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How to read this thesis

Even though it is not usual, it would not be so illogical to provide guidance to the reader regarding
the tools one needs to follow the topic. Most of this thesis is devoted to string theory matrix
models, and therefore, to understand the logic, analysis, and results in their core, one should have
some pre-existing exposure to string theory.

To be self-consistent, the thesis is organised into six parts, beginning from the very basics.
The first part contains the main stimuli and a general introduction to the topic of the dissertation,
and where it might be helpful and applicable. This is indeed one of the parts that most readers
should go through carefully. Part two is an elementary introduction to, both conceptual and
concrete, string theory and matrix models. This information contains the foundations one needs
to follow the thesis. Readers familiar with both topics could skip directly to part three at first
read.

The third part contains all new results and developments from the Monte Carlo simulations
performed in a supercomputer starting with some basic introduction also. This is one of the
genuine parts of the topic and experts could directly start with this. At the end of each section of
this part, we include also a small table addressing the most important points, in the view of the
author, of each work and the scientific contribution in the high-energy and gravity communities.
The fourth part, on the other hand, is as genuine as it is abstract. It examines a non-established
connection, if it exists by any means, between matrix models emanating from string theory and
specific coarse-grained spin networks from loop quantum gravity. Readers not familiar with ideas
of loop quantum gravity could skip it at first read.

Part five contains the synopsis of the dissertation and how its contents might benefit the
scientific community. It also contains some future directions that could potentially be investigated
using the results presented here. In the final part, we supplement the reader with miscellaneous
results concerning some important points that have been used in the main body of the thesis.

We hope the reader finds the exposure to the above topics as enjoyable as the author found
their embedding and construction into this thesis.



List of abbreviations and symbols

Here we provide a list with some abbreviations and symbols that will play an important role.

BFSS The DO-brane model suggested by Banks, Fishcler, Susskind, Shenker
BMN The massive deformation of BF'SS proposed by Berestein, Maldacena, Nastase
w.r.t With respect to

LHS Left hand side

RHS Right hand side

QFT Quantum field theory

CFT Conformal field theory

N The degrees of freedom, number of DO-branes, and the size of the matrix
S The lattice spacing

T Temperature (dimensionfull)

I The mass of BMN model

A The 't Hooft coupling

H The Hamiltonian

H The Hilbert space

Ly The string length

lp The Planck length

o 2

g The string coupling

gy The Yang-Mills coupling

uv Ultraviolet

IR Infrared



viii



Author declaration and publications
How to read this thesis

List of abbreviations and symbols

I Prolegomena

1 Introduction and motivation

IT Introduction to string theory and matrix models

2 String theory

2.1 Conceptual analysis . . . . . . ... ... ... ...
2.1.1 World-volume and spacetime descriptions . . . . . . ..
2.1.2 Dynamical classical variables . . . . .. ... ... ...
2.1.3 Some quantum aspects . . . . . .. ... ... ... ..
2.1.4 Interactions . . . . .. .. ...

2.2 Mainanalysis . . . .. ...
2.2.1 Worldsheet Theory . . . . . .. ... ... ... ....
2.22 Pathintegral . . . . .. ... oL

2.3 Conformal Field Theories . . . . . ... ... ... ... ....
2.3.1 The conformal group in D dimensions . . . . . ... ..
2.3.2  The special case of two dimensions . . . . . . ... ...

2.4 Gravity from string theory . . . . . . . .. .. ... ...

2.5 Superstring theories and their classification . . . . . . . . .. ..

2.6 The simplest example of Kaluza-Klein reduction . . . . . .. ..

2.7 Introduction to M-theory and its contents . . . . . . ... ...

3 Matrix models and gravity

3.1 Quantum gravity in two dimensions . . . . . . .. ... ... ..
3.1.1 Zero dimensional matrix model . . . . . ... ... ...
3.1.2 One-dimensional matrix models . . . . . ... ... ...

3.2 Matrix String Theory . . . . . . ... .o

3.2.1 A unification of matrices, membranes and DO-branes

3.2.2 The BFSS model: Dimensional reduction . . . ... ..

ix

Contents

vi

vii

xiii



CONTENTS

3.2.3  An unconventional holography . . . . .. ... ... ... ... ... 70
324 ThelKKT model . . . . . . . . . . . 71

3.3 The BMN model . . . . . . . . . o 74
3.4 Thegravityduals . . . . . . ... 78
3.4.1 Weak and strong notions of holography for matrix models . . . . . . .. 81
34.2 Thegravitydual of BFSS . . . . . . .. .. 81
3.4.3 Thegravitydual of BMN . . . . . . ... o 84

3.5 Thermodynamics of the BMN model . . . . . . . . ... ... ... ....... 94
3.6 Confinement and deconfinement phases and their relations with gravity interpretations 97
3.6.1 Thegaugetheoryside. . . . . . . . . .. ... ... 97
3.6.2 Thegravityside . . . . . . . . . 99

IIT Simulating matrix models in a supercomputer 103
4 Simulations 105
4.1 Introduction to simulations . . . . . ... Lo 105
4.1.1 Real timedynamics . . . . . . .. Lo Lo 106
4.1.2  Preserving supersymmetry on the lattice . . . . . .. .. .. ... 107
4.1.3 Lattice discretization . . . . . .. ..o 109
4.1.4 The parameters that control the system . . . . . .. ... ... ... .. 110

4.2 Some interesting examples at larged . . . . . . . ... 111
4.2.1 Theoretical analysis . . . . . . . ... oL 111
4.2.2 Black strings in higher dimensions . . . . . .. ... oo 114
4.2.3 Largedanalysis . . . . . ..o 116
4.2.4 Numerical results . . . . . . ..o 121

4.3 Confinement-deconfinement in BMN model and appearance of M-theory . . . . . 125
4.3.1 Introduction . . . . .. L. 125
4.3.2  Short summary of the mainclaim . . . ... ... ... ... ... .. 126
4.3.3 Trivial and fuzzy-sphere vacuum in the BMN matrix model . . . . . . .. 131
4.3.4 Conjectured phase structure at finite temperature . . . . . . .. ... .. 133
4.3.5 BFSS matrix model (u=10) . .. ... ... ... ... ... .. ... 134
4.3.6  BMN matrix model (x>0) . . . . ... ... 138
4.3.7 Numerical determination of the phase transitions . . . . .. .. .. ... 141
4.3.8 Phase transitions in the bosonic BMN model . . . . .. .. .. ... .. 142
4.3.9 Phase transitions in the full BMN model . . . . . . . .. ... ... ... 143
4.3.10 Conclusion and discussion . . . . . . . .. ... 160

4.4 Gauged and Ungauged matrix models . . . . . .. ... ... L oL 162
4.4.1 Gauged vs ungauged: the conjecture . . . . . . . .. ... 165
4.4.2 Numerical analysis . . . . . . . .. L 167
4.4.3 Simulation strategy . . . . . ... 167
4.44 Energyofthesystem . . . .. .. . . ... ... ... ... ... 168
4.45 Otherobservables . . . . . . .. .. 175
4.4.6 Hamiltonian splitting in perturbative regime . . . . . .. .. ... ... 177
4.4.7 Representation algebra of the BMN model . . . . . . . ... ... .... 182
4.4.8 Interpretations . . . . . ... 183



CONTENTS

4.5 Low temperature supergravity and matrix models . . . . .. ... 185
IV Spin networks, polyhedra and matrix models 195
5 Polyhedra and Matrix models? 197

5.1 Quantum Polyhedra and spin networks . . . . . . ... ... 198

5.1.1 Coarse-grained spin network . . . . . . . . ... ... 199
5.1.2 Realizing U(N) on thesurface . . . . .. ... ... ... ........ 202
5.2 Fuzzy spheres and matrix models . . . . . . . .. ... L. 205
5.2.1 Mini bosonic BMN model . . . . . . . ... ... ... 206

5.3 Are the models connected by any means? . . . . . .. ... 209
V Epilegomena 213
6 Synopsis 215
VI Appendices 219
A The potential barrier in the BMN model 221
B Effects of the BMN geometry on a D0O-brane and a D2-brane 223

B.1 A DO-brane feels only the trivial vacua . . . . . . .. .. .. ... ... 223

B.2 A D2-brane feels the SU(2) vacua . . . . . .. . ... o 224
C Microcanonical and grandcanonical statistics 229
D The Schwarzschild black hole in 11 dimensions 233
List of figures 235
Acknowledgments 247
Translations of epigraphs 249

xi



CONTENTS

xii



Part 1

Prolegomena

xiii






Introduction and motivation

Apyy cogplac e ayvolog 1
YVOOL

Socrates

The unification of all forces of nature has haunted theoretical physicists since the birth of
the celebrated standard model which unifies electrodynamics, the weak and strong interactions
of the nuclei of fundamental particles. Even though this unified theory describes particle
physics very well, it certainly cannot describe gravitational systems. Even before that,
Einstein, the father of the current gravitational theory, spent a big part of his life trying to
unify all physics. The same theory instructs us that one should not consider gravity as a force,
since Einstein’s equation makes clear that one can think of matter entirely as a geometrical
entity. In a very precise way, gravity is equivalent to geometry in this theory and it does not
seem to combine very well with the above particle theories. The underlying characteristic
of the so-called standard model unifying the forces above is their quantum nature. This is
not so unexpected, since the (known) particles contained in nature are different modes of the
fields which subject to quantum mechanical laws in their fundamental nature. Therefore,
if someone insists on the unification idea one should better describe gravity as a quantum
theory, namely a theory of quantum gravity.

Interestingly, the quantum nature of gravity is treated on equal footing by communities
that do not believe in a unified theory, but rather try to understand in a mathematically
rigorous way quantum aspects of gravity in Planck scales. At these scales where, speaking
in geometrical terms, the curvature is very large, we expect that the gravitational theory
will be dominated by quantum effects. This indeed instructs us to treat spacetime as a
quantum geometry at these scales, leading to a physical marriage of the two pillars of nature.
Independent of the approach, the study of the behaviour of gravity in micro scales as well
as its interaction with other theories which contain matter is one of the most interesting
problems in the branch of theoretical physics.

Quantum gravity has one very important characteristic that makes it unique, it has to



be non-local. This is in stark contrast to what most physicists are used to because the most
successful theory that describes nature at the quantum level is the quantum field theory
(QFT) which is certainly local. However, taking a skeptical point of view, it is not entirely
clear whether the latter theory is a fundamental aspect of nature or just an analytic tool that
is carefully constructed to describe nature. Nevertheless, tool or not, the important point
is that indeed one can perform analytic calculations in a local theory and compare with the
experimental data with an outstanding accuracy [1].

On the other hand, for a theory of quantum gravity, we do not have concrete experiments,
at least not in the usual sense. Instead, we have every theoretical physicist’s favourite
experiment, the so-called Gedanken (thought) experiments. Such an experiment reveals the
non-local nature of a theory of quantum gravity when one takes into account the holographic
principle [2,3]. Before performing this Gedankenexperiment, let us point out that after the
work of Hawking [4,5] a temperature was assigned to the event horizon of the black hole
and later the four laws for black hole mechanics were constructed [6] per the four laws of
thermodynamics. Having a temperature, the black hole should also have energy as well as
entropy. The interpretation of the entropy as information initially appeared even before the
work of Hawking in [7], where Bekenstein conjectured a natural bound which claims that a
black hole stores information according to one bit per Planck area patch (f%) on the black
hole event horizon. This is the minimal, physically allowed bound mainly for two reasons:
first of all, we do not have length scales smaller than Planks’ length, and secondly, we do
not know what is happening inside the event horizon. Since the inside of a black hole cannot
communicate with the region outside, a compromise has to be made in order to access the
information of a black hole. The compromise is to put all the black hole information on the
surface of the horizon respecting Bekenstein’s bound in such a way that an outside observer
could potentially access it. In other words, if someone would throw this thesis into the black
hole then the information contained in this thesis would probably remain on the black hole
event horizon but it would be inaccessible for an external observer since one would see that
the information contained in the thesis would be lost because the ”information” emitted
from the black hole as radiation would depend only on the mass, the angular momentum
and the charge of the black hole due to the no-hair theorem. Let us pause this discussion
here because it leads to the black hole information paradox and will just make the situation
more complicated. At the same time, the event horizon has the right characteristics to store
information (as entropy) since every time we throw something into the black hole, its horizon
increases [8]. The entropy of the black hole scales as
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In theoretical physics, it is quite common to put all constants, such as the speed of light (c),
the gravitational constant (G), h, and the Boltzmann constant (kp) to unity. A is the area
of the black hole horizon, which indicates that the information we can store in a black hole,
scales like the area in accordance with Bekenstein’s bound.

Let us now switch to a QFT description in flat spacetime and perform the Gedankenexperi-
ment. Let us consider an imaginary cube that encloses a region of space and let us suppose
that we want to store information in this region. To this end, we may discretise the cube in a
three-dimensional lattice using minimal discretization length, namely the Planck length, and
consider N cites where we can place one degree of freedom per site by Bekenstein’s bound.



Then, it should be clear that the information we can put into this three-dimensional cube,
expressed as the entropy, should scale as

NS
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or, in other words, should scale like the volume of this cube V. Therefore, we see that a
local QFT theory predicts storage information scaling like the volume, while a gravitational
theory considers a scaling of the entropy like the horizon area surface. Note that at constant
time slices, both the black hole and the cube are indeed three-dimensional objects. Hence, a
quantum theory of gravity should have a non-local profile.

Every approach to quantum gravity tries to reproduce this interesting black hole behaviour
from a statistical point of view. Recalling that thermodynamics is actually the large number
of degrees of freedom of a statistical system, one can revert the logic and try to find what
the microstates of the black hole are [9-44].

This interesting behaviour led to the proposal of the so-called holographic principle [2]
where a lower-dimensional surface (actually a co-dimension 2 surface such as the black hole
horizon) stores information for higher-dimensional objects. Let us not forget, after all, that
in a four-dimensional spacetime the black hole remains to be three-dimensional (at constant
time slices) and hence the information for this three-dimensional black hole is entirely given
by a two-dimensional surface, its horizon. The actual term, holography, emanates from the
more familiar situation of real-world holograms.

The first concrete example of such holography is proposed in [45] in the context of string
theory, where a d-dimensional gauge theory is conjectured to be equivalent to a (d + 1)-
gravitational theory. Both the field theory and the gravity theory in this example were
specific, but later this was generalised to the celebrated gauge/gravity duality [46-50].

One of the most important ingredients of the duality is a large number of degrees of
freedom N since in this case, the gravity theory becomes classical, in particular a supergravity
theory. Another valuable ingredient is the kind of Dp-branes that appear. These, after
the second superstring revolution, became genuine contents of a superstring theory and are
objects extending in p spatial dimensions of the superstring’s ten-dimensional spacetime.
They are dynamical, non-perturbative objects in their nature and host the endpoints of the
string [51,52].

The original example of such a duality [45] considers p = 3. At this specific value,
the gauge theory defined on the worldvolume of N coincident D3-branes becomes a four-
dimensional conformal field theory (C'F'T}) since the 't Hooft coupling becomes dimensionless.
On the other side, the gravitational theory lives in a hyperbolic, five-dimensional spacetime
and has negative curvature, namely, it is a five-dimensional anti-de-Sitter spacetime (AdSs5).

This dissertation, considers exclusively the case p = 0 that corresponds to zero-dimensional
D-branes whose dynamics create a worldline. In this particular case, there is not a CF1T1,
since the 't Hooft coupling becomes dimensionful. Instead, we have a one-dimensional
quantum mechanical matrix model having a U(N) gauge symmetry. The rank of this group
gives the number of degrees of freedom which is also the size of the matrices appearing in
the matrix model. Hence it is not necessary to look for an AdSy spacetime. On the other
hand, the gravitational dual of this one-dimensional quantum mechanical matrix model is
a black zero-brane geometry. This geometry lives in the ten-dimensional spacetime of the
type IIA supergravity and, in addition, is asymptotically flat. The number of DO-branes
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gives the degrees of freedom in the gravitational theory such that /N has a dual description.
Interestingly, a one-dimensional matrix model living on a worldline is the gauge dual of a ten-
dimensional gravitational theory in the large N limit. This unconventional holography defines
the matrix holography, or more rarely the worldline holography for such one-dimensional
quantum mechanical systems.

The authors of [53] pushed the duality a step forward and they claimed that this one-
dimensional matrix model can describe the contents of M-theory! This might not be so
surprising if one already knows that the latter theory is the underlying theory that connects
all five superstring theories [54]. However, this connection is a bit more subtle than the
conventional holography. Specifically, as we will see the type ITA superstring theory (and
supergravity) is defined as M-theory compactified on a spatial dimension. The idea of [53]
was to perform a boost along this spatial circle and uplift the ten-dimensional contents on
the eleven-dimensional spacetime where M-theory lives. This boosting procedure corresponds
essentially to the large N limit of the theory as we shall see when we will discuss precisely
this problem. At the same time, this procedure is still subtle because having a black hole
in eleven dimensions and boosting along one spatial dimension raises the question of what
happens to the black hole under the boost. If Lorentz contracts, such as normal objects
do, this would lead to a violation of the second law of thermodynamics because its horizon
would contract and be assigned to entropy then the entropy would decrease! Fortunately,
black holes do not Lorentz contract under a boost. On the other hand, examining the boost
carefully, one is led to the interesting question of what happens to the Bekenstein bound if
the boosting procedure corresponds to the large N limit. The degrees of freedom increase
but the black hole cannot accommodate them without violating Bekenstein’s bound. This
leads to the notion of strong holography which in the case of matrix models states that black
holes should expand under a boost [37].

The matrix character of the one dimensional model makes analytic gauge theory calcula-
tions intractable. On the other hand, one can employ numerical results in the gauge theory
and compare with the gravitational calculations which in the large N limit are tractable.
Keeping A = g%, uV finite, the large N limit corresponds to a classical gravitational theory,
namely a supergravity because this limit corresponds also to the planar limit of superstring
theory (surfaces of genus zero). Quantum corrections, or effects characterizing a theory of
quantum gravity, are considered for finite N. That is because 1/N® corrections correspond
to g% expansions which are corrections in a-loops of a supergravity theory. In matrix models,
this situation is depicted from keeping finite the size of the matrices. At the same time, finite
N calculations for supergravity corrections become intractable so one always has to make a
compromise between them.

The best possible compromise at this current level is to use simulations for the matrix
model while taking the large N limit and comparing it with supergravity. In this way,
the gauge/gravity duality could be put in more precise and concrete tests and potentially
be verified or falsified. The non-perturbative nature of D-branes allows also for a non-
perturbative cross check for the already developed perturbative intuition for the gauge/gravity
duality. Upon careful treatment, one can exploit this powerful tool and examine various
interesting phenomena, both in the gauge theory and the gravity side such as the confinement/
deconfinement transition, black hole physics, Hawking radiation, topology changes, and the
behaviour of the systems in specific parameter limits.



In particular, in the forthcoming chapters, we shall see that these matrix models can be
used beyond the scope of string theory. Indeed, they can be generalised to a spacetime having
an arbitrary dimensionality and describe (gauge) theories consisting of partons. Whether
these gauge theories have a gravitational dual is not known, but we examine an interesting
comparison at first level. Leaving the arbitrary spacetime dimensionality and moving to the
ten-dimensional setting, we study a more concrete gauge/gravity example. In particular,
a one-dimensional matrix model is dual to ten-dimensional supergravity. In this particular
project, we show that the large N limit of the matrix model indeed follows the predicted
gravity behaviour, while finite IV corrections corresponding to quantum effects show a small
discrepancy. One of the most exciting characteristics of this project is the fact that a
parameter region not accessible in the past was examined using the D0-matrix models upon
careful treatment. Specifically, we studied a theory considered to be out of reach until now
with the current resources available. In other words, we have promising indications that
we just entered the M-theory region by an interesting topology change of the gravitational
system.

Another interesting direction was to push this duality in a parameter region where
the temperatures are small. Even though this project is currently under examination and
construction we have strong hints that the supergravity results are reproduced by matrix
model numerics while a precision test requires more resources. The significance of this
project is that going to smaller temperatures, o/ corrections of string theory become negligible
because the gravity theory is dominated by classical non-stringy supergravity and analytic
results are available. At the same parameter region, we can study better the above transition
between string theory and M-theory.

In the same parameter region, we can test equally appealing phenomena. In particular,
the gauge constraint responsible for the gauge/gravity correspondence is examined according
to a recent conjecture which states that it is not that important for the duality at low
temperatures. We tested this for our matrix models and indeed we can verify that the
partition functions of the gauged and ungauged models are exponentially close to each other
at small temperatures. Apart from the genuine physical motivation, one further interest goes
to the development of the quantum computer, where physical models which do not have a
gauge symmetry are easier to realise and thus simulate.

A last and equally interesting topic discussed is a possible connection between matrix
models with a different branch of quantum gravity physics emanating from loop quantum
gravity. The underlying structure appearing in these two models is the fuzzy sphere. The
latter is related to polyhedra in the language of coarse-grained spin networks of loop quantum
gravity. Based on work built in this direction we discuss possible uses of matrix models to
relate and eventually study those specific spin networks by using matrix models from string
theory.

The non-perturbative, matrix character of these models allows a deep, not accesible in
the past, examination of physical systems where all the relevant information is contained in
these N x N matrices. In the large N limit we probe classical physics which is the analogue
of the thermodynamic limit, while, on the other hand, finite N corrections correspond to
the quantum character of the system. In this dissertation, we use these DO-matrix models
to describe different physical systems, and via the gauge/gravity correspondence we study
classical and quantum gravity.
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Introduction to string theory and
matrix models






String theory
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This chapter is aiming for a brief introduction to string theory [55-62]. Being such a
vast topic, string theory cannot be deeply understood by any brief introduction, instead, we
are going to provide as much intuition and details, as we think, are sufficient to follow the
explanations and the importance of the main ideas we are going to present later on. As an
introduction, it cannot be considered by any means a complete description of the topic and
we advise the interested reader to consult the standard references above. We shall begin
very elementarily, keeping the fundamental ideas at the core of the discussion, and gradually
change gears towards the ingredients that are important for the contents of this thesis. But
before presenting the materials let us comment on some important historical remarks.

Let us begin by stating that even though string theory today is believed to be also a
theory of quantum gravity, the original idea had nothing to do with gravity. However, we
shall see how gravity appears from string theory. It was in quantum chromodynamics where
firstly, the usage of a string described strong interactions between quarks. The Veneziano
amplitude (describing the S-matrix) of strong interactions between fundamental particles,
was given a physical interpretation. The nuclear forces between them could be described as
one-dimensional strings! Later this concept, leaving the dimensionality of spacetime abstract,
was formulated in a different context and created string theory.

One peculiar thing about string theory is the need for extra dimensions. This is what
makes it so popular, so exciting and so controversial at the same time. But, in physics, we
know that we should not add extra structure if it is not needed. After general relativity,
the dimensions of spacetime were always considered to be four. However, as we will see
later, mathematical consistency required from Lorentz invariant of the theory forces extra
dimensions in our theory. In particular, demanding invariance under the Lorentz group of
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2.1. CONCEPTUAL ANALYSIS

the earliest bosonic string theory made the spacetime have 26 dimensions, while the later
fermionic supersymmetric string theory lowered them down to 10 spacetime dimensions.

It was only when the discovery of a mode of the string spectrum that was named the
graviton came into the game and made things even more fascinating. The graviton is
expected to be massless because the gravitational force has a very long range, and appears to
propagate at the speed of light. In addition, it must be a spin-2 boson because the source of
gravitation is the stress—energy tensor, a second-order tensor. Additionally, it can be shown
that any massless spin-2 field would give rise to a force indistinguishable from gravitation,
because a massless spin-2 field would couple to the stress—energy tensor in the same way
that gravitational interactions do, so if a massless spin-2 boson particle is to be discovered
it has to be a graviton [55,61]. People started believing that string theory could unify all
the fundamental interactions since gravity' also appeared quite naturally. After that, many
researchers started working on string theory leading to several discoveries.

The first superstring revolution, began in 1984 when this scientific community realized
that string theory could describe all elementary particles and interactions between each other.
Intense research leads to five different string theories one year later: type I, two types II
(ITA and IIB), and two heterotic (SO(32) and Eg x Eg). The second superstring revolution
consisted of one extra dimension and some interesting objects appearing in the theories.
In particular, after the work of [54] the community realised that the above types of string
theories could be imagined as different limits of one more fundamental theory living in eleven
dimensions though! This new theory comes with a new name and some new objects. It was
baptised as M-theory, with M being undetermined while the most worthy meaning was M for
mysterious because we do not know (up to now) what exactly this theory is. We would like
to motivate, later on, that the name changed M for matriz as we will see in Sec. 3.2.1 and
Sec. 4.3. Moreover, the second revolution introduces some new objects, called D-branes [63,64]
where the endpoints of the (open) string can live. These objects were obtained as solutions
to the low energy limit of ten-dimensional supergravity and they seem to provide a non-
perturbative study of string theory [65]. However, there is no complete understanding of
what they are and how to think about them. Let us also notice that M-theory is not a string
theory since it does not contain strings, but the fundamental objects are the supergraviton,
the membrane, and the five-brane. For a more precise analysis we shall refer to Sec. 2.7.

2.1 Conceptual analysis

2.1.1 World-volume and spacetime descriptions

Let us consider a spatially extended classical and p-dimensional object (relativistic or not) -
a p-brane which propagates in a spacetime M with coordinates z# = (¢, z%). Such an object
however is not rigid but it can change by bending, wiggling such that it has it’s own dynamics.

A p-brane can be fundamental or not. There are two aspects in which a brane can be
fundamental or not:

e the brane is an assembly of lower-dimensional branes bound together by some force

Here by gravity we mean the hypothetical carrier of the gravity force, the graviton, and we shall give a
more precise meaning later on.

10



2.1. CONCEPTUAL ANALYSIS

o the fact that it appears to be p-dimensional can be an approximation by forgetting about
some dimensions if those are not observable (In the same spirit, a two-dimensional brane
on a flatland could be a projection of a three-dimensional object of a three-dimensional
world. Thus, species living in the flatland and being able to only observe two-dimensions
would never detect the extra dimension and the true nature of the three-dimensional
brane)

On the other hand, a fundamental object cannot be decomposed in terms of lower-dimensional
elements nor can any structure be found in it. However, a brane can split into several
other objects. Moreover, fundamental objects of the same type are indistinguishable (at the
quantum level) by definition: they can be in different quantum states but their nature is
identical. This can be summarised as:

Some ontological aspects

The string and the particle are different in their existential aspects. A fundamental
particle is ontologically one and cannot be divided: it can decay in several other
particles but the latter cannot be seen as being part of the first one. Simply imagine
decays of particles. This is because for an observer there is a clear notion of a particle,
defined as the intersection between its equal-time surfaces and the worldline of the
particle. This is not the case for the string: any set of strings that have interacted
together do not have an independent existence, and only the full world-sheet has an
ontological property.

This is related to the non-locality of the string interactions, implying that the two
observers cannot agree on the question ”when does the string cease to exist?” A more
intuitive picture is that a string can be cut into pieces, and these pieces do not acquire
some new property making them ”different” than the initial one. Nonetheless one
cannot say that the original string is made out of pieces with some glue tying them
together since it can be separated at any point (due to the non-locality), and the above
reasoning would imply that the string is not fundamental.

For example, one can imagine that a O-brane is a point, and thus any particle falls in this
category. A 1-brane is all kinds of strings, a 2-brane is any kind of surface, etc. A violin string
is not fundamental because it is made out of many atoms which are made out of fundamental
particles (0-branes). This is (one) of the differences between a string of string theory and a
string of a string theory.

2.1.2 Dynamical classical variables

The history of a p-brane” is called the world-volume W and it is parameterized in terms
of coordinates 0%(a = 0,---,p). The dynamics can be described in two different fashions,
depending on the variables chosen and the way they relate the object to the spacetime:

e Worldvolume (or o-model) approach: the spacetime position of the object X*(c%)
given as functions of the worldvolume coordinates are the dynamical variables. They

2History requires a time of course, and here we mean the time evolution of the p-brane and its spatial
locations.
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2.1. CONCEPTUAL ANALYSIS

are mapped describing the embedding of the p-brane worldvolume in spacetime (they
can be viewed as a field on the worldvolume)

e Spacetime (or field) approach: the object position is encoded in a field ¥[X*#(shape)]
which is a function(al) of the object spacetime coordinates (giving a p-dimensional
shape). The simplest instance being the density field.

At the conceptual level, both descriptions are fully equivalent, but they differ as computational
tools since some calculations (if at all possible) are simpler in one of them. Of course, there
are advantages and disadvantages that we will address later on. This means that we will
briefly review both of them.

Other descriptions do not rely at all on a Lagrangian such as the conformal bootstrap
and scattering amplitude programs. However, we will not review these here

The goal of an action is to describe the dynamics of a system by making extremal one
of its properties. Given a geometric object, it is natural to consider its shape, hence the
simplest action for a brane is the worldvolume

S = —T/ dVol, (2.1)
w

where T is the tension of the brane and gives the correct units to the RHS and W is the
worldvolume. Then, introducing the embedding maps X*(o), one can rewrite the above

action as

S=-T / dPt o/~ det h, (2.2)

where h is the induced metric on the brane

oOXHoXY
hap = muﬁm, (2.3)
from the spacetime Minkowski metric 7, with signature (—1,1,---,1). Introducing an

independent metric g,5(0) on the worldvolume, one can rewrite the above action as

T —1
§=-5 derla\/TetgntabaaX“@bX”—i—p?T PHoy/“detg,  (24)

where the classical equations of motion yield a proportionality between gq;, and hgp

The above action is problematic for p > 1 because it describes too many degrees of
freedom. The worldvolume itself should not have intrinsic dynamics, which corresponds
to g having no degrees of freedom. To get rid of them, one can only impose
diffeomorphisms and possibly Weyl invariance (local rescalings of the metric). This
gives in total p + 2 constraints for an object which has W degrees of freedom.
The worldvolume metric can be fixed only for p = 0 (with diffeomorphisms) and p = 1
(with diffeomorphisms and Weyl invariance). That the string p = 1 has Weyl invariance

it is a special case since for a generic p-brane we have

V=hh® - Q" V/=hh®. (2.5)

12



2.1. CONCEPTUAL ANALYSIS

In the worldvolume description, nothing should depend on the parameterization of the
surface: the worldvolume coordinates ¢ are merely internal labels that indicate how to read
off the corresponding spacetime position from the dynamical variable (the same applies to
the maps X#(0®) or the metric g,5(0) which are just tools to describe a physical object).
This leads to the existence of a gauge symmetry that can be fixed, for example by equating
some of the parameters with some spacetime coordinates. In particular, it is natural to set
the proper-time 7 = 0¥ equal to the time 7 = ¢t when there is a foliation of the spacetime
in spatial slices. We also note that the gauge symmetry for a relativistic system leads to
constraints among the canonical momenta, which in turn implies that the (worldvolume)

energy-momentum tensor vanishes, including the Hamiltonian
Hyy =0. (2.6)

These constraints are equivalent to the on-shell condition for the brane: as a consequence, the
tools available in QFT (renormalization, analyticity, etc) which rely on an off-shell formulation
and which ensure the consistency of the theory (gauge invariance, divergences, unitarity,
causality) are not available in the worldsheet formulation.

The spacetime action is found by introducing some fields given by the functional ¥[X*(shape)]?
and the free action is quadratic in the fields

S = /dX“(shape)\IfK‘lf, (2.7)
with K being an adapted kinetic operator. For the example of a particle, one has K = 9%+m?.

2.1.3 Some quantum aspects

Depending on the framework one is working on, the canonical quantization, which replaces
the dynamical variables by operators, leads to different descriptions:

e First-quantization (worldvolume): the spacetime positions of each object become operators
X*"(o) (in the Schrédinger picture). The evolution is given in terms of a (one-brane)
wave-function ,[X*(0), 7| satisfying the Schrédinger equation with time 7 and p
denoting collectively eigenvalues. Multi-brane states are found by solving the Schrodinger
equation for the (anti-)symmetrized tensor product of one-brane wave functions.

e Second-quantization (spacetime): the field is promoted to an operator \i/[X H(shape)]
which can be decomposed in terms of annihilation and creation operators a, and d;@
with first-quantized wave functions as coefficients

U[XH(shape)] = 3 (&pz/)p[X“(shape)] + a;¢p[X#(shape)]*) . (2.8)

These operators build the Fock space (multi-brane states) by acting on the vacuum |0)
which is the no-brane state.

The second quantization can also be viewed (for a single-brane system) as reinterpreting
the first-quantized wave function as a classical spacetime field, which is then quantized (the

proper-time dependence is absent due to the gauge symmetry).

3Tt is a functional since the position depends on the shape of the object.
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2.1. CONCEPTUAL ANALYSIS

Even if multi-brane systems can be considered in the first quantization, the resulting
description is much more complicated than with a field. For example, if the wave-function
of one brane has K degrees of freedom (and generically is K = oo, due to the spacetime
dependence), then an N-brane wave-function would have K~ components. On the other
hand, a field always has K components.

2.1.4 Interactions

Also, the interactions of strings are handled differently in the two formalisms:

e In the worldvolume picture amplitudes are computed by a path integral, which is
weighted by the free action of one brane, with a sum over all possible processes

(01 Op) ~ Y AFM=SMV, (2.9)
w

The sum is over all worldvolumes W with the external states as to boundary conditions.
The interaction vertices with the corresponding coupling constant \ are added by hand
and determine all possible topologies. Note that for simplicity we have introduced only
one coupling constant, but in general, each vertex comes with its own coupling.

e In the spacetime picture the interaction between n fields is described by adding a
monomial of order n in the fields in the action

Sint = /dX“(shaupe)\Il”[X“(shanpe)]7 (2.10)

and then the scattering amplitudes are built from the Feynman graphs, which are
themselves uniquely fixed by the action

(O1---0,) ~ /dXN(Shape)e_sfree[‘lj]_sint[‘lj]Ol O, (2.11)

Typically the scattering amplitudes diverge and as always there are UV and IR divergences.
The former originate from the high-energy region in loop diagrams, and they are removed
by renormalizing with counterterms. The latter arise when an internal particle is forced to
be on-shell, either as a part of a massless particle tadpole of a propagator on an external
leg or of an internal propagator. Physically they correspond to quantum effects which shift
the vacuum and the masses. Both problems are cured by renormalizing. In addition to
these physical divergences, there are also non-physical ones coming from the fact of a bad
parameterization of the amplitudes.

Renormalization is an intrinsically off-shell procedure and thus it can be employed only
with difficulties in the worldvolume formalism. Moreover, since the masses of the states
are shifted due to quantum effects, only (quantum) amplitudes for protected states can be
computed. We note that a protected state is a state whose mass is not renormalized due to
some symmetry (gauge, supersymmetry, etc) or because of representation symmetry.

Comparison of two formalisms

This brings us to a brief comparison between the two formalisms. In particular, we will just
state the disadvantages of the worldvolume formalism over the field theory.

14



2.1. CONCEPTUAL ANALYSIS

Firstly, the worldvolume approach cannot describe interactions since the path integral is
weighted with the action of a single brane, and its Hilbert space does not include multi-brane
states. The arbitrariness in the worldvolume approach complicates highly the models when
several particles can interact in many different ways. Also, the worldvolume formulation is
perturbative since the sum over the topologies is perturbative. On the other hand, a field
theory can probe non-perturbative features of the system since the partition function is not
given as a series in the coupling constant.

The rest of the disadvantages have been implicitly or explicitly stated before, but we
collect them in the following list:

Caveats of the worldvolume formalism

e No natural description of multi-particle states
e On-shell states

Lack of renormalization

Infrared divergences

Hard to check consistency (unitarity, causality, etc)

Scattering amplitudes only for protected states

Absence of non-perturbative processes

Some of these problems can be avoided with some prescriptions - or even in some cases
they turn out to have some positive outcomes (such case is when scattering amplitudes in the
worldvolume formalism can be computed with CFT methods)- but ultimately we should have
a unified and systematic prescription, which is to be found in the field theory description.

Vocabulary of strings

In this subsection, we shall give some properties of the strings that we will use throughout
the whole chapter. Thus we will collect the most obvious properties here.

String tension

If we consider a static non-relativistic string, then to describe it we need three parameters.
The mass per unit of length p, the tension T" and the rest length lg. If one wishes to stretch
the string to a length [, its potential energy is given by V' = T'(I —lg)?/2 and the mass-energy
ploc?. The minimal energy is for I = Io.
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2.1. CONCEPTUAL ANALYSIS

The tension is independent of the parameters. To see this, we consider a spring with
stiffness k1. Then the force we have to give to the spring to modify its length by Al is
given as F' = kAl by Hookes’ law. Next, we replace the original spring with two springs
of half the size of the first one but made from the same material. Applying the same
force, the total change of the length is still Al and it splits equally between the two
springs, so Aly = %. The force that applies on the two springs is F' = kyAls, yielding
ko = 2k1. From this, we see that the stiffness is inversely proportional to the length.
Now, if we consider a string to be a series of many such springs, upon integration one
obtains the tension as this coefficient of proportionality. Then it is understood that

tension is energy per unit length or in other words it is a force.

Next, we consider a relativistic string with tension 1" defined in the rest frame and attach it
such that its length is . Then its energy is given as £ = Tl and is equal to the potential energy
due to the stretching. From special relativity we know that the energy is the sum of the rest
mass and the potential energy, implying that the string is massless. However, we can associate
an effective mass (per unit length) due to the tension through puc? = E/I = T. Hence, in
contrast to the non-relativistic case, mass and tension are not independent parameters.

Taking into account quantum effects, the string cannot shrink without limit due to the
uncertainty relation

h
R (2.12)

since doing so would require infinite momentum. To find the natural string length, we do the
following. We consider the center of the mass to have momentum p which can be related to

energy as

E 21 Tl
pzi:m - (2.13)
C C C

since the center of the mass behaves like a massless particle with p* = (E,—E/c). Then
taking the equality in the uncertainty relation yields

I~y 2 (2.14)

The string length is defined with an additional factor? of 7

hc e hc

by =\ —==>T = .
s 27T 27l

(2.15)
Note that this is the only length one can create on the dimensional ground using just the
tension and the fundamental constants. Since it arises from a quantum argument one may
expect it to be close to the Planck length.

This means that any string which is not attached to something will spontaneously shrink.
In particular, closed strings cannot be attached to anything and will tend to be very tiny,
of the order of I, and thus just a few orders of magnitude above the Planck length. Note

4The precise relation between the energy and the tension depends on the details of the system. For example
a rotating string has £ = $ T, so the precise factor defining /; is a matter of convention. Moreover the length
is often parametrized to range from 0 to 27: since the action is proportional to T, it is convenient to rewrite
them in terms of 2 such that the spatial integral is normalized by 2.
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2.1. CONCEPTUAL ANALYSIS

that the size of the string depends on its energy, and thus on its momentum and vibrational
mode.

At the classical level, the lowest energy of string is obtained when the string shrinks
to a point. But one can consider classical configurations where the string is of finite
length even if it is not attached to anything. This is explained by the conservation of
energy: the length of the string is fixed as an initial condition and the energy cannot
change because one considers an isolated free string.

The last parameter to be introduced is the Regge slop o/, defined by the relation

J
Z =dE? (2.16)
h
where J is the angular momentum. Considering a rotating string gives the relation
1
T=—— ls = heval. 2.17
orheal 0T Y (2.17)

Finally, it makes sense to speak about the string tension or the string length because one
considers only one type of string. In fact, there will be two types of strings, closed and open,
but unitarity requires them to have the same elementary properties, only their shapes differ.

Spectrum

Let us give some intuition about the states described by a closed string. One can start by
choosing the gauge g4, = 74p and after imposing the equations of motion, write the Fourier
expansion of the fields X* as

] 1 _ _
Xt(r,0) ~ 2t + pir + % > = (ahe™) fafieminrE)), (2.18)
n
Z*

where z# is the center-of-mass of the string and p* its momentum, satisfying the usual
commutation relation

[z, p¥] = in™. (2.19)
This differs from the expansion for a point-particle due to the third term. The later introduces
an infinite number of oscillators o4, and @}, which satisfy canonical commutation relations for
creation (n < 0) and annihilation operators (n > 0)

o, af] = 1" Siti0- (2.20)

For the case of opens strings, we just have to set a,, = &,. The Hamiltonian for the closed
and open strings is respectively

m? -
HClOSBd = —7 + N + N - 2 (221)
Hopen = —m* + N — 1, (2.22)
where m? = —pt'p, is the mass of the state in Planck units, N and N count the numbers N,
and N, of oscillators o, and &, weighted by their mode index n
1
N = - Z nN,, N,=a_," an, (2.23)
neN
1 _ _
N=- > nN,, Ny=a_,-an. (2.24)
neN
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Knowing these, one can construct the Hilbert space of the string theory. Recalling that
invariance under reparametrization implies that the Hamiltonian vanishes, translates to

H ) =0, (2.25)

for any physical state. Another constraint for the closed string is the so-called level matching
condition

(N —N)Jp) =0. (2.26)

The ground state |p) with momentum p is defined to be the eigenstate of momentum operator
which does not contain any oscillator

Vn > 0:ak|p) =0. (2.27)

Then it is understood that one can built an arbitrary excited state by applying successively
creation operators

d
) =TT TT (o)™ Ip) . (2.28)

n>0 u=0

where N, , € N counts how many times the oscillator o, appears. For the moment we will
focus on the first two levels of states.

The ground state is a tachyon because the Hamiltonian constraint shows that it has
negative mass

closed : m? = —4, (2.29)
open : m? = —1. (2.30)

The first excited state of the open string is found by applying a1
o’y |p), (2.31)

one finds that it is massless and since it transforms as a Lorentz vector (spin 1), it is identified
with a U(1) gauge boson. In fact, one can write a superposition of such states as

A) = / P pA,(p)o" ), (2.32)

and the coefficient A, (p) of the Fourier expansion is interpreted as the spacetime field for the
gauge boson. Reparametrization invariance is equivalent to the equation of motion

p*A, = 0. (2.33)
Furthermore, one can prove that the field obeys the Lorentz gauge condition
pl'A, =0, (2.34)
which results from gauge fixing the U(1) gauge invariance
Ay — Ay +puA. (2.35)

It is interesting also (and can be checked) that the low energy action reproduces the Maxwell

action.
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The first level of a closed string is obtained by applying both o ; and a"; (which is the
only way to match N and N at this level)

aﬁldil D) » (2.36)

and the corresponding states are massless as well. Furthermore, these states can be decomposed
into irreducible representations of the Lorentz group

1
(Oé'lil@zl + Oélilc_vlil - 577“”04—1 : d—l) ’p> )

_ _ 1 _
(0¥ —a”a)) |p), Bnﬂya‘_‘lail Ip) .

These are respectively associated to the spacetime fields G, (metric, spin 2), B, (Kalb-
Ramond 2-form, spin 1) and ® (dilaton, spin 0). The appearance of a massless spin 2 particle
is a key result that raised interest in string theory. This is because the low energy action of
this particle is the Einstein-Hilbert action.

Reparametrization invariance leads to other constraints than H = 0. In particular,
it implies that the massless fields have the correct gauge invariance and hence the
correct degrees of freedom. Note that, after taking into account these constraints, the
remaining modes correspond to excitations of the string in the directions transverse to
it.

Each vibrational mode (harmonic) of the string corresponds to a spacetime field for a
point-particle. Linear superpositions of these modes can describe several fields. Thus, this is
how string theory is supposed to unify different theories since each field of every theory can
be expressed as a superposition of the excitation of the modes of a single string. The spin
and other properties of the particles are provided by the internal structure of the string and
in particular its vibrational mode.

One disadvantage of the bosonic string theory is the fact that the spectrum contains
tachyons. While the interpretation for open strings is the fact that they tend to form closed
strings and stabilize the situation for closed strings is more subtle. In a sense, it indicates that
spacetime itself is unstable and tends to decay! Since our lack of understanding is manifest,
we remove the problem by introducing supersymmetry, and then the spectrum does not
contain any tachyon and the dimension of the spacetime is lowered to 10.

2.2 Main analysis

2.2.1 Worldsheet Theory

The string worldsheet is a Riemannian surface W = %,, of genus n; the genus counts the
number of holes or handles. The wordlsheet itself is the object on which all the string
theory information is encoded. Coordinates on this two-dimensional worldsheet are denoted
as 0% = (7,0). Whenever there is no risk of confusion, o will be used to denote collectively
both. Let us furthermore consider the case of closed strings (the treatment of open strings is
analogous) and hence the topology of the worldsheet will be a cylinder with a spatial direction
being a circle S of unit radius, such that

oc€l0,2n) , o~o+2m. (2.37)
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Then the string itself is embedded in arbitrary dimensional (D) spacetimes M with metric
G, via the embedding maps

X*o) ¢+ WM |, pu=0,---,D—1. (2.38)

These are the dynamical variables we saw at the beginning of the chapter in the section
on conceptual analysis. The Nambu-Goto action is the starting point of the worldsheet
description

XV
Sya[X*] = ﬁ / dZJ\/det GW(X)%%. (2.39)
Quantizing this action turns to be difficult because it is highly non-linear. One way out is to
introduce a Lagrange multiplier to remove the square root by introducing an auxiliary field
that corresponds to an intrinsic worldsheet metric g,;(0). Then the dynamical behaviour of
the worldsheet is described by the Polyakov action

oXH oX"¥

Dot Dot (2.40)

Sl X1 = s [ o5 Gu(X)
which classically is equivalent to the Nambu-Goto action. The embeddings X* characterize
the string theory under consideration in two ways: firstly their number gives the dimensionality
of spacetime in which the strings propagate. More generally, they describe properties of the
spacetime. Secondly, they describe the internal degrees of freedom of the string (i.e the
vibration modes which are constrained by the spacetime).

However, one can use more general matter to describe a different spacetime or different
degrees of freedom. For example in Polyakov’s formalism, the worldsheet geometry is equipped
with a metric gqu(0) together with a set of fields living on it. The scalar fields X#(o) can
be described by a general sigma model which encodes the embedding of the string in D
non-compact dimensions, and other fields can be added, for example, to describe compact
dimensions or spin. Thus, different sets of fields and actions correspond to different string
theories. Yet, to describe the other possibilities, one has to first understand the constraints
on the worldsheet theories and introduce conformal field theories.

One important topological invariant is the FEuler characteristic. This is computed by

integrating the Riemann curvature R of the metric g, over the surface 3,

1
X =2-2n= / d?o\/gR, (2.41)

47
with n being the genus of the surface. Note that oriented Riemann surfaces without boundaries
are completely classified topologically by x or equivalently n.

To describe a proper string theory the metric should not be dynamical: this corresponds
to the worldsheet not having intrinsic dynamics and that no supplementary degrees of freedom
are introduced when parametrizing the worldsheet with a metric. If any, a way to remove
these degrees of freedom is by introducing gauge symmetries with the number of the gauge
parameters to be equal to the number of degrees of freedom. Since the worldsheet theory is
effectively a QF T coupled to gravity, it makes sense to ask invariance under diffeomorphisms.
Physically this means that the choice of space parameter o and the time parameter 7 of the
worldsheet is arbitrary. However, this invariance is not sufficient to completely fix the metric.
Another natural candidate is Weyl invariance corresponding to local rescalings of the metric.
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Having a diffeomorphism ¢ € Diff(X,,) it acts on the fields as

o=’ g =¢gl0) , V(o) ="V (o), (2.42)

where * denotes the pullback by ¢, and by ¥ we denote collectively the matter fields. In
coordinate notation, the metric and the scalar fields transform precisely as
do¢ do?
G(0) = o ST gealo)  X(0) = XP (o) (2.43)
The index p here is redundant and not affected since from the worldsheet point of view it

just labels a collection of worldsheet scalar fields and it is thus a target spacetime index. The
infinitesimal analogues are generated by vector fields on ¥,

5£Ja =& (55\11 = ﬁg\If 5 (5§gab = ﬁfgaba (2'44)

with L¢ denoting the Lie derivative with respect to the vector field & € 2iff(2,) ~ T%,. The
Lie derivative of the metric is

’Cfgab = fcacgab + gacab§C + gbcaa§C = Va&p + Viéa- (2‘45)

The Lie algebra generates only transformations in the connected component Diffy(%;,) of the
diffeomorphism group which contains the identity. The rest of transformations not contained
in Diffy(X) are called large diffeomorphisms (e.g reflections). By taking the quotient of the
two groups, one obtains the modular group

Diff(3,
5, o D)

= D)’ (2.46)

which depends only on the genus of the Riemann surface and not on the metric. For g > 1
it is an infinite discrete group and in particular &, = SL(2,7Z).

On the other hand a Weyl transformation e?* € Weyl(%,,) corresponds to a local rescaling
of the metric and leaves the other fields unaffected

Jap(0) = ' Tgu(0) V(o) = ¥(o). (2.47)

This implicitly excludes fermionic fields which do not transform under a Weyl transformation.
In addition, the exponentiation is in direct analogy with the fact that e¥ and not w is an
element of the group. Infinitesimally one has

dwgab = 2Wgab , OV =0, (2.48)

where w € weyl(X) ~ F(3,) is a function on the manifold. Two metrics are said to be
conformally equivalent if they are related in this way. The conformal structure of Riemann

surface is defined by
Met(3,)
Conf(%,,) = —=n) 2.49
where Met(3,,) denotes the space of all metrics on 3,,.
Diffeomorphisms have two components £* while Weyl transformations just one w. It
is therefore sufficient to locally fix the three components of the metric (using a symmetric

matrix) and the total gauge group of the theory is the semi-direct product
G := Diff(%,,) x Weyl(3,). (2.50)
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Similarly, the component connected to the identity is
Go = Diffy(3,,) x Weyly(X,). (2.51)

The semi-direct character is because the Weyl parameter is not inert under diffeomorphisms.
This is shown by the combination of the two transformations

g =" (e*g) = 27 ¥y, (2.52)

since the diffeomorphism acts also on the conformal factor. Such combinations for the
transformations can be chosen to fix the metric in a convenient gauge. For example the
conformal gauge is

gan(0) = ¥ g (o), (2.53)

where gu is some fixed background metric and ¢(o) the conformal factor. Note that this is
also called Liouwille field, a field that plays an important role in two-dimensional quantum
gravity. Fixing only diffeomorphisms amounts to keep ¢ arbitrary, while this can be fixed
with a Weyl transformation. As an example, one can use the conformally flat gauge

Gab = dab > ¢ arbitrary (254)

with a diffeomorphism and then reach the flat gauge

Jab = dab , =0 (255)
with a Weyl transformation.

Active and passive transformations

Symmetries are usually described by active transformations, which means that the field
seems to change under transformations. At the same time, gauge fixing is seen as a
passive transformation where the field is expressed in terms of other fields (e.g different
parametrization). These are mathematically equivalent since both cases correspond to
inverse elements, and one can choose the most convenient representation.

Topology and gauge choices

While it is always possible to adopt the flat gauge (2.55) locally it is not always possible
to extend it globally. The sign of the curvature is given by 1 — n but the curvature
of the flat metric is zero, meaning that curvature must be localized somewhere on the
surface and this prevents from using just one coordinate patch.

All in all the system is described by an action S,,[g, 1] which has the following properties
e local in the fields

e renormalizable

e non-linear sigma models for a subset of the fields

e invariant under diffeomorphisms
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e invariant under Weyl transformations

The last two conditions are summarized as
Smle*g, 0" V] = Splg, U], Sm[e*g, U] = Sp[g, ¥]. (2.56)

The invariance under diffeomorphisms is straightforward to enforce by focusing only on
covariant objects. The non-linear sigma model condition means that there is a spacetime
interpretation for the string: the sigma model fields and the target manifold are respectively
the spacetime coordinates and the manifold. The isometries of the target manifold metric
become global symmetries of S,,.

To make the action consistent with the topology of the worldsheet, the fields must satisfy
appropriate boundary conditions. In the simplest case, the bosonic fields should be periodic

XH*(1,0) ~ XH (1,0 + 27). (2.57)
2D gravity (see also Sec. 3.1)

The ingredients in two-dimensional gravity are similar, except that the system has, in
general, no Weyl invariance. As a consequence, one component of the metric, which is
usually taken to be the Liouville mode remains unconstrained. In the conformal gauge
(2.53), only g is fixed.

The symmetries (2.56) imply that the matter is conformally invariant on flat space g5 =
dap- A conformal field theory (CFT) is characterized by a central charge ¢ (see Sec. 2.3) which
roughly measures the quantum degrees of freedom. In addition, is additive for decoupled
sectors and in particular, the scalar fields X* contribute as the spacetime dimension D and
it is useful to define a perpendicular CFT with central charge ¢, as matter which does not
describe the non-compact space:

c=D+cy. (2.58)

In general the energy-momentum tensor is defined via

_Ax 88
\/‘aégab'

The variation of the action under transformations (2.44) vanishes on-shell if the energy-

Ty = (2.59)

momentum tensor is conserved

VT, = 0. (2.60)

On the other hand, variation under (2.48) vanishes off-shell if the energy-momentum
tensor is traceless:
9Ty, = 0. (2.61)

The respective conserved charges generates worldsheet translations
P% .= / doT0. (2.62)

The first component is identified with the worldsheet Hamiltonian P° = H and generates
time translations while the second component generates spatial translations.
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Traceless and curvature

The trace of the energy-momentum tensor is proportional to the curvature
9Ty, x R. (2.63)

Then, the equations of motion are invariant since the integral of R is a topological
invariant. The theory is invariant even if the action is not. For example, this happens
for fields at the quantum level (Weyl anomaly) and in the Liouville theory.

2.2.2 Path integral

One among the different ways to quantize the system is by considering the path integral
which is achieved via the partition function

Z, = / dngar] 0 g ] = / (d, U]~ Smlo] (2.64)
Qgauge[n]

of fixed genus n. The integration over g, is performed over all metrics (geometries) of the
surface ¥,,! The factor Qgauge € Met(X,,) is a normalization inserted to make the integral
finite and it depends on the metric. Usually it is the volume of the gauge group of the theory.
That it depends on the metric explains (mathematically) why it is placed after the integral.
Its value is determined by requiring the cancellation of the infinities due to gauge parameters,
and of course, the latter is sensitive to the theory under consideration. This partition function
corresponds to n—loop expansion, similarly to the case of Feynman diagrams in the usual
quantum field theory, but here the expansion is over different topologies. This program is
considered in the case of calculation of amplitudes and it is something that we will not need
in this thesis and not explain further.

In order to proceed with gauge fixing and handle the path integral (2.64), one has to
define an integration measure over the fields. That the space is infinite-dimensional makes
the difficulty of the problem obvious, and one possibility is to define the measure implicitly
through Gaussian integration over the field tangent space. Because a Gaussian integration
involves a quadratic form, which is an inner product and equivalently a metric on the field
space. However, to reduce the freedom in the definition of the inner product it is insightful
to introduce three natural assumptions:

e Ultralocality: the measure is invariant under reparametrizations and defined point-wise,
which implies that it can depend on the fields but not on their derivatives

o Invariance: the measure for the matter transforms trivially under any symmetry of the
matter theory which is achieved by contracting indices with appropriate tensors

e Free-field: for fields other than the worldsheet metric and matter (e.g ghost fields,
Killing vectors, etc), the measure is the one of a free field.

Thus, the inner product is obtained by contracting worldsheet indices of the fields with a
tensor built only from the worldsheet metric, by contracting other indices (like the spacetime)
with some invariant tensor (like the spacetime metric) and integrating over the worldsheet.
We also wish to distinguish the matter fields from those appearing in the gauge fixing
procedure. The matter fields live in the representation of some group under which the
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inner product is invariant. In other words, it is not possible to define each field measure
independently if the exponential of the inner products does not factorize. For example in
a curved background one has [dX] # [],dX*. However, these data are not needed if we
already know that the matter is a CF'T, this suffices to gauge fix the theory. In this procedure,
different types of fields appear which do not carry indices beyond the worldsheet metric.
Therefore under the third condition ensuring free-field measures we define measures of those
single fields.

Let us consider the finite elements d®; and 0P, of tangent space at the point ® of the
state of fields. Then the inner product and the associated norm are written as

(0®1,0®s), = / d®0\/ghg (601,6®2) , |0®[7 = (69,59),, (2.65)

where hg is the metric on the 6® (tangent space). It is taken to be flat for all fields except for
the metric. In principle one requires that these inner-product are ultralocal in a sense that
h depends only on g, but not on its derivatives. Moreover the dependence of the flat metric
h on g reflects the diffeomorphism invariant of the inner product which in turn will lead
to a metric-dependent but nevertheless diffeomorphism invariant measure. The functional
measure is then normalised via a Gaussian integral

/ (d,60]e3020®, — 1 (2.66)

/deth,

This, will lead to a measure on the field space itself

/ (D] /det Ty (2.67)

on the tangent space. The determinant can be absorbed in the measure such that
/ [dy6D]e~20P0)g = 1. (2.68)

This normalization and the definition of the inner product is ambiguous, but the ultralocality
condition fixes uniquely [66]

Vdethy = e~ mSeldl -y, e R (2.69)

since S), is the only renormalizable covariant functional depending on the metric but not on
its derivative. The effect is to redefine the cosmological constant which is responsible for the
Weyl anomaly.

Weyl anomaly

The Weyl anomaly is equivalent to a non-zero trace of the quantum energy-momentum
tensor

C
wp oy =—R, 2.
(9" Tu) = SR (2.70)

where ¢ is the central charge and R the Ricci scalar. The Weyl anomaly
can be equivalent traded for a gravitational anomaly which translates to broken
diffeomorphisms at quantum level [67].
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Fadeed-Popov method

At first sight the integration over the space of metrics Met(X,) of all metrics ¥, at fixed
genus n leads to divergence of the functional integral since equivalent configurations

(0" 9,0" W) ~ (g, 0) , (e*g,0) ~ (g,0) (2.71)

contribute in the same way to the integral. Since this redundancy is infinite, the integral
diverges, and because the multiple counting is generated by the gauge group, the infinite
contribution corresponds to the volume of this gauge group.

The Fadeed-Popov procedure is a mechanism to extract this volume by separating the
integration over the gauge and physical degrees of freedom, schematically

d(fields) = Jacobian x d(gauge) x d(physical). (2.72)

The space of fields denoted by (g, V) is divided into equivalent classes and one integrates
over only one representative of each class, i.e over a gauge slice. This change of variables
introduces a Jacobian factor which can be represented by a partition function with ghost
fields, which are fields with negative norm.

Mathematically, the Faddeev-Popov procedure consists in identifying the orbits (class
of equivalent metrics) under the gauge group G and writing the integral in terms
of G-invariant objects (orbits instead of individual metrics). This can be done by
decomposing the tangent space into variations generated by G and its complement.
Then, one can define a foliation of the field space which equips it with a fiber bundle
structure: the base is the push forward of the complement and the fiber corresponds
to the gauge orbits. The integral is then defined by selecting a section of this bundle.

2.3 Conformal Field Theories

In this section, we explain some basic ideas about conformal field theories (CFT) that
we will refer later on. We do not need all the ingredients, nor will we perform strict
computations using its tools but its simplicity instructs us to mention a few words for
completeness. Conformal field theories are called the theories that are invariant under
conformal transformations. This is quite general, as it is the fact that conformal transformations
are called those that leave the angle between two vectors invariant. Since the aim of this thesis
does not involve conformal field theories much we will rather present the basic ideas while
details and more advanced topics will be omitted. Hence we will start with the conformal
analysis in arbitrary D dimensions and then we will conclude with the CFT on the string
worldsheet.

2.3.1 The conformal group in D dimensions

Let us start with an arbitrary D dimensional manifold M equipped with a metric g with
signature (p, q), such that p+ ¢ = D. In a components notation, a conformal transformation
is one that leaves the angle g, u*v” /vu?v? invariant. More precisely, the group of conformal
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transformations is the subgroup of coordinate transformations ¢ : M — M which leave the
metric invariant up to a (spacetime depended) scale factor, such that

b:g—g =09g:=Q9 , Qe&FM), (2.73)

where € is the scale factor and F(M) is the space of functions on M. One can write the
above transformation in components

g,uu(x) — g;,u/(x,) = Q(x)guu(:v)' (2'74)

Note that this rescaling of the metric should not be confused with the Weyl transformations
on the metric which do not act on the coordinates. In fact, conformal transformations are a
subgroup of diffeomorphisms.

One important point is that in conformal field theories it is the angles that matter and
not length scales since the latter are absent. In addition, the interpretation of (2.74) depends
on whether or not the metric is kept dynamical. When it is dynamical, the conformal
transformations are local and hence they are treated as a gauge symmetry. On the other
hand, when the metric is fixed, the transformation corresponds to a global symmetry and
one usually expects to have conserved currents associated with this.

Since in most CFT treatments the metric is flat we will also follow this recipe such
that g,, = 7., and therefore the manifold M will be identified with RP4. Recalling the
transformation law of the metric under a coordinate transformation

ot — 2™ = 2t (2), (2.75)
we have 00 D
xP Ox
G () — glw(x/) = ngpa(x)~ (2.76)

Comparing now with (2.74) and for the case of flat metric one gets

oxP 0x°

V@) = 5 75 5wl (2.77)

For the case of flat metric, the Poincaré group and hence the Lorentz group are subgroups of
the conformal transformations with Q(z) = 1.

We shall examine the generators of these transformations. Let us then consider an
infinitesimal coordinate transformation such that

o — 2 =2 4 eu(x) + O(?) ,  e(z) < 1. (2.78)
Then from (2.77) one finds that
NpoOu (2P + € (2) + O(€2))0, (37 + €° () + O(€*)) = N + (pew + vey) + O(€2). (2.79)

In order to have a conformal transformation the last expression should be a scaling factor of
the metric, i.e
Oper + 0pey = K(2) 00, (2.80)

such that from (2.76) infinitesimally we must have
Q(l‘)ﬁw = (1 + IC(ZL'))’O“,,. (2.81)
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Concretely we have to find this scaling factor K(x) for these transformations. In order to do
this, we can take the trace of (2.80) yielding

K(x) = =0u€", (2.82)

Qz) =1+ —=(9-€) + O(e?). (2.83)
This is on fact the conformal Killing equation in flat spacetime

Conformal Killing equation in flat spacetime

Ouer +0vey, = K(2)nu ., K(z) = %8Me“. (2.84)

Note that in the general non-flat case one has to use the Lie derivative

Conformal Killing equation in curved spacetime

A conformal Killing vector is defined as a vector field e € X(M) on the manifold
M such that when the metric is transported along the curves generated by e its Lie
derivative is proportional to itself

Leg =Ky, (2.85)

for some scalar field K = K(z),z € M.

Physically speaking the meaning of equation (2.85) is that as the metric is transported
along some curve, or some congruence of curves its change is given by K. In case K is an
arbitrary function, it could be different along the manifold and vary. Contrary it could be that
it is either zero, representing the familiar Killing equation resulting in a genuine invariance of
the metric or it could be a constant that scales the metric along the curves. Such an example
could be the dilatations where the killing vector is characterized as homothetic.

Returning in the flat case we can write interesting constraints for € such that it allows
conformal transformations. If we differentiate twice both sides of the flat Killing equation
with respect to (w.r.t) x we get

0,07 (Ouep + Opey) =0,0° [;(8 : 5)77#0]

0040 )+ Dy = 50,040 ) . D=0, (2.86)

We can add now 0,0, (0 - €) + 00,6, = (2/D)0,,0,(0 - €) to the previous equation (note that
it is the same equation with p <> v exchanged) such that

4
20,0,(0 - €) + O (e, + Oyey) :50#01,(8 - €),
M0 + (D —2)9,0,] (0 - €) =0, (2.87)
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where we have used the flat conformal Killing equation. We can furthermore contract with
n*¥ yielding
2(D—-1)0(0-¢) =0. (2.88)

This is the constraint that € has to satisfy such that it can generate conformal transformations.
It is also obvious that the cases D = 1 and D = 2 are special and this will be the topic of the
next subsection. Before going to this discussion however it would be illustrative to classify the
possible conformal transformations. Let us consider the case D > 2 and since the operator
N0+ (D —2)0,,0, is non-degenerate it follows that 0-€ can be at most linear in 2#. Therefore,

one can propose a general ansatz
en(r) = ay + b’ + cpppr’al. (2.89)

Each term in the r.h.s of the above equation gives rise to a conformal transformation in D
dimensions. Explicitly we have the following possibilities

e For ¢,(z) = a, and infinitesimally
o't = ot + at, (2.90)

which are translations generated by P, = —i0,,.

o If €,(x) = b,2”, we have scaling transformations and rotations. Indeed the conformal
flat Killing equation gives

2

bul/ + bu,u = B(npgbpa)nuuv (291)

implying that the symmetric part of b,, ~ 7,,. By decomposing into symmetric and
antisymmetric parts we have

b = M +Wpw . Wy = —Wyy. (2.92)
Focusing on the symmetric part, it yields
= Vx, — 2 =t e (x) = (1 4+ Nzt (2.93)

which are infinitesimal scaling transformations generated by the Liouville vector field
D = —iz"9,. Focusing instead on the antisymmetric part, we have infinitesimal
rotations

ot =t + wha¥ = (6 + wh) 2, (2.94)

which are generated by the operators J,, =i (2,0, — 2,0,).

e The last case €,(x) = cupx”x”, corresponds to special conformal transformations. Let
us differentiate the conformal flat Killing equation w.r.t x

0,0,€, + 0,06, = %ap(a C €)M - (2.95)
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Let us furthermore consider cyclic permutations of the indices of the above equation

2

0,0u€p + 0,,0,€, :5(‘3“(8 €)Nups (2.96)
2

0,0p€y + 0,0, €, :53,,((9 €)Npp- (2.97)

Then, we have that (2.96)+(2.97)-(2.95) yields

1
a,ualzep = 5 (nupau + nppau - nyuap) (6 ) 6)7 (298)

which furthermore using €,(x) = ¢, o277 gives
Copv = Nwpbyu + Npuby — M by, (2.99)
where we have defined b := %Cg#. Therefore, infinitesimally one has

P =P + (G e
— P 4 SP] bV 08 byl 0 bV
=z +(5#be ¥ + o00bxtx Nu btz

=2 4 2(z - b)a’ — 2°b°. (2.100)

This corresponds to an inversion, followed by a translation and then again an inversion.
Let us show this,

1
Py =
= (2.101)
P xP — P — 22
R (2.102)
(2P — bPx?)2? zP — bPa?
= 2.1
~ (P —bPz2)2 1 —2(x-b) + b2z (2.103)
~[(1+2(x-b) — b*2?)] (2¥ —b2?) |, b< 1
=z + 2(x - b)aP — 2% + O(?) (2.104)

In the first line, we have an inversion, in the second line a translation while in the third
line again an inversion. The generator for these special conformal transformations is

Ky=—1 (qux”ay — 1:2(%).

We summarise all the transformations in the following table.
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Conformal transformations in D dimensions

transformations | Q(x) generators # generators

translations 1 P. = —i0, D
zH = gh 4 gt
rotations 1 Ty = M@0 = 0 D(D —1)
z'H = (65 + wh)x”
dilatations % D = —iz#0, 1

't = gt

special conformal | (14 2b-z+222)? | K, = —i(2z, -0 — 2?8,) | D

o — M bt
T 142b-x+b222

The corresponding algebra is the one generated by the above generators whose total number
is 1 1
# generators = i(d +1)(d+2) = Q(p +q+1)(p+q+2), (2.105)

while their commutation relations are

[j;wa ] (m,ﬂ’ nuppu)a
[P;u K ] =21 ( TI;WD) )
[(Tws Tpo| = (prjua Nuodvp — MpTue + Mo Tpup) »
[j;wv ] (nup’C Uuplcu) )
] =

D,

In a space with signature (p, ¢) the Lorentz group is SO(p,q). The above algebra is locally

ZK:H? [D7P#] - _iPLH [‘-7#1177)] =0.

isomorphic to SO(p + 1,¢ + 1). In fact, one can collect the generators in a group defined by
an antisymmetric (D + 2) x (D + 2) matrix, which creates rotations in (D + 2)—dimensions.
Therefore, the number of generators of the conformal group in D dimensions is the same as
for the group of rotations in (D + 2)—dimensions.

2.3.2 The special case of two dimensions
The case of D = 2 is more special as we will see. The Killing flat conformal equation becomes
Op€y + 0vey = (0 - €)My (2.106)

and considering the case of a Euclidean two-dimensional metric g,, = d,, the only non-
vanishing components are

8161 :8262, (2107)
O1€9 = — Dae. (2.108)
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We recognize the Cauchy-Riemann conditions for a function to be holomorphic. This means
that indeed we can construct a complex function

0 0 0 0
f:ACC— C: f(x1 +iz2) = €1 +iea holomoprhic < ga _ % , ga _ —ﬂ.
8%1 8332 8332 8%1
In our case we can think of €; and €3 as the real and imaginary part of a holomorphic function
€(z) = €1 +iea with 2z =z + izo, (2.109)
and similarly the real and imaginary part of an anti-holomorphic function

€(z) =€ —i6a with z =z —izs. (2.110)

This characterises conformal transformations in the two dimensional plane as analytic coordinate
transformations on the complex plane

z— f(z) and z— f(2). (2.111)

Since there is an infinite number of coordinate transformations, the conformal algebra is
infinite dimensional as well. The infinitesimal transformations can be written as

22 =z24¢€lz) , zZr—Z =z2+E07) (2.112)
where €(z) can be expanded in infinite series as

e(2) == az"t &2 =-> a.,z"t, (2.113)

whilst the relevant generators are
& =i2""o, | &, =iz""o., (2.114)

that is &, and &, generate the coordinate transformations with € = —2"*! and € = —z"*!
respectively. These generators close an algebra, identified by

[fm, gn] = (m - n)gm—i-n ) [gma gn] = (m - n)gm—i-n s [gmu gn] =0, (2115)
and can be proven by applying the commutator on an arbitrary f(z) function.
Conformal algebra in two dimensions

The classical (local) form of the conformal algebra in two dimensions is

[Em, &nl =(m — n)Emin,
[Ems En) =(m — n)Em -
(&0 &a) =0

This algebra is isomorphic to the classical Virasoro algebra or Witt algebra.

Despite the fact that the two-dimensional conformal algebra is infinite-dimensional, there
exists a finite subgroup generated by &g, 41 and &y, £41. These generators are the only ones
who are well defined on the whole Riemann sphere S? = CUoo and they generate the following
transformations
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Generator | Infinitesimal | Finite Type

&1 zZ—>z—¢€ z — z+ « | translations

&o z—z—€z z—= Az scaling

& 2 — 2 — €z’ Z = —Zﬁz special conformal

One can use combinations between &’s and £’s such that (€, — &) generates a rescaling of
the phase or, in other words, rotations on the z—plane. Dilatations are generated by & + &.

SL(2,C) subgroup

The group SL(2,C) is generated by the &, £ generators upon inserted in the Virasoro
algebra and the transformations they generate are summarised as

b az+b
azt , Zr—> C_Lf+ - with a,b,¢,d € C and ad — bc = 1. (2.116)
cz+d cz+d

This is the group SL(2,C) and when we quotient Zso, reflecting the invariance of the
transformations by replacing a, b, ¢, d with their negatives, we get

PSL(2,C) = SL(2,C)/Zs = SO(3,1), (2.117)

which is known as the group of projective conformal transformations in Euclidean
dimensions. In the Lorentzian case, it gets replaced by

SO(2,2) = SL(2,R) x SL(2,R), (2.118)

where one factor pertains to left-movers and the other to right-movers.

This is the global conformal group in two dimensions and this apparent difference between
the local and global case is a pathology of the two-dimensional case because in D > 2 only
the global conformal group exists. In fact, the true conformal group in two dimensions is
SO(3,1) because the remaining conformal transformations do not admit global inverse on
the Riemannian sphere S2.

A CFT on the worldsheet

At this point, we have all information we need to make direct conduct with the worldsheet
of string theory. One last bit of information will be the lightcone coordinates defined as

xt= L (X0 £ XxP7h), (2.119)

V2

generically. We recall the construction of the worldsheet energy-momentum tensor Ty in
equation (2.59). As a consequence of Weyl symmetry, in lightcone gauge the vanishing of
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energy-momentum tensor becomes Ty =T, _ = 0, and
oo
T =202 ) Epe o) (2.120)
m=—oQ
oo
Tyy =202 ) Epe Mol (2.121)
m=—00

where the Fourier coefficients are the Virasoro generators

1 « 1 o
By = 3 Z Qm—_n 0y and Z,, = 5 Qm—n * Oy (2.122)
n=—oo n=-—oo
Requiring vanishing of the energy-momentum tensor results in
En=0=%, for mecZ (2.123)

In the quantum theory, to overcome the issue of singularities (note that we are evaluating
the product of two operators 9,0,X(z) of the same spacetime point z) these operators are
defined to be normal-ordered, that is,

o0

_ 1
B = — Z D OUp—n Ot . (2.124)

n=—00
These operators generate a quantum version of the Virasoro algebra

Quantum Virasoro algebra

In the quantum case, the Virasoro algebra can acquire a central extension, or the so-
called conformal anomaly, with central charge ¢, in which case it takes the following
form

C
Em(m2 — D)dmtn0- (2.125)

[Em, En] = (m — n)Emin +
In a two-dimensional CFT, the Virasoro operators are the modes of the energy-momentum
tensor, which therefore is the operator generating conformal transformations. The term
central extension means that the constant term can be understood to multiply the unit
operator which furthermore is adjoined to the Lie algebra. In addition, the conformal anomaly
can be interpreted, in certain cases, as breaking the conformal character of the theory at the
quantum mechanical level, a feature that happens whenever there exists a central charge in
the quantum algebra.
According to the usual convention of the normal-ordering prescription, the lowering operators
always appear to the right of the raising operators. In particular, Zy becomes

- 1 =
Ho = iag + zjlozn C Ol (2.126)
-

Since the worldsheet theory has translation symmetry, this tensor is also conserved as we
saw

9T,y = 0. (2.127)

34



2.3. CONFORMAL FIELD THEORIES

Now, after Wick rotation the lightcone indices + are replaced by (z, Z) such that the non-
vanishing components are T,, = T'(z) and Tz = T'(z). As we mentioned before, the Virasoro
generators are the modes of the energy-momentum tensor. When we set £, = v2a/ = 1, and

we recall the expansion (2.18) we can treat separately left-movers and right-movers as

1 i i1,

Xp(o.m) = Xp(z) =ga# — 9z + 5 Zn: —afiz", (2.128)

XW(o,7) = XU(3) =2 — Lpinz 4 L3 Tats . (2.129)
LA L 2 4 246~ "

The holomorphic derivatives are respectively

. o

8X“(z,2):—% 3 ata (2.130)
n=—oo

_ PR—

0XH(2,2) =~ > akz (2.131)
n=—oo

and therefore we can compute the energy-momentum tensor

T(z)=-2:0X 0X = Y. ;ZQ. (2.132)
Similarly
T(z)=-2:0X 0X = Y % (2.133)

Since the two-dimensional conformal algebra is infinite-dimensional, there is an infinite number
of conserved charges, namely the Virasoro generators. For an infinitesimal conformal transfor-
mation

dz=-¢€(x) and 0z =€(2), (2.134)

the associated conserved charge that generates this transformation is

Q=0Qc+Q: = 2% [T(2)e(z) dz + T(2)e(z) dz] (2.135)

where the integral is performed over a circle of fixed radius.

A conformal field theory is characterised by a set of composite fields, or operators called
O(z, Z). The variation of this field/operator under a conformal transformation is given by

5.0(2,%) = [Qe, O0(2,2)] and 6:0(z, %) = [Q=, O(z, 7). (2.136)

The fields/operators of a CFT are characterised by their conformal dimensions, which specify

how they transform under scale transformations.
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Primary fields

e Primary operator:

_ . (ow\" fow\" -
V w meromorphic : O(z,z) = (82) (82) O(w(z),w(z)) (2.137)
e Quasi-primary (or SL(2,C) primary) operator:
_ ow\" (ow\" L
Vw € PSL(2,C) : O(z,2) = <(‘3z> <8z> O(w(z),w(z)). (2.138)

The parameters (h, h) are the conformal weights of the operator O and independent
of each other. They combine together such that they give the conformal dimension A
and spin s of the operator/state O

A=h+h , s:=h-h (2.139)

From another point of view, the (h, h) differential
O(z, 2)(dz)"(dz)" (2.140)

is invariant under local/global conformal transformations.

Another ingredient that characterises a CFT is the operator product expansion (OPE)
and specifically the OPE coefficients. It simply means that when two local operators come
close to each other it is possible to replace their product by a sum of local operators

k

C.
Oi(2i:2)05(21,%) = Y =g On(25, 21), (2.141)
ko Zij J Z;j T — hy

where the OPE coefficients ci-“j are some constants and their sum runs over all operators. In
the case where Oy, is a primary operator, the coeflicients are related to the structure constants
and the field metric as

Cijk = gricly- (2.142)

For a generic primary operator O(w), one finds the OPE of with stress-energy tensor to be

hO(w) | 00(w)

z—w? z—w

T(z)0(w) =

(2.143)

where h is the conformal weight of the operator. One of the most important OPE’s is the
one of energy-momentum tensor with itself. In fact, this gives the central charge of a CFT,
the latter found as the coefficient of the 2% term in the expansion

c/2 2T (w) oT (w)

Te)Tw) = Cowp  mw?  a—w (2.144)

From this one deduces that the conformal weight for the energy-momentum tensor is h = 2
analogously h = 2. In addition one realises that the central charge gives the spacetime
dimensions D of the theory. This central charge appearing here is the same ¢ as in the
quantum Virasoro algebra (2.125). That this is the case one can motivate as follows: from
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the definition of the components of stress energy tensor from equations (2.132),(2.133) one
can write the expression in the z — w limit, meaning locality

uv
L DX (2)02" (2) = lim <8ZX“(2)8wX”(w) + 4(1:_2)2> . (2.145)
Then each scalar field gives a contribution one to the conformal anomaly c¢. Therefore in D
dimensions the X* coordinates give ¢ = ¢ = D. It is rather obvious to note that in order for
the energy-momentum tensor to be a conformal field it should be the case such that ¢ = 0,
hence another motivation of conformal anomaly.

Under a finite conformal transformation z — w(z) the energy-momentum tensor transforms

as

(90)?T" (w) = T(2) — TCQS(w, 2), (2.146)

with S(w, z) being the so-called Schwarzian derivative

2(0w)(0Pw) — 3(0%w)?
S0, = 200 3

(2.147)

At this point, we have all the ingredients needed to completely describe a CF'T. Independent
of the dimensions one needs the conformal weights of the operators and the OPE coefficients.
The worldsheet of a closed string propagating in spacetime is locally topologically equivalent
to a cylinder R x S' of circumference L. We will show that the cylinder can be mapped to
the complex plane and thus to the Riemann sphere (after removing the poles) on which all
the analysis that took place above can be applied. We note that this is insensitive to string
theory interpretation and generically one can define two-dimensional models on the cylinder.
The compactification R — S! cures the infrared divergences, and in addition, it leads to a
convenient definition of the ”time” component and thus a Hamiltonian in the Euclidean case.

Let us start by denoting the worldsheet coordinates in Lorentzian signature by (¢, o) with

teR , o€l[0,L) , o=o0+L. (2.148)

The metric yields
ds? = —dt?* +do? = —do T do ™, (2.149)

where we have introduced the light-cone coordinates
do® = dt £ do. (2.150)
Then by performing a Wick rotation 7 = it, the metric becomes
ds* = dr? + do?. (2.151)
In addition we introduce complex coordinates
w=7T+i0c , W=T—Iio, (2.152)

for which the metric becomes
ds? = dw dw, (2.153)

while the relation to Lorentzian light-cone coordinates is

w=it+o)=ict , w=i(t—o)=—ic". (2.154)
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Therefore, a(n) (anti)-holomorphic function of w(w) depends only on o (c~) before Wick
rotating and this leads to the identification on the left-and right-movers with the holomorphic
and anti-holomorphic parts of the theory.

The cylinder can be mapped to the complex plane through

z=e?m/b 7= /L (2.155)
while the corresponding metric is
L\*dzdz
ds® = | — . 2.156
= (5) T (2450

A conformal transformation can bring this metric to the flat one
ds? = dz? + dy? = dzdz. (2.157)

The map from the cylinder works by sending the bottom end (infinite past) of the cylinder
to the origin of the complex plane and the top end (infinite future) to infinity. Since the
cylinder has two boundaries (its ends) in the complex plane one has to exclude these points
corresponding to the z = 0 and z = oo, obtaining in this way the space C*. This space
consequently can be mapped to the Riemann two-sphere ¥ ».

The physical meaning for the difference of ¥ and X2 is quite interesting. Since one
considers the propagation of a closed string, it means that in a sense the worldsheet itself
corresponds to an amplitude with two external states, which are then mapped to the sphere
as punctures on the north and south poles. Removing the external states, yielding in this
way the tree-level vacuum amplitude, corresponds to gluing a half-sphere at each end of
the cylinder (i.e gluing the upper and lower hemispheres). Then, it can be mapped to the
Riemann sphere without the punctures and as a consequence, the properties of tree-level
string theory are found by studying the matter and ghost CFTs on the Riemann sphere.

Why extra dimensions?

Finally, we close the CFT analysis with some remarks regarding the dimensionality of space-
time of string theory. For simplicity, we shall consider the bosonic string theory where the
spacetime dimensions turn out to be D = 26. We shall also not pursue all the analysis here
because this is done in standard string theory textbooks [55,57,59] but we shall state the two
common ways to obtain this:

e The Lorentz symmetry in string theory is not satisfied trivially, in a sense that the
theory is not constructed as manifestly Lorentz invariant. In fact, neither the spacetime
dimensionality (i.e the dimensions of target space) is specified. Then, defining the
Lorentz generators one computes the algebra and demanding closure sets D = 26 [55].
Another intuitive way to grasp the idea is the following: the analysis of spin for massive
and massless states is different. For a massive particle, one goes to the rest frame
p* = (m,0,---,0) and then the internal states form a representation of the spatial
rotation group SO(D — 1). For the case of a massless particle there is no rest frame,
hence what one does is to choose for example the frame p* = (E, E,0,---,0). Now
the SO(D — 2) acting on the transverse directions leaves p* invariant, and then the
internal states form a representation of this smaller group. Similarly, in D dimensions,
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a massive vector particle thus has D — 1 spin states while a massless vector needs to
have only D — 2 states. This is the generalization of the familiar case of D = 4 where
spin states are labeled by representations of SO(3) giving 2j 4 1 states, while massless
particles are labeled by their helicity A, which represents the eigenvalue of the single
generator of SO(2). Lorentz invariance alone thus requires only one state, while C'PT
symmetry takes A to —A and so requires two states for A # 0. Thus, in the light-cone
gauge of bosonic string theory D — 2 transverse degrees of freedom produce oscillators
al,i=1,---,D —2. The squared mass of the string in an arbitrary spacetime is given
by the total number of all the harmonic oscillators

M= > dal. (2.158)

neZt i

In addition each normal operator of the harmonic oscillator is normalised as \/n - a
turning the zero point energy of string theory to (see eq. (2.126))

D—-2 00 o0
1 S D -2 D -2
3 Z calgag +T Z n . = Ey= 52 (2.159)
i=1 m=1 a$|0)=0 n=1
The first excited state, gets excited by a’; and considering the harmonic oscillator

picture and remembering that the total energy is given by the total sum over the
harmonic oscillators will add unity to the total energy as

a_1]0)=1-]0). (2.160)

This is a level one (n = 1) state and it is a spacetime (bosonic) vector. Therefore it has
D — 2 components rather than D — 1 components, so it must correspond to a massless
state. This leads to

D -2 1 !
— | —= 1=0. 2.161
5 () +10 (2.161)
This leads to D = 26 upon using the famous result
= 1
d n=¢(-1) = — T (2.162)
n=1

with ((s) being the Riemann ¢ function.

Another common, but more advanced, way is the BRST quantization of the string.
BRST stands for the Becchi-Rouet-Stora-Tyupin transformations and the formalism
itself is essentially a way to handle the ghosts introduced in the theory. With the
introduction of ghosts in the action for gauge-fixing, the theory is no more invariant
under the original gauge symmetry. The BRST symmetry is an extension of the original
symmetry, which remains intact. Therefore, all physical states must be BRST invariant.
The introduction of ghost fields results, at the quantum level, to a further extension of
the original Virasoro algebra (2.125) as

[Em, En] = (m = n)Epmpn + A(M)Sin, (2.163)
with 1
A(m) = %m(wﬂ ~ 1)+ ¢ (m —13m®) + 2am, (2.164)

and the last constant term is due to normal ordering of =y in (2.126). We see that this

extension vanishes if c= D = 26 and a = 1.

39



2.4. GRAVITY FROM STRING THEORY

2.4 Gravity from string theory

Being a potential theory of unification, string theory should also contain gravity. In fact,
statement simply means that Einstein’s equation should be present somehow in string theory.
One could fairly argue that since the topic of string theory is so vast there should be
somewhere there. However, we will see Einstein’s equation arising by demanding the theory
on the worldsheet to be conformal invariant and in particular Weyl invariant. In a usual QFT
conformal invariance implies scale invariance while it is not known yet if the inverse is true.
On the other hand, likely for a two-dimensional unitary QFT with one compact dimension
(i.e for closed strings) scale invariance means conformal invariance. Possible deviations from
scale invariance are captured by the so-called beta function which describes the change of the
coupling constant concerning a specific energy scale.
Let us then start by recalling the Polyakov action (2.40)

1
Splg, XM = — / d%0/99"° G (X) 0. X" 0p X", (2.165)

by introducing the notation 9, := 0/dc®. This worldsheet theory is and interacting theory,
the so-called non-linear sigma model in contrast to propagation of the string in flat space
which is a free theory. To see the interacting part it is convenient to expand the fields as

XH(o) = 2" + Va'YH(0). (2.166)

This simply means that we consider the mean position of the string to be located at a point
z* and Y*#(o) are the dynamical, yet small fluctuations around this point. In addition v/o/
serves as a dimensional regulator and has dimensions of [length]. We can furthermore expand
the spacetime metric such that the Lagrangian becomes

/
G (X)0u XM XY = o (GW@:) +Va8,G,, (2)Y? + %apagaw(x)wy& +- ) Du XFOXY,
(2.167)

This expansion leads to two obvious facts: 1) the coupling constants are derivatives of the
metric; 2) there is an infinite number of those. Moreover, classically the Polyakov action
is conformal invariant but this is not true anymore in the quantum level due to the Weyl
anomaly. To begin, let us use the Riemann normal coordinates such that the expansion of
XHo) = a# + V' YH (o) will give

O/

G (@) = by = Rypn(@)Y Y + O (Yayﬂw) : (2.168)

which plugging it back into the action (2.165) yields

1 /
Splg, X" = o~ / d%o.\/g (8“}/“8@1/”5,“, - %RM,,HYAY’@“Y“&LY” T > . (2.169)

We can treat this action as a QFT in two dimensions and immediately we recognize a
diagrammatic expansion. The quartic interaction gives a cross vertex consisting of four lines
as it can be seen in the left panel of Fig. 2.1, while in momentum space derivatives become
the momenta k4. Now it remains to compute the beta function of this theory and one easy
way to do so is by curing the divergences occurring from the one-loop diagram of the right
panel of Fig. 2.1. In position space, the propagator of a scalar field is given by

(YN0 V(o)) = —%W In (jo — ') . (2.170)
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The scalar field running in the loop reach the same location after a 27 rotation yielding a
divergence reflecting in this way the ultraviolet divergence that we would see in the momentum
integral around the loop. We can choose a dimensional regularization to cure this divergence
as d = 2 — e. The propagator in momentum space then takes the form

d eik(afa")
(YM0)Y (o)) = 2m5™ / (;iﬁ')“d e (2.171)

and in the limit ¢ — ¢’ it becomes
d%% 1
: A K _ A&
=2r M md/2T <2 — ‘21)
2
—on— /2 <€ v+ O(e)> . (2.172)

To go to the second line we have used the formula

/ d’k 1 _ dj2 a2 (T — d/2)
(2m)? (k* + a?)" Ir)

(2.173)

while for the next line we have expanded the gamma function around e. At the end, we are
interested in the limit ¢ — 0 and it is obvious from the expression that we have truncated
linear and higher orders in € since in this limit the first term diverges. In addition v = 0.5772
is the Euler-Mascheroni constant. Let us then schematically write the propagator in the limit

e — 0 as
AR

lim (YAY") — o (2.174)

e—0 €

This divergence coming from the first (one loop) correction of the second term in the action
(2.169) is obvious when we substitute YAY* with (YY) resulting in a term

1
— ERWE?“Y“&IY”. (2.175)
We can absorb this divergence if we add the following counter term
1
Ry Y YFOYHO,YY — RunnY Y O YH0,YY — ~ R, 0°Y 9, Y. (2.176)
€

Moreover, this can be absorbed by a wave function renormalization Y* — Y#— (o’ /6€) R*,Y"
accompanied with the renormalization of the coupling constant

/

Gy — G + %R,W. (2.177)
This specifies the value of the beta function at one loop to be
B(G) = 'Ry (2.178)
and demanding scale invariance yields
B(G)=0= R,, =0. (2.179)
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~ ulyk(k'u ° kV)

Figure 2.1: [Left]: The Feynman diagram representation of the quartic vertex interaction.
[Right]: The one-loop diagram.

One recognizes Einstein’s equation in vacuum with zero cosmological constant. Remember
that this analysis has been done for Polyakov action, at the level of the worldsheet, and
demanding scale invariance of the theory yields Einstein’s vacuum equation! This means
that the string propagates in Einstein vacuum backgrounds.

Gravity in string theory

General relativity in string theory is not implemented in any way. On the contrary,
one starts with arbitrary string interactions on a Riemann surface, and demanding
scale invariance of the worldsheet theory gives vacuum Einstein’s equations

R, = 0. (2.180)

In other words, we get gravity as an output and not as an input of the theory.

The problems with bosonic string theory

We see that the idea of string theory is fairly simple. The fundamental object is the
string itself, usually called the fundamental string and each vibrational mode of this string
corresponds to a spacetime field for a point-particle, while linear superpositions of modes can
describe several fields. This idea is at the core of a unified theory, in which all contents of
the theory, such as all possible fields in the standard model and gravity are produced by a
single string. These fields correspond to the lowest excitation modes since the higher massive
modes are too heavy to be observed at low energy.

On the other hand, bosonic string theory contains tachyons! Therefore we see that the
price one has to pay with the unification idea, is a theory that at first sight seems to have no
contact with the physical world whatsoever. This makes the theory unstable since the ground
state of the theory itself is a tachyon resulting in negative masses, m? = —4 for closed strings
and m? = —1 for open strings in units where o/ = 1 as we saw earlier in this chapter. While
the instability of open strings can be naturally explained as decaying-and condensing-to closed
strings the instability of the latter is much more worrisome. Being assigned to gravity and
spacetime, instability of closed strings rather suggests that somehow spacetime itself should
decay! To avoid this unfortunate event, one then is forced to introduce supersymmetry which

indeed removes the tachyons from the spectrum of string theory.
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2.5 Superstring theories and their classification

So far we have discussed the bosonic string theory, yet the most interesting theories are
the ones that contain supersymmetry. The interest emerges from the hope that by adding
supersymmetry in a string theory, one can actually obtain the particles, and perhaps matter
that construct or are contained in our physical world, a feature that is not possible in a purely
bosonic theory.

The idea of supersymmetry achieves a two-fold goal at once. On one hand, the (perturbati-
vely) bosonic spectrum is enriched with spacetime fermions making the standard model goal
appear more plausible, and on the other hand, the spacetime dimensionality becomes D = 10.
The ultimate goal is to reproduce the standard model and the dimensionality of our spacetime
D = 4, therefore one could argue along these lines that the compactification procedure
might be easier. Indeed at first sight it seems that removing 6 dimensions would be more
straightforward yet the different choices one could compactify a supersymmetric string theory
are given by the classification of the compactification manifolds, the so-called Calabi-Yau
manifolds whose counting still grows with the latest counting been O(1027290) [68].

The worldsheet field theory of closed strings in fact contains two sectors, the so-called left-
and right-moving sectors (what we encountered earlier as «;,, and &, modes). An important
feature is that despite they being treated symmetrically in the simplest modes, the two sectors
are in fact independent up to the zero-mode, and in principle, the corresponding CFT can
be chosen to be distinct.

The action of supersymmetry associates to each boson a fermion, and conversely, through
the action of a supercharge @ as

|boson) = @ |fermion) . (2.181)

One can generalize this by considering N such supercharges which build up a class of several
bosonic and fermionic partners. In D = 4 each, supercharge increases the spin by 1/2, and
hence there is an upper limit for the number of supersymmetries. This feature is only true in
interacting theories with a finite number of fields in order to keep the spin of a class in the
range where consistent actions exist, while for a free-and higher spin- theories this bound is
absent. Therefore we have the following first classification

e Npax = 4 without gravity (—1 < spin < 1),
e Npax = 8 with gravity (—2 < spin < 2).

This classification serves as a basis to determine the maximal number of supersymmetries in
other dimensions by relating them through dimensional reductions. However, we will only
be interested in the worldsheet theory and the supersymmetries equipped with it. Since the
CF'T’s of the closed-left and right-moving sectors are in principle different, we can also equip
them with a different number of supercharges which we will call Ny, and Ng for left and right
movers respectively.

Type II superstrings have (Np, Ngr) = (1,1) and come into two classes called type IIA
and type IIB according to the spacetime gravitini chiralities. This results in a distinction of
the kind of Dp-branes each theory can host with p being an even number for IIA and an odd
number for IIB. On the other hand, a theory is called heterotic if N;, > Ng and contains only
closed strings since open strings require Ny = Ng. For the case Nj # Npg the two sectors
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give different critical dimensions® and hence one has to use gauge symmetries to get rid of
the additional dimensions of one of the sectors.

Gauge groups G associated with spacetime gauge bosons appear in two different ways in
string theory. Firstly, as we discussed in heterotic models to balance the critical dimensions
of the left-and right-moving sectors. Another possibility is to add degrees of freedom, known
as the Chan-Paton indices at the ends of open strings. One of them transforms in the
fundamental representation, while the other one in the anti-fundamental. This results in
the modes of the open string residing in the adjoint representation, and the massless spin-1
particles become the gauge bosons of non-Abelian gauge symmetry.

One last point is the orientation of strings. Since an oriented string possesses an internal
direction, there is a difference between going from left to right for open strings, or circling
clockwise or anti-clockwise for closed strings. This orientation is inherited globally to the
spacetime history of all strings either with interactions or not. The un-oriented string can be
obtained by the Zo worldsheet parity, which exchanges the left-and right-moving sectors.

We report all the supersymmetric theories and the relevant information in table 2.5. Only
the bosonic string theory contains the tachyon, while all the rest supersymmetric theories are
tachyon-free.

Classification of superstring theories and their content

worldsheet spacetime gauge open

susy D susy group string | oriented

bosonic (0,0) 26 0 any yes yes,/no
type 1 (1,1) 10 (1,0) SO(32) yes no
type IIA (1,1) 10 (1,1) U(1) yes yes
type 1IB (1,1) 10 (2,0) none yes yes
heterotic SO(32) (1,0) 10 (1,0) SO(32) no yes
heterotic Eg (1,0) 10 (1,0) Eg x Eg no yes
heterotic SO(16) (1,0) 10 (0,0) SO(16)xSO(16) | no yes

Table 2.3: Classification of all supertsting theories and their relevant condent

We may also make some remarks regarding the above table. Strictly speaking, the type
IT theories do not have an open string in their vacuum, in fact, they require a D-brane
background. This might be expected if one knows that there is no gauge multiplet in D = 10
with (1,1) or (2,0) supergravities since the D-brane solutions break half of the supersymmetry.
In addition, we included the bosonic case for comparison and the ultraviolet divergences
beyond the tachyon which are interpreted as closed string dilaton tadpoles, cancel only for
the unoriented plus closed strings with gauge group SO(2'?) = SO(8192).

SRemember that the critical dimension depends on the number of supersymmetries and as we saw D(N =
0)=26,D(N=1)=10
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2.6 The simplest example of Kaluza-Klein reduction

In this brief section, we shall discuss the simplest example of Kaluza [69] and Klein [70]
compactification (KK) while suppressing more sophisticated and advanced ideas to be discussed
for the dimensional reduction of super Yang-Mill theory to obtain the BFSS model in Sec. 3.2.2.

As we will demonstrate, one can think of this procedure in its simplest form, as a
mechanism that produces mass in a lower-dimensional spacetime by compactifying massless
modes in spatial dimensions of a higher dimensional spacetime. This can be easily illustrated
in three dimensions considering for example a spacetime of topology R? where propagation of
a massless scalar field ¢ takes place. The question we want to answer is how does this massless
field appears in a two-dimensional spacetime when we compactify one spatial dimension.
Therefore, we will consider a compact dimension of the topology of a circle S leading to
an isomorphism R? = R x S'. Let us then write the Klein-Gordon equation in the
non-compact space for a massless scalar field

O36=0 , 0:=9°8, , a=123. (2.182)

Under compactification, we expand the field in Fourier modes taking advantage of the symmetries
associated with the topology as

p= > e, (2.183)

with k :=n/R. n € Z" indicates the number of (longitudinal) momentum modes running in
the compact circle whose radius is given by R. In other words, each time the massless field
goes around the compact circle gives one unit of momenta. Using properties of the derivative
O3 = Oy + Og1 the Klein-Gordon equation results in

<DQ - ZZ) ¢ = 0. (2.184)

We see that we started with a massless field in three dimensions and after compactifying
one spatial dimension leads to a massive Klein-Gordon equation in two dimensions for the
two-dimensional field ¢,! The mass parameter is given as the momenta m := k = n/R,
and keeping fixed the units of momenta it is obvious that light modes and massive modes
correspond to large and small R respectively.

We shall see in what follows that this simple idea is at the heart of the idea of uplifting
the five 10-dimensional string theories to eleven dimensions.

2.7 Introduction to M-theory and its contents

Inevitably, superstring theories are defined only as divergent asymptotic power series in the
string coupling constant g, which is related to the expectation value of the massless dilaton
field ¢ appearing in the effective supergravity theory, g; = e{?). This is one of the reasons
why superstring theory fails to be truly considered as a unified theory. The other reason
discussed previously, is that there exist five of them. A true theory of unification should
be at least unique by all means and defined non-perturbatively. M-theory is a candidate of
such a theory as we shall see, yet the mystery that governs it justifies its name. The idea

goes back to the work of [71] where the construction of supergravity in eleven dimensions is
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discussed along the lines of Kaluza-Klein compactifications. However, this program faced two
difficulties: the non-renormalizability of D = 11 supergravity and its failure to admit chiral
compactifications. Both problems were resolved by superstring theory but the price that had
to be paid was the reduction to D = 10 dimensions.

The fact that type IIA supergravity is the dimensional reduction of D = 11 supergravity
[72], offered hope of a possible role for D = 11. In fact, since string theories were defined
perturbatively in g; the hope was that somehow the eleventh dimension was not shown in
this perturbation but it should be present in a non-perturbative way. We shall see in a
while how but before doing so, let us discuss how the contents of type ITA and M-theory
are related. Whereas the two-form potential for D = 10 supergravity theories is naturally
associated with a string, the three-form potential of D = 11 supergravity is naturally
associated with a membrane [73]. Several works along this line led to the construction of
D = 11 supermembrane action and the interpretation of D = 11 supergravity as an effective
field theory of a hypothetical supermembrane theory [73,74]. By simultaneous dimensional
reduction of the worldvolume and the spacetime in [75] it was suggested the interpretation
of the type ITA superstring as a membrane wrapped around the circular eleventh dimension.
This was strengthened even more by the subsequent works [76,77] where the construction of an
extreme membrane solution of D = 11 supergravity, reduces in D = 10 to the extreme string
solution of type ITA supergravity. A further important development was the construction
of the fivebrane solution of D = 11 supergravity [78] which was shown to be geodesically
complete [79]. In a sense, the fivebrane is the "magnetic” dual of the ”electric” membrane
in D = 11, in agreement with the general prescription [80] that the dual of a p—brane is a
(D — p — 4)-brane.

The connections between D = 10 and D = 11 supergravities still being at the classical
level, it was still seemed impossible that the quantum type IIA superstring theory, with
D = 10 as its critical dimension, could be eleven-dimensional. On the other hand, it was
noted that the inclusion of wrapping modes of the fivebrane and membrane led to a spectrum
of solitons identical to that of type IIA superstring if the latter includes the wrapping modes
of the D = 10 p—branes carrying Ramond-Ramond charges [81].

Because of the connection between the dilaton and the string coupling, it was obvious that
an improved understanding of the role of the dilaton would be crucial to any advance in non-
perturbative string theory. In addition, because the type ITA supergravity is the dimensional
reduction of D = 11 supergravity led to a Kaluza-Klein interpretation of the dilaton as a
measure of the radius of the eleventh circle Rqy

Ry = gsVal. (2.185)

This clearly demonstrates that perturbative analysis in string theory corresponds to an
expansion around R;; = 0 such that the eleventh dimension is absent in perturbation theory.
The correct interpretation of the tension of the supermembrane includes a factor of Ri; only
in D = 11 dimensions while in D = 10 this is absent, while at the same time the D0—brane
mass is proportional to 1/R1; as required for its KK interpretation. We shall return to this
point with more precise details when we will discuss the connection of M-theory with type
ITA superstring theory.

In the strong coupling limit, where Rj; — oo, the vacuum of the theory is eleven-
dimensional Minkowski and the effective field theory is D = 11 supergravity. This special
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moduli space of vacua is known as M-theory and if a true theory of unification exists, it should
be realized in this limit where M-theory and superstring theory are realized as approximations
of this unified theory.

11-dimensional supergravity

Being itself a theory of gravity there should be a graviton state, which is realized as a
symmetric traceless tensor of SO(D — 2), the little group of a massless particle. The number
of independent components of a symmetric (D—2) x (D—2) matrix is given as 3(D—1)(D—2)
while due to tracelessness we have to subtract one state. This will result in

%(D—2)><(D—2)—1:%D(D—3):44 (2.186)

physical degrees of freedom counting the polarization states. That this theory contains
fermions, demands the usage of the vielbein formalism where one can represent the graviton
with a vielbein field e,. Since we are in eleven dimensions we can call it an elfbein 6. The
capital indices M run over the base-space (curved) vectors in eleven dimensions while the
small indices a are used for tangent-space (flat) vectors. While the former transform non-
trivially under general coordinate transformations, the latter transform non-trivially under
local Lorentz transformations.

Being the theory itself supersymmetric, the gauge field for local supersymmetry is the
gravitino field Wy, which has an implicit spinor index in addition to its explicit vector index.
In other words, for each index I the gravitino is a 32-component Majorana spinor. When
in addition spinors are included, the little group becomes the covering of SO(9), which is
Spin(9). From the point of view of group theory, the Spin(9) Kronecker product of a vector
and a spinor is 9 x 16 = 128 + 16. The construction in four dimensions gives spins 3/2 and
1/2 while the analysis for a free vector-spinor field carried out by Rarita and Schwinger [82],
showed that there is a local gauge invariance of the form §W,; = 03¢ which precisely cancels
the spin 1/2 degrees of freedom giving pure spin 3/2. This can be deduced from the fact that
the kinetic term of a gravitino field ¥, in any dimension has the structure

Sy, ~ /de\IfMFMNP(?N\IJp. (2.187)

Because of the antisymmetry of the Dirac matrices TN for §U; = e the kinetic term
will be invariant up to a total derivative.

Similarly, the physical states for the eleven-dimensional free theory due to this local
symmetry are 128, while in the interacting case this local symmetry is identified as local
supersymmetry. This amount of supersymmetry gives 32 conserved charges which form a
Majorana spinor. Indeed, this is the dimension of the minimal spinor in eleven dimensions,
so there could not be less supersymmetry than that in a Lorentz invariant vacuum. On the
other hand, if there were more supersymmetry, the representation theory of the algebra would
require the existence of massless states with spin greater than two. However, it is believed to
be impossible to construct states with higher spins in Minkowski spacetime and this would
require for example to find non-trivial supersymmetric theories for D > 11.

So far we have 44 bosonic and 128 fermionic degrees of freedom. In order to be considered
a successful supersymmetric theory, supergravity should somehow contain 84 more bosonic

SFor the curious reader viel means many in German while elf means eleven.
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2.7. INTRODUCTION TO M-THEORY AND ITS CONTENTS

degrees of freedom. The missing bosonic polarization states come from a rank-3 antisymmetric
tensor, Apsnp, which can be represented as a three-form As. Recalling from conventional
electromagnetism which contains the one-form (gauge field) A; these theories are invariant
under gauge transformations

A = Ap +dA, 1, (2.188)

where A,_1 is a (n — 1)—form. As it also happens in the case of electromagnetism, for
antisymmetric tensor gauge fields, the gauge invariance ensures that the indices for the
independent physical polarizations are transverse. In particular, in the case of a three-form
in eleven dimensions one has precisely 9 -8 - 7/3! = 84 such polarizations, the ones needed to
match the gravitino degrees of freedom, which is the only Fermi field of the theory.

Local Lorentz invariance, invariance under Az gauge transformations, and general coordina-
te invariance assign a lot of constraints on the form of the action. Even though we will not need
the fermionic content of the action as it is common in all supergravity theories, dimensional
analysis determines the latter as the constraint: the number of derivatives plus half of
the number of Fermi fields equals two. Requiring also local supersymmetry as we argued
previously along the lines of superstring theory, gives us D = 11. Then the ambiguity of
the action drops to a few numerical coefficients depending on normalization and conventions.
That still one can write an action taking into account all the above requirements is quite
phenomenal.

The bosonic part of the eleven-dimensional supergravity action is given as

S11 L dlll'\/ —GuN (R— ;‘04‘2) 1 /Ag/\C4/\C4, (2.189)

= 167Gy, 6

where R is the scalar curvature, Cy = dAs is the field strength associated with the potential
As and (1 is the eleven-dimensional Newton’s constant related with Planck’s length via

167Gy = zi (2m,)° . (2.190)
T

It is furthermore possible to reformulate the action in terms of the elfbein, where the part of
the action (2.189) that will depend on it, is only the first term because of the structure of
the metric

GuN = naBenen (2.191)

while the last term of (2.189) which has a Chern-Simons structure is independent of the
elfbein. Lastly the quantity |Cy|? is defined by the general rule

1
|Cy)? = EGMlNl GMN2 . GM N O oy, ONy Ny N - (2.192)

M-branes

Another ingredient of M-theory is the presence of M-branes. The only accessible action we
have is the one of eleven-dimensional supergravity (2.189), yet its content reveals the presence
of more objects. The 3-form As appearing in the action couples electrically to a two-brane
and magnetically to a five-brane. The former we will be calling the membrane while the
latter as the fivebrane, yet there is not available an action describing them. If their tension
saturates the BPS bound (as they do), these turn out to be stable supersymmetric branes
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2.7. INTRODUCTION TO M-THEORY AND ITS CONTENTS

whose tensions can be computed exactly. Thus, by focusing on BPS M-branes, it is possible to
learn various facts about M-theory that go beyond the low-energy effective action expansion.

The only available scaling in M-theory is the eleven-dimensional Plank length ¢,,. Therefore,
the M-brane tensions can be determined, up to numerical coefficients by doing dimensional
analysis. The exact results that relate the M-branes also with the ITA superstring theories
which are furthermore confirmed by dualities are determined as

Tare =21 (21ly) ™2, Tags = 2m (27,) . (2.193)

As with all BPS branes, a M-brane can also be excited so that it is no longer a BPS, but it
would be unstable and radiate until reaching the minimal BPS energy density as in (2.193).

The full eleven-dimensional supertranslation algebra that generates the above contents of
M-theory is [83]

{Qa, Qs} = (CT™) 5 Par + (CTun) o Zi)" + (CTanpo)ag Z(5) 70K, (2.194)

where C' = I', under the choice of real Dirac matrices. The three types of charge appearing
on the right-hand side are those associated with the supergraviton, the membrane, and the
fivebrane, which are the three basic ingredients of M-theory. In this sense, it would be
natural to regard (2.194) as the M-theory superalgebra. The total number of algebraically
independent charges that could appear on the right-hand side is

11 4+ 55 4+ 462 = 528, (2.195)
so that the algebra is also maximally extended.

Contents of M-theory

One can write the action of eleven-dimensional supergravity (2.189) which is the low
energy limit of M-theory. The contents of the M-theory are

e the supergraviton®?,
e the membrane,
e the fivebrane,

generated by the algebra (2.194). The supergraviton is in a sense a local object while
the membrane and the fivebrane are extended non-local objects with dimensionality
two and five respectively. M-theory is conjectured to be realized as an ultraviolet
completion of the effective low energy supergravity theory.

“In literature, the entire 256-dimensional supermultiplet is referred to as the supergraviton, a notion
that we will adopt in what follows.

M-theory/type IIA superstring correspondence

We shall demonstrate the explicit connection, or if the reader prefers construction, of the
action of ten-dimensional supergravity from eleven-dimensional supergravity. Then the conje-
cture in the high energy limit is that M-theory will be dual to type IIA superstring theory.
Note however that there is still not a clear proof (to all orders) of the above such that it
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2.7. INTRODUCTION TO M-THEORY AND ITS CONTENTS

remains a conjecture, since the high energy profile of M-theory is unknown, as it is the one
of type IIA superstring while the latter is constructed also perturbatively. The difficulty
is because the high energy limit of superstring theory is constructed perturbatively with
perturbation parameter g;. We recall (also below) that this parameter also controls the size
of the eleventh compact dimension.

The procedure of connecting the supergravities is fairly easy, and in fact, it is one of the
most straightforward connections of superstring theories and M-theory and the only relevant
for this thesis. It heavily relies on the idea of dimensional reduction (KK), demonstrated in its
simplest form above, in Sec. 2.6. Dimensional reduction is not equivalent to compactification,
since the in the latter case one keeps all the modes in the Fourier expansions of the various
fields, while in the former only the zero modes are kept in the lower dimensional theory. The
compact circle has a radius given by

Ryy = gsls. (2.196)

Then we shall demonstrate how the different eleven-dimensional field contents appear in ten
dimensions.

We start with a qualitative discussion of fermionic fields. The massless fermions of
type ITA supergravity consist of two Majorana-Weyl gravitinos of opposite chirality and
two Majorana-Weyl dilatinos of opposite chirality. These can be obtained by taking a
32-component eleven-dimensional Majorana gravitino and dimensionally reducing it to ten
dimensions. This will result in a pair of 16-component Majorana-Weyl spinors of opposite
chirality. Then, the first ten components of these give the two ten-dimensional gravitinos
while the eleventh component ¥i; will give the two ten-dimensional dilatinos. Each type
ITA dilatino has eight physical degrees of freedom because the Dirac equation implies that
half of the 16 components describe independent propagating modes. Then, to match the
original polarization states it is clear that each gravitino should have 56 degrees of freedom.
This is indeed the dimension of the irreducible representation of Spin(8), so the above
discussion could be interpreted as the splitting of 128 representation of Spin(9) to irreducible
representations of Spin(8). The preservation of physical degrees of freedom is a general
feature of dimensional reduction on compact manifolds such as circles or tori.

Let us then continue with a quantitative discussion of dimensional reduction of bosonic
fields, the metric and the three-form As. One index choice we can do here is to denote small
Greek letters p, v referring to first ten components of the eleven-dimensional indices denoted
by M,N =0,---,9,11 skipping the 10th compact dimension. The metric is decomposed as

20 L+ e?®A,A, €24
Gy = e 3 (9“ T 0] (2.197)

where the dependence of the fields is exclusively on ten-dimensional spacetime. This decompo-
sition allows a ten-dimensional metric g,,, a U(1) gauge field A, and a scalar dilaton field
&, while the exponential factors are introduced for convenience. In addition we can write the
decomposition in the following form

ds?) = Gun daM daV = e % g, dat da¥ + 5 (dz' + A, dat)?, (2.198)

that is, given either a ten dimensional or eleven dimensional metric we can immediately either
uplift it to eleven dimensions or reduce it to ten dimensions respectively.
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2.7. INTRODUCTION TO M-THEORY AND ITS CONTENTS

One can also rewrite this metric decomposition in the vielbein formalism, something that
we will not demonstrate here because we will not need it. In addition, the three-form in
D = 11 decomposes to a three-form and a two-form in ten dimensions

AL =Ap, (2.199)
Al =B, (2.200)

with corresponding field strengths given by

19 19 ~
Cp(i/?/\ =es (CWPA + 4A[uHVp>\]) = €3 Cpypx, (2.201)
oy *

nvpll =es H}u/m (2202)

such that upon dimensional reduction, the eleven-dimensional field strength is a combination

of a four-form and a three-form field strength
40 ~

C® =5 ClU) + e HO, (2.203)

with I'1; being the ten-dimensional chirality operator, and the forms defined by

1

4) _ *
C 4!

CunpoTMNPO. (2.204)
In a differential form notation the rescaled field strength is written as
Cy = dAz + Ay A Hg, (2.205)

and invariance of Cy under the U(1) gauge transformation A; = dA yields that the three-
form potential should transform as

§As = dA A B. (2.206)

Then
6Cy = d(dA A B) 4+ dA A Hz = 0. (2.207)

In addition to the above, an interesting ingredient that we will need later is the relation
between the eleven-dimensional and ten-dimensional Newton’s constants. To define those we
need to know the string coupling, which for the case of type IIA supergravity is given as the
vacuum expectation value of the dilaton

gs = e'®), (2.208)

In eleven dimensions the only length scale is the Planck length. From the metric (2.198) we
can deduce that if we set a scale in the ten-dimensional theory, in a sense that if a distance in
the ten-dimensional case in string units is dsjg = 1 then in eleven dimensions and in Planck
units is . )

dsy = (e—%dsfo) 2= g, %, (2.209)
So we immediately see that if the string coupling is small, the Planck length is smaller than the
striI}g length. In other words, if g5 is small, the Planck length measured in eleven-dimensions

is g2 times smaller than the string length such that generically we have
1
l,=gily with £y, =Val (2.210)
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In ten dimensions, gs and ¢s combine to give Newtons constant as

167G 10 = — (274s)%g2. (2.211)

1
2T
Then dimensional reduction on a circle of radius Rj; gives a relation between Newtons
constant in ten and eleven dimensions

GH = 27[‘R11G10. (2.212)
We can use (2.190) with (2.211) to get a relation of R;; in terms of g
Ry = g2/30, = g4l (2.213)

The ten-dimensional bosonic action for type IIA supergravity can be obtained by integrating
(2.189) over the compact coordinate. The result yields three distinct pieces for the action, a
Neveu-Schwarz term, a Ramond term, and a Cern-Simons term denoted respectively as

Ssugra = SNS + SR + SCS- (2214)
The first term has the form
1 1
Sns = 53 dPz/—ge 2?® <R + 30,90 P — 2\H3\2> , (2.215)
K
where we have defined 2x? := (2mls)®/27. This string-frame action is characterised by the

exponential dependence of the dilaton in front of the curvature scalar R. Note that we can use
the relations above to show that the Syg itself does not have a string coupling dependence.
The remaining two terms in the action, involve the R-R fields and are given by

1 -
SR = — @ dlox\/jg <‘02’2 + ’04’2) 3 (2216)
Scs = — 12 By NCy N Cy. (2.217)

Let us remark on the structure of the various terms appearing in Ssugrq. It is a general
rule, that a worldsheet of Euler characteristic y gives a contribution with a dilaton dependence
eX® which leads to the correct dependence on the string coupling constant. Therefore, all
terms in (2.214) correspond to a spherical worldsheet with Euler characteristic x = —2. Now,
this is obvious only in the first term Syg while for the terms Sg and Scg this can be easily
achieved by doing a field redefinition with appropriate exponential powers of e~® such that
we have an overall e~ 2® factor in front of the whole action S sugra- Since this field redefinition
is not usually adopted in the literature we shall leave the action as it is.

The low energy regimes of the two theories are related via the respective supergravities
as we demonstrated above. Yet, the full correspondence should also contain the high energy
limits. However, this is particularly challenging since there is no action description available
in the high energy limits of both theories. The difficulty in type IIA, relies on the fact that
this limit is only defined perturbatively in g;. Therefore, one should exploit non-perturbative
tools to explore this regime and make the connection with M-theory slightly more precise. D-
branes are such non-perturbative objects and the lowest dimensional ones are the DO-branes.
Their mass, in string frame, is given as (£5g5)~!, so in perturbation theory around g, =~ 0 it
blows up.
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The claim is that the mass of the DO-branes can be related with supergraviton KK modes
compactified on a circle of radius Ry;. This goes along the lines of the simple idea we
demonstrated in Sec. 2.6 as we shall see. Before we continue, let us remind that the entire
256-dimensional supermultiplet is referred to as the supergraviton.

Let us then consider eleven-dimensional supergravity (or low energy M-theory), compacti-
fied on a circle. The mass of the supergraviton in eleven dimensions is zero

M = —pup™ =0 , M=0,1,---,9,11, (2.218)
while in ten dimensions it takes the form
Miy=—pup* =phi , p=0,1,---,9. (2.219)

The momentum on the compact dimension is quantized p1; = N/R1; and hence the spectrum
of the ten-dimensional masses is

N 2
M% = — , Nez, (2.220)
Ry

representing a tower of Kaluza-Klein modes. These states also form a short 256-dimensional
supermultiplet, such that they are all BPS states, and carry N units of a conserved charge
of U(1) type. For N = 1, the correspondence with the mass of a single DO-brane requires

Ri1 = lsgs, (2.221)

in agreement with the claim presented repetitively in this chapter. Indeed, this is a non-
perturbative correspondence independent of the values of g;. On the other hand, the value
of g5 encodes the perturbative regime of type IIA theory. In particular, the weak coupling
regime is given as g; — 0 which via (2.221) corresponds to Ry; — 0, while the strong coupling
regime corresponds to the inverse limit, namely g; — oo which results in Rj; — oo. The
former limit corresponds strictly to a ten-dimensional theory (type ITA), while the latter to
an eleven-dimensional one (M-theory). The latter is true since the compact circle opens up
and all the ten spatial dimensions are treated on equal footing.

In fact, this argument can be also used to argue for the existence of bound states of DO-
branes. More precisely, the N-th Kaluza-Klein excitation gives a multiplet of stable particles
in ten dimensions that have N units of charge. Therefore, this multiplet can be regarded as
a bound state consisting of N DO-branes, which in addition has zero-binding energy. Indeed,
there is no room for any binding energy, since these states saturate a BPS bound, which
means that they are as light as they are allowed to be for a state with N units of DO-brane
charge. It also means that the formula (2.220) is exact to all orders in gs.

These bound states can be related to higher dimensional structures with which they couple
electrically and magnetically [65]. One important example is that DO-branes couple with a
three-form forming a D2-brane consisting of D0-branes via the well-known Myers effect [84].

We close this chapter with the correspondence between contents of M-theory and contents
of type ITA superstring theory given as:
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M-theory/type ITA superstring correspondence

’ M-theory ‘ type ITA superstring
KK photon (gar11) RR gauge field A,
supergraviton with p;; = 1/Rq; DO-brane
wrapped membrane ITA fundamental string
unwrapped membrane ITA D2-brane
wrapped fivebrane ITA D4-brane
unwrapped fivebrane ITA NS5-brane
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Matrix models and gravity

Do xpumtecVa @uhel.

Heraclitus

Matrix models in string theory play an important role. Some specific models can be
used to describe quantum gravity in two dimensions [85-87] (see also [88]). We will not
pursue a relevant analysis here but we will say a few words about two-dimensional quantum
gravity and we will focus on setting the ground such that the reader will understand the
matrix models that will play a major role for this thesis. We will also spend some time on a
particular matrix model that describes (and regularizes) the membrane in eleven dimensions
as well as its quantization. This will be the key ingredient to proceed to the following
constructions. Then we shall move to the DO-brane matrix model [53] which we will use
throughout this dissertation. We shall discuss it’s construction from dimensional reduction, as
well as its massive deformation presented by Berestein-Maldacena-Nastase [89]. Proceeding,
we shall also discuss their geometric, i.e gravity interpretation using holography and explain
the parameters that control the gauge and the gravity systems as well as their interpretation
in both cases.

3.1 Quantum gravity in two dimensions

It is quite well known that in the first quantization of string theory, summation over string
trajectories reduces to a two-dimensional quantum gravity on the worldsheet [57,58]. The
full string action includes the Einstein-Hilbert term and a cosmological constant A for the
wordlsheet metric. Then, this action defines a theory of D scalar fields X* coupled minimally'
to the world sheet metric h,p. The Euclidean action is

4o/ Am

S = / d*ov'h <1h“b8aX“8qu + PRy A) : (3.1)

!This means that we consider the partial derivative in the action.
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In two dimensions, the Einstein-Hilbert action is a topological term and equals the Euler

x = /d2m/ﬁ <£> =2 2n, (3.2)

with n being the genus of the worldsheet surface M, which in this case is a sphere S? with

character

n handles. The parameter ¢ is related to the expectation value of the dilaton field and thus
it is determined by the string coupling

el = g,. (3.3)

Moreover, the partition function is given by

Z = Z g2n—2 / [dX")[dhgp) exp <— / ) Povh (;Od,habaaxuabxu + A>> (3.4)
There exists a lattice-like regularisation of this theory in discretising the worldsheet geometries
by dynamical triangulations, meaning the replacement of the integration over the worldsheet
metrics by a summation over wordlsheet triangulations [90-93]. Another approach is to
collectively gauge fix and use the Fadeev-Popov method such that the description of string
coordinates and the metric is given by Liouville theory [66,94] but we will not discuss it
further here and we shall demonstrate the first choice because in an analogy with field theory
it does not require gauge fixing.

The easiest example to consider is the D = 0 theory. The latter is an empty theory of
surfaces with no conformal matter and the partition function is given as

Z = Zg2n 2/ b]e(fan d20\/EA)‘ (35)

This model describes fluctuations of the internal metric and topology of the zero-dimensional
wordlsheet. The essence of dynamical surface triangulation is the approximation of the surface
of genus n by a combination of equilateral triangles. On the plane, at each vertex ¢ there are
N; = 6 such triangles meeting since there is no curvature. The latter is determined via the

Ricci scal
icci scalar 6_ N,

N;
and it is non-zero whenever N; # 6. That this is the Ricci scalar can be verified by the

R, =2mw

(3.6)

following argumentation: each triangulation is characterised by a number of vertices V, a
number of edges F, and a number of faces F'. By construction it holds hat V' = >, N;
and topologically each edge is shared by two vertices such that 2FE = V. Moreover, each
face has three edges and each edge is shared by two faces, therefore 2FE = 3F. The area of

A= /d% = Z* v @ _F (3.7)

Indeed this is the total number of triangles. In addition the Einstein-Hilbert term is

N;_ 6—N; F
/d ovVhR % 3 2T 7r <V 2) m(V + F) =47y, (3.8)

i

triangulation is

as it should be. As a result, the partition function becomes discretised and given by

Za=) gy e, (3.9)
n Ty
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with the sum running over the dynamical triangulations 7T;, of the surfaces M,,. Importantly
the number of triangles F' should not be predetermined such that it remains a dynamical
variable, and hence in a sense, summation over T,, translates to summation over F'.

The exponential dependence on F' is the reason for the convergence of the sum over
triangulations, at least for (sufficiently) large values of A. However, as A starts decreasing
the partition function could diverge at the critical value A = A.. Of crucial importance
for dynamical triangulations is the fact that the total number of graphs of genus n formed
by F triangles increases exponentially with F' as exp(A.F)/F~ [91], with the exponent b,
depending on n. The continuum limit is defined as

A — A, (3.10)

and it is independent of n. In this limit, the discretised statistical sum Z; reproduces
continuous Zop. The contribution of entropy (the number of different graphs for a given F)
dominates over the exponentially suppressed energy contribution of the Boltzmann weight
and, as a result, the partition function diverges in a second-order phase transition. This
behaviour is reflected in the string susceptibility given by

_9*Zy

/ OA?

STTPA-A)TT L = b +3, (3.11)
n

with v, being the string susceptibility index. This index characterises the scaling of the

entropy since as we saw it appears in the area of the triangulation F®». For further details

see the original reference [95].

3.1.1 Zero dimensional matrix model

Let us consider the cubic model with partition function

1 1
2@::/m¢k—N“V@ﬂ : vxéy:§¢2—§a¢% (3.12)
where ® are N x N Hermitian matrices, « is a constant and [d®] is the measure over these

matrices explicitly given as

N N
1> =1

The propagator of this theory is arising as the simplest Gaussian matrix integral [86]
_N2 _N Ty p2 1
(2m) N /2/(1‘1’6 2 T @ ®p) = i Okt (3.14)

and is represented as a double line (double indices). These two lines are oriented due to
Hermiticity and are opposite oriented. A typical Feynman diagram consists of an oriented
two-dimensional surface formed by polygons that are bounded by index loops. Three propagators
construct a three-point matrix vertex. Then one can imagine this three-point vertex to be
dual to a triangle and hence the so-called dual diagram will be a dynamical triangulation of
a Riemann surface.

Now by using "tHooft [96] counting we can organise the diagrammatic expansion in powers
of % where each order corresponds to a different topology. We can furthermore translate the
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number of vertices V', edges F and faces F' to vertices, propagators and loops respectively.
The vertex carries one factor of N as well as the loop while the propagator carries N1
factor. Combining all leads to NV~F+F = NX = N2727_ From this follows that the partition
function can be expanded in powers of N

Za=N2Z0 + 204 N2Z@D 4 =Y Nz, (3.15)

n

Therefore, also the free energy admits a 1/N expansion via

Fa=logZa =Y N "F, (3.16)

where F,, is given by the sum of the connected Feynman diagrams that can be drawn on a
sphere with n handles. On the other hand, Z, generates both connected and disconnected
diagrams.

Let us consider an arbitrary (connected) diagram I'. Since each three-point vertex is dual
to a triangle the number of three-point vertices vr equals the number of triangles F'. By
normalising the area of each triangle to one the total area is A = F = vp. This corresponds
to a Feynman diagram which is proportional to a'" and to avoid over-counting we shall also
normalise it by the order of the relevant discrete symmetry group Sr. This discrete symmetry
group of the Feynman diagram is the analog of the isometry group manifold of continuum
manifolds [87].

The free energy for connected diagrams is then

alr

Fn = ) 3.17

while for arbitrary diagrams

_ _ 2 on N~ @
Fo=log2Z _;N EF:SF (3.18)
Using, (3.9) and assigning
1

N=e¢ = 5 eA=aq, (3.19)

the free energy of this model equals the partition function of the dynamical triangulated
model
Fo = 2Z4. (3.20)

As it is expected in lattice theories, there should exist a critical value of o — . such that
there is a phase transition. Moreover, since the number of degrees of freedom is setted by NV,
one has to consider N — oo limit to make this transition feasible. Therefore, the continuum
limit at fixed string coupling constant is a double scaling limit with N — oo, @ — «, with

1
= — —fixed, 3.21
N (e — a)5/4 (3:21)

where ¢ is dimensionless by the requirement that % = a2 and [a] = 2 in length units. At
this limit the partition function diverges, signalling a second order phase transition. That is
because the first term of (3.15) (planar partition function) behaves as

Zo ~N2Z0) 4 ...
~N? (o, — )7 ~ =N?2A2, (3.22)
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where A is the expectation value of the area A = (F') = (vr) and 7 is the string susceptibility.

We have used a zero-dimensional cubic matrix model to describe discretization of Rieman-
nian surfaces resulting in a dynamical triangulation because the dual graph of the three-point
vertices are triangles. It is straightforward to claim that instead of a cubic matrix model,
we could have used an arbitrary polynomial potential yielding in this way to a dynamical
polygonization of Riemannian surfaces.

3.1.2 One-dimensional matrix models

In the previous subsection we saw a single matrix, zero-dimensional model. This can be
generalised first of all to multi matrix models and accordingly the strings described by this
model are embedded in a space of greater dimensionality. In fact we can consider a (open)
chain of ¢ matrices given by the partition function

q q q—1
Zp = /H[dq%] exp <— > NTrV(®)+ N> Tr <I>¢<I>i+1> : (3.23)
i=1 i=1 i=1

Such matrix models describe the discretization of bosonic strings in the regime 0 < D <1
since the diagrammatic expansion generates discretized surfaces where ¢ different ®; states
exist at the vertices [87]. In addition, it describes two-dimensional quantum gravity coupled
to conformal matter in D dimensions, which recalling the unitary discrete series of conformal
field theories they are labeled by an integer m > 2 which specifies the central charge c

6
c=D=1— ————. 3.24
m(m+ 1) (3:24)
The central charges are normalised such that the ¢ = 1 case corresponds to one boson.
In addition, if we couple conformal field theories with these fractional dimensions to two-
dimensional gravity the approach from Liouville theory predicts a relationship between the
susceptibility and the central charge of the conformal field theory given by (see for example

[87])

1 1
- —|p-1-V/D=-1(D=2 }:—f. 2
=5 | VID-1)(D-25)| = - (3.25)
Previously we discussed the case m = 2 where ¢ = D = 0 and gy = —% corresponding to

pure gravity. From m > 3 the fractional dimensions start with the case m = 3 belonging
to Ising model where ¢ = D = % and Vgt = —%. The case under consideration is the limit
m — oo giving ¢ = D =1 and ~g; — 0.

In this limit we only have one boson, and moreover when we consider the limit ¢ — oo we
get the description of a one-dimensional lattice where the coupling term is a nearest neighbour
interaction. More precisely, the ¢ index above may be substituted by a continuous variable ¢
and the matrix chain with ¢ — oo can be regarded as a lattice regularization of the statistical
sum of one-dimensional matrix model. The partition function becomes

Zs /[de)(t)] exp [—N/dt <;<i>2 + ";@2 + Vim@)ﬂ . (3.26)

Each perturbation theory diagram is accompanied by its Feynman integral given as [80]

dx;
Fr = /H S exp —m; X, — X (3.27)
7 ij
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in coordinate space. The variables X; are regarded as the values of string coordinate X in
diagram vertices and the summation is over links ¢ — j. In this case, the one-dimensional
propagator reproduces the kinetic term for the bosonic field ®.

Based on this demonstration a matrix model of string theory can be built up equivalent
to string theory in any dimension where the matrix model lives (D) [97]. However, there are
several problems arising with the obvious one being that for D > 1 the critical exponent g,
admits an imaginary part. In addition, for greater D where one should consider the matrix
field theory and not zero-dimensional integrals and quantum mechanics neither the exact
solution in the limit N — oo nor the construction of 1/N expansion is possible. Furthermore,
the squared mass of the lowest string excitation scales like (1 — D) and for D > 1 the ground
state becomes a tachyon. Due to this infrared instability, the string worldsheet degenerates
to a quasi-one-dimensional object, known in the literature as a branching polymer. Hence
the bosonic string fails to describe a system with an infinite number of degrees of freedom
because it cannot accommodate them.

D =1 is the upper barrier for writing a consistent matrix model for string theory.

3.2 Matrix String Theory

3.2.1 A unification of matrices, membranes and D0-branes

We shall start by presenting the correspondence between matrix theory, membranes, and
contents of type ITA string theory. This idea starts with the work of Hoppe, de Witt and
Nikolai back in 1988 [98], where a quantization of the supermembrane was performed in
terms of matrices. We shall explain this idea in detail but before doing so, let us remark
that in 1988 there was no such thing as M-theory! After Witten’s proposal [99], the eleven-
dimensional super membrane was thought of as being part of the content of the so-called
M-theory, yet in 1997 it was realised by Banks-Fischler-Shenker-Susskind [53] that there
should be a connection between matrices and supermembranes. This was established even
further by the work of [100] where DO-brane dynamics in the low energy limit, give the same
Hamiltonian as the BFSS. We present all these connections with a graphic representation
given in Fig. 3.1. As we proceed, we shall explain these ideas at a level that depends on the
effort one needs to understand the connection between them.

Quantization of the membrane

Let us then start with a historically ordered presentation and let us write an action for an
arbitrary p-brane in D-dimensional spacetime with metric given by Gyy = (—=1,1,- -+ ,1) and
p < D. As we saw and it can be easily understood a p-brane is a p-dimensional object and as
such, moving in a D-dimensional spacetime will produce a (p+1)-dimensional worldvolume.
Let us denote the p-brane coordinates as o,y = 0,--- ,p —1,6° = 7, and a local (auxiliary
on word-volume) metric denoted as h,,,. The embedding maps X M thought of as coordinates
of the spacetime that hosts the p-brane can be written in terms of the latter as

XM = XM(g0 ... o1y, (3.28)
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M-Theory 10D Yang-Mills

Compactify Compactify
We?k one nine
coupting dimension dimensions
Matrix
IIA String Theory | < > Quantum
Duality Mechanics

Figure 3.1: The correspondence between supersymmetric matrix quantum mechanics M-
theory and type ITA string theory.
and therefore the induced metric on the p-brane will be given as the pullback

Guv = GMNapXMaVXN- (3.29)
The Lorentz invariant infinitesimal world-volume element is given as

ds, = v/~ det g, P10 (3.30)

To construct the action, we shall need one more piece of information, that is the tension of
the p-brane denoted by 7},. Therefore, we end up with the quite general action

S, = —Tp/dsp =-T, / V/—det g, &P o, (3.31)

which describes any free, subject to no interactions, p-brane. The relevant case for us, is
when p = 2 yielding a membrane with action

Sy = —Tg/\/—detgﬁw d30. (3.32)

This goes along the lines of string theory analysis we did in Sec. 2.2.1, and indeed the above
action is the Nambu-Goto action for a p-brane. Similarly, we can write a Polyakov action
also by adding a cosmological term A

Sy =T} / oV —h (W g — A). (3.33)
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The difference with the Polyakov action of a string given by (2.40), is the cosmological term
A. The latter has been introduced to make the world-volume theory scale invariant since
one can check that for p # 1 there is not such invariance. In the same sense that string
theory lives in D = 10, the supermebrane does in D = 11 [73,98,101]. Using the well-known
variation

vV —hhy,, 6hH*
o0(vV—=h) = —+, (3.34)
one can find the equation of motion for the metric h,,

1 v
Juv = §h/ux (hM uv — A) . (3.35)

By tracing with h*" we get
h"uyguu =3A = Juv = Ahuy7 (336)

and substituting this into the Nambu-Goto action above we get a relation between the tension
T, and the new tension 77
2Ty = VAT, (3.37)

In fact, we see that the equations of motion for A yield the fact that the auxiliary metric
h that was introduced is the physical metric g, up to rescaling by A. The metric h,,
being three-dimensional, contains six independent components and the membrane action is
invariant under three diffeomorphisms o# — ¢'# = f#(o). This means that three components
of this metric can be fixed by using three suitable gauge choices. We can restrict ourselves
to positive curvature geometries where the membrane will be given as R x 3, where ¥ is a
Riemannian surface of fixed topology. For the case in which 3 has the topology of a sphere,
one can fix the hg, components of the metric as follows

hoq =0, (3.38)
hoo = — % det gqp- (3.39)
In this gauge, the constraints in terms of the embeddings language become
Gunoo XM, XN =0, (3.40)
GunOo XM XN = — %det Jab- (3.41)

We may note that v here is a normalisation constant that will be chosen later for convenience.
We then wish to write the Polyakov action in terms of the above terminology. The square
root yields

2
\/— det Juv = —%GMN(‘?OXME)OXN = —det gup, (3.42)
v
therefore the membrane action becomes
T: 4
Sy = % d’cdr <GMN80XM80XN - — det gab> . (3.43)
v

It is also natural to rewrite this theory in terms of a canonical Poisson bracket on the
membrane at constant 7 where {f, g} := €%, fOpg with €'2 = 1. The idea behind expressing
this action in terms of Poisson brackets will reveal its power when we will discuss the
quantization of the membrane. We also assume that the coordinates o are such, that with
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respect to the symplectic form associated to this canonical Poisson bracket the volume of the
Riemann surface X is [ d?c = 4n. In addition, when we write the pulled-back metric in a
matrix notation we can easily prove that

det gap =0, XM, XM, XN, XN — 9, XM, XM, XN o XN

1
:§{XM,XN}{XM,XN}7 (3.44)
and adopting the notation 9y XM := XM we may rewrite the action as
T Y 2
Sy = % /dch dr <XMXM — Q{XM,XN}{XM,XN}> : (3.45)
v
The equations of motion for the embeddings X are computed to be
. 4
XM= ﬁ{{XM,XN},XN}, (3.46)
while the constraints due to the gauge freedom we used on hg;, hgg become
XMy xN =0, (3.47)
. . 2
XMXy == XM XV X, Xn ) (3.48)
v

The first constraint can be expanded to write

which later on we will be calling as the Gaufl constraint.
Let us furthermore, rewrite the the above action in light-front coordinates. To this end,
we introduce

X0+ xP-1
Xt=" = (3.50)
V2
and choose the light-cone gauge
X (r,01,00) = T. (3.51)

Note that after doing this, we reduce the number of degrees of freedom from D to D — 2
since the X+ embedding is constrained by X° and X”~1. On the other hand, X~ can be
computed by solving the constraints in the same way it is done for the bosonic string theory.
The latter are

) 1 ... 1 S
X~ :§X’Xi + ?{XZ,X’}{XZ-,XZ-}, (3.52)
DX~ =X"'0,X". (3.53)
We want to bring our system to a Hamiltonian formalism. To this end we may write the
Lagrangian
Lo=—|X X7 — ={X* X 3.54
2 4 ( + 9 ta UQ{ ’ } ’ ( )

from which we can compute the conjugate momenta and Legendre transform to obtain the
Hamiltonian. This results in

(5£2 UTQ
pr =2t U2 3.55
- 4 (3.55)
Ty .
po k2 _ vTo g (3.56)
S§X+ 4
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with Hamiltonian
Hy = / d2o (P+X— 4 PoX, — 52)

o ’UT2

1. 1
2 2 2
1 d“o <2Xa + 2 {Xa, X} > . (3.57)

The remaining constraint affects the transverse degrees of freedom which furthermore satisfy
the Gauf} constraint
(X', X'} =0. (3.58)

Before we move further on, we remark on some important issues. Recalling the constraints
from eq. (3.47) we see that the Hamiltonian (3.57) is written as a sum of constraints. In
addition, the Gaufl constraint is a first-class constraint and as such, according to Dirac’s
conjecture [102], it creates gauge redundancy on the theory. In particular, there is a residual
invariance under time-independent area-preserving diffeomorphisms. These diffeomorphisms
do not change the symplectic form and thus leave the hamiltonian of the system invariant.

This system in the light-cone reminds the case of bosonic string theory, and one would
expect that the quantization will be straightforward as is usually done in string theory.
However, the fact that the equations of motion are non-linear in matrices X raises some
obvious obstacles to this procedure, and hence following the well-established technique as in
the case of string theory is not preferred. On the other hand, a particular regularization in
light-front membrane theory was found in [103] for the case where the Riemannian surface X
has the topology of a sphere S%. According to this regularisation, functions on the membrane
surface are mapped to N X N matrices, the Poisson bracket is replaced by the commutator,
the integral gives its form to a normalised trace, differentiation is performed by adjoint
commutators, and coordinates on the surface are mapped to SU(2) generators J;. The
representation of the latter is the irreducible one with maximal spin s = (N —1)/2, while the
total number of degrees of freedom N? equals the number of linearly independent polarization
tensors T}, with | < N — 1, where the latter and in the large N limit they map to the usual
spherical harmonics.

We can rephrase everything we mentioned above passing to the quantum theory as

Regularization map for the membrane

2
ga HNJG ) a = 1a 27 37 (359)
1N
Li = —ieijkl‘jak l—)[LZ, '], (361)

/d%{.} i—)% Tr {-}. (3.62)

The analysis above and the regularization map can be generalised to membranes of
arbitrary topology [104]. With this new regularization procedure, the Hamiltonian of the
membrane system reads

1

Hy = ——
2 27rl13;

1. 1
T (2 - (X X)), (3.63)
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where we have used the normalization v = N and the conventions 713 = 1 /27rlg. The
equations of motion are given as before

X'+ X7, X7, x7] =0, (3.64)
which must be supplemented with the Gaufl constraint
(X% X = 0. (3.65)

The quantization procedure of such a system with finite degrees of freedom is straightforward,
yet solving the system is still non-trivial due to the non-linearity of the equations of motions
as we mentioned. The Gaufl constraint forces the observables of the theory to be invariant
under the gauge group U(N), while the non-commutativity gives rise to fuzzy physics and
in particular the fuzzy sphere in the context of geometric quantization [105]. In the large
N limit, the fuzzy sphere approximates the continuous sphere while the group U(N — o)
gives the area-preserving diffeomorphisms on the sphere [106]. At finite N on the other
hand the matrix membrane is like a ”fuzzy” membrane which is discrete and preserves the
SU(2) = SO(3) rotational symmetry of the original smooth sphere.

The supermembrane

To make contact with M-theory, and in addition, to make our membrane well-behaved it is
necessary to use supersymmetry. Supersymmetric membrane theories can be constructed in
4,5, 7, and 11 dimensions. These theories have different degrees of supersymmetry, with 2,
4, 8, 16 independent supersymmetric generators respectively. Among these, only the latter
is free from anomalies in the Lorentz algebra. In the same sense that supersymmetric string
theory selects D = 10, for the case of the supersymmetric membrane theory this becomes
D = 11. Details about the whole construction can be found in the original work of [73],
while a review is given in [107]. The so-called, local, fermionic k-symmetry implies that
the background of the theory satisfies the equations of motion of 11D supergravity. The
construction of the supermembrane theory, follows the rules of the bosonic membrane theory
upon taking care of the various extra symmetries. Using the light-cone formalism and gauge
fixing one arrives in the supersymmetric Hamiltonian of the system

= s T (58— 10 X074 0T ), (3.66)
where a,b =1,---,D — 2 with D = 11. The 7% are 16 x 16 Euclidean SO(9) matrices and
¥ is a 16-component Mayorana spinor of SO(9). This Hamiltonian will play a major role in
what follows.

One more piece of information at this level that we will encounter later is the flat direction
problem or the membrane instability. A supermembrane which consists of N? degrees of
freedom constructing its surface will result in a continuous spectrum of its energy 2 since
one can think that these degrees of freedom combine collectively to describe the dynamics
of membrane. A more detailed explanation about this was given in [109]. This continuous
spectrum is in contrast with the string theory spectrum where the states in the Hilbert

2Note that this result holds only in the supersymmetric membrane since the bosonic membrane can have
a discrete energy spectrum [108].
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space of the string can be put into one-to-one correspondence with elementary particle-like
states in the target space. That the massless particle spectrum contains a graviton and that
there is a mass gap separating massless states from massive excitations are crucial for this
interpretation.

An instability can be realised even for the bosonic membrane with the following reasoning:

Xp«ﬁg ,&:@3) (3.67)

which gives a potential term of the form [X7, X2]? ~ 22y?. Then it is straightforward that

we consider two matrices

if either x = 0 or y = 0, the other coordinate is unconstrained, giving flat directions in
the moduli space of solutions to the classical equations of motion. In the quantum bosonic
membrane theory, the apparent instability from the flat directions is cured because of the
0-modes of off-diagonal elements. This manifests, in the above example for instance, because
if z takes a large value then y could be treated as a harmonic oscillator with a large mass. The
zero-point energy of the oscillator becomes larger as x increases, giving an effective confining
potential that removes the flat directions of the classical theory. This is actually the reason
why in bosonic membranes we have a discrete spectrum of energies. The zero-point energies
of the fermionic oscillators associated with the extra Grassmann degrees of freedom in the
supersymmetric theory conspire to precisely cancel the zero-point energies of the bosonic
oscillators. This cancellation gives rise to a continuous spectrum in the supersymmetric
matrix theory where the instability re-emerges.

Matrix theory as a second quantization

That the membrane has a continuous spectrum can be explained if we consider a second
quantised theory from the point of view of the target space. Let us consider a block diagonal

(X0
X' = hy 3.68
(0 W) (3.68)

where X and X describe matrix objects. The equations of motion for these two in the case

matrix of the form

where the block diagonal derivatives also decouple from each other result in
X' = [[X', X7), X9, (3.69)
Xt = [[X1, X7], X9). (3.70)
We can imagine now that we have two matrix objects in the diagonal with a center of mass
ﬁ:iﬁXﬁ (3.71)
N
ﬁ:%ﬂXﬂ (3.72)

which furthermore have classically independent equations of motion. The construction where
we have M of these objects is straightforward and this gives a nice, simple indication of how
matrix theory can encode, even at finite IV, a configuration of multiple objects. This idea
constructs a second quantization theory with a continuous spectrum. We can use these two
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Figure 3.2: [Left]: The original membrane picture. [Right]: This can map to a multimembrane
configuration connected by thin tubes. Each membrane corresponds to a diagonal block (M)
of the mother matrix X%,  and represents a different matrix object of the system.

matrix objects, which are separated but connected via a small tube, in a scenario when their
relative velocity is small. Then, we can arbitrarily pull them apart from each other creating
in this way arbitrarily small energy in a volume invariant way. Even if the two matrix objects
have themselves discrete energy spectrum, we can expect their combined energy to have a
continuous spectrum even when the size of the matrix is N = 2 as in the above example.
This resolves the continuous energy spectrum puzzle by considering the matrix theory as a
second quantised theory in the target space, a feature that is absent for string theory.

Matrix theory as a second quantised theory

It is possible to consider the block diagonal form of a mother matrix X}'VX N Whose
diagonal entries 2%, a = 1,--- , N describe different matrix objects. Then the equations
of motion for these objects decouple classically, and upon quantisation this constructs
a second quantised theory from the target space point of view. In the same spirit, the
membrane can be mapped topologically to a multimembrane configuration connected
by long and thin tubes (see Fig. 3.2).

3.2.2 The BFSS model: Dimensional reduction

We shall demonstrate how one arrives at the BFSS Lagrangian by dimensional reducing
D =10, N = 1 super Yang-Mills theory down to one dimension [110]. It will turn out that
this procedure generates a one-dimensional matrix quantum mechanics model which describes
the low energy dynamics of a system of N DO-branes [111].

We therefore start in D = 10 dimensions with a flat metric M~ = (—1,+1---,+1), M, N =
0,...,9. The Clifford algebra is 32-dimensional and given by {GM, GV} = 2nMN135. Having
one supersymmetry, the basic object in 10 dimensions is a 32-component complex spinor S
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which satisfies the following conditions

S=8TG":=87Cyy , Majorana condition,
(3.73)

C1oGMCyyt = (GM)T | Weyl condition,

and also G11S = S, Gi1 = GY---G°. In ten dimensions, the supersymmetric Yang-Mills
action with A/ =1 is given as

_ i 10 _1 MN E oM
S10= /d 2 Tr K TP FMN ) 2 (SG DMS) . (3.74)

We can now use the form of the covariant derivative Dyy = Oy — i[Any, ], with 4; = X;
and 9; = 0 to rewrite the fermionic part of the action in the lower dimensional space. In
particular it becomes

(S6M Dus)

1/ i -
_ = m M a
=3 (SG DH8> + 586G X, 8], (3.75)

1
2 d=10 p+1

Furthermore, the reduction of the bosonic part of the action becomes

1 1 1 1
(—4FMNFMN> = (—4FWF’“’) + Z[Xa,Xb]2 = 5 (DuXa)(D"X,),  (3.76)
d=10 p+1
Fl, =0,A, —0,A, —i[A,, A)]. (3.77)

The indices take the values p = 0,1,--- ;pand a = p+1,p+2,--- ,9. In other words, the index
w runs on the redacted dimensions while the index a runs in the transverse dimensions. This
construction is quite generic, and indeed it is a dimensional reduction of a super Yang-Mills
theory on the worldvolume of N coincident Dp-branes. We will be particularly interested in
the case of D0O-branes, i,e p = 0, resulting in a super Yang-Mills theory on the worldline of N
coincident D0O-branes. The action on the DO-branes, is given as

1

_92

1 1 1- ~
S / dt Tr <4[X,,Xj]2 -3 (DoXr) (D°Xr) + 5SGI [(X7,S] — ;S+D08) . (3.78)

Choosing a particular representation, we can write this action in a more specific form. In
particular, we will choose the representation of G in terms of Pauli (o;), and 10-dimensional
gamma matrices (I') as

G'=ioy®1yg , Gl=oyIt | I1=1,---,9. (3.79)
In addition the charge conjugation decomposes as
Cro = o1 ® Co, (3.80)

and in nine dimensions it satisfies CoI'/ Cy 1= (O™, Using the Weyl and Majorana
conditions above, the 32-component spinor & can be rewritten as a 16-component spinor
U as follows

S=2 (‘é’) , Ut =0Ty, (3.81)

Thus, the action becomes

1
g2

1 1
S /dt Tr (4[X1,Xj]2 — 5 (DoX)) (D°X;) + T CoT [ X4, W] — incgpoq:) . (3.82)
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In D = 9 dimensions, we can do a splitting * [112]

ra— —0,® 1y 0 T = 0 . 1o ® p; ,a=1,2,3i=4,---,9. (3.83)
0 0q ® 14 12 @ (pi) 0

The 4 x 4 matrices p’ satisfy
p'o T+ oo = e + P71’ = 2671, (3.84)

while the charge conjugation matrix in this representation is

o= " 102 @ 1 (3.85)
109 ® 14 0,

We can effectively work with a charge conjugation matrix Cy which equals 1g resulting in
Ut = U7, where an integration over ¥ leads to a Pfaffian Pf(CoQ) where O = —iDg +
I''[X7,-]. Therefore, the operator Cy will drop from calculations, leading to the action

1 1 1
S == /dt Tr (4[XI,XJ]2 + §(D0XI)2 + 0Tl X, v - i\IJTDO\I/> : (3.86)
g
Now using the gauge Ay = 0 such that Dy = Jy and the canonical momentum P; =
00 X1, = —iV¥, we can Legendre transform to write the Hamiltonian

H=Lm (P,0,X; + 11T 0oV — L)

g2
1 1 2 1 2 I

With some identifications, and reminding that we are in Lorentzian signature, this Hamiltonian
is equivalent to the supermembrane regularised Hamiltonian (3.66). That two different
treatments correspond to the same Hamiltonian, means that we are describing the same
system with different terminology. Indeed, this discussion, includes two routes of Fig. 3.1,
the supermembrane regularization and the dimensional reduction of super Yang-Mills theory,
while to understand the third route, we need to add gravity in the discussion.

3.2.3 An unconventional holography

Before we discuss the gravitational side, let us also comment that the Hamiltonian (3.87), and
therefore the action has a rotational SO(9) global symmetry that rotates the nine matrices
X7 among them. Indeed, we have nine N x N matrices X each of which corresponds to a
transverse direction. The idea is the following: each X ]IVX N I =1,---,9 matrix contains
information about the behaviour of D0-branes along this specific transverse direction and
taking the large NV limit equivalents to taking a big matrix X which in addition means to
gain more and more access to DO-brane dynamical behaviour. This is also considered to
be the thermodynamic limit of the system. When we want to describe on the other hand
a state corresponding to the full system containing all nine matrices we should consider a
R9N2

wavefunction ¥ € and the previously believed argument that the BFSS model can not

3This particular splitting will be usefull when we will be studying the BMN model, a parameter (mass)
deformation of the BFSS because the indices a, 4 run in SO(3) and SO(6) part of the spacetime respectively.
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be put into the traditional gauge/gravity duality gets lifted [113]. On the other hand, dealing
with this kind of wavefunctions makes the problem analytically intractable. As we will see
later, this unfortunate fact is avoided using simulations in (super)computers.

Let us comment a bit more here on the contents of the matrix X. The latter is obtained
from the dimensional reduction of super Yang-Mills theory, which by default contains a
U(N) gauge symmetry. This is even more manifest when we recall that this dimensionally
reduced theory describes/lives on the worldline of N coincident DO-branes, and on a world
(p+1)-volume of N coincident Dp-branes we can always write a U(N) gauge theory. Being
a N x N matrix, X! contains diagonal and non-diagonal elements. The interpretation is the
following [99]: diagonal elements correspond to locations of DO-branes along this particular
direction I while non-diagonal elements to open strings connecting them. This is a bit more
manifest for DO-branes, since being 0-dimensional objects they are point-like and an open
string beginning and ending on the same D0-brane becomes effectively a closed string since it
attaches to the same spacetime point. Then it is understood that positions of DO-branes give
a meaning of locality in this theory, while non-diagonal elements are non-local. Indeed, the
U(N) group indices, say i, j, are the Chan-Paton indices which can be understood as the w;;
entries of the matrix, whose interpretation is an open string connecting the i—th DO-brane
with the j—th DO0-brane. A pictorial representation is shown in Fig. 3.3 Therefore, having

NXN

Figure 3.3: A pictorial representation of the matrix degrees of freedom discussed in the main
text. The diagonal entries of the matrix correspond to positions of D0-branes while non-
diagonal entries correspond to open strings between them. Having in mind that there are
nine matrices since I = 1,--- ,9 these correspond to spatial positions of DO-branes along the
R spacetime.

access to the values of the matrix entries, we gain information for the dynamical behaviour
of the DO-branes in this I direction. It is manifest that when we consider all nine matrices
we are essentially building a ten-dimensional spacetime that contains pointlike degrees of
freedom, the DO-branes which are filling and moving in R1? spacetime. This is the intuitive
idea behind the BFSS model and we shall make it more precise as the reading time progresses.
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An unconventional holography for matrix models

In the usual gauge/gravity duality a d-dimensional gauge theory (for example a CFT)
is dual to (d + 1)—dimensional gravity (for example in AdS), in a sense that one can
build the degrees of freedom of the gravity, known as the bulk reconstruction procedure,
via the gauge field theory. This is the justification of the name holography that one
finds in the holograms of the real world where a three-dimensional structure is built
from two-dimensional surfaces. For matrix models we have a surprising situation. A
one-dimensional matrix quantum mechanical theory constructs a theory that contains
gravity in a ten-dimensional spacetime. It is indeed unconventional holography and
the construction can be summarised in Fig. 3.3.

3.2.4 The IKKT model

Let us now discuss another, yet very similar, model that is closely related to BFSS, and it
is known as the IKKT model (from the initials of the authors: Ishibashi-Kawai-Kitazawa-
Tsuchiya) [114]. Even though the main purpose of this thesis has nothing to do with this
particular model, its simple connection with BFSS makes it hard to not mention a few
words. In a precise sense, the IKKT model is the T-dual of BFSS, and while it is known
that compactifying type ITA superstring theory on a circle and performing T-duality one gets
type IIB superstring theory, it might not be so difficult to expect that a T-dual model of
BFSS should exist. On the other hand, when we perform a T-duality along the compact
circle of radius R the Dp-branes moving along the compact circle become D(p-1)-branes with
R = % in the T-dual theory?. Therefore, the type IIB, IKKT model is a model describing
D(-1)-branes, i.e D-instantons. The interpretation of this model is that there is not even a
free, dynamical parameter that we can integrate over to write an action and all the dynamical
parameters are encoded into the fields. The fields themselves, accompanied with the Laplace
(or Dirac) operator 0 and equipped with an algebra A, act on a Hilbert space H and this
spectral triplet (A, 0, H) represents a commutative /non-commutative geometry according to
Conne’s approach [115].

Rephrasing the above statements, the geometry/spacetime in the IKKT model is believed
to be precisely and entirely emergent. Now, the algebra A in the large N limit, is given by
hermitian operators, with smooth eigenvalue distributions and bounded square traces [116].
The Dirac operator gives information about the geometry of the spacetime since it is given
via background solutions while the Hilbert space is given by the adjoint representation of the
gauge group U(N).

The action itself has a very similar form as the one of the BFSS (3.86) upon omitting the
integral
1
4
This model was firstly presented by IKKT [114] in 1996. This has N' = 2 supersymmetry
between the Hermitian X ]IVX n bosonic matrices and the Hermitian U$;, ,; fermionic matrices.

1 1
Sr = 5 Tr < (X1, XJIXT, X 4 S Lo X, \Ifﬁ]) : (3.88)

The relevant indicesnow runas [ = 1,--- ;10 and a,, § = 1, -+ , 16. The fermionic field /matrix

4This can be generalised for k compact circles with the modification that we get D(p-k)-branes. For the
case of Dp-branes which are non-compact, i.e they move on the transverse directions of the compact circle we
have that Dp-branes — D(p+1)-branes.
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3.2. MATRIX STRING THEORY

provides a Majorana-Weyl representation of Spin(10) while the bosonic degrees of freedom
provide a vector representation of SO(10). The latter equips the action with this rotational
symmetry that rotates the ten matrices among each other.

As in the case of the BFSS model, the IKKT could be also obtained as a dimensional
reduction of A/ = 1 super Yang-Mills theory in D = 10 dimensions. The indices I, o, 8 could
be, in principle, generalised to describe a matrix model in arbitrary dimensionality, replacing
10 with D above.

In addition, the IIB superstring (precisely the supergravity) action can be obtained from
the IKKT model in the double scaling limit N — oo, g> — 0 while keeping § = Ng? fixed.

In Euclidean signature, however, there is an important technical problem as discussed
in [117-119]. In particular, the fermion W is a complex Weyl spinor that satisfies the Majorana
reality condition and thus it contains only in 21922 independent degrees of freedom. On the
other hand, Majorana-Weyl fermions do not exist in the Euclidean signature. The absence of
Majorana-Weyl fermions means that there is no SO(D) invariant real cycle (reality condition)
in the space of Weyl spinors, which is required to perform the integral over the complex
supermanifold. The latter is spanned by the bosonic and fermionic fields and is the space on
which the partition function is performed

ZIKKT = / [dX][dW¥]e ST, (3.89)

This integral exists in D = 10, 6,4 dimension, but the result of integration does not depend
on the choice of cycle for odd variables (spinors) [117-119].

One last, yet important point for the IKKT model is that it can be put in a computer
but in a different logic than that of BFSS, and important and fruitful paths are-and remain
to be-discovered [120-124].

Seinberg’s argument for matrix models

We return to the BFSS case. We shall demonstrate Seinberg’s argument about the BFSS
matrix model [125]. In a nutshell, the argument consists of the idea of lightlike and spacelike
compactifications. The original proposal of BFSS [53] is that the particular matrix model
with Hamiltonian (3.87) is related with M-theory in the lightcone gauge in the large N limit,
while on the other hand, the finite NV version demands the discrete light cone quantization
(DLCQ) [126]. We shall show that a lightlike compactification of M-theory, corresponds to
a spacelike compactification under certain limits. This plays a particular role to understand
the finite N correspondence considered in [126]. The spatial compactification is type ITA
superstring theory as we saw and therefore one can directly obtain the BFSS model as we
demonstrated above.

A compactification on a lightlike circle corresponds to the identification

1.10 CL'IO
ARGRC

with 219 being a spatial compact coordinate with radius R. Now the idea is that we can

|
‘;g&‘:t’

consider this as the limit of a compactification on a spacelike circle with radius R; < R
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which is almost lightlike

10 10 R2 2 10 R |, RZ
<m>~<x>+ VQ;FRS ~<$)+<W+RR\/§>. (3.91)

t t t 5

V2

In the limit Ry — 0, the lightlike circle (3.90) is obtained from (3.91) with a boosting
parameter

R R?

:7%1_7
! VR +2R? R

while the latter is related to a spatial compactification on a circle

xlO 1‘10 R,
(t)g<t)+(o>. (3.3

From this point one can actually relate the physical quantities of the two theories, the one

(3.92)

compactified on the lightlike circle and the one compactified on the spatial circle upon taking
into account the rescalings of the quantities and thus relate the two theories. Now, the
former theory is M-theory on the lightcone gauge, while the latter is M-theory compactified
on a spatial circle. From the second theory, being type IIA, we can indeed obtain the BFSS
model as we saw, and therefore we can relate it with the theory compactified on the lightlike
circle [125].

In addition, the lightlike momenta are given as

N
Pt =_, 3.94
= (3.94)
reminding the example of the Kaluza and Klein momentum on the compactification procedure.
Being a light-like circle, the value of the radius R can be changed by a boost. Hence, to discuss
physical quantities in the uncompactified theory of the lightlike compactification one cannot

simply take the R — oo limit but these are obtained by the ordered limit °
+ N
P :E:ﬁxed, N =, R— oc. (3.95)

The compactified M-theory along the circle with R radius, where R; = Va!gs becomes
ten-dimensional in the R — 0 limit. In fact, many times this is used as the definition of
the type IIA string theory. Moreover, in this limit, the low energy sector consists of DO-
branes which decouple. One way to realize this is that M-theory contains also membranes
and these, in general, can wrap the compactification circle, and in the boosted frame these
membranes become non-local while the longitudinal modes remain local. From the type ITA
point of view, the only local elements are the DO-branes. Thus, this sector decouples from
the rest of the system. The N—th Kaluza-Klein mode corresponds to /N units of momentum
R% in the compact dimension, and in this case, the U(1) sector is the R-R one form of
type IIA. Hence, we interpret DO-charge as eleven-dimensional momentum. In this way, the
arbitrary Kaluza-Klein modes on the compactified circle we described above are massless
modes and are materialized as supegravitons. Being themselves massless in the eleven-
dimensional spacetime, they appear in the ten-dimensional spacetime as pointlike DO-branes.

SWe may remind that the relevant limit for the spacelike compactification is {N, Rs, P} — oo.
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Having sketched the connection of DO-branes with supergravitons (of eleven-dimensional M-
theory), one might ask what about the rest of the objects like membrane or fivebrane? As it
is nicely explained in [65], there is no need to add extra degrees of freedom in the action to
describe also these objects, but rather they can be described via DO-branes and T-dualities.

The procedure of boosting relates the non-relativistic ten-dimensional theory of many DO0-
branes (large N) with a particular frame of the M-theory, the so-called infinite momentum
frame (IMF). Then the conjecture is that the dynamics of the D0O-branes are in one-to-one
correspondence with the Hermitian matrices of the (0 4+ 1)—dimensional Yang-Mills theory
and they describe all the contents of M-theory in this particular IMF frame®. The previous
statement holds when N is large. Further investigations have proposed that the relation
between matrix models and M-theory should hold even at finite N [126], however since the
equivalence principle breaks down for the finite N version of the theory [104], [127] it is
quite unlikely that it can be related to a smooth theory of Einstein-Hilbert gravity. On the
other hand, this might not be a real problem since, in the spirit of holography, finite N
corrections seem to correspond to quantum corrections, and from many different approaches
quantum spacetime is believed to be discrete. Thus, it is more likely that the finite N
version of the model would correspond to a (quantum corrected) gravity theory on a non-
commutative space. This is the famous statement that the analog of h in a quantum theory
with N constituents is %, in a sense that in the large N limit, this quantum theory becomes
classical.

3.3 The BMN model

A few years after the initial proposal of BFSS, it was soon realised that one can explore this
duality more. The work of Berestein Maldacena and Nastase [89] was along these lines. We
shall explain qualitatively the model and then proceed with details. The deformed model,
which we will be calling the BMN model from now and onwards is constructed by adding
terms in the action (3.86). In particular, the bosons and fermions now acquire mass terms
with mass parameter u, while the latter from the point of view of string/M-theory can be
understood as compactification flux. In addition to mass terms, there is also a new term
known as the Myers term which will be of particular importance for this model. Let us,
therefore, write the action in a common notation in the literature

1 1 1 1 1.
S = /dt Tr {2(DtXI)2 + 5% D + Z[Xf, X712 + 52%%{5[%, X7
3 1 9 " [ 3
2 a\2 . ivivk
- (2 xayz 4 ¢ ad XiXix } :
[ ( > ; +2( ) ;( ) +8w7123w+13”2k;1 63’“}

(3.96)

We certainly recognise the mass terms while the Myers term is the last term in the above
action. In addition, the 't Hooft coupling A = ¢?N is dimensionful, following from dimensional
analysis, and has dimension [\] = (energy)?, which makes the theory non-conformal. For the
BFSS model, one can create an effective dimensionless coupling

B
9ot 7= (3.97)

®Note however that the five-brane of M-theory can not be easily realized from the Matrix model [89].
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and study different regimes of the model. At strong coupling, we are in the supergravity
description while at weak coupling one can perform a perturbative analysis. The BMN
model has already a parameter that serves as energy, and this is the mass term p. Indeed,
for this case, the effective coupling is constructed as

A
gBMN . — s (3.98)

Since p is an independent, adjustable parameter of the system, it can be tuned to study
different regimes of the theory as in the BFSS case. In addition, and together with the
temperature 7' (serving as energy), they parametrize a two-dimensional phase space to be
discussed later.

Being a dimensional reduction of super Yang-Mills theory in higher dimensions, the models
(both BMN and BFSS) have an inbuilt U (V) gauge symmetry. This is known in the literature
as the Gauf} constraint (which is essentially a first-class constraint of the system) and it is
given as

G= 2;2 (2[DX°, X;] + 2[D X%, Xo] + [t ¥a]) = 0. (3.99)

The only purpose of this constraint is to force all states of the theory to be singlets under
the U(N) symmetry. From the point of view of string theory, this constraint makes gauge
invariant states to be formed by closed strings.

The indices appearing in the action are as follows, I,J = 1,---,9, a,8 = 1,---,16
while the Y™, M = 1,---,10 are ten-dimensional 16 x 16 gamma matrices which are real,
symmetric, traceless and they are subpart of the 32 x 32 ten-dimensional gamma matrices
'™ (see Sec. 3.2.2) . The matrix 703 is given in the ten-dimensional representation by

—1lo ® 1y 0
= . 3.100
Y123 ( 0 i1y ® 14) ( )

On the other hand, 1, are hermitian N x N matrices, which can be expanded as 1o, = ¥, 1",
where T" are a complete set of hermitian N x N matrices and r is a real index of the adjoint
representation of U(N). Therefore, 1 are 16 x N Majorana fermions and the model is
invariant under 16 supersymmetries. Even though the first line of (3.96) (BFSS) is invariant
under a SO(9) symmetry the second line obviously breaks this symmetry to SO(9) — SO(3) x
SO(6). In a sense, the degrees of freedom, or in other words the matrix constituents are
living exclusively in subparts of the whole space, with the first three matrices constructing
a three-dimensional space which together with the six-dimensional space created by the rest
six matrices construct the desired nine-dimensional space. The dynamical behaviour of the
models is analysed upon integrating over the time variable constructing the ten-dimensional
spacetime of string theory.

Let us discuss the vacua of this model. Being a deformation of BFSS we expect to share
some of the vacua, and indeed this is the case as we shall see. Writing the bosonic potential
terms appropriately

1 . ) 1 1 " 2 ) 1 I 2 i i ok
V ==X, X9+ S[X, XY - = <7> XXt — = (7) XX — 2 X1 X9 XPe,,
4[ Y ]+ 4[ ] 2 3 1 2 6 a 7/3 EZ]]C
1 ) J Z/L k 2 1 a b 1 K 2 a
= (XX + L) + e X' -2 (6) X, X, (3.101)
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one can easily see that there are two classes of vacua:

BMN classical vacua

There is a vacuum for which
Xt=X%=0 , 9o=0, (3.102)
and vacua for which
Xi= %J JieSU@) and X9=0 , the=0. (3.103)

Of course, these are all classical vacua and their quantum versions are expected to add
fluctuations to the classical solutions.

For completeness, we also included the fermionic matrices but they will not affect our
arguments.

Let us discuss now how to understand these solutions. The first vacuum (3.102) physically
means that all nine matrices are around the origin of the spacetime which classically takes zero
values and it is the only vacuum appearing also in the BFSS model. We shall call them the
trivial vacua (or trivial background). The second class of vacua (3.103), appears only in the
BMN model and means that the matrices which construct the three-dimensional spacetime
form structures which are furthermore placed at the center of the transverse six-dimensional
space. The structures we are talking about are of course the fuzzy spheres [105], and we
shall call them the fuzzy sphere vacua (or fuzzy sphere background). The idea behind it was
explained earlier when we were talking about the spherical membrane in 3.2.1, and indeed the
same structure appeared there since coordinates that describe the surface of the membrane
were matrix-valued and non-commuting. This made the spherical membrane appear as a
fuzzy sphere, and the same mechanism constructs fuzzy spheres in the BMN model, where
the three matrices are related with the SU(2) generators. Recalling our discussion in 2.7 and
3.2.1, it is not so difficult to imagine that the fuzzy spheres appearing in the BMN model as
vacua are related to the membrane of M-theory since an unwrapped membrane in M-theory
is interpreted as a D2-brane in type IIA string theory. If we add non-commutativity on top
of the above characteristics, then a spherical, non-commutative membrane is interpreted as
a spherical, non-commutative D2-brane, while the latter in addition can be constructed by
polarised DO-branes via the Myers effect [128,129].

The BMN model has a richer set of different vacua. Having fixed the size of the matrix
to be N, there could be many different vacua whose number is given by partitions of N [89],
i.e by a Young tableau of N rows and N columns. We can construct a big matrix which is
N x N, which can have block diagonal submatrices given by N; x N; with the index ¢ running
over the number of different blocks. Put it differently, we could have a solution which is given
as

Xizg@Jg‘,a . da=2ja+1 , a=1,--,N |, (3.104)
7

with d, being the dimensionality of the a—th SU(2) representation. Generically, we have the
following constraint

N
N=> nada, (3.105)
a=1
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with n, being the degeneracy of the d,-dimensional SU(2) representation and for n, > 1 we
have n, coincident fuzzy spheres. We shall return to this feature occasionally in what follows,
but for now let us give another piece of information related with this.

The introduction of the mass term has (mainly) a two-fold role, on one hand, it gives mass
to bosons and fermions and on the other hand, the flat direction problem of BFSS is lifted.
The latter is the apparent fact that one of the eigenvalues of one matrix X' could escape
to infinity, and indeed this is energetically free as we discussed for the case of membrane
developing spikes in 3.2.1. A more detailed discussion about this is given in [104]. Now, this
problem is absent in the BMN model because the introduction of mass terms is like putting
the BFSS model in a box. In particular, the first three dimensions which form the fuzzy
sphere background, serve as a box due to the potential terms appearing. We refer the reader
to appendix A for more details.

Note that the limit ;4 — 0 and assuming that there is no apparent, or non-trivial transition
of the model, gives immediately the BFSS model. The deformation terms become zero and
one obtains the BFSS action directly.

Motivated by the initial idea of holography and specifically AdS/CFT [130], we are
instructed to ask whether the two models above have in some sense gravity duals. However,
this holography or duality is in a precise sense not in anti-de Sitter space and not a conformal
field theory (non— AdS/non—CFT') as we shall also demonstrate. In an also precise sense, as
we showed in the dimensional reduction of the BFSS model, it is a one-to-ten correspondence
where supersymmetric quantum mechanical models are dual to specific supergravities in ten
dimensions.

3.4 The gravity duals

We expect that in the large N limit the previous models (BFSS and BMN) should have
gravity duals. Even though, a priori we do not really have any reason to believe that this
is the case, let us justify this statement now. As we described in Sec. 3.2.2 the dimensional
reduction of super Yang-Mills where we obtained the BFSS model we claimed that each
matrix contains information about D0-branes in the respective dimension. Being, dynamical
and having non-zero mass they backreact into a geometry and the question is what is the
metric that describes this geometry. The answer depends on the details of the theory and the
generic case has been introduced in [49] for generic Dp-branes. Here we will concentrate in
the case for which p = 0 but let us give more general details to understand the picture later.

To describe the gravitation dual it is usual to consider the quantum mechanical system
of N DO-branes in the limit

1 gs

/

r 2
U::J:ﬁxed y 9y =

U plays the role of a specific scale of the theory and can be regarded as e.g an energy scale.
We will imagine that when we refer to U effectively we are referring to the energy. The t’
Hooft coupling A = g}% u N controls the regimes of the duality. Large A means that we are in
the gravity region while for small A we are in the quantum mechanical region. In the limit
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(3.106) the gravity description becomes near extremal 7

ds? 1 _1 _
S —H); daf, + HU), ? AU+ /a0 a0,
dy =275 2T (7579) ,
Ay, T g2
¢ _ 2—p 2 P ~ Yeft
e’ =(2m)" P9y m <U7_p) N (3.107)

As gegr here it is the dimensionless effective coupling

A
The limit in which ten-dimensional, supergravity description is valid is given by
4
1< g2 < N7-», (3.109)

which emanates from the restriction that the dilaton should be small and the curvature of
the metric (3.107) should also be small, the latter given by

R2 1 Us-»
and Tff = <L (3.110)
€

This gegr above is actually the same as (3.97) or (3.98) if we set p = 0. Therefore, we can use
equally well g without ambiguity to describe the three different regions that characterise
the system with parameter the energy (or temperature). These are:

e For high energies we are in the perturbative regime of the quantum mechanical system
with perturbation parameter(s) (3.97) or (3.98).

e For small energies we are in the supergravity regime where we expect a black-zero
geometry of type IIA supergravity to be valid

e For even lower energies we are entering the M-theory region and the matrix black holes.

Let us elaborate more on these three different regimes giving more attention to the low energy
limit. The perturbative regime is more or less better understood and more familiar to all
readers since the constituents of the matrices, i.e the DO-branes can be regarded as harmonic
oscillators. We shall see explicit examples later on but for now let us change to the more
interesting regimes, namely the low energy regimes.

At low energies the system is characterised by the zero-brane geometry as we explain
in the next subsection and this geometry is well understood. It is the ideal test example
to compare the duality between the matrix quantum mechanics side with the gravity side,
since some analytic results are possible from both sides. Going to even lower energies we
are entering the M-theory region and the matrix black holes as we see pictorially in Fig. 3.4.
This region is less understood but let us now explain the physical meaning of the straight
line separating the type IIA description and the M-theory description.

"We report the full construction here leaving p generic, which denotes the dimensions of the Dp-brane, but
later we will be interested mainly in p = 0.
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Figure 3.4: A cartoon of the coupling and N controlling the different regimes of the
matrix quantum mechanics based on [49]. To better understand the idea we remind the
effective couplings given in equations (3.97) and (3.98). For very high energies we are in the
perturbative quantum mechanics region. Lowering the energy we are entering the type ITA
supergravity description which is a black-zero brane. Lowering even more the energy we are
entering the M-theory and matrix black holes region.

To this end, let as recall that the eleventh dimension distinguishing M-theory from type
ITA is related with the string coupling (see e.g (2.221)). The latter is also related with the
dilaton, such that via the dilaton we have an effective string coupling related with the radius
of the compact dimension via (2.221). When the dilaton is large, then keeping N and X fixed,

via (3.108) we have
7/2

Rll g E—0
\@:gsgﬁz WH > 1. (3.111)

Effectively the eleventh dimension starts opening up. As we explained below (2.221) this
procedure results in eleven dimensions, hence as one goes to very low energies one has to lift
the description up to eleven dimensions.

Therefore, we can imagine a scenario such that we keep N fixed and tune the energy
E. Then from Fig. 3.4 this corresponds to movements along the horizontal axis log geg and
taking the limit £ — 0 we are moving towards the + direction entering the M-theory region.
For every fixed IV there is a point along the straight line which transfers us from the type ITA
description to M-theory description. This transition though is not the only fate of the system,
because it could be the case that a Gregory-Laflamme type [131] of transition happens along
the eleventh compact dimension. Let us not forger after all that, if this duality is correct,
the matrix model describes a geometry boosted along the co