of motion of 11D supergravity. The

construction of the supermembrane theory, follows the rules of the bosonic membrane theory

upon taking care of the various extra symmetries. Using the light-cone formalism and gauge

fixing one arrives in the supersymmetric Hamiltonian of the system

H =
1

2πl3p
Tr

(
1

2
Ẋ2
a −

1

4
[Xa, Xb]

2 +
1

2
ψTγa[Xa, ψ]

)
, (3.66)

where a, b = 1, · · · , D − 2 with D = 11. The γa are 16 × 16 Euclidean SO(9) matrices and

ψ is a 16-component Mayorana spinor of SO(9). This Hamiltonian will play a major role in

what follows.

One more piece of information at this level that we will encounter later is the flat direction

problem or the membrane instability. A supermembrane which consists of N2 degrees of

freedom constructing its surface will result in a continuous spectrum of its energy 2 since

one can think that these degrees of freedom combine collectively to describe the dynamics

of membrane. A more detailed explanation about this was given in [109]. This continuous

spectrum is in contrast with the string theory spectrum where the states in the Hilbert

2Note that this result holds only in the supersymmetric membrane since the bosonic membrane can have

a discrete energy spectrum [108].
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space of the string can be put into one-to-one correspondence with elementary particle-like

states in the target space. That the massless particle spectrum contains a graviton and that

there is a mass gap separating massless states from massive excitations are crucial for this

interpretation.

An instability can be realised even for the bosonic membrane with the following reasoning:

we consider two matrices

X1 =

(
x 0

0 0

)
, X2 =

(
0 y

y 0

)
, (3.67)

which gives a potential term of the form [X1, X2]2 ∼ x2y2. Then it is straightforward that

if either x = 0 or y = 0, the other coordinate is unconstrained, giving flat directions in

the moduli space of solutions to the classical equations of motion. In the quantum bosonic

membrane theory, the apparent instability from the flat directions is cured because of the

0-modes of off-diagonal elements. This manifests, in the above example for instance, because

if x takes a large value then y could be treated as a harmonic oscillator with a large mass. The

zero-point energy of the oscillator becomes larger as x increases, giving an effective confining

potential that removes the flat directions of the classical theory. This is actually the reason

why in bosonic membranes we have a discrete spectrum of energies. The zero-point energies

of the fermionic oscillators associated with the extra Grassmann degrees of freedom in the

supersymmetric theory conspire to precisely cancel the zero-point energies of the bosonic

oscillators. This cancellation gives rise to a continuous spectrum in the supersymmetric

matrix theory where the instability re-emerges.

Matrix theory as a second quantization

That the membrane has a continuous spectrum can be explained if we consider a second

quantised theory from the point of view of the target space. Let us consider a block diagonal

matrix of the form

Xi =

(
X̄i 0

0 X̃i,

)
(3.68)

where X̄ and X̃ describe matrix objects. The equations of motion for these two in the case

where the block diagonal derivatives also decouple from each other result in

¨̄Xi =− [[X̄i, X̄j ], X̄j ], (3.69)

¨̃Xi =− [[X̃i, X̃j ], X̃j ]. (3.70)

We can imagine now that we have two matrix objects in the diagonal with a center of mass

x̄i =
1

N
Tr X̂i, (3.71)

x̃i =
1

N
Tr X̃i, (3.72)

which furthermore have classically independent equations of motion. The construction where

we have M of these objects is straightforward and this gives a nice, simple indication of how

matrix theory can encode, even at finite N , a configuration of multiple objects. This idea

constructs a second quantization theory with a continuous spectrum. We can use these two
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Figure 3.2: [Left]: The original membrane picture. [Right]: This can map to a multimembrane

configuration connected by thin tubes. Each membrane corresponds to a diagonal block (M)

of the mother matrix Xi
N×N and represents a different matrix object of the system.

matrix objects, which are separated but connected via a small tube, in a scenario when their

relative velocity is small. Then, we can arbitrarily pull them apart from each other creating

in this way arbitrarily small energy in a volume invariant way. Even if the two matrix objects

have themselves discrete energy spectrum, we can expect their combined energy to have a

continuous spectrum even when the size of the matrix is N = 2 as in the above example.

This resolves the continuous energy spectrum puzzle by considering the matrix theory as a

second quantised theory in the target space, a feature that is absent for string theory.

Matrix theory as a second quantised theory

It is possible to consider the block diagonal form of a mother matrix Xi
N×N whose

diagonal entries xia, a = 1, · · · , N describe different matrix objects. Then the equations

of motion for these objects decouple classically, and upon quantisation this constructs

a second quantised theory from the target space point of view. In the same spirit, the

membrane can be mapped topologically to a multimembrane configuration connected

by long and thin tubes (see Fig. 3.2).

3.2.2 The BFSS model: Dimensional reduction

We shall demonstrate how one arrives at the BFSS Lagrangian by dimensional reducing

D = 10,N = 1 super Yang-Mills theory down to one dimension [110]. It will turn out that

this procedure generates a one-dimensional matrix quantum mechanics model which describes

the low energy dynamics of a system of N D0-branes [111].

We therefore start inD = 10 dimensions with a flat metric ηMN = (−1,+1 · · · ,+1),M,N =

0, . . . , 9. The Clifford algebra is 32-dimensional and given by {GM , GN} = 2ηMN132. Having

one supersymmetry, the basic object in 10 dimensions is a 32-component complex spinor S

67



3.2. MATRIX STRING THEORY

which satisfies the following conditions{
S̃ = S+G0 := STC10 , Majorana condition,

C10G
MC−1

10 = (GM )T , Weyl condition,
(3.73)

and also G11S = S , G11 = G0 · · ·G9. In ten dimensions, the supersymmetric Yang-Mills

action with N = 1 is given as

S10 =
1

g2

∫
d10x Tr

[(
−1

4
FMNF

MN

)
+
i

2

(
S̃GMDMS

)]
. (3.74)

We can now use the form of the covariant derivative DM = ∂M − i[AM , ·], with Ai = Xi

and ∂i = 0 to rewrite the fermionic part of the action in the lower dimensional space. In

particular it becomes

− 1

2

(
S̃GMDMS

) ∣∣∣∣
d=10

= −1

2

(
S̃GµDµS

) ∣∣∣∣
p+1

+
i

2
S̃Ga[Xa,S]. (3.75)

Furthermore, the reduction of the bosonic part of the action becomes(
−1

4
FMNF

MN

) ∣∣∣∣
d=10

=

(
−1

4
FµνF

µν

) ∣∣∣∣
p+1

+
1

4
[Xa, Xb]

2 − 1

2
(DµXa)(D

µXa), (3.76)

Fµν =∂µAν − ∂νAµ − i[Aµ, Aν ]. (3.77)

The indices take the values µ = 0, 1, · · · , p and a = p+1, p+2, · · · , 9. In other words, the index

µ runs on the redacted dimensions while the index a runs in the transverse dimensions. This

construction is quite generic, and indeed it is a dimensional reduction of a super Yang-Mills

theory on the worldvolume of N coincident Dp-branes. We will be particularly interested in

the case of D0-branes, i,e p = 0, resulting in a super Yang-Mills theory on the worldline of N

coincident D0-branes. The action on the D0-branes, is given as

S1 =
1

g2

∫
dt Tr

(
1

4
[XI , Xj ]

2 − 1

2
(D0XI)

(
D0XI

)
+

1

2
S̃GI [XI ,S]− i

2
S+D0S

)
. (3.78)

Choosing a particular representation, we can write this action in a more specific form. In

particular, we will choose the representation of G in terms of Pauli (σi), and 10-dimensional

gamma matrices (Γ) as

G0 = iσ2 ⊗ 116 , GI = σ1 ⊗ ΓI , I = 1, · · · , 9. (3.79)

In addition the charge conjugation decomposes as

C10 = σ1 ⊗ C9, (3.80)

and in nine dimensions it satisfies C9ΓIC−1
9 = (ΓI)T . Using the Weyl and Majorana

conditions above, the 32-component spinor S can be rewritten as a 16-component spinor

Ψ as follows

S =
√

2

(
Ψ

0

)
, Ψ+ = ΨTC9. (3.81)

Thus, the action becomes

S =
1

g2

∫
dt Tr

(
1

4
[XI , Xj ]

2 − 1

2
(D0XI)

(
D0XI

)
+ ΨTC9ΓI [XI ,Ψ]− iΨTC9D0Ψ

)
. (3.82)
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In D = 9 dimensions, we can do a splitting 3 [112]

Γa =

(
−σa ⊗ 14 0

0 σa ⊗ 14

)
, Γi =

(
0 12 ⊗ ρi

12 ⊗ (ρi)
+ 0

)
, a = 1, 2, 3, i = 4, · · · , 9. (3.83)

The 4× 4 matrices ρi satisfy

ρiρj† + ρjρi† = ρi†ρj + ρj†ρi = 2δij14, (3.84)

while the charge conjugation matrix in this representation is

C9 =

(
0 −iσ2 ⊗ 14

iσ2 ⊗ 14 0,

)
(3.85)

We can effectively work with a charge conjugation matrix C9 which equals 18 resulting in

Ψ+ = ΨT , where an integration over Ψ leads to a Pfaffian Pf(C9O) where O = −iD0 +

ΓI [XI , ·]. Therefore, the operator C9 will drop from calculations, leading to the action

S =
1

g2

∫
dt Tr

(
1

4
[XI , XJ ]2 +

1

2
(D0XI)

2 + ΨTΓI [XI ,Ψ]− iΨTD0Ψ

)
. (3.86)

Now using the gauge A0 = 0 such that D0 = ∂0 and the canonical momentum PI =

∂0XI ,Πα = −iΨα we can Legendre transform to write the Hamiltonian

H =
1

g2
Tr
(
Pi∂oXi + ΠT∂0Ψ− L

)
=

1

g2
Tr

(
1

2
Ẋ2
I −

1

4
[XI , XJ ]2 −ΨTΓI [XI ,Ψ]

)
. (3.87)

With some identifications, and reminding that we are in Lorentzian signature, this Hamiltonian

is equivalent to the supermembrane regularised Hamiltonian (3.66). That two different

treatments correspond to the same Hamiltonian, means that we are describing the same

system with different terminology. Indeed, this discussion, includes two routes of Fig. 3.1,

the supermembrane regularization and the dimensional reduction of super Yang-Mills theory,

while to understand the third route, we need to add gravity in the discussion.

3.2.3 An unconventional holography

Before we discuss the gravitational side, let us also comment that the Hamiltonian (3.87), and

therefore the action has a rotational SO(9) global symmetry that rotates the nine matrices

XI among them. Indeed, we have nine N × N matrices X each of which corresponds to a

transverse direction. The idea is the following: each XI
N×N , I = 1, · · · , 9 matrix contains

information about the behaviour of D0-branes along this specific transverse direction and

taking the large N limit equivalents to taking a big matrix X which in addition means to

gain more and more access to D0-brane dynamical behaviour. This is also considered to

be the thermodynamic limit of the system. When we want to describe on the other hand

a state corresponding to the full system containing all nine matrices we should consider a

wavefunction Ψ ∈ R9N2
and the previously believed argument that the BFSS model can not

3This particular splitting will be usefull when we will be studying the BMN model, a parameter (mass)

deformation of the BFSS because the indices a, i run in SO(3) and SO(6) part of the spacetime respectively.
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be put into the traditional gauge/gravity duality gets lifted [113]. On the other hand, dealing

with this kind of wavefunctions makes the problem analytically intractable. As we will see

later, this unfortunate fact is avoided using simulations in (super)computers.

Let us comment a bit more here on the contents of the matrix X. The latter is obtained

from the dimensional reduction of super Yang-Mills theory, which by default contains a

U(N) gauge symmetry. This is even more manifest when we recall that this dimensionally

reduced theory describes/lives on the worldline of N coincident D0-branes, and on a world

(p+1)-volume of N coincident Dp-branes we can always write a U(N) gauge theory. Being

a N ×N matrix, XI contains diagonal and non-diagonal elements. The interpretation is the

following [99]: diagonal elements correspond to locations of D0-branes along this particular

direction I while non-diagonal elements to open strings connecting them. This is a bit more

manifest for D0-branes, since being 0-dimensional objects they are point-like and an open

string beginning and ending on the same D0-brane becomes effectively a closed string since it

attaches to the same spacetime point. Then it is understood that positions of D0-branes give

a meaning of locality in this theory, while non-diagonal elements are non-local. Indeed, the

U(N) group indices, say i, j, are the Chan-Paton indices which can be understood as the xij
entries of the matrix, whose interpretation is an open string connecting the i−th D0-brane

with the j−th D0-brane. A pictorial representation is shown in Fig. 3.3 Therefore, having

Figure 3.3: A pictorial representation of the matrix degrees of freedom discussed in the main

text. The diagonal entries of the matrix correspond to positions of D0-branes while non-

diagonal entries correspond to open strings between them. Having in mind that there are

nine matrices since I = 1, · · · , 9 these correspond to spatial positions of D0-branes along the

R1,9 spacetime.

access to the values of the matrix entries, we gain information for the dynamical behaviour

of the D0-branes in this I direction. It is manifest that when we consider all nine matrices

we are essentially building a ten-dimensional spacetime that contains pointlike degrees of

freedom, the D0-branes which are filling and moving in R1,9 spacetime. This is the intuitive

idea behind the BFSS model and we shall make it more precise as the reading time progresses.
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An unconventional holography for matrix models

In the usual gauge/gravity duality a d-dimensional gauge theory (for example a CFT)

is dual to (d + 1)−dimensional gravity (for example in AdS), in a sense that one can

build the degrees of freedom of the gravity, known as the bulk reconstruction procedure,

via the gauge field theory. This is the justification of the name holography that one

finds in the holograms of the real world where a three-dimensional structure is built

from two-dimensional surfaces. For matrix models we have a surprising situation. A

one-dimensional matrix quantum mechanical theory constructs a theory that contains

gravity in a ten-dimensional spacetime. It is indeed unconventional holography and

the construction can be summarised in Fig. 3.3.

3.2.4 The IKKT model

Let us now discuss another, yet very similar, model that is closely related to BFSS, and it

is known as the IKKT model (from the initials of the authors: Ishibashi-Kawai-Kitazawa-

Tsuchiya) [114]. Even though the main purpose of this thesis has nothing to do with this

particular model, its simple connection with BFSS makes it hard to not mention a few

words. In a precise sense, the IKKT model is the T-dual of BFSS, and while it is known

that compactifying type IIA superstring theory on a circle and performing T-duality one gets

type IIB superstring theory, it might not be so difficult to expect that a T-dual model of

BFSS should exist. On the other hand, when we perform a T-duality along the compact

circle of radius R the Dp-branes moving along the compact circle become D(p-1)-branes with

R̃ = α′

R in the T-dual theory4. Therefore, the type IIB, IKKT model is a model describing

D(-1)-branes, i.e D-instantons. The interpretation of this model is that there is not even a

free, dynamical parameter that we can integrate over to write an action and all the dynamical

parameters are encoded into the fields. The fields themselves, accompanied with the Laplace

(or Dirac) operator � and equipped with an algebra A, act on a Hilbert space H and this

spectral triplet (A, �,H) represents a commutative/non-commutative geometry according to

Conne’s approach [115].

Rephrasing the above statements, the geometry/spacetime in the IKKT model is believed

to be precisely and entirely emergent. Now, the algebra A in the large N limit, is given by

hermitian operators, with smooth eigenvalue distributions and bounded square traces [116].

The Dirac operator gives information about the geometry of the spacetime since it is given

via background solutions while the Hilbert space is given by the adjoint representation of the

gauge group U(N).

The action itself has a very similar form as the one of the BFSS (3.86) upon omitting the

integral

SIKKT =
1

g2
Tr

(
1

4
[XI , XJ ][XI , XJ ] +

1

2
ΨT
αΓIαβ[XI ,Ψ

β]

)
. (3.88)

This model was firstly presented by IKKT [114] in 1996. This has N = 2 supersymmetry

between the Hermitian XI
N×N bosonic matrices and the Hermitian Ψα

N×N fermionic matrices.

The relevant indices now run as I = 1, · · · , 10 and α, β = 1, · · · , 16. The fermionic field/matrix

4This can be generalised for k compact circles with the modification that we get D(p-k)-branes. For the

case of Dp-branes which are non-compact, i.e they move on the transverse directions of the compact circle we

have that Dp-branes → D(p+1)-branes.
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provides a Majorana-Weyl representation of Spin(10) while the bosonic degrees of freedom

provide a vector representation of SO(10). The latter equips the action with this rotational

symmetry that rotates the ten matrices among each other.

As in the case of the BFSS model, the IKKT could be also obtained as a dimensional

reduction of N = 1 super Yang-Mills theory in D = 10 dimensions. The indices I, α, β could

be, in principle, generalised to describe a matrix model in arbitrary dimensionality, replacing

10 with D above.

In addition, the IIB superstring (precisely the supergravity) action can be obtained from

the IKKT model in the double scaling limit N →∞, g2 → 0 while keeping g̃ = Ng2 fixed.

In Euclidean signature, however, there is an important technical problem as discussed

in [117–119]. In particular, the fermion Ψ is a complex Weyl spinor that satisfies the Majorana

reality condition and thus it contains only in 210/2−2 independent degrees of freedom. On the

other hand, Majorana-Weyl fermions do not exist in the Euclidean signature. The absence of

Majorana-Weyl fermions means that there is no SO(D) invariant real cycle (reality condition)

in the space of Weyl spinors, which is required to perform the integral over the complex

supermanifold. The latter is spanned by the bosonic and fermionic fields and is the space on

which the partition function is performed

ZIKKT =

∫
[dX][dΨ]e−SIKKT . (3.89)

This integral exists in D = 10, 6, 4 dimension, but the result of integration does not depend

on the choice of cycle for odd variables (spinors) [117–119].

One last, yet important point for the IKKT model is that it can be put in a computer

but in a different logic than that of BFSS, and important and fruitful paths are-and remain

to be-discovered [120–124].

Seinberg’s argument for matrix models

We return to the BFSS case. We shall demonstrate Seinberg’s argument about the BFSS

matrix model [125]. In a nutshell, the argument consists of the idea of lightlike and spacelike

compactifications. The original proposal of BFSS [53] is that the particular matrix model

with Hamiltonian (3.87) is related with M-theory in the lightcone gauge in the large N limit,

while on the other hand, the finite N version demands the discrete light cone quantization

(DLCQ) [126]. We shall show that a lightlike compactification of M-theory, corresponds to

a spacelike compactification under certain limits. This plays a particular role to understand

the finite N correspondence considered in [126]. The spatial compactification is type IIA

superstring theory as we saw and therefore one can directly obtain the BFSS model as we

demonstrated above.

A compactification on a lightlike circle corresponds to the identification(
x10

t

)
'

(
x10

t

)
+

(
R√
2

− R√
2

)
, (3.90)

with x10 being a spatial compact coordinate with radius R. Now the idea is that we can

consider this as the limit of a compactification on a spacelike circle with radius Rs � R
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which is almost lightlike(
x10

t

)
'

(
x10

t

)
+

√R2

2 +R2
s

− R√
2

 ' (x10

t

)
+

(
R√
2

+ R2
s

R
√

2

− R√
2

)
. (3.91)

In the limit Rs → 0, the lightlike circle (3.90) is obtained from (3.91) with a boosting

parameter

γ =
R√

R2 + 2R2
s

≈ 1− R2
s

R2
, (3.92)

while the latter is related to a spatial compactification on a circle(
x10

t

)
'

(
x10

t

)
+

(
Rs
0

)
. (3.93)

From this point one can actually relate the physical quantities of the two theories, the one

compactified on the lightlike circle and the one compactified on the spatial circle upon taking

into account the rescalings of the quantities and thus relate the two theories. Now, the

former theory is M-theory on the lightcone gauge, while the latter is M-theory compactified

on a spatial circle. From the second theory, being type IIA, we can indeed obtain the BFSS

model as we saw, and therefore we can relate it with the theory compactified on the lightlike

circle [125].

In addition, the lightlike momenta are given as

P+ =
N

R
, (3.94)

reminding the example of the Kaluza and Klein momentum on the compactification procedure.

Being a light-like circle, the value of the radius R can be changed by a boost. Hence, to discuss

physical quantities in the uncompactified theory of the lightlike compactification one cannot

simply take the R→∞ limit but these are obtained by the ordered limit 5

P+ =
N

R
= fixed , N →∞ , R→∞. (3.95)

The compactified M-theory along the circle with Rs radius, where Rs =
√
α′gs becomes

ten-dimensional in the Rs → 0 limit. In fact, many times this is used as the definition of

the type IIA string theory. Moreover, in this limit, the low energy sector consists of D0-

branes which decouple. One way to realize this is that M-theory contains also membranes

and these, in general, can wrap the compactification circle, and in the boosted frame these

membranes become non-local while the longitudinal modes remain local. From the type IIA

point of view, the only local elements are the D0-branes. Thus, this sector decouples from

the rest of the system. The N−th Kaluza-Klein mode corresponds to N units of momentum
1
Rs

in the compact dimension, and in this case, the U(1) sector is the R-R one form of

type IIA. Hence, we interpret D0-charge as eleven-dimensional momentum. In this way, the

arbitrary Kaluza-Klein modes on the compactified circle we described above are massless

modes and are materialized as supegravitons. Being themselves massless in the eleven-

dimensional spacetime, they appear in the ten-dimensional spacetime as pointlike D0-branes.

5We may remind that the relevant limit for the spacelike compactification is {N,Rs, P} → ∞.
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Having sketched the connection of D0-branes with supergravitons (of eleven-dimensional M-

theory), one might ask what about the rest of the objects like membrane or fivebrane? As it

is nicely explained in [65], there is no need to add extra degrees of freedom in the action to

describe also these objects, but rather they can be described via D0-branes and T-dualities.

The procedure of boosting relates the non-relativistic ten-dimensional theory of many D0-

branes (large N) with a particular frame of the M-theory, the so-called infinite momentum

frame (IMF). Then the conjecture is that the dynamics of the D0-branes are in one-to-one

correspondence with the Hermitian matrices of the (0 + 1)−dimensional Yang-Mills theory

and they describe all the contents of M-theory in this particular IMF frame6. The previous

statement holds when N is large. Further investigations have proposed that the relation

between matrix models and M-theory should hold even at finite N [126], however since the

equivalence principle breaks down for the finite N version of the theory [104], [127] it is

quite unlikely that it can be related to a smooth theory of Einstein-Hilbert gravity. On the

other hand, this might not be a real problem since, in the spirit of holography, finite N

corrections seem to correspond to quantum corrections, and from many different approaches

quantum spacetime is believed to be discrete. Thus, it is more likely that the finite N

version of the model would correspond to a (quantum corrected) gravity theory on a non-

commutative space. This is the famous statement that the analog of ~ in a quantum theory

with N constituents is 1
N , in a sense that in the large N limit, this quantum theory becomes

classical.

3.3 The BMN model

A few years after the initial proposal of BFSS, it was soon realised that one can explore this

duality more. The work of Berestein Maldacena and Nastase [89] was along these lines. We

shall explain qualitatively the model and then proceed with details. The deformed model,

which we will be calling the BMN model from now and onwards is constructed by adding

terms in the action (3.86). In particular, the bosons and fermions now acquire mass terms

with mass parameter µ, while the latter from the point of view of string/M-theory can be

understood as compactification flux. In addition to mass terms, there is also a new term

known as the Myers term which will be of particular importance for this model. Let us,

therefore, write the action in a common notation in the literature

S =
1

g2

∫
dt Tr

{
1

2
(DtX

I)2 +
1

2
ψαDtψ

α +
1

4
[XI , XJ ]2 +

1

2
iψαγ

I
αβ[ψβ, X

I ]

−
[1

2

(µ
3

)2
3∑
i=1

(Xi)2 +
1

2

(µ
6

)2
9∑

a=4

(Xa)2 +
µ

8
ψγ123ψ + i

µ

3

3∑
i,j,k=1

XiXjXkεijk

]}
.

(3.96)

We certainly recognise the mass terms while the Myers term is the last term in the above

action. In addition, the ’t Hooft coupling λ = g2N is dimensionful, following from dimensional

analysis, and has dimension [λ] = (energy)3, which makes the theory non-conformal. For the

BFSS model, one can create an effective dimensionless coupling

gBFSSeff :=
λ

E3
, (3.97)

6Note however that the five-brane of M-theory can not be easily realized from the Matrix model [89].
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and study different regimes of the model. At strong coupling, we are in the supergravity

description while at weak coupling one can perform a perturbative analysis. The BMN

model has already a parameter that serves as energy, and this is the mass term µ. Indeed,

for this case, the effective coupling is constructed as

gBMN
eff :=

λ

µ3
. (3.98)

Since µ is an independent, adjustable parameter of the system, it can be tuned to study

different regimes of the theory as in the BFSS case. In addition, and together with the

temperature T (serving as energy), they parametrize a two-dimensional phase space to be

discussed later.

Being a dimensional reduction of super Yang-Mills theory in higher dimensions, the models

(both BMN and BFSS) have an inbuilt U(N) gauge symmetry. This is known in the literature

as the Gauß constraint (which is essentially a first-class constraint of the system) and it is

given as

G =
i

2g2

(
2[DtX

i, Xi] + 2[DtX
a, Xa] + [ψα, ψα]

)
= 0. (3.99)

The only purpose of this constraint is to force all states of the theory to be singlets under

the U(N) symmetry. From the point of view of string theory, this constraint makes gauge

invariant states to be formed by closed strings.

The indices appearing in the action are as follows, I, J = 1, · · · , 9, α, β = 1, · · · , 16

while the γM ,M = 1, · · · , 10 are ten-dimensional 16 × 16 gamma matrices which are real,

symmetric, traceless and they are subpart of the 32 × 32 ten-dimensional gamma matrices

ΓM (see Sec. 3.2.2) . The matrix γ123 is given in the ten-dimensional representation by

γ123 =

(
−i12 ⊗ 14 0

0 i12 ⊗ 14

)
. (3.100)

On the other hand, ψa are hermitian N ×N matrices, which can be expanded as ψα = ψrαT
r,

where T r are a complete set of hermitian N ×N matrices and r is a real index of the adjoint

representation of U(N). Therefore, ψra are 16 × N Majorana fermions and the model is

invariant under 16 supersymmetries. Even though the first line of (3.96) (BFSS) is invariant

under a SO(9) symmetry the second line obviously breaks this symmetry to SO(9)→ SO(3)×
SO(6). In a sense, the degrees of freedom, or in other words the matrix constituents are

living exclusively in subparts of the whole space, with the first three matrices constructing

a three-dimensional space which together with the six-dimensional space created by the rest

six matrices construct the desired nine-dimensional space. The dynamical behaviour of the

models is analysed upon integrating over the time variable constructing the ten-dimensional

spacetime of string theory.

Let us discuss the vacua of this model. Being a deformation of BFSS we expect to share

some of the vacua, and indeed this is the case as we shall see. Writing the bosonic potential

terms appropriately

V =
1

4
[Xi, Xj ] +

1

4
[Xa, Xb]− 1

2

(µ
3

)2
XiX

i − 1

2

(µ
6

)2
XaX

a − iµ
3
XiXjXkεijk

=
1

4

(
[Xi, Xj ] +

iµ

3
εijkX

k

)2

+
1

4
[Xa, Xb]− 1

2

(µ
6

)2
XaX

a, (3.101)
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one can easily see that there are two classes of vacua:

BMN classical vacua

There is a vacuum for which

Xi = Xa = 0 , ψα = 0, (3.102)

and vacua for which

Xi =
µ

3
J i, J i ∈ SU(2) and Xa = 0 , ψα = 0. (3.103)

Of course, these are all classical vacua and their quantum versions are expected to add

fluctuations to the classical solutions.

For completeness, we also included the fermionic matrices but they will not affect our

arguments.

Let us discuss now how to understand these solutions. The first vacuum (3.102) physically

means that all nine matrices are around the origin of the spacetime which classically takes zero

values and it is the only vacuum appearing also in the BFSS model. We shall call them the

trivial vacua (or trivial background). The second class of vacua (3.103), appears only in the

BMN model and means that the matrices which construct the three-dimensional spacetime

form structures which are furthermore placed at the center of the transverse six-dimensional

space. The structures we are talking about are of course the fuzzy spheres [105], and we

shall call them the fuzzy sphere vacua (or fuzzy sphere background). The idea behind it was

explained earlier when we were talking about the spherical membrane in 3.2.1, and indeed the

same structure appeared there since coordinates that describe the surface of the membrane

were matrix-valued and non-commuting. This made the spherical membrane appear as a

fuzzy sphere, and the same mechanism constructs fuzzy spheres in the BMN model, where

the three matrices are related with the SU(2) generators. Recalling our discussion in 2.7 and

3.2.1, it is not so difficult to imagine that the fuzzy spheres appearing in the BMN model as

vacua are related to the membrane of M-theory since an unwrapped membrane in M-theory

is interpreted as a D2-brane in type IIA string theory. If we add non-commutativity on top

of the above characteristics, then a spherical, non-commutative membrane is interpreted as

a spherical, non-commutative D2-brane, while the latter in addition can be constructed by

polarised D0-branes via the Myers effect [128,129].

The BMN model has a richer set of different vacua. Having fixed the size of the matrix

to be N , there could be many different vacua whose number is given by partitions of N [89],

i.e by a Young tableau of N rows and N columns. We can construct a big matrix which is

N×N , which can have block diagonal submatrices given by Ni×Ni with the index i running

over the number of different blocks. Put it differently, we could have a solution which is given

as

Xi =
µ

3

⊕
i

J ida , da = 2ja + 1 , a = 1, · · · , N , (3.104)

with da being the dimensionality of the a−th SU(2) representation. Generically, we have the

following constraint

N =

N∑
a=1

nada, (3.105)
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with na being the degeneracy of the da-dimensional SU(2) representation and for na > 1 we

have na coincident fuzzy spheres. We shall return to this feature occasionally in what follows,

but for now let us give another piece of information related with this.

The introduction of the mass term has (mainly) a two-fold role, on one hand, it gives mass

to bosons and fermions and on the other hand, the flat direction problem of BFSS is lifted.

The latter is the apparent fact that one of the eigenvalues of one matrix XI could escape

to infinity, and indeed this is energetically free as we discussed for the case of membrane

developing spikes in 3.2.1. A more detailed discussion about this is given in [104]. Now, this

problem is absent in the BMN model because the introduction of mass terms is like putting

the BFSS model in a box. In particular, the first three dimensions which form the fuzzy

sphere background, serve as a box due to the potential terms appearing. We refer the reader

to appendix A for more details.

Note that the limit µ→ 0 and assuming that there is no apparent, or non-trivial transition

of the model, gives immediately the BFSS model. The deformation terms become zero and

one obtains the BFSS action directly.

Motivated by the initial idea of holography and specifically AdS/CFT [130], we are

instructed to ask whether the two models above have in some sense gravity duals. However,

this holography or duality is in a precise sense not in anti-de Sitter space and not a conformal

field theory (non−AdS/non−CFT ) as we shall also demonstrate. In an also precise sense, as

we showed in the dimensional reduction of the BFSS model, it is a one-to-ten correspondence

where supersymmetric quantum mechanical models are dual to specific supergravities in ten

dimensions.

3.4 The gravity duals

We expect that in the large N limit the previous models (BFSS and BMN) should have

gravity duals. Even though, a priori we do not really have any reason to believe that this

is the case, let us justify this statement now. As we described in Sec. 3.2.2 the dimensional

reduction of super Yang-Mills where we obtained the BFSS model we claimed that each

matrix contains information about D0-branes in the respective dimension. Being, dynamical

and having non-zero mass they backreact into a geometry and the question is what is the

metric that describes this geometry. The answer depends on the details of the theory and the

generic case has been introduced in [49] for generic Dp-branes. Here we will concentrate in

the case for which p = 0 but let us give more general details to understand the picture later.

To describe the gravitation dual it is usual to consider the quantum mechanical system

of N D0-branes in the limit

U :=
r

α′
= fixed , g2

YM =
1

4π2

gs

α′3/2
= fixed , α′ → 0. (3.106)

U plays the role of a specific scale of the theory and can be regarded as e.g an energy scale.

We will imagine that when we refer to U effectively we are referring to the energy. The t’

Hooft coupling λ = g2
YMN controls the regimes of the duality. Large λ means that we are in

the gravity region while for small λ we are in the quantum mechanical region. In the limit
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(3.106) the gravity description becomes near extremal 7

ds2

α′
=H(U)

1
2
p dx2

||p +H(U)
− 1

2
p dU2 +

√
dpλU

p−3
2 dΩ2

8−p,

dp =27−2pπ
9−3p

2 Γ

(
7− p

2

)
,

eφ =(2π)2−pg2
YM

(
λdp
U7−p

) 3−p
4

∼
g

7−p
2

eff

N
. (3.107)

As geff here it is the dimensionless effective coupling

geff '
λ

U3−p . (3.108)

The limit in which ten-dimensional, supergravity description is valid is given by

1� g2
eff � N

4
7−p , (3.109)

which emanates from the restriction that the dilaton should be small and the curvature of

the metric (3.107) should also be small, the latter given by

and
R2

eff

α′
' 1

geff
∼
√
U3−p

λ
� 1. (3.110)

This geff above is actually the same as (3.97) or (3.98) if we set p = 0. Therefore, we can use

equally well geff without ambiguity to describe the three different regions that characterise

the system with parameter the energy (or temperature). These are:

� For high energies we are in the perturbative regime of the quantum mechanical system

with perturbation parameter(s) (3.97) or (3.98).

� For small energies we are in the supergravity regime where we expect a black-zero

geometry of type IIA supergravity to be valid

� For even lower energies we are entering the M-theory region and the matrix black holes.

Let us elaborate more on these three different regimes giving more attention to the low energy

limit. The perturbative regime is more or less better understood and more familiar to all

readers since the constituents of the matrices, i.e the D0-branes can be regarded as harmonic

oscillators. We shall see explicit examples later on but for now let us change to the more

interesting regimes, namely the low energy regimes.

At low energies the system is characterised by the zero-brane geometry as we explain

in the next subsection and this geometry is well understood. It is the ideal test example

to compare the duality between the matrix quantum mechanics side with the gravity side,

since some analytic results are possible from both sides. Going to even lower energies we

are entering the M-theory region and the matrix black holes as we see pictorially in Fig. 3.4.

This region is less understood but let us now explain the physical meaning of the straight

line separating the type IIA description and the M-theory description.

7We report the full construction here leaving p generic, which denotes the dimensions of the Dp-brane, but

later we will be interested mainly in p = 0.
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Figure 3.4: A cartoon of the coupling and N controlling the different regimes of the

matrix quantum mechanics based on [49]. To better understand the idea we remind the

effective couplings given in equations (3.97) and (3.98). For very high energies we are in the

perturbative quantum mechanics region. Lowering the energy we are entering the type IIA

supergravity description which is a black-zero brane. Lowering even more the energy we are

entering the M-theory and matrix black holes region.

To this end, let as recall that the eleventh dimension distinguishing M-theory from type

IIA is related with the string coupling (see e.g (2.221)). The latter is also related with the

dilaton, such that via the dilaton we have an effective string coupling related with the radius

of the compact dimension via (2.221). When the dilaton is large, then keeping N and λ fixed,

via (3.108) we have

R11√
α′

= gs ' eφ '
g

7/2
eff

N

E→0
� 1. (3.111)

Effectively the eleventh dimension starts opening up. As we explained below (2.221) this

procedure results in eleven dimensions, hence as one goes to very low energies one has to lift

the description up to eleven dimensions.

Therefore, we can imagine a scenario such that we keep N fixed and tune the energy

E. Then from Fig. 3.4 this corresponds to movements along the horizontal axis log geff and

taking the limit E → 0 we are moving towards the + direction entering the M-theory region.

For every fixed N there is a point along the straight line which transfers us from the type IIA

description to M-theory description. This transition though is not the only fate of the system,

because it could be the case that a Gregory-Laflamme type [131] of transition happens along

the eleventh compact dimension. Let us not forger after all that, if this duality is correct,

the matrix model describes a geometry boosted along the compact x11 direction. When the

latter is small, we usually neglect it and from the ten-dimensional point of view it appears

as the system of N D0-branes (see next section). Having a black hole-like construction along

a compact dimension and changing the radius of this black hole-like geometry or the size of

the compact circle can lead to a Gregory-Laflamme instability when a black string along the

compact dimension collapses to a localised black hole along the same dimension or the other
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way around [131]. We leave a more detailed discussion about this for section 4.2.

We will present now an argument, based on [37] where a black hole collapses to a black

string and vice versa. We will need this to understand the results of section 4.3. Let us

imagine that we have a black hole (BH) and a black string (BS) in the same spacetime

dimensions D = d+ 1 and we want to write their entropies [37]

SBH ∼
(
`9P
Ld

) 1
D−3

M
D−2
D−3 , (3.112)

SBS ∼N−
1

D−4

(
`9P
Ld

) 1
D−4

M
D−2
D−4 , (3.113)

where Ld is the volume of the compact space (here a S1). Now if we assume that SBH =

SBS for some choice of the mass M and the boost8 N , then by changing N one system is

entropically favoured from the other because it has greater entropy. Increasing N and keeping

M fixed, causes the black hole to have greater entropy, while decreasing N causes the black

string to be entropically favoured.

Figure 3.5: A cartoon of the matrix model describing the gravitational system. For larger N

the gravitational system behaves as a black string while for smaller N it behaves as a black

hole-like geometry.

3.4.1 Weak and strong notions of holography for matrix models

As we saw earlier and we start to understand the matrix model holography is slightly different

that the usual one [2]. The first hint was when we discussed the interpretation of matrices in

terms of D0-branes around Fig. 3.3. The difference is due to the fact that N not only does

serve as the number of degrees of freedom of the system (e.g the number of D0-branes) but

also is the parameter that controls the boost given, e.g via (3.94). The holographic bound

due to Bekenstein [7] states that at most one information bit per Planck area is allowed. This

was in fact one of the main motivations for matrix models. Let us now define the weak and

strong forms of holographic principles for matrix models.

Weak holographic principle for matrix models

The dynamics of the theory is encoded in lower-dimensional surfaces. For the

conventional holography, it is usually the case that the dynamics is encoded in a

co-dimension two surface (D − 2) and one of the primary examples is that of a black

hole. Indeed, this notion of holography seems possible for matrix models due to the

matrix nature of these models where the degrees of freedom (dynamics) are encoded

into the matrices themselves. We discussed this interesting unconventional holography

around Fig. 3.3.

8We remind that the relation between the momentum P+ and N , P+ = N
R11

.
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Strong holographic principle for matrix models

Upon boost, the physical size of objects increases. This is the case because as we

increase the boost, we increase N and hence necessarily the physical size of any object

should expand to accommodate the degrees of freedom respecting Bekenstein’s bound.

This strong holography is not a necessary consequence of the weak holography nor it

is needed to account for the black hole entropy.

3.4.2 The gravity dual of BFSS

The BFSS model has only one kind of classical solution, namely when all matrices are zero

XI = 0. Such a configuration means that all D0-branes are at position zero in the respective

dimension, and having an orthogonal coordinate system that is spanned by xi, i = 1, · · · , 9
we get the intuition that we have N D0-branes sitting on the origin of this coordinate system.

In other words, we have N coincident D0-branes sitting on top of each other at the center

of a 10-dimensional spacetime. On the other hand, D-branes are solutions extended in p

dimensions of the supergravity action and N-coincident D-branes backreact in a geometry

described by a specific metric. For the case of D0-branes, we have a point-like source that

resembles a black hole. Indeed there exists a metric that belongs to the type IIA supergravity

family of solutions and describes the geometry of N-coincident D0-branes, which is known by

the name of type IIA black zero brane, and its near extremal limit has the following form

ds2

α′
=− f(r)r7/2

√
λd0

dt2 +

√
λd0

r3

(
1

f(r)r2
dr2 + dΩ2

8

)
eφ =

4π2

d0

1

N

(
λd0

r3

)7/4

At =
N

4π2

r7

λ2d0

f(r) =1− r7
0

r7
, d0 := 240π5 , λ := g2

YMN. (3.114)

The limit at which we are studying this metric is given by keeping λ fixed while taking the limit

N →∞ and α′ → 0. This is the standard limit that allows for a supergravity description of

the field theory (or in our case the quantum mechanics theory) [130]. The position r0 dictates

the location of the horizon, which is related with the temperature T := 1/β via

T =
7

4π
√
λd0

r
5
2
0 . (3.115)

In addition to this, the geometry has an effective curvature radius given by the radius of S8

R2
eff

α′
=

√
λd0

r3
. (3.116)

The above metric (3.114) is valid whenever the following apply. First of all, we are restricting

ourselves to the low temperature (low energy) limit of the theory, secondly, we should have

small curvature given by the inverse of (3.116) and thirdly the string coupling (the dilaton)

should be small, such that the supergravity description is valid. The second restriction results
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in r . λ1/3 where the dimensions of the radius are the same as the energy’s [r] = [E]. Using

this we can construct an effective dimensionless coupling in terms of r (see equation (3.108))

g
(r)
eff =

λ

r3
. (3.117)

This r behaves like an energy scale of the theory and demands the curvature to be very small

resulting in T 3 � λ. The third restriction results in λ
T 3 � N10/7, such that the validity

parameter is transferred to the temperature (keeping λ fixed)

1� λ

T 3
� N10/7, (3.118)

and hence, when we take the large N limit, we solely control the system with the temperature

T 9.

The energy density is given by [49]

E =
r7

0

a0g4
YM

, ap =
Γ
(

9−p
2

)
211−2pπ

13−3p
2

(9− p)
p→0−→ a0 = 11.63

211π
13
2

9
, (3.119)

which is the same as the energy in Yang-Mills theory. Substituting everything in the initial

equation we get

E ' 7.41N2λ−
3
5T

14
5 . (3.120)

The entropy of the black zero-brane is given as

S =
8π
√
d0N

9a
5
14
0

g
− 3

7
YME

9/14 ' 11.53λ−
3
5T

9
5 . (3.121)

These quantities are a good estimate at very low temperatures, while when we turn the

temperature on we expect higher order corrections coming from stringy (α′) effects to be

important. These have been studied in [132] and are of the form

E

N2
=

(
a0T

14
5 + a1T

23
5 + a2T

29
5 + a3T

32
5 + · · ·

)
N0

+

(
b0T

2
5 + b1T

11
5 + · · ·

)
N2

+O
(

1

N4

)
.

(3.122)

The second term includes finite N corrections. We shall return to discuss about this in more

depth in section 4.5.

When we consider the geometry without a horizon and we zoom in near the singularity,

we can rewrite the metric as

ds2

α′
=−H(r)−

1
2 dt2 +H(r)

1
2
(
dr2 + r2 dΩ2

8

)
,

H(r) :=
r7

0

r7
, r7

0 := λd0. (3.123)

Then, a change of variables

r 7→ z =
2

5

(r0

r

) 5
2
, (3.124)

t 7→ t̃ =
t

r0
, (3.125)

9We assume that the parameter N , usually taken to infinity, is much larger than any other parameter of

the system.
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Figure 3.6: The duality between the type IIA metric (3.114) and the BFSS matrix model.

This figure is based on [133] and summarises the situation between the validity of the gravity

sector and the regimes of the model. The geff that controls the regimes is given via (3.97),

while when r → λ
1
3 the gravity description ends to be trustable. Of course the boundary and

the bulk do not live in the same spacetime.

results in the metric

ds2

α′
=

(
2

5
z

) 3
5

[
r2

0

(
2

5

)−2(−dt2 + dz2

z2

)
+ r2

0 dΩ2
8

]
, (3.126)

which is conformally equivalent to AdS2 × S8 spacetime. We shall not discuss more about

this feature but we shall concentrate more on (3.114), the reason being that we are outside

the conventional AdS/CFT regime.

One of the most striking results of testing the gauge/gravity duality was obtained in [134]

where the equation (3.122) was put in test and the coefficients ai, bi compared with analytic

calculations. It was shown, to good precision, that the matrix model can reproduce the

equation (3.120) as we go to low temperatures, while for larger temperatures α′ corrections

start contributing. After that, a more clever manipulation of the BMN model to specific

parameter regimes allowed us to go even to lower temperatures and make the test even

better. We shall discuss this more in 4.5.

In addition, quantum (finite N) and α′ corrections were computed analytically for the

thermodynamic gravitational quantities in [132] and were tested against simulations in [135]

verifying the analytic results. A series of simulations have been performed [134–150] to test

various analytic results [53,132,133,151,152].

3.4.3 The gravity dual of BMN

The gravity dual of BMN should be a deformed version of (3.114). However, since it is

technically more sophisticated we shall choose a different route for this discussion. Based

on the original claim of BMN [89], the matrix model is equivalent to M-theory on a Penrose

limit. An excellent introduction for these metric limits can be found in [153], while this

feature seems to hold for general spacetimes [154]. These metrics are also known as pp-waves

from plane-fronted waves with parallel rays and are abbreviations that we will adopt in what

follows.

Supergravity in eleven dimensions admits four types of maximally supersymmetric solutions

[155]
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1. The 11d Minkowski space and its toroidal compactification

2. The AdS7 × S4 metric (the fivebrane)

3. The AdS4 × S7 metric (the membrane)

4. The Kowalski-Glickman solution [155] which is a pp-wave metric.

In fact, all maximally supersymmetric pp-wave geometries can arise as Penrose limits of

AdSp×Sq spaces [156]. Indeed a powerful theorem of Penrose states that near null geodesics

(along which the light rays travel) any spacetime becomes a pp-wave spacetime such that any

metric near a null geodesic becomes a pp-wave metric [154]. We shall show this explicitly for

the plane wave limit of a specific maximally supersymmetric spacetime in eleven dimensions.

The starting point of the BMN bulk dual is a metric in M-theory, which is either AdS4×S7

or AdS7 × S4. Since the Penrose limits of these metrics are identical, a priori there is no

distinction at this level. Let us therefore construct a metric, by choosing e.g to write down

AdS4 × S7 explicitly and then take the Penrose limit of this. We shall split the metric as

follows

AdS4 : ds2
1 =R2

(
− cosh2 ρdt2 + dρ2 + sinh2 ρ dΩ2

2

)
, (3.127)

S7 : ds2
2 =R2

(
cos2 θ dφ2 + dθ2 + sin2 θ dΩ2

5

)
. (3.128)

In order to take the Penrose limit, we shall introduce new coordinates as follows

r =R sinh ρ , y = R sin θ (3.129)

x+ =
t

µ
, x− = µR2(t− φ). (3.130)

Here, µ is an arbitrary mass scale introduced so that x± have dimensions of length. The

Penrose limit intuitively means that we are blowing up the neighbourhood of a light-like

trajectory in the spacetime in such a way as to obtain a non-trivial limit. At this case

specifically, we want to focus on a neighbourhood of a point moving around a circumference

of the sphere with the speed of light. Blowing up, means that we are considering the infinite-

radius limit R → ∞, holding r, y, x± fixed. Substituting into ds2
1 and ds2

2 and taking the

Penrose limit we obtain

ds2 = ds2
1 + ds2

2,

=− 2 dx+ dx− − µ2
(
r2 + y2

) (
dx+

)2
+ dr2 + r2 dΩ2

2 + dy2 + y2 dΩ2
5. (3.131)

This can be rewritten as

ds2 = −2 dx+ dx− + g++(xi, xa)
(
dx+

)2
+

3∑
i=1

(
dxi
)2

+
9∑

a=4

(dxa)2 , (3.132)

with g++(xi, xa) given as

g++(xi, xa) = −µ2

[(r3

3

)2
+
(r6

6

)2
]

(3.133)
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The coordinate r3 is the radial coordinate for the first three coordinates while r6 is the radial

coordinate for the rest six. The transverse symmetry is then SO(3) × SO(6). In addition,

the M-theory four-form field strength is related with the parameter µ as

Q4 ∼ µdx+ ∧ dx1 ∧ dx2 ∧ dx3. (3.134)

This is the gravity dual of the BMN model from the M-theory perspective. It is known in

the literature as the plane wave limit of M-theory, or pp-wave.

Let us now see how this metric is connected with type IIA supergravity. In the usual

arguments, discrete-light-cone-quantum (DLCQ) M-theory with N units of momentum is

obtained by taking a compactification of M-theory on a spacelike circle of radius Rs and then

performing a boost with parameter

γ =

√
R2

Rs
+ 1, (3.135)

while taking the limit Rs → 0 we obtain a theory on a lightlike circle of finite radius R.

This is Seiberg’s argument that relates lightlike and spacelike compactifications since the

boosting parameter above matches (3.92). As we discussed earlier, the unboosted frame with

a spacelike circle of radius Rs, is equivalent to type IIA string theory with N D0-branes in a

limit gs → 0, α′ → 0 in which only the low energy D0-brane degrees of freedom remain. In

order to find exact agreement between the lightcone energies in the DLCQ and the D0-brane

descriptions, we must rescale the dimensionful quantities of the system (κ) as κ→ (R/Rs)κ.

We can yet use another change of coordinates, the so-called lightcone gauge defined via

x± =
t± x10

√
2

, (3.136)

and rewrite the metric in this gauge. Noting that we can absorb the 1/2 factor appearing

into the four form field, we can write the metric as

ds2 = −(1 +
Q2

4
) dt2 + (1− Q2

4
)(dx10)2 − Q2

2
dtdx10 +

3∑
i=1

(
dxi
)2

+
9∑

a=4

(dxa)2 , (3.137)

where Q is defined as 10

Q2 :=
µ2

9

3∑
i=1

(Xi)2 +
µ2

36

9∑
a=4

(Xa)2, (3.138)

and the 4-form field is given as

Q123(10) = −Q0123 =
µ

2
. (3.139)

We note again that this metric is written in the unboosted frame. Since any pp-wave metric

is boost covariant [153], the effect of boosting is simply to rescale the deformation parameter

µ. Furthermore, we note that this background is a general background that should capture

general (but symmetry reduced) features of the BMN matrix model and in fact, one can

derive the action of the BMN from this metric [157], [100].

10This µ is the deformation parameter, and it is the same that appears in the matrix model.
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To transfer these data in ten dimensions, we recall that the most general metric which is

invariant under translations in the 10-th direction (X10) is of the form [56]

ds2
11 = G10

µν(xµ) dxµ dxν + e2ρ(xµ) (dx+Aν(xµ) dxν)2 , µ, ν = 0, · · · , 9. (3.140)

Aµ is the R-R form and comparing with (3.137) we immediately see that

e2ρ =1− Q2

4
,

A0 =
−Q2

4

1− Q2

4

, Ai = 0

G10
00 =− e−2ρ , G10

0i = 0 , G10
ij = δij . (3.141)

The dilaton field Φ is defined through

ρ =
2Φ

3
, (3.142)

and solving for the ten dimensional metric we get

ds2
10 = −

(
1− Q2

4

)− 1
2

dt2 +

(
1− Q2

4

) 1
2

[
3∑
i=1

(
dxi
)2

+

9∑
a=4

(dxa)2

]
, (3.143)

with

Q0123 = −µ
2
, H123 =

µ

2
. (3.144)

H123 is the NS-NS three-form potential and Q0123 is the RR three-form field strength. These

form fields arise from the distribution of the eleven-dimensional three form into the R-R

and NS-NS sector. Geometrically, this corresponds to distributing the eleven-dimensional

momentum into different geometric configurations of D-branes. When having in mind a

single D0-brane we will consider only the one-form since it is the one that the D0-brane is

naturally coupled with.

Even thought the eleven-dimensional metric is flat, the ten dimensional metric is not.

This can be easily seen by a direct calculation of the Ricci scalar of (3.143) resulting in

R =
µ2

5184

(
1− Q2

4

)− 5
2

3∑
i=1

9∑
a=4

{
µ2(7−Q2)

[
(Xa)4 + 48(Xa)2(Xi + 3) + 96Xa(Xi)2

+ 16(Xi)2
(
(Xi)2 + 36

) ]
+ 252

[
(Xa)2 + 4

(
(Xi)2 + 9

)]
Q

− 63
[
(Xa)2 + 4

(
(Xi)2 + 9

)]
Q3

}
. (3.145)

The supergravity geometry can be trusted only when R � 1⇒ Q2

4 � 1. We see µ appearing

in the Ricci scalar, hinting that a deformation parameter in eleven dimensions could appear

as curvature in ten-dimensional geometries. This is not so difficult to understand because

the effect of boosting the system deforms also the metric since µ appears also in the latter.

Trivially when µ→ 0 we have R → 0.

The above discussion sketches the connection of the BMN model with supergravity

theories, however, the story complicates considerably when we try to think precise details
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from the type IIA and M-theory point of view [158–161]. In fact, we want to give a geometric

interpretation of the vacua of BMN discussed earlier in Sec. 3.3. In the original paper [89], it

was claimed that the trivial vacuum of BMN model (3.102) corresponds to a fivebrane from

the point of view of M-theory. This idea was explored in [160] and in what follows we shall

give the ten-dimensional interpretation of the problem.

In general we should look for a ten-dimensional supergravity solution that preserves half

of the supersymmetries11 and respects the SO(3)×SO(6) symmetry. This can be motivated

from the specific form of the action of the matrix model (3.96) since the gravity solution

should respect the symmetries therein. The most general solution in type IIA string theory

that meets these conditions is [160]

ds2
10 =

(
V̈ − 2V̇

−V ′′

) 1
2
[
− 4V̈

V̈ − 2V̇
dt2 − 2V ′′

V̇

(
dρ2 + dz2

)
+ 4 dΩ2

5 + 2
V ′′V̇

∆
dΩ2

2

]
, (3.146)

with

V̇ = ρ∂ρV , V̈ = ρ∂ρ(V̇ ), V ′ = ∂zV , V ′′ = ∂2
zV,

∆ =
(
V̈ − 2V̇

)
V ′′ −

(
V̇ ′
)2
,

and the dilaton and NS-NS and R-R forms are given as

e4φ = 4(2V̇−V̈ )3

V ′′V̇ 2∆2
, B2 = 2

(
V̇ V̇ ′

∆
+ ρ

)
dΩ2

A1 = 2V̇ V̇ ′

2V̇−V̈ dt, A3 = −4V̇ 2V ′′

∆
dt ∧ dΩ2. (3.147)

The function V (z, ρ) appearing in (3.146) can be interpreted as a potential that sources

different brane (NS5, D2, D0) configurations, and depending on the specific form of this

function one realizes different gravity solutions, which correspond to different vacua in the

matrix model side. We are interested in the bosonic sector of BMN because in that case,

we can write a metric ansatz that respects the symmetries. In the BMN case, we see from

(3.96) that these symmetries are R× SO(3)× SO(6). The first of these implies that there is

a Killing vector associated with translations of the time coordinate. The second implies that

we can imagine a sector of the spacetime to consist of a S2 sphere12 while the third is the

existence of a S5 sphere, on which the bosonic generators act. Thus one can analyse solutions

in eleven dimensions by using only three variables, x1, x2, y which satisfy the Toda equation

in three dimensions [158,160] (
∂2
x1

+ ∂2
x2

)
V + ∂2

yV = 0. (3.148)

Here y is used as a combination of the radii of S2 and S5 respectively, y = r2r
2
5. Exploiting

the translational invariance under one coordinate (x1), and after changing variables (x2, y) 7→
(ρ, z) one can recast this equation to the Laplace equation in a three dimensional space [158]

1

ρ
∂ρ (ρ∂ρV ) + ∂2

zV = 0. (3.149)

11This is because the BMN model has various BPS states, but here in particular we are interested for

1/2-BPS states.
12Actually it is more appropriate to say that we have a non-commutative sphere since the coordinates that

are assigned to SU(2) generators do not commute.
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We note that this three-dimensional space is not a sub-part of the ten-dimensional one but

rather casts this problem to an electrostatic problem in a three-dimensional space, where

all gravity solutions are classified by ρ, z. Here, both ρ and z are radial coordinates, and

hence one can actually think of them as two different scales of the theory. The former

captures the size of fivebranes and the latter the positions of the conducting disks, which are

actually being set by the five-branes. If one, naively tries to find a gravity solution by just

plugging in a solution of (3.149) into the metric (3.146) will end up with singular gravity

solutions [158,160,162]. To avoid this, one has to impose boundary conditions at y = 0 such

that V (y = 0) = 0. This condition corresponds to regimes with vanishing radii of S2 or S5.

Indeed S2 shrinks for constant z in the z, ρ space (see figure 3.7), and S5 shrinks between

two nearby disks in the ρ = 0 line.

In the case of the BMN model, the asymptotic expansion is decomposed into two parts the

first of which represents the electrostatic potential and the second one the specific electrostatic

configuration imposed by the boundary conditions. In other words, this means that one can

specify the solution but not necessarily to which vacuum corresponds since in principle there

will be vacua with the same boundary conditions. The first non-trivial potential is [162]

V ≈ ρ2z − 2

3
z3 + P z

(ρ2 + z2)
3
2

, (3.150)

where P is a short of dipole sub-leading correction, produced by the conducting disks and

their images with respect to the infinite conducting plane at z = 0. Its value is given by

P = 2
∑
i

ziQi ∼ N, (3.151)

where i runs over the various disks, Qi is the charge of the i-th disk and N is the total

number of D0-branes.13 The number of D0-branes can be extracted from the particular

configurations of the disks. Suppose for example that there is a finite set of conducting disks

at positions zi = π
2N

i
5, with radii Ri and charge Qi = π2

8 N
i
2. Then the disks are sourced by

the NS5-branes in the background, with the charge Qi being associated with the D2-brane

charges. In this sense, one can write the number of D0-branes as

N =
∑
k

(∑
k<l

N l
5

)
Nk

2 . (3.152)

Comparing this equation with the constraint (3.105), we see that Nk
2 is related to the copies

(degeneracy) of dimension N l
5 = (2j+1) irreducible SU(2) representations, giving a geometric

realization of the situation of the matrix model. The case Nk
2 > 1 corresponds to concentric

spheres and due to non-commutativity, they are actually concentric fuzzy spheres. From this

relation, one can construct all possible vacua of BMN. Indeed, let us consider the case where

we have one fivebrane (N1
5 = 1), then from the constraint (3.152) we see that N = 1 · N1

2 ,

meaning that we have a single fivebrane with charge Q1 = π2

8 N .

Let us clarify a bit more the situation here. In order to do this let us decode what we

wrote above. We claimed that the trivial vacuum (the no-fuzzy sphere vacuum) is given

when N1
5 = 1, and since the latter is related with the dimensionality of the respective SU(2)

13Here we make contact with the introductory remarks, where we stated that all the contents can be

reconstructed from D0-branes.
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representation N1
5 = 2j + 1, it simply means that j = 0. Indeed, for j = 0 we can think that

we have ”fuzzy spheres” of radius r ' j
3 = 0, which can be interpreted as D0-branes. Then

we have a one-dimensional representation and Q1 = N1
2 = N D0-branes. In other words we

have N copies of the trivial j = 0 representation. In a sense, the spherical D2-branes here

are interpreted as zero-radius spherical branes which indeed are the D0-branes.

To get the trivial vacuum metric one has to perform a two-step procedure. The first

step is to plug (3.150) into the metric (3.146) and expand at large ρ and z. Then change

coordinates as

r2 = 16
(
ρ2 + z2

)
, (3.153)

and in the large r limit the metric approximates the near horizon geometry of N coincident

D0-branes [160]

ds2 ≈ −H(r)−
1
2 dt2 +H(r)

1
2
(
dr2 + r2 dΩ2

8

)
+ · · · , H(r) ≈ d0 · 15P

r7
. (3.154)

However, the large r region is a bit subtle. Let us try to clarify some possible issues.

The supergravity description is valid when geff = λ
µ3 � 1 while for geff � 1 we can trust

perturbative calculations in matrix model. The first case corresponds to a region between

the black hole (i.e near the core of the geometry in Fig. 3.6) and r ∼ λ1/3, while the second

case is near the boundary. However, near the boundary, the supergravity solution is not valid

since the curvature is high. Hence, we are in a region when r is large but nevertheless not

near the boundary. It is large with respect to the core of the geometry and a good estimate

would be r . λ1/3. Here we can imagine the following situation, we suppose that we want to

study the system in a specific energy scale (i.e fixed λ), where we can trust the supergravity

solution for the trivial vacuum. This amounts to

r � 1 and geff =
λ

µ3
� 1, λ = fixed, ⇒ µ→ 0. (3.155)

Thus, to leading order, we recover the case of the BFSS model and this is what the metric

(3.154) indicates.

Let us try now to calculate the potential and the force for a D0-brane in this trivial

vacuum geometry. Specifically, we have in mind the following scenario, we are in the small

µ range such that geff is large and hence the deformation does not change the geometry by

much. We can also imagine that we can take one of the D0-branes and move it away from

the core of the geometry, namely the bunch of D0-branes that form this geometry. Then the

question we want to answer is if we would measure the gravitational force that this D0-brane

feels from the geometry what would be its behaviour?

To achieve this, we need to write down a metric and then use the Dirac-Born-Infeld action

for the D0-brane. In addition, to find an acceptable metric, we start by substituting (3.150)

into (3.146) and then take the trivial vacuum limit (3.155) after performing the variable

change as in (3.153). The idea is that we fix z ∼ O(1) while ρ� 1 which is dictated from the
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Figure 3.7: A cartoon of the z − ρ plane. Constant z lines indicate that the two-sphere

shrinks while the five-sphere shrinks in the region between nearby disks near ρ = 0. We have

a conducting disk at z = 0 which extends to infinity in the ρ direction.

electrostatic analysis we did above. Carrying out carefully this procedure, results in a metric

ds2 = −H(r)−
1
2 dt2 + 16H(r)

1
2
(
dz2 + z2 dΩ2

2

)
+H(r)

1
2
(
dr2 + r2 dΩ2

5

)
, (3.156)

H(r) :=
256 · 15P

r7
, (3.157)

eφ =

(
21215P
r7

) 3
4

, (3.158)

A1(r) = − r7

21115P
− 7z2r5

2815P
− 7z4r3

192P
+
r2

10
− 7z6r

24P
− 12z2

5
. (3.159)

We kept only leading terms both in the expression of dilaton and the one-form. We kept

explicitly the z dependence but one should remember that is of order one. The next correction

to the dilaton is of order O(r−29/4) and in the large r limit we neglect it. In the same limit,

the contribution of the R-R one form is significant. Furthermore, we see that in this limit and

for the same energy scale (or the same radius r), the effective curvature of the five-sphere,

which in string units is the inverse of
R2

5
α′ = H(r)

1
2 r2, is much smaller than the one of the

two-sphere, which is the inverse of
R2

2
α′ = H(r)

1
2 z2 . This means that curvature corrections

coming from the two-sphere part of the metric may become important when compared with

the ones of the five-sphere [160] 14. We also note that the validity of the supergravity solution

is when the dilaton is not too large and when the effective curvature of the five-sphere is not

too big. Recalling that P ∼ N this translates to the range

N
1
7 � r � N

1
3 . (3.160)

14Both r and z here are energy scales, and this condition reflects the fact that we push the regime of

validity of the metric to its boundary. In [133], and based on [163] was argued that the breaking of Einstein

supergravity starts at scales λ1/3.
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The Ricci scalar of (3.156), can be computed and it is given by

R = −
49
√

3
5

64

(
r3

P

) 1
2

. (3.161)

We see that in the regime where the supergravity description for the trivial vacuum is a good

approximation, the spacetime is almost flat provided that N is large.

Lastly, before moving to finite temperature, it worths mentioning that after a coordinate

rescalling and transformation, namely

z → ζ

4
, R→ 2

5

r
5/2
0

r5/2
, r7

0 := 256 · 15P, t→ r0t (3.162)

the metric (3.156) becomes

ds2 =

(
2/5

R

)7/5

r2
0

[
−dt2 + dR2 +

(
5

2

)2

R2 dΩ2
5

]
+

(
R

2/5

)7/5 (
dζ2 + ζ2 dΩ2

2

)
. (3.163)

Therefore, the near horizon limit of the vacuum solution is conformally equivalent to AdS2×
S5 × S3. It is possible that in the limit N ∼ P � 1, r � 1 such that taking the limit R→ 0

and keeping ζ small and fixed, the geometries decouple. We may also note that taking R� 1

amounts r � 1 but then the construction limit of the metric would be spoiled and the metric

will not be consistent any more, hence it is not possible to arbitrary grow the size of S5 and

describe it with this metric.

This comment however will not really affect our arguments nor will enter any calculation,

hence we included it for the sake of completeness.

Let us move to finite temperature now. All we have to do is to write down a metric with a

horizon. At finite temperature the BMN model has 1/2- BPS states [89], [157] and we should

expect the force to be present even if we consider fermions. Eventually, we would also like

to make some contact with the quantum mechanics side. Quantum mechanics however is a

subsector of the SYM theory. So let us be a bit more illustrative here. The parameters that

control the vacua of the BMN are the number15 of D2-branes N2, the number of D5-branes

N5, and the number of D0-branes N0, whose relation is given as [160]

N2 =
N0

N5
. (3.164)

As we showed, the trivial vacuum is dictated by N5 = 1, N2 = N0 = N , with N being the

copies of the trivial (j = 0) representation. This particular configuration is given in figure 3.7.

Then to understand the situation in the gauge theory side, we need to convert the gravity

data to gauge data. By direct comparison with [49], we find the following [160]16

ρ4
0 =

π4

2
g2
YMN , d =

π

2
N5 =

π

2
, Q =

ρ4
0

8
, P = 2d Q =

π5g2
YM N

16
. (3.165)

Here, ρ0 is the value of the coordinate ρ on which the tip of the conducting disk lies (see

figure 3.7), d is the charge of N5 which is also the distance between the two conducting disks.

15To be more precise it is the charge of the various D-branes.
16We suppress µ dependence here by setting µ = 1 but we can restore it by using geff = λ

µ3 and by

dimensional analysis, e.g [µ] = 1, [λ] = 3 in units of energy.
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Before we continue, let us mention that the size of the fivesphere is much larger than the one

of S2, which can be seen from the radius of the fivesphere [160]

R2
S5

α′
= 4πρ0 = 4π

(
λ

2µ3

) 1
4

, geff =
λ

µ3
� 1, (3.166)

where in the second equality we putted back µ to have the correct dimensions.

We investigate the gravity solution at finite temperature T in this vacuum. We can write

an ansatz for the finite T black brane solution as

ds2
T

α′
= −H(r)−

1
2 f(r)dt2 + 16H(r)

1
2
(
dz2 + z2dΩ2

2

)
+H(r)

1
2

(
dr2

f(r)
+ r2dΩ2

5

)
,

H(r) =
λd0

r7
, eφ = 26

(
λ15π5

r7

) 3
4

, f(r) = 1− r7
0

r7
,

A1(r) = − r7

1920π5λ
− 7r5

960π3λ
− 7r3

192πλ
+
r2

10
− 7πr

96λ
− 3π2

5
,

d0 ≡ 240π5 , λ ≡ g2
YMN , gs = 4π2l3s

λ

N
, G10 = g2

s l
8
s , (3.167)

and the horizon is located at r = r0, with r0 representing the thermal energy scale. The

horizon is dictated only from the radius r, but we have implicitly assigned r7 := r5
5 ·z2, where

r5, z are the radii of the 5-sphere and 2-sphere respectively. In other words, we have merged

the two scales into one. We can proceed even more and pick a scale for the S2 part such that

we measure everything at this fixed scale. We will choose this to be z = π
2 r2 and this was

already implemented in the expressions of (3.167) by setting r2 = 1, but not in the metric

itself. This choice reflects the trivial vacuum limit discussed above and will be used when we

calculate the force.

Demanding the curvature of the spheres to be not too large we get the condition

r . λ1/3 both from S5 and S2. (3.168)

There is also one more constraint coming by demanding that the dilaton is not too large on

the horizon which results in

λβ3 . N10/7, (3.169)

and for sufficiently largeN compared to the combination λβ3 the last condition is automatically

satisfied.

From this metric one can extract the temperature via the surface gravity

T =
7r

5/2
0

4π
√
λd0

(3.170)

Now we can proceed calculating the force based on the discussion in appendix B. By

writing the DBI action we can read off the potential

VD0(r) = T0

[
e−φH(r)−

1
4 f(r)

1
2 −A1(r)

]
. (3.171)

Now we have everything we need to calculate the potential and the force. Let us state that

without loss of generality, we can consider the dilaton from (3.114) since we expect the two
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metrics to be close to each other.17 The advantage of considering the dilaton from (3.114)

will show up as the ability to obtain finite N effects as we shall see.

Now, using the data of the finite temperature gravity solution (3.167) we get the behaviour

in figure 3.8. We see a repulsive force for finite N , while there is a clear trend that this

repulsive behaviour becomes less dominant when we consider the large N limit. Reminding

that finite N effects are analogous to quantum effects we make immediate contact with

previous works [132, 164] where the repulsive force was an effect of quantum corrections.

The whole discussion takes always place in the limit geff � 1 ⇒ µ � 1, while r serves as

the temperature here via equation (3.170). This repulsive behaviour and the profile of the

potential strongly remind the Coleman-Weinberg mechanism which was studied for D3-branes

in [165]. Here, we could imagine that we have similarities for a different system consisting of

D0-branes.

One important caveat of the above construction is that we did not check explicitly whether

this metric solves the Einstein equation or not but we rather constructed it. It is a deformed

version of the one of BFSS (3.114) and in very large r approaches the BFSS metric (3.154)

as we observed. We constructed the deformation to be large in intermediate values of r such

that the trivial vacuum solution makes sense, following the recipe in [158,160,161].

Before moving to the discussion of the thermodynamic quantities of the model let us

comment what the above analysis might add to the description of the BMN model.

We were interested in understanding the force that a probe D0-brane feel whenever we

place it in the BMN gravity background. The reason why this question is interesting is

because it can be tested using Monte-Carlo simulations along the lines of [164], where

the same idea was tested using a different calculation [132]. The punchline in these

findings is that quantum (i.e finite N) corrections lead to a repulsive force acting on the

D0-brane probe. Intuitively this is not so unexpected if we recall similar phenomena

happeing in electromagnetism and charged particles. Our findings, using a different

approach, show also a repulsive force acting on the D0-brane probe for finite N (see

Fig. 3.8).

One interesting observation is that for a fuzzy sphere, the same force vanishes (see

Appendix B) and this might come as a surprise at first sight. On the other hand the

BMN model has BPS solutions, and a fuzzy sphere is a BPS solution of the BMN such

that when the gravitational force acting on it vanishes.

17Note that one can consider the dilaton emanating from (3.147), but this choice results in a quite

complicated expression for the dilaton without adding much to the discussion. Indeed we have checked that

the arguments do not change and the results remain the same independent of the form of the dilaton we are

using.
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Figure 3.8: Force (left) and potential (right) at finite temperature T with respect to the

radial coordinate r (or equivalently the temperature T ). We have set for the horizon r0 = 1,

and λ = 1 = T0. In the large N limit we expect the curves to be monotonous such that the

force will be always attractive.

3.5 Thermodynamics of the BMN model

In this section, we shall discuss the thermodynamic quantities of the BMN model emanating

from gravity analysis. To this end, we shall follow closely the construction done in [166]. The

latter discuss also an important feature of the models, namely the transition from a confined

configuration and vice-versa, a feature we discuss in Sec. 3.6. The strong coupling prediction

of the transition temperature in terms of the mass parameter µ was obtained as

lim
geff→∞

Tc = 0.105905µ. (3.172)

The argument then is that this confinement/deconfinement transition occurring at this tempe-

rature corresponds to a Hawking-Page like phase transition in the dual gravity side. We shall

discuss this issue later on, but for the moment let us focus on thermodynamic quantities.

The latter, are all obtained in the strong coupling limit with expansion parameter

µ̂ =
7

12π

µ

T
, µ̂� 1, (3.173)

and they are a deformed version of the BFSS gravity dual quantities. Writing the dimensionless

free energy of the BFSS model in terms of dimensionless temperature τ := T/λ1/3 we get 18

F (τ, 0)

λ
1
3N2

=
(
c0τ

14
5 + c1τ

23
5 + · · ·

)
+

(
d0τ

2
5 + d1τ

11
5 + · · ·

)
N2

+ · · · , (3.174)

where the coefficients ci, di are known, e.g c0 = − 1
21

(
120π2

49

)7/5
≈ −4.11. The dimensionless

entropy is given also as
S(τ, 0)

N2
≈ 11.53τ

9
5 , (3.175)

and the BMN versions are given as deformations of those as

F (T, µ)

F (T, 0)
:= f(µ̂),

S(T, µ)

S(T, 0)
:= s(µ̂), µ̂ =

7µ

12πT
, (3.176)

18We shall use both τ and T interchangeably without risk of confusion, by recalling the definition. Note

also that we will come back to this expression with more details in Sec. 4.5.
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with f(0) = 1 = s(0). The deformation functions can be expanded in series [166]

f(µ̂) =

∞∑
n=0

14sn
14− 5n

µ̂n, (3.177)

s(µ̂) =
∞∑
n=0

snµ̂
n, (3.178)

with the coefficients of sn being unknown at least analytically. Numerically instead one can

find their behaviour for first few orders 19 and this is depicted in Fig. 3.9
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μ
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Figure 3.9: Behaviour of functions f(µ̂) and s(µ̂) to first few orders in µ̂.

The vanishing point is at µ̂c ≈ 1.75336. In addition, we see from (3.176) that also the free

energy vanishes at µ̂c. Above this value, the free energy is positive and of order N2, while

for µ̂ below this critical value the free energy is of order N0 and will dominate the thermal

ensemble.

Let us work at fixed µ and write down the equation of state

∂F

∂T

∣∣∣
µ

= −S, (3.179)

to get the relation

(1− 5

14
µ̂∂µ̂)f(µ̂) = s(µ̂). (3.180)

Now using the equation of state for fixed µ

E
∣∣∣
µ

= F + TS
∣∣∣
µ
, (3.181)

and plugging in the leading orders of free energy and entropy results in

E(T )

N2
≈ −4.11λ−3/5T

14
5 f(µ̂) + 11.52λ−3/5T

14
5 s(µ̂). (3.182)

Then by substituting µ̂ = 7µ
12πT and fixing µ we get the E(T ) dependence as shown in Fig. 3.10.

In the limit µ̂ → 0 the energy of BFSS E(T, 0) = 7.41T
14
5 λ1/3N2 is recovered because the

deformation parameters become f(0) = 1 = s(0). This limit is a bit subtle as we shall

19I would like to thank Jorge Santos for sending me these data.
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Figure 3.10: Energy with respect to temperature for a few values of µ. [Left] is full range

[Right] is zoomed in T ∈ [0.5, 0.51] to check the comparison between the BMN and BFSS

energies. The blowing up behaviour in the left panel is due to the fact that we are truncating

the expansions of f(µ̂), s(µ̂).

comment later on, because the way it is taken may result in different gravity descriptions.

Here in particular we are fixing the temperature T and send µ → 0 to make contact with

the type IIA black zero brane description. In addition, at the critical mass (µ̂c) the functions

s(µ̂) and f(µ̂) become

s(µ̂c) ≈ 0.7036628, (3.183)

f(µ̂c) = 0. (3.184)

Using now the equation of state at the critical point µ̂c,

E
∣∣∣
µ̂c

= F + TS
∣∣∣
µ̂c
, (3.185)

we see that only s(µ̂c) is relevant. The energy is given as

Ec(T, µ) =λ−3/5Tc(µ)Sc(T, µ) (3.186)

=S(T, 0)s(µ̂c)

=λ−3/511.52N2T
14
5 s(µ̂c)

'λ−3/58.11N2T
14
5 . (3.187)

It is straightforward to get the µ dependence of the energy at the transition points via

(3.173). We may however emphasize that this relationship holds precisely and only at the

confinement-to-deconfinement transition points for each T , or µ.

As long as we are in temperatures T > Tc = 0.1059µ we are always in the deconfined

phase and indeed we can compare the matrix results with gravity. We shall see this interesting

comparison in Sec. 4.5.

3.6 Confinement and deconfinement phases and their relations

with gravity interpretations

3.6.1 The gauge theory side

Being a dimensional reduction of super Yang-Mills theory, matrix models should have a

confining and a deconfining behaviour in different energy regimes. Before move to matrix
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model details and their gravity interpretation let us comment more on these different phases,

how to distinguish them and what do they mean physically. To this end, it will be instructive

to understand where this idea originates from. This behaviour is expected to be universal

whenever we have SU(N) gauge theories [167] and an interesting overview of the topic is

given in [168] and more generally in [50].

It is widely believed that pure SU(N) gauge theories in d = 4 confine at zero temperature

[169,170]. Let us try understand this intuitively using as a test example quantum chromodyna-

mics (QCD) with coupling ΛQCD. The low energy spectrum of such theories can be understood

as a Fock space of interacting glueballs. Therefore, it is expected that for low temperatures

such that T � ΛQCD dynamics can be understood in terms of a sparsely populated thermal

bath of glueballs. At the same time, asymptotic freedom permits a reliable computation of the

T � ΛQCD behaviour of such theories (for the case of finite volume) revealing that this high

temperature phase may be understood in terms of a weakly coupled gas of gluons [171,172].

Therefore, the high and low temperature phases appear qualitatively different, and it might

be possible to find an order parameter (or two) that distinguish these phases by a possible

phase transition.

Let us consider a confining theory with no fields in the fundamental SU(N) representation

and let us try to insert a single external particle in the fundamental representation (such as

a quark) into this theory. This action can be done only with an infinite cost of energy. The

reason, heuristically speaking, is because such a quark forms the end of a QCD string which

has nowhere to end and thus it is infinitely long. In the low energy (confining) phase this

long string has also infinite positive free energy. Analysing the form of the coupling of an

external quark to the gauge fields, it follows that the free energy of this gauge theory of an

external quark Fq(T ) satisfies the relation [168]

e−Fq(T )/T = 〈P 〉, (3.188)

where P is the so-called Polyakov loop defined as the trace of a Wilson loop

P :=
1

N
TrPe−

∮
Aµ , (3.189)

where P stands for path ordering. It should be clear that in the low temperature confining

phase where Fq(T )→∞ we have 〈P 〉 = 0.

As we mentioned earlier, asymptotic freedom allows reliable calculations that establish

〈P 〉 6= 0 in the high temperature limit. Hence, 〈P 〉 serves as an order parameter that

distinguishes the confinement and deconfinement phases. In addition, in the large N limit

with fixed ΛQCD (or fixed ’t Hooft coupling) the deconfinement phase transition has another

order parameter [173]. The low energy confined phase is dominated by gauge-invariant bound

states such that its free energy F(T ) scales as N0 at large N . On the other hand, the

deconfined high temperature phase is described by free gluons, and as a result its free energy

scales like N2 in the large N limit. Therefore, in the large N limit, limN→∞ F (T )/N2 serves

as another order parameter.

Let us discuss a bit more the Polyakov loop. The latter could be given via an effective

action, by integrating all other fields out of the path integral which generates the Yang-Mills

free energy. P is a complex scalar field on the manifoldM of the theory20. In addition there

20In this thesis we will particularly interested in the case M∼= S1.
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Figure 3.11: A graphical representation of the discussion around (3.189). In the confinement

phase the Polyakov loop is zero and in the large N limit the free energy is of order N0. In

the deconfinement phase the Polyakov loop is non-vanishing and again in the large N limit

the free energy scales as N2. These are the two parameters that distinguish the two phases

resulting in a critical temperature Tc.

is a symmetry such that the Polyakov loop is invariant under a phase shift

P → e
2πi
N P, (3.190)

originating from the invariance of the SU(N) Yang-Mills path integral [174]. This is generated

by gauge transformations that are single valued only up to an element of the center of the

gauge group which is ZN in this particular case. Such gauge transformations act trivially

on the dynamical fields of the pure Yang-Mills theory, and its spontaneous breaking is

related with the deconfinement phase transition. In other words, breaking/restoration of

this symmetry results in a deconfinement/confinement transition.

Let us now try to use the Polyakov loop in a one dimensional manifold. This affects only

the integration, now written as

P =
1

N
Tr

(
P exp

(
i

∫ β

0
At dt

))
, (3.191)

and when we consider the one-dimensional model under consideration to be thermal with

temperature T , the manifold is M ∼= S1 where the radius is β = 1
T . When M ∼= S1 we

can consider a one-dimensional lattice on which our model is defined. The N × N unitary

matrix inside the trace is called the Polyakov line and being unitary, its eigenvalues can be

written as eiθ1 , · · · , eiθN where the phases θ1, · · · , θN ∈ [−π, π). This allows for a discrete

interpretation and we may rewrite the Polyakov loop in terms of its eigenvalues as

P =
1

N

N∑
j=1

eiθj . (3.192)

Let us also introduce a distribution function ρ(θ) nornalised as∫ π

−π
ρ(θ) dθ = 1. (3.193)
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Then the Polyakov loop becomes

P =

∫ π

−π
ρ(θ)eiθ dθ. (3.194)

This way we are placing the eigenvalues of the Polyakov loop at the perimeter of the S1 and

the way they distribute along the perimeter will play a major role to understand the order

of the phase transition.

This eigenvalue distribution description serves as a parameter for the order of a phase

transition used in [175] and latter on was established as the so-called Gross-Witten-Wadia

(GWW) transition which further can be 2nd or even a 3rd order phase transition. It

essentially means that from a non-uniform and non-gapped eigenvalue distribution the

configuration transitions to a non-uniform and gapped distribution. The term gap refers to

the possibility that the distribution function becomes negative in the range −π ≤ θ ≤ π.

But how is this connected with the matrix models, and what is in fact confined and

deconfined?

Confinement-to-deconfinement parameters

There are at least two parameters that can help us to detect if the system we are

studying is in the confined or deconfined configuration. These are

1. The Polyakov loop P which is zero in the low temperature confined phase of the

gauge theory and non-zero in the high energy deconfined phase

2. The free energy F which is of order N0 in the confined phase and of order N2

in the deconfined phase.

Figure 3.12: A graphical representation of the discussion of this whole section. Vanishing

Polyakov loop corresponds to a gas-like interpretation of constituents of a geometry (left),

while non-vanishing Polyakov loop corresponds to the existence of a black hole constructed

as a result of the condensation of the constituents of the geometry.
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3.6.2 The gravity side

To understand the answer of the above question let us briefly try to understand the same

question in the conventional holography, i.e in the AdS/CFT description. We will use as a

test example the original proposal for a stack of N coincident D3-branes which backreact into

a AdS5 × S5 geometric description. The latter is the holographic dual of a super Yang-Mills

in a four-dimensional spacetime (M ∼= S3 × R) which is furthermore a CFT4 [130]21. The

above geometry can be understood via the metric

ds2 = R2
0

(
− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2

3 + dΩ2
5

)
. (3.195)

Under the conventional duality, the Hamiltonian of the Yang-Mills theory is identified with

the generator of global time translations ∂τ in the above geometry. The radius of the geometry

R0 is related with the ’t Hooft coupling λ = g2
YMN and the string scale as R0 ' λ1/4

√
α′.

Therefore, the parameter that controls the regimes of the system is λ which is compared with

the energy of the gauge theory E on a sphere of unit radius. The relation with the proper

energy in string theory is Eprop = E/R0.

Figure 3.13: A graphical representation of the situation discussed in the text also. For small

energies, the system behaves like a graviton gas in a box, for intermediate energies there is

a transition at T1 = TH where the system develops the behaviour of a long Hagedorn string.

For higher energies we have a small black hole localised along the S5 sphere with negative

specific heat C. For even higher energies there is a transition to a big black hole in AdS with

positive specific heat.

AdS5 effectively behaves like a four-dimensional box of physical radius R0, and this can

be deduced from the fact that the spectrum of ∂τ is discrete with unity steps. Therefore, all

21It is important enough to mention that this holographic duality does not necessarily mean that the gauge

theory lives on the boundary of the gravity spacetime. This is a confusion arising usually outside of the field

of holography. The two theories have different spacetimes and there is a mapping between them such that

the d-dimensional gauge field theory data can construct a (d+ 1)-dimensional spacetime where a gravitational

theory lives, and not a gauge field theory.
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the states of finite energy are localised about ρ = 0. The spectrum of energies defining the

density of states ρ(E) depends on the regimes we are in terms of the energy E and it contains

four main parts. The situation is reported in Fig. 3.13 and can be understood in terms of the

temperature and energy. Let us start with the temperature. For T < T2 the only available

saddle point is the thermal gas of gravitons. In the range T2 < T < T1 there exist three

different saddle points, however the small black hole is unstable due to negative specific heat

and therefore it cannot appear in the canonical ensemble. The other two saddles, namely the

free graviton gas and the big AdS black hole are stable and they compete with each other.

Finally, for temperatures T > T2 the only available phase is the big black hole in AdS. The

deconfined phase is always related with a black hole phase in the gravity side [168]. This

can be understood using the Polyakov loop we discussed above and gravitational black hole

horizons. As we explained the Polyakov loop is realised as the partition function in Euclidean

space for a string whose boundary wraps around the time-like loop. This partition function

is zero when the Euclidean time circle is non-contractible, but on the other hand it is non-

zero if it is contractible. This situation is clear for black hole where we have a geometric

interpretation of the background in which case the Euclidean time circle around the core of

the black hole, assigned to the horizon, gives the temperature of the black hole. Inverting

the reasoning for difficult geometric backgrounds, whenever we do not have a clear geometric

interpretation, the existence of contractible time-like circles can be explored by using the

Polyakov loop [168]. This summarises this section and can be understood via Fig. 3.12. In

what follows we will distinguish the gravitational description using the Polyakov loop.
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Part III

Simulating matrix models in a

supercomputer
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4
Simulations

Τα πάντα ρει

Heraclitus

Solving gauge theories is not easy. Usually, theorists focus on a specific parameter region

of the theory where they impose strong constraints on the system and solve some related

problem. Yet, the full sector of the theory is unknown and one may fall in the trap to apply

the results obtained in this highly constrained region on the full theory and make interesting

claims. This is an unfortunate event that should be avoided because analytically we do not

have the theory under control.

What helps us on the other hand to access the full theory in a non-perturbative fashion is

putting it in a (super)computer. The advantage of this can be easily illustrated for the case of

matrix models, say the BFSS model, where we have an action containing nine bosonic N ×N
matrices, sixteen fermionic N × N matrices, evaluated on S lattice points parametrising a

circumference of β = 1/T . The interested reader can consult [176] and especially [177] for

more technical details. In what follows, we will entirely focus on physics and summarise the

important points.

4.1 Introduction to simulations

The idea of simulating matrix models is heavily based on the approach of lattice QCD.

However, the same problems appearing there appear also for the case of matrix models. Let

us discuss a bit about their occurrence and their resolution in the context of matrix models.

In order to study maximally supersymmetric Yang-Mills theories with dynamical fermions,

one has to integrate out the fermions in the same way that it is done in lattice QCD. Then

because of the Mayorana-Weyl fermions that are contained in the model, the Pfaffian that

occurs is the square root of the determinant up to a sign. This is the famous sign problem in

lattice approaches to supersymmetric theories. For example when we write a theory which
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contains bosons (X), a gauge field (A) and fermions (ψ) we can write a fermionic term as

ψ̄Lψ which we can integrate out as follows∫
[dA][dX][dψ]e−Sbosonic−ψ̄Lψ =

∫
[dA][dX]PfL(A,X)e−Sbosonic . (4.1)

At the same time PfL(A,X) is usually complex, and therefore the standard method of

importance sampling is not valid any more. The latter method assumes the fact that the

biased estimate g(Y ) and the actual estimate f(Y ) are given by the ratio

f(Y )

g(Y )
, (4.2)

with Y : R → R being the real sample. Then the problem rephrases to choosing a specific

g = g∗ which minimizes the above ratio, i.e

g∗ = min
g

varg

(
Y
f(Y )

g(Y )

)
. (4.3)

This technique though does not work for Y ∈ C. One way out of this, is to consider a phase-

quenched ensemble with the weight |PfL(A,X)|e−Sbosonic and take into account a phase factor

with the help of the phase re-weighting method, in other words for the expectation value of

an observable O we consider

〈O(A,X)〉full =
〈O(A,X)eiθ〉phase quench

〈eiθ〉phase quench
. (4.4)

The phase here is formulated via

eiθ =
PfL(A,X)

|PfL((A,X))|
. (4.5)

Usually this phase re-weighting method is quite costly because one has to always calculate the

Pfaffian, but the point is that θ approximates zero in a wide parameter region and practically

one has

〈O(A,X)〉full ' 〈O(A,X)〉phase quench (4.6)

within statistical error. For the cases that the Pfaffian is computable it has been observed

that the last relation holds within statistical error and this is true because of the absence of

correlations between the phase and the observables [134].

4.1.1 Real time dynamics

Real time physics are usually more interesting. For the case of a field theory, real time

dynamics makes the system a thermal field theory having a specific temperature T . Then,

for a thermal field theory one can do a thermodynamic analysis that might be available and

depending on the nature of the fields one can also perform a statistical analysis studying in

this way the microcanonical degrees of freedom that shape the theory.

For the sake of the clarification let us consider a QFT on a four-dimensional Minkowski

spacetime, which is indeed the most commonly found example in the literature. In the

Lorentzian picture, we are putting the theory in a Lorentzian signature of the manifold which

has the form R1,3. Treating the same theory as thermal, i.e having a universal temperature

106



4.1. INTRODUCTION TO SIMULATIONS

that governs the field theory and making it a thermal field theory amounts to the so-called

Wick rotation trick where one replaces the time coordinate according to t̃ → it giving an

Euclidean signature R4.

The thermodynamic behaviour of the system, is studied by using the Euclidean time

picture, where the dimension that corresponds to ”time” is compactified, having usually the

topology of a circle S1. The temperature in this case, is related with the periodicity of the

circle such that a point on the circle becomes periodic x′0 → x0 + 2πβ, with β defined as

β :=
1

T
. (4.7)

It seems in fact that the radius of the time circle S1 controls the temperature of this field

theory and vice versa.

At the other face of the gauge/gravity duality we ask what this temperature corresponds

to. Going back to the work of Hawking [4] (for a nice review see e.g [178]) we learned

that black holes evaporate via radiation, so if there is a radiation, this should correspond

to a specific temperature. One interesting possibility would be to check whether or not the

temperature of a thermal field theory is related with temperatures of a specific black hole in

a gravitational theory.

Indeed, in the gauge/gravity community Euclidean time dynamics are related with the

study of Hawking radiation of a gravitational system, such as a black hole or black p-brane

[179] in AdS spacetime. To put it simply, the temperature of the field theory corresponds

to the Hawking temperature of this black object. We might recall that for the case of a

Schwarzschild black hole in four dimensions the temperature is related with the mass as

TH =
1

8πM
, (4.8)

in units of G = 1 = c while the mass is related with the Schwarzschild radius as

rs = 2M, (4.9)

resulting in

TH ∼
1

rs
. (4.10)

In string theory, and depending on the Dp-branes that construct the geometry, the radii

have different exponents with the temperatures of the respective field theories. For our case

the black-zero brane has the relation (3.115), with T being also the temperature of the

matrix quantum mechanics. The latter is actually connected with the size of the Euclidean

one-dimensional time dimension and specifically with the radius of the circle as we saw above.

The gravitational analogue of this temperature is again the temperature of a black object

while if the system undergoes a phase transition at a critical temperature (Tc) , the type of

the transition depends on the details of the underlying theory we are describing [179–187].

Therefore, the punchline is that simulating in a specific temperature means that we are

enforcing a canonical ensemble in the system (as we will comment also later on) and this

temperature corresponds to the Hawking temperature of the black-zero brane.

4.1.2 Preserving supersymmetry on the lattice

Preserving supersymmetry on the lattice is an important feature for all lattice approaches

on supersymmetric theories. One of the most important and pioneering paradigms is the
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Figure 4.1: The temperature interpretation of the gauge theory side [Left] and the gravity

side [Right]. The temperature in the gauge theory corresponds to the inverse size of the time

circle which in simulations will be discretized. The discretization points correspond to the

dots and are denoted as S in simulations. In the gravity picture consisting of N coincident

D0-branes, this corresponds to the Euclidean time circle which is also discrete and shapes

the horizon. This is a specific picture where we use a lattice discretization, while taking the

continuous limit, the discrete circle is replaced by a continuous one.

approach of lattice quantum chromodynamics (QCD), while here we are interested in one-

dimensional matrix quantum mechanics. These approaches share the same problem but for

the case of matrix quantum mechanics we have just one dimension and thus it might be easier

to explain the main arguments. The idea of formulating these physical models on a lattice

is due to the possibility of performing simulations by using a finite number of spacings and

gradually take the continuum limit. In lattice QCD one has always N = 3, which denotes

the number of colours and the interesting parameter is S, the lattice spacing. On the other

hand one has also a three-dimensional spacetime and simulating this problem starts manifest

some difficulties. With the exchange of keeping N free the one-dimensional matrix integral

can be done more easy, such that simulating one-dimensional matrix models becomes easier.

The supersymmetry algebra between the supersymmetry generators is of the form

{Qα, Qβ} ∝ γµαβ∂µ, (4.11)

such that in a sense the algebra contains an infinitesimal translation. The moment we are

introducing a lattice, the derivative operator is not formally defined any more because of

continuity since the lattice breaks explicitly supersymmetry. The problem then manifests

at the very beginning and the question is what can possibly be done to circumvent this

unfortunate problem.

There are two approaches attacking and curing this problem. For a review see [188, 189]

and references therein.

� The fine tuning approach: The idea behind this, is based on the renormalization

procedure of the gauge theories. Simple actions break supersymmetry on the lattice

yielding in addition a proliferation of such terms breaking the supersymmetry. This

requires to add equal number of counter terms in the effective action describing the

model, and carefully tune their coefficients as the lattice spacing decreases. This
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eventually will lead to supersymmetry restoration in the continuum limit, and this

procedure is known as the fine tuning problem of lattice supersymmetry.

This approach is simple for super-renormalizable theories, where the coefficients can be

calculated perturbatively, as in the case of Wess-Zumino model [190] and the in N = 1

super Yang-Mills theory where the counter term needed to restore chiral symmetry in

the continuum appears as the gluino mass term [191]. On the other hand, the same

procedure starts becoming particularly challenging in theories with scalar fields. The

latter appear as part of the matter multiplet in supersymmetric QCD or appear in the

vector multiplet alongside the gauge field in theories with extended supersymmetry. To

put it simply, supersymmetry forbids the appearance of scalar mass!

� The preservation of a supersymmetric sublagebra on the lattice: In theories which

preserve part of the supersymmetry algebra it is sometimes possible to reduce the

number of fine tunings dramatically. While discretisation of supersymmetric theories

generically breaks supersymmetry completely there are indeed situations that a subpart

of the algebra can be preserved. It is also possible that the constraints implemented in

this way, could (at some cases) eliminate the fine tuning procedure.

These cases involve theories with extended supersymmetry and in fact it has been

realised that in (0 + 1) −D and (1 + 1) −D models this strategy can be materialised

to all orders in perturbation theory. Likely our model(s) discussed, and to be discussed

fall into this category.

4.1.3 Lattice discretization

Below, we explain the details of the lattice regularization done in such a way to put the model

in a (super)computer. The action is that of the BMN model, while for the case of the BFSS

model we simple set µ = 0.

Gauge fixing

The action of the matrix models are invariant under the SU(N) gauge transformation. For

numerical efficiency, we take the static diagonal gauge,

At =
1

β
· diag(α1, · · · , αN ), −π < αi ≤ π. (4.12)

Associated with this gauge fixing, we add the Faddeev-Popov term

SF.P. = −
∑
i<j

2 log

∣∣∣∣sin(αi − αj2

)∣∣∣∣ (4.13)

to the action.

Lattice action

We regularize the gauge-fixed continuum theory by introducing a lattice with S sites and

spacing A. We write the action for the BMN model which is the most general one. The

relevant BFSS lattice action is obtained by setting µ = 0 while the bosonic actions are
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taken by ignoring the fermionic terms. We may also discretise the time variable as follows

t = a, 2a, · · · , aS. Therefore we write 1

SBMNlattice
= Sb + Sf + ∆Sb + ∆Sf , (4.14)

where

Sb =
N

2a

∑
t

9∑
I=1

Tr (D+XI(t))
2 − Na

4

∑
t

9∑
I,J=1

Tr[XI(t), XJ(t)]2, (4.15)

Sf = iN
∑
t

Trψ̄(t)

(
0 D+

D− 0

)
ψ(t)− aN

∑
t

9∑
I=1

ψ̄(t)ΓI [XI(t), ψ(t)], (4.16)

∆Sb = aN
∑
t

Tr

µ2

2

3∑
i=1

Xi(t)
2 +

µ2

8

9∑
a=4

Xa(t)
2 + i

3∑
i,j,k=1

µεijkXi(t)Xj(t)Xk(t)


and

∆Sf =
3iµ

4
· aN

∑
t

Tr
(
ψ̄(t)γ123ψ(t)

)
. (4.17)

In addition we have the conventions

D±ψ(t) ≡ ∓1

2
U2ψ(t± 2a)

(
U †
)2
± 2Uψ(t± a)U † ∓ 3

2
ψ(t) = aDtψ(t) +O(a3).

Here, U = diag(eiα1/S , eiα2/S · · · , eiαN/S), −π ≤ αi < π. The Faddeev-Popov term SF.P. is

simply the same as the original form, (4.13)

4.1.4 The parameters that control the system

Before starting to present more detailed situations and simulation results let us recap. We

will be using the matrix models (3.86) and (3.96), part of them or just their bosonic analogue

on a one-dimensional lattice. In a sense, what the simulation does, is to evaluate terms of

the actions on lattice points giving as output numbers. The input is the size of the matrix,

the size of the lattice, namely lattice points, the temperature, the number of the matrices

and the flux (for BMN). We collect all this information in the following

Simulation parameters

The parameters that control the system are given in the following table

parameters matrix model interpretation

N size of the matrices XN×N
S number of lattice points

T temperature

d number of matrices

µ mass parameter of BMN model

The parameter N plays a special role here. Let us remind that the degrees of freedom

are encoded in the entries of the matrices with diagonal elements corresponding to positions

1We assume that it will be obvious for the reader by now the distinction between the action and the lattice

size which both are represented by S.
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of D0-branes and non-diagonal elements to open strings connecting them. Let us also recall

the relation of string coupling with N

2πg2
YM = gsα

′−3/2 ⇒ gs = 2π
λ

N
α′3/2. (4.18)

In simulations we are always fixing λ = 1, such that the large N limit corresponds to gs → 0

limit. In other words the large N limit is classical string theory (since λ is also fixed) while

keeping finite N means that we are introducing quantum corrections in the system. It seems

that in a sense the large N limit is the analogue of 1/~. Then it is understood that for

the system of N × N matrices which describe N D0-branes, keeping N finite amounts to

introduce quantum corrections on the system.

Then the question is what is the role of α′. The latter is related to the string length

`s =
√
α′ such that large `s means large non-diagonal entries. From (4.18) it is also clear

that from the gauge theory side, when we fix g2
YM we put our gauge theory in a specific scale.

On the contrary, fixing λ = g2
YMN and taking the large N limit, we might have classical

results but we still do have large α′ corrections since g2
YM → 0 and via (4.18) α′ is arbitrary.

Eventually, classical, quantum, supergravity, string theory are all facets of the same system

taking different limits.

The punchline is that there are two kinds of stringy corrections. One is the finite N which

amounts to quantum corrections and the other one is α′. Despite the fact that we can control

quantum corrections by extrapolating to large N we cannot easily control α′ corrections.

The parameters and their physical meaning

N →∞ , λ→∞ ↔ classical supergravity
1
N corrections ↔ quantum (gs) corrections
1
λ corrections ↔ stringy (α′) corrections

In what follows we will always set λ = 1.

4.2 Some interesting examples at large d

4.2.1 Theoretical analysis

Let us then start our investigations with some easy, yet interesting examples. The model

under consideration is a bosonic analogue of the BFSS [53] which has been extended to

d = D − 1 spatial dimensions and has a simple (Euclidean) action

S =
N

2λ

∫ β

0
dt Tr

{
(DtXi)

2 − 1

2
[Xi, Xj ]

2

}
, i, j = 1, · · · , d. (4.19)

It is an one dimensional model, which can be understood as a d dimensional reduction of

pure Yang-Mills theory living in D spacetime dimensions. The covariant derivative acts as

DtXi = ∂tXi−i[At, Xi] with At being the gauge field. The variables of the action are matrices

Xi which enjoy a global SO(d) symmetry that rotates them and in addition there is a U(N)

gauge symmetry associated with At. The center symmetry is U(1) under which the Polyakov

loop is invariant. The latter is defined as we saw via

P :=
1

N
Tr ei

∫ β
0 dtAt , (4.20)

111



4.2. SOME INTERESTING EXAMPLES AT LARGE D

and is considered to be an order parameter that is associated with this center symmetry. If

we denote as θ the eigenvalues of the Polyakov loop, then it is invariant under P → eiθP .

When this symmetry is broken (or restored) signals a phase transition. This phase change

is also related with the confinement-to-deconfinement transition. In fact, this breaking of

the U(1) symmetry could happen simultaneously with the transition of P getting a non-

zero expectation value. In addition to the Polyakov loop there is also another parameter

that controls the phase transition, that is the free energy. As previously discussed, in a

confined phase the free energy of the system scales as F ∼ N0 while in a deconfined phase

as F ∼ N2. It is instructive in these type of works the usage of the Polyakov loop to study

phase transitions. In this model, the parameter that controls the regimes of the model is the

temperature T .

When d = 9 we have superstring theory, where the gauge/gravity duality holds for specific

Dp-brane constructions. In the spirit of gauge/gravity duality, the confinement/deconfinement

transition in the gauge theory traditionally is believed to correspond to a Hawking-Page

transition in a theory of gravity [179]. The question now is what the analogue of the

confinement/deconfinement transition is for non-AdS spacetimes and non-CFT gauge theories.

In addition there is another phase transition which a non-uniform, ungapped distribution

of the eigenvalues of the Polyakov loop (see Fig. 4.2) becomes non-uniform and gapped

distribution and the latter is believed to correspond to Gregory-Laflamme instability [131]

in the gravity side (for a review see [185]). This transition is a topology change of the

spacetime, which, as we will also discuss below for the case of a Schwarzschild black hole

collapses to-and-from a black string, consisting of n such black holes forming a compact

array and repeating after 2π. In the case of the BFSS model it is realized in terms of

D0-branes on the compactification circle depending on how their eigenvalues spread along

this circle [192]. This can be studied by analysing the Polyakov eigenvalue distribution,

which furthermore connects the ungapped-to-gapped transition with a Gross-Witten-Wadia

(GWW) transition [175]. However, the picture of eigenvalues does not refer necessary only to

Dp-branes but rather to whatever they describe, hence nothing forbids us to generalise this

picture to dynamical objects like partons in (d+ 1)−dimensional spacetimes.

Indeed this will be our motivation. We are considering bosonic partons living in a (d+1)-

dimensional spacetime being part of a gauge theory and subject to the action (4.19). The

latter is actually a one-dimensional model consisting of d matrices, which each matrix as we

explained before gives information for a parton regarding the respective dimension. We will

be as agnostic as ambitious here but the point is that higher order transitions and especially

in higher dimensions are not well understood and such kind of questions have already started

to be asked (and sometimes answered) in matrix models. The fact that these questions can

be easily answered by using matrix Monte-Carlo simulations makes them attractive [183,193]

When we consider d + 1 > 11 we cannot make any claims about gauge/gravity duality

or string theories, because not only is unknown for both whether they apply to more than

D = 10 spacetime dimensions but also there is no known bulk dual. On the other hand,

Yang-Mills theories can be consistently written to arbitrary dimensions and nothing forbids

us to consider N bosonic partons moving in an arbitrary R1,d−1 × S1 spacetime. In other

words, we wish to extend the results of [193] to more than D > 26 spacetime dimensions.

Our ambition is to compare with the three-loop result obtained in [183] which predicts that

in gauge theories, higher order phase transitions should be happening after D > 36.
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Figure 4.2: Distribution of the Polyakov loop eigenvalues θ. Uniform distribution corresponds

to horizontal line (blue). Non-uniform and un-gapped distribution (orange) indicates partial

deconfinement while non-uniform and gapped distribution (red) corresponds to GWW

transition.

Along the way, we may also compare the results with the large d analysis of a Gregory-

Laflamme instability that occurs for a Schwarzschild black hole collapsing to-and-from a black

string.

The work of [182] performed in a large N and large d spirit predicts the critical temperature

from gauge theories that signals transition in arbitrary dimensions with perturbation parameter

1/d. The relevant relations are

T1 =
d1/3

log d

[
1 +

1

d

(
203

160
−
√

5

3

)]−1

, (4.21)

and

T2 =
1

A+ 1
T1

, (4.22)

A :=
log d

d
4
3

[
−1

6
+

1

d

((
−499073

460800
+

203
√

5

480

)
log d− 1127

√
5

1800
+

85051

76800

)]
, (4.23)

∆T := T2 − T1. (4.24)

The first temperature (T1) signals a phase transition which is accompanied by an onset of

non-uniformity of the eigenvalue distribution. The latter is given via the eigenvalue θ density

of the Polyakov loop as

ρ(θ) =
1

N

N∑
i=1

δ(θ − θi). (4.25)

The second temperature (T2) signals the formation of a gap in the above eigenvalue distribution

and hence it is related with a GWW transition (this actually means that ρ(θ) can become

113



4.2. SOME INTERESTING EXAMPLES AT LARGE D

negative in the region −π to π, see again figure 4.2). The order parameter we are using

to find the transition temperatures is the Polyakov loop P , and as we explained previously

when getting an expectation value around 〈P 〉 ' 1
2 from 〈P 〉 ' 0 we have a confinement-

to-deconfinement transition as we discussed in Sec. 3.6. Therefore we can determine the

transition temperature for every d.

To determine the order of the transition we have to take N to be sufficiently large because

at this case the tunnelling between 〈P 〉 = 0 and 〈P 〉 = 1
2 is exponentially suppressed by

e−
N2

λ . We expect that the Polyakov loop has a two peak signal in a scenario with first order

transition, because the latter is characterized by a phase where 〈P 〉 = 0 , an intermediate

(perhaps stable) phase and a final phase where 〈P 〉 = 1
2 . We see this in Fig. 4.3, where the

corresponding phases are denoted with red, orange and blue lines respectively. In a first order

case, the unstable phase is also accompanied with negative specific heat (see Appendix C). In

the BFSS model, this unstable phase is connected to eleven-dimensional Schwarzschild black

hole [194], but in our case there is no bulk dual interpretation known. On the contrary, a

higher order phase transition has an intermediate stable phase between 〈P 〉 = 0 and 〈P 〉 = 1
2 ,

denoted by a solid line in figure 4.3. Therefore, for a higher order scenario, in the simulations

we expect to see a three peak signal of the Polyakov loop in the range [0, 1/2] with the

interpretation that the theory stabilizes momentarily in this intermediate phase. In other

words, whenever the simulation spends a reasonable time in a specific phase this creates

points, namely signals in Monte-Carlo history. We are able to see this from the value of the

Polyakov loop and one should have in mind that since the simulation is ”quantum” there

are fluctuations such that we consider the expectation value 〈P 〉. Hence, we expect signals

around 〈P 〉 ≈ 0 and 〈P 〉 ≈ 0.5 in a first order scenario. In a higher order scenario, when a

suitable stable phase is present we shall have also a phase 〈P 〉 ≈ B with 0 . B . 0.5.

4.2.2 Black strings in higher dimensions

Higher order phase transitions have been predicted also from gravity calculations [195], and

the critical dimension was found to be2 Dc ≈ 13.5. The latter claim is accompanied with a

Gregory-Laflamme instability which indicates a topology change of the black hole horizon.

For example, for the case of a Schwarzschild black hole the topology of the horizon changes

according to SD−2 → SD−3 × S1. The horizon topology SD−3 × S1 is interpreted as a black

string, namely an arrow which contains localised black holes every 2nπR with n integer, and

R being the radius of the compact dimension of S1.

Even though we are agnostic if we can apply the technognosy of gauge/gravity duality, we

may explore the following idea. Along the lines of the motivation to generalize the spacetime

dimensions of the gauge theory, one may ask if there is a similar analogue in gravity side.

Of course, this goes along the lines of generalizing the Einstein-Hilbert gravity to arbitrary

dimensions. Since, it is not clear how to generalize string theory in higher dimensions, we

deploy some minimalistic ingredients to complete the picture. Based on the discussion of

Sec. 3.6, the main motivation is to use the Polyakov loop as a detecting parameter to check

whether or not there exists a black hole in the dual gravity theory in higher dimensions.

When d + 1 = 10 the situation is more under control since the gravity dual is that of a

black-zero brane in type IIA superstring theory where the eigenvalues of the Polyakov loop

2The difference between the the prediction of [183] and [195] indicates that the gauge/gravity duality might

not apply anymore, at least in the usual way.
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Figure 4.3: [Left]: the first order transition with T2 < T1 and the intermediate unstable phase

denoted with dotted line. [Right]: higher order transition with a stable intermediate phase

denoted with a solid line and T2 > T1.

represent D0-branes along the S1. In our general D dimensional case they represent partons

spreading along the S1 part of R1,d−1 × S1. The interpretation is determined via ρ(θ), since

a uniforn (non-uniform) gapless distribution corresponds to uniform (non-uniform) black

string 3 winding the S1 part of the spacetime. On the other hand a non-uniform and gapped

distribution corresponds to a black hole localized on S1. There is a natural candidate for

this local black hole which is a Schwarzschild black hole generalised in arbitrary dimensions.

From this we can also construct a (d + 1)-dimensional black string accompanied with the

topology of R1,d−1 × S1 with line element

ds2 = ds2
ST + dz2. (4.26)

The horizon topology of this geometry is Sd−3 × S1. The coordinate dz2 parametrizes the

S1 part of the topology and sets the periodicity
∫ 2π

0 dz = L. When we take L to be large,

we have a long array of black holes, and is more likely that an instability appears in the dz2

part of the metric. In fact this instability is related to tachyonic modes [131] and it reminds

the Jeans instability. In the latter, inhomogeneities on a gas of particles (or partons) cause

clusters in regions which are denser due to gravitational pull, leading in this way in an non-

uniform string. This is due to the negative specific heat of the individual Schwarzschild black

holes that form the string and their tendency to de-stabilize the black hole array because the

entropy of this string can increase by re-distributing its mass in a non-homogeneous way. In

3With the terminology black string we are not referring to the string of string theory but rather a string

consisting of n small black holes repeated after 2πR.
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a similar manner this instability is strikingly analogous to the Rayleight-Plateau instability

for liquids [180].

The metric decomposes according to (4.26) and ds2
ST is the d-dimensional Schwarzschild

black hole (which is also known as Schwarzschild-Tangherlini [196]) whose metric is given by

ds2
ST = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2

d−2. (4.27)

Let us examine more this d-dimensional black hole. The metric is characterized by

f(r) =1− rd−3
0

rd−3
, (4.28)

dΩ2
d−2 = dφ2 + sin2φ dθ1 + · · ·+ (sin2 φ sin2 θ1 · · · sin2 θd−4) dθ2

d−3. (4.29)

The mass of this d-dimensional black hole is related with the value of r for which there exists

a killing horizon at

rd−3
0 =

16πGNM

(d− 2)Ωd−2
, (4.30)

with GN being the d-dimensional Newton constant, and Ωd−1 = d π
d
2

( d2 )!
= 2π

d
2

Γ( d2 )
is the area of

the unit sphere Sd−1. In the Euclidean description, the black hole is thermal with temperature

T =
1

β
=

κ

2π
=
f ′(r0)

4π
=
d− 3

4π

(
16πGNM

(d− 2)Ωd−2

) 1
3−d

=
d− 3

4πr0
. (4.31)

We have used the 0-th law of thermodynamics for the surface gravity defined as κ := f ′(r0)
2π

with prime denoting derivative w.r.t r. By using the first law, it is easy to obtain the entropy

S =
4π

d− 2

(
16πGN

(d− 2)Ωd−2

) 1
d−3

M
d−2
d−3 . (4.32)

Moreover, the specific heat follows from

1

C
=

dT

dM
⇒ C = −4π

(
16πGN

(d− 2)Ωd−2

) 1
d−3

M
2−d
3−d . (4.33)

4.2.3 Large d analysis

We start by showing that there are two regions of the black hole parameterised by a different

scale [197]. The Newtonian potential in d dimensions is normalised with a scale set by the

horizon radius and it is given as

Φ ∼
(r0

r

)d−3
. (4.34)

When d is a fixed number the only scale of the system, to describe all the relative phenomena

in this geometry, is setted by r0. On the other hand when we regard d as a parameter of

the system that we take it also to be large, one finds that there is a different scale that

characterises the gravitational force near the horizon

∇Φ|r0 ∼
d

r0
. (4.35)

Hence the large d limit introduces a new, parametrically separated length scale in the system

r0

d
� r0. (4.36)
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This scale not only determines the slope of the gravitational potential, but also sets the

distance at which gravitational effects are noticeably zero. In other words the two regions of

the system are:

� The far way region, where the metric is asymptotically flat and characterised by

r > r0 ⇒ Φ(r)→ 0. (4.37)

� The near horizon limit setted by

r − r0 /
r0

D
⇒ Φ(r) = O(1). (4.38)

It will turn out convenient in what follows if we set

n = d− 3, (4.39)

and use this as a perturbation parameter instead of d, and furthermore introduce

q =

(
r

r0

)n
, (4.40)

which is regarded as the finite radial variable near the horizon. By the introduction of a near

horizon time also

t̄ =
n

2r0
t, (4.41)

one can find that the metric (4.27) takes the following form in the near horizon limit [197]

ds2
nh =

(r0

n

)2
[
−4

(
1− 1

q

)
dt̄2 +

dq2

q(q − 1)

]
+ r2

0q
2
n dΩn+1. (4.42)

The prefactor of the (t̄, q) part of the metric reflects that the short scale r0/n is a measure

of the small proper radial extend of this near horizon zone, and of the short proper time

required to cross it, measured with respect to units and times of an observer in the far away

zone. One more coordinate transformation

cosh2 ρ = q, (4.43)

leads to

ds2 = 4
(r0

n

)2 (
− tanh2 ρdt̄2 + dρ2

)
. (4.44)

Interestingly, this metric is the two-dimensional string black hole which is the coset manifold

SL(2,R)/U(1) [198–200]

This follows from ref’s [201, 202] about the spherical reduction of Einstein gravity in the

limit d→∞. Indeed, for a metric of the form

ds2 = gµν dxµ dxν + r2
0e
−4φ/(n+1) dΩ2

n+1, (4.45)

where gµν is a two-dimensional metric and φ(xλ) a two-dimensional scalar field, the Einstein-

Hilbert action reduces to

I =
Ωn+1r

n+1
0

16πG

∫
d2x
√
−ge−2φ

(
R+

4n

n+ 1
(∇φ)2 +

n(n+ 1)

r2
0

e4φ/(n+1)

)
, (4.46)
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and in the limit n→∞ becomes the two-dimensional string effective action

I =
1

16πG2

∫
d2x
√
−ge−2φ

(
R+ 4 (∇φ)2 + 4Λ2

2

)
, (4.47)

with

G2 = lim
n→∞

G

Ωn+1r
n+1
0

, Λ2 =
n

2r0
. (4.48)

Indeed the metric (4.44) is a solution of this action with dilaton profile

φ = − ln cosh ρ. (4.49)

We notice that keeping n/r0 finite amounts to keeping finite the Hawking temperature

TH =
Λ2

2π
, (4.50)

for the large d Schwarzschild-Tangherlini black hole, while for the two-dimensional string black

hole, the temperature conjugate to the time t is 1/2π, in other words 1/n times smaller.

An interesting and, somehow, surprising fact is that one can motivate the appearance of

effective strings living near the horizon. This argument uses the Hagedorn behaviour of the

system via thermodynamics. Indeed for a Schwarzschild black hole in arbitrary dimensions

we saw that the entropy (4.32) scales as S(M) ∼ M1+ 1
d−3 . Taking the large d limit the

entropy becomes that of a gas of strings with a Hagedorn spectrum

S(M) ∼M (4.51)

whose thermodynamic stability depends on the details of logarithmic correction of this

entropy formula.

Analogously, the entropy of a conformal gas with energy E in d dimensions is given as

S(E) ∼ E1− 1
d where in the large d limit again gives

S(E) ∼ E, (4.52)

but now from the side of positive specific heat. In a sense, two-dimensional effective string

theory instructs us to relate the string length as

√
α′ ∼ r0

d
, (4.53)

such that the large d expansion is related to the α′ expansion of the two-dimensional effective

string. This leads to a Hagedorn temperature

TH ∼
d

r0
(4.54)

For each dimension d there is a critical value of compactification length (LGL) for which

the black string becomes unstable [185]. In [203] it was proved analytically and in the large

d limit the relation of the black hole horizon with the wavelength is

kGL ≈
√
d

1

r0
, (4.55)
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d 5 6 7 8 9 10 11 19 29 49 99

kGL 1.27 1.58 1.85 2.09 2.30 2.50 2.69 3.89 5.06 6.72 9.75

kphys
GL 1.33 1.63 1.9 2.13 2.34 2.54 2.72 3.90 5.02 6.72 9.75

Table 4.1: Critical wavelengths of (4.55) (up) and (4.58) (down) for various dimensions. Here

kGL is in units of r0 from the original work of [203] and the agreement between them in large

values of d is evidence of the validity of the large d analysis.

the latter being the tachyonic mode which signals the Gregory-Laflame instability. The

wavelength is also given as

LGL =
2π

kGL
≈ 2πr0√

d
. (4.56)

At exactly this length the black string becomes unstable and we expect the Gregory-Laflame

transition to be happening [185]. Note however that in order for this to be feasible we have

to ensure that it is not the case r0 � LGL because then the black hole would not ”fit”

into the compact dimension. This argument was initially appeared in [185, 204]. After the

appearance of the first negative Schwarzschild mode from Gregory and Laflamme, many

other works appeared improving these results [185, 197, 205–208]. The wavelength has been

improved to [207]

k̃GL = 1− 1

2n
+

7

8n2
+
−25

16 + 2ζ(3)

n3
+O(n4), (4.57)

where n = d − 3 as in (4.39) and ζ(x) is the Riemann zeta function. In the same work it is

reported that the physical wavelength number is rescaled as

kphys
GL →

√
nk̃GL (4.58)

due to the large D metric of black strings.

When we use these data to give a rough estimate of the Hagedorn temperature (4.54) we get

that the physical Hagedorn temperature is

T physH ∼
√
d− 3√
d

k̃GL. (4.59)

Note that the treatment at this level is qualitative and precise coefficients are not known.

The physical wavelength (4.58) indeed reproduces the previous known values up to accuracy

2%. In table 4.1 we give a comparison between kGL and kphys
GL . In addition we give a

comparison of the various temperatures (4.21), (4.22) and (4.59) in Fig. 4.4. It is important

to note that we are just pointing out a striking similarity of large d expansion between a

quantum mechanical large d theory and a gravitational higher dimensional theory.

Validity of the comparison

The comparison between the gravitational theory and the gauge theory should not be taken

as established. In fact we are missing many precise factors in the gravitational side and

therefore any quantitative analysis is at most preliminary. This is most obvious to see if one

is willing to continue the comparison in Fig. 4.4 to larger d values where the gravitational

curve crosses the gauge curves for the temperature.
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T2(d)

T1(d)

Tgrav (d)
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Figure 4.4: Behaviour of temperatures with respect to spatial dimensions d. T1 and T2 are

taken from large d expansions of field theory while Tgrav is from the gravitational analysis of

black strings.
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Figure 4.5: Comparison of the concluded simulation transition temperatures Tc with respect

to T1 and T2 from (4.21) and (4.22) respectively. The two left-most points are from [193]. We

note that we simulate N = 64, S = 24 so that we do not take into account the large N limit

and continuous values in simulations due to time efficiency and hence the mild discrepancy.

However the points follow the pattern of the analytic curves in the large N , continuous and

large d limit modulo a shift on the y-axis.

On the other hand, and based on the gauge/gravity duality, it is not unreasonable to

ask the question whether the growth of the temperature predicted by a gauge theory could

be qualitative reproduced by a gravitational theory. This is a well-defined question and the

comparison between the two could be done at least qualitatively because not all ingredients

are known (at least for the gravitational side). Such a scenario has not been discussed in the

past and indeed it is an interesting question to ask. In fact, the main motivation was to check

whether or not we can confirm the predictions for T1,2(d) quantitatively from simulations,

while the comparison with gravity will be at best qualitatively.

In any case, the former motivation, e.g to capture the characteristic behaviour of the

gauge theory prediction was of legitimate interest, but the comparison with any gravitational

theory in a precise sense will be a mystery until these kind of projects will get more scientific

momentum and putted into more solid grounds.
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d=37 d=40 d=44 d=49 d=59

T1 0.909947 0.915124 0.921955 0.931965 0.946347

T2 0.914528 0.919358 0.925803 0.933779 0.949235

∆T 0.004581 0.004234 0.003849 0.003460 0.002888

Tc 0.890(2) 0.8950(2) 0.901(1) 0.908(1) 0.922(2)

Table 4.2: Critical temperatures predicted for T1,2 using equations (4.21) and (4.22). Tc is

the observed temperature in the simulations.

4.2.4 Numerical results

For the numerical analysis we have simulated the model (4.19) for different dimensionality of

the spacetime. Note that in the matrix model this simply translates to different number of

matrices. We shall write D = d+ 1 as usual.

We have performed a broad scan of temperatures for D = 38, D = 41, D = 45, D = 50 and

D = 60 starting from T = 0.1 and up to T = 1.5 with N = 32 and S = 24. Having located

approximately the transition to be happening around Tc we switched to N = 64, S = 24

and performed high statistics to see any possible signal structure of the Polyakov loop. The

relevant critical temperatures are reported in table 4.2. Near these transition temperatures

we observe a non-uniform and gapped distribution in the Polyakov eigenvalues as can be seen

in Fig. 4.6.
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Figure 4.6: Distribution of the eigenvalues of Polyakov loop around the transition temperature

Tc for N = 64, S = 24. [Up]: From left to right d = 37, 40, 44 and Tc = 0.89, 0.8946, 0.901

respectively. [Down]: From left to right d = 49, 59 and Tc = 0.908, 0.922 respectively.

According to Fig. 4.2 we observe a non-uniform gapped distribution for all temperatures.
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Both in Figs. 4.7 and 4.8 we observe an obvious transition. This transition, indeed

qualifies to be related to a confinement/deconfinement transition. First of all, as we explained,

the Polyakov loop gets an obvious amplification from 〈P 〉 ' 0 to 〈P 〉 ' 1/2. Secondly, the

(free) energy gets shifted byO(N2). When these parameters behave in this way, we recall from

the discussion in Sec. 3.6 that in the dual gravity theory (if there exists) upon the transition to

the deconfined phase the system behaves as a black hole, in a sense that the geometry it forms

has the topology of a black hole with a horizon setted by the temperature T . The Fig. 4.7 has

significant more statistics than Fig. 4.8. Note that while it is obvious to find the transition

temperature for each d, it is not so easy to draw meaningful conclusions for the order of

the transition at this level. We have approximately located the confinement/deconfinement
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Figure 4.7: [First row] The Polyakov loop around the transition temperature Tc for N =

64, S = 24 at d = 37, 40, 44 respectively. [Second row] the same parameters for
∑

TrX2
i .

[Third row] Again the same parameters for the energy. We see that for the energy there is

a jump of order N2 which confirms a confinement-to-deconfinement transition as it can also

be shown from the Polyakov loop in the first row.

temperatures by looking in the Polyakov histograms and observing peaks near zero and one
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Figure 4.8: [First row] The Polyakov loop, the energy and
∑

TrX2
i around the transition

temperature Tc for N = 64, S = 24 at d = 49. [Second row] the same parameters for d = 59.

We see again that the energy jump is of order N2 which is accompanied by a transition in

the Polyakov loop signalling a confinement/deconfinement transition.

half. A two peak signal indicates a first order transition while a three state peak a higher

order. The main point, as can be seen from Figs. 4.7, 4.8 is that there is not a clear distinction

between a first and a higher order transition because we do not clearly see neither a two-state

nor a three state signal. There could be mainly two reasons for this. Either larger statistics

is needed or larger N and d values or just both. Even though the order of the transition is

not clear, what is more clear is the temperature for which this transition happens. We clearly

see a jump in the Polyakov loop from around 〈P 〉 ' 0− 0.2 to 〈P 〉 ' 0.4− 0.6 accompanied

with an energy jump of order N2. Indeed this is a formation of a black hole-like geometry as

we discussed previously.

Even more interestingly, the transition temperatures follow the patterns of the continuous

lines predicted from the gauge theory using large d analysis given by equations (4.21) and

(4.22) as it can be observed in Fig. 4.5. The discrepancy with the continuous lines is shows

an almost constant shift towards the y axis and it could be a number of factors contributing

on this. At the same time, the pattern of the continuous lines is reproduced by the observed

temperatures up to a(n almost) constant shift along the y-axis.

We may also note that the comparison with the gravity analysis is not precise since the

precise coefficients used are not known and not included in the gravitational temperature

investigation. Yet the connection of large d black holes with two-dimensional string theory

with a specific dilaton profile might shed some light on this in the future. Since our interest

is not a high d analysis we do not investigate more on this direction but rather report an

interesting observation. We leave the continuation of this work for a future observer.

123



4.3. CONFINEMENT-DECONFINEMENT IN BMN MODEL AND
APPEARANCE OF M-THEORY

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MC time

|P|
R2 10

0 50000 100000 150000 200000 250000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MC time

|P|
R2 10

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MC time

|P|
R2 10

0 50000 100000 150000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MC time

|P|
R2 10

Figure 4.9: Monte Carlo histories near the transition temperatures at N = 64, S = 24

configurations. [Up-left]: Monte Carlo history for d = 37 at T = 0.89. [Up-right]: similarly

for d = 40 at T = 0.8946. [Bottom-left]: d = 40 and T = 0.895. [Bottom-right]: d = 44 and

T = 0.901.

Gauge gravity duality for large d?

It seems like an interesting possibility to relate high d gauge theories written in

terms of matrices with high d gravitational theories. A relation between the two,

if exists does not necessarily mean duality. We just saw above that the confinement-

to-deconfinement transition temperature in the gravity side, could be related to the

topology transition temperature of a higher dimensional black hole known as the

Gregory-Laflamme instability. We may also note that the details of both theories

at this level do not necessarily lead to any obvious claims, since only bosonic data

are used from the gauge side and not precise coefficients are used for the gravity side.

At this level we can claim that simulations seem to capture the right behaviour for

the transition temperature motivated by large d gauge theories. Whether or not this

is related with a gravitational theory containing a Gregory-Laflamme or some other

transition we do not yet know.

4.3 Confinement-deconfinement in BMN model and appearance

of M-theory

In this section we are changing a bit gears and explore more deeply the confinement-to-

deconfinement transition and its relation with a known gravitational dual. More precisely,

we will see that the type IIA black zero-brane is not always a good gravity candidate for the

description of matrix models especially in the very low energy/temperature regime (recall

also Fig. 3.4). The black zero-brane geometry is always deconfined, while as we will argue in
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this section we could also observe the confined phase at very low temperatures. This amounts

to crossing the diagonal line of Fig. 3.4 and entering the M-theory region. The question that

arises in this case is what is confined then? Building intuition from the analysis we did

in Sec. 3.6 we will argue that this amounts to a confined gas of supergravitons in eleven

dimensions as we pictorially demonstrate in Fig. 4.15.

4.3.1 Introduction

The thermodynamic features of the D0-brane matrix model [53,209,210] and its one-parameter

deformation BMN matrix model [211] are of great theoretical interest and, therefore, have

been the subject of many investigations. Here we extend the insights gained by numerical

simulations of these theories and provide a different viewpoint on their properties. Our main

motivation is to give evidence that M-theory [212] and Schwarzschild black holes can be

described by these matrix models.

M-theory plays an important role in the web of string dualities. It is the eleven-dimensional

theory which has membranes as fundamental degrees of freedom. It appears as the strong-

coupling limit of type IIA superstring theory, and its low-energy limit should be eleven-

dimensional supergravity [213]. There exist a few proposals for nonperturbative formulation

of M-theory based on the holographic principle. Among them, we consider the one based on

the matrix-model approach [53, 209, 210]. 4 The history of this approach dates back to the

1980s when the M-theory proposal had not been made yet. At that time, the quantization

of a supermembrane in eleven-dimensional spacetime was discussed, and a matrix model,

which is called the BFSS matrix model today, was introduced as a natural regularization of

the supermembrane in the light-cone gauge [209]. Later, this model was re-discovered as a

candidate for the nonperturbative regularization of M-theory [53].

Further analysis using gauge/gravity duality [130] suggested that the BFSS matrix model

can describe M-theory, type IIA superstring theory, and the phase transition between them [210],

based on the calculations on the string/M-theory side of the gauge/gravity duality. The BMN

matrix model [211] is a one-parameter deformation of the BFSS matrix model discussed in

Refs. [53,209,210]. It has a rich phase structure and is often easier to analyze both analytically

and numerically. Thermodynamic features of the BFSS matrix model have been studied

intensively, starting from Ref. [214]. Agreement with type IIA superstring has been obtained

with good precision using lattice simulations; for example, see Ref. [134] for numerical results

at large-N and in the continuum limit. However, the parameter region in which the BFSS

matrix model is expected to be dual to M-theory has not been studied in the past. Doing

so was believed to be a very hard task because the stringy correction to the effective string

coupling constant becomes large at temperature T ∼ N−10/21, which is a parametrically low

temperature in the large-N limit. In this project, we propose a much easier way to identify

the M-theory parameter region.

Black hole thermodynamics [215, 216] led to various deep insights into quantum gravity

and quantum field theory, and gauge/gravity duality provides us with an ideal setup for the

4Another promising direction, to which numerical method similar to the one used in this project can be

useful, is to study gauge theories dual to D2-branes or M2-branes. Maximally supersymmetric Yang-Mills

theory in 2 + 1 dimensions is dual to D2 or M2, depending on the parameter region [210], and hence, physics

similar to the one considered in this project would be seen. See Ref. [142] for a lattice simulation of this

theory.
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study of the quantum aspects of black holes and emergent geometry in holographic duality.

It has been successful for describing ‘large’ black holes which have positive specific heat.

Detailed nonperturbative and quantitative tests based on Monte Carlo simulations for the

BFSS matrix model were performed in Ref. [214] and following projects, and good agreement

was also observed for D1-brane and D2-brane theories [139, 140, 142, 217]. Here, however,

we are especially interested in small black holes with negative specific heat. Holographic

duality should also be applicable to small black holes, including usual Schwarzschild black

holes. For example, 4d SYM on S3 should describe the 10d Schwarzschild black hole [218].

The BFSS matrix model at very low energy should describe an 11d Schwarzschild black hole

in M-theory [210]. One of the goals of this project is to give evidence that the BFSS matrix

model and BMN matrix model do describe small black holes.

In principle, the real-time dynamics of the matrix model can be efficiently simulated on

quantum computers [141]. Hence, in the future, it might even become possible to study

the entire life of a small black hole — from the formation via gravitational collapse to

eventual evaporation — in a controlled manner in a fully quantum setup, in the context

of superstring/M-theory.

Another, but very closely related, motivation is that we want to understand the microscopic

mechanism of the confinement/deconfinement transition. Under the prism of gauge/gravity

duality, deconfinement and the formation of a black hole are equivalent as we explained in

Sec. 3.6 [219]. Strong-coupling results based on dual gravity analyses and weak-coupling

results [167, 220] show striking similarity, while the latter show universal features regardless

of the details of the theories [220]. Such generic features can naturally be understood in

the framework of partial deconfinement [136, 152, 221, 222]: Between the confined phase (∼
thermal AdS) and the deconfined phase (∼ large black hole) of SU(N) gauge theory, there

exists a partially-deconfined phase (∼ small black hole) in which an SU(M) subgroup (0 <

M < N) is deconfined. For several theories, partial deconfinement has been demonstrated

analytically at weak coupling [221, 223], and numerically at strong coupling [224]. In this

project, we provide evidence that the D0-brane matrix model provides us with an ideal setup

to which a dual gravity analysis is tractable. As a byproduct, we will see that the confined

phase, which has not been considered before, should exist, and can be (meta-)stable up to

rather high temperature (see Fig. 4.10 for our conjecture). Once knowing it to exist, it is

not hard to find such a confined phase numerically. Note that the existence of the confined

phase is a consequence of the dual M-theory description and not the type IIA string theory

description.

4.3.2 Short summary of the main claim

In this section, we summarize the main claims of the paper. The numerical evidence will be

explained in later sections, together with various potential subtleties.

We study the thermodynamic features of the BFSS matrix model and BMN matrix model.

These models can have various nontrivial backgrounds. In this paper, we are interested in

the ‘trivial’ background. We carefully study the properties of the configurations obtained

in our simulations and extract the configurations corresponding to the trivial background.

The relevant parameters are the temperature T and the flux parameter µ. The BFSS matrix

model is obtained by setting µ = 0.

Based on lattice Monte Carlo simulations and dual gravity analyses, we propose the
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Figure 4.10: A cartoon picture of the (meta-)stable phases in the BFSS matrix model at finite

temperature in the ’t Hooft large-N limit (λ = g2N fixed). Red and blue lines characterize

the deconfined and confined phases, respectively. In the past, the existence of the confined

phase was not pointed out. Both are minima of the free energy, and the deconfined phase

is the global minimum at any temperature. The existence of the confined phase is a natural

consequence of the dual M-theory description, hence, the numerical confirmation of the

confined phase on the matrix model side would be an interesting clue towards demonstrating

the validity of the M-theory description.

following phase structure in the µ-T plane. If we vary T at fixed µ, there is a first-order

phase transition with a strong hysteresis (see the left panel of Fig. 4.11, and also Fig. 4.16).

The high-temperature, high-energy phase is deconfined (the Polyakov loop P is nonzero)q,

low-energy phase is confined (the Polyakov loop is zero). These phases are the minima

of free energy. There is a local maximum of free energy separating these two phases, whose

corresponding states are partially-deconfined.5 There are three kinds of critical temperatures,

Tc, T1, and T2 (see Fig. 4.11, and also Fig. 4.16). Tc is the temperature where the free

energies of the confined and deconfined phases coincide. At T > Tc (resp., T < Tc), the

deconfined phase (resp., confined phase) is the global minimum. Temperature T1 is the

highest temperature for the confined phase, i.e, the confined phase is a local minimum of the

free energy for Tc < T < T1, and this minimum disappears for T > T1. Temperature T2 is

the lowest temperature of the deconfined phase which is a local minimum of the free energy

at T2 < T < Tc. As a function of µ, Tc is monotonically decreasing, as shown in Fig. 4.22.

Let us briefly summarize how this phase diagram is obtained and how it is related to

M-theory.

BFSS matrix model (µ = 0)

Let us start with the BFSS matrix model (µ = 0). Ref. [210] studied the BFSS matrix model

based on the dual gravity picture. The authors found the phases corresponding to a type

IIA black zero-brane and the M-theory black string or black hole. It is natural to identify

the type IIA and M-theory phases with the completely- and partially-deconfined phases,

5The partially-deconfined phase is stable in the microcanonical ensemble.
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Figure 4.11: Typical shapes of confinement/deconfinement phase transition line in large-N

gauge theories. The solid and dashed lines are minimum and maximum of the free energy

at each fixed temperature. Similar plots can be drawn by taking the vertical axis to be the

energy E instead of the Polyakov loop P . (This figure appeared originally in Ref. [136].)

respectively.6,7

Because of the existence of the partially-deconfined phase, we expect yet another, namely

a completely-confined phase, which is likely to be dual to a graviton gas in eleven-dimensional

spacetime; see Fig. 4.12. (Such a phase was not discussed in Ref. [210].) On the gravity side,

T1 is the highest possible temperature of the eleven-dimensional black hole. A very rough

estimate for T1 is T1 & N2/9, as explained in Sec. 4.3.5, and hence, the confined phase should

survive up to a rather high temperature. T2 is interpreted as the temperature where the

M-theory circle becomes large, and the transition from black string to black hole (Gregory-

Laflamme transition [229]) takes place [210] and is estimated to be T2 ∼ N−5/9 [230]. In fact

this is easily estimated if we set the entropy of the black zero-brane (3.121) to be ∼ N recalling

the discussion we did around Fig. 3.5. (See, e.g., Refs. [231–234] for detailed calculations

for Gregory-Laflamme transition, and Ref. [235] for those with a boost.) Our numerical

simulations confirm the existence of the confined phase. Such a confined phase is tantalizing

evidence for the M-theory phase in the matrix model.8

Tc should be close to T2, because otherwise the black zero-brane in type IIA supergravity

(or boosted uniform black string in M-theory, which is essentially the same as a black zero-

brane) is a good approximation, and we find sufficiently small free energy. Specifically, both

T2 and Tc are expected to be zero in the strict large-N limit. For T2 < T < T1, we expect a

two-state signal in the Monte Carlo simulations if N is sufficiently large. In the histograms

of the energy or the Polyakov loop observables, there should be two peaks corresponding

to two minima of free energy. The local maximum of the free energy should be seen as a

dip separating the two peaks. However, in our simulation, we did not observe the two-state

signal; the deconfined phase is too unstable for the small values of N we could study with

available computer resources (N ≤ 16). As a consequence, we could not determine T2 and

Tc.

6Here, we are assuming that the latter has negative specific heat and hence corresponds to the local

maximum of free energy; see Sec. 4.3.5 and Appendix C. On the large-energy, low-temperature side of the

M-theory phase the dual picture is a black string, while on the low-energy, high-temperature side it is a black

hole.
7From a different angle, Refs. [225–228] proposed that the BFSS matrix model describes an 11d black string

or black hole boosted along the M-theory circle.
8As far as we notice, the existence of the confined phase in the BFSS matrix model has not been appreciated

in the past.
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Figure 4.12: A conjecture for the relationship between free energy F versus energy E at fixed

temperature T in the BFSS matrix model. An 11d Schwarzschild black hole gives the local

maximum which separates the two minima. (See Appendix C for why negative specific heat

implies a free energy maximum.)

BMN matrix model

We studied the BMN matrix model in order to confirm the two-state signal and give stronger

support for the validity of the M-theory description in the BFSS limit. The large-µ region is

weakly-coupled, and hence perturbative methods are applicable. The small-µ region (more

precisely, small but order N0) can be studied via dual type IIA supergravity. By combining

the large-µ and small-µ analyses, Ref. [236] conjectured that the transition is of first order

at any µ, and the critical temperature Tc decreases monotonically as a function of µ and

becomes zero at µ = 0 (the left of Fig. 4.13).

We performed Monte Carlo simulations at various values of µ and observed quantitative

agreement with the phase diagram conjectured in Ref. [236]. We observed clear two-state

signals at µ ≥ 0.5, and even at µ = 0.3 our results support the existence of a first-order

transition. As shown in Fig. 4.22, the critical temperature Tc agrees well with the conjecture

in Ref. [236] at µ ≥ 0.8. Apparent deviation at µ < 0.8 can naturally be explained by taking

into account finite-N corrections on the gravity side.

The BFSS and BMN matrix models are defined via the actions (3.86), (3.96). In this

project, we will consider the thermodynamic features of the BFSS and BMN matrix models.

There are three parameters: the ’t Hooft coupling λ = g2
YMN , the temperature T and the

flux µ. As explained earlier the ’t Hooft coupling has a dimension of (mass)3, and can be set

to 1 by proper rescaling of time t and matrices. In other words, all dimensionful quantities

are considered in units of λ. For example T , µ, and the energy E are actually λ−1/3T, λ−1/3µ

and λ−1/3E. We mainly focus on the ’t Hooft large-N limit,9 in which T and µ are fixed and

the energy is proportional to N2.

9The only exception is when we discuss a relation to the M-theory region, which requires a different kind

of large-N limit.
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Figure 4.13: Two kinds of conjectured phase diagrams of the BMN matrix model. The large-

µ region permits perturbative calculations [151, 237], and the transition is found to be of

first order. The small-µ region has been studied by using the dual gravity description [236]

but the order of the transition has not been established. We will argue that the left panel

(first-order scenario) is likely to be true.

As we saw, in the BFSS matrix model, the potential term −1
4 [XI , XJ ]2 vanishes if the

matrices commute with each other. Therefore, at the classical level, there are flat directions.

Due to supersymmetry, a remnant of these flat directions survives at the quantum level.

Namely, the energy of almost-diagonal configurations XI ' diag(x1
I , x

2
I , · · · , xNI ) can be

asymptotically small when the distance between diagonal entries
√∑

I |xiI − x
j
I |2 is large.

These diagonal entries are regarded as the locations of D0-branes.

Despite the existence of flat directions, D0-branes can form a bound state.10 In this

project, we will consider the ‘trivial vacuum’, in which all D0-branes are bound together.

The trivial vacuum becomes more and more stable as N becomes large.

4.3.3 Trivial and fuzzy-sphere vacuum in the BMN matrix model

In the BMN matrix model, the flat direction is lifted due to the deformation term. Instead,

it has multiple supersymmetric vacua characterized by the fuzzy-sphere classical solution11

Xi = µJi (i = 1, 2, 3) , Xa = 0 (a = 4, · · · , 9) , ψ = 0 , (4.60)

where Ji are the generators of an SU(2) algebra. As long as they satisfy the standard

commutation relation [Ji, Jj ] =
√
−1εijkJk, any representation is allowed. In addition, a

generic representation is characterized by the spin s = 0, 1
2 , 1,

3
2 , · · · and the number of spin-s

10For the precise meaning of this bound state, see Ref. [238].
11Strictly speaking, the configuration (4.60) should be interpreted as the center of a wave packet. See [238]

for details.
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representations ns. The matrix size N is N = (2s + 1)ns and the classification of vacua

is characterized by partitions of N [211]. One more interesting point of view is that the

classification of these vacua on the gravity side can be interpreted as an electrostatic problem

[239,240].

The mathematical reason why these vacua are interpreted as fuzzy-sphere vacua is that the

matrices Xi can be interpreted as the embeddings Xi : S2 ↪→ R3. Being assigned to generators

of SU(2) they generate non-commutativity on the surface of S2 justifying the fuzzy-sphere

interpretation [241]. On equal footing is the interpretation from string theory, where the

diagonal elements of the matrices Xi,a are interpreted as positions of D0-branes and non-

diagonal elements as open strings between them. In the case of fuzzy sphere configurations,

D0-branes are in a non-commutative sense localized on the surface of S2 which furthermore

lives in R3 ⊂ R9. The interpretation of D2-branes as consisting of D0-branes is well known

in string theory where under the presence of fluxes (µ in our case) D0-branes polarize and

form non-commutative structures [242].

Hence, fuzzy-sphere vacua can be interpreted from the gravity perspective as concentric

fuzzy spheres consisting of D0-branes, placed at the center of R6 and living only in the three

dimensional subpart of spacetime whose radii scale as

rs ' µs . (4.61)

When n0 = N and ns≥1 = 0, the ground state is given by

X1 = X2 = · · · = X9 = 0 , ψ = 0 . (4.62)

This state is called the “trivial” vacuum. Despite its simple appearance, the trivial vacuum

has rich, nontrivial features. In this project, we focus on this vacuum.12

At the classical level, the radius of the spin-s fuzzy sphere is µ
√
s(s+ 1). As µ becomes

smaller, the radii of the fuzzy spheres approach zero, and hence, tunneling from the trivial

vacuum to nontrivial fuzzy-sphere vacua can happen more easily. Hence, it is crucial to

ensure that the combination µN (see appendix A) is large enough to avoid ending up in an

undesirable vacuum. At zero temperature, the quantum fluctuation of each matrix entry

is roughly 0.6N−1/2 [238].13 The radius of the smallest nontrivial fuzzy sphere (s = 1
2) is

µ
2

√
3. The radius of the largest fuzzy sphere (s = N−1

2 ) is µ
2

√
N2 − 1. Therefore, when N

is not so large, say N = 16, all possible fuzzy spheres are buried in quantum fluctuations if

µ . 0.018. On the other hand, if µ is fixed and N is sent to infinity, all fuzzy-sphere vacua

are distinguishable [238].

The Myers term is a convenient order parameter for the formation of fuzzy spheres. It is

defined by

M =
i

3Nβ

∫ β

0
dt

3∑
i,j,k=1

εijk TrXiXjXk . (4.63)

We monitor it during the simulations. In addition, the different Tr (Xi)2 for each i are

measured to identify nontrivial vacua. The classical value of M is µ3

3N

∑
s nss(s+ 1)(2s+ 1),

12Unlike here, Ref. [243] focused on the transition between various vacua.
13The value 0.6N−1/2 is the standard deviation. The order-one factor can be determined numerically, from

the expectation value of
∑9
I=1 TrX2

I , which is approximately 3.5N [134]. There are 9N2 matrix entries and

hence
√

3.5N
9N2 ≈ 0.6N−

1
2 .
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which is 0 for the trivial vacuum, µ
3(N2−1)

12 for the largest fuzzy sphere (single fuzzy sphere of

s = N−1
2 ), and µ3

4 for N
2 fuzzy spheres of s = 1

2 . We can detect a formation of a large fuzzy

sphere or many small fuzzy spheres, unless µ is too small, by monitoring M or R2 defined by

R2 =
1

Nβ

∫ β

0
dt

9∑
I=1

TrX2
I . (4.64)

However, it is difficult to detect the formation of a small number of small fuzzy spheres by

monitoring M . Still, when such ambiguity arises, it is unlikely that the properties of those

vacua such as the deconfinement temperature are significantly different. Therefore, we neglect

this subtlety in the present project. To summarize all the above, we show the normalized R2
i

and R2
a as well as the Myers term (4.63) in Fig. 4.14.
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Figure 4.14: Fluctuations of the first three matrices TrX2
i /3 and TrX2

a/6 grouped together

show an obvious breaking of the symmetries. The parameters shown are N = 16, S = 24, T =

0.23 and µ = 0.6. We see that the Myers term is very small, indicating not a formation of a

big fuzzy sphere. On the other hand, a priori there could be many small fuzzy spheres and

in such a scenario the Myers term cannot distinguish these configurations.

4.3.4 Conjectured phase structure at finite temperature

In this section we present our conjecture regarding the phase diagram of the BMN and BFSS

models. Numerical evidence will be shown in Sec. 4.3.7.

First, let us discuss some generic features of the confinement/deconfinement transition at

large N .

As we saw earlier, the distribution of the phases of the Polyakov line, which we denote as

θ1, θ2, · · · , θN , provides us with a convenient way to understand the confinement/deconfinement

transition. In the large-N limit, we can use a continuous function ρ(θ) defined at −π ≤ θ < π

and normalized as
∫ π
−π dθρ(θ) = 1 to describe the distribution of θ. Roughly speaking,

there are three kinds of phases visualized in Fig. 4.2 [167, 220]:14 the uniform (blue), non-

uniform and non-gapped (orange) and non-uniform and gapped (red) phases. They can

14Note that we are considering the thermal transition here. When the different boundary conditions such
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be understood as the confined, partially-deconfined (equivalently, partially-confined) and

completely-deconfined phases, respectively [136,221,222].

For historical reasons, let us call the transition between the uniform phase and the

non-uniform, non-gapped phase (resp., the non-uniform, non-gapped phase and the non-

uniform, gapped phase) the Hagedorn-like transition (resp., the Gross-Witten-Wadia (GWW)

transition).15 Let T1 (resp., T2) be the transition temperature for the Hagedorn-like transition

and the GWW transition, respectively. In Fig. 4.11, a sketch of the temperature dependence

of the Polyakov loop P is shown. From left to right, the panels correspond to T1 > T2,

T1 = T2, and T1 < T2 respectively. The case with T1 = T2 can be found, e.g., for the

weak-coupling limit of 4d Yang-Mills theory on S3. In this case, at the critical temperature

T = T1 = T2, states with different values of P have the same free energy, and hence, all of

them are equally important in the canonical ensemble. Such degeneracy in the free energy

comes from the cancellation of the entropy factor and the Boltzmann weight, which is the

same as the mechanism of the Hagedorn growth in string theory [246]. As we argued before,

this gives a nice intuitive connection between deconfinement and the formation of a black

hole [167, 220]. When the interaction is introduced, depending on the details of the theory,

the vertical orange line can be tilted toward the left (T1 > T2) or right (T1 < T2). In the

former case, the non-uniform, non-gapped phase has negative specific heat (i.e. dE
dT < 0;

note that the energy E increases with P ), and in the canonical ensemble, this is a maximum,

rather than a minimum, of the free energy at each fixed T . Such phase resembles the so-called

small black hole [220]. Partial deconfinement gives a natural way to understand the negative

specific heat [136]. Note that, in the canonical ensemble, a first-order transition analogous

to the Hawking-Page transition [219,249] with hysteresis is expected when T1 > T2.

4.3.5 BFSS matrix model (µ = 0)

In this subsection, we argue that the BFSS matrix model should have a confined phase

corresponding to a metastable vacuum. The dual M-theory description plays a crucial role,

and hence, the confirmation of confinement is tantalizing evidence for the dual M-theory

description.

’t Hooft large-N limit via dual IIA superstring theory

Let us consider the ’t Hooft limit of the BMN matrix model at µ = 0, corresponding to the

BFSS model. The deconfined phase is dual to a black zero-brane in type IIA string theory

[210]. According to this, the dual gravity analysis predicts that the energy at sufficiently

low temperature is E ' 7.41N2λ−3/5T 14/5 up to stringy corrections. No phase transition

as the periodic boundary condition are used, other types such as the multi-peak distribution can appear as

well. Recently, an analogue of deconfinement in the index of 4d N = 4 SYM was found [244], and multi-peak

distributions were reported in, e.g., Ref. [245]. Sometimes, such phases are called ‘partially-deconfined phase’

as well. Note also that, at strong coupling, the phase structure may be richer, and we may need to use other

order parameters as well; in the dual gravity description, various black hole solutions can exist.
15When the free-string picture is available, the transition between the uniform phase and the non-uniform,

non-gapped phase is actually the formation of the Hagedorn string [246], as long as the ’t Hooft coupling is

not too large. Such an interpretation may not be valid when the gravity dual is M-theory. The word “GWW

transition” is used to mean the formation of the gap in the eigenvalue distribution. In the weakly-coupled

theory studied in Refs. [167,220], this transition is of third order, resembling the original Gross-Witten-Wadia

model [247,248].
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Figure 4.15: This figure summarises the discussion in the main text. The colours are selected

such that they much with Fig’s. 4.12, 4.2 and 4.16. In particular, going downwards in

the diagram we are going to strong coupling regime since geff = λ
E3 , and according to the

discussion in the main text we expect a Gregory-Laflamme type of transition to be happening.

The intermediate phase with negative specific heat (C < 0) corresponds to a Schwarzschild

black hole localised along the compact dimension x11. The reason how this black hole appears

small and how it fits in x11 is explained in Appendix D. In addition, it serves as phase

separator between the phase of confinement which corresponds to a graviton gas in 11D and

the phase of deconfinement which represents a black string in 10D. These phases themselves

correspond to maximum, and two minima respectively in the free energy.

is expected; at any nonzero temperature, the energy is of order N2, and hence, the system

is in the deconfined phase. This conjecture has been tested via Monte Carlo simulation by

several groups, e.g., Refs. [134, 143–146, 150, 214, 250]. In Ref. [134], the large-N , continuum

limit has been taken in a wide temperature region λ−1/3T ≥ 0.4. Even at λ−1/3T = 0.4,

the distribution of the Polyakov line phases ρ(θ) is clearly gapped, and the energy can be

fit by the ansatz based on the weakly-coupled string theory. As long as the dual type IIA

description is valid, we expect only the deconfined phase.

As we will discuss below, a confined phase ( E
N2 → 0, P → 0 as N →∞ at fixed T and fixed

λ) can also exist.16 Except for the parametrically low temperature, the confined phase has

larger free energy than the deconfined phase, and hence, it does not dominate the canonical

ensemble. Still, such a metastable phase can be identified in Monte Carlo simulations if we

choose the initial configuration for the simulation carefully. We will argue that the existence

16This is not the ’t Hooft large-N limit, and standard ’t Hooft counting does not hold.
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of this confined phase constitutes strong evidence for M-theory on the gravity side.

M-theory and confinement

Let us continue the study of µ = 0, but depart from the ’t Hooft limit and go to parametrically

small energy in the microcanonical ensemble. As we will see, dual gravity picture suggests a

first-order transition in the canonical ensemble.

Based on the gauge/gravity duality, it was conjectured [210] that there are two phases

dual to the type IIA black zero-brane and M-theory black hole (11d Schwarzschild black hole),

based on the analysis of the gravity side. Separately, Refs. [225,226,228] studied the matrix-

model description of the 11d Schwarzschild black hole and discussed how thermodynamic

relations might be explained. More precisely [210,228]:

� At E & N2/3λ1/3 and T & N−10/21λ1/3, a type IIA black zero-brane is a good dual

description. The energy and entropy scales as E ∼ N2λ−3/5T 14/5, S ∼ N2λ−3/5T 9/5.

The specific heat is positive.

� Below E ∼ N2/3λ1/3, the M-theory circle is relevant in the thermodynamic analysis.

When the energy is not too small, the appropriate object in the dual picture becomes

the uniform black string wrapped around and boosted along, the M-theory circle.

This object is a trivial M-theory uplift of black zero-brane, and hence thermodynamic

properties are similar to those of a black zero-brane.

� When the energy is lowered further, the Gregory-Laflamme transition [229] to a localized

boosted 11d black hole takes place at S ∼ N and T ∼ N−5/9 [230].

Therefore it is natural to expect T2 ∼ λ1/3N−5/9. Note that this is outside of the ’t Hooft

scaling regime T ∼ λ1/3N0 and we expect that Tc is close to T2.

The detailed properties of the M-theory black hole are not known. However, a few generic

features can be inferred. Firstly, we expect that the dual geometry is a black hole and

graviton gas in a finite-size box, analogous to AdS times sphere. In Refs. [225–227], it is

assumed only a part of D0-branes (or more precisely, matrix degrees of freedom) participate

in the Shwarzschild black hole. Other D0-branes can describe gravitons emitted from the

black hole. This can naturally be understood in terms of partial deconfinement [238], i.e.,

the deconfined sector describes the degrees of freedom in the black hole. By assumption

all eigenvalues are bounded (i.e., we imposed such constraint in the numerical simulation),

hence the degrees of freedom in the confined sector contribute to the bulk geometry as well

and the geometry would not be too different from black zero-brane seen from an observer at

sufficiently far from the black hole. Specifically, we expect a large M-theory circle near the

center of the bulk geometry. Secondly, the KK-momentum of the black hole along the M-

theory circle can decrease as the energy is lowered, because the KK momentum corresponds

to the number of D0-branes. Therefore, we expect that the thermodynamic properties is not

drastically different from a small black hole without boost. Specifically, we conjecture that

the M-theory black hole has negative heat capacity, namely the temperature increases as the

energy decreases.17

In the canonical ensemble, such a phase corresponds to the local maximum of free energy

separating the zero-brane phase (deconfined phase) and vacuum or graviton gas (confined

17We emphasize that this statement is speculative and it is desirable to have a more elaborate analysis.
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phase). To give a very rough estimate of T1, we use the Schwarzschild solution in the non-

compact space without boost, S ∼ T−9

GN,11
∼ N3T−9, as an approximation. Then we obtain

T ∼ N2/9 for the entropy at the Gregory-Laflamme transition, S ∼ N . There is a jump of the

temperature compared to the boosted uniform black string. It is likely that a non-uniform

black string phase connects these two phases. For complete evaporation to graviton gas, the

black hole would have to be much smaller than the Gregory-Laflamme point. Therefore,

we expect T1 & N2/9. A natural upper bound would be the 11d Planck scale ∼ N1/3. We

emphasize again that this is a very rough estimate; the important point is that T1 can become

parametrically large at large N . In Appendix D we show how to obtain the scaling T1 . N1/3.

Schwarzschild black holes have negative specific heat in all dimensions (see e.g eq (4.33)).

It is natural to conjecture that such phases with negative specific heat, for which the nontrivial

geometry along the eleventh direction is important, are partially-deconfined. See Fig. 4.12

for a sketch of the relationship between the free energy and energy at a fixed temperature.

The transition between the partially-deconfined phase and the completely-deconfined phase

is the Gross-Witten-Wadia (GWW) transition where the gap is developed in the distribution

of Polyakov line phases [136, 222]. In this sense, it would be natural to interpret the GWW

transition as a ‘phase transition between string theory and M-theory’.

Our study in the ’t Hooft limit suggests the phase diagram shown on the left of Fig. 4.13.

Assuming the dual gravity analysis for the µ→ 0 limit [210] is valid, a cross-over from type

IIA string theory to M-theory should be found as the energy is lowered if we zoom into the

lower-left corner of this phase diagram. Although the heat capacity is positive in the type

IIA region, it can turn negative in the M-theory region. Therefore, it is not unreasonable to

expect that the phase transition we observe in this project is connected to the typeIIA/M-

theory phase transition.18 Therefore, we might be able to learn about the M-theory black

hole by studying the partially-deconfined phase in the BMN matrix model.

The highest temperature of the trivial-confined phase T1 is the highest temperature of

the partially-deconfined phase. Because we expect that the partially-deconfined phase is

dual to the eleven-dimensional Schwarzschild black hole, we should find the temperature of

the smallest possible black hole. We can use the Gregory-Laflamme-transition temperature

T1 & N2/9 as a lower bound for T1. A loose upper bound can be obtained by the Planck

scale T1 . N1/3.

A parametrically large T1 is probably a generic feature of string/M-theory [251]. As a

well-known example, let us consider the case of the duality between 4d SYM and type IIB

string theory on AdS5×S5 with large fixed ’t Hooft coupling λ4d = O(N0) [218, 220]. In

this case, we have two scales: The Planck scale and the string scale. Supergravity is a good

approximation when the black hole is bigger than the string length because strings can behave

like point particles. Below this scale, the description as Hagedorn string is more appropriate.

Therefore, T1 ∼ `−1
s ∼ λ

1/4
4d is expected, where λ4d is the ’t Hooft coupling of 4d SYM. Note

that this is the same as the Hagedorn temperature of the free string.19 Note also that the

mass of the 10d Schwarzschild black hole at T1 is much larger than the Planck mass in this

18This expectation may not be valid if there is a phase transition separating the µ → 0 limit and µ ∼ N0

region. A theoretically complicated feature of the limit of µ→ 0 is that different fuzzy-sphere vacua become

identical with the trivial vacuum of the BFSS matrix model unless the spin is increased as µ approaches zero.
19The length of the string is related to the energy E and entropy S as E ∼ L

`2s
and S ∼ L

`s
. The Hagedorn

temperature TH is the temperature at which the free energy of the free string F = E−TS becomes zero, and

hence, TH ∼ 1
`s

.
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case. Still, in the strong coupling limit (λ4d → ∞), T1 becomes parametrically large. See

also Fig. 3.13 and the discussion around it.

Strictly speaking, the 10d black hole phase considered above is the equilibrium state of a

10d black hole plus graviton gas filling the rest of AdS5×S5. In the ’t Hooft large-N limit,

the energy of the graviton gas is much smaller than that of the black hole. Hence it could be

ignored in the thermodynamic analysis, and the 10d black hole is stable in the microcanonical

ensemble. The situation can change away from the ’t Hooft large-N limit [251]. A weakly-

coupled string description is justified as long as gs ∼ g2
4d � 1 and `s

RAdS
∼ λ−1/4

4d � 1. If λ4d &

N8/17 (which is allowed while still satisfying g2
4d � 1), the graviton gas can have larger entropy

than the 10d black hole, even when the latter is not as small as `s and hence supergravity

is a good approximation. Therefore, at λ4d & N8/17, a sufficiently small 10d black hole

can evaporate completely to the gas of gravitons; it is unstable even in the microcanonical

ensemble. This argument identifies the highest possible temperature of the 10d black hole,

or more precisely, the system of graviton gas and the 10d black hole, which is equivalent

to T1. The scaling with N can be estimated by requiring the entropies of the black hole

∼ (`p,10dE)8/7 and graviton gas ∼ (RAdSE)9/10 to be of the same order at T = T1. By using

`9p,10d ∼ N−2 for RAdS ∼ 1, we obtain E ∼ N20/17 and T1 ∼ N2/17. This is smaller than the

Hagedorn temperature ∼ λ1/4
4d if λ4d & N8/17, but still it becomes parametrically large in the

large-N limit.

The same analysis [251] can be applied to the AdS4×S7 geometry dual to the ABJM

theory [252]. A rough estimate of the highest possible temperature of the 11d black hole

T1 is obtained by requiring that the entropies of graviton gas ∼ (RAdSE)10/11 and black

hole ∼ (`P,11dE)9/8 are of the same order at T = T1. By using `−1
P,11d ∼

N1/6

RAdS
, we obtain

T1 ∼ 1
RAdS

(
`P,11d

RAdS

)−9/19
∼ N3/38

RAdS
. This T1 is smaller than the Planck mass, and hence the

approximation by eleven-dimensional gravity is self-consistent.

The same logic could be applied to the BFSS matrix model if the gravity side were

understood more precisely. It would be nice if we could see the trivial-confined phase at a

much larger N and a higher temperature. That it was not observed in past studies is not

necessarily a contradiction because a careful choice of the initial condition for the simulation

is needed to see such a phase which has small free energy.

4.3.6 BMN matrix model (µ > 0)

Let us now consider the µ > 0 case with trivial vacuum, and gradually raise the temperature

(canonical ensemble). At sufficiently low temperature, the system is in the confined phase.20

In the same manner, if we take a nontrivial fuzzy-sphere vacuum and raise the temperature,

the system is confined at a low temperature. To distinguish them, we use the names “trivial-

confined phase” and “fuzzy-sphere-confined phase”.21

As the temperature goes up, at some point, a transition to a deconfined phase can take

place. As long as the thermal excitation of each matrix entry is not too strong, we can still

20By ‘confined phase’, we mean a phase in which the energy and entropy are of lower order in N than

N2, while they become of order N2 in the deconfined phase. Confinement is also indicated by a uniform

distribution of the Polyakov line phases. Note that ‘confined phase’ is sometimes used to indicate the phase

with order N0 energy and entropy.
21We could also call them ‘confined phase on the trivial background’ and ‘confined phase on the fuzzy-sphere

background’.
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distinguish different fuzzy-sphere backgrounds. Therefore, both a “trivial-deconfined phase”

and “fuzzy-sphere-deconfined phase” can exist.22

As we will see shortly, all these phases — trivial-confined phase, fuzzy-sphere-confined

phase, trivial-deconfined phase, and fuzzy-sphere-deconfined phase — can be minima of free

energy in the canonical ensemble. Multiple minima can coexist in certain parameter regimes,

and the phase structure can be rather complicated. We will take the trivial-confined phase

and study the transition to deconfinement, but a priori, we do not know whether the trivial-

deconfined or fuzzy-sphere-deconfined phase is obtained. To make the analysis tractable, we

split the discussion into two steps.

� First, we ignore the possibility of a transition to the fuzzy-sphere-deconfined phase and

consider the transition between the trivial-confined phase and the trivial-deconfined

phase. We argue that there are three kinds of critical temperatures, T1, T2, and Tc, that

satisfy T2 < Tc < T1. The trivial-confined phase (resp. trivial-deconfined phase) exists

as a minimum of free energy only at T ≤ T1 (resp. T ≥ T2). The free energy of these

two phases coincides at T = Tc. The trivial-confined phase (resp. trivial-deconfined

phase) is favored at T < Tc (resp. T > Tc). See Sec. 4.3.6.

� Next, we take into account the fuzzy-sphere-deconfined phase. We show that a lower

bound for T1 is obtained if we observe the trivial-confinement/fuzzy-sphere-deconfinement

phase transition. See Sec. 4.3.6.

� When µ is very small and N is not very large, we see yet another “phase transition”;

one or few of the eigenvalues escape and roll to very large values. This corresponds to

a run-away behaviour toward the flat direction at µ = 0 [214, 253]. We can obtain a

lower bound for T1 also from this run-away behavior. See Sec. 4.3.6.

Trivial-confinement/trivial-deconfinement transition

Let us think about what kind of phase diagram can appear in the BMN matrix model. At

each fixed µ, we expect one of the types of phase distributions shown in Fig. 4.11. The large-µ

region permits perturbative calculations [151, 237], and the transition is found to be of first

order, i.e., the left scenario in Fig. 4.11 is realized. Therefore, we expect one of the two phase

structures depicted in Fig. 4.13, depending on the order of the phase transition at µ = 0. Let

us call them the first-order scenario and not-first-order scenario, respectively.

We expect that the first-order scenario is more likely to be realized for the following

reasons:

� We expect a first-order transition in the BFSS matrix model, and if the µ→ 0 limit is

smooth, this first-order character should persist for finite µ. (Note that the smoothness

of the µ→ 0 limit is nontrivial, and the order of µ→ 0 and N →∞ can be important.)

� In the not-first-order scenario, the first-order transition at large µ splits into two

transitions at small µ (T1 becomes smaller than T2, and Tc disappears). Then the

GWW transition should exist at some finite temperature T2 > 0 even at µ = 0. It

22If we fix µ and N and go to a very high temperature, the thermal excitation of each matrix entry becomes

larger than the size of any fuzzy sphere, and the distinction between “trivial-deconfined phase” and “fuzzy-

sphere-deconfined phase” disappears.
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has to lie below λ−1/3T = 0.4, because ρ(θ) is gapped there [134]. But if this were

the case a big puzzle would pop up: why did the numerical simulations in the past

agree well with dual gravity predictions, although they have been performed at higher

temperature which could be separated from the low-temperature region, where gravity

is precise, by the GWW transition? Thus, a not-first-order scenario is disfavored.

� If the GWW transition lies in the type IIA string theory region, there is yet another

problem: below the GWW transition, it is natural to expect that the system is in the

partially-confined phase, which corresponds to the RR-charge less than N ; it does not

agree with the charge counting in the gravity side.

More on the first-order scenario

Suppose the transition is of first order, as shown in the left panel of Fig. 4.13. Then, as µ→ 0,

the jumps of the energy and entropy have to approach zero (more precisely, E
N2 and S

N2 have

to approach zero), otherwise the µ = 0 limit disagrees with the dual gravity picture [210]

which has been tested throughly by numerical simulations. It is natural to expect that the

jump of the Polyakov loop also vanishes at µ = 0; see Fig. 4.16. Then, the distribution ρ(θ)

has to become almost flat, while staying gapped; see Fig. 4.17.23

Figure 4.16: The first-order scenario. The left panel is for larger µ, and the right panel is for

smaller µ. Both critical temperature and the size of the jump decrease as µ becomes smaller

and N becomes larger, while T1 can go up, as discussed in Sec. 4.3.5. Strictly speaking, the

orange part further splits into two phases: the black string and black hole phases.

Let us summarize how the first-order scenario may work:

� The transition remains of first order at small µ. As µ becomes small, the transition

temperature approaches zero (Fig. 4.13 left).

� The jump of the energy and Polyakov loop at critical temperature becomes smaller.

(Fig. 4.16)

� The distribution of the Polyakov line phases at the GWW transition is distorted more

and more at smaller µ and approaches the uniform distribution. (Fig. 4.17)

23This is consistent with the claim in Ref. [254] that the phase distribution becomes flat at zero temperature.

It is also consistent with the unpublished observation made by using the simulation data for Ref. [250].
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Figure 4.17: Possible form of the phase distribution around the phase transition at very small

µ.

Trivial-confinement/fuzzy-sphere-deconfinement transition

Suppose the first-order trivial-confinement/fuzzy-sphere-deconfinement transition is observed

at T̃c as T is increased before the trivial-confinement/trivial-deconfinement transition is

observed. Here we consider the situation that initial configuration for the simulation is taken

from the trivial-confined phase, and temperature is gradually raised. (We will encounter this

situation later in Sec. 4.3.9.) Then, a natural expectation is that T̃c < Tc.

More precisely: suppose that the two-state signal is observed between T̃2 and T̃1, where

T̃2 < T̃1. Then, it is natural to expect T̃1 < T2. Otherwise, we should see the trivial

deconfined phase as well.

Run-away behavior

The BFSS matrix model has flat directions. The BMN model shows remnants of these: When

µ is small, scalars can be almost commutative, and eigenvalues can diverge as µ is sent to zero.

All four phases under consideration can have an instability in this semi-flat direction. Let us

denote such an instability as “run-away behavior”. This effect is temperature-dependent: at

sufficiently large temperatures, the flat directions are lifted.

In the trivial-confined phase, all D0-branes are placed at the origin without any energy

excitation [238]. On the other hand, in the trivial-deconfined phase, each degree of freedom

has an energy of order N0. Because some amount of energy is needed for a D0-brane to move

in the flat direction, it is natural to expect that the trivial-deconfined phase is more prone

to the run-away behavior. We expect the same for the fuzzy-sphere background, i.e., the

fuzzy-sphere-deconfined phase is more prone to the run-away behavior. It is also known that

the problem with the flat direction is milder at high temperatures. Hence, in the small-µ and

not-so-large-N region, it can be the case that the deconfined phase can be sufficiently stable

only at higher temperatures. Consequently there can be a finite temperature range where we

do not notice the metastable deconfined contribution in the simulations.24

24Note that it is hard to distinguish this possibility from a more standard scenario Fig. 4.16 with a very

shallow meta-stable minimum; in Monte Carlo simulations, both would exhibit the run-away behavior.
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All of these observations suggest the following scenario. Suppose we start with the

trivial-confined phase, gradually raise the temperature, and observe run-away behavior at

some temperature Trun-away. This temperature provides us with a lower bound for T1, i.e.,

Trun-away ≤ T1. At sufficiently large N , Trun-away and T1 should not differ much.

4.3.7 Numerical determination of the phase transitions

After the discussion of the continuum physics and the conjectures about the phase transition,

we now present our results from numerical simulations. The simulations have been done with

the HMC algorithm. A careful analysis is needed to test the scenario described in Sec. 4.3.4.

Prior to this description, we consider the simpler case of the bosonic analogue of the BMN

matrix model, where the transition point can be precisely identified even in the small µ limit.

After this exercise, we present the results of simulations for the full supersymmetric BMN

model. The BFSS matrix model is the limit of µ→ 0 in the BMN matrix model. Although

our main interest lies in the limit of µ→ 0 which has dual gravity descriptions, we will start

from the large-µ region where the simulation is easier and gradually move toward smaller µ.

The lattice action used for the simulations is discussed in Sec. 4.1.3. We use S to denote

the number of lattice points. The lattice spacing is a = β
S . The continuum limit is taken by

sending S to infinity.

4.3.8 Phase transitions in the bosonic BMN model

In this section we study the bosonic analogue of the BMN matrix model (bosonic BMN),

whose action is only the bosonic part of the original, supersymmetric BMN matrix model.

That is, we use the action

S = Sb + ∆Sb, (4.65)

with

Sb =
N

λ

∫ β

0
dt Tr

1

2

9∑
I=1

(DtXI)
2 − 1

4

9∑
I,J=1

[XI , XJ ]2,

 (4.66)

and

∆Sb =
N

λ

∫ β

0
dt Tr

µ2

2

3∑
i=1

X2
i +

µ2

8

9∑
a=4

X2
a + i

3∑
i,j,k=1

µεijkXiXjXk,

 . (4.67)

This model is much easier to simulate than the full, supersymmetric BMN model. This

exercise is performed to confirm convergence to the bosonic BFSS model [255] in the µ→ 0

limit.

Historically, there was some confusion regarding the phase structure of the bosonic BMN

model. At weak coupling (large µ), perturbative analysis shows that the phase transition is

of first order. At µ = 0, the first systematic study [137] used the data with N ≤ 32 and

suggested that the transition takes place at nonzero temperature and it is not of first order.

However, a later study with N > 32 revealed that the transition is actually of first order after

all [255]. From this fact, Ref. [255] concluded that the phase diagram of the bosonic BMN

model looks like the left figure of Fig. 4.18.
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Figure 4.18: Possible phase diagrams of the bosonic BMN model for the canonical ensemble.

Ref. [255] concluded that the left figure is the actual phase diagram.

Strictly speaking, to establish the phase structure unambiguously, it is necessary to

confirm that the phase transition is of first order even in the intermediate-µ region. Below,

we study a few intermediate values of µ, and confirm this. In addition, we study the features

of the transition in detail.

That the transition is of first order can be confirmed by observing the two-state signal

in the Polyakov loop. Indeed, this is shown in Fig. 4.19. We can see that the Polyakov loop

jumps from P ' 1
2 to P ' 0, at any µ. (In Fig. 4.19, the energy and Myers term are also

shown. The two-state signal is not clearly visible for these quantities.) We can see that P ' 1
2

corresponds to the GWW transition because the spectrum of the eigenvalues of the Polyakov

line develops a gap as we can see at the phase distributions shown in Fig. 4.20.

The transition temperature, where the free energies of the confined and deconfined phases

take the same value, can be determined from the two-peak signal; this is the temperature at

which two peaks contain the same number of configurations. The separation of two peaks is

obtained by considering approximately same areas enclosed under two peaks. The numbers

of trajectories in our simulations are large enough to estimate the transition temperatures

with errors of 0.02%. The critical temperatures determined for different µ in this manner are

shown in Fig. 4.21. There is a symmetry µ ↔ −µ and the µ-dependence in Tc is expected

to be at least of quadratic order. Tc can actually be well described by a quadratic fit. The

limit of µ→ 0 is consistent with the results for bosonic BFFS [255], Tc|µ=0 = 0.885± 0.001

at N = 64, L = 24.

The dip in the histogram can be interpreted as the partially-deconfined phase, which

sits at the maximum of the free energy in the canonical ensemble. At this point, ρ(θ) is

expected to be nonzero everywhere between −π and +π. This is consistent with the numerical
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Figure 4.19: Histogram of the distribution of the Polyakov loop (first row), energy (second

row), and Myers term (third row) during lattice Monte Carlo simulations for the bosonic

BMN model at matrix size N = 64 and lattice size S = 24. The values of µ are 0.125, 0.25,

0.5 and 1.0, from left to right. A two-state signal near the transition temperature is observed

at all values of µ, particularly for the Polyakov loop P . The jumps of energy and Myers

terms are of order N2, but we do not observe the formation of a fuzzy-sphere background.
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Figure 4.20: Distribution of the phases of the Polyakov line near the transition temperatures

for the bosonic BMN model. From left to right, µ = 0.125, 0.25, 0.5, 1.0 with Tc =

0.8853, 0.8864, 0.8918, 0.9134, respectively. The matrix size and the lattice size are N = 64

and S = 24, respectively. The gap opens at P ' 0.5.
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observation: as mentioned above, if we look at configurations at each fixed P , then if P < 1
2 ,

ρ(θ) is nonzero everywhere between −π and +π as shown in Fig. 4.20.

The jumps of energy and entropy are of order N2, at any µ (see Fig. 4.19). The jump of

energy goes down with µ but does not vanish even at µ = 0 [255]. In the supersymmetric

theory, on the other hand, we expect the jump to vanish at µ = 0, up to the 1/N -suppressed

corrections as we discuss in Sec. 4.3.4 and in Fig. 4.16.
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Figure 4.21: Transition temperatures for the bosonic BMN model against fluxes µ. The

parenthesis indicates the errors of the fit, and the left-most point is the extrapolated BFSS

transition temperature (matrix size N = 64, lattice size S = 24) from [255]. The fit is given

by the equation Tc = 0.8846(1) + 0.0297(2)µ2.

4.3.9 Phase transitions in the full BMN model

Our main interest is the thermal transition from confinement to deconfinement, while the

configuration of the Xi is kept in the trivial background with no relevant fuzzy sphere

contributions.25 This is due to the fact that this scenario is assumed in the dual gravity

predictions. We want to verify a continuous transition line from perturbative predictions at

weak coupling to the conjectures at strong couplings obtained with help from the dual gravity

description.

A phase transition is a well-defined concept in the thermodynamic limit, which is the

large-N limit in the case of the matrix models. In our numerical studies at finite N and finite

simulation time, several ambiguities concerning the exact definition of the transition have to

be taken into account.

The first one is related to the common difficulty in identifying a first order transition. In

the ideal world, we would be able to study very large N efficiently. If N were sufficiently

large such that the separation of two phases is clear, and at the same time, the number of

configurations collected in the simulation would be very large such that the tunneling between

two phases can be captured, then the two-state signal would be very clean. In this idealized

case it would be possible to determine Tc, T1, and T2 precisely. For the bosonic BMN model,

we can actually perform such an analysis. However, for the full BMN model, such a detailed

study is not possible for all parameter sets because of large simulation cost. Compared to the

25Trivial (fuzzy-sphere) background means fluctuations around a configuration of the trivial (fuzzy-sphere)

vacuum.

144



4.3. CONFINEMENT-DECONFINEMENT IN BMN MODEL AND
APPEARANCE OF M-THEORY

bosonic BMN model, we have fewer data points, and the 1/N -corrections are larger. Still,

the large-N behavior can be deduced by comparing the results for different values of N .

The second complication arises at finite N due to tunneling to fuzzy-sphere configurations.

As we explained in Sec. 4.3.4, there can be confinement or deconfinement with either a

fuzzy-sphere or a trivial background of the Xi fields. At small values of µ or N , tunneling

between different backgrounds can take place with a non-negligible rate. At larger µ, the

tunneling is well suppressed even at the values of N we study in this work, and we observe the

trivial-confinement/trivial-deconfinement transition. However, at smaller µ, deconfinement is

associated with the transition to a fuzzy-sphere background. Let T̃c be the critical temperature

at which the transition between the trivial-confined phase and fuzzy-sphere-deconfined phase

is observed. If we do not see the transition to the trivial-deconfined phase, then we expect

T̃c ≤ Tc. Tc is the point where the free energies of the trivial-confined and trivial-deconfined

phases coincide as explained in Sec. 4.3.6.

We have tested different strategies to disentangle the influence of the tunneling to a fuzzy-

sphere background and to obtain more information about the deconfinement transition in the

trivial background. One strategy corresponds to constraining the Myers term, which forces

the system to stay in trivial background.26 Alternatively we have also investigated indications

of metastability related to hysteresis effects. These investigations will be detailed below.

Our investigation led us to some expected and some unexpected observations, depending

on the parameter region. The results are summarized in Fig. 4.22. We split the parameter

space into four regions:

� For µ ≥ 2.0, the transition between the trivial-confined and trivial-deconfined phases

can be easily identified. We observe convergence to the perturbative limit as µ becomes

large. At intermediate µ, the Padé resummation based on the large- and small-µ

behaviors obtained via perturbative calculation and dual gravity analysis respectively

gives a reasonable approximation to the simulation results. (See Refs. [243, 256] for

similar observations.)

� For 0.8 ≤ µ < 2.0, convergence to the dual gravity prediction is observed as µ becomes

small. Below µ = 0.8, the deviations from the predicted line start to increase again.

� For µ < 1.6, transitions to fuzzy-sphere configurations are observed frequently (see

Ref. [243] for a similar observation), which makes it in some regions impossible to

observe the trivial-deconfined phase. In these cases, deconfinement and tunneling to a

fuzzy-sphere background take place simultaneously, at least at the values of N and S

we have studied.

� For µ < 0.8, we observe pronounced metastable confined and deconfined phases. The

system tends to remain in one of the phases for a longer simulation time, at least in the

range of temperatures T ∈ [0.26, 0.27]. This effect is independent of any constraint of

the Myers term and even appears for fuzzy-sphere background. We observe indications

that the metastable confined state persists even in the BFSS limit. As we will see, this

apparent deviation from the gravity prediction may be simply a finite-N effect.

26The full path integral contains multiple backgrounds, and we are interested in a particular background.

Therefore, we have to restrict the path integral to the fluctuation around such a background, to obtain

physically meaningful result [53, 214, 250]. In this project, we identify the background we are interested by

specifying the value of the Myers term. See Sec. 4.3.9 for more details.
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Figure 4.22: The critical temperature Tc vs. flux parameter µ for the full BMN model.

The data points for the critical temperature correspond to a two-state signal with about

equal probability for confined and deconfined phase, and their error bars are given by the

neighboring simulated temperatures, for which these probabilities differ. The error bars

without data points for µ = 0.6 indicate observation of a hysteresis, see Fig. 4.34. For

µ = 1.5 and 1.6, we also observed hystereses in the region given by the error bars but did

not investigate the full extent of the hysteresis region. For comparison, the prediction of the

perturbative analysis [151], Padé resummation [243], and gravity calculation [236] are plotted.

In the main text, the way the transition temperature at each parameter set is determined

is detailed, and the apparent deviation from the gravity predictions at small µ is explained.

(Note that the latter can simply be a finite-N artifact.) In the BFSS limit µ→ 0, although

we could not identify the two-state signal, we still conclude that we observe the confined

phase; see Sec. 4.3.9.
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Simulation setup

We use the same simulation program as done in earlier simulations of the BFSS model [134].

It is based on the RHMC algorithm [257], neglecting the phase of the Pfaffian based on the

arguments presented already in the BFSS case [150, 214]. The program includes a possible

constraint for R2 ≡ 1
N

∑9
I=1 TrX2

I , which has been used in some simulations of the BFSS

model to stabilize the trivial background in Ref. [134], but not in the current project. We

have added in the same way constraints for the Myers term and the Polyakov loop. (See

Ref. [224] as an example for a simulation with a constraint on P .) Each constraint forces

an observable O to lie in the interval [xmin, xmax] around a given value x depending on the

coupling strength γ. Inside the chosen interval the constraint has no effect. Expressed in

terms of the Heaviside function Θ, the additional contribution to the action is

Sconstraint(x;xmax, xmin, γ) =


γ · (O − xmin)2 (O < xmin)

0 (xmin ≤ O ≤ xmax)

γ · (O − xmax)2 (xmax < O)

(4.68)

where γ is a sufficiently large positive number. Consequently, the value of O is approximately

constrained between xmax and xmin. We have added this constraint contribution to the action

in some of the simulations to stay as close as possible to the trivial background in certain

parameter ranges. It prohibits tunneling to nontrivial backgrounds, which is expected to be

suppressed in the large-N limit, even at small N . We will discuss in detail in which cases the

constraints have been included.

In all our simulations, we have kept the trajectory length of the molecular dynamics

constant and adjusted the stepsize to achieve a similar acceptance rate. Statements about

tunneling time and probability are hence always in reference to this trajectory length.

In addition to a transition indicated by the Myers term, we observe a run-away behavior

of the scalar fields in the BFSS limit, remnants of which show up already at small µ. We

monitored TrX2
I for each I = 1, 2, · · · , 9 to keep it under control. We observed that this

effect appears preferably in the X9-direction, presumably due to a lattice artifact specific

to our regularization. The run-away behavior is generally enhanced by lattice artifacts and

consequently reduced in the large S limit.

Convergence to perturbative limit at µ ≥ 2.0

In this region, the transition between the trivial-confined and trivial-deconfined phases can

easily be identified. We observe convergence to the perturbative limit as µ becomes large, as

shown in Fig. 4.22. The tunneling to a nontrivial background close to Tc is not relevant and we

are able to determine Tc precisely from a two state signal in the Polyakov loop. This indicates

a first order phase transition, as shown in Fig. 4.23. By monitoring TrX2
I and TrX1[X2, X3],

we can confirm that the two peaks are both consistent with a trivial background. Due to

the stability of the results, no constraint part has to be added to the action. The phase

transition takes place at a rather high temperature, where the effect from the fermions is not

so important. Therefore, the transition temperatures become similar to that of the bosonic

theory.

We can also check more detailed features of the deconfinement transition and confirm the

picture that we have already investigated in the bosonic BFSS model [255]: for each fixed T

and µ in the first-order-transition region, the energy and 〈TrX2〉 depend on P as a+bP 2. For
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large µ, the distribution of the phases of the Polyakov line is consistent with ρ(θ) = 1+2P cos θ
2π ,

and the GWW transition takes place at around P = 1
2 ; see Fig. 4.24. However, already at

µ = 2.0, we can see a subtle but clear deviation from the large µ behavior: the GWW

transition takes place slightly below P = 1/2, and the distribution of the phases of the

Polyakov line becomes distorted, as we can see from Fig. 4.25.
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Figure 4.23: Full BMN model, flux µ = 3.0, matrix size N = 32, lattice size S = 12 at

temperature T = 0.756. [Top] From left to right, histogram of |P | close to the critical

temperature, and Monte Carlo history for the Polyakov loop at the same parameters for two

typical runs with different sequences of random numbers. A two-state signal is observed.

[Bottom] Binned E vs |P | and binned R2 vs |P |. Larger values of |P | (more deconfined)

corresponds to larger values of E and R2, as expected.

Convergence to dual gravity prediction at 0.8 ≤ µ < 2.0

As we can see in Fig. 4.22, the deconfinement transition line shifts from the perturbative to

the dual gravity prediction as decreasing µ towards µ = 1.0 and stays compatible with the

latter down to µ = 0.8. The probability of tunneling to fuzzy-sphere backgrounds increases

at smaller µ. Fig. 4.26 shows an example of such a transition from trivial background to

fuzzy-sphere background in the deconfined phase. Note that the Polyakov loop stays almost

constant at this transition. Already below µ = 1.6, we have to add a constraint for the

Myers term to the action to stay in the trivial background. Without a constraint, the

deconfinement transition also induces a transition in the Myers term. We expect this effect

to be suppressed in the limit of large N . By using the constraint, we are able to confirm

the trivial-confinement/trivial-deconfinement transition. As shown in Fig. 4.27, Fig. 4.28,

Fig. 4.29, and Fig. 4.30, we observe two-state signals indicating the first-order transition.

In the considered region of µ we are able to investigate in more detail the nature of the
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Figure 4.24: Full BMN model: [Top] The histogram of the Polyakov line phases for [P −
∆P, P + ∆P ], where ∆P = 0.005 and P = 0.46, 0.47, · · · , 0.51. [Bottom] ρ(π) or more

precisely, the height of the right-most bin in the histogram. Top and bottom rows use the

same color for the same value of P . [Left] T = 0.756 (close to T1) for µ = 3.0, N = 32,

S = 12. The Myers term was not constrained in this simulation. [Right] T = 1.18 (close to

T1) for µ = 5.0, N = 32, S = 24.

phase transition. As µ becomes smaller, the shape of the distribution of Polyakov line phases

changes. In Fig. 4.31, we plot the distribution of phases for different values of P , for µ = 1.5

and µ = 1.6 close to the critical temperature Tc. A clear deviation from the large µ behavior,

now more pronounced compared to µ = 2.0, is observed. We can see that the gap in the

phase distribution of the Polyakov line closes around P = 0.42. In Fig. 4.32, we show an

extrapolation of ρ(θ = ±π) to the large-N limit for µ = 1.0 and 1.5. The extrapolated value

is consistent with zero for decreasing P as µ decreases. This is clearly different from the

distribution at the large-µ region, that develops a gap at P = 1
2 , and continues the trend

already observed at µ = 2.0.

Small µ ≤ 0.8 regime and convergence to BFSS limit

The point µ = 0.8 is the first point starting to depart from the gravity line and for even

smaller µ our estimate for the critical temperatures shown in Fig. 4.22 is always larger than

T
(gravity)
c . However, this apparent deviation from the gravity prediction may be simply a

finite-N effect: we used at most N = 16 to study the small-µ, small-T region. It is not

unreasonable to compare to µ = 0 as a first approximation. Then, a rough estimate of the

critical temperature from the gravity side is Tc ∼ T2 ∼ N−5/9 & 0.251 for N = 12 and 0.214

for N = 16, up to an order one multiplicative factor. As we have seen in Sec. 4.3.6, T1 should

also be similar. Therefore, the critical temperatures observed in our simulations are in the
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Figure 4.25: Full BMN model: [Left] Histogram of the Polyakov line phases in the interval

[P−∆P, P+∆P ], for ∆P = 0.01 and various values of P , for µ = 2.0, T = 0.543 (close to T1),

matrix size N = 32, and lattice size S = 12. The large µ behavior ρ(θ) = 1+2P cos θ
2π is shown

in black. A clear deviation is observed close to P = 0.5. It appears that the GWW-point

is between P = 0.4 and P = 0.46. The Myers term was not constrained in this simulation.

[Right] Large N extrapolation of the size of the boundary bin for S = 12 and ∆P = 0.01.

The GWW transition is seen to take place around P = 0.46. Only data points left of the

dashed vertical line were included in the linear fit.
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Figure 4.26: Full BMN model: Monte Carlo history of |P | and M for N = 24, S = 24,

µ = 1.5, T = 0.43. The system is initially in the deconfined trivial background and tunnels

to a fuzzy-sphere background around trajectory 4500.
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Figure 4.27: Full BMN model: µ = 1.6, N = 32, S = 24, T = 0.452. Starting from the same

initial configuration, a confined and deconfined stream is obtained from two different random

number generator seeds. For these runs, no constraint on the Myers term is imposed and the

simulation remained in the trivial background.
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Figure 4.28: Full BMN model: the histogram (left) and typical Monte Carlo history (for

T = 0.543) (right) of P close to the critical temperature for µ = 2.0, for N = 24, S = 12

(top) and N = 32, S = 12 (bottom).

151



4.3. CONFINEMENT-DECONFINEMENT IN BMN MODEL AND
APPEARANCE OF M-THEORY

1

2

3

4

0.2 0.4 0.6
|P|

fr
eq

ue
nc

y
T 0.3 0.31 0.32

1

2

3

4

5

0.2 0.4 0.6
|P|

fr
eq

ue
nc

y

T 0.3 0.31 0.32

1

2

3

4

5

0.2 0.4 0.6
|P|

fr
eq

ue
nc

y

T 0.31 0.315 0.32 0.33

Figure 4.29: Full BMN model: Histogram of P close to the critical temperature for µ = 1.0.

From left to right, N = 12, S = 12; N = 16, S = 12; N = 12, S = 24. A two-state signal is

observed. A consistent signal with lower statistics has also been observed for N = 12, S = 36,

confirming the trend of the critical temperature to slightly increase in the continuum limit.
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Figure 4.30: Full BMN model: Histogram of P close to the critical temperature for µ = 0.8,

N = 12, S = 12 (left); N = 12, S = 24 (right). A blurred two-state signal is observed. A

consistent signal with lower statistics has been observed also for N = 8, S = 36; N = 8,

S = 48, confirming the trend of the critical temperature to slightly increase in the continuum

limit.

right ballpark. In fact, if we observed the values much closer to the gravity line shown in

Fig. 4.22, this could even be seen as evidence against the duality conjecture. As N increases,

T2 and Tc should decrease while T1 should increase, and the hysteresis should become more

pronounced (Fig. 4.16). Thus, the numerical results should converge to the gravity line even

at small µ.

Possible caveats of our analysis have been explained earlier. It is difficult to stabilize

the trivial background, especially in the deconfined state.27 In addition, the run-away of

the scalar fields becomes more important towards the BFSS limit because the mass term

∼ µ2TrX2 is turned off. On the other hand, in this low-temperature region, we observe

an increased metastability which counteracts these effects. The trivial-confined phase gets

stabilized, and simulations without the constraint are possible in some parameter regions.

The metastability in the small-µ, low-T region is indicated by a strong dependence on the

27It may not be an issue because the trivial background and fuzzy-sphere backgrounds are indistinguishable

at µ . 0.018 for N = 16, as explained in Sec. 4.3.3. However we never reached that small µ values.
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Figure 4.31: Full BMN, the histogram of the Polyakov line phases for [P−∆P, P+∆P ], where

∆P = 0.02, [Left] µ = 1.5, N = 24, S = 24, T = 0.429 (close to Tc) and [Right] µ = 1.6,

N = 32, S = 24, T = 0.45 (close to Tc) along with the large µ behavior ρ(θ) = 1+2P cos θ
2π in

black. A clear deviation is observed close to P = 0.5. The Myers term was constrained in

the simulation for µ = 1.5.
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Figure 4.32: Full BMN, the large-N extrapolation of boundary bin, near T1, for T = 0.31,

µ = 1.0, S = 12 (left) and T = 0.429, µ = 1.5, S = 24 (right), as well as ∆P = 0.025. The

Myers term is constrained in these simulations.

initial conditions of the simulations which tend to stay in either a confined or deconfined state

when started with the respective initial configuration. The observed metastability indicates

a large separation of the temperatures T1 and T2 (see right panel of Fig. 4.16). As we will

see in Sec. 4.3.9, the trivial-confined phase turns out to be rather stable at low temperatures

even in the BFSS limit (µ = 0), while we could not see the two-peak signal at µ < 0.3 (i.e.,

at µ < 0.3 and T . 0.3 we could not see the deconfined phase).
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Figure 4.33: Full BMN, the histograms of the Polyakov distribution, and relative Monte

Carlo histories for small µ. [Top-Left] N = 12, S = 24 at µ = 0.3. A possible two-state signal

is observed. At T = 0.24 we observe runaway behavior of R2, as well as in the deconfined

sector at T = 0.22. [Top-Right] N = 16, S = 24 at µ = 0.5. For µ = 0.5, the histogram

was obtained by adding two independent streams which were initially prepared in a confined

/ deconfined state and remained there throughout a sufficiently long Monte Carlo evolution

time due to the relatively large N = 16. [Bottom-Left] MC history of N = 12, S = 24 at

µ = 0.3, T = 0.22 from the up-left histogram. The signal suggests repeated tunneling between

confined and deconfined states. Note that, at such a small value of µ, the distinction between

trivial background and fuzzy-sphere background is not clear. [Bottom-Right] The relation

between the Myers term and the Polyakov loop for the up-left histogram. No significant

correlation is observed. Note that the Myers term was constrained to be below M = 0.02,

but this cutoff was hit frequently, and often M became larger than the cutoff 0.02. (This is

possible because the coefficient for the constraint term is large but finite.)

At very small µ, the difference in the Myers term for different fuzzy-sphere backgrounds is

significantly reduced (see Sec. 4.3.3). Fuzzy-spheres can be buried in quantum fluctuations,

and we expect that there is not a strong dependence of the deconfinement transition on the

chosen background configuration. Therefore, the constraint on the Myers term should not

affect the result in the small-µ region. Indeed we can, for example, observe very similar

signals for metastable confined and deconfined state from the Polyakov loop distribution at

µ = 0.3, N = 16, S = 36, T = 0.27 independent of the constraint. The metastability extends

over a large temperature range indicating the difference between T1 and T2. Fig. 4.33 presents
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Figure 4.34: Full BMN model: [Left] Monte Carlo history for N = 16, S = 24, µ = 0.6, T =

0.22. The confined phase (|P | ' 0) is observed. [Right] ForN = 16, S = 24, µ = 0.6, T = 0.29,

starting with a confined configuration. A transition to the deconfined phase is observed. The

temperature window is of order ∆T ≈ 0.07 at these parameters.

evidence for these assertions. For µ = 0.5, a clear two-state signal is observed by joining a

confined and deconfined stream with the same simulation parameters into a single histogram.

Both streams remain in their respective state for a sufficiently long time to conclude that there

is a strong hysteresis. For µ = 0.3, repeated tunneling between a confined and deconfined state

has been observed. In the deconfined parts of the Monte Carlo history, we observe runaway

behavior in R2. For our choices of N and S, µ = 0.4 was the smallest mass parameter for

which we could observe a stable deconfined phase at temperatures close to the transition

temperature. Due to the choice N = 12, as opposed to N = 16 for µ = 0.5, the two-state

signal is not clear in the histogram, but we were able to see repeated tunneling due to the

increased tunneling probability and simulation speedup at smaller N .

Let us give some more details on how we estimate T1, Tc, and T2 from results as those

shown in Fig. 4.34 . In this example the parameters are N = 16, S = 24 at µ = 0.6. It

is challenging to observe a precise two state signal at these parameters and requires large

statistics. Another way to give an estimate for Tc in a first-order scenario is by locating T1

and T2 since T2 < Tc < T1 (see Fig. 4.16). We then face the problem of locating T2 which is

indicated by the formation of a gap in the Polyakov eigenvalue distribution and T1 which is the

highest possible temperature with a metastable confined state. Both determinations require

large statistics to be trustable, but one may be able to roughly estimate the difference ∆T =

T1 − T2 at the current level of statistics. Hence we do the following to locate T2: we start by

considering deconfined initial configurations and gradually lower the temperature until we see

the simulation converge to a confined state. When this transition is accompanied by a gap in

the eigenvalue distribution of the Polyakov loop, it provides an estimate of T2. Following this

procedure, see Fig. 4.34, we have located the temperature T2 to be approximately T2 ≈ 0.22.

Even though a precise determination would require larger N and much more statistics, we

emphasize that this is nevertheless a valid estimate.

To locate T1, we took the opposite direction. A confined initial configuration was used

from smaller temperatures and the temperature was gradually raised to check whether the

configuration remains confined or not. In the right panel of Fig. 4.34, we observe a transition

to deconfined state for T1 ≈ 0.29 for the same parameters N,S, µ. This will be roughly the

maximum confined temperature for this configuration. Then we see that the temperature

window ∆T can be rather large even at these parameters. Towards lower µ, the situation

starts becoming even more difficult to analyze, but the same pattern is observed.
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Figure 4.35: Monte Carlo histories showing confined, stable states for N = 12, S = 48 and

temperature T = 0.2. From first row to third we have µ = 0.2, 0.1, and µ = 0 respectively.

No constraint was imposed for the simulation.
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Figure 4.36: Monte Carlo histories from cold starts (X1 = X2 = · · · = X9 = 0) for µ = 0,

T = 0.2, S = 48, N = 10 (left) and N = 16 (right). For N = 10, the onset of the run-away

behavior (i.e., the increase of R2) can be seen at late time.

µ = 0: BFSS limit

In this subsection, we review the information extracted from our simulations on the BFSS

limit. As expected, the run-away of scalar fields becomes more relevant as we approach µ = 0,

especially at smaller N and S [134,150,214]. An interesting new observation is that the signal

for metastability in a confined state even persists in the BFSS limit, see Fig. 4.35. Such a

metastable state can exist because the tendency for the scalar field to diverge is reduced in

the confined phase. On the other hand, we did not observe the deconfined phase in such

a low-temperature region. As we have already seen in Sec. 4.3.9, this deviation from the

gravity expectation can be due to finite N corrections. The expectation is that T2 and Tc
decrease with increasing N , as Tc, T2 ∼ N−5/9, which is still sizable in our simulations (e.g.,

12−5/9 ' 0.251, 16−5/9 ' 0.214). Therefore it is possible that the simulations at finite N

and small T see only the confined phase, even though the deconfined phase exists all the way

down to T2 = Tc = 0 in the large N limit. T1, on the other hand, increases with increasing

N , which means larger N stabilizes the confined metastable state up to higher temperatures.

Nevertheless, this is not in contradiction with Tc = 0 since the deconfined state has lower

free energy.

We performed a detailed investigation at T = 0.2, where the confined phase is sufficiently

stable. To obtain the confined phase, the initial configuration has to be tuned appropriately.

We obtained confined configurations by taking the initial configuration to be a configuration

from the BMN simulation at small µ, and XI = 0 for all I = 1, 2, · · · , 9 (‘cold start’). Due

to the flat directions, the latter often does not converge to a confined state, but we were able

to observe such a convergence for N = 16, S = 48 and N = 10, S = 48; see Fig. 4.36. While

the confined phase appears to stabilize the flat directions to a certain extent, instabilities

may still appear after many Monte Carlo steps, as shown in the left part of Fig. 4.36. We

generally observe that the confined state is more stable at larger N and/or larger S. We were

not able to obtain a stable confined state for a sufficiently long time below S = 30. However,

for larger S, by slowly increasing the temperature, we were able to see a confined phase up

to about T = 0.26.

To build confidence that we are observing the confined phase, we performed continuum

extrapolations (linear in 1/S) for N = 10, 12 and 16, as well as large N extrapolations (linear

in 1/N) for S = 30, 36, 48, at T = 0.2; see Figs. 4.37, 4.38. (To obtain these data points,

we only used the parts of the Monte Carlo histories before the instabilities due to the flat
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Figure 4.37: Full BFSS (i.e., full BMN with µ = 0) at temperature T = 0.2. From left to right:

continuum extrapolation (lattice size S →∞) for matrix size N = 10, 12, 16. The horizontal

axis scales as 1/S. We can see that the continuum extrapolation of E
N2 is consistent with

zero for all values of N . Therefore, E
N2 is consistent with zero in the simultaneous continuum

and large-N limits. We note that for the simulation with parameters S = 30, N = 16, we

discarded configurations with a too-large value of R2 due to the run-away behavior.
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Figure 4.38: Full BFSS (i.e., full BMN with µ = 0) at temperature T = 0.2. From left to

right: large N extrapolation for lattice size S = 30, 36 and 48. The horizontal axis scales29

as 1/N . We can see that the large-N extrapolation of the Polyakov loop is very close to zero

for all values of S. As a result, the Polyakov loop is consistent with zero in the simultaneous

continuum and large-N limits.

directions set in.) We observe that the Polyakov loop P is consistent with zero in the large

N limit, and thus consistent with a confined phase. Similarly, the energy is consistent with

zero in the continuum limit independently of N .28 Note that, in the deconfined phase, we

expect larger values of the energy and the Polyakov loop that are clearly distinguishable

from zero. The energy of the deconfined phase predicted by the gravity dual (the black

zero-brane in type IIA superstring theory) is E
N2 ' 7.41T 14/5 ' 0.0818 at T = 0.2, up to

string-theoretical corrections. As for the Polyakov loop in the deconfined phase, Ref. [214]

observed P ' exp
(
−0.15

T + 0.072
)

at 0.475 ≤ T . 1. This fit agrees well with the values of

P at T ≥ 0.4 obtained in Ref. [134]. By assuming that this fit is valid at lower temperatures

as well, we obtain P ' 0.51 at T = 0.2.

28Due to supersymmetry, the zero-point energy is zero.
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4.3.10 Conclusion and discussion

In this project, we studied the thermodynamic features of the BFSS matrix model and BMN

matrix model. Specifically, we studied the confinement/deconfinement transition in the trivial

background. We conjectured the phase structure based on dual gravity description [210,236]

and previous numerical studies. According to our conjecture, there are two kinds of confined

phases: the completely-confined phase, which is the (local) minimum of the free energy, and

the partially-confined phase (eleven-dimensional Schwarzschild black hole), which is the local

maximum of the free energy separating the completely-confined phase (M-theory vacuum up

to a small thermal fluctuation) and completely-deconfined phase (black zero-brane in type

IIA string theory). We provided the evidence supporting this conjecture by performing lattice

Monte Carlo simulations, modulo a few subtleties associated with the finite-N effects. It is

natural to expect that the confined phase of the BFSS matrix model can describe M-theory,

and hence, we might have finally reached the M-theory region.

The relationship between the flux parameter µ and critical temperature Tc is shown in

Fig. 4.22. Naively, it may appear that the matrix model and gravity disagree at small µ.

However, this is not the case; the gravity line is from the strict large-N limit, while the

matrix model results are obtained at finite N , and the apparent disagreement is consistent

with the gravity analysis and finite-N correction. This apparent deviation is actually good

news in a sense that are interpreted as quantum corrections!

Because such a confined phase was not observed in the past, the consistency has to be

discussed carefully. All studies but Ref. [250] focused on the high-temperature region (for

example, Ref. [134] studied T ≥ 0.4, N ≤ 32, L ≤ 32), by gradually lowering the temperature,

and hence, it could be a problem if the confined phase had been observed. It is straightforward

to go to larger N , say N = 64 or 128, at 0.4 . T , and we might be able to see the confined

phase there if the sufficiently fine lattice is used and the initial configuration is carefully

tuned. It would be a good consistency check. Ref. [250] studied lower temperature (T ∼ 0.1)

and much smaller N (N = 3, 4, 5). They introduced the cutoff for TrX2
I and studied the

unstable phase, whose energy was consistent with the deconfined phase. This phase may be

stabilized at sufficiently large N and become the stable deconfined phase.

One surprise, which we did not expect when we started this project, was that the confined

phase exists up to a rather high temperature, even in the BFSS limit. Concerning Monte

Carlo simulations, it is very good news: at higher temperatures, the temporal circle is smaller,

and hence, the simulation cost is smaller. Therefore, the detailed study of M-theory via Monte

Carlo simulation of the BFSS or BMN matrix models might be doable with much smaller

computational resources than previously expected. Nontrivial fuzzy-sphere backgrounds

corresponding to M2-branes or M5-branes may also be tractable targets. To deepen the

understanding of the duality in the M-theory region, it is important to perform calculations

in the gravity side that can be compared to the simulation results in the matrix model side.

Of equal importance is a similar confinement-to-deconfinement analysis for the fuzzy sphere

backgrounds, since in this case the precise dependence of the relevant temperature with N

is not known. This is an interesting problem, not only from the matrix model side but also

from the gravity analysis also, yet the difficulty to extract precise results is emanating from

carefully manipulating multi-centered supergravity solutions [258]. A better understanding

29As opposed to the deconfined phase, it is not clear a priori whether E
N2 and R2 should have 1/N or 1/N2

corrections. Both options provide a reasonable fit to our data and we chose the 1/N option in figure 4.37.
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of these solutions and their connection with analytic and Monte Carlo results, along the line

of the trivial vacuum analysis, will lead to a better M-theory interpretation.

Note that our analysis on the M-theory regime of the gravity side was only qualitative. In

order to understand the duality better, it is important to improve the analysis. It is natural

to think that only a part of the matrix degrees of freedom is excited and form a black hole

and graviton gas [225–227,238], but the rest of the degrees of freedom can still contribute to

the emergence of the background spacetime [238]. The number of degrees of freedom forming

a black hole can be determined from the distribution of the Polyakov line phases [222]. As a

rough estimate, it would be reasonable to identify it with the entropy [225–228].

For extremely low temperatures, we expect to enter the M-theory regime [210]. That is

because the small temperature region is related to the small energy regime and the latter is

expected to be connected with M-theory. Therefore, it might be possible that we can access

the M-theory region by keeping µ fixed and taking the limit T � 1. This would correspond

to a BMN M-theory description with a finite deformation, and indeed for low temperatures,

this is assumed to be described by the M5-brane of M-theory [211]. We can see hints for

this feature since the clustering of the six matrices that construct the five-sphere leads to

an average mean value bigger than the rest of the three matrices that construct the SO(3)

part. Indeed, recalling Fig. 4.14 this phenomenon can be observed in simulations and we will

report a more detailed analysis in a different project in section 4.4. We may also note that

in the very low temperature regime we cannot compare with results from the gravity side,

since at this level there is no such precise analysis for the M5-brane.

The completely-confined phase is rather stable, and hence, can be studied straightforwardly.

The study of the partially-confined phase can be tricky because it is unstable in the canonical

ensemble. Still, it may be doable by constraining the value of the Polyakov loop appropriately.

This phase, which is expected to be the dual of the eleven-dimensional Schwarzschild black

hole, would offer us an ideal framework to study the black hole evaporation. It might be

possible to study the region near the border between string theory and M-theory (T ∼ T2)

in a similar manner by introducing appropriate constraints.

Qualitatively, the BMN matrix model resembles four-dimensional maximal super Yang-

Mills on three-sphere. For the latter, deconfinement is studied not just by using the thermal

boundary partition function but also with the index [244]. The index is calculable analytically

even at strong coupling, and impressive agreement with gravity has been observed [259]. Such

an approach might be useful for the BMN matrix model as well, providing connections to the

counting of the supersymmetric black hole in an analytically tractable manner.

Rich phase diagrams are expected for other gauge theories as well. Qualitative aspects

of the phase diagrams of maximally supersymmetric Yang-Mills theories was discussed in

Ref. [210] by utilizing dual gravity pictures and string dualities. These theories may exhibit

confinement, as we observed for the matrix model. Two- and three-dimensional theories can

be studied on lattice without having the parameter fine-tuning problem, and simulations

on small lattices are already tried; see Refs. [139, 140, 217] for the two-dimensional theory

and Ref. [142] for the three-dimensional theory. Lattice Monte Carlo simulation of these

theories can be a powerful tool to reveal the nonperturbative aspects of string/M-theory and

holography further.

Last but not least, it is important to understand how the information of eleven-dimensional

spacetime is encoded in the BFSS matrix model in which only ten of eleven dimensions can
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be seen manifestly; see e.g. Ref. [260]. We might be able to get some hints by studying

the M-theory parameter region of the BFSS matrix model and identifying the gravity dual

precisely.

The main message of this project

In this project we studied the phase diagram of BMN model [194]. It added the

following new insights that can be summarised in the list:

� The phase transition of BMN matrix model has established to be of first order.

� The confined phase of BFSS model has been observed for the first time.

� The latter phase is argued to be connected with the Schwarzschild black hole of

M-theory. If this is true, then we may revealed a possibility to study contents of

M-theory by using the BMN model in low temperatures exploiting its stability

at finite µ.

� The key point is that we can use the BMN model with small µ to probe the

BFSS model in low temperatures. This was crucial in order to understand the

behaviour of the two models in small temperatures and their connection.

4.4 Gauged and Ungauged matrix models

In this project we discuss an interesting conjecture made in [254]. Maldacena and Milekhin

discussed whether the gauge-singlet constraint is necessary for the duality. Therefore, let us

give some motivation why this project is interesting.

The holographic principle claims that quantum gravity can be described by a dual non-

gravitational theory. AdS/CFT duality [130] provides us with concrete realizations of the

holographic principle. But in fact, neither AdS nor CFT is crucial; actually, AdS/CFT

duality is a special case of gauge/gravity duality that admits non-AdS/non-CFT duality.

As yet other examples emerge, it became natural to ask if the gauge-singlet constraint is

crucial on the QFT side. Indeed, this is something that gained more popularity since the

appearance of the Sachdev-Ye-Kitaev (SYK) model [261, 262]. The SYK model is described

by N one-dimensional quantum fermions with random interactions between them and it

does not have a gauge symmetry. Despite the lack of gauge symmetry, fermion bilinears

that look like “singlets” appear to have natural dual descriptions in an emergent two-

dimensional spacetime [263]. The SYK model was believed to give a concrete realisation of a

n(early)AdS/n(early)CFT correspondence because the bulk dual is related to near-extremal

Reissner-Nordströ m black holes whose horizon topology back-reacts in AdS2×S2. The factor

of AdS2 in the previous topology can be described by the Jackiw-Teitelboim gravitational

model [67,264] . The same story holds for the Gurau-Witten tensor models [263,265] in which

the gauge-singlet constraint can be either imposed or not. In fact this is not surprising since

both the tensor models and the SYK model are related with each other under the fact that

their Feynman diagrams are dominated by the so-called melonic diagrams.

Maldacena and Milekhin [254] discussed whether the gauge-singlet constraint is necessary

for more traditional types of gauge/gravity duality. They considered the D0-matrix model [53,
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209] and its ungauged version and conjectured that the difference between the gauged model

(with singlet constraint) and the ungauged model (without singlet constraint) is exponentially

small at low temperature. In particular, they conjectured that the same gravity dual describes

the low-energy dynamics of the gauged and ungauged models. Numerical simulation of the

D0-matrix model [138] provided results consistent with the conjecture.

There is a natural generalization of the D0-brane matrix model keeping maximal

supersymmetry, called the BMN matrix model [211]. Maldacena and Milekhin considered the

ungauged version of the BMN matrix model as well. In this paper, we test their conjecture

for the BMN matrix model by employing numerical methods. In addition to the original

motivation coming from the Gurau-Witten tensor model, yet another motivation, in this

case, comes from quantum simulations [141]. The gauge-invariant Hilbert space consisting

only of singlet states is rather complicated, and merely writing down the orthonormal basis

is already a difficult task. This problem can be avoided by introducing the extended Hilbert

space that contains non-singlet states. A potential worry arises if the additional non-singlet

degrees of freedom introduce other unexpected technical issues. Specifically, if many light

modes emerge, they can easily be excited and lead to a large error. If the conjecture by

Maldacena and Milekhin is correct, such light modes do not exist and hence the use of the

extended Hilbert space can be rather straightforward.

The ungauged matrix model

If we turn-off the gauge field At in the BFSS or BMN matrix model, we obtain the

ungauged matrix model. Specifically, we define the ungauged action Sungauged as

Sungauged[X,ψ] = Sgauged[X,At = 0, ψ]. (4.69)

The thermal partition functions of gauged and ungauged models are defined by

Zgauged =

∫
D[At]D[XM ]D[ψα]e−Sgauged[X,At,ψ], (4.70)

Zungauged =

∫
D[XM ]D[ψα]e−Sungauged[X,ψ]. (4.71)

Here, the time direction is Wick-rotated to the Euclidean signature and compactified to

circumference β = T−1. We impose the periodic boundary condition for bosonic fields X and

At, and antiperiodic boundary condition for fermionic fields ψ.

Gauge-singlet constraint

Let us discuss the meaning of the ungauging in terms of quantum states in the Hilbert

space. By using the gauge-invariant Hilbert space Hinv and the extended Hilbert space Hext,

thermal partition functions are written as (see for example Appendix A.2 in Ref. [266])

Zgauged(β) =
1

VSU(N)

∫
SU(N)

dgTrHext

(
ĝe−βĤ

)
(4.72)

= TrHinv

(
e−βĤ

)
(4.73)

and

Zungauged(β) = TrHext

(
e−βĤ

)
. (4.74)
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In (4.72), VSU(N) is the volume of the SU(N) gauge group,
∫

SU(N) dg is the integral with the

Haar measure, and ĝ is the operator acting on the Hilbert space as the SU(N) transformation

corresponding to the group element g ∈ SU(N). By construction, 1
VSU(N)

∫
SU(N) dgĝ acts

as the projector from Hext to Hinv. In fact, (4.72) is directly related to the path-integral

formulation with gauge field At, (4.70). The projection operator tells us that we should count

gauge-equivalent states only once, and hence, we obtain (4.73) from (4.72). The operator ĝ is

the counterpart of the Polyakov loop in the path-integral formalism. Integration over SU(N)

is the remnant of the path integral with respect to At.

Gravity dual of ungauged matrix models

The idea behind gauging a symmetry or not in this particular example might become more

intuitive if we present it in the language of string theory. The gauge invariant (physical)

states are singlets. These states correspond to closed strings and are constructed by acting

with combinations of matrix operators on the vacuum state upon taking the trace over the

gauge group indices30, i.e

|physical〉 = Tr
(
X̂I1X̂I2 · · · X̂IL

)
|vacuum〉 . (4.75)

On the other hand, the ungauged model allows some room for non-singlets without a trace

|physical〉 = X̂I1X̂I2 · · · X̂IL |vacuum〉 . (4.76)

Even though the singlet sector of both theories is the same, in the ungauged model there is

a new sector that hosts non-singlets. The latter can intuitively be realized as an arbitrary

long open string made out of L bits whose end points can reach the boundary. Let us now

discuss the continuum picture, e.g L → ∞. In the bulk, this configuration of long strings is

described by the gravity dual of non-supersymmetric Wilson loops and the difference with

the usual supersymmetric Wilson loop is the fact that in the latter case the string obeys

Neumann boundary conditions while in the former Dirichlet boundary conditions [254]. This

means that the tip of the non-singlet string can freely move in the bulk and reach even to

the boundary. In order to be able to compare with gravity, we should ask what would be a

natural cut-off such that we could approximate the energy of this massive string/state with

supergravity. This is dictated by the validity of (3.114) which reminding that [r] = (energy)1

we may demand that Emin ∼ λ1/3. This indeed would be a natural cut-off because when we

have a pair of a string and an anti-string, we can arbitrarily lower their energy (length) by

placing both its endpoints on the boundary. On the other hand, we could not approximate its

energy from the supergravity side in this case because the latter is not valid at the boundary.

Hence, a natural non-zero, calculable from the gravity side, value of minimal energy would

be

Emin ∝ Cadjλ
1/3, (4.77)

with Cadj being a number. The idea then is that the fate of non-singlet adjoint strings is to

end on the boundary minimizing in this way its energy. Therefore, contributions from the

energies of non-singlet states should be negligible in the large N and low-temperature limit

30Here the gauge group is SU(N) and by taking the trace we mean summing over the SU(N) indices

Tr X̂I =
∑N
i=1

(
X̂I
)i

i, Tr X̂IX̂J =
∑N
i=1

∑N
j=1

(
X̂I
)i

j

(
X̂I
)j

i, etc. This is different from the trace over the

Hilbert space, TrHinv or TrHext .
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and the gravitational dual of the non-singlet strings in this regime is the same as the one of

the singlets in (3.114).

Hence, in addition to the geometry (3.114), there might be contributions in the partition

function from the non-singlet sector, the latter being near the boundary. However as it has

been previously verified in [138], we shall also see that when the ground state of the ungauged

model is cyclic (in a sense that we allow cyclic permutations of the matrices X̂1 · · · X̂L) and

in particular in the low temperature regime of the theory the non-singlet sector is sub-leading

and the two theories, gauged and ungauged are exponentially close to each other. This is the

conjecture made in [254] which we focus on in what follows.

Figure 4.39: Five isolated D0-branes are connected with strings. [Left]: A gauge invariant

state (solid line) is formed by a closed loop connecting the D0-branes. [Right]: A non-gauge

invariant state represented by an open string that connects D0-branes and can be arbitrary

long (depending on the number of D0-branes). The string bits are given by the spacing

between the D0-branes and are represented by L.

4.4.1 Gauged vs ungauged: the conjecture

The temporal component of gauge field At is not dynamical. Its role is to impose the gauge-

singlet constraint. Matrix models do not have spatial gauge field components Ax, Ay, · · · ,
and hence, the only effect of gauge symmetry is to impose the gauge-singlet constraint. The

ungauged version of the model does not obey the singlet constraint. The SU(N) symmetry

is treated as a global symmetry of the system.

In [254], Maldacena and Milekhin considered the BFSS matrix model (µ = 0) and the

BMN matrix model (µ > 0), and claimed that gauged and ungauged versions are essentially

the same at large N and strong coupling, in the sense that the contribution of the non-singlet

sector in the partition function is negligible in the large N limit. The partition functions

of the two models are given as (4.70), (4.72), (4.73) for the gauged model, and and (4.71),

(4.74) for the ungauged model.

Let us denote the difference of the gauged and ungauged free energies in the large N limit

as

∆F = − logZgauged(β) + logZungauged(β)

= βFungauged − βFgauged

= N2g(β) (4.78)

up to 1
N -corrections, where g(β) is a function that depends on the parameter regimes of the
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model31. The factor N2 comes from the ’t Hooft counting.

Ref. [254] discussed the free energy difference in two different regimes and focused on the

strong coupling regime. Actually the BMN model has two parameters that control the regimes

of the system, that is µ and T . Let us remind the effective dimensionless coupling for the

BMN model again here

geff =
λ

µ3
. (4.79)

The high temperature and weak coupling regime

In this limit, the difference of the free energies is

∆F ' N2 log(µβ),
λ2/3

T 2
� 1,

µ3

λ
� 1. (4.80)

This is the weak coupling regime at high temperatures and large µ. At these temperatures

we do not have a bulk dual so we will not be interested in this regime.

The low temperature and strong coupling regime

Under the presence of a gravitational dual the free energy difference is

∆F ' N2nadje
−Cadj/T ,

λ

T 3
� 1,

µ

T
� 1. (4.81)

This limit is a bit subtle. Note that for BMN it is not enough to consider just small

temperatures, but one also has to consider the µ → 0 limit to compare with gravity. The

reason is that even though for finite µ there is a gravitational dual description it is given by

a deformed geometry [236].

From (4.81) we get the difference of energies E = ∂(βF)
∂β as

∆E = Eungauged − Egauged = N2nadjCadje
−Cadj/T + · · · , (4.82)

to lowest order in temperature and µ = 0. The consensus built in [254] and [138] is that

nadj is the degeneracy of the lightest mode and Cadj its energy. This result seems now to be

understood for the µ = 0 case. Indeed at µ = 0, the factor nadj is an O(1) integer, and Cadj

is an O(1) positive number. Results of numerical simulation at µ = 0 [138] are consistent

with nadj = 2 and Cadj ' 1.

The low temperature and weak coupling regime

The BMN model can be also weakly coupled in low temperatures, in contrast to the BFSS

model. This is due to the effective coupling (4.79). In the large µ region the BMN model

admits a perturbative analysis [157, 267, 268] with perturbation parameter (4.79). The

spectrum is discussed in Sec. 4.4.6 and the lightest mode is the one created by B†a acting

on |0〉. Whether we take the trace or not, corresponds the decision between the gauged or

ungauged theory. The latter act without the trace and the lightest mode is created by B†a |0〉
with energy (4.105). In fact this is what we called Cadj above and we have six of them because

31We remind that we are measuring everything in terms of t’Hooft coupling λ = g2
YMN which we set to one

from now onwards. In a general case it would also have a λ dependence as g(λ1/3β).
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we have six harmonic oscillators (one for each direction in the SO(6) part) which gives the

degeneracy. In the low temperature region also, we can still use an exponential ansatz and

we expect the perturbative result of the lightest mode to be given by

Eadj = N2 · 6 · µ
2
e−

µ
2

1
T ,

λ

T 3
� 1,

µ3

λ
� 1. (4.83)

This is what we expect in the perturbative, low-temperature regime for the lightest mode

of the theory. In fact, if we wish to study heavier modes and to be more precise we should

consider the full U(1) sector given by

EU(1)

N2
= 6

µ

2
e−

µ
2

1
T + 8

3µ

4
e−

3µ
4

1
T + 3µe−

µ
T ,

λ

T 3
� 1,

µ3

λ
� 1, (4.84)

(see Table 4.6) but as we discuss later on and we show in Fig. 4.45 at very low temperatures,

the difference between the contribution of the lightest mode and that of the full U(1) sector

is negligible (at finite µ).

4.4.2 Numerical analysis

In this section we summarize the numerical analysis. We took large N and continuum limit

systematically such that lattice artefacts and finite N corrections are eliminated.

4.4.3 Simulation strategy

The BMN matrix model has a few nice features that make the numerical simulation easier

than the BFSS matrix model. A big problem for the latter is the existence of flat directions.

To tame the them, we have to take N very large. In the BMN matrix model, the flat directions

are lifted due to the mass term in the flux deformation. Therefore, we can study the BMN

matrix model at relatively small values of N . Furthermore, the condition number of the

Dirac operator decreases as µ becomes large. This makes simulations more tractable in this

regime.

For small µ and T , e.g. if one wishes to study the trivial background of the model,

choosing combinations of the mass parameter µ and the matrix size N is quite subtle. That

is because a new class of BMN vacua allows for tunnellings between the trivial background

(Xi = 0 = Xa, ψα = 0) and fuzzy spheres (Xa = 0 = ψα, Xi = µJi). The potential barrier

between them depends on µ and N . More precisely, Investigating the stability of a minimum

of the potential ∂V
∂X = 0 and relating X ∼ r one can find that the barrier between the two

backgrounds scales as ∼ µ4N4 (see Appendix A for a derivation). Therefore for very small

µ and fixed N the trivial background configuration can tunnel to a fuzzy sphere background

and the distinction between the two is not possible. Because the fluctuation of matrix entries

is roughly given by 0.6N−1/2, demanding that the radius of the maximum fuzzy sphere is less

than this value gives a constraint on µ. On the other hand at relatively large values of N ,

the simulation remains in the trivial background. To avoid lattice artefacts one should also

have a large number of lattice points S.

Hence, the strategy we used is the following:

� For fixed µ we perform a series of simulations at different temperatures as well as

varying N and S checking that we always stay in the trivial background of the confined

phase.
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� We extrapolate to the large N and continuum limit of the theory for our observables.

� Calculate the difference between gauged and ungauged observables such as the energy

and those defined in (4.88) and (4.89), for different temperatures at fixed µ and then

fit exponentials of the form (4.81), (4.90), (4.91) respectively.

� Finally, we take the limit µ→ 0 to cross-check the results for CE,R,F, DE,R,F and nadj.

In the past, there were two possible kinds of conjectured phase diagrams of the gauged

BMN matrix model atN =∞ (Fig. 4.13). The large-µ region admits perturbative calculations

[151,237] and the transition is found to be of first order. The small-µ region has been studied

by using the dual gravity description [236] and recently via Monte-Carlo simulations [194]

first order transition has been established both analytically and numerically, while in addition

a surprising possibility to study aspects of M-theory, like the Schwarzschild black hole has

been established. Numerical simulation is applicable to the intermediate-µ region as well,

and the results are consistent with a first-order phase transition [194]. Therefore, the left

diagram of Fig. 4.13 is most likely the correct one. In this paper we do not need to know the

order of the phase transition as it does not affect our argument.

According to the Maldacena-Milekhin conjecture, the gauged and ungauged theories are

exponentially close at low temperature. Therefore, we will focus on the confined phase. In it

observables like e.g the energy, are independent of temperature up to 1/N corrections. We

can determine these temperature-independent values by taking the large-N and continuum

limit at some fixed value of T . In order to determine these values reliably, we will study

different values of T at each µ.

To extrapolate to large N and continuum regime, we use the fit ansatz

E(S,N)

N2
= ε0,0 +

ε1,0

N2
+
ε0,1

S
+

ε1,1

N2S
+ · · · . (4.85)

The continuum extrapolations are done with ε0,1 corrections while the large N ones with ε1,0

terms. The extrapolations of other observables are of the same form. For a discussion over

different extrapolation fits of this form see Sec. 4.5.

The values of the flux that have been used are in the range µ = 2, 3, 4, 5 while the range

of temperatures is adjusted for each µ with T ∈ [0.2, 1.1]. In addition the size of the matrices

and the lattice spacing runs over N = 8, 12, 16 and S = 12, 24, 48, 96, respectively. Then

we extrapolate to large N and the continuum regime of the theory using the strategy we

discussed in Sec. 4.4.3 and using fits of the form (4.85). We repeated this analysis both for

the gauged and ungauged data.

In Fig. 4.40 we present some representative Monte Carlo histories from the data we used.

Similar Monte Carlo histories appear in all range of µ and temperatures we have investigated.

4.4.4 Energy of the system

In the matrix model side, the energy of the system is given via E = E(T ) since we are in

the canonical ensemble. In other words, we are fixing the temperature and obtain the energy

of the system. On the other hand, in the gravity side the energy of the system is given by

(3.122) for the BFSS gravity dual and from the deformed version (3.182) for the BMN gravity
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Figure 4.40: Typical Monte Carlo histories for gauged data. [Up]: from left to right µ =

2, T = 0.2, N = 12, S = 48 and µ = 4, T = 0.4 for same N,S. [Bottom]: from left to right

µ = 2, T = 0.2, N = 16, S = 48 and same µ, T for N = 16, S = 96.
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Figure 4.41: Typical Monte Carlo histories for ungauged data. [Up]: from left to right

µ = 3, T = 0.4, N = 8, S = 96 and same µ, T, S for N = 16. [Bottom]: from left to right

µ = 3, T = 0.2, N = 12, S = 48 and same T,N, S for µ = 2. The Polyakov loop is P = 1 by

definition in the ungauged model.

dual. In any case, the low-energy regimes of the models correspond to the low-temperature

regimes.
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In the BFSS limit µ = 0, Maldacena and Milekhin conjectured (4.82), which we repeat

here:

∆E = Eungauged − Egauged = N2nadjCadje
−Cadj/T + · · · .

Numerical simulation in Ref. [138] suggests nadj = 2 and Cadj ' 1. We studied the behavior

of ∆E at finite µ and low temperature. The results are given in Fig. 4.42 with perturbative

results valid at large µ and two kinds of numerical fit. The punchline at this stage is that

there is an exponential decay with 1/T verifying the ansatz (4.81). The nature of the fits

depends on how many parameters we keep. The red curves in Fig. 4.42 are two-parameter

fits with the following ansatz:

∆E(µ, T ) = N2DE(µ)e−CE(µ)/T . (4.86)

The fit results are shown in Table 4.3. We can extrapolate CE(µ) to µ = 0, by assuming a

quadratic dependence on µ CE(µ) = CE(0)+Aµ2. As long as we are in the low values of µ we

can assume that the Taylor expansion of this form is valid. We may also note that the sign

of µ does not play an important role since whether we are considering µ or −µ is physically

equivalent for the BMN model since we are just changing the sign of the mass. This symmetry

is broken by lattice artefacts but gets restored when we are considering the continuum limit.

Therefore, we can neglect the linear term in µ. The result we get is CE(0) = 0.860(68),

which is consistent with the value 0.83(21) obtained in Ref. [138] and the other parameter is

estimated as A = 0.087(04). On the other hand, it is difficult to extrapolate DE(µ) to µ = 0;

the quadratic ansatz gives 2.755 ± 2.153, which has a very large error (see Fig. 4.43).

The ratio n := DE/CE is regarded as the degeneracy of the eigenstate of the system. At

µ = 0, simulations in Ref. [138] suggested that it is n
∣∣
µ=0

= 2. In particular, the numerical

value was estimated as n
∣∣
µ=0

= 1.91(78). At finite µ we do not know what to expect precisely,

but it is possible that, in addition to the energy eigenstate, also the degeneracy can change. In

fact this is what we observe numerically as shown in Fig. 4.44 and we shall call the degeneracy

as effective degeneracy. We call it effective because it can take rational values as µ changes

and it is possible that is not valid in all range of µ . Our numerical results suggest that indeed

there is a change of degeneracy with µ as we observe in Fig. 4.44. This is the change we

observe in the effective degeneracy from numerical data as we turn on µ. We stress again that

there is no theoretical results on how the degeneracies of the gauged and ungauged sectors

change as we turn on µ, but our data suggest a dependence on µ of the effective degeneracy

of the energy, accompanied also by a change on the energy itself CE → CE(µ). It might be

possible that it appears as a systematic error, but on the other hand it could be of physical

significance since at intermediate µ there could be some modes even in the gauged sector that

are not light and they contaminate the simulation results such that the effective degeneracies

have this peculiar shift which can be non-integer for non-zero µ. We do not know the nature

of this peculiar shift but our findings are pointing towards a physical understanding.

We recall from (4.81) that the limit in which we are interested is µ
T � 1 and T 3 � 1

which is indeed very difficult for simulating. What we do instead is to fix µ, perform a series

of simulations for different decreasing temperatures, check the behaviour of the system as we

change the coupling and then compare with the µ → 0 limit. Indeed, in the latter case we

find good agreement with the numerical results obtained in [138] and expectations reported

in [254]. Note that from theoretical expectations for the finite µ regime of the model we

do not have a clear idea how the energy difference for the gauged and ungauged models
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Figure 4.42: The large N and continuum fits of the difference of energies (4.82) for different

µ and the relevant fits. The two-parameter fit is given in (4.86) with results reported also in

Table 4.3. The perturbative fit is given by equation (4.84).
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Figure 4.43: The dependence of the energy parameters on µ . [Left]: The fit is done by CE =

0.860(68) + 0.087(4)µ2. [Right]: The fit curve is again given by DE = 2.8(2.2) + 1.44(14)µ2.

Points at µ = 0 are from [138]. The extrapolated values agree within error bars with the

points at µ = 0.

is related. It is possible that finite µ effects even at low temperature can introduce some

non-trivial corrections to the energy of the system. The reason is that when we turn on µ

we also turn on some massive modes that can contribute in the partition function resulting

in32 Cadj → Cadj(µ). Theoretically, this possibility of finite µ contributions to the interacting

sector of the gauged model exists, but their precise form is unknown [268]. Let us clarify a bit

this point. In perturbative investigations [157,267–269] there is the claim that the free sector

of the model does not receive any finite µ contributions to all orders in perturbation theory.

In fact, this is the reason why we can use the perturbative result of the U(1) sector (4.84)

even at finite µ. The same claim has been tested for some states of the SU(N) interaction

sector to a few orders in perturbation theory [267,269]. On the other hand in [268] is argued

that there could be some terms in the interacting sector of the model that receive finite µ

corrections, as well as it could be the case that we have mixing states at finite µ which could

result in a non-trivial change of the energy of the system. We stress, that indeed, since such

an analysis has not been done in the past, by turning on µ even at the level of the gauged

sector we introduce some corrections to the energy. This possibility exists and is highlighted

in the literature but a precise investigation has not been done yet.

However, at low temperatures and finite µ we can assume the partition functions to be

close to each other such that we can still use the exponential ansatz. Indeed, the data

suggest an exponential decay at small temperatures and all simulations have been done

in small temperatures with respect to the relevant µ such that we remain in the confined

phase [194, 236]. Therefore, using this information we can assume an ansatz such as (4.86)

that works for our data.

To control the µ � 1 limit in simulations is currently not possible. Hence, it makes

more sense to study higher values of µ at the same (low) temperature and then extrapolate

the results to µ → 0. On the other hand, when we study larger values of µ, contributions

32Without confusion we denote CE also as Cadj since they are both referring to the energy.
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coming from the massive modes might become significant as we explained above. For small

temperatures and larger values of µ, we expect our data to converge to the perturbative

prediction (4.83) and indeed we demonstrate this in Fig. 4.42. We also expect that in the

BFSS limit (µ → 0, low temperature) to get nadj ' 2 and Cadj(0) ' 1. This is compatible

with the current results.

two-parameter fit

µ CE DE

0 0.860 ± 0.068 2.755 ± 2.153

2 1.150 ± 0.049 8.154 ± 1.200

3 1.719 ± 0.049 17.42 ± 1.48

4 2.255 ± 0.124 23.38 ± 4.65

5 3.017 ± 0.030 39.53 ± 1.55

Table 4.3: We fit ∆E by using the two-parameter ansatz (4.86). The µ = 0 value is the

extrapolation of the fits to the µ→ 0 limit.
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Figure 4.44: Extrapolated to µ → 0 value of the degeneracy of energy states from a two-

parameter fit. At µ = 0 we show the point measured with a two parameter fit in [138].

Validity of perturbative results

The perturbative prediction is expected to hold in the limit µ → ∞. Our non-perturbative

methods allow us to check how much their range of validity extends towards lower µ. The

perturbative estimates are shown in Fig. 4.42 in comparison to the numerical data. As

expected, one observes a convergence of perturbative and non-perturbative data in the

low temperature limit. For large µ this range of convergence should extend up to higher

temperatures.

It is instructive to discuss in more detail the perturbative predictions. We will focus in

this discussion on the largest µ (µ = 5), which should provide the best convergence to the

numerical data. In the large µ limit, the Hamiltonian of BMN decouples in two parts (see

Appendix 4.4.6). In the energy plots in Fig. 4.42 the full U(1) sector (4.84) is taken into

account, but we can also investigate the relevance of the different contributions and compare

the full U(1) sector with the lightest mode (4.83).
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At very low temperatures and finite µ the contribution of the full U(1) sector almost

coincides with the lightest mode (4.83) and we cannot distinguish them practically.

We observe that at finite µ the perturbative result of the lightest mode and the exponential

fits from the numerical data cross at finite values of temperature as shown in Fig. 4.42. There

is, consequently, no asymptotic convergence in the small temperature limit. When we include

the one-loop correction given by [254,269]

ESO(6) =
µ

2
+

λ

2µ2
+ · · · , (4.87)

we do not expect things to change by much because the one-loop corrections in the gauge

and ungauged models cancel each other [254]. Indeed, we checked that this is the case and at

small temperatures, the difference between the two is suppressed. Fig. 4.45 is an additional

illustration of these findings.
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Figure 4.45: [Left]: Various perturbative results for the U(1) sector of the model compared

with the two-parameter fit data for µ = 5 with logarithmic scaling on the y-axis. There is a

crossing of the two-parameter data with the lightest mode (4.83) and its one-loop correction

(4.87) but no crossing for the full U(1) perturbative sector (4.84). [Right]: The difference of

the perturbative result (4.84) and the two-parameter fit with respect to temperature including

the error bars of the data points for µ = 5. We observe an indistinguishability between the

actual data and the perturbative result using the full U(1) sector within the error bars of the

data. At smaller temperatures the difference approaches to zero.

However, in view of the overall behaviour we still conclude that the full U(1) sector (4.84)

provides a cleaner description of the data since there is an asymptotic convergence instead

of a crossing with the fitted non-perturbative result. Only a small shift smaller than our

statistical uncertainty remains in this case. In the parameter region we studied, considering

only the lightest mode shows a large deviation from the numerical data at lager temperatures.

Except for the region where the fit and the lightest mode contribution cross, the full U(1)

contribution is closer to the data and it seems to capture the asymptotic behaviour better.

Therefore we decided to show the contribution of the full U(1) sector in Fig. 4.42. If we

insist that the U(1) sector is protected from finite µ corrections [157, 267, 268, 270] we could

carry these results to finite µ and the slight shift from the actual data could be related with

the SU(N) sector where we do not precisely know what to expect at finite µ. This would

require, however, a further detailed analysis. Such investigation can reveal more about the

fine print of the perturbative calculations. Overall we can, however, conclude that our results

reproduce correctly the perturbative predictions.
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4.4.5 Other observables

The same analysis can be done for other gauge invariant quantities such as the sum of traces

of the squared matrices defined via

R2 ≡ 1

Nβ

∫
dt

(
9∑
I=1

Tr (XI)
2

)
, (4.88)

and the commutator

F 2 ≡ − 1

Nβ

∫
dt

 9∑
I,J=1

Tr [XI , XJ ]2

 . (4.89)

Similarly with energy, we may take the difference between the gauged and ungauged results

which we expect to be exponentially close to each other in the limit of (4.81). The justification

for this comes from the partition functions, which are close to each other. Therefore we expect

the relevant observables to scale as

∆R2 = R2
ungauged −R2

gauged = N2DRe
−CR/T , (4.90)

∆F 2 = F 2
ungauged − F 2

gauged = N2DF e
−CF /T (4.91)

with a priori unknown parameters DR, DF , CR and CF . We report the results in Table 4.4

while the respective diagrammatic fits are shown in Figs. 4.42 and 4.47. It is important to

note that there is no prediction whatsoever for the parameters CR,F and DR,F . In addition

there are no constraints between CR, DR and CF , DF .

Due to finite µ deformations, we expect the situation to be different than for the BFSS

model. However, in the µ → 0 limit one should recover the BFSS values. For the R2

observable both for CR (see left panel of Fig. 4.48) and DR there are no precise values

available at µ = 0 but a rough estimate made in [138] seems to agree. On the other hand,

for the commutator works only for CF (right panel of Fig. 4.48) while for DF we observe a

discrepancy with respect to the BFSS value. We do not know precisely how these observables

are behaving when we turn on µ, as well as we do not know if they are smoothly connected

with the ones at µ = 0. The results from analysing the energy suggest that this should be

the case. The small discrepancy at intermediate µ for CR,F and DR,F could probably be an

effect caused by finite µ contributions or part of the simulations has transitioned to a fuzzy

sphere background. The important result is that CE,R,F agree nicely when µ = 0 as we can

see from the left panel of Fig. 4.49. Since, no correlation is assumed between DR,F and CR,F
we can not claim the same for DR,F .

In Fig. 4.46 we show that our results are consistent with theoretical expectations. Finite

µ effects could be observed even though we are putting the system in the trivial background

XI = 0, I = 1, · · · , 9. This can be already observed in Monte Carlo histories (see for example

Figs. 4.40, 4.41) and by studying the SO(3) potential of the action. We remind that on top

of the classical trivial background there are quantum fluctuations that give actually some

non-zero expectation values for the matrices. The classical potential of the bosonic SO(3)

part of the action is found to be (see Appendix A and specifically eq. (A.3))

V (r) ∼ r2 (r − µ)2 . (4.92)

On top of that, we have quantum fluctuations on the r value resulting in fluctuations on

V (r). For the case of µ = 0, we immediately get the BFSS result V (r) ∼ r4 which, in the
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Figure 4.46: [Left]: The observable F 2 (errors included but are very small) with respect to

µ for the gauged and ungauged data at temperature T = 0.5 in the large N and continuum

limit. [Right]: The SO(3) potential corresponding to extrema of the SO(3) action with

respect to µ in the positive-r axis. This potential is symmetric with respect to the y−axis.

As we increase µ we see that when we are in the trivial background r = 0 the simulation

becomes more and more stable, such that we observe a decrease of F 2 as we increase µ. The

same scaling behaviour holds for all observables (see also Fig. 4.51).

matrix model language is given by the observable F 2 since considering quantum fluctuations

the matrices do not strictly commute. We may now ask how this observable behaves for

µ 6= 0 and the answer is clear from (4.92). Bigger values of µ result in smaller values of V (r)

because the effect of finite µ is to confine the simulation more into the classical vacuum r = 0.

For finite µ, the matrices (to be more precise their eigenvalues) are grouped around r = 0

while for µ = 0 they can spread in the whole range of the potential barrier and this makes

(some of) the eigenvalues escape to infinity resulting in the flat direction problem. Indeed,

this is the behaviour we observe in the left panel of Fig. 4.46 both for gauged and ungauged

models, and the theoretical explanation is because for bigger values of µ the fluctuations

of the potential become smaller due to a bigger potential wall created by finite µ. This is

shown in the right panel of Fig. 4.46 and it affects all observables {E,R2, F 2} such that they

decrease as we increase µ (see also Fig. 4.51). At the same time, the observable F 2 for the

gauged and ungauged models studied at µ = 0 in [138] is of order O(15) always while here

we see clearly a decreasing trend as we increase µ.

Another point of view that arrives at the same conclusion is to consider the large µ limit.

In this case, all the bosonic matrices can be written in terms of harmonic oscillators, and

they all scale as 1/µ (for the SO(3) part) and 2/µ (for the SO(6) part) as it can be seen from

eq.’s (4.96) and (4.97).

An interesting puzzle to understand is the role of the unstable solution of the SO(3)

potential given by r = µ/2 in our conventions (see again Appendix A). It is not known in

the literature how this term appears in the simulations and how it affects them. Thus, we do

not exclude the possibility that the simulation reaches frequently this solution altering the

results non-trivially at finite µ.

Nevertheless, finite µ effects change the observables non-trivially as we saw, and indeed a

better understanding of the smaller µ region will be important in the future since currently,

it is out of reach for such a precise analysis.
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µ CR DR

0 0.834 ± 0.058 1.542 ± 0.187

2 1.119 ± 0.091 1.718 ± 0.416

3 1.423 ± 0.026 1.499 ± 0.063

4 2.022 ± 0.075 1.965 ± 0.202

5 2.561 ± 0.033 1.975 ± 0.066

µ CF DF

0 0.825 ± 0.059 11 ± 0.7

2 1.125 ± 0.098 11.370 ± 2.939

3 1.457 ± 0.042 9.983 ± 0.677

4 2.088 ± 0.065 11.900 ± 1.061

5 2.663 ± 0.032 10.750 ± 0.344

Table 4.4: We fit ∆R2 and ∆F 2 by using the two-parameter ansatz (4.90) and (4.91),

respectively. The µ = 0 value is the extrapolation of the fit to the µ→ 0 limit.

BFSS values for two-parameter fits

CE DE CF DF

0.83 ±0.21 1.59 ± 0.51 0.73 ± 0.24 1.93 ± 0.65

Table 4.5: The available two-parameter fit data for the BFSS model taken from [138].

Moreover, the dependence of the exponential parameters (CR, CF ) on µ is given in

Fig. 4.48 and they seem to converge to their BFSS values [138] apart from DF (see also

Table 4.5). This is not a problem because there is no constraint between CR,F and DR,F so

we do not know what happens at intermediate µ and the results of [138] regarding this are

not conclusive. Thus, this provides additional evidence that the limit µ → 0 is smooth and

consistent.

4.4.6 Hamiltonian splitting in perturbative regime

When we Legendre transform the Lagrangian of the BMN model, e.g equation (3.96) and take

the large µ limit, the Hamiltonian splits into a free and an interacting part which decouple

from each other

H = H0 +Hint, (4.93)

where

H0 =
N

λ
Tr

[(
λ

N

)2 1

2

(
ΠM

)2
+
µ2

2

(
Xi
)2

+
µ2

8
(Xa)2 − 3µ

4
iψ̄αγ123ψα

]
, (4.94)

Hint =
N

λ
Tr

[
−µiεijkXiXjXk +

1

4
[XM , XN ]2 + ψ̄αγM [XM , ψα]

]
, (4.95)

with ΠM = δL
δẊM

being the conjugate momenta for bosonic matrices. The H0 terms construct

the free U(1) sector of the model while Hint denotes the interactive SU(N) part. In the large

µ limit, the interactive sector can be treated perturbatively while the free sector is claimed

to be protected from contributions to all orders in µ (see e.g [112, 157, 268]). In addition we

can introduce harmonic oscillators defined by the operators

Ai :=

√
1

µ

(
λ

N

Πi√
2
− iµ√

2

√
N

λ
Xi

)
, (4.96)

Ba :=

√
2

µ

(
λ

N

Πa√
2
− iµ

2
√

2

√
N

λ
Xa

)
(4.97)
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Figure 4.47: The large N and continuum exponential fits for ∆R2 and different µ with error

bars included but being small.
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Figure 4.49: The change of parameters with respect to µ in the large N and continuum limit.

[Left]: Values of CE , CF , CR labelled as E,F,R respectively. We expect these values to be

approximately the same when the partition functions of both models are exponentially close

to each other. We see that this happens as µ→ 0 and indeed we expect this to be the case in

this limit as we can recall from eq. (4.81). [Right]: Values of DE , DF , DR. We observe that

D for TrX2
I and Tr [XI , XJ ]2 observables do not change with respect to µ but for energy

does. This is probably due to different degeneracies of the energy eigenstate of the system.

which obey canonical commutation relations

[Ai, A
†
j ] = δij , [Ba, B

†
b ] = δab. (4.98)

Then, the bosonic part of the free Hamiltonian results in

Hbosonic
0 =

N

λ
Tr
[
µA†iAi +

µ

2
B†aBa

]
(4.99)
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Figure 4.50: Another typical Monte Carlo history for gauged N = 12, S = 48 simulation at

µ = 2, T = 0.2. We observe the breaking of symmetries SO(9) → SO(3) × SO(6) since the

first three matrices are grouped together and have less expectation values than the rest six,

which form the S5 sphere.
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Figure 4.51: The radii of the two spheres S2 and S5 constructing SO(3) and SO(6) parts

respectively. Recalling equations (4.96) and (4.97) we can deduce that in the weak coupling

limit where we can interpret the D0-branes as a bunch of oscillators, the respective radii scale

as r2 ∼ 1/µ and r5 ∼ 2/µ.

Complexifying the real spinor matrices ψα using

ψ± = C±ψ where C± =
1

2
(1± iγ123) , (4.100)
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yields the anticommutation relations

{ψ+α, ψ−β} =
1

2

(
C+
)
αβ

, {ψ+α, ψ+β} = 0 = {ψ−α, ψ−β}. (4.101)

We may now use the chirality property of the complexified fermions (iγ123)ψ± = ±ψ±

accompanied with (C±)
2

= C± and C+C− = 0. Recalling the splitting ψ = ψ+ + ψ− the

fermionic part results in

H fermionic
0 = −3µ

4
Tr
[
iψ̄αγ123ψα

]
=

3µ

2
Tr
[
ψ+αψ−α

]
. (4.102)

Summing both results in the U(1) free part of the Hamiltonian written in terms of bosonic

and fermionic harmonic oscillators

H0 =
N

λ
Tr

[
µA†iAi +

µ

2
B†aBa +

3µ

2
ψ+αψ−α

]
. (4.103)

In our conventions, the SO(3) and SO(6) sectors have mass µ and µ/2 respectively while

the fermions have mass 3µ/4 33. The zero-energy ground state of this free Hamiltonian is

denoted as |0〉 and is annihilated by

Ai |0〉 = 0 , Ba |0〉 = 0 , ψ−α |0〉 = 0. (4.104)

The U(1) free sector of the above Hamiltonian is spanned by excitations of operators of word-

length one, e.g Tr [A†i ], Tr [B†a], Tr [ψ̄α] while the SU(N) free sector is spanned by operators

of word-length two and larger. The lightest mode is given by the SO(6) part of the free

Hamiltonian with lowest energy

ESO(6) =
µ

2
. (4.105)

For the gauged model this is the first excited state created by TrB†a |0〉, while the remaining

excitations of the free sector are shown in Table 4.6. For the ungauged model, one can simply

act with B†a on |0〉 which results in the same energy. There are six oscillators yielding a six-

fold degeneracy of this sector. In addition there are n = 3 oscillators for the SO(3) part with

energy ESO(3) = µ and n = 8 fermionic oscillators with energy Efermions = 3µ/4. The ground

state energy vanishes since due to supersymmetry we have

3µ− 8 · 3µ

4
+ 6 · µ

2
= 0. (4.106)

The lowest adjoint mode of the gauged theory in the perturbative limit µ → ∞ is (4.105)

and perturbation theory shows that it is protected at least to first order in µ [254,267,268].

The spectrum of the free Hamiltonian has been studied in perturbation theory (with

perturbative parameter ∼ 1/µ, e.g (4.79)) in [267–269] and their energy, representations and

degeneracy are given in Table 4.6. It was conjectured that the free spectrum does not receive

any perturbative corrections to all orders in µ−1. On the other hand short representations

of the SU(N) sector can, in principle, combine and form multiplets and indeed it is possible

that they receive perturbative corrections. On top of that we may also note that there could

be non-perturbative corrections [268]. A precise analysis of the form of non-perturbative and

perturbative corrections for the construction of multiplets has not been done and, therefore,

the energy correction can not be estimated precisely.

33We recall the splitting ψ = ψ+ + ψ−.
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state SO(6)× SO(3) reps. energy degeneracy

|0〉 (1,1) 0 1

TrB†a |0〉 (6,1) µ
2 6

Trψ†Mα |0〉 (4̄,2) 3µ
4 8

TrA†i |0〉 (1,3) µ 3

TrB†a TrB†b |0〉 (1,1)+(20,1) µ 1+20

Tr
(
B†aB

†
b

)
− 1

N TrB†a TrB†b |0〉 (1,1)+(20,1) µ 1+20

Table 4.6: Lowest energy states for the trivial background X = 0, their representations and

degeneracy. The first five lines correspond to the U(1) part of the model which is free.

4.4.7 Representation algebra of the BMN model

Finite µ corrections to nadj are not known. We observed that they change with µ and here

we can ask whether or not the works of [270] and [268] could provide some insight. On the

other hand, finite µ corrections to Cadj depend on mixing of states, presumably coming from

the interacting sector of the model whose precise form is unknown.

Let us highlight some of the results in the literature. The classification of the superalgebra

in the plane wave limit of M-theory has been consider in [270]. Indeed, in this work and

building on the results from Kac [271], it was shown that the complexification of the special

unitary Lie superalgebras su(2|4; 2, 0) (for µ > 0) or su(2|4; 2, 4) (for µ < 0) results in

A(1, 3) ∼= sl(2, 5). However, here we are always in a scenario of positive µ, and hence the

bosonic part of the algebra is given as su(2, 0)⊕ su(0, 4) ∼= so(3)⊕ so(6).

The peculiar supersymmetry of the BMN model manifests itself in a time dependence of

the supersymmetry transformations. In the large µ limit the Hamiltonian splits into a free

and interacting part (see Sec. 4.4.6). The commutator between the interacting Hamiltonian

and the supersymmetric charge is proportional to the supersymmetric charge. This implies

that the boson and fermion masses differ. In particular the energy level difference given by

the commutator between the supercharges Qα and the Hamiltonian in the interacting SU(N)

sector

[Hint, Qα] =
µ

4
Qβγ

123
βα + Tr (ψαG), (4.107)

is µ
4 in our conventions whenever the Gauss constraint is satisfied. The application of the

supersymmetry charges Q±α , where one performs a chirality split as

Q± = C±Q , C± =
1

2
(1± iγ123) , (4.108)

can be applied at most eight times for Q+ or eight times for Q− changing the energy level

by Q± |state〉 = ∓µ
4 |state〉. This results in a multiplet consisting of 28 = 256 states with

irreducible representations at each level. Thus, one can change irreducible representations

by acting with Q± resulting in a shift of the energy at each level. This energy shift coincides

with the difference of bosonic and fermionic masses µ− 3µ
4 = µ

4 = 3µ
4 −

µ
2 in the SO(3) and

SO(6) sectors respectively. The successful application of a supercharge Qα on a state leads to

changing one u(1)⊕ su(2)⊕ su(4) irreducible representation to another [270]. The multiplets

(energy levels) split into a specific positive integer given by m. The energy of each multiplet

differs from the vacuum (E0) as [270]

E = E0 +
µm

4
, with m = 0, 1, · · · , 8. (4.109)
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Each of the zeroth and highest level multiplets correspond to an irreducible representation

of u(1) ⊕ su(2) ⊕ su(4), while others are in general reducible representations. Therefore

the maximum shift for the gauged theory comes from the highest energy level with m = 8

corresponding to eight applications of Q−. For µ > 0, m = 0 has the lowest energy E = E0

representing the ground state. This is the situation for the gauged model.

On the other hand for the ungauged model, one can perform a shift in the Hamiltonian

Hnew = H − Tr
(
X1G

)
, (4.110)

accompanied by the condition (γ1 + 1)ε = 0. This is a supersymmetric deformation of the

ungauged theory and in [254] it was shown that this shift compensates the gauge condition

in the superalgebra resulting again in

[Hnew, Qα] =
µ

4
Qβγ

123
βα . (4.111)

We expect that in the ungauged model, extra degrees of freedom living on the boundary

of the theory and interpreted as open strings [254] (which in principle can reach deep into

the bulk) may contribute in the partition function. These degrees of freedom transform in

the adjoint representation. Therefore, one is led to ask what is the adjoint representation of

the superalgebra of the BMN model. This question has been answered in [270] and the result

is given in Table 4.7

Energy Representations

+µ/4 (2,4)

0 (1,1)⊕ (3,1)⊕ (1,15)

−µ/4 (2, 4̄)

Table 4.7: Adjoint representation of A(1, 3)

4.4.8 Interpretations

As we explained, the model has two interesting regimes in low temperatures, the strong

coupling regime (4.81) and the perturbative regime (4.84). We expect our results to reproduce

the former as we take the limit µ→ 0 remaining at small temperatures, while the latter case

is reproduced for bigger values of µ. This is summarised in Fig. 4.42 which is our main result.

We stress again that the conjecture is made in the limit of eq. (4.81), yet numerically

this limit for BMN is currently inaccessible. What we did instead is to check the behaviour

of the system for finite values of µ keeping T small and the results to µ = 0. Doing so, we

were able to reproduce the already established BFSS results of [138]. The limit in which the

conjecture is made is automatically satisfied for the BFSS model because µ = 0 in this case.

The drawback is that keeping our simulation at finite µ we introduced some complicated

corrections in the energy. This is the case because turning on µ we create some massive

modes Cadj(µ) which can in principle contribute non-trivially in the partition function even

for the gauged model. Their precise contribution, is far from known, and there is not any

relevant analysis available. The shift in the degeneracy is not clear to us, in particular which

sector contributes the most and how. This shift indeed reminds the formula (4.109) for the

energy shifts and hints that a similar formula could hold for the degeneracy of the energy

states. We stress though that this is a speculative argument based on the fact that the
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gauged interacting SU(N) sector could receive finite µ contributions that could potentially

contaminate the simulation due to massive (finite µ) modes. In other words, even though

there is still an exponential decay on the partition functions, the energy and the degeneracy

change non-trivially with µ.

Our results are also supported by the fact that they reproduce the perturbative result

(4.84) as µ starts becoming larger and being at low temperatures. This is best seen in

Fig. 4.42, where at finite µ and relatively low temperatures we show the contribution of the

full U(1) sector from Table 4.6. As we argued previously around (and gave a precise example

in) Fig. 4.45 at very low temperatures the lightest mode (4.83) and the full U(1) sector (4.84)

are practically indistinguishable. We chose to use the U(1) sector as perturbative result

because there is no crossing with the data at finite values of temperature. This can be best

seen from Fig. 4.45 where we demonstrate the situation for µ = 5. In addition, in Fig. 4.42

indeed the perturbative result converge to the data produced by the non-perturbative data

using the two-parameter fit (4.86) giving us more confidence about the results.

We studied the BMN model at intermediate µ values and relatively small temperatures,

such that for the gauged model we remain in the confined phase. This was crucial to ensure

that the energy does not depend on the Polyakov loop as it was shown in the deconfined

phase [272]. We confirm the exponential decay of the partition functions with a Boltzmann

weight e−Cadj/T by studying the energy of the system, and the observables R2 and F 2 defined

by (4.88), (4.89) respectively. Our main result remains Fig. 4.42 which at higher µ values

converges to the perturbative result (4.83), while the supergravity result is obtained even

slightly beyond the supergravity prediction. At the same time extrapolating to µ = 0 limit

our results are also consistent with Cadj = 1 and nadj = 2 within error bars obtained in [138].

The non-perturbative nature of the simulations allows us to probe both the perturbative

result and the strong coupling/gravity results simultaneously. The change of the degeneracy

with µ, as we elaborated, it is most likely because of finite µ effects whose form in the

interacting gauged sector has not been studied extensively. We hope that this will initialise

a more systematic study of the precise finite µ contributions to the partition function of the

model, perturbatively and (if possible) also non-perturbatively.

In addition, the results above might have a twofold role. Apart from genuine physical

interest where non-gauge theories could have very similar bulk duals with gauge theories at

low temperature, great interest goes also into the development of the quantum computer.

That non-singlet modes are exponentially suppressed can make quantum simulation based

on the extended Hilbert space simpler. To demonstrate this, suppose that Hamiltonian time

evolution is performed on a quantum computer, as |Φ〉 → e−iĤt|Φ〉. If |Φ〉 is gauge-invariant,

e−iĤt|Φ〉 is also gauge-invariant, as long as the time evolution is exactly realized. If |Φ〉 is

a specific gauge fixed state, for example, a fuzzy sphere with a certain representation, then

the gauge fixing will not be spoiled via the Hamiltonian time evolution. However, if there

were light non-singlet modes, small simulation errors could easily excite non-singlet modes

and lead to a large deviation from the exact result. Our findings in this paper are that we

do not have to worry about such a possibility. In other words, instead of having a gauged

matrix model that has a local SU(N) symmetry, it might be easier to have a non-gauged

matrix model that has a global SU(N) symmetry, since in the former case SU(N) gauge

redundancy could emerge by a different model.
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The main message of this project

In this project we studied the difference of gauged and ungauged matrix models and

its relevance for gauge/gravity duality [273]. It added the following new insights that

can be summarised in the list:

� We verify that the gauged and ungauged partition functions are exponentially

close to each other at small temperatures hinting that in these particular

examples the gauge singlet constraint might not playing a major role. It is

indeed a non-gauge/gravity example of the duality.

� In fact, the partition functions of the gauged and ungauged BMN model are

exponentially close to each other even at intermediate temperatures and at finite

µ. In other words, we show that the conjecture is true even when the constraint

µ/T � 1 is not satisfied.

� There is a shift in the energies and effective degeneracies. It seems to be a finite

µ effect, which in particular changes the energy of the gauged and ungauged

sectors and the degeneracies in a non-trivial way.

� We reproduce both the supergravity results when we take µ → 0 and the

perturbative results when we turn on larger values of µ, revealing the power

of the non-perturbative nature of the simulations.

� The implication of these results on quantum computing may be crucial.

Specifically the ungauged model could be used easier as we explained in the

main text.

4.5 Low temperature supergravity and matrix models

One of the best test examples of gauge/gravity duality was carried out in [134], where the

energy of the matrix model was compared with the gravitational energy

E(T )

N2
=

(
c0T

14
5 + c1T

23
5 + c2T

29/5 + c3T
32/5 + · · ·

)
N0

+

(
d0T

2
5 + d1T

11
5 + · · ·

)
N2

+O
(

1

N4

)
.

(4.112)

The zeroth terms are available by exact calculations from string theory and are c0 = 7.41

and d0 = −5.77 respectively. Higher-order terms are not known analytically. The test was

done for temperatures T ≥ 0.4 and compared with the supergravity result containing the

terms c0, c1, and c2. The first term c0 is dominant for extremely low temperatures where

the supergravity result dominates, while higher order terms (c1, c2) include α′ corrections. In

this work, we would like to extend the results to lower temperatures. The difficulty with this

is that the BFSS simulations start becoming unstable at small temperatures mainly due to

the flat direction problem. However, in the previous sections, we argued that the advantage

of simulating the BMN model manifests in the stability of the simulations even at small

temperatures. The reason was explained earlier and in Appendix A. Hence we would like

to take advantage of this and use the BMN matrix model and compare it with the gravity

energy even using preliminary data since it is an ongoing project at this point. We shall
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stress here as well as in the text that follows that we will report more statistics and preciser

tests in [274], hence the comparison done here is preliminary yet it seems to converge in the

right direction. The reason we are comparing with preliminary data is to check whether or

not the large N and continuum trends approach the supergravity results. It is by no means

a precision test but we hope with the production of more data shortly to become precise.

In Sec. 3.5 we studied the effect of finite µ on the energy and we showed that at small µ

the energy difference between the BMN model and the BFSS could be negligible and hidden

inside the simulation error bars. Note, however, that we shall always have in mind that our

simulating temperature should respect the bound34

T & 0.318µ (4.113)

such that we are always in the deconfined phase and can compare with the gravity results.

On the gauge side, being in the canonical ensemble, the energy is given via the temperature

E(T ).

Let us remind a bit more the situation discussed in Sec. 3.5. We mainly want to compare

with the supergravity energies for the BFSS and the BMN model. The energy of the former

is given as
E(T, µ = 0)

N2
= 7.41λ−3/5T 14/5, (4.114)

while the energy of the latter contains the deformation terms s(µ̂) and f(µ̂) resulting in

E(T, µ)

N2
= −4.11λ−3/5T 14/5f(µ̂) + 11.52λ−3/5T 14/5s(µ̂) , µ̂ =

7µ

12πT
. (4.115)

The deformation parameters s, f are known only numerically up to a few orders as we saw

in Sec. 3.5. In Fig. 4.52 we show the difference of energies between the BFSS model and the

BMN model at low temperatures and µ = 0.5. Motivated by the very small energy difference,
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Figure 4.52: [Left]: The gravitational energies of the BFSS and BMN model at µ = 0.5 in

the temperature range T ∈ [0, 0.4]. The blowing up behaviour at small temperatures is due

to the truncation of the expanding functions f(µ̂), s(µ̂). [Right]: The same energies zoomed

in the range T ∈ [0.2, 0.4]. We see that the BFSS energy is slightly less than that of the BMN

but in simulations we will not be able to distinguish the two.

we have simulated the BMN matrix model at various temperatures setting µ = 0.5. We have

checked that indeed the µ dependence on the energy is small as we see in Fig. 4.53. Based on

this observation we did large N and continuum extrapolations to obtain the energies for small

temperatures. Up to now, we have used N = 16, 18, 24 and S = 30, 36, 48, 72 to perform this.

Several extrapolations were done using the ansatz (4.85) keeping up to ε1,1, while the best fit

34The difference with the relation shown in Sec. 3.5 is a factor of three since µ→ 3µ in our conventions.

185



4.5. LOW TEMPERATURE SUPERGRAVITY AND MATRIX MODELS

Figure 4.53: The mean value of energy is plotted for various values of µ for N = 16, S = 24

at temperature T = 0.4. We checked that at these small values of µ the energy difference

between the BMN model and the BFSS model is negligible.

was represented by a simultaneous large N and continuum fit using the ε1,0 and ε0,1 terms.

We shall refer to in what follows as a two-dimensional fit and compare it with more fits later

on. Specifically, the two-dimensional fit is given by the equation

E(N,S)

N2
= ε0,0 +

ε1,0

N2
+
ε0,1

S
. (4.116)

The two-step fit, e.g doing first large N with the ε1,0 term and then extrapolating to the

continuum limit with the ε0,1 term was giving larger error bars in the values of energy.

Usually, the two-step fit contains the two-dimensional fit within its error bars. One more fit

we tried was to include higher terms (quadratic) for the lattice as we shall comment.

The µ dependence at this level turned out to be small. The preliminary hint is shown in

Fig. 4.53 while the large N and continuum results confirm this picture. In most cases, the

BMN energy value was slightly higher than that of the BFSS results, and recalling Fig. 4.52

this is to be expected.

Let us now review a bit the work of [134] such that we will be able to understand the

results which follow. The authors simulated the BFSS model for temperatures T ∈ [0.4, 1.0]

and took the simultaneous large N and continuum limit. The points are shown in Fig. 4.54.

The latter were reproduced by a fit of the form of (4.112) with fitting parameters ci. Being in

the large N limit we can exclude finite N corrections and concentrate only on the N0 term.

The fit shown in Fig. 4.54 is reproduced by the following equation

E(T )

N2
=c0T

14
5 + c1T

23
5 + c2T

29/5,

c0 =7.4± 0.5 , c1 = −9.7± 2.2 , c2 = 5.6± 1.8. (4.117)

These were the fitting parameters while in principle one can include also the c3 term in

(4.112) which indeed has a better behaviour also for the T = 1.0 point with the exchange

though of increasing the uncertainties of the fit [134]. We shall adopt the scenario of the fitting

parameters of (4.117) and assume, based on equation (4.115), that a similar deformation holds
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for the situation of the BMN model. In particular, we may assume (at first approximation)

that we do not have a strong mixing between finite µ and α′ corrections that could potentially

contaminate the simulations. If our guessing would be correct, then according to Fig. 4.52

the BFSS and the BMN results should not be that much different. Therefore, we expect the

BMN gravity energy to be given by the function

E

N2
=− 4.11λ−3/5T 14/5f(µ̂) + 11.52λ−3/5T 14/5s(µ̂) + c1T

23
5 + c2T

29/5 (4.118)

c1 =− 9.7± 2.2, , c2 = 5.6± 1.8.

This is the case in an ideal world where the finite µ corrections and α′ corrections do not

mix. The former are captured by the T 14/5 terms while the latter by c1 and c2 terms.

It could also be the case that the latter points are contained in the error bars of the former

for small values of µ (specifically for µ = 0.5) as we show in Fig. 4.52, and Fig. 4.53.
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Figure 4.54: Comparison between the zero-brane energy (4.114) and the BFSS simulation

points from [134]. The fit is given by (4.117). The discrepancy at higher temperatures between

the simulation points and the supergravity result can be understood as α′ corrections recalling

that we set always λ = 1 in simulations and finite λ means that we take α′ corrections into

account.

This is a very interesting scenario in which, taking into account the better behaviour of

simulation stability of the BMN model, we can put the gauge/gravity duality on test for

temperatures T < 0.4. The main problem in the past that did not allow for simulating lower

temperatures is the fact that the BFSS model is more sensitive to the flat direction problem

in this small temperature region and the only way out of this was considered to be the usage

of more resources. In this project, we are showing that we do not need incredible resources

to attack this problem if we use the BMN model, which is more stable in this region.

This will be our main motivation, to exploit the above analysis, that the energies of the

two models should not be that different for small µ and compare the simulation results with

the supergravity results. This opens a serious possibility to better test the gauge/gravity

duality, going to lower temperatures and comparing with supergravity since as we saw, some
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analytic results are available. At this level of statistics we cannot claim that the above

analysis is a precision test but what we can claim is that it can capture the supergravity

behaviour in a way that is pointing in the right direction. One more assumption that we will

make as we said above is that the α′ corrections and finite µ corrections do not mix. As we

saw from the supergravity (analytic) analysis for the energies of the gravitational systems,

we do not have any indication that these corrections mix, and (at least to first order) this

assumption is verified by our data at this level.

To this end, we were able to reach T = 0.3 and get stable configurations. In particular,

the lowest temperature we have tested was T = 0.24 (see some preliminary data in Fig. 4.55),

while T = 0.2 appeared to be out of reach at this level because of the confinement transitions

at finite N and very slow growth of statistics in a sense Monte Carlo trajectories per job

generation. In particular even for T = 0.24 there is a significant difficulty to collect enough

data for good precision, but we present these preliminary results anyway in Fig. 4.55 stressing

in the caption that should be taken with caution.
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Figure 4.55: [Left]: Continuum extrapolation for T = 0.24 and N = 16. The transition to a

confined state is showed from the Polyakov loop. [Right]: The results of the two-dimensional

fit for the same temperature T = 0.24. x axis denotes 1/S term and y axis 1/N2 of the

fit, while the small circles show the deviation from data and predictions from the fit. We

stress that these are preliminary data with low statistics and should not be taken as precision

data. In particular, at this level of statistics we are interested in capturing the leading

behaviour of the system at this temperature using all our data available. For this we see

that extrapolations are done using N = 10, 12 also while for higher temperatures these were

ignored due to instabilities at higher statistics. There is also an instability occurring at this

temperature but to capture the leading order it makes sense to use all sensible data before

transitions (such as confinement/deconfinement) occur. The large N and continuum value is

not conclusive. Note also that there is no obvious clustering of the data in a specific region

which makes to some extend the fit trustable. We expect by including more lattice points,

the energy to drop more and the errors to become smaller [274].

We started the investigations by double-checking the already known point for T = 0.4

using the BMN model at µ = 0.5. A simple large N and then continuum extrapolation

gives E
∣∣
µ=0.5,T=0.4

= 0.39(3) which is indeed very close to the BFSS energy value from [134]
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E
∣∣
µ=0,T=0.4

= 0.38(6). Note that the authors of [134] always used a two-dimensional fit to

find the energies over a different parameter (N,S) region. Our two-dimensional fit in this

case gives E
∣∣
µ=0.5,T=0.4

= 0.458(11). We report these two-parameter fits in Fig. 4.56 and

the two-dimensional fits in Fig. 4.58. One important observation at this level is to consider

higher-order lattice corrections and see whether the results change or not. The reason we

are interested in these corrections is that we want to be sensitive in the level of precision.

Therefore, we can include higher-order corrections in (4.85) and in particular the term ε0,2

containing the 1/S2 term. In other words, we may perform first a large N analysis using the

term ε1,0 and then include lattice corrections as

E(S)

N2
= ε0 +

ε1

S
+
ε2

S2
. (4.119)

This allowed us to verify the crude estimation of the simple one-dimensional and two-
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Figure 4.56: [Left]: Large N and then continuum extrapolation for T = 0.4. [Right]: Large

N and then continuum extrapolation for T = 0.35. The vertical dotted line restricts the data

taken into account for extrapolation.

dimensional fits including higher-order lattice corrections. One interesting point is that even

at this level where the lattice points are relatively large, there is still a small curve passing

over the finite S data as can be seen in Fig. 4.57. Although there is a curved trend for the

finite S points, from the same figure it can be observed that the continuum extrapolations

fall into the error bars of the one-dimensional large N and continuum extrapolations and the

two-dimensional, simultaneous extrapolation. Therefore, even though the level of statistics is

low since this is an ongoing project, the extrapolations of the data are pointing in the right

direction, while for a more complete and more precise analysis we will refer to [274]. Recalling

the discussion in Sec. 4.3.9 smaller temperatures correspond to bigger ”time” circles and the

way we parametrise the circle is crucial. In particular, at small temperatures, higher lattice

points are of great importance to perform a precision test [274]. On the other hand, higher

temperatures correspond to smaller ”time” circles and hence fewer lattice points are indeed

enough to draw safe conclusions.

However, at this level of statistics and trying to include a quadratic term also in the

continuum extrapolation might cause some problems. In particular doing first a large N and
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then a continuum fit using (4.119), the careful reader would probably observe that we are

passing our four data points (see Fig. 4.57) through a three-parameter fit. Being optimistic,

we expect that higher S data points will not alter the results by much but rather the error

bars will be smaller and the precision will be better. Indeed, this is what we start to observe

at smaller temperatures, the introduction of more lattice points slightly reduces the energy,

constantly approaching the gravity curve [274]. We may also note that currently we are
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Figure 4.57: [Left]: Large N and then continuum extrapolation for T = 0.4 using (4.119).

[Right]: Large N and then continuum extrapolation for T = 0.35 using the same equation.

not always in position to draw conclusions safely if we want a precision test. In particular,

it would be very nice to reproduce finite N corrections in (4.112) and specifically the term

containing the d0 coefficient. For T = 0.35 three different kinds of fit reproduce the same value

of energy for this specific temperature. In particular, the two-dimensional fit is contained in

the two-step fit while including the quadratic term in the large N data coincides with quite

good accuracy with the two-dimensional fit (see e.g right panel of Fig. 4.57). We cannot

claim the same for the data at T = 0.4 as it can be seen from Fig.s 4.57 and 4.58, but let us

point out that statistics at T = 0.4 are less than that of T = 0.35.

Some concluding remarks

Being at this level of statistics let us conclude now regarding this project. The aim was to

understand, given the current resources, to what extent we can use the BMN model to push

the simulations at low temperatures. At the technical level, this was not possible in the past

due to the instability of the BFSS model at these low temperatures and the need for more

resources to better attack the problem. Indeed, the latter starts manifesting even at these

parameters we are using now and it begs for better simulation algorithms using improved

lattice actions. On the other hand, we know now that the BMN model is more stable in this

parameter region [194] (see also Appendix A) such that we were able to push all our resources

to their ultimate limits. Therefore, using the BMN model with small µ and exploiting the

fact that the energy difference, predicted by the supergravity duals of the BMN and BFSS

models is very small, we can use the BMN model to better understand the thermodynamic

features of the black-zero brane supergravity. The easiest example would be to verify the

energy prediction of the black-zero brane using the BMN model at these low temperatures.

In this small temperature regime, the stringy corrections are very small and the supergravity

result dominates, thus verifying the energy prediction using the BMN model would lead to

one strong verification of the gauge/gravity duality for these models.
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Figure 4.58: [Left]: Simultaneous large N and continuum extrapolation for T = 0.4 using

(4.116). [Right]: Simultaneous large N and continuum extrapolation for T = 0.35 using the

same equation. Note that data contained in the region spanned by vertical and horizontal

doted lines are taken into account, while no obvious clustering is observed in the data we

used so far. a, bN and bS are referred to ε0,0, ε1,0 and ε0,1 of (4.116) respectively.

To this end, we firstly showed that the µ dependence is small in the parameter region

we investigated. Then we switched to performing large N and continuum extrapolations

aiming for high statistics. Unfortunately, we are still not at this level due to the finiteness

of resources and the difficulty of simulating the model at these parameters. On the other

hand, we have some preliminary data for T ≤ 0.4 which was our main goal. In particular, we

reached the point T = 0.24 capturing the leading energy value showing good agreement with

the gravity results as we demonstrate in Fig. 4.59. In the same figure, we show the points

for T = 0.3 and T = 0.35 which we are most confident with, while as we argued previously

a considerable amount of statistics shows that the points T = 0.35 and T = 0.4 capture the

same pattern as the T = 0.3 point as we observe in Fig. 4.57. This gives us more confidence

about the preliminary results which we present here and as we currently observe including

more lattice points changes the energy value by 5%. For more details regarding this point

and more precision we shall refer again to [274].

We could use various fits to perform a two-dimensional fit getting an, equally good fit

over our data. To show this, we can use a biased fit where we fix the coefficient ε1,0 at each

temperature which including stringy corrections is given by the sum of d0 and d1 terms in

(4.112). The latter constants were obtained in [134] with quite high uncertainties though

such as d0 = −5.8± 3.0 and d1 = −3.4± 5.7. Thus, we can use a fit of the form

E(N,S)

N2
= ε0,0 +

ε1,0(T )

N2
+
ε0,1

S
+

ε1,1

N2S
, (4.120)

where we fix the coefficient ε1,0(T ) to perform a two-dimensional large N and continuum

fit. For example for T = 0.4 we have ε1,0

∣∣
T=0.4

= −4.473 resulting in ε0,0

∣∣
T=0.4

= 0.399(28)

which corresponds to a 6% change compared with the fit (4.116). The respective values for

T = 0.35 read ε1,0

∣∣
T=0.35

= −4.15 and ε0,0

∣∣
T=0.35

= 0.346(25), a difference of 1%. We see

that being at this level of statistics it is not of particular importance which fit we are using,

but to trust a specific fit and talk about precision measurements one should be careful.
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Figure 4.59: Our current results compared with the supergravity prediction from the BMN

model at µ = 0.5, the BFSS supergravity prediction and the data from [134] labelled as

BFSS points. We are particularly interested in the low temperature regime having the most

confidence for the T ≥ 0.3 data. The MCSMC fit here is given by (4.118) while the two-

dimensional fit is given by (4.116).

An equally important route is the fact that using the stability of the BMN model at low

temperatures we can study the first-order phase transition which qualitatively would be very

close to that of BFSS. In Fig. 4.22 we show the µ dependence of the transition temperature

and for small enough µ this would be very close to the BFSS transition temperature. Then

one important point would be to study with more precision the transition we discussed in

Sec. 4.3 which according to the discussion there is related to the M-theory parameter region

at small temperatures and small µ [194]. Indeed, the demonstration that the BMN model is

thermodynamically very close to the BFSS at this small non-zero µ opens a possibility for

such a detailed study and we hope to investigate more on this in the future.

What this project is going to add

When this project will be completed [274] we expect the following points to be

addressed:

� The gauge/gravity duality will be put to better tests going at temperatures not

accessible in the past

� Precision measurements will reveal what kind of fitting functions can be used in

the large N and continuum limits more efficiently and with more trust in this

parameter region

� A possibility to carefully study with precision the first order transition going

from type IIA supergravity to the M-theory region in these small temperatures

starts becoming significant
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Spin networks, polyhedra and matrix

models
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5
Polyhedra and Matrix models?

Αεί ο θεός γεωμετρεί.

Plato

The connection between different theories of quantum gravity is not so difficult to imagine

since they all try to address the same question using different tools and perspectives. The

idea of loop quantum gravity [275–286] manifests in four spacetime dimensions and treats

the character of the diffeomorphism group of gravity and covariance seriously and rigorously

keeping it as a key ingredient of the theory [287–294].

Since both loop quantum gravity and string theory try to understand the same problem,

having different perspectives, it makes sense to investigate whether there exists some common

ground between the two or not. Since string theory, as a theory itself is much broader

than loop quantum gravity one can ask whether or not one can embed the latter into the

former [295–297]. Apart from the attempt of embedding, there are also other, similar works

trying to connect the two theories, each using different tools [298–301]

In this last chapter we are not presenting by any means a rigorous way to address similar

connections between loop quantum gravity and string theory as in the previous works but we

could not resist investigating some interesting analogies occurring between the matrix models

we discussed previously and some specific (coarse-grained) spin network of loop quantum

gravity formulation. In fact, this should not be taken as an established connection but

merely as an interesting observation, at least to the eyes of the author. In particular, a

striking analogy occurs for the case of a spin network consisting of a simple vertex in the

bulk and N edges forming some sort of boundary. In this case, one can realise the gauge group

U(N) as the group of diffeomorphisms on the surface of this spherical spin network and the

question asked in this chapter is whether or not there is a connection with a similar analysis

for the fuzzy sphere, since in the latter case and in the matrix model framework one can

imagine this fuzzy sphere as consisted of N D0-branes and the group of diffeomorphisms on

the surface is again the gauge group U(N) [106]. The connection between the fuzzy sphere
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∗-product and spin networks was firstly considered in [302]. One can see this analysis as

revisiting an old idea [298–300,303].

Convex Polyhedra

Polyhedra have an interesting role in spin networks [304]. A convex Polyhedron is a finite set

of points constructing convex patches in the Euclidean R3 space

Π = {x ∈ R3|~ηα · x ≤ hα, α = 1, · · · , N}, (5.1)

where ~ηα are arbitrary vectors and hα are real numbers. This arbitrary description is

redundant and non-unique. On the other hand, we are interested in describing a Polyhedron

with a fixed number of faces N and therefore we will use variables that have apparent

geometric meanings, that is we will use the areas that are associated with each face (α)

and the unit normals to the planes that support the faces.

Therefore, we construct a convex polyhedron by considering N patches of area ~Aα and

~ηα normals associated to each patch. A theorem due to Minkowski states that N (pairwise

non-parallel) unit normals ~ηa and N areas ~Aα satisfying
∑N

α=1 ~ηα
~Aα = 0 together determine

a unique (up to translations) convex polyhedron with face areas ~Aα and outward pointing face

normals ~ηα. In three dimensions, the space of polyhedra up to translations and rotations can

be turned into the Kapovich-Millson phase space [305] by equipping the vectors ~Aα with the

SU(2) Poisson bracket { ~Aiα, ~A
j
β} = εijk

~Akαδαβ and the first class constraint ~C =
∑N

α=1 ~ηα
~Aα =

0. The latter being a first class constraint generates gauge transformations [102]. Indeed,

by calculating the Poisson bracket one can prove that it generates SO(3) rotations of the

Polyhedron. At the classical level, the phase space has a structure of a symplectic manifold

defined as

ΠKM := {~ηa ∈ (S2)N |
N∑
a=1

~ηα ~A = 0}/SO(3). (5.2)

The dimensionality of this phase space is dimΠKM
= 2N − 6, and the Poisson structure is

inherited via symplectic reduction of the natural SO(3)-invariant Poisson structure on each

of the N spheres. In other words, one removes N degrees of freedom by fixing the same area

for each patch such that the dimensionality becomes (even) dimΠKM
= 3N − 6−N .

5.1 Quantum Polyhedra and spin networks

When we consider the space of vectors in three-dimensional Euclidean space with norm j,

we are constructing a phase space whose Poisson structure is rotationally invariant of a two-

sphere of radius j. The quantization of this phase space is done in terms of representations

Vjα of SU(2).

The Poisson structure of ΠKM is obtained by symplectic reduction of the product of N

spheres of a certain radius. Due to the Guillemin-Sternberg theorem, quantisation commutes

with symplectic reductions only if the action generated by the constraint is free. Hence the

process ordering in this particular case does not play an important role, see Fig 5.1.

The correspondence between polyhedra and spin networks is the following [304]
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Aαηα → Êα = 8πγl2pJα (5.3)

N∑
α=1

~ηα ~Aα = 0 →
∑
α

Jα = 0 (5.4)

Âα =

√
Êα · Êα → 8πγl2p

√
jα(jα + 1). (5.5)

This correspondence tells us that we can promote the inner product of η with A to a

quantum operator with a dimensionful constant, known in the literature as the Barbero-

Immirzi parameter [43, 306–308], carrying a specific representation of SU(2). In addition,

the closure constraint of the Polyhedron reflects the vanishing of the sum of all SU(2)

representations. Moreover one can also choose a spectrum for the area operator, for which

there is a priori no preferred choice because at the quantum level there is still the operator

ordering problem persists [278].

In other words, the correspondence is that every area patch of the polyhedron carries

a SU(2) representation inherited by the link that punctures this area patch. The closure

constraint could be interpreted as a vanishing total SU(2) charge. This is due to the Gauss

constraint, and a naive analogue is to consider it as a vanishing ”SU(2) charge” on a compact

object in the spirit of conventional electromagnetism.

×αS2
jα

⊗αV jα

ΠKM HN

Symplectic reduction Quantum reduction

Figure 5.1: Commutative diagram of symplectic reductions and quantizations. Whether one

first quantizes and then doing quantum reduction or first doing symplectic reduction and

then quantizes results to the same Hilbert space HN .

5.1.1 Coarse-grained spin network

In general, an arbitrary spin network should be considered as a projective limit of graphs [309].

In a nutshell, one considers a graph as a geometrical object made out of all possible finer

subgraphs and this allows to properly define a superposition of spin network states living (a

priori) in different graphs. Here, however, we would like to study a simpler, specific, and

coarse-grained spin network. To this end, let us consider a graph Γ that defines a bounded

region of the embedding space, that is a finite set of vertices and edges linking them. Each

edge e of the spin network is dual to an elementary patch (surface) and carries a half-integer

spin representation je ∈ N
2 defining in this way a quantum of area in Planck units via the

mapping (5.5). The vertices on the other hand define an intertwiner state, which furthermore

could be interpreted as an elementary volume. We will consider the case in which the spin

network has a topology of a sphere, specifically S2.

One can embed this spin network in R3

S2 ↪→ R3, (5.6)
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where the interior of the S2 is a complicated graph with arbitrary, but in any case finite,

edges and vertices. However, we will neglect the inside of the ball and focus exclusively on

the surface and its dynamics. Essentially, we will see that dynamics are encoded exclusively

on S2 [310]. A priori the bulk can contain non-trivial loops with many vertices. The

closure constraint (5.4), enforces the bulk to contain just one single vertex. This is a

gauge fixing procedure where one maps the holonomies inside the bulk to the identity and

the non-trivial loops map to trivial ones, yielding in this way a bulk consisted out of just

one vertex. The details of this construction can be found in [311, 312]. This results in a

holographic construction of this particular spin network which consists of one single vertex

(one intertwiner) inside connected with the physical degrees of freedom living on the surface.

The latter is defined as the set of edges linked to vertices in the interior. For the case of

just one vertex in the bulk these N edges are attached to this one vertex (see left panel of

Fig. 5.3). The (dual) polyhedron picture with the closure constraint ensures that there are

N elementary area patches which form the polyhedron. For a surface that encloses a generic

number of vertices and is punctured by N links, the quantum Hilbert space is a tensor product

of all spins

Hsn =
⊕
{je}

(
N⊗

e=1

V(je)

)
, (5.7)

where V je is the SU(2) representation of dimension de = 2je + 1, associated to the spin-je
representation. Imposing gauge invariance, the Hilbert space is given as

Hsn =
⊕
{je}

InvSU(2)

(
N⊗

e=1

V(je)

)
, (5.8)

The fact that we have to sum over all possible spins je above is a direct consequence of the

fact that the edges do not carry the same representation at this point. However, as we will

see there is a way to make them carry, or transfer the same SU(2) representation to the

surface they puncture.

We are interested in a boundary surface that has a topology of a two-sphere. Then, the

links will puncture the surface at N points. If moreover, we coarse-grain the bulk to a single

vertex then we have a single vertex connecting all the links which belong to the same SU(2)

representation. This can also be viewed as a synchronization procedure of the edges which

transfer the same representation on the surface and furthermore constructs a N punctured

two-sphere. Through the procedure of coarse-graining, the degrees of freedom are realised on

the boundary of this surface, the N punctures. The closure constraint forces

N∑
i=1

ji = 0, (5.9)

where ji is the spin of each link/puncture. However, we can imagine that we have a closure

defect that is associated with non-trivial holonomies in the bulk related to curvature. This

defect is realised as the spin J to which all je’s recouple. In other words, we can define and
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fix the total area of the sphere as the sum of all spins1

A :=
N∑
i=1

ji, (5.10)

and if the Casimir of each spin ji is given as ci := ~j2
i = ji(ji + 1) then the total Casimir

operator has as the norm the total spin J , i.e

A =

N∑
i=1

ji , C := A2 = J (J + 1). (5.11)

In this way, we have a global SU(2) representation assigned with the surface. When we fix

the total area and there exists a closure defect one can realise a U(N) structure on the surface

as we will see and as is explained in [312,313]. We will be particularly interested in surfaces

of spherical topologies, while the generalization to arbitrary surfaces depends on the graph

data and the Dirac operator [117,314].

Having a topology of a sphere and a surface representation of spin J and embedding now

this structure in R3 constructs a fuzzy sphere [241]

X : S2 ↪→ R3, (5.12)

where X are some matrix-valued embedding maps related to a specific SU(2) representation.

Hence, with this procedure, a notion of holography emerges, since the patches on the

surface that are physical, i.e gauge-invariant degrees of freedom, characterize the region inside,

the bulk which consists of a single vertex. As we discuss next, one can precisely use matrices

transforming in U(N) on the surface because this is the gauge group appearing on the surface.

Figure 5.2: Artistic representations of spin networks and polyhedra. [Left]: A spin

network bounded by a spherical surface. The links puncture the surface assigning a SU(2)

representation on each the N punctures. [Right]: Its’ dual picture as a polyhedron. The edges

on the left picture that puncture the surface are dual to area patches of the polyhedron.

1Note that due to the operator ordering ambiguity at the quantum level, there is a priori no preferred way

to order the area operator.
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Figure 5.3: [Left]: The spin network picture, N links puncture the boundary and one vertex

in the bulk. [Right]: In the D0-brane picture, N D0-branes are tethered on the surface. One

can think that at each puncture we have an analog of a D0-brane.

5.1.2 Realizing U(N) on the surface

Up to now, we are discussing an object with N elementary patches. At the same time,

each patch is dual to an edge while the patches themselves are non-commutative hence in

our case we have a fuzzy polyhedron. On each face of the polyhedron, and whenever the

closure constraint is satisfied, there is a SU(2) gauge symmetry. Thus, one can exploit this

gauge symmetry on each surface patch and use the Schwinger representation of the su(2)

algebra, instead of using the basis of quantum vectors, their norms, and directions [311]. In

addition, with this procedure, one can write operators on this basis. The two descriptions

are equivalent [313] and one can imagine that each area patch is assigned to two harmonic

oscillators and reformulate the problem using as a basis the elementary area. These harmonic

oscillators represent 2N degrees of freedom and they have the usual commutation relations

[ai, a
†
j ] = δij . (5.13)

Moreover we can create operators with the normal ordering

Êij :=
∑
i,j

a†iaj , i, j = 1, · · · , N, (5.14)

which apart from being Hermitian also form a u(N) Lie algebra

[Êij , Êkl] = δjkÊil − δilÊkj . (5.15)

The group on which these operators act is the U(N) group. The same group is realized as

the group of the diffeomorphisms on the fuzzy sphere in the large N limit [106, 241, 315]

since it just moves around the degrees of freedom on the surface of the sphere. Hence, the

question that naturally arises is whether or not the gauge-invariant physics is realized on the

boundary of some (fuzzy) sphere. This was hinted in [302] and it was put into more solid

grounds in [311,313].

Before giving more details let us comment on the general structure. Let Vji be the subspace

that defines each face of the polyhedron. Then one can construct a bigger subspace denoted

as the space of intertwiners by tensoring products of the form

WA =

N⊗
i=1

Vji . (5.16)
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This is also the space of the whole quantum polyhedron with fixed area A =
∑

i ji ∈ N
on which the SU(2) invariant operators Eij act and generate the U(N) action on each such

subspaceWA. The full Hilbert space of intertwiners is obtained by summing over all possible

polyhedra with fixed areas

H(N)
I =

⊕
A∈N
WN
A . (5.17)

In fact, this construction can be generalised to an arbitrary set of harmonic oscillators by

Êij :=
∑
ρ

∑
i,j

a
†(ρ)
i a

(ρ)
j , i, j = 1, · · · , N, (5.18)

where the index ρ is the number of sets of oscillators that we are counting. For ρ = 1 we have

one simple set of oscillators and this constructs the highest (only possible) representation of

u(N), while the ρ = 2 case is relevant for SU(2) invariant intertwiners [313]. To allow all

representations of u(N) we have to consider ρ = N sets of oscillators, that is 2N different

oscillators that carry different SU(2) representations.

We wish to understand what is the meaning of this construction, hence we demonstrate

only the case ρ = 1 following Ref. [313]. This constructs the maximum representation of

U(N), that is one single copy of SU(2), with the maximum dimension W . To see this, we

are focusing on coherent states. The latter are characterised by the maximum weights of the

group up to unitary transformations. In our case, the group is U(N) and the operators that

act on this are given as a single set of harmonic oscillators

Êij =
N∑

i,j=1

a†iaj . (5.19)

Let us now use the conventions Ei ≡ Eii and E ≡
∑N

i=1Ei. These are (diagonal) elements of

the Cartan subalgebra and it is possible to check the generators Eij leave the total surface

invariant

∀i, j

[∑
k

~Jk, Eij

]
= 0. (5.20)

In addition using the diagonal elements above and the u(N) algebra for Eij leads to the

following relation

∀i,
∑
j

EijEji = Ei(E +N − 1). (5.21)

Generalizing this more to arbitrary indices by summing also over i one gets∑
i,j

EijEji = E(E +N − 1). (5.22)

This equation relates the U(1) Casimir and the (quadratic) Casimir of U(N) which are E

and C2 ≡
∑

i,j EijEji respectively. Now we wish to apply this equation to the highest weight

vector v of the irreducible representation. Denoting by wi the weights we have

Eiv = wiv, (5.23)
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where wi ∈ N with w1 ≥ w2 ≥ · · · ≥ wN ≥ 0 and Eijv = 0 for all i < j. Thus before

calculating the weights, we expand

∀i
∑
i,j

EijEjiv =E2
i v +

∑
i<j

[Eij , Eji]

=

w2
i +

∑
i<j

(wi − wj)

 v. (5.24)

Equating this with Ei(E +N − 1) we getw2
i +

∑
i<j

(wi − wj)

 v =wi(W +N − 1)v,

where W =
∑N

i=1wi is the U(1) Casimir. Now we may apply this (N − i)-times to getw2
i + wi(N − i)−

∑
i<j

wj

 v =wi(W +N − 1)v

⇒ w2
i − wi(W + i− 1)−

∑
i<j

wj =0. (5.25)

For i = 1 this yields one trivial solution and one non-trivial

w1 = 0 or w1 = W and wj = 0, j > 1. (5.26)

This results in the coherent state with the highest SU(2) representation. This can be denoted

as [W, 0, · · · , 0] whose dimension is the weight and the spin is given as

jmax =
W − 1

2
. (5.27)

In a similar manner the case ρ = 2 gives rise to two copies of SU(2) representation of

equal dimensionality (n1 = n2 = n) and characterises a 2-valent intertwiner [313]. The latter

condition is forced by the gauge invariance under SU(2). Hence the representation of the

highest weight in this case is [n, n, 0, · · · , 0], with spins

j1 = j2 = jmax =
n− 1

2
. (5.28)

When there is an overall (global) spin J the above construction becomes again the two

copies of SU(2) representation [n1, n2, 0, · · · , 0] with global spin

J =
|n1 − n2|

2
. (5.29)

The gauge constraint again collapses the overall spin to zero yielding n1 = n2 = n. This is

an interesting feature that arises due to gauge invariance also in a different context as we

shall see in Sec. 5.2. The most general construction is to consider ρ = N sets of harmonic

oscillators allowing in this way all the possible representations of U(N). Their number is

given via partitions of N .

For ρ = 2, in [313] it was argued that this construction describes a bi-valent intertwiner

and geometrically corresponds to a squeezed sphere made out of two (possibly big) area
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patches. Acting with Eij on that coherent state should construct all N -valent intertwiners

with the same total area. The only change occurs in the number of patches, and it seems

that there is a U(N) action on the space of intertwiners.

We have thus concluded that there is a rather natural way to use local SU(2) operators

to describe the system as a whole with operators creating a u(N) Lie algebra and acting on

the U(N) group. Hence, to describe physics on the surface, one can use N × N matrices

X interpreted as the embeddings and are invariant under the U(N) action X = UXUT .

Therefore, asking the theory to be diffeomorphism invariant in this case means U(N) invariant.

The local operators Eii are related to the diagonal elements of the matrix X, while the non-

local Eij to the non-diagonal ones.

We can construct a matrix Xij based on this information acting on U(N). We will focus

on a Hermitian and symmetric matrix constructed purely from Eij

Xij =


Ê11 Ê12 · · ·

Ê21 Ê22
. . .

... · · · ÊNN


N×N

. (5.30)

As we saw diagonal elements act locally on the spin network (on the edges) while non-

diagonal act non-locally (e.g from edge i to edge j). We can thus use this matrix to describe

gauge-invariant physics on the surface of a polyhedron.

5.2 Fuzzy spheres and matrix models

We are interested in understanding and capturing the same features of the above construction

using the intuition we built from matrix models of string theory. The common ground is the

fuzzy sphere and in string theory, this construction is induced by a quite natural mechanism,

a (higher dimensional) analogue of the electron polarization in presence of a magnetic field.

We will use type IIA string theory whose fundamental objects are the string itself and the D0-

branes. The latter are non-perturbative and dynamical [316] in their nature, zero-dimensional

objects, and under the presence of fluxes, they can form higher dimensional structures. An

interesting phenomenon is the Myers effect [84] (see also [104, 317–319] for reviews) where

these D0-branes in the presence of a flux polarize and build a spherical D2-brane, creating

in this way a structure that it is non-commutative, two-dimensional and have a spherical

topology. It is actually a fuzzy sphere, as we encountered many times in the previous chapter.

This structure can originate in many different ways in string theory [320–322] and a

general action is given via

S = T0 Tr

(
1

2
Ẋ2
i +

1

4
[Xi, Xj ]

2 − iκεijkXi[Xj , Xk]

)
, (5.31)

where Xi, i = 1, 2, 3 are N×N matrices and T0 =
√

2π
gs

is the zero-brane tension with gs being

the string coupling. In fact we can also add a mass term for the bosonic matrices

S = T0 Tr

(
1

2
Ẋ2
i +

1

4
[Xi, Xj ]

2 − iκεijkXi[Xj , Xk]−
κ2

2
X2
i

)
, (5.32)

such that we can complete the square in the potential. This action is not unfamiliar and

recalling (A.1) we immediately see that this action is the same as the bosonic part of the

BMN action constructing the SO(3) part of the spacetime when κ→ µ/3.
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BMN from N = 4 SYM on R× S3

Another interesting construction of this model follows from N = 4 SYM on R×S3. This work

was carried out originally in [112] where the BMN model was obtained by truncation of SU(2)

invariant configurations of the super Yang-Mills theory. The isometry group of the sphere

can be decomposed as SO(4) ∼= SU(2)L ⊗ SU(2)R, this splitting is used in fact to perform a

Kaluza-Klein reduction by expanding the four-dimensional fields in spherical harmonics. The

SU(2)L invariant sector of this higher dimensional reduction gives the one-dimensional model

(3.96). The couplings of both theories are identified, the Xi matrices arise from the gauge

connection on S3 while the matrices Xa arise from scalars of the super Yang-Mills theory.

5.2.1 Mini bosonic BMN model

We return in the case of the BMN model and we focus on the bosonic SO(3) sector2. We

recall the corresponding piece of the action from (3.96)

S =
1

g2
YM

∫
dt Tr

3∑
i,j,k=1

(
1

2

(
DtX

i
)2

+
1

4
[Xi, Xj ]2 − 1

2

(µ
3

)2
(Xi)2 − iµ

3
XiXjXkεijk

)
.

(5.33)

We will call this model the mini BMN model. The equations of motion for the gauge field

At impose the (bosonic) Gauß constraint

G := [DtX
I , XI ] = 0. (5.34)

This constraint again restricts all the states of the theory to be singlets under the U(N)

symmetry and as we saw previously we have the choice to either use it or not. In other

words, this constraint creates a gauge symmetry on the model being the U(N) group.

It is easy to see that we can write the potential as

V =
1

4

(µ
3
εijkXc + i[Xi, Xj ]

)2
, (5.35)

which has again two different class of minima, for Xi = 0 or

[Xi, Xj ] = i
µ

3
εijkXk. (5.36)

Furthermore, if we associate

Xi =
µ

3
J i, (5.37)

with J i being SU(2) generators we represent the embeddings in terms of SU(2) generators and

hence the geometric description of this solution is a fuzzy sphere [241]. With this procedure,

we give a global SU(2) representation on the sphere, and this is the solution that from now

onwards we will be interested in. In fact, these vacua contain also the trivial vacuum where

Xi = 0. The latter is realised as N copies of the trivial SU(2) representation with spin j = 0,

namely N D0-branes.

2The reason we can focus on this subpart of the model is the fact that for a large fuzzy sphere the strings

connecting the fuzzy sphere (living in R3) with the rest of D0-branes sitting at the center of R6 become heavy

and the two descriptions decouple.
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However, one important point is that the SU(2) solutions of the potential result in a

spontaneous symmetry breaking of the gauge symmetry U(N). For the sake of simplicity

suppose that we have one non-trivial SU(2) representation with spin j = 1
2 and the rest

are singlets. This solution has less energy than the trivial solution and the U(N) gauge

symmetry breaks to U(N − 2)× U(1). In general an arbitrary SU(2) representation of spin

j and dimension d = 2j + 1 breaks the gauge symmetry down to U(N − d) × U(1). This

is the case for one irrep of SU(2) or just one fuzzy sphere. If instead, we have several (m)

non-trivial SU(2) representations then the residual symmetry is

U(N −
m∑
a=1

(2ja + 1))⊗ U(1)m. (5.38)

The U(1) symmetry is associated with each fuzzy sphere and in fact, gets enhanced if the

reducible solution contains multiple copies of SU(2) representations. Let us demonstrate

this with one simple example. Suppose that we represent the reducible solution with 4 × 4

matrices. However, this can be well described also by two irreducible representations of spin

j = 1
2 which occupy the diagonal blocks of the matrix. Now, each representation gives rise to

a fuzzy sphere and hence one U(1) symmetry for each. There is also an additional symmetry

that rotates these j = 1
2 configurations to each other without any energy cost. This in

fact enhances the gauge symmetry to SU(2) and can be generalised for two d−dimensional

representations of the same spin.

Suppose that initially, we have N coincident D0-branes that have a U(N) gauge symmetry

and suddenly (under polarizations and the Myers effect [128]) they polarize and form all of

them a big fuzzy sphere. Then the initial U(N) gauge group of N coincident D0-branes

breaks to N U(1)’s, e.g U(1)×U(1)×U(1)×· · ·×U(1) since we separate all the D0-branes 3.

The interpretation that these D0-branes actually construct the fuzzy sphere and each of them

is tethered on an area patch4, results in one D0-brane carrying a U(1) phase per area patch.

That is because just one arbitrary Dp-brane has a U(1) gauge theory on its worldvolume.

If we fix the size of the matrices N , then the vacua are characterised by irreducible SU(2)

representations of dimension da = 2ja+1, a = 1, · · · , N , and as we saw in the BMN analysis

in Sec. 3.3 we can write all the extrema of the action as the sum over these representations

Xi =
⊕
i

J i(da). (5.39)

Interestingly this is similar to the Hilbert space of spin networks (5.7) or the space of

Polyhedra for a fixed number of faces N .

Also, the number of vacua of the mini BMN theory is given by partitions of N , i.e by a

Young tableau of N rows and N columns, which again is the same classification of N pairs

of harmonic oscillators for the case of spin networks.

In addition for coincident fuzzy spheres we have

N =
∑
a

na(2ja + 1), (5.40)

with na being the degeneracy of the da = (2ja + 1) representation. Then, the gauge group

partially breaks to×a U(na).

3One can think that a D0-brane is a fuzzy sphere of zero dimension (i.e of spin j = 0).
4In fact their commutation constructs the area patch [53,117].

205



5.2. FUZZY SPHERES AND MATRIX MODELS

For the simplest case of the highest SU(2) representation with dimension N = 2j + 1, the

(previously coincident) D0-branes polarize to form a single fuzzy sphere. This phenomenon

results in the creation of two additional dimensions out of the initial zero-dimensional case

with the exchange of breaking the gauge symmetry of the system from U(N) to U(1).

Suppose now that we have two copies of SU(2) representation with arbitrary but equal

dimension n = 2j+1. This corresponds to two fuzzy spheres of the same radius. In the Young

table language, this corresponds to two rows of equal length represented as [n, n, 0, · · · , 0].

This can actually be a vacuum of the mini BMN theory and employing the above rules the

gauge symmetry breaks spontaneously to

U(N) 7→ SU(2)⊗ U(1). (5.41)

We have only one U(1) with the exchange of having an extra SU(2) gauge symmetry, reflecting

the fact that for the same dimensionality two fuzzy spheres can be freely exchanged.

For the special case that these two fuzzy spheres carry all the degrees of freedom of the

theory results in n = N
2 , and the gauge symmetry becomes

SU(2)⊗ U(1), (5.42)

that is one U(1) for the fuzzy sphere and the freedom to interchange the two fuzzy spheres

represented as SU(2) [323]. In the case ofN different fuzzy spheres of the trivial representation

(i.e N D0-branes) the gauge group is

SU(N)× U(1) = U(N). (5.43)

The Hilbert space of the mini BMN model is the singlet sector

Hsinglets, (5.44)

which represents states whose overall quantum number is zero. In the case of SU(2) this refers

to states with total spin zero. In string theory language, these states correspond to closed

strings (see Fig. 5.4). Thus, the physical states are realised as the trace of a combination of

matrix operators acting on the vacuum as we saw in Sec. 4.4 (see also Fig. 5.4).

Figure 5.4: A gauge invariant state representing a closed string (blue/solid) and connecting

six D0-branes.

Let us consider again the case when there are two fuzzy spheres of spins j1, j2 in the mini

BMN model. Let us leave for the moment the spins and the dimensionalities n1, n2 arbitrary.

When we consider an embedding on matrices, we have that the off diagonal block connecting
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the block n1 with block n2 transforms as j1⊗ j2 with respect to SU(2) [323]. In other words,

the matrices transform as
j=j1+j2⊕
j′=|j1−j2|

j′, (5.45)

with respect to SU(2)L. To consider gauge invariant scalars we should take the tensor product

between them ⊕
j̃

j̃ ⊗ (j, j) ∼=
⊕
j̃

j̃+j⊕
j′=|j̃−j|

(j′, j). (5.46)

In order to have SU(2)L singlets we require j′ = 0, leading to j̃ = j, such that the singlet

states are denoted as ⊕
j̃

j̃ ⊗ (j, j)

∣∣∣∣
singlets

∼=
⊕
j̃

(0, j̃). (5.47)

In fact, we see that the SU(2)L and SU(2) should be the same such that they have singlet

states for the scalars (Xi) of the theory. This can be motivated by the singlet constraint of

vanishing spin [323]. In fact, gauge invariance forces the two representations to have the same

dimensionality, in other words, two fuzzy spheres of the same radii. In addition, in this case,

the gauge group is SU(2)× U(1) as we previously discussed.

5.3 Are the models connected by any means?

Intriguingly, the structures emerging from both models have completely different origins. Yet

they both share some common features which we comment on below.

On one hand, the case of a spin network carries a SU(2) representation on each of the

edges. This representation gives an area patch and considering N representations constructs

a polyhedron whose faces have different representations, and different areas and are thus

desynchronised. On each of these individual faces, one can exploit the Swinger representation

of SU(2) in terms of two harmonic oscillators and thus the relevant operators Êij constructed

actually act on the U(N) group. In addition, this U(N) group is realised as the area-

preserving diffeomorphism of the fuzzy sphere in the N →∞ limit. The latter is characterised

by a specific SU(2) representation, whose radius and hence area are related to the dimensionality

of this representation. Therefore, it is tempting to speculate that each face of the polyhedron

corresponds to a fuzzy sphere of a specific representation.

For the polyhedron, each face carries a SU(2) representation, since it is assigned with a

specific spin ji. Let us consider N different faces/punctures, such that in general one has

arbitrary representations. Since this representation labels also the area of each patch, it is

understood that different representations lead to different areas such that the polyhedron

is not made of equispaced patches of the same area. By the procedure of synchronization,

[310,324] as we saw it is possible to give the same global representation on the boundary and

fix the individual areas. In addition, it is also possible to assign a U(1) phase per area patch

of the polyhedron which is equivalent to giving a meaning of frame on each area patch [325].

Therefore our polyhedron will consist of patches that contain the same amount of area. One

more ingredient is to consider small representations and take the number of patches to be

large in order to obtain the classical limit. Specifically, one may consider the smallest spin

(corresponding to the smallest representation) which gives the smallest area patch for each
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face. This amounts to taking a large number of (same) spins in loop quantum gravity and

not the limit of large spins [286]. This is the analogue of the usual preferable large N limit

of quantum theories to recover the classical setting via a large number of quantum degrees

of freedom and not via blowing up the norms of the quantum quantities. The same holds

for the case of the BMN model where the large N limit corresponds to a large number of

D0-branes.

The SU(2) gauge symmetry plays an important role in loop quantum gravity after the

work of [326]. The so-called intertwiners of loop quantum gravity in order to be SU(2)

invariant have to be subject to some constraints. In the language of polyhedra, we saw that

this translates to the closure constraint (5.4). In [313] it was shown that the space of N -leg

intertwiners for a fixed total area (fixed spin) carries an irreducible representation of U(N).

In fact, the space of N -leg intertwiners having a total fixed area (total spin) is shown to

be isomorphic to U(N). The highest-weight state consisting of 2-leg intertwiners is made of

two irreducible representations carrying the same spin as we saw above. In the language of

the polyhedron, this translates to a ”twohedron” made out of two area patches. Then it is

possible to act with the u(N) operators Eij ’s to create all the rest N -leg intertwiners with

the same area creating in this way a Polyhedron of the same area with N faces. It is also

possible to assign the same area per face by equipping each face with a U(1) phase. Then,

this procedure enlarges the phase space and the gauge group to

Πfixed × U(1)N , (5.48)

where Πfixed is the space of polyhedra of fixed area (via fixing N) and its’ quantum analogue

is the SU(2)-invariant space of intertwiners (5.17).

Let us now turn to the respective picture of the SO(3) BMN model. We saw that whenever

we do have two copies of SU(2) representation of the same spin, we essentially have two

coincident fuzzy spheres made out of N/2 D0-branes each, such that the system has a SU(2)×
U(1) gauge group as we explained. This would be the analogue of the highest weight state

discussed for the intertwiners where it was concluded to be a 2-leg intertwiner which was

interpreted as a flat ”twohedron” made of just two squeezed area patches.

It would be interesting to ask whether we could construct the above space from the

mini BMN model since all irreducible SU(2) representations are realised as vacua of the

bosonic potential. Therefore, we need N fuzzy spheres such that we construct the U(1)N

part. The SU(2) invariant part can be constructed by any pair of these fuzzy spheres since by

interchanging them we get the same configuration. To this end, we remind that the D0-branes

are in fact fuzzy spheres of vanishing radius (i.e of spin j = 0), and indistinguishable such that

if we can interchange them pairwise we create a SU(2) gauge symmetry. Then it might not be

unnatural to interpret each minimal area patch in the polyhedron/spin-network configuration

with fixed and coincident minimal areas as a single D0-brane at the same position, because

also in this latter case the area patches have the same minimal values. Depending on whether

we impose a SU(2) gauge symmetry or not, we can get certain configurations between fuzzy

spheres.

In the most general case where the faces (N) of the polyhedron do not have the same

area but have rather different spins ji, i = 1, · · · , N , the analogue would be a single fuzzy

sphere of radius ji per area patch which is realised as a solution of the mini BMN potential.

It seems that whenever we are considering different spins for each face of the polyhedron,

these different configurations case can be classified by the mini BMN vacua.
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It would be interesting to investigate more rigorously whether or not we can construct

the space of intertwiners by considering the mini BMN vacua. We saw that even though the

gauge groups of the two models are different, forcing gauge invariance for the case of the spin

network creates a 2-valent intertwiner while for the mini BMN model creates two coincident

fuzzy spheres. Different intertwiners can be classified by different vacua configurations of

the mini BMN model, and in fact relaxing the gauge constraint(s) different fuzzy sphere

configurations, namely different BMN vacua, which correspond to different polyherda and

coarse-grained spin networks. Recalling that there is a natural U(N) action on the space of

these intertwiners [313] one could investigate what matrix model could be used meaningfully

to grasp (at least effectively) the same characteristics. Indeed, the fuzzy sphere seems to be

shared by the two models [302] and it certainly worths to be explored in more detail and in

a more systematic way, especially now that fuzzy spheres can be studied also numerically.

Whether or not this is something useful for both models we do not know, but in any case,

we could not resist pointing out this interesting similarity. As a matter of fact, it should be

stressed that the above discussion is heavily speculative and by all means neither rigorous

nor convincing, yet both a coarse-grained spin network and the mini BMN model share some

similar features.
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6
Synopsis

Εάν μη έλπηται ανέλπιστον, ουκ

εξευρήσει.

Heraclitus

In this final chapter, we come to the conclusion of the thesis, and, in a not-so-formal

language, it could be considered the take-away of everything aforementioned. The main

topic was the matrix models of superstring theories in general and specifically, the D0-matrix

models, such as the BFSS [53] and the BMN [89] models as well as their bosonic variations.

The initial goal was to understand how to use these matrix models with the current technology

and knowledge available to better understand gravitational systems both analytically and

numerically. One particularly important feature was to understand the behaviour of these

models in the large N limit and at low temperatures, where a known gravitational dual is

available. One could then verify or falsify the gauge/gravity correspondence. On equal footing

were the finite N corrections, which, recalling now the idea of the thermodynamic limit of

statistics, this kind of corrections could be regarded as quantum corrections on a gravitational

theory. The idea was examined by using non-perturbative techniques and specifically in this

thesis by using simulations.

As interesting as this sounds it remains an ambiguous undertaking because one has to

ensure that this idea survives first in the large N limit where classical supergravity is known

and then consider finite N . On the other hand, we were always in a position to first explore

the finite N region and then extrapolate to the large N limit excluding all kinds of hidden

parameters and occasions that could spoil trusting our results. In this way, we were not

always in the position to appreciate the quantum corrected results until we concluded that

indeed we get consistent large N limits. An important example showing this ambiguity is

the fact that the simulation could be trapped in a region of the phase space which does

not correspond to any physical quantity, and hence making interesting claims could lead to

undesired results. On the other hand, the simulation could also be trapped in a region of the
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phase space that indeed has a physical interpretation but not monitoring all the parameters

and not analysing the observables could lead to undesired results. An obvious example is

being in the fuzzy sphere background of the BMN model while trying to probe the trivial

vacuum. As we repeatedly commented in the previous sections we were indeed very careful

in analysing all small details and observables of the system to ensure that we actually probe

what we were aiming for.

Motivated by this, we tried to push the idea of gauge/gravity duality to further tests.

At the same time, most of the easily accessible ideas were already accurately tested in the

past [134, 138, 146, 148, 149, 164, 193, 272, 327, 328]. Most of the previous works regarded

the BFSS model while partially some works concerning the BMN model started to appear

[194,243,273,274,329,330].

In some cases, not even the analytic results were available and an interesting example

was studied in Sec. 3.4 for the BMN model where at finite N we observed a repulsive force

acting on a probe D0-brane. This was verified for the BFSS model in [164] following the work

of [132], while here we chose a different way to study the bulk dual of the BMN model in a

specific limit since it is not known analytically [159, 258, 331]. This behaviour might not be

so unexpected since the gravitational physics of the BMN model are of the same nature as

that of the BFSS model. For the latter, we can assume the black hole to be constructed by

a collection of D0-branes sitting on top of each other. However, it is not entirely clear what

the exact physical picture in the former case is, since one has to take the plane-wave limit of

an eleven-dimensional metric. Note that we did not test this idea numerically for the BMN

model but it would be interesting to do so in the future.

An equally interesting direction is to understand the large d limits of field theories, namely

the large limit of spatial dimensions. As we discussed in Sec. 4.2 the near horizon limit of a

Schwarzschild black hole in the generalised Einstein gravity in the large d limit is equivalent

to a two-dimensional gravity with a specific dilaton profile in a string theory. In this large

d limit, the entropy of the Schwarzschild black hole shows a Hagedorn behaviour, a feature

that is shared with string theory. It seems, that the constituents constructing this higher-

dimensional Schwarzschild are showing a stringy behaviour. It would be tempting to relate the

constituents with partons living in a d-dimensional space which furthermore are represented

by a large number (d) of matrices but this idea needs to be explored in a more rigorous and

systematic methodology to draw any meaningful conclusions. We showed that by simulating

the matrix model using bosonic statistics only, we were able to capture the behaviour of

the confinement-to-deconfinement transition temperature predicted by the gauge theory in

the large d expansion. We are referring to the pattern in Fig. 4.5 where the shift could be

related to finite N and finite lattice steps. On a more speculative ground, we tried to see

whether or not the above system could be related to a gravitational system. To this end, we

considered a minimalistic gravitational theory, namely Einstein’s gravity in d dimensions and

we discussed a topology change of a Schwarzschild black hole in this theory. The motivation

being that this kind of transition [131] is related to a transition in the gauge theory [175]

which is also usually captured by a confinement-to-deconfinement transition. Of course, the

connection of this gravitational theory with a gauge theory is not established but we just

might have experienced some hint pointing towards this direction in specific limits. In any

case, to either falsify or verify, a more systematic and well-defined methodology has to be

employed to attack this problem. A similar discrepancy between the large N predictions and
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finite N simulations was also observed in the next project we are about to discuss [194].

In the view of understanding and testing the gauge/gravity duality, whenever there is a

discrepancy between the gauge theory and the gravitational side, one has to be extremely

careful to relate this mismatch with a physical phenomenon because computational errors,

especially numerical errors, can occur quite easily. The Polyakov loop is a very powerful

tool used to investigate the behaviour of the system in different phases. One of these

was the investigation of the confinement-to-deconfinement temperature transitions and the

comparison between the gauge side, the gravity side, and the simulations. When two of these

pillars coincide, then the remaining pillar should do the same otherwise there is an obvious

problem. The gravity side of both BFSS and BMN is always deconfined because they are

governed by some sort of a black hole, namely a black zero-brane. An apparent puzzle that

arose during this analysis was the fact that we were able to obtain confined simulations at

small temperatures, but confinement is not predicted from the type IIA supergravity dual

where the black zero-brane lives. After excluding obvious numerical errors, and checking that

we have confined simulations surviving in the large N limit, we turned to understanding this

phenomenon physically.

The only available explanation was that this confined phase corresponds to a gas of

supergravitons living in eleven dimensions which is available only in small temperatures,

explained around Fig. 4.15 based on Fig. 3.4. An important feature that was used was the

fact that there was a large hysteresis in this parameter region which for large enough N could

be explained physically. As we show in Appendix D in the large N limit there is a big overlap

between the two phases of the model(s). That of an eleven-dimensional, small Schwarzschild

black hole and that of the ten-dimensional black zero-brane of type IIA supergravity. These

are the two different gravitational phases separated by the diagonal line in Fig. 4.15 and it

seems that the matrix model(s) can probe this separation. A more detailed discussion can

be found around this figure. Yet this is not the end of the story but merely the beginning

of a new era of simulations where more systematic tests have to verify this picture and even

investigate other observables of M-theory such that the membrane and the fivebrane. It

seems that we are just starting to investigate the phase of the M-theory and this theory will

finally be verified to be a Matrix theory. As technology advances, simulating these kinds

of models will be easier and more beneficial, since with the development of the quantum

computer simulations will be performed more efficiently.

The latter might benefit from the question of whether the singlet constraint is important

for a physical system or not. This is a legitimate physical question which was investigated

in [133, 138], and recently in [273] confirming the intuition. At low temperatures, the

gauge constraint that introduces gauge degrees of freedom in the matrix model system is

not important to have a gravitational theory. This introduces another non-gauge/gravity

example and generalizes the idea of the duality further. On the other hand it has a twofold

interest because is also important for quantum computers. For the matrix models under

consideration, the gauge symmetry is SU(N). Trying to put these models in a quantum

computer is not easy because it is difficult to realise the SU(N) gauge symmetry [141]. On

the other hand, it might be easier to consider a set of harmonic oscillators and Majorana

fermions such that by fine-tuning the interactions between them one obtains the ungauged

version of the models which has a SU(N) global symmetry. SU(N) non-singlet states have

higher energy than the singlet states, hence we would expect that a small perturbation that
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breaks the global SU(N) symmetry will be irrelevant in the IR.

Some further ongoing work [274] tries to push the idea of gauge/gravity duality to the

lowest possible temperatures until now by using a considerable amount of current resources.

As data show at the current moment of writing, there is an overall good behaviour of the

large N and continuum extrapolations in a sense that in the parameters we studied so far

the fits, hint a convergence with the gravitational and the BFSS results. Of course, these

are preliminary data to discuss for a precision test but the pattern, even at this low level of

approximation, seems to point in the right direction. We will not be too enthusiastic about it,

but if this possibility turns out to be true and trustworthy, by going to small temperatures and

performing several tests we can learn about the black zero-brane and M-theory gravitational

systems. In particular, because the finite µ corrections are small, we can study the features of

the first order, confinement-to-deconfinement, transition at finite and small µ, and since these

features are qualitatively very close to the BFSS features, we might also be able to investigate

the M-theory region. This is because the, so far good, agreement with supergravity hints at

such a possibility. Of particular importance would also be to investigate other contents of

M-theory such as the membrane and the fivebrane, since the latter is believed to be the trivial

vacuum of the BMN model [89].

The last part of our journey consisted of the exploration of a by now quite old idea

[298–300,332]. It was an interesting observation that similar structures appearing in specific

coarse-grained spin networks from loop quantum gravity could be classified by the BMN non-

trivial vacua. We are talking about the fuzzy spheres, and a crude approximation to relate

area patches between the two formalisms was made. Of course, being at this level we cannot

claim at all that there is a rigorous connection due to the different points of view of the two

main theories, and again a more systematic approach is needed to verify or falsify this idea.

In the miraculous case where there will turn out to be a connection between the two, the

benefits would mainly be for the loop quantum gravity community, since the matrix models

from string theory are well understood by now and can be simulated in a computer. The

latter case might help to simulate specific spin networks similarly and study their dynamics

in this way.

Finally, matrix models can be used to study a plethora of different physical systems,

lower-dimensional and higher-dimensional. In particular, it seems extraordinary how a one-

dimensional system containing nine matrices can describe a gravitational physical system in

ten spacetime dimensions. To have d matrices which are N × N it is obvious that a lot

of knowledge is stored in them and one of the primary goals is to carefully extract useful

information from this. Indeed, some of these connections are known and others are under

investigation. The non-perturbative nature of matrix models allows us to probe theories

without expanding parameters. On the other hand, by tuning N we can study quantum

corrections of classical systems, a feature which is of high importance for gravitational

systems. It is the beginning of a new era, and especially taking advantage of the (hopefully

soon operating) quantum computers one might use these non-perturbative tools to study very

interesting physical systems in more depth extracting knowledge that was not accessible in

the past. We could not resist pointing out that the brain is also a physical system whose

synapses create geometrical structures in higher dimensions [333].
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A
The potential barrier in the BMN model

We are interested in finding the potential barrier of BMN model, a feature that controls the

probability for the trivial vacuum configuration to transition to a fuzzy sphere configuration.

As we may proceed with the analysis, also some conceptual ideas about the model will become

clearer.

Let us then concentrate on the bosonic action of the BMN model which has the following

form

S =
N

λ

∫
dt Tr

[
1

2
(DtX

i)2 +
1

4
[Xi, Xj ]2 − 1

2

(µ
3

)2
(Xi)2 − iµ

3
XiXjXkεijk

]
. (A.1)

To find extrema of this potential let us consider an ansatz of the form Xi(t) = r(t)J i and

substitute it into the Lagrangian. Using identities of εijk and that for irreducible SU(2)

representations we have Tr (J i)2 = N
3 (N2 − 1), we find

L =
N2(N2 − 1)

6λ

(
ṙ2 − r2

(
r − µ

3

)2
)
, (A.2)

with potential

V =
N2(N2 − 1)

6λ
r2
(
r − µ

3

)2
, (A.3)

whose profile is given at Figure A.1.

Asking stability of this potential, we differentiate with respect to r and we obtain three

solutions

� r = 0 which is stable,

� r = µ
3 which is stable,

� r = µ
6 which is unstable.
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The maximum of the potential is given by

V
(
r =

µ

6

)
=
N2(N2 − 1)

6 · 36 · 36λ
µ4. (A.4)

In the large N limit, this potential barrier behaves like ∼ µ4N4, which means that the

combination µ,N is what matters such that we keep under control the system. Specifically

in simulations it is of much importance to keep this combination large to avoid undesirable

tunnellings from the trivial backgrounds to fuzzy backgrounds.

Figure A.1: The profile of the potential (A.3) showing also the respective extrema.
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B
Effects of the BMN geometry on a D0-brane and a

D2-brane

In this section we start by calculating the force that a D0-brane feels in a classical plane wave

background in ten dimensions and then repeating the calculation for a D2-brane.

B.1 A D0-brane feels only the trivial vacua

The starting point the symmetry reduced metric (3.137). In the limit of small curvatures

Q2/4� 1 one can expand as follows

e−
2Φ
3 ≈ 1 +

Q2

8
+O

(
Q4
)

A0 ≈ −
Q2

4
+O

(
Q4
)
.

When we want to calculate the force, we have in mind a situation when we naively place

a D0-brane probe in the spacetime and ask for its dynamical behaviour. To this end, we need

to write down the DBI action for the D0-brane by choosing the gauge where the parameter

of the worldline of the D0 coincides with the time component of the spacetime. In a general

background, it is given by

SD0 = −T0

∫
dte−φ

√
−gµν

dxµ

dt

dxν

dt
+ T0

∫
dtA0, (B.1)

where T0 = Ms
gs

is the tension of the D0-brane and the expression inside the square root is

the pull-back of the spacetime metric on the worldline of the D0-brane. We remind that a

Dp-brane naturally couples with a p+1 form, thus the only form that couples (naturally) to
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a single D0-brane is the one-form 1 potential A0. Then, the action reads as

SD0 = −T0

∫
dt

(
1 +

3Q2

16

)√
1 +

Q2

8
−
(

1− Q2

8

)
ẋ2 + T0

∫
dt

(
−Q

2

4

)
. (B.2)

Moreover, after taking the non-relativistic limit we expand the action up to ẋ2 and Q2 terms

leading to

SD0 ≈ −T0

∫
dt

[
1 +

Q2

2
− 1

2
ẋ2

]
+O(Q4, ẋ4, ẋ2Q2). (B.3)

One can read off the potential from this action:

VD0(x) = T0(1 +
Q2

2
). (B.4)

Recalling (3.138) we write the potential as,

VD0(Xi, Xa) = T0

[
1 +

1

2

(
µ2

9

3∑
i=1

(Xi)2 +
µ2

36

9∑
a=4

(Xa)2

)]
. (B.5)

We see an explicit dependence of µ in the potential. It is also worth noting that the trivial

vacua (Xi = 0 and Xa = 0) are supersymmetric solutions of the potential after performing

a shift, but the non-trivial SU(2) vacua are not. The latter, geometrically are believed to

correspond to concentric fuzzy spheres, however the single D0-brane in this background is

agnostic if there are any fuzzy spheres at all. Had we consider a different probe, for example

a D2-brane, then this would couple to higher forms and would give rise to the SU(2) part of

the potential. This is demonstrated in the next subsection.

Furthermore, we can write the terms inside the sum as the radii of an S2 and S5 sphere. In

other words we can write the potential as

VD0(r2, r5) = T0

[
1 +

1

2

(
µ2

9
r2

2 +
µ2

36
r2

5

)]
, (B.6)

where r2 denotes the radius of the S2 sphere and r5 the one of S5.

From this potential one can obtain the force that the D0-brane feels by differentiating with

respect to the radial coordinates. This is simply given by

FD0(r2, r5) = −T0
µ2

9

(
r2 +

r5

4

)
. (B.7)

However, this is a naive picture because the hole system is studied at the classical level.

According to matrix model simulations, the matrices are never zero but they subject to

quantum fluctuations independent of which vacuum one studies [164,193,334].

B.2 A D2-brane feels the SU(2) vacua

In this section we calculate the force that a D2-brane probe feels in the weakly curved

background (3.137). A similar discussion can be found in [159]. One can think this D2 probe

1We could of course consider a three-form flux and via this procedure the D0-brane would couple to also

a three form, giving rise to a Myers effect. This would change the output of the discussion but we change in

the first place the background by the introduction of the three-form.
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as being made of (q) D0-branes where the number of D0’s is taken to be large. However, in

order to consider this as a probe, one has to require that the probe charge q is much less

than the background charge N such that it does not backreacts to the geometry, i.e we are

studying the limit 1� q � N . We can imagine this brane to have a S2 topology embedded

in a three dimensional space. In particular, one natural embedding would be along the SO(3)

part of the metric where the other six dimensions are transverse to it. For convenience, we

place the D2-brane in the center of the the six transverse directions such that Xa = 0. Then

the DBI and WZ action of the D2-brane will be of the familiar form

SD2 = −T2

∫
d3σe−Φ

√
−det (Gab + 2πα′Fab) + T2

∫ (
A3 + 2πα′F2 ∧A1

)
, q � N (B.8)

where 2πα′F2 = 2πα′F2 − B2. As in the case of the D0-brane, we have also chosen the

static gauge here, which corresponds to identify the worldvolume dimensions with the three

dimensional part of the subspace of the ten-dimensional spacetime. We can choose t, θ, φ

coordinates parametrizing the S2. The radius of S2 is given by r, while the angles have the

usual ranges θ ∈ [0, π], φ ∈ [0, 2π]. For a compact D2-brane of arbitrary topology the total

charge q is quantized and it is given as∫
S2

F2 = 2πq −→ F2 =
1

2
q sin θ dθ ∧ dφ. (B.9)

We note that the integer q is also related to the first Chern class of the U(1) bundle at a fixed

point in time [335], [336] and moreover, it acts as a source for the R-R vector field and the

interpretation of it is the number of D0-branes that are bound on the surface of the D2-brane.

Analogously, the forms are given in the static gauge as

A1 =

(
1− Q2

4

)−1

dt (B.10)

A3 =
1

3
µdt ∧ S2 , S2 =

1

2
εijkx

i ∧ dxj ∧ dxk, i, j, k = 1, 2, 3. (B.11)

Furthermore, the pullbacks of the metric Gab on the D2-brane are given as

det gtt = −
(

1− Q2

4

)− 1
2

(B.12)

det g⊥ = det(gθθgφφ) =

(
1− Q2

4

)
r4 sin2 θ. (B.13)

From these we have that

Fθφ =
1

2
q sin θ (B.14)

FabF
ab =

q2

2
(

1− Q2

4

)
r4

(B.15)

detF2 =
1

2
FabF

ab det g⊥ =
q2

4
sin2 θ. (B.16)

The DBI action can be written as

SDBI = −T2

∫
d3σe−Φ

√
−det gtt

(
det g⊥ + 2πα′ detF2

) 1
2 , (B.17)
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and considering the main contribution coming from detF2
2, we can expand the action around

this and get

SDBI ≈ −T2

∫
d3σe−Φ

√
−det gtt

(
2πα′

√
detF2 +

det g⊥

4πα′
√

detF2

)
. (B.18)

Using the exact expressions this gives

SDBI ≈ −T2

∫
dtdθ dφ

[(
1− Q2

4

)−1

πα′q sin θ +
r4 sin θ

2πα′q

]

≈ −T2

∫
dt

[(
1− Q2

4

)−1

4π2α′q +
2r4

α′q

]
. (B.19)

Similarly the WZ action gives

SWZ = T2

∫
dt

[
4πµr3

3
+ 4π2α′q

(
1− Q2

4

)−1
]
. (B.20)

We see that the leading terms cancel each other, the subleading terms that remain can be

mapped to the commutator term ∼ Tr [Xi, Xj ]2 and the Myers term ∼ −Tr
(
iµ3 εijkX

iXjXk
)

in the BMN model. In addition, one could also be interested in the contributions coming

from the B2 field. However, as it is shown in [337] the contributions of B2 coming from WZ

and DBI action cancel each other. Nevertheless, we can add a term ∼ µ2r2 such that we

complete the square in the action. This will make the interpretation more clear. By adding

and substracting this term, we write the action as

SD2 ≈ −
2T2

α′q

∫
dt

[(
r2 − 2πµα′q

3
r

)2

− 4π2µ2α′2q2r2

9

]
. (B.21)

The potential is simply

VD2(r) =
2T2

α′q

[(
r2 − 2πµα′q

3
r

)2

− 4π2µ2α′2q2r2

9

]
. (B.22)

This potential profile, reminds the one from the BMN matrix model discussed in (A.3). We

see that apart from the trivial r = 0 solution, there is a non-trivial equilibrium radius at

r =
4πα′qµ

3
. (B.23)

This is understood as the radius in which the contraction that is caused by the r2 and r4

terms compensates with the expansion caused by the r3 term in the potential. In fact one

can generalize this and have a number (k) of concentric D2-branes instead of just one. Then

for each D2-brane there is an equilibrium radius given by

ri =
4πα′qiµ

3
, i = 1, · · · , k, (B.24)

2This amounts to q2

4
sin2 θ � 1, reflecting the fact that the charge q is large but nevertheless we are in the

limit q � N
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with qi being the charge of the i-th D2-brane. In the Matrix model side instead, this picture

corresponds to a particular copy of the N dimensional representation of SU(2) up to a non-

commutative factor in the case of a single D2-brane and a partition {N1, · · · , Nk} of the N

dimensional representation of SU(2) in the case of k concentric D2-branes .

The force that the D2 feels from the background is given as

FD2(r) = −8T2

α′q
r2(r − πqα′µ). (B.25)

In fact, we see that it is independent of the configuration of the geometry, for example

independent of the warp factor e
2Φ
3 , but it does depend on its own charge q and the flux

parameter µ, in accordance with the D0-brane case. We also see that the force becomes

repulsive for r ∈ (0, πqα′µ). This results to an interpolation from a strong, attractive force to

a slightly repulsive force after going through the minimum of the potential. In the minimum,

we have a D2-brane freely sitting on a position in spacetime. So in this way, we can see that

we probe and reveal different parts of the geometry since this picture in the D0-probe was

absent.
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C
Microcanonical and grandcanonical statistics

Here, we give more some complementary information and tools to better understand the

statistical picture of the proposal in Sec. 4.3. In particular we discuss maxima and minima.

In the microcanonical ensemble, the energy E is restricted to a small range [E,E + dE], and

all states contribute with the same weight. The entropy S(E) is related to the density

of states Ω(E) as S(E) = log Ω(E). Dual gravity solutions such as 11d Schwarzschild

black hole correspond to typical configurations dominating the entropy. The microcanonical

temperature Tmicro is obtained from the entropy S as

1

Tmicro
=

dS

dE
. (C.1)

Therefore, the specific heat capacity dE
dTmicro

is

dE

dTmicro
= − 1

T 2
micro

(
d2S

dE2

)−1

. (C.2)

The Euclidean path integral of the matrix model describes the canonical thermodynamics.

In the canonical ensemble, the temperature T is a controllable parameter. The partition

function is given by

Z(T ) =

∫
dEΩ(E)e−E/T =

∫
dEe−F (E,T )/T , (C.3)

where F is the free energy defined by

F (E, T ) = E − TS(E). (C.4)

For simplicity, let us assume that the maximum of entropy is uniquely determined at each E.

(It is not the case if there are two or more separate local maxima and the first-order phase

transition in the microcanonical ensemble takes place. We will consider such a case later.)

Then, by taking the derivative with respect to the energy, we obtain

∂F (E, T )

∂E
= 1− T dS(E)

dE
= 1− T

Tmicro(E)
. (C.5)
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Figure C.1: [Top] Coexistence of two local maxima of entropy S1(E) and S2(E) corresponding

to phase-1 and phase-2 in the microcanonical ensemble. We assume that S1(E) > S2(E) at

E > Ec and S1(E) < S2(E) at E < Ec. [Bottom] Corresponding canonical phase diagram;

free energy minimum (left) and maximum (right).

Therefore, free energy is extremized at the value of E which corresponds to Tmicro(E) = T .

The second derivative is

∂2F (E, T )

∂E2
=

T

T 2
micro

(
dE

dTmicro

)−1

. (C.6)

Therefore, if the heat capacity in the microcanonical ensemble is positive (resp., negative),

the free energy is minimized (resp., maximized) in the canonical ensemble.

The case of first order transition in the microcanonical ensemble

Suppose there are two local maxima of the entropy S1(E) and S2(E) corresponding to phase-1

and phase-2, as shown in the top row of Fig. C.1. We assume that S1(E) > S2(E) at E > Ec
and S1(E) < S2(E) at E < Ec, and hence a first-order transition takes place at E = Ec. The

entropy S(E) in (C.3) becomes S = log(eS1 + eS2). This is approximated well by S1 and S2

at E > Ec and E < Ec, respectively. When E is infinitesimally close to Ec, we have to take

into account both phases.

We have

dS(E)

dE
=

1

eS1 + eS2
×
(

eS1

Tmicro,1
+

eS2

Tmicro,2

)
, (C.7)

where 1
Tmicro,i

= dSi
dE is the microcanonical temperature of phase-i (i = 1, 2). When E is varied

from slightly below Ec to slightly above Ec, it moves from 1
Tmicro,2

to 1
Tmicro,1

. Therefore, the

canonical phase diagram becomes like the bottom row of Fig. C.1.
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Figure C.2: [Top]: Coexistence of three local maxima of entropy S1(E), S2(E), and S3(E) in

the microcanonical ensemble. We assume that S1(E) > S2(E) at E > Ec and S1(E) < S2(E)

at E < Ec, and S3(E) is always smaller than S1(E) or S2(E). [Bottom]: Corresponding

canonical phase diagram; free energy minimum (left) and maximum (right).

Suppose yet another maximum of the entropy S3(E) corresponding to phase-3 exists as

shown in Fig. C.2, and S3(E) is always smaller than S1(E) or S2(E). Then phase-3 does

not affect the canonical phase diagram at all; see the bottom row of Fig. C.2. Still, if other

parameters than energy are taken into account, phase-3 may be visible in the canonical

simulation.
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D
The Schwarzschild black hole in 11 dimensions

One candidate to capture the behaviour of maximum (minimum) confinement (deconfinement)

temperature for matrix model is the eleven-dimensional Schwarzschild black hole in the

unboosted frame and non-compact space. This candidate is one of the possible choices but

nevertheless not unique. In fact the boost does not play an obviously important role as

we shall see. Assuming that the gravity correspondence is correct this can be achieved by

studying this black hole with minimal mass, the Plank mass mP . At small temperatures and

large N we expect the matrix model to be described by a theory of gravity. In particular,

for very low temperatures and strong coupling in the matrix model we expect to approach

the M-theory limit in the gravity side [49]. That is because the 11-th dimension opens

up since the radius of the compact dimension is in direct relation with string coupling

R = gs
√
α′. In a sense, going to very low temperatures/energies we are approximating the

non-compact spacetime. The generalization of a Schwarzschild black hole in eleven dimensions

is straightforward (as we saw in (4.27) it is the Schwarzschild-Tangherlini metric [196] for

D = 11)

ds2
11 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2

9,

f(r) = 1−
(r0

r

)8
. (D.1)

The horizon of this black hole is setted by

r8
0 =

16πG11M

9Ω9
, (D.2)

where G11 is the 11-dimensional Newton’s coupling and Ωd−1 = 2π
d
2

Γ( d2 )
is the surface of the

(d− 1)-dimensional sphere. The associated temperature is given as

T =
8

4πr0
. (D.3)
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We recall that the relation between the 11-dimensional Planck length, string coupling and

α′ = `2s is [338]

`P = (2πgs)
1/3
√
α′, (D.4)

and from the above we can relate the string coupling with Planck’s mass via the uncertainty

principle1 as

g2
s =

2πR3

`3P
= 2πR3m3

P . (D.5)

In addition to those, we have the general conventions [166]

gs = 4π2`3s
λ

N
, (D.6)

and

16πG11 = (2π)8g3
s`

9
s. (D.7)

Thus we can solve (D.5) for mP in terms of N ,

mP =
N1/3

2π
√
α′λ1/3

, (D.8)

while from (D.7) we get

G11 =
(2π)8

16π
(4π2)3λ3N−3`18

s . (D.9)

Now plugging all these in (D.2) and setting λ = 1 = α′ we find that

r0 = κ(d)N−1/3, (D.10)

where κ(d) is a function that depends on the dimensionality of spacetime. For the 11-

dimensional case we get κ ' 10.5.

Therefore via (D.3) this results into a critical temperature scaling as

Tc ∼ N1/3. (D.11)

Carrying all constants for D = 11 we obtain

Tc ' 0.0634N1/3. (D.12)

Hence this is the maximum(minimum) confinement(deconfinement) temperature we can probe

related with the gravity side. Let us now see why the boost is irrelevant for physical quantities.

The idea is that if the horizon of the black hole was an ordinary system upon boosting it would

Lorentz contract leading in this way a decreasing area of the horizon yielding in addition a

violation of the second thermodynamic law since the entropy assigned with the horizon would

shrink. Fortunately, horizons do not Lorentz contract following from the fact that every cross

section of the horizon has the same area, such that in every frame, the area of the horizon

remains the same. Let us see an explicit example of this by writing a four-dimensional

Schwarzschild black hole in isotropic coordinates using the transformation [37]

r → r

(
1 +

M

2r

)2

. (D.13)

1We are using units c = 1 = ~ such that `PmP ∼ 1.
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The metric reads

ds2 = −
(
r − r0

r + r0

)2

dt̃2 +
(

1 +
r0

r

)4 (
dz̃2 + dρ2 + ρ2 dφ2

)
. (D.14)

The coordinates are related via r2 = z̃2 + ρ2 and they cover both asymptotically flat regions

with the horizon at r = r0. Let us suppose that we want to apply the boost along the z̃

direction but since it is not a symmetry direction, there is an ambiguity about how one defines

the boost in the interior of spacetime. One natural choice would be to set

dt̃± dz̃ = e±γ (dt± dz) , (D.15)

where γ is the boosting parameter and the new horizon geometry is setted by t = const., r = r0

in the metric

ds2 = 16
(
cosh2 γ dz2 + dρ2 + ρ2 dφ2

)
. (D.16)

The horizon is spanned by t, z and ρ via

r2
0 = r2 = (cosh γ · z + sinh γ · t)2 + ρ2, (D.17)

and differentiating this equation at constant times (dt = 0) yields

(cosh γ dz)2 =
ρ2 dρ2

r2
0 − ρ2

, (D.18)

such that the static metric on the horizon is given as

ds2
h = 16

(
r2

0 dρ2

r2
0 − ρ2

+ dφ2

)
(D.19)

which is indeed independent of the boost and describes a round sphere. This illustrates that

the horizon of the four-dimensional Schwarzschild black hole does not Lorentz contract. On

the contrary, the metric element (D.16) expands under a boost. This means that even though

the black hole horizon does not Lorentz contract, the spacetime itself expands such that it can

accommodate the black hole. Hence, by boosting black holes one can expand the spacetime

such that even a large black hole fits in it. The same argument holds for higher dimensional

black holes such the one in ten-and-eleven dimensions. In fact the reason for this analysis is

because this scenario applies to black holes boosted along the x11 dimension to connect type

IIA string theory with M-theory. As a consequence, this also applies to matrix models better

depicted in Fig. 4.15.
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Translations of epigraphs

These epigraphs are all taken from written words of ancient philosophers, either as part of a

phrase or as a whole sentence. As such, one cannot really hope to understand their philosophical

meaning if one reads them superficially and not adding important philosophical dimensions. For

the convenience of the interested reader we are presenting here a crude translation from the author

of the thesis while a deep exploration should be looked elsewhere.

� Chapter 1Αρχή σοφίας της αγνοίας η γνώσις: The beginning of wisdom is to understand

what you do not know.

� Chapter 2 Ετεή δε ουδέν ίδμεν. Εν βυθώ γαρ η αλήθεια: We know nothing. Because

truth lies deep in the bottom.

� Chapter 3 Φύσις κρύπτεσθαι φιλεί: Nature likes to hide.

� Chapter 4 Τα πάντα ρει: Everything flows.

� Chapter 5 Αεί ο θεός γεωμετρεί: God always geometrizes.

� Chapter 6 Εάν μη έλπηται ανέλπιστον, ουκ εξευρήσει: If you do not hope for the

hopeless you will never find it.
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[78] R. Güven, Black p-brane solutions of D=11 supergravity theory, Physics Letters B

276 (1992) 49.

[79] G.W. Gibbons, G.W. Gibbons, G.T. Horowitz and P.K. Townsend,

Higher-dimensional resolution of dilatonic black hole singularities, .

[80] R.I. Nepomechie and R. I., Magnetic monopoles from antisymmetric tensor gauge

fields, PhRvD 31 (1985) 1921.

[81] C. Hull, Unity of superstring dualities, Nuclear Physics B 438 (1995) 109 [9410167].

[82] W. Rarita and J. Schwinger, On a Theory of Particles with Half-Integral Spin,

Physical Review 60 (1941) 61.

[83] P.K. Townsend, Townsend and P. K., p-Brane Democracy, arXiv (1995) hep

[9507048].

[84] R.C. Myers, Dielectric-Branes arXiv : hep-th / 9910053v2 11 Oct 1999, 9910053v2.

[85] P.D. Francesco, P. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices,

mar, 1995. 10.1016/0370-1573(94)00084-G.

[86] K.L. Zarembo and Y.M. Makeenko, An introduction to matrix superstring models,

Physics-Uspekhi 41 (1998) 1.

[87] P. Ginsparg and G. Moore, Lectures on 2D gravity and 2D string theory (TASI 1992),

9304011.

253

https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01397481
https://doi.org/10.1016/0370-2693(78)90894-8
https://doi.org/10.1016/0370-2693(78)90894-8
https://doi.org/10.1016/0370-2693(87)91272-X
https://doi.org/10.1016/0370-2693(87)90899-9
https://doi.org/10.1016/0370-2693(87)91323-2
https://doi.org/10.1016/0370-2693(91)91371-2
https://doi.org/10.1016/0370-2693(94)91260-2
https://arxiv.org/abs/9405124
https://doi.org/10.1016/0370-2693(92)90540-K
https://doi.org/10.1016/0370-2693(92)90540-K
https://doi.org/10.1103/PHYSREVD.31.1921
https://doi.org/10.1016/0550-3213(94)00559-W
https://arxiv.org/abs/9410167
https://doi.org/10.1103/PhysRev.60.61
https://arxiv.org/abs/9507048
https://arxiv.org/abs/9910053v2
https://doi.org/10.1070/PU1998V041N01ABEH000327
https://arxiv.org/abs/9304011


BIBLIOGRAPHY

[88] M. Hanada, H. Kawai and Y. Kimura, Describing curved spaces by matrices, Progress

of Theoretical Physics 114 (2005) 1295 [0508211].

[89] D. Berenstein, J. Maldacena and H. Nastase, Strings in flat space and pp waves from

Script N = 4 Super Yang Mills, Journal of High Energy Physics 2002 (2002) 013

[0202021v3].

[90] V.A. Kazakov, Bilocal regularization of models of random surfaces, Physics Letters B

150 (1985) 282.

[91] J. Koplik, A. Neveu and S. Nussinov, Some aspects of the planar perturbation series,

Nuclear Physics, Section B 123 (1977) 109.
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