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The Collins-Soper kernel is a powerful tool for studying the properties of the QCD vacuum and an
essential component of the transverse momentum dependent (TMD) factorization theorem. In this paper,
we present a novel method for determining the Collins-Soper kernel directly from the comparison of
differential cross sections measured at different energies. The method relies solely on the structure of the
TMD factorization theorem and thus also provides a direct test of the theorem validity. With minor
modifications, the procedure can be applied to the real measured data for Drell-Yan and SIDIS processes.
As a demonstration, we analyze the pseudodata generated by the CASCADE event generator and determine
the Collins-Soper kernel suggested by the parton branching model.
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I. INTRODUCTION

The primary goal of the modern quantum chromo-
dynamics (QCD) is to understand the inner structure
of the nucleon and the forces that bind its constituents
together. The confinement mechanism prevents any direct
exploration of the hadron’s insides, and thus one should
employ indirect approaches. The main of these approaches
is the analysis of the differential cross sections of particle
scattering. The major tool for interpreting scattering cross
sections is the factorization theorems [1], which are
formulated in terms of universal parton distributions, each
of which highlights a specific aspect of parton’s dynamics.
Among a variety of parton distributions the special role is
played by the Collins-Soper (CS) kernel [2], which
emerges from the factorization theorems for the trans-
verse-momentum-differential cross sections [3–5].
Despite being a part of the factorization theorem, the CS

kernel is conceptually different from other distributions.
First and foremost, the CS kernel is not a characteristic of a
hadron. It provides us with information about the long-
range forces acting on quarks that are imposed solely by the
nontrivial structure of the QCD vacuum [6]. In that sense,

the CS kernel is the most fundamental distribution in the
modern framework of factorization theorems, and for that
reason, there has been a continuous effort by many groups
to determine the CS kernel.
At present, there are two approaches for the determination

of the CS kernel. Themost traditional one is the extraction of
the CS kernel from the experimental data for TMD cross
sections. The latest extractions are based on the global fits of
Drell-Yan and Semi-Inclusive Deep-Inelastic scattering
processes (SIDIS) [7–11]. Another approach uses the
QCD lattice simulations. It has been suggested recently in
Refs. [12–14], and the results of the first simulations are
already available [15–18]. However, so far, the different
extractions do not demonstrate a good agreement (see the
comparison in Refs. [6,19], and also in Fig. 3), which is due
to the large systematic uncertainties. The phenomenological
extractions are biased by the fitting ansatz, while the lattice
extractions are contaminated by large power corrections. In
this paper, we propose a direct way of extracting the CS
kernel from the scattering data. Our method relies on
constructing proper ratios of cross sections in a way in
which the hadron-dependent pieces exactly cancel leaving
intact the hard and soft contributions. The method can be
applied to the actual measurements of differential cross
sections in Drell-Yan and SIDIS processes.
To demonstrate the power of the proposed approach, we

use pseudodata generated by the CASCADE event gen-
erator [20]. The CASCADE event generator provides a
very good approximation of real data for Drell-Yan trans-
verse momentum spectra in a wide range of mass and
center-of-mass energies [21–25].
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II. METHOD

The method is founded on the leading power transverse
momentum dependent (TMD) factorization theorem [3,4].
For the concreteness, we consider the Drell-Yan pair
production process h1 þ h2 → γ�ð→ lþl−Þ þ X. Other
processes, for which the TMD factorization is formulated,
can be analyzed in an analogous way. The TMD
factorization theorem for the unpolarized Drell-Yan process
reads [1,3–5]

dσ
dQ2dydq2T

¼ 2π

9

α2emðQÞ
sQ2

jCVðQ; μQÞj2
Z

∞

0

dbbJ0ðbqTÞ

×
X
q

e2qfq;h1ðx1; b; μQ;Q2Þ

× fq̄;h2ðx2; b; μQ;Q2Þ; ð1Þ

where Q, y, and qT are the invariant mass, rapidity and
transverse momentum of the virtual photon, μQ ∼Q is the
factorization scale, s is the invariant mass squared of
the initial state, eq are the electric charges of quarks,
αem is the fine-structure constant and J0 is the Bessel
function of the first kind. The variables x1 and x2 are
longitudinal momentum fractions

x1 ¼
Qffiffiffi
s

p ey; x2 ¼
Qffiffiffi
s

p e−y: ð2Þ

The hard coefficient function CV is entirely perturbative
and known up to next-to-next-to-next-to-leading order
(N3LO) [26]. The functions f are nonperturbative unpo-
larized TMD distributions.
The CS kernel is hidden in the Q-dependence of TMD

distributions that is described by a pair of evolution
equations [27–29]

dfq;hðx; b; μ; ζÞ
d ln μ2

¼ γFðμ; ζÞ
2

fq;hðx; b; μ; ζÞ;
dfq;hðx; b; μ; ζÞ

d ln ζ
¼ −Dðb; μÞfq;hðx; b; μ; ζÞ: ð3Þ

Here, γF is the TMD anomalous dimension which is
perturbative and known up N3LO [26], and D is the
nonperturbative CS kernel [30]. Thus, to extract the CS
kernel one must explore the Q-dependence of the cross
section.
The essential complication of any phenomenological

analysis with the TMD factorization is that all nonpertur-
bative functions are defined in the position space. We
perform the inverse Hankel transform of the cross section

Σðs; y; Q; bÞ ¼
Z

∞

0

dqT qT J0ðqTbÞ
dσ

dQ2dydq2T
: ð4Þ

The formula (1) is valid at small-qT=Q, and the correc-
tions to it are estimated as ∼1% at qT ¼ 0.1Q [10].
Consequently, Σ is accurately (up to 1%) described in
the terms of TMD distributions for b≳ ð0.1QÞ−1.
The main idea of the method is to compare Σ’s measured

at different Q’s (Q1 and Q2), such that the TMD distribu-
tions f exactly cancel in the ratio. To perform the
cancellation we adjust the values of s such that the variables
x1;2 are identical. We compute

Σðs1; y; Q1; bÞ
Σðs2; y; Q2; bÞ

¼
�
Q2

Q1

�
4

ZðQ1; Q2Þe2Δðb;Q1→Q2Þ; ð5Þ

where s1=s2 ¼ Q2
1=Q

2
2. The function Z is entirely pertur-

bative

ZðQ1; Q2Þ ¼
α2emðQ1ÞjCVðQ1; μQ1

Þj2
α2emðQ2ÞjCVðQ2; μQ2

Þj2 : ð6Þ

The function Δ is resulted from the evolution of TMD
distribution to the same scale by Eqs. (3),

Δðb;Q1 → Q2Þ ¼
Z
P

�
γFðμ; ζÞ

dμ
μ

−Dðb; μÞ dζ
ζ

�
; ð7Þ

where P is a path connecting points ðμQ1
; Q2

1Þ and
ðμQ2

; Q2
2Þ in the ðμ; ζÞ-plane [29]. Thus, the only non-

perturbative content in the formula (5) is the CS kernel.
To invert the formula (5) we use the rectangular contour

for the integration path in Eq. (7) and find

Dðb; μ0Þ ¼
lnðΣ1

Σ2
Þ − ln ZðQ1; Q2Þ − 2ΔRðQ1; Q2; μ0Þ

4 lnðQ2=Q1Þ
− 1;

ð8Þ

where Σ1=Σ2 is shorthand notation for the ratio (5), and

ΔRðQ1; Q2; μ0Þ ¼
Z

μQ1

μQ2

dμ
μ
γFðμ; Q1Þ

− 2 ln

�
Q1

Q2

�Z
μQ2

μ0

dμ
μ
ΓcuspðμÞ; ð9Þ

with Γcusp being the cusp anomalous dimension. The last
term in Eq. (9) evolves CS kernel to the scale μ0, which is
used to compare different extractions. Apart of the ratio
Σ1=Σ2 all terms in Eq. (8) are perturbative, and nowadays
know up to N3LO. Therefore, the formula (8) can be used to
extract CS kernel directly from the data without any further
approximation.
Practically, the experimental measurements for differ-

ential cross sections are presented by a collection of points
in bins of ðQ; y; qTÞ. Therefore, the transformation (4)
cannot be computed analytically but by the discrete Hankel
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transform. Herewith, one should find a balance between the
statistical precision of dΣ (which usually decreases at
low-qT) and the range of b (larger b requires lower qT).
Alternatively, the experimental curve can be fit by an
analytical form, and the transformation (4) is performed
analytically. This path, however, introduces uncertainty due
to the curve parametrization.
The integration over qT leaves intact the dependence on

Q and y, which can be used to increase the statistical
precision. We introduce

Σðs;Q; bÞ ¼
Z

QþδQ

Q−δQ
dQ2

Z
δy

−δy
dy dΣðs; y; Q; bÞ; ð10Þ

where δQ and δy are sizes of the bin. These function can be
also used in the ratio Σ1=Σ2 with the only restriction that
δQ ≪ Q. In this case, the effects of variation of Q within
the bin could be neglected. There is no limitation for δy,
except that δy is the same for Σ1 and Σ2.
Equation (8) is valid for any kind of initial hadrons. This

property can be used to cross-validate the extraction. The
values of Q should be large enough to neglect the QCD
power and target-mass corrections Q ≫ ΛQCD, and small
enough to neglect the contribution of the Z-boson inter-
mediate state Q ≪ MZ. It provides a very large window of
available energies. The corrections for the Z-boson can be
included in Eq. (8) by modifying expression for Z Eq. (6).

III. DETERMINATION OF THE CS KERNEL
USING SIMULATED DATA

To demonstrate the proposed methodology, we study
the pseudodata generated with the CASCADE event
generator [20], which is based on the parton branching
(PB) approach [31,32]. The predictions provided by
CASCADE describe the Drell-Yan transverse momentum
spectrum for both low-energy measurements from the
PHENIX, NUSEA, R209, E605 experiments [21,22], as
well as high-energy data from the LHC experiments CMS,
and ATLAS [23–25]. The PB approach does not explicitly
employ the TMD factorization theorem. In particular,
there are no parameters specially dedicated to the CS
kernel. Therefore, our determination of the CS kernel has
the additional advantage of serving as a check of compat-
ibility between the PB and the factorization approaches.
We have generated several sets of pseudodata. These sets

span a wide range in phase space, namely, different Q, s
and δy, as well as different hadron types. The CS kernel is
independent of these parameters and thus, a priori all
combinations should result in the same value. The kin-
ematic setups for pseudodata are shown in Table I.
The inverse Hankel transform has been performed using

the algorithm [33]. The algorithm expects that the input
function vanishes beyond the presented domain. It is a good
approximation since the cross section for the Drell-Yan
process drops rapidly at large-qT . For the considered cases,

the relative numerical uncertainty due to the truncation is
10−5–10−6 and can be safely neglected.
The effective range and accuracy of the discrete Hankel

transform depend on the density and range of the input
cross section. So, to obtain a stable curve at the large-b, one
needs a large number of points at small-qT . In particular, we
collect events into narrow qT-bins with the size 0.05 GeV,
which allows us to reach b ∼ 4–5 GeV−1. At larger values
of b, the inverse function is sensitive to the finite-bin effects
and becomes unstable. The examples of the cross section in
momentum and position spaces are shown in Fig. 1. We
employ the bootstrap method to estimate the propagation of
statistical uncertainty from the momentum to the position
space. During the re-sampling, we also vary the central
value of qT within a bin, which allows us to estimate the
uncertainty due to finite bin size at large-b.
Using the sets listed in Table I, we compose twelve ratios

Σ1=Σ2. Each ratio provides an independent value of CS
kernel (8). The collection of resulting curves at μ ¼ 2 GeV
is shown in Fig. 2 (top). Apparently all curves are in a
perfect agreement for b > 0.4 GeV−1. It manifests that the
CASCADE event generator supports the TMD factoriza-
tion theorem. Note that three extractions are made with
proton-antiproton collision, and they are indistinguishable
from the proton-proton cases. It confirms the universality of
the CS kernel.
For an extra test of the universality, we have simulated

the pseudodata (pp collisions at Q ¼ 12 and 16 GeV,
δy ¼ 4) using different collinear PDFs. Namely, the CT18
[34], MSHT20 [35] and NNPDF3.1 [36]. The comparison
of these cases is shown in Fig. 2 (top). These curves are also
in the perfect agreement, which shows that the TMD
evolution within CASCADE is independent of the
DGLAP evolution. For a demonstration of a possible
misbehavior, we show [in the gray-dashed line in Fig. 2
(bottom)] the CS kernel extracted from the ratio with
different collinear PDFs (CASCADE at Q ¼ 12 GeV to

TABLE I. Parameters of the generated events. For each case
δQ ¼ 5% ·Q.

Init.state Q [GeV]
ffiffiffi
s

p
[GeV] δy

pp

12 655.2

4
16 873.6
20 1092.
24 1310.

pp
12 88.7

2
16 118.2

pp
12 241.0

3
16 321.4

pp
12 1781.

5
16 2375.

pp̄
12 655.2

416 873.6
20 1092.
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CT18 at Q ¼ 16 GeV), where the parton distributions do
not cancel exactly.
All extractions are made using μQ ¼ Q, and N3LO

perturbative accuracy for functions Z and ΔR. The pertur-
bative expansion is very stable, which we test by varying
the scale μQ ∈ ½Q=2; 2Q�. The size of the scale variation
band is constant in b. The maximum variation among all
extractions is ð−0.0016;þ0.0008Þ in the absolute value,
which is smaller than the statistical uncertainty.
The final curve for the CS kernel predicted by the

CASCADE event generator is obtained by combining
all twelve extractions. The comparison with other extrac-
tions of CS kernel is shown in Fig. 3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1 GeV−1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3 GeV−1.
The fit of the large-b part by a polynomial gives

Dðb; μÞ ∼ ½ð0.069� 0.031Þ GeV� × b; ð11Þ

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9,10,41], and supported by
theoretical estimations [14,42]

FIG. 1. Example of pseudodata in the momentum (top plot)
and position (bottom plot) spaces. The statistical uncertainty is
shown by the width of the line. The shown cases correspond to
pp-scattering integrated in jyj < 4.

FIG. 2. Comparison of CS kernels extracted from different
combinations of the pseudodata. The top plot shows all possible
(twelve) combinations of pseudodata with different kinematics,
listed in the Table I. The bottom plot show extractions made with
different input collinear PDFs. The solid lines are the central values.
The shaded areas are the statistical uncertainty. The oscillations at
b ∼ 4–6 GeV−1 are due to the finite bin size in the qT-space. The
gray dashed line in the lower plot shows the effect of incomplete
cancellation of parton’s momentum if PDFs in the comparing cross
section are different (here, CT18 vs CASCADE).

FIG. 3. Comparison of the CS kernels obtained in different
approaches. The black curve is the one obtained in this work. The
curves SV19, MAP22, Pavia19, and Pavia17 are obtained from
the fits of Drell-Yan and SIDIS data in Refs. [7,10,11,37],
correspondingly. Dots represent the computations of CS kernel
on the lattice, with SVZES, ETMC/PKU, SVZ, LPC20 and
LPC22 corresponding to Refs. [16,17,38–40].
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IV. CONCLUSIONS

We have presented a novel method for direct determi-
nation of the CS kernel from data, by using the proper
combination of cross sections in different kinematic
regions. For explicitness, we considered the case of the
Drell-Yan process, nevertheless the method can be easily
generalized to other processes such as SIDIS, semi-
inclusive annihilation, and their polarized versions.
The method is tested using pseudodata generated with

the CASCADE event generator, and the corresponding CS
kernel is determined. As a by-product, we have confirmed
the compatibility between the TMD factorization and the
PB approach, since all expected properties of the CS kernel
(such as universality) are observed in the CASCADE
generator. This solves an old-stated problem of comparison
between factorization theorem and PB approaches [43,44].
The procedure can be applied to the real experimental

data without modifications. In this case, the quality of
extraction will be essentially affected by the resolution and
finite-bin effects. On the other hand, there is an explicit
advantage in the reduction of sensitivity to various sources
of systematic experimental uncertainty, which partially

cancel in ratios. Thus the method is feasible for modern
and future experiments, such JLab [45,46], LHC [47], and
EIC [48,49].
We stress that the procedure is model-independent and

excludes any adaptation of parameters. The factorization
theorem guaranties the same result independently on the
used reaction and kinematic range of data. A deviation from
this rule indicates the violation of the factorization theorem.
Therefore, the method gives an ultimate test of the TMD
factorization hypothesis, which is essential for experiments
with lower energies (such as JLab, COMPASS, EIC) where
factorization is concerned.
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