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Background: Deep learning tasks, which require large numbers of images, are widely applied in digital pathology. This
poses challenges especially for supervised tasks since manual image annotation is an expensive and laborious process.
This situation deteriorates even more in the case of a large variability of images. Coping with this problem requires
methods such as image augmentation and synthetic image generation. In this regard, unsupervised stain translation
via GANs has gainedmuch attention recently, but a separate networkmust be trained for each pair of source and target
domains. This work enables unsupervised many-to-many translation of histopathological stains with a single network
while seeking to maintain the shape and structure of the tissues.
Methods: StarGAN-v2 is adapted for unsupervised many-to-many stain translation of histopathology images of breast
tissues. An edge detector is incorporated to motivate the network to maintain the shape and structure of the tissues
and to have an edge-preserving translation. Additionally, a subjective test is conducted on medical and technical ex-
perts in the field of digital pathology to evaluate the quality of generated images and to verify that they are indistin-
guishable from real images. As a proof of concept, breast cancer classifiers are trained with and without the
generated images to quantify the effect of image augmentation using the synthetized images on classification accuracy.
Results:The results show that adding an edge detector helps to improve the quality of translated images and to preserve
the general structure of tissues. Quality control and subjective tests on our medical and technical experts show that the
real and artificial images cannot be distinguished, thereby confirming that the synthetic images are technically plau-
sible. Moreover, this research shows that, by augmenting the training dataset with the outputs of the proposed stain
translation method, the accuracy of breast cancer classifier with ResNet-50 and VGG-16 improves by 8.0% and
9.3%, respectively.
Conclusions: This research indicates that a translation from an arbitrary source stain to other stains can be performed
effectively within the proposed framework. The generated images are realistic and could be employed to train deep
neural networks to improve their performance and copewith the problemof insufficient numbers of annotated images.
Background

Histological tissues are extensively examined for research, education, and
diagnostic purposes. Due to the rising applicability of digital whole slide scan-
ners, the field of digital pathology has been growing recently and moving to-
ward automatic workflows. Large numbers of high-resolution whole slide
images (WSIs) are stored for computational analyses to extract patterns,
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features, and quantitative information in general. Deep learning and neural
networks are widely adopted in digital pathology for segmentation, detec-
tion, annotation, registration, and classification of WSIs.1

Amajor challenge in thefield of digital pathology is the large variability
of WSIs due to the differences in cutting thickness, staining process, intra-
and inter-subject variabilities, and scanner characteristics. It is not feasible
to train neural networks separately for each type of variation, since a large
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number of annotated images would be required for each supervised train-
ing, which incurs high manual efforts and costs.2

Solutions that deal with the variability of WSIs, especially regarding
staining variabilities, are image augmentation, stain normalization, and
stain translation. Recent research also focuses on increasing the level of au-
tomation in the workflow and proposes semi- or unsupervised learning ap-
proaches to exploit un-annotated WSIs which are available in large
numbers in medical units.2,3

Generative adversarial networks (GANs) have been recently employed
for image augmentation and translation. An interesting point about GANs
is that image pairs are not required for training. Highly realistic images, al-
though artificial, can be generated without manual effort to improve the
performance of neural networks or to facilitate semi-supervised or unsuper-
vised pipelines.2,3

GANs provide state-of-the-art methods for unsupervised stain transla-
tion with promising results. In Gadermayr et al.,3 stain translation via
Cycle-GANs enabled, in addition to domain adaptation, a fully unsuper-
vised and stain-independent segmentation approach. In another study,4

multi-channel images were created by a concatenation of differently
stained images as a result of stain translation. It proved that such “image en-
richment” improves the accuracy of a segmentation network. In a related
work,2 classifiers were integrated into the generator and discriminator net-
works of a Cycle-GAN to identify the domain (staining) of the input image
and to learn domain-specific attention maps. As a result, image-to-image
translation was improved in a self-supervised way. Experiments were per-
formed by applying a previously trained segmentation network from
Bouteldja et al.5 to synthetic images translated from other stains. An abla-
tion study proved that this method has a superior performance compared
to a simple Cycle-GAN model. Additionally, 3 extra feature channels were
added to both the input and output of each generator in the Cycle-GAN.
They can be used to store the necessary information of the input image
for an improved reconstruction. The extra channels ensure that the image
generator can avoid the unintended encoding of domain-specific features
from the input image into the translated image. This approach has proved
to have a positive effect for some stains on performance compared to an un-
modified Cycle-GAN.2

Generally, an image-to-image translation via standard GANs is only pos-
sible between 2 domains. Two different GANs must be trained for each pair
of domains, since 2 different translations can be defined within 2 domains.
StarGAN6 is a novel and scalable GAN that can be trained to perform trans-
lations betweenmultiple domains with a single generator and a discrimina-
tor. This results in an increase in flexibility since any input image can be
translated to any other domain. In addition, not only a single model has
to be trained instead of many pairs of generators and discriminators, but
also, all training images from different domains can be used for training,
which enhances the quality of results. An improved version is StarGAN-
v2,7 which can generate diverse images, meaning that output images are
generated in each desired domain in different styles and variabilities. In
this network, a style encoder extracts the style code of images of different
domains and the generator translates the input images to the desired output
domains using the corresponding style codes. It should be noted that it does
not need annotations or image pairs for training, and it can learn the map-
pings in an unsupervised way.

Contribution

The focus of this paper is on the augmentation of WSIs with many-to-
many stain translations to improve the performance of classification tasks.
The original StarGAN was implemented for the translation of human and
animal faces. However, the focus of this work is on histological WSIs,
which have a higher resolution and special structures that make the trans-
lation task more difficult. Also, the morphology should be kept constant
during stain translation, which is not the case in face translation.

To perform a stain translation (or a many-to-many translation) between
any 2 arbitrary domainswith the same network, the StarGAN-v2was imple-
mented. Due to unavoidable morphological changes in the histological
2

tissues, an edge detector in the form of a Canny filter was incorporated
into the network and an additional term was added to the loss function to
minimize the difference between the edges of the source image and the
translated image. It was shown that these adjustments help to improve
the results by keeping the main structure of the tissues during translation.
Since having diverse translations from the same input image is not part of
the goal, the loss term related to diversity was omitted.

Breast cancer was the most common cancer in 2020 and is one of the
deadliest cancers in general.8 Thus, researches are dedicated to its detec-
tion, prevention, and treatment worldwide. Convolutional Neural Net-
works (CNNs) and classifiers have been recently adopted for binary and
multi-class classification tasks. Binary classification is used for identifying
whether a tissue is malignant or non-malignant. Multi-class classification,
however, also distinguishes the type of cancer.9

In this work, we performed a binary classification into samples that in-
cluded malignant cells (“malignant”), or were tumor-free (“non-malig-
nant”) as a clinically relevant proof-of-concept to quantify the effect of
data augmentationwith translated images on classification accuracy. Breast
cancer classifiers were trained with and without our generated synthetic
images and reveal a substantial improvement in the accuracy of the classi-
fiers. Additionally, using a subjective test on medical and digital pathology
experts, it is proved that the translated images are realistic and indistin-
guishable from real images.

Methods

The goal is to train a single generator that can generate translated im-
ages from a given input image to any arbitrary domain using the same net-
work. For this purpose, the original StarGAN-v27 was applied to
histological images. Different domain-specific style codes were learned
for each domain and the generator reflects any arbitrary style in the output
image. To realize a many-to-many stain translation, at least 3 domains
(stains) must be present, but no labels or image pairs are required. How-
ever, due to the large extent of morphological and structural changes of
the input images during translation, the original network has been im-
proved in this work.

StarGAN with edge detector

The original StarGAN-v2 consists of 4 modules. One of them is the style
encoder, which extracts the style of a reference image when given its
domain. The style encoder can produce diverse style codes based on
multi-task learning, in which a Multilayer Perceptron (MLP) with multiple
outputs provides different styles for different domains, but during training,
only 1 branch is randomly selected. Another part is the mapping network,
which generates different style codes when given a latent vector and an ar-
bitrary domain. It works based on a multi-task architecture (similar to the
style encoder) and can generate diverse style codes by sampling the latent
vector. Another module is the generator, which translates a given input
image into the output image to reflect a given style code. The style code
is given either by the style encoder or the mapping network. The final
part is the discriminator, which consists of different branches for different
domains. Each branch is basically a binary classifier for each domain, deter-
mining whether a given image is real or artificial.7

The full objective function for training the original StarGAN consists of
adversarial loss Ladv, style reconstruction loss Lsty, style diversification loss
Lds, and a term for preserving source characteristics (i.e., cycle consistency
loss Lcyc).7 The original objective function is therefore:

minG;F;E maxD Ladv þ λstyLsty−λdsLds þ λcycLcyc
� �

; ð1Þ

where λsty, λds, and λcyc are hyperparameters that control the contribution
of each term, and G, F, E, and D are, respectively, the generator, mapping
network, style encoder, and the discriminator.7

The style diversification term in the loss function encourages the gener-
ator to create diverse output images. However, in the application of this
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work, diverse translation results are not required, and the focus is to main-
tain the morphology while translating the stain. Therefore, the style diver-
sification term was omitted from the training loss function. In addition, a
Canny edge detector10 was incorporated into the network which acts on
the input and translated images. An additional termwas added to the train-
ing loss function to minimize the difference between the edges extracted
from the source image and the translated image, and to encourage the net-
work to maintain the morphology and structure.

Considering the mentioned alterations, the full objective function
becomes:

minG;F;E maxD Ladv þ λstyLsty þ λcycLcyc þ λedgLedg
� �

: ð2Þ

The adversarial, style reconstruction, and cycle consistency losses are
the same as defined in Choi et al.7 The new part, Ledg, is the edge detector’s
loss as follows, and the coefficient λedg is an additional hyperparameter to
control the effect of edge detection.

Ledg ¼ 1
n

Xn

i¼1

f Xfakei ; θ1;θ2
� �

− f Xreali ; θ1;θ2ð Þ�� ��; ð3Þ

where n is the number of images in each training batch, Xfakei and Xreali are,
respectively, an artificial (translated) and its corresponding real (input)
image in a batch, f is the Canny filter, and θ1 and θ2 are 2 hyperparameters.

If the Canny filter f is applied on a 3-channel input image X with 2
thresholds θ1 and θ2, the output will be the edges of the input image in
the form of a binary image (mask) according to the algorithm proposed
by John Canny,10 which is implemented in OpenCV (Open Source Com-
puter Vision Library).11

Evaluation methods

The goal is to perform stain translation via the upgraded StarGAN to cre-
ate synthetic images. Then, as a proof of concept, the existing real dataset is
augmented with artificial data and the improvement of the classification
task is evaluated. The artificial images are deliberately created to be realis-
tic and in good quality. Thus, 2 evaluation methods are introduced here:
(1) the subjective or qualitative evaluation of the generated artificial im-
ages, and (2) the objective or quantitative evaluation of the effect on classi-
fication accuracy.

The subjective or qualitative evaluation
The subjective evaluation consists of quality control by 7 digital pathology

experts to verify that the artificial images are realistic. Real and synthetic
image patches from 3 stains H&E, p63, and FoxP3/CD3 were randomly se-
lected to create the subjective test. Considering the 3 aforementioneddomains,
6 different translations exist. For each of the 6 translations, 10 questions were
Fig. 1. A sample question of the subjective test, in which 1 real and 2 artificial image ar
clicking on it.

3

considered in order to compare the translations when analyzing the test re-
sults. So, in total, 60 questions were designed in the form of real–artificial
pairs and eachparticipantwas asked to choose the real image. The participants
did not know the underlying translation behind the artificial images. If the real
and artificial images are, indeed, indistinguishable, the participants will an-
swer randomly, and therefore, 50% of their answers will be correct and the
other half will be incorrect. The participants were medical and technical ex-
perts in the field of digital pathology. The order of all the 60 questions and
of the real or artificial images was random, but each question contained ex-
actly 1 real and 1 artificial image. An example question of the subjective test
is represented in Fig. 1. Before the actual test began, 6 additional sample ques-
tionswith real–artificial pairs with the correct labels were shown to the partic-
ipants to familiarize themselves with the problem.

The objective or quantitative evaluation
As a quantitative (objective) evaluation and, simultaneously, as a proof

of concept, the generated synthetic images were employed to train a breast
cancer classifier to quantify the improvement of performance in the classi-
fication task. The classifier was trained to determine if each patch contains
a tumor or not with a binary label of “malignant” or “non-malignant”. The
binary labels were defined as “malignant” for patches containing anymalig-
nant cells, including invasive breast cancer of any histopathological sub-
type and intraductal malignancies termed ductal carcinonma in situ
(DCIS), as opposed to tumor-free “non-malignant” patches that included
pre-existing normal tissues (glands, ducts, connective/fat tissues, or occa-
sionally benign lesions such as apocrine metaplasia). For the evaluation, 2
classifiers were trained: the first was trained with real images only, and
the second with real and artificial images augmented together. For the
test phase, the test images only contained real patches and the accuracy
values of the 2 classifiers were compared to prove that if the data is aug-
mented with synthetic images, the classification accuracy will increase.

Data preparation

Cancerous human breast tissues obtained from anonymized surplus ar-
chival material processed in the context of previous retrospective
studies,12,13 were extracted and embedded in paraffin blocks (the use of
anonymized surplus archival materials for research purposes is covered by
the institutional review board (ethics committee of Hannover Medical
School), approval number 2063–2013). Then, they were cut into 3 μm slices
and placed on a glass slide. They were stained with several agents, of which
the following ones were selected for this work: forkhead box P3 and cluster
of differentiation 3 (FoxP3/CD3), hematoxylin and eosin (H&E), p63 immu-
nohistochemical staining, and Cytokeratin 5/14 (CK5/14). De-paraffinized
sections were stained with hematoxylin and eosin (H&E) and chromogenic
immunohistochemistry to detect p63 Cytokeratin 5/14 (CK5/14) by 3,3 di-
aminobenzidine (DAB) staining, and forkhead box P3 and cluster of
e presented in random order. The participant is asked to identify the real image by



Fig. 2. A schematic picture of the classification workflow. Two different WSIs of
stain CK5/14 are considered for training and testing and 1 WSI of stain H&E for
image augmentation. Patches are extracted from each WSI and are labeled as
“malignant” or “non-malignant”. The patches with H&E stain are translated to
CK5/14 using the upgraded StarGAN. The labels do not change during
translation. Then, two classifiers are trained: one with the real CK5/14 patches
extracted directly from a WSI as the training set, and the other with the same and
augmented with the translation outputs. The levels of accuracy by the classifiers
are then compared based on the real test patches.
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differentiation 3 (FoxP3/CD3) in a chromogenic double staining with a red
chromogen in addition to the brown DAB signal. Then, they were scanned
and digitized by thewhole slide scanner Aperio AT2 by Leicawith a 40×ob-
jective lens. The dataset consists of 1 whole-slide image (WSI) without anno-
tations in FoxP3/CD3 staining, 1 WSI in H&E, 1 in p63, 2 annotatedWSIs in
CK5/14, and 1 annotated WSI in H&E. In total, there are 6WSIs, 3 of which
were annotated for breast tumors.

Data pre-processing includes the automatic detection of the tissue con-
tents from the background using Otsu’s thresholding14 and the extraction
of the patches that fulfil the requirement of a minimum content threshold.
The patch extraction was performed with OpenSlide, a widely used open-
source library for reading and manipulating WSIs.15 The threshold was cho-
sen to be 0.6, meaning that each patch could only be selected if at least 60%
of the content is tissue with a maximum of 40% background. Patches were
extracted from the highest resolution (40× magnification or 0.253 μm /
pixel), and they were randomly selected from each WSI with a resolution
of 512 × 512 pixels. The patches were then downsampled by factor of 2
to the final patch size of 256×256 pixels to have a size and resolution com-
parable to similar works.7 The fat tissues were regarded as background since
they mostly dissolve and appear as empty space after the staining process.

Experimental settings for stain translation

This work focuses on unsupervised stain translation, i.e., different WSIs
from different patients with various stains were utilized for training the
translation between any stains. The improved StarGAN, as described in Sec-
tion 2.1, was trained once for a translation between FoxP3/CD3, H&E, and
p63 stains for the qualitative evaluation. Further, another StarGAN was
trained for a translation between H&E and CK5/14 stains for the quantita-
tive evaluation.

For the stain translation, 3 WSIs without any breast tumor annotations,
each with one of the stains FoxP3/CD3, H&E, and p63, were employed for
training the network for a many-to-many stain translation. One thousand
patches were extracted from each WSI, resulting in 3000 patches in total.
For each stain, 90% of the patches (900) were used for training. After train-
ing, the remaining 100 patches per domainwere used for a qualitative eval-
uation (ref. the subjective test in Section 3.2).

The proposed upgraded StarGANwith Canny edge detector was trained
based on the objective function in Eq. ((2), and the style codes were ex-
tracted from reference images instead of being generated by the mapping
network from latent vectors. The generator was updated once after 5 up-
dates of the discriminator.

The training was performed for 100 000 iterations in a batch size of 4,
with an Adam optimizer. The parameters for the optimizer are the learning
rate, weight decay, β1, and β2 (coefficients for computing running averages
of gradient and its square), which were respectively 1e-4, 1e-4, 0.0, and
0.99, and the hyper-parameters λcyc and λsty which were set equal (λcyc =
λsty = 1). In addition, different coefficients for the edge loss were tested to
show the effect of Ledg. The network was trained with different λedg values
of integers between 0 and 5 for comparison, and also with λedg =0 for abla-
tion study. The hyperparameters of the Canny edge detector θ1 and θ2 are 0.3
and 0.5, respectively. Classic data augmentation methods were also applied,
which included random horizontal and vertical flipping and random resized
croppingwith a scale of between 0.8 and 1.0 (the lower and upper bounds for
the random area of the crop) and a ratio of between 0.9 and 1.1 (lower and
upper bounds for the random aspect ratio of the crop). All of the aforemen-
tioned transformations were performed with the probability of 0.5. The ex-
periments are implemented in PyTorch16 and conducted on NVIDIA
GeForce RTX 2080 Ti GPUwith 11.3 GB VRAM. The training of the StarGAN
for translations between 3 stains (i.e., 6 translations) required approximately
1 week, and between 2 stains (i.e., 2 translations) 2 days and 7 h.

Experimental settings for classification

The classification pipeline consists of stain translation, augmentation,
and classification, as depicted in Fig. 2. Patches were extracted from 3
4

breast cancer WSIs, 2 stained with CK5/14 and the third stained with
H&E, and each patch was labeled as “malignant” or “non-malignant”. The
WSIs were originally annotated manually by our medical expert for seg-
mentation purposes and the binary labels were inferred automatically
based on the annotations. In doing so, even if only a very small part of a
tumor is contained within a patch, it is labeled “malignant”.

To avoid bias, the test data patches were extracted from aWSI different
from the training data (i.e., from different patients). This means that the
trained classifier will not be patient-specific but, rather, will be general.
Around 2000 patches with stain CK5/14 extracted from oneWSI were con-
sidered as the training set, and 500 patches from the other WSI with the
same stain were taken as the test set. Then, approximately 2000 patches
stained with H&E were translated to CK5/14 via the proposed network.
The network here is trained with the same settings as in Section 2.4 for
the translation betweenH&E and CK5/14 stains using the patches extracted
from H&E and the training dataset from the classifiers (i.e., patches from
CK5/14). Note that the binary labels of the patches do not change during
translation, because whether a patch contains a tumor, or not, does not
change with a different staining.

Then, 2 classifiers are trained with the goal of quantifying the effect of
data augmentation with artificial images on classification accuracy: one
with the real training set of CK5/14 stain only (2000 patches), and the
other with the same training set as well as synthetic CK5/14 images
(4000 patches together) that are obtained from the translation of the
H&E stain. Then, the performance of the 2 classifiers is compared on the
real test data from the CK5/14 stain.

Two networks, VGG-16 and ResNet-50, were employed for classifica-
tion. The VGG network won first place in the ImageNet challenge (ILSVRC)
2014, and ResNet won the ILSVRC and MS COCO 2015 competitions.17,18

Exactly, 50% of the training images had “malignant” labels and the other
half were “non-malignant ” and, therefore, the classes are balanced. The
dataset was pre-processed, as described in Section 2.3. The pre-trained net-
works on the ImageNet datasetwere adapted for breast cancer classification
using a transfer-learning approach. More specifically, the weights of the
pre-trained networks were fixed and used for feature extraction and the
last layer was replaced by a trainable dense layer with Softmax activation
for the intended binary classification problem.

All settings for training the classifiers in all cases with, and without, the
augmented synthetic images are the same to enable a fair comparison of re-
sults. The pre-trained networkswerefine-tuned on the training data for 100
epochs, in a batch size of 8, with an Adam optimizer and a categorical cross-
entropy loss function. The parameters for the optimizer are the learning
rate, β1, and β2, which were equal to 0.001, 0.9, and 0.999, respectively.
Standard data augmentation methods were also applied, which were
random horizontal and vertical flipping with the probability of 0.5. The



Fig. 4. Qualitative results similar to Fig. 3 but with an incorporated edge detector
with λedg= 1.
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pre-trained networks were implemented and fine-tuned in Keras, an open-
source deep learning API.19

Results

Many-to-many stain translation

The addition of an edge detector, as described previously, improved the
many-to-many stain translation in terms of the reduction of morphological
changes and in having an edge-preserving translation. Initial qualitative re-
sults for the many-to-many translation with a single network without an
edge detector (for λedg=0) are shown in Fig. 3. The first row shows sample
input images in the experiment, and the first column presents a few of the
reference images. Each input image is translated in such a way as to reflect
the staining of the reference image, which results in 6 synthetic images in
this example. All translated images are technically plausible and cannot
be distinguished from real patches. Fig. 4 and Fig. 5 present similar results
but with an incorporated edge detector with λedg=1 and λedg=4, respec-
tively. The general structure and main edges of the input images are easily
observable in the artificial images with a visible improvement with higher
values of λedg. However, even with the highest λedg, the structure is not
100% preserved. With higher values for λedg = 5 or higher, the results ap-
pear the same as in λedg = 4 to human eyes. Therefore, λedg = 4 produces
the highest quality of translation results.

Note that since the images are from cancerous tissues, which are inher-
ently chaotic, often there are no clear edges and structures, even in real im-
ages. Thus, adding an edge detector does not fully preserve the structure,
but it still improves the images.

Subjective test

There are 6 possible translations between the 3 stains FoxP3/CD3, H&E,
and p63. The participants were asked 10 questions per translation (60 ques-
tions in total) in the form of real–artificial image pairs. The coefficient for
the edge detector during the stain translation which produces the artificial
Fig. 3. Qualitative results of a many-to-many stain translation with a single
network. The experiment was performed on patches extracted from breast cancer
WSIs in 3 stains without an edge detector with λedg= 0. First row: selected source
images, first column: selected reference images. The source images are translated
with the same network to reflect the staining of the reference images. All other
images (6) are synthetic.

5

images was λedg = 4, as it produces the seemingly best translation results
compared to lower values, as depicted in Fig. 5.

The number of correctly distinguished real images is presented in Fig. 6.
It can be observed that among different translations, FoxP3/CD3 to H&E
has the lowest, and H&E to p63 has the highest average. Note that the av-
erage for the translation FoxP3/CD3 to H&E (32.9%) differs greatly from
the ideal value of 50%. This shows that the participants mistook the artifi-
cial images for real ones. It does not, however, question the quality of arti-
ficial images. The average scores for all translations are sufficiently close to
50% and the variabilities are random and not meaningful.
Fig. 5. Qualitative results similar to Fig. 3 but with an incorporated edge detector
with λedg= 4.



Fig. 6.Histogram of the percentage of correctly identified real images for the participants of the subjective test for each of 6 possible stain translations. The average score of all
participants is indicated with a dashed horizontal line, which approaches 50% in most cases.
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Fig. 7 indicates the total number of correct answers from all partici-
pants. The percentage of correctly identified real images was between
40% and 55% in total, and the average was 45.5%. The fact that the results
approach 50% means that the synthetic images are, indeed, technically
plausible and indistinguishable from the real ones.
Fig. 7. Histogram of the percentage of correctly identified real images for the
subjective test in total. The average score is indicated with a dashed line and
approaches 50%.
Classification and data augmentation

The levels of accuracy of the classifiers were calculated based on the test
set according to the pipeline in Fig. 2 and the results are presented in
Table 1. By augmenting the training dataset with the artificial images and
thus doubling its size, the test-set accuracy increased by 8.0% (from
82.1% to 90.1%) and by 9.3% (from 79.6% to 88.9%) using a classifier
based on ResNet-50 and VGG-16, respectively. The value of λedgwas 4 dur-
ing the stain translation, similar to Section 3.2. Note that since the class dis-
tribution was balanced, there was no need to calculate the F1-score and,
therefore, the calculation of the accuracy suffices in this case.
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Table 1
Levels of accuracy calculated on the test set, as depicted in Fig. 2, for the 2 networks
ResNet-50 and VGG-16. The results were calculated for 2 different scenarios. The
first one is for a classifier, the training set ofwhich contained only 2000 real images.
The training set in the second one consisted of 4000 images, half of which were the
artificial images obtained from a stain translation.

Network Acc. [%] – Real training set Acc. [%] – Augmented training set

ResNet-50 82.1 90.1
VGG-16 79.6 88.9
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Discussion

In this work, it has been shown that the proposed pipeline can effec-
tively translate any stain to any other with the same network. The gener-
ated images are of high quality and their general morphological
appearance remains plausible after translation. There are still minor visible
changes during translation that could be improved in the future. However,
the slight morphological changes of translated tissues can be disregarded
and are not critical in this study, since the output images are exclusively
used for training of other deep neural networks, and clearly improve the
classifiers’ accuracy.

Subjective tests on our medical and technical experts in the field of dig-
ital pathology suggest that the generated patches of histopathological im-
ages are technically plausible and cannot be distinguished from the real
ones, as long as the spatial tissue context and the biological role of the
stained structures are not being evaluated. In fact, the percentage of cor-
rectly distinguished patches based on real images from the synthetic ones
approached 50% and this implies that the images are technically plausible
because the participants answered the questions randomly. For all 6 differ-
ent translations, the average scores also approach 50%with random devia-
tions.While beyond the scope of this study, further research is warranted to
test, e.g., with more questions per translation, if the artificial images also
allow for biologically meaningful conclusions, and whether there is addi-
tional information provided by differences between the translations.

To prove the applicability of the generated images in the presented
work, different networks for the task of breast cancer classification were
trained once with manually annotated real images in a specific stain and
once with the same images augmented with synthetic ones. The artificial
images are the outputs of the translation of other annotated images to the
same stain. Note that the focus of this research is not exclusively on breast
cancer classification. The only reason for performing a binary classification
here is to show that augmenting the training dataset with the synthesized
images boosts the classification accuracy. Therefore, attempts were not
made to find a classifier that performs better. A comparison of classifiers
suggests that the proposed pipeline for image augmentation can effectively
increase the classification accuracy. It confirms that the proposedworkflow
for amany-to-many stain translationwith a single network enables an easy,
realistic, and effective way for data generation to improve the performance
of deep learning networks. It is important to note that there is still some risk
in generating artificial images if they should bemistakenly used, e.g. for di-
agnostic purposes. In addition, our proposed method is necessary given the
shortage of high-quality expert annotations in the field of digital pathology,
acknowledging that the clear improvement of deep learning tasks by artifi-
cially generated images would be smaller if larger sets of annotated images
were available. Thus, the intended application of our method is specifically
in domains where available annotations are sparse.

In this work, the proposed method for image augmentation was evalu-
ated by a classification task for a translation between H&E and CK5/14
stains. It could be repeated in future works for different translations to
find the pair of stains that improves the classifier accuracy the most. In
some cases, a defining an intermediate stain could also help, meaning
that instead of converting stain x directly to stain y, it is converted to a
third stain z first, and then y is obtained from z. In this case, z is the base
stain that has the best translations and, therefore, the quality of x-to-y trans-
lation improves.
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Another important application of this study regarding binary classifica-
tion is that the classified patches could be connected to reconstruct theWSI.
Then, it would be visible in the WSI which patches are malignant. This is of
great importance for clinical practices and medical experts and proves that
the proposed image augmentation and classification pipeline has added
values.

In future works, the pipeline will be enhanced so that there is a one-
to-one relationship between the output and source images and the
maintenance of tissue morphology will be further improved. For this
purpose, it may be helpful to consider other metrics such as Normalized
Mutual Information (NMI), and to use them in the loss function or for
evaluation. The addition of an identity loss function could also be help-
ful, as it motivates the generator to keep the images unchanged.2 Other
edge detectors, for example, methods based on total variation, could be
employed for training the network instead of the Canny filter to further
investigate their effect. Enhancing the network and motivating it to
keep exactly the same structure as the input provides new opportuni-
ties. For example, annotation masks for segmentation would not change
during translation and, therefore, the improvement of the segmentation
task could also be evaluated in addition to the binary classification in
this work. The segmentation task could be useful for a more exact detec-
tion of tumor tissues. In addition, image registration of consecutive and
similar WSIs with different staining provides ground-truth images for
comparison with the translation outputs and a quantitative metric for
evaluation.

Another evaluation method in future works could be to insert un-
annotated patches of WSIs to our pipeline as the inputs and thereby obtain
labeled patches as the output. After reconstructing the labeled version of
the initial WSI by putting the patches back together, a medical expert
could determine if the labels are correct. Reconstruction of the WSIs
would be necessary, as medical experts need contextual information for
evaluating the results.

In addition to classification, the presented methodology could have
other applications, such as segmentation. In some cases, tumors may be
more visible in one specific stain than other stains. That specific stain
could act as the base stain of the pipeline, similar to the concept of “easy-
to-segment” stain referred to in Gadermayr et al.3 Therefore, a segmenta-
tion network could be trained on the base stain and all other stains could
then be translated to the base stain to become applicable to the trained seg-
mentation tool. In contrast to Gadermayr et al.,3 a many-to-many transla-
tion, instead of pairwise translations, is feasible in this work, which
facilitates this concept tremendously.

This work could be more generalized by taking other human body
organs into account as well. In the current settings, all images are re-
lated to the breast and according to the StarGAN-v2 nomenclature,7 dif-
ferent stains represent domains and there is no diversity or different
styles in this work. Another setting for a more generalized pipeline
could be to choose different human organs as domains and then having
different stains as styles, without omitting the style diversification term
in the loss function.

Another suggestion is to consider different tumor types or different
cancer grades as other parameters of translation and to train stain trans-
lators separately for each group since different tumors or grades of can-
cer result in different appearances of the tissues. In this work, fat tissues
have been disregarded but they could be important in the case of cancer
in other organs. They could also be considered separately for training
the stain translators. For this purpose, fat-preserving staining agents
must be used for the WSIs so that the fat tissues do not dissolve and ap-
pear as empty space.

Conclusions

This paper proposes a pipeline for effectively translating any available
histopathological stain to any other stain of interest with a single network
for image augmentation. The core findings of this proof-of-concept study
are as follows: First, the synthesized stain images, generated by a structure
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preserving Star-GANmethod, are indistinguishable from the real ones. Sec-
ond, compared to a vanilla breast cancer classification without stain aug-
mentation, the accuracy of our proposed classification with stain
augmentation increases considerably from 82.1% to 90.1% using ResNet-
50, and from 79.6% to 88.9% using VGG-16. In future work, once larger
multi-stain pathological datasets are available, we intend to continue this
work to investigate whether the proposed stain-augmented classification
could also be applied to support further medical histology classification
tasks. Also, considering all possible stain types commonly applied in a cer-
tain pathological field, it could be quantified to which extent both the se-
lected real stains and the augmented virtual stains contribute to the final
classification task. This would provide insights into whether an optimal
combination of both real and virtual stains exists for a pathological classifi-
cation task of interest.
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