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1 Introduction

The possibility to obtain the xB dependence of the parton distribution functions (PDFs)
from lattice calculations has dragged a lot of attention in recent years (see [1–3] for a review).

Since lattice gauge theory is formulated in Euclidean space, the direct calculation of
the PDFs would be impossible for objects that are defined through the light-cone matrix
element of gauge-invariant bi-local operators. For this reason, it is convenient to consider
equal-time correlators and perform the Lattice analysis in coordinate space through the
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Ioffe-time distributions [4–7]. Other coordinate-space based approach include, for example
the “good lattice cross sections” [8, 9]. Taking the Fourier transform in momentum space,
one may introduce the quasi-PDF [10] or the pseudo-PDF [11–14].

The PDFs are extracted from the quasi-PDFs in the infinite-momentum limit P →∞
with higher twist corrections expected to come in as inverse powers of P [2, 10]. From
the pseudo-PDFs, instead, the PDFs are extracted in the short (longitudinal) distance
limit [11–13].

Lattice calculations provide values of the Ioffe-time distributions for a limited range of
the distance separating the bi-local operators. In order to perform the Fourier transform
for the quasi-PDF or the pseudo-PDF, it is then necessary to extrapolate the large-distance
behavior [4, 5, 7].

In this work the goal is to study the behavior of the Ioffe-time distribution at large longi-
tudinal distances as well as the low-xB behavior of the quasi-PDF and pseudo-PDF. To this
end, we will adopt the high-energy operator product expansion (HE-OPE) formalism (see [15]
for a review) which, being formulated in coordinate space, is suitable to reach our goal.

Using the light-ray operators, obtained as analytic continuation of local twist-two
operators [16–20], we will calculate the behavior of the leading twist (LT) and next-to-
leading twist (NLT) contributions for the gluon Ioffe-time distribution at large longitudinal
distances as well as for the pseudo-PDF and quasi-PDF at low-xB , and compare them with
the behavior given by the BFKL resummation result.

The paper is organized as follow. In section 2 we define the dimensionless gluon
Ioffe-time distribution, the pseudo-PDF, and quasi-PDF. The high-energy operator product
expansion is reviewed in section 3. In section 4 we provide the numerical values of the
parameter used throughout the paper. In section 5 we obtain the large longitudinal distance
behavior of the Ioffe-time gluon distribution, and in section 6 we obtain the LT and NLT
corrections. The gluon pseudo-PDF and the quasi-PDF at low-xB are obtained in sections 7
and 8 respectively. In section 9 we summarize our findings.

2 Ioffe-time distribution, pseudo-PDF, and quasi-PDF

In references [21, 22] the gluon matrix element with open Lorentz indexes was decomposed
in terms of six independent tensor structures built from the proton momentum Pµ, the
coordinate zµ and the antisymmetric tensor gµν as follow

Mµα;λβ ≡ 〈P |Gµα(z)[z, 0]Gλβ(0)|P 〉
= I1µα;λβMpp + I2µα;λβMzz + I3µα;λβMzp

+ I4µα;λβMpz + I5µα;λβMppzz + I6µα;λβMgg , (2.1)

where the explicit expression of tensor structures Ii with i = 1, . . . , 6 can be found in [21].
The amplitudesM are functions of the invariants z2 and z · P .

The light-cone gluon distribution is determined from gαβ⊥ M+α;+β(z+, P ) with z taken
on the light-cone and proportional to the invariant amplitudeMpp

gαβ⊥ M+α;+β(z+, P ) = 2(P−)2Mpp(z · p, 0) . (2.2)

– 2 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
4

Here we introduced the light-cone coordinate x± = x0±x3
√

2 , and light-cone vectors nµ and
n′µ such that n · n′ = 1, n · x = x− and n′ · x = x+.

The gluon PDF Dg(xB) is then related to the amplitudeMpp by

Mpp(z ·P, 0) = 1
2

∫ 1

−1
dxB e

iz·P xB xBDg(xB) . (2.3)

The distributionMpp(z ·P, z2) is the gluon Ioffe-time distribution with z·P the Ioffe-time. In
section 5, we will show that the Ioffe-time plays the role of rapidity whose large logarithms
are resummed through BFKL equation.

In [21] it was also shown that the gluon Ioffe-time distribution is given in terms of the
zeroth and transverse components as

M0i;i0 +Mji;ij = 2P 2
0Mpp . (2.4)

It is known that at high energy (Regge) limit the transverse components are suppressed
while the 0th and 3rd components cannot be distinguished. Therefore, calculating the
behavior of the left-hand-side (l.h.s.) of (2.2), will be equivalent, at high-energy, to
calculating the behavior of l.h.s. of (2.4).

The momentum-density pseudo-PDF is defined as the Fourier transform with respect
to z · P , that is a Fourier transform with respect to P keeping its orientation fixed. So, we
define the gluon pseudo-PDF as

Gp(xB, z2) =
∫
d%

2π e
−i% xBMpp(%, z2) , (2.5)

where we defined % ≡ z · P .
The momentum-density quasi-PDF is defined, instead, as the Fourier transform with

respect to zµ keeping its orientation fixed. Let us define the vector ξµ = zµ

|z| , and Pξ = P · ξ.
The quasi-PDF is then defined as

Gq(xB, Pξ) = Pξ

∫
dς

2π e
−iς PξxBMpp(ςPξ, ς2) . (2.6)

We will calculate the large distance (large %) behavior of the Ioffe-time distribution
Mpp(%, z2), and the low-xB behavior of the gluon pseudo-PDF (2.5), and of the gluon
quasi-PDF (2.6).

3 High-energy OPE

In this section we review the HE-OPE formalism applied to the T-product of two electro-
magnetic currents in deep inelastic scattering (DIS). This provides a smooth transition to
the application of the HE-OPE to the twist-two gluon operator.

Consider the T-product of two electromagnetic currents in the background of gluon
field which, in the spectator frame, reduces to a shock wave. In deep inelastic scattering
(DIS), the virtual photon, which mediates the interactions between the lepton and the
nucleon (or nucleus), splits into a quark anti-quark pair long before the interaction with

– 3 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
4

the target and the propagation of the dipole pair in the shock wave background, generates
two infinite Wilson lines (see [15] for review).

To calculate the impact factor (see figure 1) we need the quark propagator in the
background of gluon shock-wave. If we consider the case x+ > 0 > y+ the propagator is

〈ψ(x)ψ̄(y)〉 x
+>0>y+

=
∫
d4zδ(z∗)

x̂− ẑ
2π2[(x− z)2 − iε]2 p̂2Uz

ŷ − ẑ
2π2[(y − z)2 − iε]2 . (3.1)

Performing the functional integration over the spinor fields using the quark propaga-
tor (3.1), the T-product of two electromagnetic currents is given in terms of the impact
factor, which is related to the probability for the virtual photon to split into a quark-anti-
quark pair, and matrix elements of Wilson line which takes into accounts the recoil of the
target. Hence, we can write

T{ ¯̂
ψ(x)γµψ̂(x) ¯̂

ψ(y)γνψ̂(y)} =
∫
d2z1d

2z2 I
µν
LO(z1, z2, x, y)Tr{Ûηz1Û

†η
z2 } . (3.2)

To complete the HE-OPE procedure applied to DIS case, we need to find, employing
the background field method, the evolution equation of the operator Tr{Ûηz1Û

†η
z2 } with

respect to the rapidity parameter. The evolution equation that one obtains is the non-linear
BK-JIMWLK equation [23–27]

d

dη
Uη(x⊥,y⊥) = αsNc

2π

∫
d2z

(x−y)2
⊥

(x−z)2
⊥(y−z)2

⊥

×
[
Uη(x⊥,z⊥)+Uη(y⊥,z⊥)−Uη(y⊥,x⊥)−Uη(x⊥,z⊥)Uη(y⊥,z⊥)

]
, (3.3)

where we used the notation (x, y)⊥ = x1y1 + x2y2 and where U(x⊥, y⊥) = 1− 1
Nc

tr{U(x⊥)
U †(y⊥)}.

The BFKL equation, obtained as the linearization of the non-linear equation (3.3) is

2a d
da
Va(z⊥) = αsNc

π2

∫
d2z′

[
Va(z′⊥)

(z − z′)2
⊥
− (z, z′)⊥Va(z⊥)

z′2⊥(z − z′)2
⊥

]
, (3.4)

where we defined
1
z2
⊥
U(z⊥) ≡ V(z⊥) , (3.5)

with U(z⊥) the forward dipole operator which depends only on its transverse size.
Note that, evolution equation (3.4) is written in terms of the parameter a given by

a = − 2x+y+

(x− y)2a0
+ iε . (3.6)

The transition from parameter η to parameter a is detailed explained in refs. [28–31] where
the notion of composite conformal Wilson line operator is introduced. The motivation for
this transition is to restore conformal invariance of the NLO BK evolution equation and of
the NLO impact factor. Indeed, the evolution parameter a depends on the variables x+, and
y+ which are a remnant of the fact that its coordinate dependence was chosen so that the
NLO impact factor, which instead depends on these variable, becomes SL(2,C) conformal

– 4 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
4

y x

z1

z2

Figure 1. Diagram for the LO impact factor. We indicate in blue the quantum fields and in red
the classical background ones.

invariance. The parameter a0 is the initial point of the evolution. The composite Wilson line
operator is defined in such a way that its evolution with respect to the η parameter is zero
while its evolution equation with respect to the a parameter is the LO BK equation whose
linearization is the BFKL equation given in (3.4). Therefore, in principle, equation (3.4)
should have been written in terms of the [Va(z12)]comp, but its explicit expression would
be relevant only at NLO, therefore, to avoid unnecessary heavy notation, we will keep the
simple notation Va(z12), with the understanding that it is a composite operator whose NLO
evolution is conformal invariant up to running coupling contributions.

The main point is that, the conformal properties of the NLO BK equation tell us what
is the proper evolution parameter in coordinate space. This is an important point of our
analysis since we are working entirely in coordinate space.

The solution of evolution equation (3.4) is

Va(z12) =
∫

dν

2π2 (z2
12)−

1
2 +iν

(
a

a0

)ℵ(γ)
2
∫
d2ω(ω2

⊥)−
1
2−iνVa0(ω⊥) , (3.7)

where ℵ(γ) ≡ ᾱsχ(γ), with ᾱs = αsNc
π and χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ). The initial

point of evolution is a0 = P−

MN
with MN the mass of the hadronic target.

As initial condition for the evolution, one usually evaluate the dipole matrix element in
the Golec-Biernat-Wüsthoff (GBW) [32] model or the McLerran-Venugopalan (MV) [33]
model.

4 Numerical parameters

In this section we provide the numerical values of the parameters that will be used in the
subsequent sections.

As initial condition for the evolution of the Ioffe-time distribution, the pseudo-PDF and
quasi-PDF, we will use the GBW model which has an xB dependence of the saturation scale
as Qs = (x0/xB)

0.277
2 , with x0 = 0.41×10−4 [32]. The dimension of the dipole cross-section

is given by the parameter σ0 = 29.12mb [32]. Our starting point for the evolution in xB
will be xB = 0.1 for which Qs = 0.34GeV. As we will see, xB = 0.1 is the point at which
the BFKL logarithms start to be of order 1 thus need to be resummed. However, the
conclusions we will reach through our analysis will not depend on the starting point of
the evolution.
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The value of the running coupling we choose is ᾱs = αsNc
π = 0.2. Since at low-xB the

strong coupling runs with the transverse size of the dipole [34–36], our choice of the running
coupling corresponds to a transverse size of about 0.2 GeV−1 so that the running-coupling
is evaluated at a momentum scale greater than our choice of Qs.

As we will show in subsequent sections, there is a correspondence between the Ioffe-time
z · P and the xB of the type z · P = x−1

B . So, to calculate the large longitudinal distance
behavior of the Ioffe-time distribution, we use as starting point of the evolution (in the
Ioffe-time parameter) the value % ≡ z · P = 10 and we fix |z| = 0.5 GeV−1.

For the quasi-PDF, we introduce the unit vector ξµ in the direction of the gauge link
and choose the projection of the target momentum P along ξµ to be ξ · P ≡ Pξ = 4GeV
(see section 8 for details).

5 Ioffe-time gluon distribution at large longitudinal distances

In this section we are going to calculate the behavior of Ioffe-time gluon distribution at
large longitudinal distances in the saddle point approximation. We will show that large
distance, i.e. large values of the Ioffe-time z · P = %, generates large logarithms which are
resummed by the BFKL equation through the HE-OPE formalism. Therefore, we will refer
to high-energy or large-distance behavior interchangeably.

As discussed in the previous section, the Ioffe-time gluon distribution is defined by

〈P |Gai−(z)[z, 0]Gbi
−(0)|P 〉 = 2(P−)2Mpp(%, z2) . (5.1)

In the high-energy (Regge) limit forward matrix elements of UxU †y operator are divergent
because they contain an unrestricted integration along the nµ direction, so we have

2πδ(ε−)〈P |Ga i−(x+, x⊥)[nx+ + x⊥, 0]abGb−i (0)|P 〉

=
∫ +∞

−∞
dy+〈P |Ga i−(x+ + y+, x⊥)

× [n(x+ + y+) + x⊥, ny
+]abGb−i (y+)|P + ε−n〉 . (5.2)

As described in section 3, the first step is to calculate the impact factor from the
operator (5.2). To this end, we split all fields in quantum and classical, functionally
integrate over the quantum field and obtain the diagram in figure 2.

Assuming that the shock-wave is in x+ = 0 position, we distinguish the cases x+> 0>y+

and x+< 0<y+. The high-energy gluon propagator at x+> 0>y+ in coordinate space [29] is

〈TAaµ(x)Abν(y)〉 x
+>0>y+

=

− 1
4π3

∫
d2z Uabz

x+|y+|g⊥µν − |y+|n′µX⊥ν + x+n′νY
⊥
µ + n′µn

′
ν(X,Y )[

2(x− y)−x+|y+| − |y+|(x− z)2
⊥ − x+(y − z)2

⊥ + iε
]2 , (5.3)

where we defined X2⊥ = (x − z2)⊥ and Y2⊥ = (y − z2)⊥. So, using propagator (5.3)
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z1

z2

(x)G
i−

(y)G
i−

Figure 2. Diagrams for the impact factors for the quasi-PDFs operators. The black bullets represent
the gluons and quark fields respectively.

diagram 2 is

〈Ga i−(x+, x⊥)[nx+ + x⊥, ny
+ + y⊥]abGb j−(y+, y⊥)〉Fig. 2

y+<0<x+
= (∂ixgµ− − ∂−x giµ)(∂jygν− − ∂−y gjν)〈Aaµ(x)Abν(y)〉A

= −
∫
d2z2
4π3 U

ab
z2U

ab
z1 (∂ixgµ− − ∂−x giµ)(∂jygν− − ∂−y gjν)

×
x+|y+|g⊥µν − |y+|n′µX⊥2ν + x+n′νY

⊥
2µ + n′µn

′
ν(X2, Y2)[

|y+|(x− z2)2
⊥ + x+(y − z2)2

⊥ − iε
]2 . (5.4)

Result (5.4) is proportional to two Wilson lines in the adjoint representation, one at
point z2⊥ as a result of the gluon propagation in the shock-wave external field, and
the other one at point z1⊥ which is the point at which the shock-wave intersects the
gauge link [nx+ + x⊥, ny

+ + y⊥]ab. The point z1 can actually be anywhere between point
nx+ + x⊥ and ny+ + y⊥, so we parametrize the straight line between these two points as
xu = ux⊥ + ūy⊥ = z1⊥, with u = |y+|

∆+ , ū = x+

∆+ and ∆+ = x+ − y+, and at the end we will
have to integrate over the parameter u. However, for technical reason, as it will be clear
later, we will continue to call such point as z1⊥.

After differentiation, eq. (5.4) becomes

〈Gai−(x+,x⊥)[nx++x⊥,ny++y⊥]abGb−i (y+,y⊥)〉Fig.2

y+<0<x+
=

∫
d2z2
4π3

[
12−2x+y+(x−z2,y−z2)2+x+y+(x−z2)2

⊥(y−z2)2
⊥[

x+(y−z2)2
⊥−y+(x−z2)2

⊥
]4

]
Uabz2U

ab
z1 , (5.5)

As done for the photon impact factor in section 3, we include the case θ(x+y+) and consider
forward matrix elements. Thus, we make the substitution Uabz2U

ab
z1 with −2N2

c U(z12) where
U(z12) = 1− 1

Nc
tr{Uz1⊥U †z2⊥} and tr trace in the fundamental representation.

Let us observe that we have put the starting operator in the left-hand-side of eq. (5.4)
in the form of impact factor convoluted with matrix element of Wilson lines as it was in
the case of the T-product of two electromagnetic current in eq. (3.1). The last step of
the high-energy OPE is to convolute the impact factor with the solution of the evolution
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equation of the Wilson-line operators, eq. (3.7). So, we have

gij〈Ga i−(x+, x⊥)[nx+ + x⊥, ny
+ + y⊥]abGb j−(y+, y⊥)〉Fig. 2

y+<0<x+
= − 6N2

c

(x+|y+|)3

∫
dν

2π2

(
−2∆+2

uū

∆2
⊥

P−
2

M2
N

+ iε

)αsNc
2π χ(ν) ∫

d2ω(ω2
⊥)−

1
2−iν〈Va0(ω⊥)〉

×
∫
d2z2
π3
−2(x− z2, y − z2)2

⊥ + (x− z2)2
⊥(y − z2)2

⊥(
(y−z2)2

⊥
|y+| + (x−z2)2

⊥
x+

)4 (z2
12)

1
2 +iν . (5.6)

In section A we show that the matrix element in eq. (5.6) with transverse indexes i and
j not contracted, after projection on the power like eigenfunction (z2

12)
1
2 +iν , has only one

tensor structure, that is gij .
Here, we proceed with contracted i and j indexes, and obtain

∫
d2z2
π3
−2(x− z2, y − z2)2

⊥ + (x− z2)2
⊥(y − z2)2

⊥(
(y−z2)2

⊥
|y+| + (x−z2)2

⊥
x+

)4 (z2
12)

1
2 +iν

= −γ
2

π2 (∆+)4(∆2
⊥)γ−1Γ(1− γ)Γ(1 + γ)(uū)γ+3 . (5.7)

Using (5.7) in (5.6) and integrating over u we arrive at

∫ +∞

−∞
dx+dy+δ(x+ − y+ − L)〈Ga i−(x+, x⊥)[nx+ + x⊥, ny

+ + y⊥]abGb−i (y+, y⊥)〉Fig. 2

= 6N2
c

∫
dν

2π2

(
−2uū

∆2
⊥

(LP−)2

M2
N

+ iε

)αsNc
2π χ(ν) ∫

d2ω(ω2
⊥)−

1
2−iν〈Va0(ω⊥)〉

×
∫ 1

0

du

L

γ2

π2 (∆2
⊥)γ−1Γ(1− γ)Γ(1 + γ)(uū)γ

= 3N2
c

∫
dν

(
−2(LP−)2

∆2
⊥M

2
N

+ iε

)ℵ(γ)
2 (∆2

⊥)γ−1

Lπ4
πγ

sin πγ
γ4Γ2(γ)

Γ(2 + 2γ)

×
∫
d2ω(ω2

⊥)−
1
2−iν〈Va0

ω 〉+O(αs) . (5.8)

We will evaluate the integration over the parameter ν numerically and compare it with
the saddle point approximation. The GBW model [32] applied to the Wilson-line dipole
matrix element evaluated in the target nucleon state is (see figure 3).

〈P |U(x− y)|P + ε−n′〉 = P−2πδ(ε−)〈〈P |U(x− y)⊥|P 〉〉

= P−2πδ(ε−)σ0

(
1− exp

(
−(x− y)2

⊥Q
2
s

4

))
, (5.9)

where, as discussed in section 4, the saturation scale assume the fixed value of Qs = 0.34GeV.
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e

P| |P

z1

z
2

(x)G
i−

(y)G
i−

z1

z
2

0
GBW

Figure 3. Diagrammatic representation of the HE-OPE applied to the gluon non-local operator
with “quasi-PDF frame”.

So, using (5.9) in eq. (5.8) we arrive, with the help of eq. (5.2), at
1

2(P−)2 〈P |G
a i−(L, x⊥)[nL+ x⊥, 0]abGb−i (0)|P 〉

= 3N2
c

2π3
σ0
∆2
⊥

1
LP−

∫
dν

(
−2(LP−)2

∆2
⊥M

2
N

+ iε

)ℵ(γ)
2 γ Γ2(1− γ)Γ3(1 + γ)

Γ(2 + 2γ)

(
Q2
s∆2
⊥

4

)γ
. (5.10)

Let zµ be a space-like vector. In the high-energy limit, the coordinate x+ component
is enhanced, the x− one is suppressed, and the x⊥ component is left invariant, so |∆⊥| =√
−z2 = |z| > 0 with z2 < 0. Since at this regime we do not distinguish between the 0

and the 3-component, we also have (P−)2 = (P · z|z|)
2 = %2

−z2 and LP− → z · P = %. Using
variables % and z2, and eq. (2.2) with z2 6= 0, result (5.10) becomes

Mpp(%,z2) = 3N2
c

4π3
Qsσ0
|z|%

∫
dν

(
2%2

z2M2
N

+iε
)ℵ(γ)

2 γΓ2(1−γ)Γ3(1+γ)
Γ(2+2γ)

( |z|Qs
2

)2iν
. (5.11)

We are now ready to perform last integration using the saddle-point approximation
technique. We notice that γΓ2(1−γ)Γ3(1+γ)

Γ(2+2γ) , is a very slowly varying function, so we have

Mpp(%, z2) ' 3N2
c

128 %
Qs σ0
|z|

(
2 %2

z2M2
N

+ iε

)ᾱs2 ln 2
e

−
ln2 Qs|z|

2

7ζ(3)ᾱs ln

(
2 %2
z2M2

N

+iε

)
√

7ζ(3)ᾱs ln
(

2 %2

z2M2
N

+ iε

) . (5.12)

In figure 4 we compare the saddle-point result (5.12) with the numerical integra-
tion (5.11).
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Figure 4. In the left and in the right panel we plot the numerical evaluation of real and imaginary
part of (5.11) (orange curve), and the real and imaginary part of the saddle point result (5.12) (blue
dashed curve), respectively.

The first thing to notice is that, the logarithms resummed by BFKL are ᾱs ln
( √

2%
|z|MM

)
which, given that we are using ᾱs = 0.2, |z| = 0.5 GeV−1, and MN = 1GeV, is of order
1 starting from % ∼ 10. We see that % acts like a rapidity parameter. We evolve the
distribution with % until ᾱs ln

( √
2%

|z|MM

)
is of order 1, that is we start with large values of %

and end at smaller ones. The dipole at the smallest value of % is evaluated in the GBW
model. In our case, as anticipated in section 4, we stop the evolution at % = 10 (see figure 3).

In figure 4 we plotted the real and imaginary part of (5.11) and (5.12) with % ∈ [10, 400].
For the subsequent analysis we will use the numerical evaluation of (5.11) (orange curve).

6 Leading and next-to-leading twist

As described in section 3, within the high-energy OPE, the DIS cross section can be written
as a convolution of the impact factor and the solution of the evolution equation of the
matrix elements of the dipole-Wilson-line operator which, in the linear case, is the BFKL
equation. Therefore, the dipole DIS cross-section can be written as

σγ
∗p(xB, Q2) =

∫
dν F (ν)x−ℵ(ν)−1

B

(
Q2

P 2

) 1
2 +iν

, (6.1)

where ℵ(γ) is the BFKL pomeron intercept, F (ν) the pomeron residue, and in the limit
under consideration, −q2 = Q2 � P 2, and s = (P + q)2 � Q2.

To get the dipole cross-section given in eq. (6.1) we can calculate the integral over the
ν-parameter numerically, or with the saddle point approximation capturing in this way the
full BFKL dynamics. In the previous section, we have done this for the gluon Ioffe-time
distribution (see eqs. (5.11) and (5.12)).

The n-th moment of the structure function is

Mn =
∫ 1

0
dxB x

n−1
B σγ

∗p(xB, Q2) =
∫ 1

2 +i∞

1
2−i∞

dγ
F (γ)

n− 1− ℵ(γ)

(
Q2

P 2

)γ
,
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where γ = 1
2 + iν. The integration over the γ-parameter can be performed closing the

contour to the left of the poles. In this way we get the anomalous dimensions of the leading
and higher twist operators at the unphysical point.

In our case, to get the LT and NLT contributions from the infinite series of twists,
resummed by BFKL eq., we could repeat the same steps outlined above. However, this time
we need the explicit form of the gluon twist-two operator at the unphysical point n = 1,
F aµ+∇

−1
+ Fµa+ .

In ref. [16] (see also [17, 20]) it was shown that the analytical continuation of anomalous
dimension of twist-two gluon operator OjF ≡ F a−µ ∇

j−2
+ F aµ− to the unphysical point j = 1,

which is determined by BFKL equation, can be obtained by the analytic continuation of
the operator itself at such unphysical point. It is known that the anomalous dimensions
are singular at j = 1, and this means that in this limit there is a different hierarchy of
perturbation theory which requires a new resummation of terms like

(
αs
j−1

)n
(at leading-log),

and therefore it implies the existence of a different (than DGLAP) evolution equation, the
BFKL equation, which resums such logarithms. For this reason we will refer to the Regge
limit also as the j → 1 limit. The relation between DGLAP and BFKL equation at the
unphysical point was established, at the level of anomalous dimension, at LO in ref. [37]
and at NLO in ref. [38].

In ref. [39] it was shown that the local Operator Product Expansion can be reformulated
in terms of non-local operators with the advantage of preserving explicitly the Lorentz and
the conformal invariance of the theory and also providing a gauge covariant technique to
separating higher twist contribution. Such non-local operator are light-ray operator with
integration over the longitudinal direction. In light of this, in ref. [16], it is shown how to
construct analytic continuation of non-local operator at j = 1. Following the procedure
described in ref. [20], in section B, we will show that such analytic continuation of local
operator is

F ap1ξ(x)∇j−2F a ξp1 (x)
∣∣∣
x=0

forw.= 1
Γ(2− j)

∫ ∞
0

dv v1−j F ap1ξ(0)[0, vp1]abF b ξp1 (vp1) , (6.2)

where p1 is a light-cone vector and where the notation xp1 = pµ1xµ has been used (see
section B for the details). Equation (6.2) is the gluon light-ray operator with spin j.

It turns out that in the high-energy (Regge) limit the correlation function of two gluon
light-ray operators (6.2), with spin j and j′ respectively, are UV divergent if taken on the
light-cone. In refs. [17–20] it was shown that a way to regularize this UV divergence is
to consider the point-splitting regulator, that is, the light-ray operator, which lays on the
light-cone, becomes a rectangular frame, the “Wilson-frame” (see figure 12). In section B
we will show that an alternative regulator is the “quasi-pdf frame” (see figure 12) defined as

F j(x, y) =
∫ +∞

0
du1−j F a ip1(up1 + x)[up1 + x, y]abF bi p1

(y) . (6.3)

As a consistency check, we will also show that, in the high-energy regime correlation
functions of two such operators, eq. (6.3), agrees with the expected result from conformal
field theory.
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The Mellin transform of eq. (5.10), which is, as explained above, the analytic continua-
tion to non integer j of local operator with “quasi-pdf frame” is∫ +∞

∆2
⊥MN

dLL1−j
∫ +∞

−∞
dy+〈P |Ga i−(L+ y+, x⊥)

× [n(L+ y+) + x⊥, ny
+ + y⊥]abGb−i (y+, y⊥)|P 〉

= −3 iN2
c σ0P

−

π3∆2
⊥

∫ 1
2 +i∞

1
2−i∞

dγ
θ(<[j − 1− ℵ(γ)])

ω − ℵ(γ)
γΓ2(1− γ)Γ3(1 + γ)

Γ(2 + 2γ)

(
Q2
s∆2
⊥

4

)γ

×
(
− 2P−2

∆2
⊥M

2
N

+ iε

)ℵ(γ)
2

(∆2
⊥P
−)−ω+ℵ(γ) , (6.4)

with ω = j − 1, and where we required that the longitudinal distance (in x+ direction)
L ≥ ∆2

⊥MN that is equivalent to say that our hypothetical probe has a power resolution
smaller than the hadron size i.e. that we are in the perturbative regime.

Closing the contour to the right of γ = 1
2 , we can now take the residue at the point γ∗

such that ℵ(γ∗)− ω = 0 we have∫ +∞

∆2
⊥MN

dLL1−j
∫ +∞

−∞
dy+〈P |Ga i−(L+ y+, x⊥)

× [n(L+ y+) + x⊥, ny
+ + y⊥]abGb−i (y+, y⊥)|P 〉

= 6N2
c

π2
∆−2
⊥ σ0P

−

ℵ′(γ∗)
γ∗Γ2(1− γ∗)Γ3(1 + γ∗)

Γ(2 + 2γ∗)

(
Q2
s∆2
⊥

4

)γ∗ ( 2P−2

∆2
⊥M

2
N

)ω
2

. (6.5)

So far, the calculation was done in the “BFKL” limit in which ᾱs
j−1 ' 1. To get the leading

and next-to-leading residues in power of Q2
s∆2
⊥ we need to approach the “DGLAP” limit

by assuming the ᾱs � ω � 1. In this limit, then, we can use ω − ℵ(γ)→ ω − ᾱs
1−γ and the

leading residue is at γ = 1− ᾱs
ω . Thus, from eq. (6.5) we obtain∫ +∞

∆2
⊥MN

dLL1−j
∫ +∞

−∞
dy+ 1

2P− 〈P |G
a i−(L+ y+, x⊥)

× [n(L+ y+) + x⊥, ny
+ + y⊥]abGb−i (y+, y⊥)|P 〉

= 3N2
cQ

2
sσ0

4π2

(
Q2
s∆2
⊥

4

)− ᾱs
ω
(
− 2P−2

∆2
⊥M

2
N

+ iε

)ω
2

g1(ω) , (6.6)

where we have defined the function g1(ω) as

g1(ω) ≡ ᾱs
ω2

(1− ᾱs
ω )Γ2( ᾱsω )Γ3(2− ᾱs

ω )
Γ(4− 2 ᾱsω )

. (6.7)

The first thing to notice is that we have recovered the gluon anomalous dimension ᾱs
j−1 in

the j → 1 limit as anticipated above. Moreover, the leading residue is leading in terms of
Q2
s∆2
⊥ expansion, so eq. (6.6) is the leading twist contribution.
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Similarly, we can calculate the next-to-leading residue in power of
(
Q2
s∆2
⊥

4

)2
. We start

again from eq. (6.5) and using ω − ℵ(γ) → ω − ᾱs
2−γ , the next-to-leading residue is at

γ = 2− ᾱs
ω ∫ +∞

∆2
⊥MN

dLL1−j
∫ +∞

−∞
dy+ 1

2P− 〈P |G
a i−(L+ y+, x⊥)

× [n(L+ y+) + x⊥, ny
+ + y⊥]abGb−i (y+, y⊥)|P 〉

3 3N2
cQ

2
sσ0

4π2
Q2
s∆2
⊥

4

(
Q2
s∆2
⊥

4

)− ᾱs
ω
(
− 2P−2

∆2
⊥M

2
N

+ iε

)ω
2

g2(ω) , (6.8)

where we have defined the function g2(ω) as

g2(ω) ≡ ᾱs
ω2

(2− ᾱs
ω )Γ2( ᾱsω − 1)Γ3(3− ᾱs

ω )
Γ(6− 2 ᾱsω )

. (6.9)

We see that the next-to-leading residue, eq. (6.8), in the limit of small distances ∆2
⊥, is

suppressed by one power of Q
2
s∆2
⊥

4 respect to the leading residue contribution (6.6).
We can continue in this way and calculate the full series of twist expansion which is

resummed in eq. (5.10) or from its saddle approximation, eq. (5.12). However, one has
to notice that, besides the residues which give the twist expansion, in eq. (6.4) there is
another pole, the one at γ = 1. This pole, actually, cancel out with two diagrams that are
not included in the high-energy OPE and that have to be calculated separately. To see
how this cancellation happen, one can consider the correlation of two light-ray operator at
high-energy with “quasi-pdf” point splitting regulator (see section B for details). In this
way, we may be sure that our procedure is justified.

Adding together the leading residue, eq. (6.6), and the next-to-leading residue, eq. (6.8),
we obtain∫ +∞

∆2
⊥MN

dLL1−j
∫ +∞

−∞
dy+ 1

2P− 〈P |G
a i−(L+ y+, x⊥)

× [n(L+ y+) + x⊥, ny
+ + y⊥]abGb−i (y+, y⊥)|P 〉

= 3N2
cQ

2
sσ0

4π2

(
4

Q2
s∆2
⊥

) ᾱs
ω
(
− 2P−2

∆2
⊥M

2
N

+ iε

)ω
2
(
g1(ω) + g2(ω)Q

2
s∆2
⊥

4

)
. (6.10)

The final step is to perform the inverse Mellin transform of (6.10)∫ +∞

−∞
dy+ 1

2P− 〈P |G
a i−(L+ y+, x⊥)

× [n(L+ y+) + x⊥, ny
+ + y⊥]abGb−i (y+, y⊥)|P 〉θ(L−∆2

⊥MN )

= 3N2
cQ

2
sσ0

4π2
1

2πi

∫ 1+i∞

1−i∞
dωLω−1

(
4

Q2
s∆2
⊥

) ᾱs
ω
(
− 2P−2

∆2
⊥M

2
N

+ iε

)ω
2

×
(
g1(ω) + g2(ω)Q

2
s∆2
⊥

4

)
. (6.11)
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Using variables % and z2, and eq. (2.2) with z2 6= 0, we can rewrite eq. (6.11) as

Mpp(%, z2) = 3N2
c

4π2
Q2
sσ0
%

1
2πi

∫ 1+i∞

1−i∞
dω

( 4
Q2
s|z|2

) ᾱs
ω

(
2 %2

z2M2
N

+ iε

)ω
2

×
(
g1(ω) + g2(ω)Q

2
s|z|2

4

)
. (6.12)

Result (6.12) is our final result which gives the behavior of the LT and NLT gluon distribution
at high-energy in coordinate space and from which we will calculate the pseudo and quasi-
PDFs at LT and NLT corrections.

In the limit ᾱs � ω � 1, we have

g1(ω) ' 1
6ᾱs

, g2(ω) ' 2
15ᾱs

. (6.13)

So, using approximations (6.13), eq. (6.12) becomes

Mpp(%, z2) = N2
c

8π2
Q2
sσ0
ᾱs%

1
2πi

∫ 1+i∞

1−i∞
dω

( 4
Q2
s|z|2

) ᾱs
ω

(
2 %2

z2M2
N

+ iε

)ω
2

×
(

1 + Q2
s|z|2

5

)
+O

(
Q4
s|z|4

16

)
. (6.14)

From eq. (6.14) we can perform the inverse Mellin analytically. We have to distinguish
two cases. In the first case, Q2

s|z|2
4 > 1, the twist expansion is not justified and all order

corrections will have to be included. Indeed, if we perform the inverse Mellin transform we get

Mpp(%,z2) =− N2
c

8π2ᾱs

Q2
sσ0
%

 2ᾱs ln Q2
s|z|2
4

ln
(

2%2

z2M2
N

+iε
)


1
2

J1(t)
(

1+Q2
s|z|2

5

)
+O

(
Q4
s|z|4

16

)
, (6.15)

with

t =
[
2ᾱs ln

(
Q2
s|z|2

4

)
ln
(

2%2

z2M2
N

+ iε

)] 1
2

, (6.16)

and where, we recall, z2 < 0. Result (6.15) gives an unusual behavior as a remnant of the
fact that case Q2

s|z|2
4 > 1 is not justified in terms of twist expansion.

For the second case 0 < Q2
s|z|2
4 < 1, which corresponds to the typical DIS region, the

twist expansion is justified. In this case we obtain

Mpp(%,z2) = N2
c

8π2ᾱs

Q2
sσ0
%

 4ᾱs
∣∣∣ln Qs|z|

2

∣∣∣
ln
(

2%2

z2M2
N

+iε
)


1
2

I1(t̃)
(

1+Q2
s|z|2

5

)
+O

(
Q4
s|z|4

16

)
, (6.17)

with

t̃ =
[
4ᾱs

∣∣∣∣ln Qs|z|2

∣∣∣∣ ln
(

2 %2

z2M2
N

+ iε

)] 1
2

. (6.18)
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Figure 5. In the left panel, the orange curve is the numerical evaluation of real part of eq. (5.11)
(all twist resummed by BFKL), the green dashed curve is the real part of the LT term in (6.12) only,
while the red dashed one is the real part of LT+NLT result, eq. (6.12). In the left panel we plot the
imaginary parts. The range of % is from 10 to 100.
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Figure 6. In the left and right panel we plot the real and imaginary part of eq. (6.12) (red dashed
curve), and the real and imaginary part of eq. (6.17) (magenta curve), respectively.

The goodness of approximation (6.13) can be appreciated in figure 6 where we plot
result (6.12) with inverse Mellin is performed numerically with 0 < Q2

s|z|
4 < 1, and re-

sult (6.17).
In figure 5 we finally compare the coordinate space result of the high-energy (large %)

behavior of the gluon distribution with BFKL resummation, eq. (5.11), the LT term and
LT plus NLT of eq. (6.12). We notice that the curves plotted in figure 5 are very slowly
varying functions for large values of % (see figure 7).

Moreover, as mentioned in the previous section, the region of applicability of our
formalism is where the BFKL logarithm ᾱs ln

( √
2%

|z|MN

)
is of order 1 which is for % ≥ 10.

7 Gluon pseudo-PDF

The pseudo-PDF [11] are defined as the Fourier transform of the matrix element of the
gluon bi-local operator with respect to the momentum Pµ keeping its orientation fixed. In
our notation this translates into the Fourier transform of eq. (5.11) and eq. (6.12) with
respect to %.
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Figure 7. Here we plot the real and imaginary part of the BFKL (5.10) and LT+NLT (6.12) both
normalized to the LT, respectively; % variates from 10 to 100.

7.1 Gluon pseudo-PDF with BFKL resummation

We defined the pseudo-PDF in eq. (2.5), so we have to perform the Fourier transform of
eq. (5.11) with respect to %

Gp(xB, z2) = 3N2
c

4π3
Qsσ0
|z|

∫
d%

2π%e
−i%xB

∫
dν

(
2%2

z2M2
N

+ iε

)ℵ(γ)
2

× γ Γ2(1− γ)Γ3(1 + γ)
Γ(2 + 2γ)

(
|z|Q2

s

2

)2iν

. (7.1)

It is convenient to performing first the Fourier transform and the integration over the ν
parameter at the end. So, we have

Gp(xB, z2) = −i3N
2
c

4π4
Qsσ0
|z|

∫
dν

(
2

x2
Bz

2M2
N

+ iε

)ℵ(γ)
2 (

Qs|z|
2

)2iν

× γ Γ2(1− γ)Γ3(1 + γ)Γ(ℵ(γ))
Γ(2 + 2γ) sin

(
π

2ℵ(γ)
)

sign(xB) . (7.2)

Evaluating the last integration in the saddle-point approximation we have

Gp(xB, z2) ' −i 3N2
c

128π
Qsσ0
|z|

Γ(ᾱs4 ln 2) sin(π2 ᾱs4 ln 2)√
7ζ(3)ᾱs ln

(
2

x2
Bz

2M2
N

+ iε

)sign(xB)

× exp


− ln2 Qs|z|

2

7ζ(3)ᾱs ln
(

2
x2
Bz

2M2
N

+ iε

)

(

2
x2
Bz

2M2
N

+ iε

)ᾱs2 ln 2

. (7.3)

Note that, in eq. (7.3) we can further approximate Γ(ᾱs4 ln 2) sin(π2 ᾱs4 ln 2) ' π
2 for small

values of ᾱs.
As can be observed in figure 8, the numerical evaluation of result (7.2) is very well

approximated by the saddle-point approximation result (7.3).
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Figure 8. The orange curve is the numerical integration of the real part of (7.2), while the blue
one is the saddle-point approximation (7.3)(real part).

7.2 Gluon pseudo-PDF at LT and NLT

Let us perform the Fourier transform to obtain the pseudo-PDF for the leading and next-
to-leading twist corrections. Our starting point is the Fourier transform of eq. (6.12) which,
using the pseudo-PDF definition eq. (2.5), is

Gp(xB,z2) = 3N2
c Q

2
sσ0

16π2
1

2πi

∫ 1+i∞

1−i∞
dω

∫ +∞

0

d%

2π% e
−i%xB

×
(

2%2

z2M2
N

+iε
)ω

2 ( 4
Q2
s|z|2

)ᾱs
ω (

4g1(ω)+g2(ω)Q2
s|z|2

)
+O

(
Q4
s|z|4

16

)
. (7.4)

From eq. (7.4) we will first perform the Fourier transform and lastly the inverse Mellin
transform. Thus, we have

Gp(xB, z2) = 3N2
c Q

2
sσ0

32π3
1

2πi

∫ 1+i∞

1−i∞
dω

(
2

x2
B|z|2M2

N

)ω
2 ( 4

Q2
s|z|2

) ᾱs
ω

Γ(ω)

×
(
4g1(ω) + g2(ω)Q2

s|z|2
)

+O

(
Q4
s|z|4

16

)
. (7.5)

The LT and NLT result, eq. (7.5), is obtained in the limit ᾱs � ω � 1, so, we could
further approximate eq. (7.5) using eq. (6.13) and also approximating Γ(ω) ω→0' 1

ω and
obtain

Gp(xB, z2) = N2
c Q

2
sσ0

16ᾱsπ3
1

2πi

∫ 1+i∞

1−i∞

dω

ω

(
2

x2
B|z|2M2

N

)ω
2 ( 4

Q2
s|z|2

) ᾱs
ω

×
(

1 + Q2
s|z|2

5

)
+O

(
Q4
s|z|4

16

)
. (7.6)

In appendix D we will employ such approximations, perform the inverse Mellin transform
obtaining an analytic expression, and compare the result with the numerical evaluation of
eq. (7.5), thus showing the goodness of the approximated analytic result. However, for our
analysis, we will consider the numerical evaluation of eq. (7.5).
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Figure 9. In the left panel we plot pseudo-PDF with BFKL resummation, eq. (7.2) (orange curve),
and the LT (green dashed curve) and LT+NLT (red dashed curve) of pseudo-PDF result (7.5); the
value of xB is between 0.001 to 0.02. In the right panel we plot the same curves in a different range
of xB between 0.01 to 0.1.

In figure 9, we plot the gluon pseudo-PDF with the BFKL resummation eq. (7.3)
(orange curve), and the LT term and the LT plus NLT of eq. (7.5) (green dashed and red
dashed curve respectively). We observe that the BFKL resummation result agrees with
the LT and LT+NLT result in the region of moderate xB. When we move into the low-xB
region, we notice a strong disagreement which confirms the necessity of a ln 1

xB
resummation

represented by BFKL eq.

8 Gluon quasi-PDF

To obtain the quasi-PDF, we need to perform again a Fourier transform of eq. (5.11)
which, this time, takes a slightly different form then the pseudo-PDF case considered in
the previous section. Let us introduce the real parameter ς such that −z2 = ς2 > 0, and
the four-vector ξµ ≡ zµ

|z| = zµ

|ς| with |z| =
√
−z2. The quasi-PDF are defined as the Fourier

transform of the coordinate space gluon distributions (5.11) and (6.12) keeping, this time,
the orientation of the vector zµ fixed.

8.1 Gluon quasi-PDF with BFKL resummation

Let us start with eq. (5.11). As already mentioned before, in the high-energy limit, where
x+-component→∞ and x−-component→ 0, we can not distinguish between the zeroth and
the third component. We can then rewrite LP− = z ·P = ςPξ with Pξ ≡ P ·ξ = P− because
the ξµ vector, in the limit we are considering, selects the minus component of the Pµ vector.
Moreover, in coordinate space, in the high-energy limit, every fields depends only on x+ and
x⊥, so, restoring the x− components amounts in substituting (x− y)2

⊥ = ∆2
⊥ → −z2 = ς2.

In the quasi-PDF notation eq. (5.10) becomes

ξµξν
2P 2

ξ

〈P |Gaαµ(ς)[ς, 0]abGb να (0)|P 〉

= 3N2
c

4π3
Qsσ0
ς2Pξ

∫
dν

(
−

2P 2
ξ

M2
N

+ iε

)ℵ(γ)
2 γ Γ2(1− γ)Γ3(1 + γ)

Γ(2 + 2γ)

(
Q2
sς

2

4

)iν
. (8.1)
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We can then use the definition of the gluon quasi-PDF eq. (2.6)

Gq(xB, Pξ) = Pξ

∫
dς

2π e
−iςPξxB ξµξν

2P 2
ξ

〈P |Gaαµ(ς)[ς, 0]abGb να (0)|P 〉

= 3N2
c

8π4 Qsσ0

∫
dν

(
−

2P 2
ξ

M2
N

+ iε

)ℵ(γ)
2 γ Γ2(1− γ)Γ3(1 + γ)

Γ(2 + 2γ)

×
∫
dς

ς2

(
Q2
sς

2

4

)iν
e−iςPξxB . (8.2)

Performing the integration over ς we obtain (recall that we are using γ = 1
2 + iν)

Gq(xB, Pξ) = i
3N2

c

4π4 Qsσ0Pξ|xB|
∫
dν

(
−

2P 2
ξ

M2
N

+ iε

)ℵ(γ)
2
(

Q2
s

4P 2
ξ x

2
B

)iν

× γ Γ2(1− γ)Γ3(1 + γ)Γ(2γ − 2)
Γ(2 + 2γ) sinh(πν) . (8.3)

Let us calculate eq. (8.3) in the saddle point approximation. To this end we note
that γ Γ2(1−γ)Γ3(1+γ)Γ(2γ−2)

Γ(2+2γ) sinh(πν) is a slowly varying function, so in the saddle point
approximation we have

Gq(xB, Pξ) ' −
3N2

c

256 Qsσ0Pξ|xB|
(
−

2P 2
ξ

M2
N

+ iε

)ᾱs2 ln 2
e

−
ln2 Qs

2Pξ|xB |

7ᾱsζ(3) ln

(
−

2P2
ξ

M2
N

+iε

)
√

7ζ(3)ᾱs ln
(
−

2P 2
ξ

M2
N

+ iε

) . (8.4)

In figure 10 we compare eqs. (8.4) with its saddle point approximation result (8.4) calculated
with a large values of Pξ.

It is interesting to notice that, in the gluon quasi-PDF case, the usual exponentiation of
the pomeron intercept (the LO BFKL eigenvalues ℵ(γ)), which indicates the resummation
of large logarithms of 1

xB
, is absent. The exponentiation of the pomeron intercept that

we instead have in eq. (8.3) (and also in (8.4)) suggests that the logarithms resummed by
BFKL equation are αs ln

(
2P 2
ξ

M2
N

)
rather than the usual αs ln 1

xB
as in the pseudo-PDF case

(see equations (7.2) and (7.3)).

8.2 Gluon quasi-PDF at LT and NLT

Let us now consider the leading and next-to-leading twist gluon quasi-PDF. We have
to perform the quasi-PDF Fourier transform of eq. (6.11) and make the inverse Mellin
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Figure 10. Here we compare eq. (8.3) (real part) with its saddle point approximation, (8.4) (real
part). The curves are plotted in the range xB ∈ [0.001, 0.1] with Pξ = 4GeV.

transform at the end. So, using the quasi-PDF variables ς and Pξ, we have

Gq(xB, Pξ)

= Pξ

∫
dς

2π e
−iςPξxB ξµξν

2P 2
ξ

〈P |Gaαµ(ς)[ς, 0]abGb να (0)|P 〉

= Pξ

∫ +∞

0

dς

2π e
−iςPξxB 3N2

c Q
2
s σ0

16π2
1

2πi

∫ 1+i∞

1−i∞

dω

ςPξ

(
−

2P 2
ξ

M2
N

+ iε

)ω
2 ( 4

Q2
sς

2

) ᾱs
ω

×
(
4g1(ω) + g2(ω)Q2

sς
2
)
. (8.5)

Performing the integration over ς we get

Gq(xB, Pξ) = 3N2
c Q

2
s σ0

32π3
1

2πi

∫ 1+i∞

1−i∞
dω

(
−

2P 2
ξ

M2
N

+ iε

)ω
2
(
−

4P 2
ξ x

2
B

Q2
s

+ iε

)ᾱs
ω

× Γ
(
−2ᾱs

ω

)(
4 g1(ω) + 2ᾱs

ω

Q2
s

P 2
ξ x

2
B

(
1− 2ᾱs

ω

)
g2(ω)

)
. (8.6)

Equation (8.6) is the gluon quasi-PDF up to next-to-leading twist contribution. What one
should notice in result (8.6) is the strong enhancement of the NLT term with respect to the
LT term due to the 1

P 2
ξ
x2
B

factor. This is also consistent with the result obtained in ref. [40].
Since we are in the approximation ᾱs � ω � 1, employing equations (6.13), and

Γ
(
−2ᾱs

ω

)
' − ω

2ᾱs , we can also simplify result (8.6) as

Gq(xB, Pξ) = −N
2
c Q

2
s σ0

16ᾱ2
sπ

3
1

2πi

∫ 1+i∞

1−i∞
dω

(
−

2P 2
ξ

M2
N

+ iε

)ω
2
(
−

4P 2
ξ x

2
B

Q2
s

+ iε

)ᾱs
ω

×
(
ω + 2ᾱsQ2

s

5P 2
ξ x

2
B

+O

(
ᾱs
ω

))
. (8.7)
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Figure 11. Here we plot the quasi-PDF with BFKL rsummation eq. (8.3) (real part), the LT and
the LT+NLT of eq. (8.6) (real part). The curves are plotted in the range xB ∈ [0.01, 0.1] with
Pξ = 4GeV.

In appendix E we provide the analytic expression of eq. (8.7) in two different cases:
ln 4P 2

ξ x
2
B

Q2
s

> 0 and ln 4P 2
ξ x

2
B

Q2
s

< 0 and compare them with result (8.6) (see figures 15 and 16).
However, although our conclusions are not affected by using either of the results (8.7),
or (8.6), in what follow we will plot the numerical evaluation of eq. (8.6).

In figure 11, using Pξ = 4GeV, we plot the quasi-PDF with BFKL resummation (red
curve) given in eq. (8.3), and the LT (blue dashed curve), and LT+NLT (magenta dashed
curve) contributions given in eq. (8.6). What is striking about the plot in figure 11 is
that the behavior of the three curves is different than the usual low-xB behavior of gluon
distributions which we, instead, observed for the pseudo-PDF distribution in figure 9. We
considered again as initial condition of the evolution the GBW model evaluated at xB = 0.1.
One may check that, changing the starting point of the evolution, for example evaluating
the GBW model at xB = 0.01, would not change such unusual behavior of the quasi-PDF.

9 Conclusions

Our findings are illustrated in figures 5, 9, and 11 where we plotted the Ioffe-time distribu-
tions, the pseudo-PDF and quasi-PDF respectively.

The main result is that the pseudo-PDF and the quasi-PDF have a very different
behavior at low-xB. The physical origin of the difference between the two distributions lay
in the two different Fourier transforms under which they are defined. More precisely, in the
pseudo-PDF case, the scale is the resolution that is, the square of the length of the gauge
link separating the bi-local operator. On the other hand, in the quasi-PDF case, the scale is
the energy that is, the momentum of the hadronic target (the nucleon) projected along the
direction of the gauge link. Indeed, if on one hand, the pseudo-PDF has the typical behavior
of the gluon distribution at low-xB (see figure 9), on the other hand, the quasi-PDF has a
rather unusual low-xB behavior (see figure 11). The reason is that the usual exponentiation
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of the BFKL pomeron intercept, which resums logarithms of xB , is absent in the quasi-PDF
result (8.3). Moreover, the power corrections in the quasi-PDF result (8.6) do not come
in as inverse powers of P but as inverse powers of xBP , so for low values of xB and fixed
values of P these corrections are enhanced rather than suppressed at this regime.

Another result we obtained is the large-distance behavior of the gluon Ioffe-time
distribution (see figure 5) where we noticed that the plotted curves (for the real and
imaginary part) are very slowly varying functions for large values of % (see figure 7). Indeed,
since in lattice calculations the values of % is not very large, to perform the Fourier transform
and obtain the xB dependence, one has to extrapolate the large-distance behavior of the
Ioffe-time distribution.

In this work, running coupling corrections and next-to-leading order BFKL have not
been used and could be included. Moreover, the technique we developed in this work can
be extended to study the low-xB behavior of other unpolarized or polarized pseudo and
quasi parton distributions.
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A Projection with open transverse indexes

He we consider the gluon matrix element with open transverse indexes. We start from

〈Ga i−(x+, x⊥)[nx+ + x⊥, ny
+ + y⊥]abGb j−(y+, y⊥)〉Fig. 2

= (∂ixgµ− − ∂−x giµ)(∂jygν− − ∂−y gjν)〈Aaµ(x)Abν(y)〉A . (A.1)

Using the gluon propagator (5.3) in (A.1) we get

〈Ga i−(x+, x⊥)[nx+ + x⊥, ny
+ + y⊥]abGb j−(y+, y⊥)〉Fig. 2

= (∂−x giµ − ∂ixgµ−)(∂jygν− − ∂−y gjν)

×
∫
d2z2
4π3

x+|y+|g⊥µν − |y+|n′µX⊥2ν + x+n′νY
⊥

2µ + n′µn2ν(X2, Y2)[
|y+|(x− z2)2

⊥ + x+(y − z2)2
⊥ − iε

]2 Uabz2U
ab
z1 . (A.2)

After differentiation eq. (A.2) becomes

〈Gai−(x+,x⊥)[nx++x⊥,ny++y⊥]abGbj−(y+,y⊥)〉Fig.2

=
∫
d2z2
4π3

{
4gij

[x+(y−z2)2
⊥−y+(x−z2)2

⊥]2

+ 4y+gij(x−z2)2
⊥−4x+gij(y−z2)2

⊥−12y+(x−z2)i(x−z2)j+12x+(y−z2)i(y−z2)j

[x+(y−z2)2
⊥−y+(x−z2)2

⊥]3

+ 1
[x+(y−z2)2

⊥−y+(x−z2)2
⊥]4

(
24x+y+(x−z2,y−z2)(x−z2)i(y−z2)j

−12y+2(x−z2)2
⊥(x−z2)i(x−z2)j−12x+2(y−z2)2

⊥(y−z2)i(y−z2)j

−6gijx+y+(x−z2)2
⊥(y−z2)2

⊥

)}
Uabz2U

ab
z1 . (A.3)
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We recall that the point z1 can be anywhere between point nx+ + x⊥ and ny+ + y⊥.
We parametrize the straight line between these two points as xu = ux⊥ + ūy⊥ = z1⊥, with
u = |y+|

∆+ , ū = x+

∆+ and ∆+ = x+ − y+, and at the end we will have to integrate over the
parameter u.

Considering forward matrix elements and including the solution of the linear evolution
of the Wilson-line operator (BFKL equation)

Va(z12) =
∫

dν

2π2 (z2
12)−

1
2 +iν

(
− 2x+y+

(x−y)2a0
+iε

)αsNc
2π χ(γ) ∫

d2ω(ω2
⊥)−

1
2−iνVa0(ω⊥) (A.4)

with 1
z2
12
Ua(z12) = Va(z12), ℵ(γ) = ᾱsχ(γ), γ = 1

2 + iν, and χ(γ) = 2ψ(1)−ψ(γ)−ψ(1− γ),
from (A.3) we arrive at

〈Gai−(x+,x⊥)[nx++x⊥,ny++y⊥]abGbj−(y+,y⊥)〉Fig.2

=
∫
d2z2
4π3

{
4gij

[x+(y−z2)2
⊥−y+(x−z2)2

⊥]2

+ 4y+gij(x−z2)2
⊥−4x+gij(y−z2)2

⊥−12y+(x−z2)i(x−z2)j+12x+(y−z2)i(y−z2)j

[x+(y−z2)2
⊥−y+(x−z2)2

⊥]3

+ 1
[x+(y−z2)2

⊥−y+(x−z2)2
⊥]4

(
24x+y+(x−z2,y−z2)(x−z2)i(y−z2)j

−12y+2(x−z2)2
⊥(x−z2)i(x−z2)j−12x+2(y−z2)2

⊥(y−z2)i(y−z2)j

−6gijx+y+(x−z2)2
⊥(y−z2)2

⊥

)}

×z2
12

∫
dν

2π2 (z2
12)−

1
2 +iν

(
− 2x+y+

(x−y)2a0
+iε

)αsNc
2π χ(γ) ∫

d2ω(ω2
⊥)−

1
2−iνVa0(ω⊥) . (A.5)

The projection over the open indexes tensor structure is

∫
d2z2
4π3

{
4gij

[x+(y−z2)2
⊥−y+(x−z2)2

⊥]2

+ 4y+gij(x−z2)2
⊥−4x+gij(y−z2)2

⊥−12y+(x−z2)i(x−z2)j+12x+(y−z2)i(y−z2)j

[x+(y−z2)2
⊥−y+(x−z2)2

⊥]3

+ 1
[x+(y−z2)2

⊥−y+(x−z2)2
⊥]4

(
24x+y+(x−z2,y−z2)(x−z2)i(y−z2)j

−12y+2(x−z2)2
⊥(x−z2)i(x−z2)j−12x+2(y−z2)2

⊥(y−z2)i(y−z2)j

−6gijx+y+(x−z2)2
⊥(y−z2)2

⊥

)}
(z2

12)γ

= gij
3
2
γ2Γ(1+γ)Γ(1−γ)

π2∆+2
(uū)γ

[∆2
⊥]1−γ

, (A.6)
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with ∆2
⊥ = (x− y)2

⊥ = −(x− y)i(x− y)i. We see that only one tensor structure survived
after projection. So, using result (A.6) in eq. (A.5) we obtain

Va(z12) =
∫

dν

2π2 (z2
12)−

1
2 +iν

(
− 2x+y+

(x−y)2a0
+iε

)αsNc
2π χ(γ) ∫

d2ω(ω2
⊥)−

1
2−iνVa0(ω⊥) , (A.7)

with 1
z2
12
Ua(z12) = Va(z12), ℵ(γ) = ᾱsχ(γ), γ = 1

2 + iν, and χ(γ) = 2ψ(1)−ψ(γ)−ψ(1− γ),
from (A.3) we arrive at

〈Ga i−(x+, x⊥)[nx+ + x⊥, ny
+ + y⊥]abGb j−(y+, y⊥)〉Fig. 2

=
∫

dν

2π2

(
− 2x+y+

(x− y)2a0
+ iε

)αsNc
2π χ(γ) ∫

d2ω(ω2
⊥)−

1
2−iνVa0(ω⊥)

× gij 3
2
γ2Γ(1 + γ)Γ(1− γ)

π2∆+2
(uū)γ

[∆2
⊥]1−γ

. (A.8)

Integrating over u and contracting the transverse indexes i and j, from (A.8) we arrive at
result (5.8).

B From local operators to light-ray operators

It is known that correlation functions of non-local operators on the light-cone are UV
divergent in the high-energy (Regge) limit and that a way to regulate these divergences is to
consider the point-splitting regulator. In this section we will first show that the “quasi-pdf
frame” (see figure 12) is a valid point-splitting regulator for correlation function of non-local
operators at high-energy (Regge) limit, and that, in this limit, it gives the same result as
the one obtained in refs. [19, 20] using the “Wilson-frame” (see figure 12). In this way
we can show that diagrams a) and b) of figure 13 which are not included in the HE-OPE
formalism do not contribute. This is because these diagrams cancel out with the residue at
γ = 1 as explained in section 6.

In this section we will also use light-cone vectors p1 and p2 such that 2p1 · p2 = s, and
xp1 = pµ1xµ =

√
s/2x−, and xp2 = pµ2xµ =

√
s/2x+. The light cone vectors nµ and n′µ that

we introduced in section 2 are related to the light-cone vectors p1 and p2 by pµ1 =
√

s
2n

µ

and pµ2 =
√

s
2n
′µ.

B.1 Analytic continuation of local twist-two operator to non-integer spin j

Using the Hankel representation of the Gamma function we can write

1
Γ(j − 1)F

a
p1ξ(x)∇j−2

p1 F a ξp1 (x)
∣∣∣
x=0

= − 1
2πi

∫
H+
du (−u)1−j F ap1ξ(x)e−u∇p1F a ξp1 (x)

∣∣∣
x=0

= − 1
2πi

∫
H+
du (−u)1−j F ap1ξ(0)[0,−up1]abF b ξp1 (−up1) , (B.1)
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with j − 1 ∈ C, and where H+ is the Hankel contour which starts at +∞ slightly above the
real axis, goes around the origin counter-clockwise and goes back to +∞ slightly below the
real axes.

Using the H− Hankel contour, which starts at −∞ slightly below the real axis, goes
around the origin counter-clockwise and goes back to −∞ slightly above the real axis, we
can rewrite eq. (B.1) as

1
Γ(j − 1)F

a
p1ξ(x)∇j−2

p1 F a ξp1 (x)
∣∣∣
x=0

= 1
2πi

∫
H−
du u1−j F ap1ξ(up1)[up1, 0]abF b ξp1 (0) , (B.2)

with (j − 1) ∈ C. Now, let us consider j ∈ C− {1, 2, 3, 4, . . . } in (B.2), then we can leave
the Hankel contour and obtain

1
Γ(j − 1)F

a
p1ξ(x)∇j−2

p1 F a ξp1 (x)
∣∣∣
x=0

= sin[π(j − 1)]
π

∫ ∞
0

dv v1−j F ap1ξ(−vp1)[−vp1, 0]abF b ξn (0) , (B.3)

with j ∈ C− {1, 2, 3, 4, . . . }. Since we are interested in the forward matrix elements we can
rewrite (B.3) as

1
Γ(j − 1)F

a
p1ξ(x)∇j−2

p1 F a ξp1 (x)
∣∣∣
x=0

forw.= sin[π(j − 1)]
π

∫ ∞
0

dv v1−j F ap1ξ(0)[0, vp1]abF b ξn (vp1) . (B.4)

Using the reciprocal formula of Gamma function we can finally write (B.4) as

F anξ(x)∇j−2
n F a ξp1 (x)

∣∣∣
x=0

forw.= 1
Γ(2− j)

∫ ∞
0

dv v1−j F ap1ξ(0)[0, vp1]abF b ξp1 (vp1) . (B.5)

Equation (B.5) is the analytical continuation of the twist-two gluon operator to non-integer
values of j for forward matrix elements.

Similarly, if we consider the scalar twist-two operator we get

φ̄aAB(x)∇jp1φ
ABa(x)

∣∣∣
x=0

forw.= 1
Γ(−j)

∫ +∞

0
dv v−1−jφ̄aAB(vp1)[vp1, 0]abφABb ξ(0) , (B.6)

and for the gluino twist-two operator we get

iλ̄aA(x)∇j−1
p1 σp1λ

a
A(x)|x=0

forw.= 1
Γ(1−j)

∫ +∞

0
dv v−j

i

2
[
−λ̄aA(0)[0,vp1]abσp1λ

b
A(vp1)

+λ̄aA(vp1)[vp1,0]abσp1λ
b
A(0)

]
. (B.7)

B.2 Super-multiplet of local operators in CFT

Let us consider the super-multiplet of local operators [41] defined as [20]

Ojφ(x⊥) =
∫
du φ̄aAB∇jp1φ

ABa(up1 + x⊥) , (B.8)

Ojλ(x⊥) =
∫
du iλ̄aA∇j−1

p1 λaA(up1 + x⊥) , (B.9)

Ojg(x⊥) =
∫
duF ap1i∇

j−2
p1 F ap1

i(up1 + x⊥) . (B.10)
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In the case of forward matrix elements the multiplicatively renormalizable operators are

Sj1 = Ojg + 1
4O

j
λ −

1
2O

j
φ , (B.11)

Sj2 = Ojg −
1

4(j − 1)O
j
λ + j + 1

6(j − 1)O
j
φ , (B.12)

Sj3 = Ojg −
j + 2

2(j − 1)O
j
λ −

(j + 1)(j + 2)
2j(j − 1) Ojφ , (B.13)

with anomalous dimensions [41]

γS1
j = 4[ψ(j − 1) + γE ] +O(α2

s), γS2
j = γj+2, γS3

j = γS1
j+4 . (B.14)

In conformal field theory, the two-point correlation function is determined by symmetry
up to a coefficient, the structure constant. If we consider two operators Ojp1(x) and Oj′p2(x) of
spin-j and spin-j′ and indexes contracted with two light-like vectors p1 and p2, respectively,
then the two-point correlation function can be written as∫

dvdu〈Ojp1(up1 + x⊥)Oj′p2(vp2 + y⊥)〉 = δ(j − j′) C(∆, j)sj−1

[(x− y)2
⊥]∆−1µ

−2γa , (B.15)

where ∆ = d+ γa with d canonical dimension of the operator, γa the anomalous dimension,
s = 2p1 · p2, µ is the renormalization point, and C(∆, j) is the structure constant.

B.3 Super-multiplet of non-local twist-two operator with non-integer spin j

Following the procedure explained in section B.1 we can obtain the analytical continuation
of the super-multiplet local operators (B.11), (B.12), and (B.13) to non-integer j

F jp1(x⊥) =
∫ ∞

0
duu1−jFp1(up1 + x⊥) , (B.16)

Λjp1(x⊥) =
∫ ∞

0
duu−jΛp1(up1 + x⊥) , (B.17)

Φj
p1(x⊥) =

∫ ∞
0
duu−1−jΦp1(up1 + x⊥) , (B.18)

with

F jp1(up1, x⊥) =
∫
dv F ap1µ(up1 + vp1 + x⊥)[up1 + vp1, vp1]abx F bp1

µ(vp1 + x⊥) , (B.19)

Λjp1(up1, x⊥) = i

2

∫
dv
(
− λ̄aA(up1 + vp1 + x⊥)[up1 + vp1, vp1]abx σ−λbA(vp1 + x⊥)

+ λ̄aA(vp1 + x⊥)[vp1, up1 + vp1]abx σp1λ
b
A(up1 + vp1 + x⊥)

)
, (B.20)

Φj
p1(u, x⊥) =

∫
dv φaI (up1 + vp1 + x⊥)[up1 + vp1, vp1]abx φbI(vp1 + x⊥) . (B.21)

Thus, the analytic continuation of the multiplicatively renormalizable light-ray operators to
non-integer j are

S1 = F jp1 + j − 1
4 Λjp1 − j(j − 1)1

2Φj
p1 , (B.22)

S2 = F jp1 −
1
4Λjp1 + j(j + 1)

6 Φj
p1 , (B.23)

S3 = F jp1 −
j + 2

2 Λjp1 −
(j + 1)(j + 2)

2 Φj
p1 . (B.24)
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x+

‘ ‘Wilson frame’’

x−

‘ ‘quasi−pdf−frame’’

x+

x−

Figure 12. In the left panel the Wilson frame is depicted, while in the right panel the quasi-pdf
frame.

Notice that, the different coefficients between the S-operators in (B.11)–(B.13) and the
S-operators in (B.22)–(B.24) are due to eqs. (B.5), (B.6), and (B.7)

For the two-point correlation function constructed with the S-operaotrs, it holds similar
general result

〈Sj(x⊥)Sj′(y⊥)〉 = δ(j − j′) C(∆, j)sj−1

[(x− y)2
⊥]∆−1µ

−2γa . (B.25)

We will calculate the C(∆, j) in the BFKL limit, i.e. in the ω = j − 1→ 0, coupling
constant g → 0 and g

ω ∼ 1 and then we will also consider the limit g2 � ω � 1.
From (B.22)–(B.24) we have that

F jp1 = (1 + j)(2 + j)
6j2 Sj1 −

(1− j)(2 + j)(1 + 3j)
2j2(3 + 2j) Sj2 + (1− j)(2− j)

6j(3 + 2j) S
j
3 . (B.26)

So, we deduce that, in the BFKL limit, calculating the two-point correlation function of
F j si equivalent to calculate the two-point correlation function of Sj1 for which it holds
eq. (B.25).

The correlation functions with operators defined in eqs. (B.22)–(B.24) in the BFKL
limit, j → 1, are divergent. A way to regulate such divergence is to consider the “Wilson
frame” [17] which are light-ray operators with point-splitting to regulate UV divergences
(see figure 12 a))

F jp1(x1⊥, x2⊥) ≡
∫ ∞

0
duu1−jFp1(u;x1⊥, x2⊥) , (B.27)

Fp1(u;x1⊥, x2⊥) ≡
∫
dv 2Tr

{
Fp1µ(up1 + vp1 + x1⊥)[up1 + vp1, vp1]x1

× [vp1 + x1⊥, vp1 + x2⊥]Fp1
µ(vp1 + x2⊥)[vp1, up1 + vp1]x2

}
. (B.28)

In ref. [17] the correlation function of two “Wilson-frames”

〈F jp1(x1⊥, x2⊥)F j′p2(y1⊥, y2⊥)〉 , (B.29)

was calculated in the BFKL limit and the explicit expression for the structure function
C(∆, j) was derived.

The correlation function of “Wilson-frames” reminds us the correlation function of
four Z2 currents with Z = 1√

2(φ1 + iφ2) a renorm-invariant chiral primary operator, in the
BFKL limit [29] in N=4 SYM theory, or the correlation function of four electromagnetic
currents in QCD which describes the γ∗γ∗ scattering in the Regge limit [42].
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We will show that an alternative gauge-link geometry to regulate the UV divergences
present in the BFKL limit is the “quasi-pdf frame” (see figure 12b)). Indeed, we will show
that in the limit ω = j − 1 → 0, g → 0, and g2 � ω � 1 we get the same result as one
obtained in ref. [17] with “Wilson-frames”.

B.4 Gluon correlation function with “quasi-pdf frame”

As announced in the previous section, we will calculate gluon correlation function with
“quasi-pdf frame” in the BFKL limit.

The procedure is the same as the one adopted in refs. [20, 29], i.e., we will apply the
high-energy OPE.

The gluon correlation function under consideration is

〈F jp1(x⊥, y⊥)F j′p2(x′⊥, y′⊥)〉 , (B.30)

with
F jp1(x⊥, y⊥) =

∫ +∞

0
du1−jFp1(u;x⊥, y⊥) , (B.31)

and where now Fp1(x, y) is taken with quasi-pdf frame (see figure 12)

Fp1(u;x⊥, y⊥) =
∫
dvF ap1i(up1 + vp1 + x⊥)

× [up1 + vp1 + x⊥, vp1 + y⊥]abF bp1
i(vp1 + y⊥) . (B.32)

In coordinate space the Regge limit is achieved considering the limit x ·p2, x
′ ·p1 → ∞,

y ·p1, y
′ ·p2 → −∞ and keeping all other components fixed. In this limit, the correlation

function (B.30) factorizes as [29]

〈Fp1(x⊥, y⊥)〉〈Fp2(x′⊥, y′⊥)〉 . (B.33)

To each factor of (B.33) we apply the high-energy OPE similarly to what we did in section 5,
indeed, using result (5.5) we have∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+−y+−L)

∫ +∞

0
dx′−

∫ 0

−∞
dy′−δ(x′−−y′−−L′)

×〈F ai−(x+,x⊥)[nx++x⊥,ny++y⊥]abF b−i (y+,y⊥)〉Fig.2

×〈F a′ k+(x′−,x′⊥)[nx′−+x′⊥,ny′−+y′⊥]a′b′F b′+k (y′−,y′⊥)〉Fig.2

= −6N2
c

(x+|y+|)3

∫
d2z2
π3 U(z1,z2)

−2(x−z2,y−z2)2
⊥+(x−z2)2

⊥(y−z2)2
⊥(

(y−z2)2
⊥

|y+| + (x−z2)2
⊥

x+

)4



× −6N2
c

(x′+|y′+|)3

∫
d2z′2
π3 U(z′1,z′2)

−2(x′−z′2,y′−z′2)2
⊥+(x′−z′2)2

⊥(y′−z′2)2
⊥(

(y′−z′2)2
⊥

|y′+| + (x′−z′2)2
⊥

x′+

)4

 . (B.34)
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An important difference between the calculation of a correlation function like (B.30), and
the calculation carried out in section 5, is that here we will not need a model to evaluate
the initial condition for the evolution equation of the matrix elements because the initial
conditions are fully perturbative and are obtained by calculating in pQCD the dipole-dipole
scattering. In section 5, instead, we used a model to evaluate the dipole in the target state.

To proceed, we need the projection of the dipole-Wilson-line operator U(z1, z2) onto
the leading-order eigenfunctions, so using the completeness relation, we have

U(z1, z2) =
∫
d2z0

∫
dν

π2 ν
2
(

z2
12

z2
10z

2
20

)γ
U(ν, z0) , (B.35)

with γ = 1
2 + iν and γ̄ = 1− γ, and where we defined

U(ν, z0) ≡
∫
d2z′1d

2z′2
π2z′412

(
z′212
z′210z

′2
20

)γ̄
U(z′1, z′2) . (B.36)

We also need the solution of the evolution equation for the dipole-Wilson-line operator in
the linear case, i.e. the BFKL equation,

UYa(ν, z0) = e(Ya−Y0)ℵ(ν)UY0(ν, z0) , (B.37)

UYb(ν, z′0) = e(Y0+Yb)ℵ(ν)UY0(ν, z′0) , (B.38)

where ℵ(ν) = ℵ(γ(ν)) with γ = 1
2 + iν. The resummation parameter in coordinate space

is [29]

Ya = 1
2 ln 2L2

(x− y)2
⊥
, Yb = 1

2 ln 2L′2

(x′ − y′)2
⊥
. (B.39)

Indeed, in coordinate space, we already observed above, L,L′ → ∞ while the other
components are kept fixed. To have an intuitive picture, one has to recall the more familiar
case of γ∗γ∗ process, and think to the L, and L′ as conjugated to the center of mass energy
of the virtual photon-target system, and (x−y)2

⊥, and (x′−y′)2
⊥ conjugated to the virtuality

of the photon.
So, using (B.35), the dipole-dipole amplitude with BFKL resummation is (see section C

for details of the calculation)

〈UYa(z1, z2)UYb(z′1, z′2)〉

= −α
2
s(N2

c − 1)
N2
c

∫
dν

π

16 ν2

(1 + 4ν2)2

( 2LL′

|(x− y)⊥||(x′ − y′)⊥|

)ℵ(γ)

×
Γ2(1

2 + iν)Γ(−2iν)
Γ2(1

2 − iν)Γ(1 + 2iν)

(
z2

12z
′2
12

(X −X ′)4

)γ
. (B.40)
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Using eq. (B.40), and the result of projection eq. (5.8), from eq. (B.34) we get∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+−y+−L)

∫ +∞

0
dx′−

∫ 0

−∞
dy′−δ(x′−−y′−−L′)

×〈F ai−(x+,x⊥)[nx++x⊥,ny++y⊥]abF b−i (y+,y⊥)〉Fig.2

×〈F a′ k+(x′−,x′⊥)[nx′−+x′⊥,ny′−+y′⊥]a′b′F b′+k (y′−,y′⊥)〉Fig.2

= −9α2
sN

4
c

LL′∆2
⊥∆′2⊥

∫
dν

π5
64ν2

(1+4ν2)2
γ10Γ(1−2γ)Γ8(γ)
Γ(2γ)Γ2(2γ+2)

(
∆2
⊥∆′2⊥

(X−X ′)4
⊥

)γ( 2LL′

|∆2
⊥||∆′2⊥|

)ℵ(γ)

, (B.41)

where we defined X⊥ = x⊥+y⊥
2 and the same for X ′⊥, and where we used N2

c − 1→ N2
c in

the large Nc limit. From (B.41) we can calculate the correlation function of the j-dependent
operators

〈F jp1(x⊥, y⊥)F j′p2(x′⊥, y′⊥)〉

= − 9α2
sN

4
c

LL′∆2
⊥∆′2⊥

(
s

2

)j−1 ∫ +∞

0
dLL1−j

∫ +∞

0
dL′L′1−j

′
θ(2LL′ − (X −X ′)2

⊥)

×
∫
dν

π5
64 ν2

(1 + 4ν2)2
γ10Γ(1− 2γ)Γ8(γ)
Γ(2γ)Γ2(2γ + 2)

(
∆2
⊥∆′2⊥

(X −X ′)4
⊥

)γ( 2LL′

|∆2
⊥||∆′2⊥|

)ℵ(γ)

, (B.42)

where we used

F jp1(x⊥, y⊥) =
(
s

2

) j−1
2
∫ +∞

0
dLL1−j

∫
dx+F a−ξ(x+ + L, x⊥)

× [(x+ + L)n+ x⊥, nx
+ + y⊥]abF b−ξ(x+, y⊥) , (B.43)

and similarly for F jp2(x′⊥, y′⊥). The θ(2LL′ − (X −X ′)2
⊥)-function ensures that the longi-

tudinal size of two quasi-pdf frames are greater than the relative transverse separation.
Performing the integration over L and L′ we arrive at

〈F jp1(x⊥, y⊥)F j′p2(x′⊥, y′⊥)〉

= 18α
2
sN

4
c

π4

(
s

2

)j−1 ∫
dν

2ω (∆2
⊥∆′2⊥)γ−1−ℵ(γ)

2

[(X −X ′)2
⊥]2γ+j−1−ℵ(γ)

θ(Re[ω − ℵ(γ)])
ω − ℵ(γ)

× (1− 2γ)2

(1− γ)2
Γ(1− 2γ)Γ8(1 + γ)

Γ(2γ)Γ2(2γ + 2) δ(ω − ω′) . (B.44)

To perform last integration we change variable ν → γ = 1
2 + iν and consider the “DGLAP”

limit αs � ω = j − 1� 0

〈F jp1(x⊥, y⊥)F j′p2(x′⊥, y′⊥)〉

= −i 18α
2
sN

4
c

π4

∫ 1
2 +i∞

1
2−i∞

dγ
sω (∆2

⊥∆′2⊥)γ−1−ℵ(γ)
2

[(X −X ′)2
⊥]2γ+j−1−ℵ(γ)

θ(Re[ω − ℵ(γ)])
ω − ℵ(γ)

× (1− 2γ)2

(1− γ)2
Γ(1− 2γ)Γ8(1 + γ)

Γ(2γ)Γ2(2γ + 2) δ(ω − ω′) . (B.45)
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a) b) c)

Figure 13. First three order diagrams for the correlator of two “quasi-PDF” frames. Diagrams a)
and b) are not included in the product of two dipole Wilson-line operators.

In eq. (B.45), we can close the contour to the right of all the residues and consider only
the left most one which will give the leading contribution. However, we observe that there
are two residues to consider. The first, γ = 1− αs

ω , reproduces the general expected result
of eq. (B.15) in the high-energy limit. The second one, γ = 1, cancels out the diagrams
a) and b) in figure 13 which are not included into the high-energy OPE formalism. To
see this, one has to consider diagram in figure 2 and expand the Wilson line operator to
two gluon approximation. In this way, one observes that from this expansion, the first
diagram that obtains is the one in figure 13 c) (plus permutations). Thus, diagrams in
figure 13 a) and b) are absent from the high-energy OPE, but they have to be included
in the calculation of this correlation function. The contribution of diagram in figure 13 a)
(diagram b) is higher order) will exactly cancel the contribution from the residue at the
point γ = 1. Diagram in figure 13 a) has been calculated in ref. [20], so we do not need to
calculate it again, rather, we will show that it get canceled from the residue at γ = 1 also
in the case of quasi-pdf frame. We remind the reader that in ref. [20] (see also ref. [17]) the
gluon correlation function was considered with Wilson frames (see figure 12).

Taking the residue at ℵ(γ∗)− ω = 0 we have

〈F jp1(x⊥, y⊥)F j′p2(x′⊥, y′⊥)〉

= 36α
2
sN

4
c

π3
sω (∆2

⊥∆′2⊥)γ∗−1−ω2

[(X −X ′)2
⊥]2γ∗

(1− 2γ∗)2

(1− γ∗)2
Γ(1− 2γ∗)Γ8(1 + γ∗)

Γ(2γ∗)Γ2(2γ∗ + 2)
δ(ω − ω′)
ℵ′(γ∗) . (B.46)

Here |∆⊥||∆′⊥| is the IR cut-off and ℵ′(γ) = d
dγℵ(γ). Comparing (B.46) with (B.15), we

have two equations 2γ∗ − 2− ω = γa and 2γ∗ = ∆− 1, from which we get γa + ω = ∆− 3
in agreement with result obtained in ref. [20].

In the limit αs � ω � 1 we have γ∗ = 1 − ᾱs
ω with ᾱs = αsNc

π , and result (B.46)
becomes

〈F jp1(x⊥, y⊥)F j′p2(x′⊥, y′⊥)〉 ' −N2
c

(|∆⊥∆′⊥|)−
2ᾱs
ω
−ω

[(X −X ′)2
⊥]2−2 ᾱs

ω

ω

2πs
ωδ(j − j′) . (B.47)

Result (B.47) coincides with the one obtained in refs. [17, 20] and is consistent with the
general result for two-point correlation function eq. (B.15).
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What we are left to do is the calculation of the residue at γ = 1 and show that it
coincides with the one calculated in [20], thus canceling the contribution of diagrams a)
and b) in figure 13. So, we start from eq. (B.45) which we can rewrite as

〈F jp1(x⊥, y⊥)F j′p2(x′⊥, y′⊥)〉

= −i 18α
2
sN

4
c

π4

∫ 1
2 +i∞

1
2−i∞

dγ
sω (∆2

⊥∆′2⊥)γ−1−ℵ(γ)
2

[(X −X ′)2
⊥]2γ+j−1−ℵ(γ)

θ(Re[ω − ℵ(γ)])
ω − ℵ(γ)

× (1− 2γ)2

2(1− γ)3
Γ(3− 2γ)Γ8(1 + γ)

Γ(2γ)Γ2(2γ + 2) δ(j − j′) . (B.48)

The residue at γ = 1 is

〈F jp1(x⊥,y⊥)F j′p2(x′⊥,y′⊥)〉=− N2
c s
ωω

π[(X−X ′)2
⊥]ω+2

(
ᾱs
3ω−

1
2−

ᾱs
ω

ln (X−X ′)2
⊥

|∆⊥||∆′⊥|

)
δ(j−j′)

' N2
c s
ωω

2π[(X−X ′)2
⊥]ω+2

(
1+2 ᾱs

ω
ln (X−X ′)2

⊥
|∆⊥||∆′⊥|

)
δ(j−j′) , (B.49)

where we used ᾱs � ω � 1 and ᾱs � ᾱs ln (X−X′)2
⊥

|∆⊥||∆′⊥|
. Result (B.49) coincides exactly with

eq. (5.40) of reference [20].
In conclusion, in this section we have proven that the Wilson-frame regulator and the

quasi-pdf frame regulator give the same result in the calculation of the two-point correlation
function in the high-energy, j → 1, limit. This justifies the use of the HE-OPE for the
calculation of the high-energy behavior of the LT and NLT gluon distributions.

C Dipole-dipole scattering

In this section we calculate the dipole-dipole scattering. Using (B.35), we have

〈UYa(z1, z2)UYb(z′1, z′2)〉

=
∫
dν

π2 ν
2
∫
d2z0

(
z2

12
z2

10z
2
20

)γ∫
dν ′

π2 ν
′2
∫
d2z′0

(
z′212
z′210z

′2
20

)γ′
〈UYa(z0, ν)UYb(z′0, ν ′)〉 , (C.1)

where, as we explained above, the evolution parameters are Ya = 1
2 ln 2L2

(x−y)2
⊥

and Yb =
1
2 ln 2L′2

(x′−y′)2
⊥
. Assuming that Y0 is the initial condition for the evolution, the dipole-dipole

scattering with BFKL resummation is

〈UYa(z0,ν)UYb(z0,ν)〉=
〈
e(Ya−Y0)ℵ(ν)UY0(ν,z0)e(Y0+Yb)ℵ(ν)UY0(ν,z0)

〉
×e(Ya+Yb)ℵ(ν)−α2

s(N2
c −1)

4N2
c

16π2

ν2(1+4ν2)2

×
[
δ(z0−z′0)δ(ν+ν ′)+ 21−4iνδ(ν−ν ′)

π|z0−z′0|2−4iν
Γ
(1

2 +iν
)
Γ(1−iν)

Γ(iν)Γ
(1

2−iν
) ]

. (C.2)
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Substituting (C.2) in eq. (C.1) we have

〈UYa(z0, ν)UYb(z0, ν)〉 = −α
2
s(N2

c − 1)
N2
c

∫
dν

π

16 ν2

(1 + 4ν2)2

( 2LL′

|(x− y)⊥||(x′ − y′)⊥|

)ℵ(γ)

×
Γ2(1

2 + iν)Γ(−2iν)
Γ2(1

2 − iν)Γ(1 + 2iν)

(
z2

12z
′2
12

(X −X ′)4

)γ
, (C.3)

with X = x⊥+y⊥
2 and the same for X ′, and where we used

∫
d2z0

(
z2

12
z2

10z
2
20

)γ (
z′212

(z′1 − z0)2(z′2 − z0)2

)1−γ

=
{(

z2
12z
′2
12

(X −X ′)4

)γ
π

Γ2(1
2 + iν)Γ(−2iν)

Γ2(1
2 − iν)Γ(1 + 2iν)

+ ν ↔ −ν
}
, (C.4)

and

∫
dνdν ′

π4 ν2ν ′2
∫
d2z0

(
z2

12
z2

10z
2
20

)γ ∫
d2z′0

(
z′212
z′210z

′2
20

)γ′

× 21−4iνδ(ν − ν ′)
π|z0 − z′0|2−4iν

Γ(1
2 + iν)Γ(1− iν)
Γ(iν)Γ(1

2 − iν)

=
∫
dν

π4 ν
4
{(

z2
12z
′2
12

(X −X ′)4

)γ
π

Γ2(1
2 + iν)Γ(−2iν)

Γ2(1
2 − iν)Γ(1 + 2iν)

+ ν ↔ −ν
}
. (C.5)

D LT and NLT pseudo-PDF: analytic expression

In this section we evaluate the inverse Mellin transform of eq. (7.6) which is the approximated
result of eq. (7.5). To perform the inverse Mellin, regardless of whether ln 4

Q2
s|z|2

is positive
or negative, is

Gp(xB, z2) = N2
c Q

2
sσ0

16ᾱsπ3
1

2πi

∫ 1+i∞

1−i∞

dω

ω

(
2

x2
B|z|2M2

N

)ω
2 ( 4

Q2
s|z|2

) ᾱs
ω

×
(

1 + Q2
s|z|2

5

)
+O

(
Q4
s|z|4

16

)

= N2
cQ

2
sσ0

16π3ᾱs

(
1 + Q2

s|z|2

5

)
I0(h) +O

(
Q4
s|z|4

16

)
, (D.1)

with h defined as

h =
[
2ᾱs

∣∣∣∣ln 4
|z|2Q2

s

∣∣∣∣ ln 2
x2
B|z2|M2

N

] 1
2

. (D.2)

In figure 14 we show that eq. (7.5) can be well approximated by result (D.1).
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Figure 14. Comparing the numerical evaluation of eq. (7.5) (red dashed curve) with its approximated
analytic result, eq. (D.1) (green dashed curve).

E LT and NLT quasi-PDF: analytic expression

To perform the inverse Mellin transform in eq. (8.7), we have to distinguish two cases. The
first case is when ln 4P 2

ξ x
2
B

Q2
s

< 0, and the inverse Mellin transform is

Gq(xB, Pξ) '
N2
c Q

2
s σ0

16ᾱsπ3


ln
(
− Q2

s

4P 2
ξ
x2
B
− iε

)
ln
(
−

2P 2
ξ

M2
N

+ iε

) (
J0(m)− J2(m)− 2

m
J1(m)

)

+ 2Q2
s

5P 2
ξ x

2
B

2ᾱs ln
(
− Q2

s

4P 2
ξ
x2
B
− iε

)
ln
(
−

2P 2
ξ

M2
N

+ iε

)


1
2

J1(m)

 , (E.1)

where we defined

m ≡
[
2ᾱs ln

(
− Q2

s

4P 2
ξ x

2
B

− iε
)

ln
(
−

2P 2
ξ

M2
N

+ iε

)] 1
2

. (E.2)

The second case is when ln 4P 2
ξ x

2
B

Q2
s

> 0, and the inverse Mellin transform is

Gq(xB, Pξ) ' −
N2
cQ

2
sσ0

16ᾱsπ3


ln
(
−4P 2

ξ x
2
B

Q2
s

+ iε

)
ln
(
−

2P 2
ξ

M2
N

+ iε

) (
I0(m̃) + I2(m̃)− 2

m̃
I1(m̃)

)

+ 2Q2
s

5P 2
ξ x

2
B

2ᾱs ln
(
−4P 2

ξ x
2
B

Q2
s

+ iε

)
ln
(
−

2P 2
ξ

M2
N

+ iε

)


1
2

I1(m̃)

 , (E.3)
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Figure 15. We compare the real part of eq. (8.6) (magenta-dashed curve) with its approximation, real
part of eq. (E.1) (blue curve). This is the case ln 4P 2

ξ x
2
B

Q2
s

< 0, with Pξ = 4 GeV, and xB ∈ [0.001, 0.04].
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Figure 16. Here, we compare the real part of eq. (8.6) (magenta-dashed curve) with its approxima-
tion, real part of eq. (E.3) (blue curve). This time we are in the case ln 4P 2

ξ x
2
B

Q2
s

> 0, with Pξ = 4GeV,
and xB ∈ [0.045, 0.1].

and where we defined

m̃ ≡
[
2ᾱs ln

(
−

4P 2
ξ x

2
B

Q2
s

+ iε

)
ln
(
−

2P 2
ξ

M2
N

+ iε

)] 1
2

. (E.4)
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