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Low-density lipoprotein balances
T cell metabolism and enhances
response to anti-PD-1 blockade
in a HCT116 spheroid model
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Introduction: The discovery of immune checkpoints and the development of their

specific inhibitors was acclaimed as amajor breakthrough in cancer therapy. However,

only a limited patient cohort shows sufficient response to therapy. Hence, there is a

need for identifying new checkpoints and predictive biomarkers with the objective of

overcoming immune escape and resistance to treatment. Having been associated

with both, treatment response and failure, LDL seems to be a double-edged sword in

anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the

impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing

the effects of LDL on T cell performance in tumor immunity may enable individual

treatment adjustments in order to enhance the response to routinely administered

immunotherapies in different patient populations. The object of this work was to

investigate the effect of LDL on T cell activation and tumor immunity in-vitro.

Methods: Experiments were performed with different LDL dosages (LDLlow = 50

mg/ml and LDLhigh = 200 mg/ml) referring to medium control. T cell phenotype,

cytokines and metabolism were analyzed. The functional relevance of our findings

was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade.

Results: The key points of our findings showed that LDLhigh skewed the CD4+ T cell

subset into a central memory-like phenotype, enhanced the expression of the co-

stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The

exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and

phenotypical changes were associated with a balanced T cell metabolism, in particular

with a significant decrease of reactive oxygen species (ROS). T cell transfer into a

HCT116 spheroid model resulted in a significant reduction of the spheroid viability in

presence of an anti-PD-1 antibody combined with LDLhigh.

Discussion: Further research needs to be conducted to fully understand the

impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL

effects on other lymphocytes and myeloid cells for improving anti-PD-1

immunotherapy. The reason for improved response might be a resilient, less

exhausted phenotype with balanced ROS levels.

KEYWORDS

cholesterol, LDL (low-density lipoprotein), immunotherapy, PD-1, reactive oxygen

species, CD154 (CD40L), central memory (T) CM, spheroid model
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1 Introduction

The discovery of immune checkpoints and development of their

specific inhibitors was acclaimed as a major breakthrough in cancer

therapy. Especially blocking the inhibitory receptor PD-1 on immune

cells and its ligand PD-L1 on immune and tumor cells has been

shown to be associated with an enhanced overall survival in

metastatic disease of various tumor entities. However, only a

limited patient cohort shows sufficient response to therapy (1).

Hitherto, numerous biomarkers have been described, predicting

response to checkpoint inhibition (2). Recently, cholesterol has

been newly identified as a biomarker for the efficacy of PD-1

inhibition (3–5). Consistent with our own results, Perrone et al.,

Galli et al. and Tong et al. retrospectively showed, that baseline

hypercholesterolemia was associated with better outcomes in patients

treated with anti-PD-1 checkpoint therapy. In our preliminary

exploratory approach (6), we also prospectively demonstrated a

positive association.

However, cholesterol seems to be a double-edged sword in tumor

immunity, and it`s role in the tumor environment is not fully

understood, as other authors have discussed opposing effects. Ma

et al. reported a cholesterol induced exhaustion of CD8+ T Cells in the

tumor microenvironment and furthermore, Khojandi et al. observed a

promoted resistance to cancer immunotherapy by oxidized

lipoproteins, amongst others mediated by suppression of T cell

immunity (7, 8). The reason for these seemingly paradox findings

may be due to the embedment of cholesterol in different complex

metabolic conditions. Cholesterol has been identified as a biomarker

in cachexia and the metabolic syndrome (9, 10). Furthermore,

hypercholesterolemia has been associated with atherosclerosis,

Alzheimer`s disease, cancer and may exacerbate autoimmune

diseases by inducing hyper-activated T cells (11–15).

Up to date, mainly macrophages have been perceived as a link

between cholesterol and different diseases, however there is growing

evidence for T cells also playing a crucial role (16). Although the

details of cholesterol homeostasis have been investigated mainly in

hepatocytes and macrophages, the mechanisms of cholesterol

biosynthesis, uptake, esterification, and efflux also apply to T cells

(11, 12). Furthermore, it has been acknowledged that T cells express

the LDL receptor, however it is not clear, if cholesterol uptake is

conducted exclusively via the LDL receptor (17). Cholesterol

maintains quiescence in naïve T cells and also paradoxically

regulates exit from quiescence by modulating TCR nanocluster

formation besides effecting signaling molecules (18–20). T cell

activation induces an increase of intracellular cholesterol for

proliferation, however self-regulation is secured by negative

feedback pathways (21–24). Moreover, cholesterol is also involved

in the differentiation and stabilization of the different T cell subsets.

While Th1, Th17, gdT, and cytotoxic T cells require high cholesterol

levels, Th2 cells do not (25–28). Paradoxical effects have also been

observed in Tregs and memory T cells (29, 30). There are indications

that CD8 memory T cells might require suppression of the cholesterol

pathway, while contrarily CD4 memory T cells depend upon

enhanced cholesterol levels (11, 31, 32).

So, being confronted with very paradox findings in complex

environments, we aimed to straightforwardly investigate the effects
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of cholesterol on T cell subsets. We focused on LDL, since LDL

emerged as the most significant serum lipid associated with response

to immunotherapy in our and another preceding study (6, 33).

The LDL dosages for treatment referring to medium control were

chosen according to LDL serum levels and their estimated tissue levels

in responders (LDLhigh) and non-responders (LDLlow) to anti-PD-1

checkpoint therapy (6, 34).

We analyzed the T cell phenotype, considering checkpoint

markers, activation markers, co-stimulatory markers und effector

versus memory markers. Furthermore, we investigated T cell

metabolism including mitochondrial metabolism, cholesterol

uptake, ROS accumulation, cell respiration and acidification. In

order to further explore the functional relevance of our findings in

the context of tumor immunity and PD-1 blockade, we established a

co-culture model with T cells migrating into colorectal cancer

HCT116 tumor spheroids.
2 Material and methods

2.1 Cell culture

Buffy coats from healthy donors were obtained from the

Department of Transfusion Medicine (University Hospital

Regensburg) in form of remnants from routine platelet donations.

The donations were approved by the Institutional Ethics Committee

of the University of Regensburg (vote number 13-101-0240; 13-101-

0238) and are in accordance with the Declaration of Helsinki.

CD4+ and CD8+ T-cells were isolated using MACS cell separation

kits (Miltenyi Biotec, 130-096-533 (CD4), 130-096-495 (CD8)). After

isolation, cells were stored over night at 37°C at a concentration of 107

cells per ml in RPMI 1640 medium supplemented with 2% human AB

Serum, 1% stabilized glutamine and 0,5% Penicillin/Streptomycin.

Cells were washed, counted (CASY System) and the cell

concentration was adjusted to 5x105 cells per ml using the

aforementioned medium plus 100 IU recombinant human (rh) IL-2

(PeproTech, 200-02) per ml. Either PBS (control) or LDL (Kalen

Biomedical LLC, 770200-1) was added at the indicated concentrations

and cells were seeded in 96 well U-Bottom plates. For some of the

experiments as indicated, an anti-human PD-1 blocking antibody

(InVivoMAb anti-human PD-1, Bio X Cell, BE0188) was added at a

concentration of 10 µg/ml. T cells were stimulated using CD3/28

Dynabeads (ThermoFisher Scientific, cell to bead ratio 1:1, 25 µl bead

suspension per 106 cells), incubating at 37°C for 96h. The T cells were

harvested after 48h and 96h, Dynabeads were removed and the cells

were counted using the CASY System.
2.2 Co-culture of T cells with
tumor spheroids

Spheroids were generated for 4 days on ultra-low attaching plates,

which were coated with a solution of 12 mg/ml Poly-(methacrylsäure-

2-hydroxyethylester) (poly-HEMA; Sigma Aldrich) dissolved in 95%

ethanol. 50 µl of sterile poly-HEMA solution per well was allowed to

evaporate in a sterile biosafety cabinet and dried plates were stored at
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4°C before use. Sub-confluent cultures of the highly microsatellite

instable colon carcinoma cell line HCT116 (35) were dissociated into

single-cell suspensions and subsequently, 10,000 cells in 100 µl RPMI

1640 (GIBCO, 31870-025) with 10% fetal calf serum (Sigma, F7524)

and 2 mM glutamine (PAN Biotech, P04-80100)) were seeded per

well and incubated in a humidified atmosphere (5% CO2, 95% air) at

37°C (Heraeus Incubator). For co-culture, peripheral blood

mononuclear cells were isolated by density gradient centrifugation

over Ficoll/Hypaque as described before (Andreesen et al., 1990 (36)).

T cells were isolated by magnetic bead separation (human Pan T Cell

Isolation Kit, Miltenyi Biotec, 130-096-535). T cells were cultured in

RPMI 1640 (GIBCO, 31870-025), supplemented with 10% human AB

serum (BRK, Bavarian Red Cross), 2 mM L-glutamine (PAN-Biotech,

P04-80100), essential vitamins (GIBCO, 1112037) and non-essential

amino acids (GIBCO, 11140035), 1 mM pyruvate (GIBCO,

11360039), b-mercapthoethanol (GIBCO, 31350010), 0.5%

penicillin and streptomycin (both GIBCO, 15140122) and 25 IU/

mL rhIL-2 (PeproTech, 200-02) in a humidified atmosphere (5%

CO2, 95% air) at 37°C in a Heraeus incubator. 1x106 cells T cells were

seeded in 24-well plates with indicated treatments and stimulated

with anti-CD3/CD28 Dynabeads (Thermo Fisher Scientific, 11132D)

at a cell to bead ratio of 1:1. For co-culture with tumor spheroids,

beads were removed after 48h of stimulation, T cells were washed and

0.1x106 T cells in 100 µl tumor medium supplemented with 25 IU/mL

Il-2 were added to each spheroid with indicated treatments. After 24h

co-culture, they were washed and seeded with fresh medium for live

cell imaging.
2.3 Flow cytometry

After 48h and 96h, T cells subsets were harvested, Dynabeads

were removed and the cell suspensions were partitioned into FACS

tubes. Cells were stained with Zombie Aqua Fixable Viability Kit

(BioLegend, 423102) or Zombie NIR™ Fixable Viability Kit

(BioLegend, 423106) and different surface antibodies PE anti-

CD45RO (BD, 555493), PE anti-CD154 (BD 555700), PE anti-

CD226 (BioLegend, 337106), PE anti-CD154 (BioLegend, 310806),

PE anti-BTLA (BioLegend, 344505), APC anti-TIGIT (BioLegend,

372706), APC anti-CD25 (BD, 340907), APC anti-CD69 (BD,

555533), APC anti-CD62L (BD, 559772), APC anti-CD279 (PD-1)

Antibody (BioLegend, 329908), APC anti-GITR (BioLegend, 371206),

V450 anti-CD27 (BD, 561408), FITC anti-CD28 (BD, 555728), PE

anti-CD39 (BD, 555464), FITC anti-CD44 (BioLegend, 397518),

FITC anti-CD95 (BD, 561975), FITC anti-CD134 (OX40)

(BioLegend, 350006), BV421 anti-CD137 (BioLegend, 309820), PE-

Cy7 anti-CD223 (LAG-3) (eBioscience, 25-2239-42), PerCP-Cy5.5

anti-CD244 (BioLegend, 329515), PE-Cy7 anti-PD-L1 (BioLegend,

329717), PE-Cy7 anti-ICOS (BioLegend, 313519), PE-Cy7 anti-

CD366 (Tim-3) (BioLegend, 345013), PE-Cy7 anti-Granzyme B

(BioLegend, 396410), BV421 anti-CTLA-4 (Biolegend, 369606),

BV421 anti-Perforin (BioLegend, 353307), APC anti-LDLR (R&D

Systems, FAB2148A), APC anti-FOXP3 (eBioscience, 17-4776-42),

Pacific Blue anti-CD8 (BD, 558207), BV510 anti-PD-1 (BioLegend,

329932), BV510 anti-CD3 (BioLegend, 317332), BV605 anti-CD3
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(BioLegend, 317322), BV711 anti-CD4 (BD, 563028) following the

manufacturer instructions. Flow cytometry data were acquired using

the Fortessa System (BD) or Celesta System (BD). Data were analyzed

using FlowJo (v10.8.1).
2.4 Single-cell metabolic assays

Cytosolic reactive oxygen species (ROS) were determined after

surface marker staining by applying 10 µM 2′,7′-dichlorofluorescin
diacetate (Sigma Aldrich, D6883) for 20 minutes in a cell culture

incubator at 38°C in FACS wash buffer in air tight tubes. Cells were

washed with 3 ml cold PBS, resuspended in FACS wash buffer and

measured immediately.

Mitochondrial content was assessed by staining with MitoTracker

Green FM (Thermo Fisher Scientific, M7514). Cells were incubated

with 15 nM MitoTracker and 1.3 µM cyclosporine A in RPMI1640

supplemented with 2 mM L-Glutamine for 1 hour at 37°C in a cell

culture incubator. Surface staining was performed afterwards.

Tetramethylrhodamine methyl ester (TMRM) (Thermo Fisher

Scientific, T668) is a membrane-permeable, cationic, red-orange

fluorescent dye that is enriched in active mitochondria. Cells were

incubated with 10 µM TMRM and 1.3 µM cyclosporine A in

RPMI1640 supplemented with 2 mM L-Glutamine for 30 minutes

at 37°C in a cell culture incubator. Surface staining was

performed afterwards.

Cholesterol was determined by Filipin staining after surface

marker staining by adding 50 µg/ml Filipin in 500 µl PBS for 45

minutes at room temperature. Cells were washed with FACS wash

buffer, resuspended, and measured immediately.
2.5 ELISA

After 48 hours and 96 hours, cell cultures were harvested,

centrifuged (7 min, 1300 PRM (300g) at 4°C) and the supernatants

were stored at -20°C. Supernatants were thawed and subsequently

TNFa, INFg, IL-4, IL-7, IL-10, IL-15 and IL-17 concentrations were

analyzed using the equivalent ELISA-kits (Human DuoSet ELISA

R&D Systems, IFNg DY285B, TNF-alpha DY210, IL-4 DY204, IL-7

DY207, IL-10 DY217B, IL-15 DY247, IL-17 DY317). ELISAs were

performed following the manufacturer instructions.
2.6 Monitoring of oxygen consumption and
pH in-vitro

Cellular oxygen consumption and pH levels in culture medium

were determined non-invasively by the PreSens technology (PreSens

Precision Sensing GmbH). 0.8x106 T cells with anti-CD3/CD28

Dynabeads (with a cell to bead ratio of 1:1, Thermo Fisher

Scientific) were seeded in 24-well OxoDish® OD24 plates without

fixation in 1 mL medium under cell culture conditions for the

indicated period of time. Data were analyzed using PreSens

SDR_v38 software.
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2.7 Real-time live cell imaging

After 24h co-culture with pre-activated T cells, spheroids were

washed and transferred to a fresh 96-Well Poly-HEMA plate with 200

µl RPMI 1640 (GIBCO, 31870-025), 10% fetal calf serum (Sigma,

F7524), 2 mM glutamine (PAN Biotech, P04-80100)) and 25 IU/ml

IL-2, and labelled with 20 µl/ml Cyto3D™ Live-Dead Assay Kit dye

(TheWell Bioscience, BM01). Plates were incubated in the Incucyte

ZOOM live-cell imager (Essen Bioscience, Welwyn Garden City, UK)

at 37°C and 5% CO2 and images were acquired (4x or 10x objective)

at the indicated time points. Data were analyzed with the Incucyte

ZOOM 2020B software (Essen Bioscience) by creating a threshold-

based mask for the calculation of the green object total area (GOTA)

of viable cells (green = viable, red = dead).
2.8 Statistical analysis

Depending on normal or non-normal distribution, RM one-way

ANOVA with Geisser-Greenhouse correction and Dunnett`s

multiple comparison test or Friedman test with Dunn`s multiple

comparison test was performed. Significance was indicated as p < 0.05

*, p < 0.01 **, p < 0.001 *** referring to control. Data were corrected

for multiple testing according to Benjamini and Hochberg as

indicated (retrieved from https://statistikguru.de/rechner/

adjustierung-des-alphaniveaus.html).
3 Results

3.1 Presence of LDLhigh balances the
metabolic activity in CD4+ and CD8+ T cells

Kishton et al. acknowledged effector T cells to exhibit an

enhanced metabolic activity in-vitro, characterized by a high

glycolytic activity and reactive oxygen species (ROS) production,

resulting in a strong proliferation and cytokine production during

expansion. However, upon in-vivo transfer, these cells showed a poor

persistence and anti-tumor activity.

On the contrary, T cells exhibiting a balanced metabolic activity

and a memory phenotype in-vitro were associated with a high anti-

tumor activity and increased persistence in-vivo (37, 38).

Furthermore, Gicobi et al. recently demonstrated that resilient T

cells, which were resistant in a harsh tumor microenvironment and

responsive to immunotherapy, compensated for excessive ROS to

maintain metabolic fitness and preserve high cytotoxic capacity (39).

Therefore, we were intrigued to see, if the presence of LDLhigh was

linked to a balanced T cell metabolism.

T cells were freshly isolated and stimulated with anti-CD3/CD28

beads, IL-2 and treated with different LDL dosages (LDLlow = 50 µg/

ml and LDLhigh = 200 µg/ml) versus medium control. We analyzed T

cell proliferation, mitochondrial metabolism, intracellular cholesterol,

acid production, respiration, and ROS accumulation (Figure 1,

Supplemental Data S3, 6, 8, 9 statistics and data points).

T cell oxygen consumption was significantly reduced in the

presence of LDLhigh, indicating a reduced turnover by oxidative

phosphorylation. Furthermore, the CD4+ T cell subset showed less
Frontiers in Oncology 04
acidification by trend, however glycolytic activity was preserved

(Figures 1A–H).

T cell proliferation was strongly impaired by LDLhigh after 96 h,

cell counts x 105/ml hardly differed from pre-proliferation cell counts

after 48 h (Figures 1I, J).

ROS accumulation was significantly reduced at both time points

in both subsets (Figures 1K, L). However, we did not find any

significant differences in the entire CD4+ and CD8+ T cell subset,

respectively, concerning the mitochondrial mass, the mitochondrial

membrane potential and intracellular cholesterol after 48 h and 96 h

(Supplemental Data 3 and 6).

The synopsis of the findings provided strong indications for a

balanced metabolism in the presence of LDLhigh in both T cell subsets.

As a balanced metabolic activity has been associated with a central

memory phenotype, we investigated for a phenotypical shift in the T

cell subsets (37).
3.2 LDLhigh induces a central memory
phenotype in the CD4+ T cell subset

Central memory T cells (TCM) have been shown to exhibit a

superior persistence and anti-tumor immunity compared to effector

memory T cells (TEM) (40). TCM were associated with a favorable

prognosis in oral squamous cell carcinoma and gastric cancer.

Furthermore, a predominance of TCM predicted response to

checkpoint therapy in Merkel cell carcinoma (41–43).

CD4+ and CD8+ T cells were stimulated with activating beads and

IL-2 in the presence of medium control, LDL 50µg/ml (LDLlow) or

LDL 200µg/ml (LDLhigh), respectively. Memory markers were

analyzed after 48 h and 96 h.

CD4+ T cells shifted toward CD45RO+ CD62L+ central memory

phenotype in the presence of LDLhigh after 96 h (Figure 2A).

We also observed a trend towards a TCM phenotype in the CD8+

subset after 96 h, however the data were not significant. No effects

were seen after 48 h.

A preliminary experiment also revealed the up-regulation of

CD45RO+ CCR7+ cells in the CD4+ T cell subset by LDL

(Figure 2C), however there was only a limited fraction of CD62L/

CCR7 double positive cells (Figure 2D), which may be traced back to a

mixed memory phenotype and alternatively shedding of CD62L

(44, 45).

Furthermore, completing the phenotype, the expression of CD44

was significantly enhanced by LDLhigh in the CD4+ subset after 96 h

(Figure 2E). Besides its function as an activation marker and high

expression on memory cells, CD44 can promote survival and memory

cell development in Th1 cells (46). No effects were seen regarding the

expression of CD27, CD28 and FOXP3. T cells were mostly positive

for CD27 and CD28, and FOXP3 was barely expressed under all

conditions (Supplemental Data S1–5: FACS gating, statistics and

data points).

In a further step, we investigated the impact of LDL on memory

cell-modulating cytokines. IL-21 has been associated with the

induction of a central memory phenotype (47, 48) and IL-7 and IL-

15 have been linked to maintenance of a long-term memory survival

(49). Autocrine production of IL-7 and IL-15 has been reported (50,

51). Moreover, IL-10 has been linked to suppression of memory
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development and memory cell responses (52, 53). We could not find

any evidence for memory cell induction and maintenance by IL-21,

IL-7 and IL-15. Secretion of IL-21 was downregulated and IL-7 and

IL-15 could not be detected in the presence of LDLhigh.

However, secretion of IL-10 was significantly impaired by

LDLhigh, possibly thereby enabling memory formation (Figure 2F,

Supplemental Data S6, 7).
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Besides downregulation of ROS and shift towards of a central

memory phenotype, the mitochondrial membrane potential has been

acknowledged to identify cells with a balanced metabolism and an

enhanced stemness for cellular therapy (54). Subtyping for TCM

phenotype after 96 h revealed a significant reduction of the

mitochondrial membrane potential in the CD8+ subset (Figure 2B),

perhaps indicating resilient T cells with a high cytotoxic capacity (39).
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FIGURE 1

In the presence of LDLhigh, oxygen consumption, cell proliferation and reactive oxygen species (ROS) accumulation were significantly reduced in both T
cell subsets. T cells were freshly isolated and stimulated with anti-CD3/CD28 beads, IL-2 and treated with different LDL dosages (LDLlow = 50 µg/ml and
LDLhigh = 200 µg/ml) versus medium control. Respiration: [(A) CD4+, (B) CD8+] LDL significantly down-regulated oxygen consumption after 48 h (CD4+

n = 6, CD8+ n = 4) in both T cell subsets. [(C) CD4+, (D) CD8+] Representative illustration of the detection of oxygen concentration over 48 h in both T
cell subsets by PreSens technology. pH: [(E) CD4+, (F) CD8+] The CD4 subset showed a reduced acidification in the presence of LDLhigh by trend,
however no significance. [(G) CD4+, (H) CD8+] Representative illustration of the pH detection over 48 h in both T cell subsets by PreSens technology
Proliferation: [(I) 48 h, (J) 96 h] Proliferation, shown as counts x 105/ml, was significantly restrained in both T cell subsets by LDLhigh after 96 h. ROS: [(K)
48 h, (L) 96 h]. Accumulation of ROS was significantly reduced after 48 h and 96 h by LDLhigh in both T cell subsets (CD8+ 48 h not significant).
Depending on normal or non-normal distribution, RM one-way ANOVA with Geisser-Greenhouse correction and Dunnett`s multiple comparison test or
Friedman test with Dunn`s multiple comparison test was performed. Significance was indicated as p < 0.05 *, p < 0.01 **, p < 0.001 *** referring to
control. Data were corrected for multiple testing according to Benjamini and Hochberg.
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In a further step we also investigated phenotypical changes

concerning exhaustion, activation, and co-stimulatory surface

markers (Table 1).
3.3 Presence of LDLhigh is associated with a
less exhausted phenotype in CD4+ and
CD8+ T cells besides upregulation of the
co-stimulatory marker CD154 (CD40L) in
the CD4+ T cell subset

CD4+ and CD8+ T cells were stimulated with activating beads and

IL-2 in the presence of medium control, LDL 50µg/ml (LDLlow) or
Frontiers in Oncology 06
LDL 200 µg/ml (LDLhigh), respectively. Surface checkpoint markers,

costimulatory markers and activation markers were analyzed after

48 h and 96 h.

In the group of checkpoint markers, LDLhigh induced a significant

down-regulation of the fraction (%) of PD-1 positive cells in both T

cell subsets after 48 h and in the CD4+ subset also after

96 h (Figure 3A).

The expression (MFI) of PD-1 was significantly reduced in the

CD4+ subset after 48 h and in both subsets after 96 h (Figure 3B). The

fraction (%) of LAG-3+ T cells was significantly reduced in both T cell

subsets after 96 h (Figure 3C), the expression (MFI) of LAG-3 was

reduced temporarily in the CD4+ subset after 48h. High expression of

PD-1 and LAG-3 have been shown to be associated with a loss of T
A B

D

E F

C

FIGURE 2

LDLhigh significantly enhanced the fraction of CD4+ T cells with a central memory (TCM) phenotype after 96 h. CD4+ T cells were freshly isolated and
stimulated with anti-CD3/CD28 beads, IL-2 and treated with different LDL dosages (LDLlow = 50 µg/ml and LDLhigh = 200 µg/ml) versus medium control.
(A) LDLhigh significantly enhanced the fraction of CD45RO+/CD62L+ cells in the CD4+ T cell subset after 96 h. Representative FACS plots present the
percentage of CD45RO+ and CD62L+ cells in the presence of medium control versus LDLhigh. (B) TMRM was reduced in CD8+ T cells with a central
memory-like phenotype in the presence of LDLhigh. (C,D) Additional, preliminary experiment, demonstrating the upregulation of CCR7 (C) and the
fraction of CCR7/CD62L double positive cells (D) in the presence of LDL 150 µg/ml in the CD4+/CD45RO+ subset. Representative FACS plots present the
percentage of CCR7+ and CD62L+ cells in the presence of medium control versus LDL 150 µg/ml. (E) The expression of CD44 was significantly
enhanced in the presence of LDLhigh. A representative FACS histogram illustrates the Mean Fluorescence Intensity (MFI) for CD44. (F) The secretion of IL-
10 was significantly reduced in the presence of LDLhigh. ELISA data (pg/ml) normalized to control. Depending on normal or non-normal distribution, RM
on-way ANOVA with Geisser-Greenhouse correction and Dunnett`s multiple comparison test or Friedman test with Dunn`s multiple comparison test
was performed. Significance was indicated as p < 0.05 *, p < 0.01 ** referring to control. Data were corrected for multiple testing according to Benjamini
and Hochberg if indicated..
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FIGURE 3

The exhaustion markers PD-1 and LAG-3 were down-regulated in the presence of LDLhigh (here shown for the CD4+ subset after 96 h) and the
costimulatory marker CD154 (CD40L) was upregulated in the CD4+ T cell subset. T cells were freshly isolated and stimulated with anti-CD3/CD28 beads,
IL-2 and treated with different LDL dosages (LDLlow = 50 µg/ml and LDLhigh = 200 µg/ml) versus medium control. PD-1: LDLhigh significantly reduced the
fraction (A) of PD-1+ cells and the expression (B) of PD-1 on the CD4+ T cell subset after 96 h. Representative FACS plots and histograms are presented
(A,B). LAG-3: LDLhigh significantly reduced the fraction of LAG-3+ cells in the CD4+ T cell subset after 96 h. Representative FACS plots are presented (C).
CD154: The fraction of CD154 (CD40L) positive cells (D) and the expression (E) of CD154 was significantly enhanced in the presence of LDLhigh in the
CD4+ subset. Representative FACS plots and histograms are presented (D,E). Depending on normal or non-normal distribution, RM one-way ANOVA with
Geisser-Greenhouse correction and Dunnett`s multiple comparison test or Friedman test with Dunn`s multiple comparison test was performed.
Significance was indicated as p < 0.05 *, p < 0.01 ** referring to control. All data were corrected for multiple testing according to Benjamini and
Hochberg.
TABLE 1 Summary of all surface markers analyzed on CD4+ and CD8+ T cells after stimulation for 48 h and 96 h.

Surface Markers: Checkpoint Costimulatory Activation Others

CD39 CD27 CD25 CD45RO/CD62L and CD44

CD244 CD28 CD69 FOXP3

CTLA-4 CD137 CD95

LAG-3 CD154 LDLR

PD-1 CD226

PD-L1 GITR

TIGIT ICOS

TIM-3 OX40

BTLA
F
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These markers and their functions were considered potentially relevant in the context of immunotherapy.
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cell function (55–58). Downregulation of these exhaustion and

suppression markers, especially LAG-3, may enhance the efficacy of

PD-1 blockade (59–61).

Intriguingly, in the presence of LDLlow, but not LDLhigh, PD-L1

was significantly up-regulated in the CD4+ subset after 48 h and 96 h.

Although the expression of PD-L1 on CD4+ T cells was associated

with an improved PFS in NSCLC patients (62), PD-L1 signaling on

human memory CD4+ T cells induced a regulatory phenotype (63).

The expression of all other checkpoint markers was not significantly

affected by LDL (Supplemental Data S1–5).

In the group of co-stimulatory markers the fraction and

expression of CD154 (CD40L) was significantly up-regulated in the

CD4+ T cell subset after 96 h (Figures 3D, E). Interaction of CD154

with CD40 has been demonstrated to mediate anti-tumoral immune

responses by enhancing the immunogenic cell death of tumor cells,

activation of antigen presenting cells, production of proinflammatory

factors, co-stimulation of CD4+ and CD8+ T cells, and the tumor cell

susceptibility to T cell lysis (64, 65).

After 48 h, OX40+ T cells were temporarily reduced in the CD4+

subset under both conditions containing LDL, however no differences

were seen after 96 h. The expression of all other co-stimulatory markers

was not significantly affected by LDL. Furthermore, in the group of

activation markers and other markers, expression of CD25 and the LDL

receptor were temporarily impaired and CD95 temporarily up-regulated

under both conditions containing LDL referring to control after 48 h. No

differences were seen after 96 h (Supplemental Data S1–5).
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As the T cells exhibited a less exhausted phenotype, we were also

intrigued to investigate cytokine secretion. In monoculture, we could

not reveal any significant differences for IFNg, TNFa, granzyme B, IL-

17 and IL-4, however the production of perforin was enhanced in

both T cell subsets by trend (Supplemental Data S3, 6, 7).

To complete our understanding of the phenotypical und

functional alterations induced by LDL, we investigated in a further

step functional properties in a spheroid model.
3.4 LDLhigh augments checkpoint blockade
in a tumor spheroid co-culture model

Spheroids were generated for 4 days. In parallel, T cells were pre-

activated with anti-CD3/CD28 beads and IL-2. After 2 days of

stimulation with anti-PD-1, LDLhigh or LDLhigh + anti-PD-1 versus

medium control, T cells were added to the spheroids and allowed to

infiltrate for 24 h. Subsequently, the co-cultured spheroids were

stained with a viability dye (red = dead, green = viable).

Fluorescence was monitored for further 48 h (Figure 4,

Supplemental Data S10, Video S1).

We did not find any significant differences concerning viability

subsequently to the sole addition of an anti-PD-1 antibody or LDLhigh

in comparison to medium control. However, combination of

LDL200µg/ml with an anti-PD-1 antibody induced a significant

reduction of the normalized spheroid green object total area
A

B DC

FIGURE 4

Referring to control, viable cells were significantly reduced in the HCT116 spheroid tumor model in the presence of LDLhigh in combination with an anti-
PD-1 antibody. Tumor spheroids were generated for 4 days with HCT116 colon carcinoma cells. T cells were freshly isolated and stimulated with anti-
CD3/CD28 beads, IL-2 and treated with anti-PD-1, LDLhigh or LDLhigh + anti-PD-1 versus medium control. After 48 h, T cells were added to the tumor
spheroid and co-cultured for further 24 h. For Incucyte life cell imaging system, spheroids were washed, stained with a viability dye and fluorescence
was then monitored under culture conditions for further 24 h – 48 h (cumulative T cell stimulation time 96 h – 120 h). (A) Spheroid co-culture
experimental scheme. Created with BioRender.com. (B) Representative picture of spheroids after 24 h live cell imaging. Red = dead, green = viable.
(C, D) Quantification of the green object total area (GOTA), which determines viable cells after 24 h (C) and 48 h live cell imaging (D). Depending on
normal or non-normal distribution, RM one-way ANOVA with Geisser-Greenhouse correction and Dunnett`s multiple comparison test or Friedman test
with Dunn`s multiple comparison test was performed. Significance was indicated as p < 0.05 *, p < 0.01 ** referring to control. ns, not significant.
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(GOTA, representing viable cells) compared to medium control after

24 h and 48 h (Figures 4C, D; n = 5).
4 Discussion

Recently, a debate has been launched on the impact of cholesterol

in anti-PD-1 immunotherapy. As the tumor environment is mostly

acidic, hypoxic, and glucose-deficient, lipids remain as an important

source of energy for tumor cells and immune cells. However, lipid

metabolism is exhibiting contradictory roles in tumor immune

response and besides other lipids, cholesterol emerges as a double-

edged sword in tumor immunity (66). In the context of cholesterol

and immunotherapy, an association with response (3–6) to therapy

versus treatment failure (7, 8) was delineated. Other authors

interpreted the chain of causation differently and discussed chronic

inflammation in first place, inducing T cell exhaustion, thus leading to

cancer and hypercholesteremia as part of the metabolic syndrome, the

latter again enhancing T cell exhaustion in the sense of a vicious

circle (67).

So, being confronted with very paradox findings in complex

environments, we aimed to straightforwardly investigate the effects

of LDL on T cell subsets. We focused on LDL, since LDL emerged as

the most significant serum lipid associated with response to

immunotherapy in our and another preceding study (6, 33).

The LDL dosages for treatment referring to medium control were

chosen based on LDL serum levels and their estimated tissue levels in

responders (LDLhigh) and non-responders (LDLlow) to anti-PD-1

checkpoint therapy (6, 34). In-vitro, we observed the enhancement

of a central memory phenotype, downregulation of IL-10 secretion

and up-regulation of CD40L in the CD4+ T cell subset. A balanced

metabolism, indicated by lowered ROS levels, a preserved glycolytic

flux, and a less exhausted phenotype under T cell activation were

acknowledged in both T cell subsets, however a significant

downregulation of the fraction of both, PD-1 and LAG-3 after 96 h,

was only observed in the CD4+ subset. All potentially beneficial effects

were merely significant (or more pronounced) in presence of LDLhigh.

T cell transfer into a colorectal cancer HCT116 spheroid model

revealed a significant reduction of the spheroid viability in presence

of LDLhigh plus anti-PD-1.

Zuzao et al. have shown that functioning CD4 immunity is

essential for response to anti-PD-1 checkpoint therapy. Patients

with a high proportion of CD4+ T cells with a central memory

phenotype and a low PD-1/LAG-3 co-expression, were responsive to

immunotherapy and moreover, a functional CD4 immunity

supported the recovery of CD8 immunity, by, amongst others,

secreting IFNg and priming dendritic cells via CD40L (59, 68).

These findings have been confirmed by further studies, also

considering tumor infiltrating TCM and TCM related genes (41–43).

The phenotype described by Zuzao et al. is nearly identical to the

effects we have seen, however under our conditions (presence of LDL

and stimulation) the T cells were mostly positive for CD27 and CD28

as also described by Liu et al. (40). Furthermore, Zuzao et al. did not

describe the expression of CCR7 or CD44.

Besides IL-7 and IL-21, IL-15 is one of the commonly known

memory inducing cytokines. Interestingly, during CAR T cell

development, addition of merely IL-15 enhanced similar beneficial
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effects, amongst others reduction of exhaustion, the preservation of a

less differentiated memory cell phenotype and a superior anti-tumor

response in-vivo (69). Analysis of memory inducing cytokines was

negative in our experimental setting, however further investigation of

the LDL induced signaling cascade might be expedient and moreover,

the strongly impaired secretion of IL-10 may enable memory

phenotype formation.

Moderate levels of ROS, generated from mitochondria and

NADPH oxidases were shown to be crucial for T cell signaling,

however excess amounts of ROS resulted in mutation and cell damage

and were furthermore associated with T cell exhaustion and

immunosuppression in the tumor milieu. Cellular anti-oxidants

have been reported to be essential for maintaining anti-tumor

immunity. TCM express higher anti-oxidant levels than TEM,

enabling an enhanced control of tumor growth (70–72). In

presence of LDLhigh we observed significantly reduced ROS levels,

however maybe also due to the moderated oxygen consumption and

presumably decreased oxidative phosphorylation (OXPHOS). A more

resilient, less exhausted phenotype and cytotoxic capacity of T cells

have been shown to be determined by balancing ROS (39).

However, observing further metabolic features of central memory

induction, we were not able to detect a significantly enhanced

mitochondrial mass or a lower mitochondrial membrane potential

in the treated T cell populations, maybe due to incubation time or

alternatively to culture conditions. Merely subtyping CD8+ T cells for

a CM-like phenotype revealed a significantly reduced mitochondrial

membrane potential after 96 h. Further research should be conducted,

to define the spare respiratory capacity and the role of OXPHOS and

fatty acid oxidation (FAO) in LDL treated T cells (37, 73).

Nevertheless, the state of the LDLhigh treated T cells induced a

superior anti-tumor effect in the HCT116 spheroid model.

Mechanisms, how CD4+ T cells can contribute to anti-tumor

immunity have been described. Growth arrest of cancer cells can be

achieved by inducing senescence through cytokines like IFNg.

Furthermore, CD4+ T cells can induce direct cytotoxicity in MHC

II expressing tumor cells (74). Similarly, CD40L can develop cytotoxic

effects via CD40 (75). Cytotoxicity via CD40 could be an imaginable

mechanism in this model, as HCT116 has been shown to express

CD40 (76) and the CD4+ subset significantly up-regulated CD40L.

Upregulation of CD154 has already been acknowledged on

platelets in hypercholesteremia (77). Familiar functions associated

with CD154 are of anti-tumorigenic nature, ranging from stimulation

of antigen presenting cells, activation of immune effector cells,

favorable modulation of the tumor environment, enhancement of

the immunogenicity of malignant cells, besides the already mentioned

direct action against tumor cells by inducing their apoptosis.

Furthermore, the CD40-CD40 ligand pathway plays a critical role

during rescue of exhausted CD8 T cells (78). Stimulation of this

pathway is under consideration for immunotherapy (79). However, as

a ligand to newly identified integrins, CD154 may also play a role in

cancer pathogenesis, which may be one of the reasons for paradox

effects seen with high cholesterol levels in immunotherapy (80).

Furthermore, concerning the paradox effects of cholesterol in

literature, LDL also induces potentially inhibitory markers on the T

cell subsets and depending upon ligand or receptor expression in the

tumor milieu they may have an immunosuppressive effect, or be of no

consequence. A significant up-regulation of PD-L1 was identified on
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the CD4+ subset under the LDLlow condition, however also by trend

in the presence of LDLhigh. As already mentioned, PD-L1 signaling on

CD4+ memory cells by cross-linking was demonstrated to evoke

highly suppressive cells (63), however the expression of PD-L1 on

immune cells can on the other hand be predictive of response in some

tumor entities (81). For instance, patients with a higher proportion of

PD-L1+ T cells at baseline had an improved objective response to PD-

1 inhibitor therapy in melanoma and lung cancer (82).

Also, TIGIT was up-regulated in both T cell subsets in the

presence of LDLhigh by trend. Although the upregulation of TIGIT

can exert immunosuppressive features in tumor immunity (83, 84),

literature revealed TIGIT+ CD8+ subsets with cytotoxic

properties (85).
5 Conclusions

In this study we showed that LDL skewed human CD4+ T cells

into a memory phenotype, balanced T cell metabolism and reduced

exhaustion marker expression in both subsets besides inducing the

up-regulation of the co-stimulatory marker CD40L in the CD4+

subset. The changes resulted in an enhanced anti-tumor response

in a HCT116 spheroid model under combination therapy with

LDLhigh and an anti-PD-1 antibody.

Further research should be conducted to achieve more

understanding regarding changes in T cell metabolism and cell

signaling by LDL. Moreover, also the effect of LDL on other

lymphocyte populations and myeloid cells needs to be unraveled, in

order to sufficiently optimize immunotherapy and adoptive cell

transfer. Finally, also the effect of HDL on T cell function and

metabolism in immunotherapy has not been understood and needs

to be investigated.
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