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One of the principal goals of controlling classical chaotic dynamical systems is known as targeting,
which is the very weakly perturbative process of using the system’s extreme sensitivity to initial conditions
in order to arrive at a predetermined target state. It is shown that a generalization to chaotic quantum
systems is possible in the semiclassical regime, but requires tailored perturbations whose effects must undo
the dynamical spreading of the evolving quantum state. The procedure described here is applied to initially
minimum uncertainty wave packets in the quantum kicked rotor, a preeminent quantum chaotic paradigm,
to illustrate the method, and investigate its accuracy. The method’s error can be made to vanish as ℏ → 0.
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One of the several meanings ascribed to the term con-
trolling chaos [1,2] is the concept of targeting [3–6] inwhich
the exponential instability of a chaotic dynamical system is
taken advantage of in an optimal way. In Refs. [3,4] small
perturbations of a system parameter leading to some
predetermined final state were discussed, but a very weak
perturbation applied to the system’s trajectory (initial con-
ditions) can be applied as well. Awell known early example
is the redirecting in late 1983 of the International Sun-Earth
Explorer-3 spacecraft towards a rendezvous with the
Giacobini-Zimmer comet in 1985 [2,7].
A natural question arises as to whether it is possible to

bring this concept from the classical to the quantum realm
and to achieve some form of targeting with highly excited
or far-from-equilibrium quantum chaotic systems. In this
regard, three desiderata can serve as a blueprint. First, let us
assume that the quantum system is isolated and has a well-
defined classical analog. Ideally, the initial quantum and
target states of interest would be as classical as possible
given uncertainty relations. Second, an optimal quantum
transport path can be identified, conceivably guided by the
classical analog’s (chaotic) dynamics. Finally, it is prefer-
able to avoid monitoring or measurements, and to seek
applying purely coherent unitary weak perturbations to the
quantum system’s dynamics in order to achieve the optimal
targeting. Clearly, such an optimal coherent chaotic quan-
tum targeting procedure would fall into the general
classification of a quantum control problem.
Much of the earliest work on quantum control was moti-

vated by the desire to control chemical reactions [8–11]
where, due to rapid dispersal, various laser induced para-
metric excitation schemes were introduced, including
optimal control techniques [12,13]; a survey of the theory
and applications can be found in [14] and a more recent
pedagogical overview of optimal control theory in [15]. In
contrast to these earlier techniques, here the main idea is to

take maximal advantage of exponential sensitivity in the
underlying classical chaotic dynamics along with the
evolving local structure of the neighboring dynamics.
Within the enormous body of quantum control work, are
some concepts a bit closer to the subject of this Letter.
In [16], Sugawara describes “wave packet shaping,” which
is applied to the integrable Morse oscillator potential. It
gives a complicated time-dependent laser field that shifts a
wave packet from its ground state location to another
desired location. Another method makes use of phase space
structural implications of Kolmogorov-Arnol’d-Moser
theory [17–19]; see Ref. [20], which describes the creation
of a nondispersive electronic wave packet following a
trajectory about which the local phase space dynamics has
an approximately harmonic nature. However, the highly
excited, strongly chaotic regime remains challenging.
Returning to the first desideratum, for a quantum chaotic

system the initial and target states ideally would be mini-
mum uncertainty states with well-defined mean momenta
and positions, ðqα; pαÞ and ðqβ; pβÞ, respectively. The
system would be in a semiclassical regime, i.e., ℏ is
sufficiently small that an asymptotic theory, such as
advanced methods applicable to chaotic systems [21,22]
and based on time-dependent Wentzel-Kramers-Brillouin
(WKB) theory [23–27] describe the propagation well. The
Wigner transforms [28] of these states are analogous to
localized Liouvillian phase space densities with volumes
determined by ℏ as opposed to single trajectories and this
adds an inescapable new ingredient, arguably the most
important one.
As sketched in Fig. 1, these densities provide a geometric

picture for the task of identifying an optimal quantum
transport path, the second desideratum. For a fully chaotic
Hamiltonian dynamical system, there exist directions of
maximal exponential deviation under perturbations as well
as maximal exponential compression [29]. Intuitively,
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separating along the direction of maximal exponential rate
from the centroid of the initial density while simultaneously
converging at the maximal exponential rate towards the
centroid of the target density, gives an optimal dynamical
path from the initial to target state. For the desired arrival
time, τ, there exists such a heteroclinic trajectory segment
that maximizes its initial conditions’, ðq0; p0Þ, weight in
the Liouvillian density of the initial state, and similarly for
its endpoint, ðqτ; pτÞ, within the density for the target state.
Crudely speaking, ðq0; p0Þ and ðqτ; pτÞ are closest to
ðqα; pαÞ and ðqβ; pβÞ, respectively.
The methods for finding heteroclinic trajectory segments

developed in [30–32] are sufficient for the purposes here,
and it has previously been shown that for chaotic systems
the full set of heteroclinic trajectory segments can be used to
construct the full time evolution of transport coefficients
involving wave packets [31,33,34] and coherent states in
chaotic many-body bosonic systems [32,35]. However, to
provide an optimal transport pathway for the quantum
dynamics, here the idea is to follow just one segment, thus
evoking the third desideratum. Centering the density on the
trajectory segment and maintaining its local nature is
sufficient to accomplish this. Both operations, translations
and dilations, fall into the class of linear canonical trans-
formations, which have precise unitary transformation
counterparts as was known very early on to Dirac [36],
and was developed fully later [37,38]. There it was shown
that these unitary transformations have at most quadratic
generators.
A unitary shift transformation, say Us, slightly shifting

the initial and final state’s centroids towards the initial and
final conditions of the heteroclinic trajectory segment, is
given by UsðΔp;ΔqÞ ¼ exp ½iðΔpq̂ − p̂ΔqÞ=ℏ�. In con-
figuration space, it is expressed as

hqjUsðΔp;ΔqÞjq0i¼ exp

�
i
ℏ
Δp
�
q−

Δq
2

��
δðq−q0−ΔqÞ

ð1Þ

where the global phase part, −ΔpΔq=ð2ℏÞ, is most likely
of no concern and can be dropped. Curiously, small
perturbations to guide the system toward following a
heteroclinic trajectory segment are a critical part of classical
targeting, but is not nearly as essential in the quantum
context, especially in the very strongly chaotic limit where
no transport barriers are present.
Countering the spreading of the quantum state under

evolution is the most critical operation and must be done
periodically before the state is spread to such an extent that
the nonlinear dynamics becomes manifest in the shape of
the spreading Liouvillian density. The heteroclinic trajec-
tory segment’s stability matrix for each such time interval
describes the successive wave packet spreadings, and is
describing a local linear canonical transformation. The
local unitary transformation associated with the inverse
stability matrix for that portion of the trajectory, say UM−1,
unwinds the spreading and returns the wave packet to its
minimum uncertainty form.
Within the semiclassical propagation method called

linearized wave packet dynamics [39,40] is an accounting
for this spreading, and the method effectively constructs the
corresponding unitary transformation in a configuration
representation. The multidimensional expressions can be
found in [22], and for an alternative approach for suppres-
sion of spreading through periodic nonlinear kicking
see [41]. The main ingredients are the second derivatives
of the generating function, S, which can be expressed in
terms of the stability matrix elements (block ordering is
consistent with the kicked rotor equations ahead) [40]. This
spreading can be unwound using the stability matrix
information, which proceeds using block 2 × 2 matrix
inversion formulas [42] and some algebra. One finds the
necessary ingredients in the relations
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At the moment in time, t, that the spreading is countered,
the transformation must be centered locally about the hete-
roclinic trajectory’s location ðqt; ptÞ using the coordinates
q − qt and q0 − qt. In addition, centering the momentum
coordinate in configuration space is accomplished by
multiplying the transformation by exp ½iptðq − q0Þ=ℏ�.
If the unitary dynamics of the uncontrolled quantum

chaotic system of interest is denoted by UðtÞ, then by
creating a controlled quantum dynamics given by

UCQDðτÞ ¼ UsðβÞ
�Yn
j¼1

fUM−1UðtÞgj
�
UsðαÞ; ð3Þ

with UM−1 unwinding spreading, τ ¼ nt, and the shift
operators Us, Eq. (1), the initial quantum state can be

FIG. 1. Schematic of optimal coherent chaotic quantum target-
ing. The circular zone represents the Wigner transform density of
a nearly minimal uncertainty state, which can be slightly shifted
(via a unitary operator,Us) to be centered on an optimal trajectory
starting at ðq0; p0Þ. As it propagates the density follows an
optimal chaotic trajectory, but is locally spreading, which must be
counteracted by contractions, UM−1 . At the end, it can be shifted
from ðqτ; pτÞ to the centroid of the target state ðqβ; pβÞ.
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made to follow any trajectory segment that exists in the
classical analog dynamical system. This technique of
optimal coherent chaotic quantum targeting is illustrated
for the quantum kicked rotor next.
The kicked rotor has a long history of providing a

simple, powerful paradigm for both classical and quantum
dynamical systems [43–46]. Its quantum version has been
experimentally realized with cold atoms in a kicked optical
lattice for a variety of purposes [47–52]. The classical
Hamiltonian is given by

Hðq; pÞ ¼ p2

2
−

K
4π2

cosð2πqÞ
X∞
n¼−∞

δðt − nÞ: ð4Þ

By choosing the kicking strength greater than roughly 2π, it
generates a strongly chaotic classical dynamics. The
resulting mapping equations for the version on the unit-
periodicity phase space torus are

pnþ1 ¼ pn −
K
2π

sinð2πqnÞ ðmod 1Þ;
qnþ1 ¼ qn þ pnþ1 ðmod 1Þ: ð5Þ

The single step stability matrix,

�
δpnþ1

δqnþ1

�
¼ Mn

�
δpn

δqn

�
; ð6Þ

is critical for the targeting UM−1 and given by

Mn ¼
�
m11 m21

m12 m22

�
¼
�
1 −K cos ð2πqnÞ
1 1 − K cos ð2πqnÞ

�
ð7Þ

and with the inverse given by

M−1
n ¼

�
m22 −m21

−m12 m11

�
: ð8Þ

The quantum dynamics are generated by a unitary or
Floquet operator,

Û ¼ exp

�
−ip̂2

2ℏ

�
exp

�
iK
4πℏ2

cos 2πq̂

�
: ð9Þ

In a configuration representation, Ujk ¼ hqjjÛjqki, with
null Bloch phases it becomes

Ujk ¼
1ffiffiffiffiffiffi
iN

p exp

�
iπðj − kÞ2

N

�
exp

�
iNK
2π

cos
2πk
N

�
; ð10Þ

where N is the Hilbert space dimension, j; k ¼ 1;…; N,
and Planck’s constant is 2πℏ ¼ 1=N. The semiclassical
limit of ℏ → 0 is equivalent to N → ∞. The kicking

strength K ¼ 4π2=5 and Hilbert space dimensionality
N ¼ 500 are chosen for Figs. 2–4.
The initial state jαi reads

hqjjαi ¼ AðℏÞ exp
�
−
ðqj − qαÞ2

2ℏ
þ i
ℏ
pαðqj − qαÞ

�
ð11Þ

where AðℏÞ is a normalization constant, and likewise for
the target state jβi. This form shares momentum and
position minimum uncertainty equally on the unit torus.
Thus, the wave packet’s phase space analogy has a circular
symmetry for all ℏ. The area inside the wave packet’s
two standard deviation contour is equal to hð¼ 1=NÞ.
The integer value m of the position qj ¼ mþ j=N is
chosen such that jqj − qαj ≤ 1=2 for all j. In this way,
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FIG. 2. Quantum chaotic spreading of the kicked rotor initial
state jαi. The real (purple solid line) and absolute (dashed green
line) values of the one and three time propagations of the initial
state, hqjαð1Þi (top panel) and hqjαð3Þi (bottom panel). If
uncontrolled the state spreads and rapidly acquires an ergodic
looking appearance.

TABLE I. Targeting heteroclinic trajectory. Values n ¼ 1;…; 4
correspond to position and momentum centroids of the propa-
gated states in the four panels of Fig. 3.

n qn pn

0 0.500 631 528 66 0.000 567 018 66
1 0.506 184 884 72 0.005 553 356 05
2 0.560 559 842 92 0.054 374 958 20
3 1.081 640 817 35 0.521 080 974 43
4 0.986 011 762 50 −0.095 629 054 85
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pα ¼ hαjp̂jαi and likewise, qα ¼ hαjq̂jαi. The selec-
ted wave packet centroids are ðqα; pαÞ ¼ ð0.5; 0Þ and
ðqβ; pβÞ ¼ ð0; 0Þ, respectively.
In such a strongly chaotic system the initial state spreads

rapidly on a logarithmically short timescale, the Ehrenfest
time, τE ¼ lnðS=ℏÞ=μ; see Fig. 2. The classical action S can
be taken as unity for the unit torus kicked rotor, and the

Lyapunov exponent, μ ¼ lnðK=2Þ. Here, τE ≈ 4, which
implies ergodic statistical behavior by this time. Further
propagation appears random.
To illustrate quantum targeting for the kicked rotor, a

heteroclinic trajectory segment of four iterations is chosen
and given in Table I. The initial point is quite close to
ðqα; pαÞ and the final point not quite as close to ðqβ; pβÞ.
Extending this trajectory segment to six iterations, one prior
and one latter, would make using the before and after shifts,
Us, largely unnecessary in Eq. (3); they are kept in this
example. With the wave packet spreading countered at each
time step, as in Eq. (3), it can be seen that the initial state
follows the chosen heteroclinic trajectory exceedingly well;
see Fig. 3. In fact, the absolute squared overlap of the
evolving state following Eq. (3), with Gaussian wave
packets created using Eq. (11) and the successive hetero-
clinic phase points, is equivalent to the accuracy shown in
Fig. 5 ahead along the entire trajectory segment.
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FIG. 3. Quantum guiding along heteroclinic classical paths.
The real (solid purple line) and absolute (dashed green line)
values of hqjαðtÞi are obtained using Eq. (3). At each step the
propagated state has a near perfect overlap (not discernible
directly from the figure) with a wave packet of the form of
Eq. (11) with the time appropriate point of the heteroclinic
trajectory in Table I.
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FIG. 4. Countering wave packet spreading. The real (solid
purple line) and absolute (dashed green line) values of hqjα0ð2Þi
are shown. Applying the unitary transformation associated with
the local linear canonical transformation of the inverse one-step
stability matrix undoes wave packet spreading without shifting
the position or momentum centroids and generates the second
panel from the top of Fig. 3.
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FIG. 5. Fidelity of quantum targeting for the kicked rotor. The
squared overlap of the target state with the controlled propagated
state, i.e., jhβjUCQDðτ ¼ 4Þjαð0Þij2, see Eq. (3), is plotted versus
Planck’s constant. As ℏ → 0, the error tends to vanish exponen-
tially. Dimensionalities ranging from N ¼ 100 to 1450 are
included.
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The important role of UM−1 is illustrated for the second
iteration of the Floquet operator in Fig. 4. With jα0ð2Þi the
propagated ket before applying UM−1 and jαð2Þi after-
wards, the effect of the inverse stability matrix of the single
step of the heteroclinic trajectory is markedly relocalizing,
in fact bringing the quantum state back to minimum
uncertainty. This technique is quite flexible in the sense
that one could undo the stretching continuously in time or
even double the time shown here by preemptively undoing
the stretching of the coming next iteration or other choices.
As a function of a shrinking 2πℏ ¼ 1=N, Fig. 5 dem-

onstrates the exponentially rapid decrease in the difference
from unity of the overlap between the target state and the
state propagated via quantum control, UCQDðτÞ, for the
quantum kicked rotor. This serves as a proof of principle
and demonstrates the efficiency of our method.
There are two main sources of inaccuracies arising in this

illustration, one due to the nonlinearities in the local
dynamics and the other due to working with the periodic
nature of the torus in this specific example. With regards to
the nonlinearities, they give rise to curvature of the stable
and unstable manifolds. As ℏ shrinks, although this implies
using slightly longer trajectories (scaling logarithmically
with ℏ), the shrinking uncertainties vanish algebraically
(ℏ1=2) rendering any local curvature less and less relevant.
With regards to the torus, the Gaussian construction above,
Eq. (11), is not explicitly periodic. Thus, both sources lead
to vanishing errors as ℏ → 0.
In conclusion, a generalization of targeting control in

classically chaotic systems is constructed for quantum
systems that is fully coherent (unitary). Using the system’s
extreme sensitivity to initial conditions, counteracting the
quantum spreading (scrambling) is demonstrated, and by
means of a weak perturbation, the quantum system is put on
an optimum track in order to arrive in an exponentially fast
way and with high precision at a predetermined target state
and given time. Hence, in a sense there are no free
optimization parameters as everything is determined by
the heteroclinic trajectory segment(s) chosen and its short
time stability matrices. The method is flexible in the sense
that any trajectory segment of the unperturbed chaotic
classical system can be selected and followed, plus the
unwinding of the wave packet uncertainty spreading can be
accomplished in multiple ways. In contrast to classical
targeting control, the most critical element in the quantum
case is the local unitary transformation UM−1 .
The underlying protocol, comprising time sequences of

tailored UM−1 , can be regarded as a sophisticated Floquet
engineering method. Furthermore, if the initial state is
specifically chosen as the target state, stabilized periodic
quantum dynamics (with any desired period) can be
achieved. In a sense, this can be thought of as creating a
nearly perfect quantum scarred state on a periodic
orbit [53].

As previously mentioned, the quantum kicked rotor has
been realized in a broad range of ultracold atomic experi-
ments [47–52], and for such experiments the only addi-
tional essential requirement for an experimental realization
of optimal coherent chaotic quantum targeting is the ability
to construct the set of UM−1 . However, our proposed
method is, by construction, rather general and may serve
as a conceptual platform for a broader range of applications
in various branches of quantum control. In particular, the
ideas presented here naturally extend to coherent states in
bosonic many-body systems as linear canonical trans-
formations are related to squeezing [54,55], and that is
left for future work.

We thank Mathias Steinhuber for scientific discussions
and help with devising Fig. 1. We acknowledge support by
the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), project Ri681/15-1, within the
Reinhart-Koselleck Programme and Vielberth Foundation
for financial support.

Note added.—Two relevant references recently came to our
attention, the first being Ulam’s three-body gravitational
acceleration conjecture [56], which may be considered a
direct precursor to targeting. The second reference is an
optimal control approach to setting time limits on a
quantum version of Ulam’s control conjecture [57].
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