
Using Artificial Neural Networks to Compensate Negative Effects
of Latency in Commercial Real-Time Strategy Games
David Halbhuber

david.halbhuber@ur.de

University of Regensburg

Regensburg, Germany

Maximilian Seewald

maximilian.seewald@stud.uni-

regensburg.de

University of Regensburg

Regensburg, Germany

Fabian Schiller

fabian.schiller@stud.uni-

regensburg.de

University of Regensburg

Regensburg, Germany

Matthias Götz

mathias.goetz@stud.uni-

regensburg.de

University of Regensburg

Regensburg, Germany

Jakob Fehle

jakob.fehle@ur.de

University of Regensburg

Regensburg, Germany

Niels Henze

niels.henze@ur.de

University of Regensburg

Regensburg, Germany

ABSTRACT

Cloud-based game streaming allows gamers to play Triple-A games

on any device, anywhere, almost instantly. However, they entail one

major disadvantage - latency. Latency, the time between input and

output, worsens the players’ experience and performances. Reduc-

ing the latency of game streaming is crucial to provide gamers the

same game experience as in local gaming. Previous work demon-

strates that deep learning-based techniques can compensate for

a game’s latency if the artificial neural network has access to the

game’s internal state during inference. However, it is unclear if

deep learning can be used to compensate for the latency of unmod-

ified commercial video games. Hence, this work investigates the

use of deep learning-based latency compensation in commercial

video games. In a first study, we collected data from 21 participants

playing real-time strategy games. We used the data to train two ar-

tificial neural networks. In a second study with 12 participants, we

compared three different scenarios: (1) playing without latency, (2)

playing with 50ms of controlled latency, and (3) playing with 50ms

latency fully compensated by our system. Our results show that

players associated the gaming session with less negative feelings

and were less tired when supported by our system. We conclude

that deep learning-based latency compensation can compensate the

latency of commercial video games without accessing the internal

state of the game. Ultimately, our work enables cloud-based game

streaming providers to offer gamers a better and more responsive

gaming experience.

CCS CONCEPTS

• Human-centered computing → User studies; • Applied com-

puting → Computer games.

This work is licensed under a Creative Commons Attribution International

4.0 License.

MuC ’22, September 4–7, 2022, Darmstadt, Germany
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9690-5/22/09.

https://doi.org/10.1145/3543758.3543767

KEYWORDS

video games, latency, latency compensation, real-time strategy

games, deep learning

ACM Reference Format:

David Halbhuber, Maximilian Seewald, Fabian Schiller, Matthias Götz, Jakob

Fehle, and Niels Henze. 2022. Using Artificial Neural Networks to Compen-

sate Negative Effects of Latency in Commercial Real-Time Strategy Games .

In Mensch und Computer 2022 (MuC ’22), September 4–7, 2022, Darmstadt,
Germany. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3543758.3543767

1 INTRODUCTION

Cloud-based game streaming (CGS) using services, such as Ama-

zon’s Luna [3] or Nvidia’s Geforce Now [34], provide gamers mul-

tiple advantages compared to conventional local gaming. In CGS,

all complex computations, such as physics or AI pathfinding, are

realized by a cloud server. The server renders the game and pro-

vides it to the gamers via a video stream. The local device, such as

a computer or a mobile phone, merely has to display the received

video stream and send the gamer’s input to the remote server. This

streaming technique significantly reduces the hardware require-

ments for the local device. Thus, gamers do not need to constantly

upgrade their system to play the latest Triple-A [46] games [41].

Current CGS systems even allow gamers to benefit from novel

and sophisticated graphic techniques such as Deep Learning Super
Sampling or Raytracing [35]. Furthermore, gamers do not have to

download and install games on their devices as all CGS games are

pre-installed on the cloud server and playable within seconds.

While CGS provides multiple advantages to gamers, due to

streaming games via the Internet, CGS services are affected by

a higher latency than conventional local gaming systems. Latency

is the time between a user-generated input and the correspond-

ing output of an interactive system [30, 31]. During streaming,

the gamer’s input to the local device is sent to the cloud server.

The server receives the input, calculates the reaction to the input,

renders the game, and sends the output back to the gamer as a

video stream. This additional communication increases the overall

latency of the game. Latency, however, is known to negatively in-

fluence game experience and player performance [11, 15, 33]. Due

to the higher latency, gamers using CGS play with a systematic and

182

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543758.3543767
https://doi.org/10.1145/3543758.3543767
https://doi.org/10.1145/3543758.3543767
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543758.3543767&domain=pdf&date_stamp=2022-09-15

MuC ’22, September 4–7, 2022, Darmstadt, Germany Halbhuber et al.

constant disadvantage. Thus, gamers, game developers, and CGS

providers aim to minimize or compensate for latency. Despite all

efforts, CGS systems still have a significantly higher latency of up

to 180ms more than local gaming systems [19].

Previous work highlights multiple methods to compensate for

latency in video games. Liu et al. [28] distinguish four latency com-

pensation techniques: (1) Feedback, (2) Prediction, (3) TimeManipula-
tion, and (4)World Adjustment. While Feedback, Time Manipulation,
and World Adjustment techniques manipulate the game world to

compensate for latency [8, 18, 22, 25], Prediction techniques use

internal game state, such as the players’ position in the game world,

to extrapolate a future game state. Predictive methods, thus, enable

the game to start calculating an output before user input arrives.

By predicting the user’s actions, the overall perceived latency is

reduced.

One sub-category of in-game latency compensation techniques

are methods based on deep learning. While deep learning methods

conceptually fit the Prediction category, they use Artificial Neural

Networks (ANNs) instead of classical machine learning to predict

users’ actions. In recent work [19], ANNs have shown to be capable

of reducing the adverse effects of latency on player performance

and game experience in a high latency gaming setting. Halbhuber

et al. [19] used an ANN to predict the position and orientation of

the player’s avatar in a custom game, significantly reducing the

adverse effects of 180ms latency. The authors used a custom First-
Person Shooter (FPS) game to utilize the game’s internal state during

inference and to integrate the ANN’s prediction into the game. This

approach, however, is not possible for commercial video games as

they are black boxes and usually do not allow access by third-party

applications. Thus, it is unclear if ANNs can compensate for the

latency of unmodified commercial video games.

In this paper, we show how to compensate for the latency of

commercial video games without modifying the game or accessing

the internal game state. We use ANNs to compensate for adverse

effects of latency by predicting the future movement of the mouse

in the Real-Time Strategy (RTS) game Age of Empire 2 (AoE2) [16].
To achieve this, we conducted a data collection study with 21 partic-

ipants playing AoE2 and Empire Apart [14]. We used the gathered

data to develop, test, and benchmark two different ANNs. The first

ANN predicts the future mouse position in 50ms based on past

movements. The second ANN predicts future mouse position in

50ms based on past movement and game images. We evaluated

both ANNs and found that visual data does not lead to a better pre-

diction. Thus, our second study with 12 participants investigated

the effects of the ANN predicting the mouse movement while play-

ing AoE2 with controlled latency. Our evaluation shows that the

developed ANN significantly enhanced the game experience com-

pared to playing with high latency and no prediction. We conclude

that ANNs can be used in commercial RTS games to reduce the

adverse effects of latency on the game experience. CGS providers

can use our approach to alleviate their services to the same level of

game experience as conventional local games.

We provide all resources to enable other researchers to replicate

and build upon our work via GitHub. The repository includes all

developed models, all source code, and all gathered, anonymous

user data
1
.

2 RELATEDWORK

A growing body of work investigates latency, how it arises, its ef-

fects on gamers, and how to compensate for it in video games. This

section first provides an overview of how latency in interactive sys-

tems arises. Then, we discuss the effects of latency in video games.

Next, we continue showcasing multiple examples to compensate for

or reduce latency in video games. Finally, we conclude this section

with a summary showing that ANNs can potentially be used to

reduce latency in CGS.

2.1 Latency in Interactive Systems

Previous research [29] mainly separates latency into two categories:

(1) local latency - latency generated by used hardware, and (2)

network latency - latency generated by communicating over a

network such as the Internet. Both types of latency affect user

experience and user performance in different ways. Local latency

inherently affects all interactive systems, while network latency is

primarily found in multiplayer online video games [29].

Recent work investigating latency found that local latency leads

to diminished user performance. For example, Jota et al. [21] and

Annett et al. [4] found that local latency above 25ms decreased

the user performance in different tasks. While local latency below

25ms might not decrease user performance, it is still perceivable.

Ng et al. [32] found that latency starting at 2ms can be perceived

by users of a touch device. In later work, Annett et al. [5] found

that the perception of latency is task-dependent. For example, in

some tasks, such as inking on a tablet, users notice latency at 50ms.

2.2 Latency in Video Games

Since they are interactive systems, local latency also negatively

affects video games. In addition, online video games are negatively

affected by network latency as well.

Regardless of its origin, latency negatively affects gamer per-

formance and game experience. The adverse effects of latency on

gamer performance in video games manifest in multiple ways:

Gamers achieve fewer points, need additional time to complete a

task, are less precise, or can not finish game objectives at all [7,

12, 15]. However, not all games and game genres are affected by

latency in the same way [10]. Fast-paced games, such as FPS games,

are stronger affected by latency than other games. For example,

Armitage et al. [6] revealed that starting at 150ms to 180ms of

latency, gamer performance worsens. Other work investigating

game latency found that performance degradation starts at 100ms

of latency. Recent work showed that video games are negatively

affected by latency starting at 25ms [27]. Besides its effect on gamer

performance, latency also decreases the game experience. For exam-

ple, Liu et al. [26] found that latency of 150ms reduces the overall

quality of experience by 25 %.

1
https://github.com/david-halbhuber/Using-ANNs-to-Compensate-Negative-Effects-

of-Latency-in-RTS-Games

183

Using Artificial Neural Networks to Compensate Negative Effects of Latency in Commercial Real-Time Strategy Games MuC ’22, September 4–7, 2022, Darmstadt, Germany

2.3 Latency Compensation and Reduction in

Video Games

Previous work developed multiple strategies to counteract latency

in video games, which can be classified differently. One classifica-

tion by Liu et al. [28] structures latency compensation techniques

in four classes: (1) Feedback, (2) Prediction, (3) Time Manipulation,
and (4) World Adjustment. Latency compensation methods from

the Feedback (1) class provide auditory or visual feedback to the

gamer based on the current latency. These techniques do not alter

the actual latency in the game. Gutwin et al. [18], for example,

proposed a method in which specialized game objects signalize

the presence, magnitude, and effects of latency in the game. The

second category Prediction contains methods using the available

game state data, such as the gamer’s position in the game world

or other objects in the game world, to interpolate or extrapolate a

future game state. The proactive calculation of a future game state

potentially decreases the overall perceived latency. Methods from

the categories Time Manipulation (3) andWorld Adjustment (4) both
directly alter the game world. Time Manipulation methods slow

down, speed up or stop game time entirely to synchronize game

events. One example of such a method is Time Warp [8, 22]. Time
Warp is widely used in online multiplayer video games but often

considered unfair by gamers since it always favors the actor [22].

World Adjustment methods, such as Geometrical Manipulation ma-

nipulate game objects depending on the amount of latency, for

example, making targets bigger and thus easier to hit in a high

latency setting [25].

2.4 Summary

Previous work shows that latency in interactive systems negatively

influences user experience and performance starting at 25ms [21,

32]. Video games and gamers are negatively affected by latency as

well [7, 10, 12, 15]. Latency in video games leads to gamers scoring

fewer points or needing more time to complete a given task. Ulti-

mately, high latency can even prevent gamers from finishing a given

task at all. Considering the higher latency in CGS, gamers using

these services are at a constant disadvantage compared to gamers

playing on conventional local gaming setups. Compensating high

latency in custom video games using ANNs has proven feasible [19].

However, commercial video games are fundamentally different as

they usually not allowed to be modified by third-party applications.

Hence, while previous work showed that ANNs are, in principle,

capable of reducing the negative effects of latency, it is unknown if

the same approach can be used in CGS. The higher latency in CGS

is one reason for its moderate adaptation rate. Thus, in this work,

we investigate if ANNs can be utilized as a compensator for high

latency in commercial video games in a CGS scenario.

3 DATA COLLECTION

In line with previous work [19, 39], we used a data-driven approach

to develop and evaluate the presented ANNs. First, we developed

custom tools to remotely record mouse movement and video output

while playing any video game. In a data collection study, we then

used the developed tools to collect data from 21 gamers playing the

RTS games AoE2 and Empire Apart. We used two different games

to increase the ANNs’ potential to generalize over different games.

Figure 1: Shows screenshots of the Real-Time Strategy games

Empires Apart [14] (left) andAge of Empire 2 [16] (right).Both
screenshots show the game interface, some player-controlled

units and buildings from a vertical bird’s eye view. We used

the games in a remote data collection study to obtain data

suitable for training our latency compensation system. The

screenshots were recorded using our data gathering tool.

3.1 Development of the Data Gathering Tool

We gathered all data to train our ANNs in the wild to maximize

ecological validity. While this approach introduces some random-

ness, for example, when considering local latency, it simultaneously

potentially increases the ANNs’ generalization capability. Since the

data is not collected in a laboratory setting, it contains more varia-

tion. Gathering data in the real world allows the ANNs to potentially

learn a more nuanced version of gamers playing video games which

is not constrained by the setting in a laboratory study.

We exclusively used Python 3 to develop our data gathering

tool. The tool consists of different methods for starting games, cap-

turing and converting gameplay images, recording mouse inputs,

multi-threaded data processing, and archiving and uploading the

gathered data. For automatically installing and starting games we

used PyWinHook [43], PyNput [37] and Steam [44]. For image cap-

turing, resizing, and converting, we used OpenCV2 [42]. For mouse

movement recording, we utilized PyWinHook, and for uploading the
gathered data to a remote server, we made use of PySFTP [36]. We

created an executable from the Python script using PyToExe [45].
After starting the program, it automatically logs in to the game

library application Steam with hard-coded login credentials. If our

application can not find a current Steam installation, it tries to

download and install it. After logging into Steam, the tool waits

for user input to start the data collection. Data is only collected if

an appropriate game is running and maximized. Upon ending the

game session, i.e., if the game gets closed, the tool automatically

finishes uploading the gathered data before closing itself.

Our tool records the current mouse position in the game every

5ms. Mouse positions, however, are only recorded if the current

mouse position changed compared to the mouse position 5ms ago

to minimize the amount of logged data and to prevent identical

mouse position entries. Furthermore, the software captures, resizes

(to 848 pixel by 480 pixel), and starts to upload one gameplay image

every 41.67ms (recording in 24 fps). We limited the resolution of

the gameplay images to reduce the time needed for uploading the

data to our server while obtaining as much visual information as

possible. Recording 1 hour of gameplay still produced about 10GB

of data. Figure 1 shows two game screenshots our data gathering

tool recorded.

184

MuC ’22, September 4–7, 2022, Darmstadt, Germany Halbhuber et al.

3.2 Data Collection Study

Using the developed tool, we conducted a data collection study to

acquire the necessary gameplay data to develop ANNs capable of

predicting user inputs to reduce latency.

3.2.1 Apparatus. For the study, we sent our data-gathering tool

to our participants. Participants played the games on their devices

and thus did not have to install any software manually. The study

ran automatically and did not require any additional input from

the experimenter.

3.2.2 Procedure and Task. After giving informed consent to the

data collection, participants received an e-mail with our tool and de-

tailed instructions. Participants started the tool by double-clicking

the received executable. After confirmation by the participants and

maximization of the game, the data logging (mouse movement +

gameplay images) started. Next, participants were asked to play

one hour of free play, which is a sandbox mode in both games,

allowing them to start playing right away. After playing for one

hour, participants closed the game. Our tool automatically com-

pressed and uploaded the gathered data to our remote server. The

study, and thus the data collection, received ethical clearance by

our institution’s ethics policy.

3.2.3 Participants. Twenty-one participants (4 f, 17 m) were re-

cruited via our institute’s mailing list. Participants were selected

independent of age, gender, and experience playing RTS games.

All participants were students and compensated with one credit

point for their course of study. The study took about 70 minutes

per participant. The participants’ average age was 25.3 years (SD =

3.6 years), ranging from 20 years to 36 years.

4 DEVELOPMENT OF THE ARTIFICIAL

NEURAL NETWORKS

Overall we collected 1 412 802 gameplay images (due to rare trans-

mission errors, the number of collected images does not reflect the

theoretical maximum) and 3 479 488 mouse positions in our data

collection study. We used the gathered data to develop two deep

learning-based ANNs: (1) aDeep Neural Network (DNN) [24] and, (2)
a mixed-model Convolutional Neural Network (CNN) [24] combined

with a DNN. We optimized the ANNs’ parameter to minimize the

loss on a train-test set combination. The accuracy of both ANNs

was evaluated using a separate validation set (80/10/10 split). Both

ANNs’ goal was to predict the mouse position in 50ms. This predic-

tion could be sent to the streaming server in a CGS scenario. The

server receives this prediction after a certain time, for example, after

50ms. However, since the server received a predicted position in

the future, the subsequent rendering will not be affected by latency.

This predictive method effectively reduces the gamer’s experienced

latency. We defined the prediction value for both ANNs per pre-

vious work, which shows that latency negatively affects gamers

starting at 25ms. Furthermore, Halbhuber et al. [19] showed that a

prediction of 60ms already significantly increased gamer perfor-

mance and game experience. Thus, to increase the likelihood of the

amount of latency and latency prediction influencing gamers, we

set the prediction value to 50ms.

4.1 General Description

Both ANNs were trained using a supervised deep learning approach.

Hence, we defined the amount of data used for inference (the input)

and the corresponding frame or mouse position as output in train-

ing. We used TensorFlow [1] to train all models and Optuna [2] for
hyperparameter optimization. For training, we used a local server

with an Intel i9-990k CPU, 16GB Ram and two GPUs, one Nvidia

RTX 2060 with 6GB VRAM, and one Nvidia 1080Ti with 8GB

VRAM. Crucial for both ANNs was the time needed to predict the

next output. Since the output of the ANNs has to be applied to the

game in real-time, the duration for inference had to be minimized.

The prediction must not slow down the interaction with the game.

Since typical frame rates in games range from 30 to 60 frames per

second (FPS), generating the next output and merging it back into

the game had to be finished within 16ms to 33ms. We optimized

the Mean Absolute Error (MAE) between the actual delta value of

the mouse position in 50ms and the predicted value for all models.

4.2 Training the Dense Neural Network

The first ANN uses the last ten mouse positions to predict a delta

value for the mouse position in X and Y coordinates in 50ms. Since

we recorded one mouse position every 5ms, the prediction is based

on the data of the last 50ms. Hence, the ANN’s input consists

of 10 pairs of 𝑋 and 𝑌 coordinates. The network consists of five

fully connected layers. The first layer 𝐿1 - the input layer, has 20

neurons and passes the input to the first of three fully connected

hidden layers (𝐿2 = 64 neurons, 𝐿3 = 32 neurons, 𝐿4 = 16 neurons).

The last layer 𝐿5 - the output layer - has two neurons and serves

the predicted value of the mouse position in 50ms in 𝑋 and 𝑌

coordinates. We used Adaptive Movement Estimation (ADAM) [23]

with a batch size of 128 samples and a learning rate of 0.001 for

backpropagation. As activation function we used TensorFlow’s built-
in Rectified Linear Unit (ReLU) implementation [17]. We used Early
Stopping [38] to prevent overfitting and custom callback functions

to deal with local optimization minima. The model was trained for

100 epochs, with one epoch taking approximately 36 minutes. In

evaluation, the model achieves an MAE of 12.4 pixels per coordinate

on the unknown validation set. Considering a full HD monitor

with a resolution of 1920 pixels by 1080 pixel the ANN creates a

prediction with an error of less than 1% on the X-axis and about

1.2 % on the Y-axis. Generating one inference takes about 1.6ms,

which is fast enough considering our requirement of a prediction

time of less than 16ms.

4.3 Training the mixed-model Convolutional

Neural Network

The second ANN uses five past game images and the corresponding

mouse positions to predict the mouse position in 50ms. Thus, the

prediction is based on gameplay from the past 208ms. The dense

part of the network is identical to the first presented ANN. The

convolutional part of the model consists of seven layers. 𝐿1, a fully

connected dense layer, receives the screenshot in the recorded

resolution (848 px X 480 px) and scales it down by factor 10 to 84 px

X 48 px. Additionally, 𝐿1 grey-scales the input images. Layer 𝐿2 the

first convolution layer (neurons = 64, stride = (3, 3), padding = 3)

is followed by a Max Pooling layer (pool = (2, 2)). 𝐿4 (convolution,

185

Using Artificial Neural Networks to Compensate Negative Effects of Latency in Commercial Real-Time Strategy Games MuC ’22, September 4–7, 2022, Darmstadt, Germany

neurons = 32, stride = (3, 3), padding = 3) and 𝐿5 (Max Pooling, pool
= (2, 2)) follow the same structure as 𝐿2 and 𝐿3. The next layer, 𝐿6,

is a Flatten layer, which receives the multi-dimensional output from

the previous layer and transforms it into a one-dimensional array.

In the next step, this array is passed to a dense layer (𝐿7, neurons =

16), which generates𝑋 ,𝑌 coordinates predicting the mouse curser’s

position. The output of the convolutional and the network’s dense

part are concatenated in a final dense layer. We, again, used ADAM

with a learning rate of 0.1 and a batch size of 4 samples as well as

ReLU to optimize. We utilize Drop Out (drop out rate = 0.2) [40] to

prevent overfitting of the model. The second ANN was trained for

ten epochs, with one epoch taking 36 hours to train. After training,

the ANN achieved an MAE error of 18.8 px in predicting the mouse

position in 50ms. Again, considering a full HD monitor the MAE

corresponds to an error of less than 1% on the X-axis and about

1 8% error on the Y-axis. The model finishes one inference in 5.4ms.

Figure 2 shows an overview of the developed model (left) and an

architecture plot of the convolution branch of the model (right).

We did not find that using gameplay images increases the pre-

diction accuracy. Thus, we used the DNN for further investigation.

4.4 Integration of ANN to the Game

To predict the mouse position in 50ms using the developed model,

the model needs the means to communicate with the game. Since

AoE2 is a commercial game, it is impossible to manipulate the game

or the current game state directly. Hence, we used the Python library

PyNPut to override the mouse position on the operating system

(OS) level. Using this approach, the game never receives the actual

mouse hardware value but only the predicted values of our model.

Upon starting the inference pipeline, the ANN waits for ten mouse

positions to be received before starting to pipe the inference to the

game. Via rolling cache procedure, the ANN removes the oldest

mouse positions upon receiving a new position. Using this method

allows the ANN to predict a future mouse position continuously.

5 EVALUATION

We conducted a second study to determine the effects of our sys-

tem. In the study, we created 50ms artificial, controlled latency by

buffering the mouse input on the OS level using a custom Python

script and the Python library PyNPut.

5.1 Study Design

We investigated the effects of our prediction using a within-subject

design. Hence, we used Delay as an independent within-subject

variable. The variable had three levels: (1) No Latency - which is

used as a control condition and corresponds to playing with no

latency and no applied prediction -, (2) Latency - which corresponds

to playing with 50ms of controlled latency and no prediction being

applied in the gaming session -, and lastly, (3) Prediction - cate-

gorizing gaming sessions with a controlled latency of 50ms and

an enabled prediction compensating 50ms of latency. To measure

the game experience, we used the in-game modules of the Game
Experience Questionnaire (GEQ) [20]. We used the six sub-scales

Competence, Flow, Tension, Challenge, Positive Affect, and Negative
Affect of the in-game module and expanded it by the four sub-scales

Positive Experience, Negative Experience, Tiredness and Return to Re-
ality by the post-game module to quantify the subjective effects of

our system on the gamers. We measured the effect of Delay on the

gamer performance using the dependant variable Score. Score is gen-
erated using AoE2’s built-in scoring system. All participants played

with all levels of Delay resulting in three different conditions for

our study. The condition order in the study was randomized to

prevent a bias induced by sequence effects.

5.2 Apparatus

We installed AoE2 on a stationary work station (Intel i9-9900k,

16GB RAM, Nvidia RTX 2060 6GB VRAM) in our laboratory. The

workstation was attached to a monitor (24" FullHD @60Hz), a com-

puter mouse (Logitech M10), and a wired headset. The laboratory

was quiet and free of external disturbance.

5.2.1 Procedure and Task. Participants were greeted at our institu-

tion’s laboratory by the experimenter. After giving informed con-

sent and agreeing to the data collection, participants were seated

at the workstation running AoE2. Participants were not informed

about the exact purpose of the study (investigating the effects of the

developed prediction system). However, they were briefed about

the general procedure of the study. Next, all participants played

three rounds of AoE2’s free play mode for 15 minutes. After each

round, they filled out the GEQ. Upon finishing the third round and

the third time filling out the GEQ, we collected demographics and

information about past gaming experiences in RTS games and AoE2.

Lastly, participants were debriefed. Participation in the study took

about 1 hour.

5.3 Participants

Using our institution’s mailing list, we invited 12 participants (2 f,

10 m). The participants’ mean age was 23.16 years (SD: 2.31 years).

Participants were chosen blind to age and gender. To prevent a

bias induced by individual gaming skills, participants had little to

no experience playing AoE2. Participant pre-screening was crucial

since experienced AoE2 players deploy sophisticated gameplay

strategies such as using shortcuts, queuing of unit construction, and

simultaneously controlling independent units, which would have

distorted the data of our study. Furthermore, all participants were

students at our institution and were compensated for participation

with one credit point for their study course.

5.4 Results

Based on the authors’ recommendation [20] and in line with previ-

ous work [19], we independently evaluated each sub-scale of the

GEQ. Table 1 shows the mean score and standard deviation for all

sub-scales. All measures showed no violation of normality using

Shapiro-Wilk’s test (all p > 0.05). Hence, we used an analysis of

variance (ANOVA) for further statistical testing. All post-hoc tests

are Alpha-corrected Tukey tests.

A one-wayANOVA (Delay: Latency vs.No Latency vs. Prediction)
showed no significant effect of Delay on the in-game sub-scales

Competence, Flow, Challenge, Positive Affect and no significant effect
on the post-game sub-scales Positive Experience,Negative Experience,
and Returning to Reality (all p > 0.2, all [2𝑝 < 0.1). However, ANOVA

186

MuC ’22, September 4–7, 2022, Darmstadt, Germany Halbhuber et al.

Figure 2: Shows an overview of the mixed-model Convolutional Neural Network (CNN) (left), and the architectural structure of

its convolutional branch used for in-game image processing (right). In the model, mouse positions are processed by series of

dense layer while the in-game images are processed by the convolutional branch. To reduce computational load the original

images are downsized to 84 pixels by 48 pixels. This downsized image is passed through two convolutional layer coupled toMax
Pooling. The multi-dimensional image is then transformed to an one-dimensional array using a Flatten layer. The output of the

convolutional branch is fed to a dense layer which also receives the processed mouse positions. Finally, last dense layer outputs

a X,Y coordinate for the mouse position in 50ms.

Score Game Experience Questionnaire

Latency Com. Flo. Ten. Cha. Pos. Neg. Pos. E. Neg. E. Tired. Real

No Delay 2.75/0.83 1.75/0.81 0.54/0.23 1.95/1.07 2.58/0.88 0.66/0.57 2.09/0.89 0.68/0.39 0.63/0.57 0.94/0.69

Delay 1.95/1.07 1.54/0.87 1.75/1.21 2.21/1.03 1.38/0.99 1.71/1.16 1.39/0.99 1.26/0.86 1.66/0.91 1.02/0.78

Prediction 2.25/1.37 1.71/1.01 0.95/1.08 1.52/1.02 1.84/1.05 0.71/0.54 1.85/1.05 0.81/0.58 0.71/0.72 1.05/1.01

Table 1: Shows the mean scores with standard deviation (mean/SD) for all sub-scales of the Game Experience Questionnaire. The
data is grouped by the three levels of Latency.

revealed a significant main effect of Delay on Tension (F(2,33) =

4.632, p = 0.017, [2𝑝 = 0.219). A Tukey post-hoc test showed signifi-

cant differences between No Latency and Latency (𝑝𝑡𝑢𝑘𝑒𝑦 = 0.014,

𝑑𝑐𝑜ℎ𝑒𝑛 = 0.223). All other differences were not significant (all 𝑝𝑡𝑢𝑘𝑒𝑦
> 0.137, all 𝑑𝑐𝑜ℎ𝑒𝑛 < 0.091). The one-way ANOVA also revealed a sig-

nificant main effect of Delay on Negative Affect (F(2,33) = 4.632, p

= 0.005, [2𝑝 = 0.278). Post-hoc testing showed significant differences

between Latency and No Latency (𝑝𝑡𝑢𝑘𝑒𝑦 = 0.009, 𝑑𝑐𝑜ℎ𝑒𝑛 = 0.287)

and between Latency and Prediction (𝑝𝑡𝑢𝑘𝑒𝑦 = 0.013, 𝑑𝑐𝑜ℎ𝑒𝑛 = 0.235).

However, no significant difference between No Latency and Predic-
tion (𝑝𝑡𝑢𝑘𝑒𝑦 = 0.991, 𝑑𝑐𝑜ℎ𝑒𝑛 = 0.051). Furthermore, ANOVA revealed

a significant main effect of Delay on Tiredness. Post-hoc tests

showed significant differences between Latency and No Latency

(𝑝𝑡𝑢𝑘𝑒𝑦 = 0.005, 𝑑𝑐𝑜ℎ𝑒𝑛 = 0.393) and between Latency and Prediction
(𝑝𝑡𝑢𝑘𝑒𝑦 = 0.013, 𝑑𝑐𝑜ℎ𝑒𝑛 = 0.281). However, no significant difference

between No Latency and Prediction (𝑝𝑡𝑢𝑘𝑒𝑦 = 0.991, 𝑑𝑐𝑜ℎ𝑒𝑛 = 0.096).

Overall, when using our predictive system participants had a

lower Negative Affect and Tiredness compared to playing with 50ms

of latency and no support by the ANN. Table 2 shows all ANOVAs

performed on the GEQ data - significant results are highlighted.

Figure 3 shows the scores for the sub-scales Negative Affect (left)
and Tiredness (right).

One-way ANOVA found no significant main effect of Delay on

Score (F(2,33) = 0.914, p = 0.411, [2𝑝 = 0.053). Participants on average

achieved 10,042.42 points ± 1204,5 points.

187

Using Artificial Neural Networks to Compensate Negative Effects of Latency in Commercial Real-Time Strategy Games MuC ’22, September 4–7, 2022, Darmstadt, Germany

ANOVAs of Game Experience Questionaire

Com. Flo. Ten. Chal. Pos. Neg. Pos.E Neg.E. Tired. Real.

DF 2 2 2 2 2 2 2 2 2 2

Residual 33 33 33 33 33 33 33 33 33 33

F-value 1.540 0.263 4.632 1.441 1.180 6.369 1.569 2.708 7.188 0.031

p-value 0.229 0.770 0.017 0.251 0.320 0.005 0.223 0.081 0.003 0.970

[2𝑝 0.085 0.016 0.219 0.080 0.067 0.279 0.087 0.141 0.303 0.002

Table 2: Results of the one-way ANOVAs investigating the effects of Delay on the different sub-scales of the Game Experience

Questionnaire [20]. Significant results are displayed in bold. We found significant differences between Tension (Ten.), Negative
Affect (Neg.) and Tiredness (Tired.). Participants playing with our presented latency compensation method associated the game

with significantly less negative feelings and were significantly less tired after the gaming session.

Figure 3: Shows the sub-scales Negative Affect (left) and Tiredness (right) of the Game Experience Questionnaire [20]. Significant

differences are highlighted via p-bars. Error bars depict the standard error (SE). Participants rated the negative affect associated

with the game significantly highest when playing with latency and no prediction. In the same manner, participants rated the

gaming session with latency and no prediction with most tiring. We found no significant difference between playing with no

latency and our prediction, hence our system did not negatively influence the game experience.

6 DISCUSSION

Our results show that using a deep learning-based predictive system

to compensate for latency in commercial Real-Time Strategy games

significantly reduces the negative effects of latency on the players’

game experience. Gamers playing Age of Empire 2 with a latency

of 50ms supported by our system, associated the game with a

significantly lower Negative Affect and experienced significantly

lower Tiredness than playing without the ANN. The objective game

performance remained constant in all tested conditions. Thus, our

analysis shows that our system removes the negative effects of

latency without introducing negative secondary effects.

In the following, we first explain and discuss the found effects

based on previous work investigating the negative influence of

latency on game experience. We then discuss the implication of

our findings and our work for game developers, researchers, and

cloud-based game streaming providers.

6.1 Tension, Negative Affect, and Tiredness

Generally, previous work showed that latency negatively affects

the game experience of video games [13]. Liu et al. [27], for exam-

ple, showed that latency starting at 25ms leads to an experience

degradation. The authors showed that this decrease in quality of

experience linearly correlates with the amount of latency - the

higher the latency, the more pronounced the effects on the game

experience. In our work, we successfully compensated for the nega-

tive effects of controlled latency without negatively influencing the

positive aspects of the gaming experience. We found a significant

decrease in negative affect when playing with our ANN compen-

sating latency compared to playing with latency and no prediction.

A gamer’s negative affect is a manifestation of their experienced

negative emotions, such as anger, fear, and disgust while playing

the game. Similar effects of latency compensation based on deep

learning on the game experience have been reported by Halbhu-

ber et al. [19]. Interestingly, Halbhuber et al. [19], contrary to our

findings, found an increase in the positive affect experienced while

playing with their compensation method instead of a decrease in

188

MuC ’22, September 4–7, 2022, Darmstadt, Germany Halbhuber et al.

the negative affect. This difference could be due to the different

amounts of latency induced. While Halbhuber et al. used a baseline

latency of 180ms artificially added latency, we evaluated our system

during gameplay with 50ms of latency. Comparing both works in-

dicates the evolution of latency-based effects. While compensating

for high latency (180 ms) increased positive feelings, compensating

for lower latency (50ms) decreases negative feelings associated

with and triggered by the gaming session. Both approaches, re-

ducing low latency and high latency, are beneficial to optimizing

the overall game experience. A direct comparison suggests that

compensating for different latency levels might improve different

aspects of the game experience.

Our analysis also showed that the tiredness induced by the gam-

ing session was significantly lower when playing with our latency

compensation ANN compared to playing without it. A gamer’s

tiredness after a gaming session indicates how exhaustive the ses-

sion was. The exhaustion in gaming may be due to multiple reasons.

One possible reason for a high level of exhaustion is a cognitively

demanding gaming session. For example, if gamers have to simulta-

neously observe, control, and manage various game resources such

as units in a Real-Time Strategy game [9]. However, since we did not

find a significant difference between playing without latency and

playing with our system compensating latency, it is unlikely that

the game itself induced a high level of tiredness. On the contrary,

as we only found a significant increase in gamers playing with

latency and no compensation, we conclude that latency in video

games directly induces a higher level of exhaustion. The resulting

de-synchronization induced by the latency between input and vi-

sual confirmation increased the cognitive demand of all in-game

tasks. The absence of a responsive confirmation of a performed

action led to the fact that performed actions had to be observed and

controlled for a more extended period. Thus, ultimately, latency

induced higher tiredness.

We found that the tension experienced while playing with la-

tency was significantly higher compared to playing without latency.

This shows that we successfully induced latency in the game - hence,

the increased tension. We did, however, not find a decrease in expe-

rienced tension when playing with our ANN’s prediction. However,

we also did not find a significant difference between playing with

no latency and playing with the support of our ANN. Our ANN

could not fully compensate for the negative effects of latency on

the perceived tension. It, however, was able to lower the effects to

the point that they are no longer statistically distinguishable from

playing with no latency.

In summary, as prior work did [10, 12, 27], our work shows that

latency negatively influences the game experience. Additionally,

our work presents a solution to the latency problem in cloud-based

game streaming - deep learning-based latency compensation. Fur-

thermore, a comparison with related work [19] indicates that com-

pensating for different levels of latency might improve different

aspects of gamers’ experience.

6.2 Implication of our Findings

Game developers should be aware of the different effects of latency

and latency compensation techniques on gamers. Especially poten-

tial dissimilarities when compensating for high latency compared

to a lower latency may be relevant in the game optimization pro-

cess. Reducing a high latency increases the positive affect. Thus,

it increases the fun and the number of positive emotions associ-

ated with the game. Reducing a low latency leads to the decrease

of negative affect. Game developers can utilize this knowledge to

improve games designed for cloud-based game streaming in the

early development stages. Developers can focus on decreasing high

latency early on, knowing that any negative association in playtest-

ing may be attributed to a remaining latency. Decreasing only high

latency early on in the development allows for saving resources that

can be utilized in other development areas. In later optimization

stages, the remaining low latency may then be reduced to optimize

and finalize the game experience. Furthermore, game developers

should be aware of the different latency conditions when simulta-

neously developing a game for conventional local gaming systems

and cloud-based game streaming platforms.

Researchers may also benefit from our work. We showed that

deep learning-based latency compensation techniques are well

equipped to reduce negative effects induced by latency. Further-

more, we showed that the different latency levels, and thus their

compensation, affect gamers differently. Researchers can build on

our work to further investigate the effects of latency compensa-

tion on game experience in greater detail. We showed that deep

learning-based latency compensation could reduce the negative

effects of latency in Age of Empire 2. However, since we used the

same game to train and evaluate our ANN, it remains unknown if

ANNs can generalize across different games. We assume that by us-

ing a large enough data set of gameplay data of multiple games and

genres, deep learning-based models could generalize over all games.

Consequently, researchers should investigate the generalizability

of deep learning-based latency compensation techniques in video

games. The findings of our work and the presented method are

also relevant to researchers outside of video games. Although we

used game-specific parameters to train our system, the presented

approach is potentially suitable for any software operated by a

mouse and keyboard.For example, by integrating mouse prediction,

a software could achieve higher responsiveness and thus enhancing

the overall user experience.

Finally, our findings and the presented method to compensate for

latency are also relevant to cloud-based game streaming providers.

Streaming providers need to continue to improve and upgrade

their server infrastructure and their method of compressing and

delivering their content. Further optimizing latency conditions

in cloud-based game streaming is essential to alleviate it to the

latency level of conventional gaming systems. To do so, providers

can use the herein presented latency compensation technique. Our

presented method may be used for any type of game. In removing

the inherent latency of game streaming, providers can offer gamers

a gaming platformwith the same game experience and performance

potential as local gaming setups.

7 CONCLUSION

This work presents a novel approach to compensate for latency

in commercial video games by predicting the mouse position in

50ms in Age of Empire 2 (AoE2) using ANNs. In contrast to previous
work, we do not require the internal game state or to modify the

189

Using Artificial Neural Networks to Compensate Negative Effects of Latency in Commercial Real-Time Strategy Games MuC ’22, September 4–7, 2022, Darmstadt, Germany

game. Consequently, our approach can compensate for the latency

of unmodified commercial games to reduce the negative effects on

the game experience induced by latency.

In our work, we did not find an increased accuracy when using

visual material for the mouse prediction. However, the lower ac-

curacy might be due to the small number of epochs trained. One

can assume that an increased time spent on training increases the

accuracy of the CNN and the mixed model. Both models did not

converge to an optimization minimum yet in our preliminary eval-

uation. Future work, thus, should build on our work and further

investigate the use of CNN and visual material for latency compen-

sation techniques. Furthermore, the lack of increased prediction

accuracy using images may be due to the image resolution used

for training. In our work, we scaled the training images down to

a resolution of 84 pixels by 48 pixels. Down-scaling was necessary

to be able to train the CNN in a reasonable amount of time. Nev-

ertheless, even with down-scaled images training, one epoch took

approximately 36 hours. Future work, thus, should investigate if it

is a feasible approach to increase computational power for training.

In our work, we simulated latency by buffering user input. In

doing so, we created local latency. While our findings are evidently

valid for this scenario, results might differ for other types of latency.

Previous work showed that local and network latency differently af-

fects gamers [26]. Similarly, the compensation of local latency may

lead to other effects than network latency compensation. Future

work should further investigate the different effects of compensat-

ing local latency and compensating network latency using deep

learning-based techniques.

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://doi.org/10.5555/3026877.3026899 Software available from tensorflow.org.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-

work. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. https://doi.org/10.1145/3292500.3330701

[3] Amazon. 2022. luna - Play your favorite games straight from the cloud. https:

//www.amazon.com/luna/landing-page. Accessed on 2022-02-22.

[4] Michelle Annett, Fraser Anderson, Walter F. Bischof, and Anoop Gupta. 2014.

The Pen is Mightier: Understanding Stylus Behaviour While Inking on Tablets.

In Proceedings of Graphics Interface 2014 (Montreal, Quebec, Canada) (GI ’14).
Canadian Information Processing Society, CAN, 193–200. https://doi.org/10.

5555/2619648.2619680

[5] Michelle Annett, Albert Ng, Paul Dietz, Walter F Bischof, and Anoop Gupta. 2020.

How low should we go? Understanding the perception of latency while inking.

In Graphics Interface 2014. AK Peters/CRC Press, 167–174. https://doi.org/10.

5555/2619648.2619677

[6] Grenville Armitage. 2003. An experimental estimation of latency sensitivity in

multiplayer Quake 3. In The 11th IEEE International Conference on Networks, 2003.
ICON2003. IEEE, 137–141. https://doi.org/10.1109/ICON.2003.1266180

[7] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu,

and Mark Claypool. 2004. The Effects of Loss and Latency on User Performance

in Unreal Tournament 2003®. In Proceedings of 3rd ACM SIGCOMMWorkshop
on Network and System Support for Games (Portland, Oregon, USA) (NetGames
’04). Association for Computing Machinery, New York, NY, USA, 144–151. https:

//doi.org/10.1145/1016540.1016556

[8] Yahn W Bernier. 2001. Latency compensating methods in client/server in-game

protocol design and optimization. In Game Developers Conference, Vol. 98033.

[9] Yang Chen, Jian Ou, and DavidMWhittinghill. 2015. Cognitive Load in Real-Time

Strategy Gaming: Human Opponent Versus AI Opponent. The Computer Games
Journal 4, 1 (2015), 19–30. https://doi.org/10.1007/s40869-015-0002-z

[10] Mark Claypool and Kajal Claypool. 2006. Latency and player actions in online

games. Commun. ACM 49, 11 (2006), 40–45. https://doi.org/10.1145/1167838.

1167860

[11] Mark Claypool, Ragnhild Eg, and Kjetil Raaen. 2016. The Effects of Delay on

Game Actions: Moving Target Selection with a Mouse. In Proceedings of the
2016 Annual Symposium on Computer-Human Interaction in Play Companion
Extended Abstracts (Austin, Texas, USA) (CHI PLAY Companion ’16). Association
for Computing Machinery, New York, NY, USA, 117–123. https://doi.org/10.

1145/2968120.2987743

[12] Mark Claypool and David Finkel. 2014. The effects of latency on player per-

formance in cloud-based games. In 2014 13th Annual Workshop on Network and
Systems Support for Games. IEEE, 1–6. https://doi.org/10.1109/NetGames.2014.

7008964

[13] Robert Dabrowski, Christian Manuel, and Robert Smieja. 2014. The Effects of

Latency on Player Performance and Experience in a Cloud Gaming System. Inter-
active Qualifying Project MLC-AAEZ (2014). https://doi.org/10.1109/NetGames.

2014.7008964

[14] DESTINYbit. 2022. An exciting free-to-play Real Time Strategy game. https:

//empiresapart.net/. Accessed on 2022-02-22.

[15] Ragnhild Eg, Kjetil Raaen, and Mark Claypool. 2018. Playing with delay: With

poor timing comes poor performance, and experience follows suit. In 2018 Tenth
International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 1–6.
https://doi.org/10.1109/QoMEX.2018.8463382

[16] Microsoft Games. 2022. Age of Empire 2 Definitive Edition. https://www.

ageofempires.com/games/aoeiide/. Accessed on 2022-02-22.

[17] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier

neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. 315–323.

[18] Carl Gutwin, Steve Benford, Jeff Dyck, Mike Fraser, Ivan Vaghi, and Chris

Greenhalgh. 2004. Revealing delay in collaborative environments. In Proceed-
ings of the SIGCHI conference on human factors in computing systems. 503–510.
https://doi.org/10.1145/985692.985756

[19] David Halbhuber, Niels Henze, and Valentin Schwind. 2021. Increasing Player

Performance and Game Experience in High Latency Systems. Proceedings of
the ACM on Human-Computer Interaction 5, CHI PLAY (2021), 1–20. https:

//doi.org/10.1145/3474710

[20] Wijnand A IJsselsteijn, Yvonne AW de Kort, and Karolien Poels. 2013. The game

experience questionnaire. Eindhoven: Technische Universiteit Eindhoven (2013),

3–9.

[21] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How Fast is Fast

Enough? A Study of the Effects of Latency in Direct-Touch Pointing Tasks. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Paris, France) (CHI ’13). Association for Computing Machinery, New York, NY,

USA, 2291–2300. https://doi.org/10.1145/2470654.2481317

[22] S. W. K. Lee and R. K. C. Chang. 2017. On "shot around a corner" in first-person

shooter games. In 2017 15th Annual Workshop on Network and Systems Support
for Games (NetGames). 1–6. https://doi.org/10.1109/NetGames.2017.7991545

[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014). https://doi.org/10.48550/arXiv.

1412.6980

[24] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied

to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

https://doi.org/10.1162/neco.1989.1.4.541

[25] Injung Lee, Sunjun Kim, and Byungjoo Lee. 2019. Geometrically compensating

effect of end-to-end latency in moving-target selection games. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems. 1–12. https:

//doi.org/10.1145/3290605.3300790

[26] Shengmei Liu, Mark Claypool, Atsuo Kuwahara, James Scovell, and Jamie Sher-

man. 2021. The Effects of Network Latency on Competitive First-Person Shooter

Game Players. In 2021 13th International Conference on Quality of Multimedia
Experience (QoMEX). IEEE, 151–156. https://doi.org/10.1109/QoMEX51781.2021.

9465419

[27] Shengmei Liu, Mark Claypool, Atsuo Kuwahara, Jamie Sherman, and James J

Scovell. 2021. Lower is Better? The Effects of Local Latencies on Competitive

First-Person Shooter Game Players. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 1–12.

[28] Shengmei Liu, Xiaokun Xu, and Mark Claypool. 2022. A Survey and Taxonomy

of Latency Compensation Techniques for Network Computer Games. ACM
Computing Surveys (CSUR) (2022). https://doi.org/10.1145/3519023

[29] Michael Long and Carl Gutwin. 2018. Characterizing and modeling the effects

of local latency on game performance and experience. In Proceedings of the 2018
Annual Symposium on Computer-Human Interaction in Play. 285–297. https:

//doi.org/10.1145/3242671.3242678

190

https://doi.org/10.5555/3026877.3026899
https://doi.org/10.1145/3292500.3330701
https://www.amazon.com/luna/landing-page
https://www.amazon.com/luna/landing-page
https://doi.org/10.5555/2619648.2619680
https://doi.org/10.5555/2619648.2619680
https://doi.org/10.5555/2619648.2619677
https://doi.org/10.5555/2619648.2619677
https://doi.org/10.1109/ICON.2003.1266180
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1007/s40869-015-0002-z
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/2968120.2987743
https://doi.org/10.1145/2968120.2987743
https://doi.org/10.1109/NetGames.2014.7008964
https://doi.org/10.1109/NetGames.2014.7008964
https://doi.org/10.1109/NetGames.2014.7008964
https://doi.org/10.1109/NetGames.2014.7008964
https://empiresapart.net/
https://empiresapart.net/
https://doi.org/10.1109/QoMEX.2018.8463382
https://www.ageofempires.com/games/aoeiide/
https://www.ageofempires.com/games/aoeiide/
https://doi.org/10.1145/985692.985756
https://doi.org/10.1145/3474710
https://doi.org/10.1145/3474710
https://doi.org/10.1145/2470654.2481317
https://doi.org/10.1109/NetGames.2017.7991545
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1145/3290605.3300790
https://doi.org/10.1145/3290605.3300790
https://doi.org/10.1109/QoMEX51781.2021.9465419
https://doi.org/10.1109/QoMEX51781.2021.9465419
https://doi.org/10.1145/3519023
https://doi.org/10.1145/3242671.3242678
https://doi.org/10.1145/3242671.3242678

MuC ’22, September 4–7, 2022, Darmstadt, Germany Halbhuber et al.

[30] I Scott MacKenzie and Colin Ware. 1993. Lag as a determinant of human

performance in interactive systems. In Proceedings of the INTERACT’93 and
CHI’93 conference on Human factors in computing systems. 488–493. https:

//doi.org/10.1145/169059.169431

[31] Scott I. MacKenzie and Colin Ware. 1993. Lag as a Determinant of Human

Performance in Interactive Systems. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing Systems (Amsterdam, The

Netherlands) (CHI ’93). Association for Computing Machinery, New York, NY,

USA, 488–493. https://doi.org/10.1145/169059.169431

[32] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders, and Paul Dietz. 2012.

Designing for Low-Latency Direct-Touch Input. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology (Cambridge, Mas-

sachusetts, USA) (UIST ’12). Association for Computing Machinery, New York,

NY, USA, 453–464. https://doi.org/10.1145/2380116.2380174

[33] James Nichols andMark Claypool. 2004. The Effects of Latency on OnlineMadden

NFL Football. In Proceedings of the 14th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (Cork, Ireland) (NOSSDAV
’04). Association for Computing Machinery, New York, NY, USA, 146–151. https:

//doi.org/10.1145/1005847.1005879

[34] Nvidia. 2022. The next generation in cloud gaming. https://www.nvidia.com/en-

us/geforce-now/. Accessed on 2022-02-22.

[35] Nvidia. 2022. Nvidia DLSS 2.0: A Big Leap in AI Rendering. https://www.nvidia.

com/en-gb/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/. Accessed

on 2022-02-22.

[36] Jeff Hinrichs Palmér. 2022. pysftp 1.7.6. https://pypi.org/project/pysftp/. Accessed

on 2022-02-22.

[37] Moses Palmér. 2022. pynput 1.7.6. https://pypi.org/project/pynput/. Accessed on

2022-02-22.

[38] Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the
trade. Springer, 55–69. https://doi.org/10.1007/978-3-642-35289-8_5

[39] Valentin Schwind, David Halbhuber, Jakob Fehle, Jonathan Sasse, Andreas Pfaf-

felhuber, Christoph Tögel, Julian Dietz, and Niels Henze. 2020. The Effects of

Full-Body Avatar Movement Predictions in Virtual Reality using Neural Net-

works. In 26th ACM Symposium on Virtual Reality Software and Technology. 1–11.
https://doi.org/10.1145/3385956.3418941

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

https://doi.org/10.5555/2627435.2670313

[41] Jiawei Sun and Mark Claypool. 2019. Evaluating Streaming and Latency Com-

pensation in a Cloud-based Game. In Proceedings of the 15th IARIA Advanced
International Conference on Telecommunications (AICT).

[42] OpenCV team. 2022. OpenCV – 4.5.5. https://opencv.org/. Accessed on 2022-02-

22.

[43] Tungsteno. 2022. pyWinhook 1.6.2. https://pypi.org/project/pyWinhook/. Ac-

cessed on 2022-02-22.

[44] Valve. 2022. Steam - The ultimate destination for playing, discussing, and creating

games. https://store.steampowered.com/. Accessed on 2022-02-22.

[45] Brent Vollebreg. 2022. Auto PY to EXE. https://pypi.org/project/auto-py-to-exe/.

Accessed on 2022-02-22.

[46] Wikipedia. 2022. AAA (video game industry). https://en.wikipedia.org/w/index.

php?title=AAA_(video_game_industry)&oldid=1067619619. Accessed on 2022-

02-22.

191

https://doi.org/10.1145/169059.169431
https://doi.org/10.1145/169059.169431
https://doi.org/10.1145/169059.169431
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1145/1005847.1005879
https://doi.org/10.1145/1005847.1005879
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-gb/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://www.nvidia.com/en-gb/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://pypi.org/project/pysftp/
https://pypi.org/project/pynput/
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1145/3385956.3418941
https://doi.org/10.5555/2627435.2670313
https://opencv.org/
https://pypi.org/project/pyWinhook/
https://store.steampowered.com/
https://pypi.org/project/auto-py-to-exe/
 https://en.wikipedia.org/w/index.php?title=AAA_(video_game_industry)&oldid=1067619619
 https://en.wikipedia.org/w/index.php?title=AAA_(video_game_industry)&oldid=1067619619

	Abstract
	1 Introduction
	2 Related Work
	2.1 Latency in Interactive Systems
	2.2 Latency in Video Games
	2.3 Latency Compensation and Reduction in Video Games
	2.4 Summary

	3 Data Collection
	3.1 Development of the Data Gathering Tool
	3.2 Data Collection Study

	4 Development of the Artificial Neural Networks
	4.1 General Description
	4.2 Training the Dense Neural Network
	4.3 Training the mixed-model Convolutional Neural Network
	4.4 Integration of ANN to the Game

	5 Evaluation
	5.1 Study Design
	5.2 Apparatus
	5.3 Participants
	5.4 Results

	6 Discussion
	6.1 Tension, Negative Affect, and Tiredness
	6.2 Implication of our Findings

	7 Conclusion
	References

